metadata
dict
text
stringlengths
60
3.49M
{ "source": "jozhang97/mmsegmentation", "score": 2 }
#### File: mmseg/datasets/box2seg.py ```python import os.path as osp from mmseg.datasets.builder import DATASETS from mmseg.datasets.custom import CustomDataset @DATASETS.register_module() class Box2seg(CustomDataset): CLASSES = ('background', 'foreground') PALETTE = [[0, 0, 0], [255, 0, 0]] def __init__(self, **kwargs): super(Box2seg, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', **kwargs) assert osp.exists(self.img_dir) ```
{ "source": "jozhang97/Side-tuning", "score": 2 }
#### File: Side-tuning/configs/habitat.py ```python import numpy as np @ex.named_config def cfg_habitat(): uuid = 'habitat_core' cfg = {} cfg['learner'] = { 'algo': 'ppo', # Learning algorithm for RL agent. Currently PPO, SLAM, imitation_learning 'clip_param': 0.1, # Clip param for trust region in PPO 'entropy_coef': 1e-4, # Weighting of the entropy term in PPO 'eps': 1e-5, # Small epsilon to prevent divide-by-zero 'gamma': 0.99, # Gamma to use if env.observation_space.shape = 1 'internal_state_size': 512, # If using a recurrent policy, what state size to use (if no recurrent policy, make this small for memory savings) 'lr': 1e-4, # Learning rate for algorithm 'num_steps': 1000, # Length of each rollout (grab 'num_steps' consecutive samples to form rollout) 'num_mini_batch': 8, # Size of PPO minibatch (from rollout, block into this many minibatchs to compute losses on) 'num_stack': 4, # Frames that each cell (CNN) can see 'max_grad_norm': 0.5, # Clip grads 'ppo_epoch': 8, # Number of times PPO goes over the buffer 'recurrent_policy': False, # Use a recurrent version with the cell as the standard model 'tau': 0.95, # When using GAE 'use_gae': True, # Whether to use GAE 'value_loss_coef': 1e-3, # Weighting of value_loss in PPO 'perception_network_reinit': False, # reinitialize the perception_module, used when checkpoint is used 'perception_network': 'AtariNet', 'perception_network_kwargs': { 'extra_kwargs': { 'normalize_taskonomy': True } }, 'test': False, 'use_replay': True, 'replay_buffer_size': 3000, # This is stored on CPU 'on_policy_epoch': 8, # Number of on policy rollouts in each update 'off_policy_epoch': 8, 'slam_class': None, 'slam_kwargs': {}, 'loss_kwargs': { # Used for regularization losses (e.g. weight tying) 'intrinsic_loss_coefs': [], 'intrinsic_loss_types': [], }, 'deterministic': False, 'rollout_value_batch_multiplier': 2, 'cache_kwargs': {}, 'optimizer_class': 'optim.Adam', 'optimizer_kwargs': {}, } cfg['env'] = { 'add_timestep': False, # Add timestep to the observation 'env_name': 'Habitat_PointNav', # Environment to use "env_specific_kwargs": { 'swap_building_k_episodes': 10, 'gpu_devices': [0], 'scenario_kwargs': { # specific to the scenario - pointnav or exploration 'use_depth': False, 'max_geodesic_dist': 99999 # For PointNav, we skip episodes that are too "hard" }, 'map_kwargs': { 'map_building_size': 22, # How large to make the IMU-based map 'map_max_pool': False, # Use max-pooling on the IMU-based map 'use_cuda': False, 'history_size': None, # How many prior steps to include on the map }, 'target_dim': 16, # Taskonomy reps: 16, scratch: 9, map_only: 1 # 'val_scenes': ['Denmark', 'Greigsville', 'Eudora', 'Pablo', 'Elmira', 'Mosquito', 'Sands', 'Swormville', 'Sisters', 'Scioto', 'Eastville', 'Edgemere', 'Cantwell', 'Ribera'], 'val_scenes': None, 'train_scenes': None, # 'train_scenes': ['Beach'], }, 'sensors': { 'features': None, 'taskonomy': None, 'rgb_filled': None, 'map': None, 'target': None, 'depth': None, 'global_pos': None, 'pointgoal': None, }, 'transform_fn_pre_aggregation': None, # Depreciated 'transform_fn_pre_aggregation_fn': None, # Transformation to apply to each individual image (before batching) 'transform_fn_pre_aggregation_kwargs': {}, # Arguments - MUST BE ABLE TO CALL eval ON ALL STRING VALUES 'transform_fn_post_aggregation': None, # Depreciated 'transform_fn_post_aggregation_fn': None, # Arguments - MUST BE ABLE TO CALL eval ON ALL STRING VALUES 'transform_fn_post_aggregation_kwargs': {}, 'num_processes': 8, 'num_val_processes': 1, 'additional_repeat_count': 0, } cfg['saving'] = { 'checkpoint':None, 'checkpoint_num': None, 'checkpoint_configs': False, # copy the metadata of the checkpoint. YMMV. 'log_dir': LOG_DIR, 'log_interval': 10, 'save_interval': 100, 'save_dir': 'checkpoints', 'visdom_log_file': os.path.join(LOG_DIR, 'visdom_logs.json'), 'results_log_file': os.path.join(LOG_DIR, 'result_log.pkl'), 'reward_log_file': os.path.join(LOG_DIR, 'rewards.pkl'), 'vis_interval': 200, 'visdom_server': 'localhost', 'visdom_port': '8097', 'obliterate_logs': False, } cfg['training'] = { 'cuda': True, 'gpu_devices': None, # None uses all devices, otherwise give a list of devices 'seed': 42, 'num_frames': 1e8, 'resumable': False, } @ex.named_config def cfg_test(): cfg = {} cfg['saving'] = { 'resumable': True, 'checkpoint_configs': True, } override = {} override['saving'] = { 'visdom_server': 'localhost', } override['env'] = { 'num_processes': 10, 'num_val_processes': 10, 'env_specific_kwargs': { 'test_mode': True, 'scenario_kwargs': { # specific to the scenario - pointnav or exploration 'max_geodesic_dist': 99999 } } } override['learner'] = { 'test_k_episodes': 994, 'test': True, } #################################### # Active Tasks #################################### @ex.named_config def planning(): uuid = 'habitat_planning' cfg = {} cfg['learner'] = { 'perception_network_kwargs': { # while related to the agent, these are ENVIRONMENT specific 'n_map_channels': 3, 'use_target': True, } } cfg['env'] = { 'env_name': 'Habitat_PointNav', # Environment to use 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { # the most basic sensors 'names_to_transforms': { 'map': 'identity_transform()', 'global_pos': 'identity_transform()', 'target': 'identity_transform()', }, 'keep_unnamed': False, }, 'transform_fn_post_aggregation_fn': 'TransformFactory.independent', 'transform_fn_post_aggregation_kwargs': { 'names_to_transforms': { 'map':'map_pool_collated((3,84,84))', }, 'keep_unnamed': True, } } @ex.named_config def exploration(): uuid = 'habitat_exploration' cfg = {} cfg['learner'] = { 'lr': 1e-3, # Learning rate for algorithm 'perception_network_kwargs': { # while related to the agent, these are ENVIRONMENT specific 'n_map_channels': 1, 'use_target': False, } } cfg['env'] = { 'env_name': 'Habitat_Exploration', # Environment to use 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { # the most basic sensors 'names_to_transforms': { 'map': 'identity_transform()', 'global_pos': 'identity_transform()', }, 'keep_unnamed': False, }, 'transform_fn_post_aggregation_fn': 'TransformFactory.independent', 'transform_fn_post_aggregation_kwargs': { 'names_to_transforms': { 'map':'map_pool_collated((1,84,84))', }, 'keep_unnamed': True, }, # For exploration, always map_pool in the pre_aggregation, do not in post_aggregation # 'map':rescale_centercrop_resize((1,84,84)), "env_specific_kwargs": { 'scenario_kwargs': { 'max_episode_steps': 1000, }, 'map_kwargs': { 'map_size': 84, 'fov': np.pi / 2, 'min_depth': 0, 'max_depth': 1.5, 'relative_range': True, # scale the map_range so centered at initial agent position 'map_x_range': [-11, 11], 'map_y_range': [-11, 11], 'fullvision': False, # robot unlocks all cells in what it sees, as opposed to just center to ground }, 'reward_kwargs': { 'slack_reward': 0, } }, } #################################### # Settings #################################### @ex.named_config def small_settings5(): # hope this runs well on gestalt, one GPU (moderate RAM requirements) uuid = 'habitat_small_settings5' cfg = {} cfg['learner'] = { 'num_steps': 512, # Length of each rollout (grab 'num_steps' consecutive samples to form rollout) 'replay_buffer_size': 1024, # This is stored on CPU 'on_policy_epoch': 5, # Number of on policy rollouts in each update 'off_policy_epoch': 10, 'num_mini_batch': 24, # Size of PPO minibatch (from rollout, block into this many minibatchs to compute losses on) 'rollout_value_batch_multiplier': 1, } cfg['env'] = { 'num_processes': 6, 'num_val_processes': 1, } @ex.named_config def cvpr_settings(): # Settings we used for CVPR 2019 Habitat Challenge, see https://github.com/facebookresearch/habitat-challenge uuid = 'habitat_cvpr_settings' cfg = {} cfg['learner'] = { 'num_steps': 512, # Length of each rollout (grab 'num_steps' consecutive samples to form rollout) 'replay_buffer_size': 4096, # This is stored on CPU 'on_policy_epoch': 8, # Number of on policy rollouts in each update 'off_policy_epoch': 8, 'num_mini_batch': 8, # Size of PPO minibatch (from rollout, block into this many minibatchs to compute losses on) 'rollout_value_batch_multiplier': 1, } cfg['env'] = { 'num_processes': 6, 'num_val_processes': 1, } #################################### # Development #################################### @ex.named_config def prototype(): uuid='test' cfg = {} cfg['env'] = { 'num_processes': 2, 'num_val_processes': 1, 'env_specific_kwargs': { 'train_scenes': ['Adrian'], 'val_scenes': ['Denmark'], } } cfg['saving'] = { 'log_interval': 2, 'vis_interval': 1, } @ex.named_config def debug(): # this does not use VectorizedEnv, so supports pdb uuid='test' cfg = {} override = {} cfg['learner'] = { 'num_steps': 100, 'replay_buffer_size': 300, 'deterministic': True, } cfg['env'] = { 'num_processes': 1, 'num_val_processes': 0, 'env_specific_kwargs': { 'train_scenes': ['Adrian'], 'debug_mode': True, } } cfg['saving'] = { 'log_interval': 2, 'vis_interval': 1, } override['env'] = { 'num_processes': 1, 'num_val_processes': 0, "env_specific_kwargs": { 'debug_mode': True, } } ``` #### File: Side-tuning/configs/icifar_cfg.py ```python @ex.named_config def cifar10_data(): # HP borrowed from https://github.com/akamaster/pytorch_resnet_cifar10 cfg = { 'learner': { 'lr': 1e-1, 'optimizer_class': 'optim.SGD', 'optimizer_kwargs': { 'momentum': 0.9, 'weight_decay': 1e-4, }, 'lr_scheduler_method': 'optim.lr_scheduler.MultiStepLR', 'lr_scheduler_method_kwargs': { 'milestones': [100,150], }, 'max_grad_norm': None, 'use_feedback': False, }, 'training': { 'dataloader_fn': 'icifar_dataset.get_cifar_dataloaders', 'dataloader_fn_kwargs': { 'data_path': '/mnt/data/cifar10', # for docker 'num_workers': 8, 'pin_memory': True, 'epochlength': 20000, 'batch_size': 128, 'batch_size_val': 256, }, 'loss_fn': 'softmax_cross_entropy', 'loss_kwargs': {}, 'use_masks': False, 'sources': [['rgb']], # Len of targets 'targets': [['cifar10']], 'masks': None, 'task_is_classification': [True], 'num_epochs': 1000, }, 'saving': { 'ticks_per_epoch': 5, 'log_interval': 1, 'save_interval': 200, } } N_TASKS = 10 @ex.named_config def icifar_data(): # 5000/1000 train/val images per class n_epochs = 4 n_classes = 100 n_tasks = N_TASKS n = 100 // n_tasks chunked_classes = [] for i in range((n_classes + n - 1) // n): chunked_classes.append(np.arange(i * n, (i + 1) * n)) chunked_names = [[f'cifar{cs.min()}-{cs.max()}'] for cs in chunked_classes] cfg = { 'training': { # 'split_to_use': 'splits.taskonomy_no_midlevel["debug"]', 'dataloader_fn': 'icifar_dataset.get_dataloaders', 'dataloader_fn_kwargs': { 'data_path': '/mnt/data/cifar100', 'load_to_mem': False, # if dataset small enough, can load activations to memory 'num_workers': 8, 'pin_memory': True, 'epochlength': 5000*n_epochs, 'epochs_until_cycle': 0, 'batch_size': 128, 'batch_size_val': 256, }, 'loss_fn': 'softmax_cross_entropy', 'loss_kwargs': {}, 'use_masks': False, 'sources': [['rgb']] * len(chunked_classes), # Len of targets 'targets': chunked_names, 'masks': None, 'task_is_classification': [True] * len(chunked_classes), 'num_epochs': N_TASKS, }, 'saving': { 'ticks_per_epoch': 1, 'log_interval': 1, 'save_interval': 10, # why did s use 1000 here? }, 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'dataset': 'icifar', }, 'use_feedback': False, }, } del n, n_tasks, n_classes, chunked_classes, i, chunked_names, n_epochs # For Boosting experiment N_TASKS = 10 @ex.named_config def icifar0_10_data(): cfg = { 'training': { # 'split_to_use': 'splits.taskonomy_no_midlevel["debug"]', 'dataloader_fn': 'icifar_dataset.get_dataloaders', 'dataloader_fn_kwargs': { 'data_path': '/mnt/data/cifar100', # for docker 'load_to_mem': False, # if dataset small enough, can load activations to memory 'num_workers': 8, 'pin_memory': True, 'epochlength': 20000, 'batch_size': 128, 'batch_size_val': 256, }, 'loss_fn': 'softmax_cross_entropy', 'loss_kwargs': {}, 'use_masks': False, 'sources': [['rgb']] * N_TASKS, # Len of targets 'targets': [['cifar0-9']] * N_TASKS, 'masks': None, 'task_is_classification': [True] * N_TASKS, } } @ex.named_config def cifar_hp(): uuid = 'no_uuid' cfg = {} cfg['learner'] = { 'lr': 1e-3, # Learning rate for algorithm 'optimizer_kwargs' : { # 'weight_decay': 2e-6 'weight_decay': 0e-6 }, } @ex.named_config def debug_cifar100(): cfg = { 'training': { 'dataloader_fn_kwargs': { 'epochlength': 50000 // 128, }, }, 'learner': { 'model_kwargs': { 'num_classes': 100, } } } ################## # Simple Models ################## @ex.named_config def model_resnet_cifar(): cfg = { 'learner': { 'model': 'ResnetiCifar44', # 'model_kwargs': {'bsp': True, 'period': 1, 'debug': False}, }, 'training': { 'resume_from_checkpoint_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'resume_training': True, } } ################## # Initializations ################## @ex.named_config def init_lowenergy_cifar(): cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'side_class': 'FCN4Reshaped', 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar-lowenergy.pth', } } } @ex.named_config def init_xavier(): cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'side_weights_path': None, } } } ################## # BSP - binary superposition ################## @ex.named_config def bsp_cifar(): # use binary superposition from https://arxiv.org/pdf/1902.05522 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'GenericSidetuneNetwork', 'base_kwargs': { 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar-bsp.pth', # user needs to input 'base_kwargs': {'bsp': True, 'period': 10}, 'side_kwargs': {'bsp': True, 'period': 10}, }, } } } @ex.named_config def bsp_norecurse_cifar(): # use binary superposition from https://arxiv.org/pdf/1902.05522 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar-bsp.pth', # user needs to input 'base_kwargs': {'bsp': True, 'period': 10}, } } } @ex.named_config def bsp_debug(): cfg = { 'learner': { 'model_kwargs': { 'base_kwargs': {'bsp': True, 'debug': True}, } }} ################## # Models ################## @ex.named_config def model_boosted_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'BoostedNetwork', 'model_kwargs': { 'base_class': None, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {}, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_boosted_wbase_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'BoostedNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': True}, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {}, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_resnet_icifar0_10(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': False}, 'use_baked_encoding': False, 'side_class': None, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_lifelong_independent_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'side_class': 'GenericSidetuneNetwork', 'side_kwargs': { 'n_channels_in': 3, 'n_channels_out': 8, 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': False}, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', }, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, } } } del n_channels_out @ex.named_config def model_lifelong_independent_resnet_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': None, 'base_weights_path': None, # user needs to input 'base_kwargs': {}, 'use_baked_encoding': False, 'side_class': 'ResnetiCifar44NoLinear', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_lifelong_independent_fcn4_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': None, 'base_weights_path': None, # user needs to input 'base_kwargs': {}, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_lifelong_finetune_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'GenericSidetuneNetwork', 'base_kwargs': { 'n_channels_in': 3, 'n_channels_out': 8, 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': False}, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', }, 'use_baked_encoding': False, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, } } } del n_channels_out @ex.named_config def model_lifelong_finetune_resnet44_cifar(): cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': False}, 'use_baked_encoding': False, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, }, }, } @ex.named_config def model_lifelong_finetune_fcn4_cifar(): cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'FCN4Reshaped', 'base_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': False}, 'use_baked_encoding': False, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, }, }, } @ex.named_config def model_lifelong_sidetune_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': True }, 'use_baked_encoding': False, 'side_class': 'FCN4Reshaped', 'side_kwargs': {'eval_only': False }, 'side_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, } } } del n_channels_out @ex.named_config def model_lifelong_features_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': True }, 'use_baked_encoding': False, 'side_class': None, 'side_kwargs': {}, 'side_weights_path': None, 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, } } } del n_channels_out @ex.named_config def pnn_v2_cifar(): cfg = { 'learner': { 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinearWithCache', 'side_class': 'FCN4Progressive', 'side_kwargs': {}, 'pnn': True, } } } @ex.named_config def pnn_v4_cifar(): cfg = { 'learner': { 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinearWithCache', 'side_class': 'FCN4ProgressiveH', 'side_kwargs': {}, 'pnn': True, } } } @ex.named_config def model_lifelong_sidetune_reverse_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'FCN4Reshaped', 'base_weights_path': '/mnt/models/fcn4-from-resnet44-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': True}, 'use_baked_encoding': False, 'side_class': 'ResnetiCifar44NoLinear', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out @ex.named_config def model_lifelong_sidetune_double_resnet_cifar(): n_channels_out = 3 cfg = { 'learner': { 'model': 'LifelongSidetuneNetwork', 'model_kwargs': { 'base_class': 'ResnetiCifar44NoLinear', 'base_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', # user needs to input 'base_kwargs': {'eval_only': True}, 'use_baked_encoding': False, 'side_class': 'ResnetiCifar44NoLinear', 'side_kwargs': {'eval_only': False}, 'side_weights_path': '/mnt/models/resnet44-nolinear-cifar.pth', 'transfer_class': 'nn.Linear', 'transfer_kwargs': {'in_features': 64, 'out_features': 10}, 'transfer_weights_path': None, 'decoder_class': None, 'decoder_weights_path': None, # user can input for smart initialization 'decoder_kwargs': {}, } } } del n_channels_out ``` #### File: Side-tuning/configs/rl.py ```python @ex.named_config def taskonomy_features(): ''' Implements an agent with some mid-level feature. From the paper: From Learning to Navigate Using Mid-Level Visual Priors (Sax et al. '19) Taskonomy: Disentangling Task Transfer Learning <NAME>, <NAME>*, <NAME>*, <NAME>, <NAME>, <NAME>. 2018 Viable feature options are: [] ''' uuid = 'habitat_taskonomy_feature' cfg = {} cfg['learner'] = { 'perception_network': 'TaskonomyFeaturesOnlyNet', 'perception_network_kwargs': { 'extra_kwargs': { 'main_perception_network': 'TaskonomyFeaturesOnlyNet', # for sidetune } } } cfg['env'] = { 'env_specific_kwargs': { 'target_dim': 16, # Taskonomy reps: 16, scratch: 9, map_only: 1 }, 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { 'names_to_transforms': { 'taskonomy':'rescale_centercrop_resize((3,256,256))', }, }, 'transform_fn_post_aggregation_fn': 'TransformFactory.independent', 'transform_fn_post_aggregation_kwargs': { 'names_to_transforms': { 'taskonomy':"taskonomy_features_transform('/mnt/models/curvature_encoder.dat')", }, 'keep_unnamed': True, } } @ex.named_config def blind(): ''' Implements a blinded agent. This has no visual input, but is still able to reason about its movement via path integration. ''' uuid = 'blind' cfg = {} cfg['learner'] = { 'perception_network': 'TaskonomyFeaturesOnlyNet', } cfg['env'] = { 'env_specific_kwargs': { 'target_dim': 16, # Taskonomy reps: 16, scratch: 9, map_only: 1 }, 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { 'names_to_transforms': { 'taskonomy': 'blind((8,16,16))', # 'rgb_filled': 'rescale_centercrop_resize((3,84,84))', }, }, } @ex.named_config def midtune(): # Specific type of finetune where we train the policy then open the representation to be learned. # Specifically, we take trained midlevel agents and finetune all the weights. uuid = 'habitat_midtune' cfg = {} cfg['learner'] = { 'perception_network_reinit': True, # reinitialize the perception_module, used when checkpoint is used 'rollout_value_batch_multiplier': 1, 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'main_perception_network': 'TaskonomyFeaturesOnlyNet', # for sidetune 'sidetune_kwargs': { 'n_channels_in': 3, 'n_channels_out': 8, 'normalize_pre_transfer': False, 'base_class': 'FCN5', 'base_kwargs': {'normalize_outputs': False}, 'base_weights_path': None, # user needs to specify 'side_class': 'FCN5', 'side_kwargs': {'normalize_outputs': False}, 'side_weights_path': None, # user needs to specify } } }, } cfg['saving'] = { 'checkpoint': None, } cfg['env'] = { 'env_specific_kwargs': { 'target_dim': 16, # Taskonomy reps: 16, scratch: 9, map_only: 1 }, 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { 'names_to_transforms': { 'rgb_filled': 'rescale_centercrop_resize((3,256,256))', }, }, } @ex.named_config def finetune(): uuid = 'habitat_finetune' cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'main_perception_network': 'TaskonomyFeaturesOnlyNet', # for sidetune 'sidetune_kwargs': { 'n_channels_in': 3, 'n_channels_out': 8, 'normalize_pre_transfer': False, 'side_class': 'FCN5', 'side_kwargs': {'normalize_outputs': False}, 'side_weights_path': None, # user needs to specify } } }, 'rollout_value_batch_multiplier': 1, } cfg['env'] = { 'env_specific_kwargs': { 'target_dim': 16, # Taskonomy reps: 16, scratch: 9, map_only: 1 }, 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { 'names_to_transforms': { 'rgb_filled': 'rescale_centercrop_resize((3,256,256))', }, }, } @ex.named_config def sidetune(): uuid = 'habitat_sidetune' cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'n_channels_in': 3, 'n_channels_out': 8, 'normalize_pre_transfer': False, 'base_class': 'TaskonomyEncoder', 'base_weights_path': None, 'base_kwargs': {'eval_only': True, 'normalize_outputs': False}, 'side_class': 'FCN5', 'side_kwargs': {'normalize_outputs': False}, 'side_weights_path': None, 'alpha_blend': True, }, 'attrs_to_remember': ['base_encoding', 'side_output', 'merged_encoding'], # things to remember for supp. losses / visualization } }, 'rollout_value_batch_multiplier': 1, } cfg['env'] = { 'transform_fn_pre_aggregation_fn': 'TransformFactory.independent', 'transform_fn_pre_aggregation_kwargs': { 'names_to_transforms': { 'rgb_filled': 'rescale_centercrop_resize((3,256,256))', }, }, } #################################### # Base Network #################################### @ex.named_config def rlgsn_base_resnet50(): # base is frozen by default cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'base_class': 'TaskonomyEncoder', 'base_weights_path': None, # user needs to input 'base_kwargs': {'eval_only': True, 'normalize_outputs': False}, } } }, } @ex.named_config def rlgsn_base_fcn5s(): # base is frozen by default cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'base_class': 'FCN5', 'base_weights_path': None, # user needs to input 'base_kwargs': {'eval_only': True, 'normalize_outputs': False}, } } }, } @ex.named_config def rlgsn_base_learned(): cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'base_kwargs': {'eval_only': False}, } } }, } #################################### # Side Network #################################### @ex.named_config def rlgsn_side_resnet50(): # side is learned by default cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'side_class': 'TaskonomyEncoder', 'side_weights_path': None, # user needs to input 'side_kwargs': {'eval_only': False, 'normalize_outputs': False}, } } }, } @ex.named_config def rlgsn_side_fcn5s(): # side is learned by default cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'side_class': 'FCN5', 'side_weights_path': None, # user needs to input 'side_kwargs': {'eval_only': False, 'normalize_outputs': False}, } } }, } @ex.named_config def rlgsn_side_frozen(): cfg = {} cfg['learner'] = { 'perception_network': 'RLSidetuneWrapper', 'perception_network_kwargs': { 'extra_kwargs': { 'sidetune_kwargs': { 'side_kwargs': {'eval_only': True}, } } }, } ``` #### File: evkit/models/chain.py ```python import copy import torch.nn as nn import torch from torchsummary import summary class ChainedModel(nn.Module): def __init__(self, nets): super().__init__() self.nets = nets def forward(self, x): outputs = [] for net in self.nets: x = net(x) outputs.append(x) return outputs def ChainDirect(network_constructor, n_channels_list, universal_kwargs={}): print("Universal kwargs", network_constructor, universal_kwargs) return network_constructor(in_channels=n_channels_list[0], out_channels=n_channels_list[1], **universal_kwargs) # class ChainDirect(nn.Module): # def __init__(self, network_constructor, n_channels_list, universal_kwargs={}): # super().__init__() # print("Universal kwargs", network_constructor, universal_kwargs) # self.net = network_constructor(in_channels=n_channels_list[0], # out_channels=n_channels_list[1], # **universal_kwargs) # def initialize_from_checkpoints(self, checkpoint_paths, logger=None): # for i, (net, ckpt_fpath) in enumerate(zip([self.net], checkpoint_paths)): # if logger is not None: # logger.info(f"Loading step {i} from {ckpt_fpath}") # checkpoint = torch.load(ckpt_fpath) # sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} # net.load_state_dict(sd) # return self # def forward(self, x): # return self.net(x) class ChainedEDModel(nn.Module): def __init__(self, network_constructor, n_channels_list, universal_kwargs={}): super().__init__() self.nets = nn.ModuleList() for i in range(len(n_channels_list) - 1): net = network_constructor(in_channels=n_channels_list[i], out_channels=n_channels_list[i + 1], **universal_kwargs) self.nets.append(net) def initialize_from_checkpoints(self, checkpoint_paths, logger=None): for i, (net, ckpt_fpath) in enumerate(zip(self.nets, checkpoint_paths)): if logger is not None: logger.info(f"Loading step {i} from {ckpt_fpath}") checkpoint = torch.load(ckpt_fpath) sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} net.load_state_dict(sd) return self def forward(self, x): outputs = [] for net in self.nets: x = net(x) outputs.append(x) # x = x[0] return outputs # class ChainedEDModelHomo(nn.Module): # def __init__(self, network_constructor, n_channels_list, universal_kwargs={}): # super().__init__() # self.nets = nn.ModuleList() # for i in range(len(n_channels_list) - 1): # net = network_constructor(in_channels=n_channels_list[i], # out_channels=n_channels_list[i+1], # **universal_kwargs) # self.nets.append(net) # def initialize_from_checkpoints(self, checkpoint_paths, logger=None): # for i, (net, ckpt_fpath) in enumerate(zip(self.nets, checkpoint_paths)): # if logger is not None: # logger.info(f"Loding step {i} from {ckpt_fpath}") # checkpoint = torch.load(ckpt_fpath) # sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} # net.load_state_dict(sd) # return self # def forward(self, x): # outputs = [] # for net in self.nets: # x = net(x) # outputs.append(x) # return outputs class ChainedEDModelWithUncertaintyChannel(nn.Module): def __init__(self, network_constructor, n_channels_list, universal_kwargs={}): super().__init__() self.nets = nn.ModuleList() for i in range(len(n_channels_list) - 1): in_channels = n_channels_list[i] if i == 0 else n_channels_list[i] + 1 net = network_constructor(in_channels=in_channels, out_channels=n_channels_list[i + 1], **universal_kwargs) self.nets.append(net) def __pad_with_zeros(self, weights): new_shape = list(weights.shape) new_shape[1] = new_shape[1] + 1 new_params = torch.zeros(new_shape) new_params[:, :new_shape[1] - 1] = weights print(new_params.shape) return new_params def initialize_from_checkpoints(self, checkpoint_paths, logger=None): for i, (net, ckpt_fpath) in enumerate(zip(self.nets, checkpoint_paths)): if logger is not None: logger.info(f"Loding step {i} from {ckpt_fpath}") checkpoint = torch.load(ckpt_fpath) if logger is not None: logger.info(f"Loaded epoch {checkpoint['epoch']} from {ckpt_fpath}") sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} if i > 0: sd['down1.conv1.weight'] = self.__pad_with_zeros(sd['down1.conv1.weight']) net.load_state_dict(sd) return self def forward(self, x): outputs = [] for net in self.nets: x = net(x) outputs.append(x) x = torch.cat(x, dim=1) return outputs class ChainedEDModelWithLinearUncertaintyChannel(nn.Module): def __init__(self, network_constructor, n_channels_list, universal_kwargs={}): super().__init__() self.nets = nn.ModuleList() for i in range(len(n_channels_list) - 1): in_channels = n_channels_list[i] if i == 0 else 2 * n_channels_list[i] net = network_constructor(in_channels=in_channels, out_channels=n_channels_list[i + 1], **universal_kwargs) self.nets.append(net) def __pad_with_zeros(self, weights): new_shape = list(weights.shape) print(weights.shape) new_shape[1] = 2 * new_shape[1] new_params = torch.zeros(new_shape) new_params[:, :weights.shape[1]] = weights print(new_params.shape) return new_params def initialize_from_checkpoints(self, checkpoint_paths, logger=None): for i, (net, ckpt_fpath) in enumerate(zip(self.nets, checkpoint_paths)): if logger is not None: logger.info(f"Loding step {i} from {ckpt_fpath}") checkpoint = torch.load(ckpt_fpath) sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} if i > 0: sd['down1.conv1.weight'] = self.__pad_with_zeros(sd['down1.conv1.weight']) net.load_state_dict(sd) return self def forward(self, x): outputs = [] for net in self.nets: x = net(x) outputs.append(x) x = torch.cat(x, dim=1) return outputs ``` #### File: evkit/models/expert.py ```python import numpy as np import os import torch from PIL import Image import torchvision.transforms as transforms from tlkit.data.img_transforms import MAKE_RESCALE_0_1_NEG1_POS1 SPLITS = ['train', 'val', 'test'] t_to_np = lambda x: (np.transpose(x.cpu().numpy(), (1,2,0)) * 255).astype(np.uint8) show = lambda x: Image.fromarray(t_to_np(x)) rgb_t = transforms.Compose([ transforms.CenterCrop([256, 256]), transforms.Resize(256), transforms.ToTensor(), MAKE_RESCALE_0_1_NEG1_POS1(3), ]) class Expert(): def __init__(self, data_dir, compare_with_saved_trajs=False, follower=None): self.data_dir = data_dir self.compare_with_saved_trajs = compare_with_saved_trajs # this lets us compare all observations with saved self.traj_dir = None self.action_idx = 0 self.same_as_il = True self.follower = None if follower is not None: checkpoint_obj = torch.load(follower) start_epoch = checkpoint_obj['epoch'] print('Loaded imitator (epoch {}) from {}'.format(start_epoch, follower)) self.follower = checkpoint_obj['model'] self.follower.eval() def reset(self, envs): scene_id = envs.env.env.env._env.current_episode.scene_id scene_id = scene_id.split('/')[-1].split('.')[0] episode_id = envs.env.env.env._env.current_episode.episode_id self.traj_dir = self._find_traj_dir(scene_id, episode_id) self.action_idx = 0 self.same_as_il = True if self.follower is not None: self.follower.reset() def _find_traj_dir(self, scene_id, episode_id): for split in SPLITS: for building in os.listdir(os.path.join(self.data_dir, split)): if building == scene_id: for episode in os.listdir(os.path.join(self.data_dir, split, building)): if str(episode_id) in episode: return os.path.join(self.data_dir, split, building, episode) assert False, f'Could not find scene {scene_id}, episode {episode_id} in {self.data_dir}' def _load_npz(self, fn): path = os.path.join(self.traj_dir, fn) return np.load(path)['arr_0'] def _cmp_with_il(self, k, observations, img=False, save_png=False, printer=True): if k not in observations: if printer: print(f'Key {k}: cannot find') return 0 if img: il_obj = Image.open(os.path.join(self.traj_dir, f'{k}_{self.action_idx:03d}.png')) il_obj = rgb_t(il_obj).cuda() else: il_obj = torch.Tensor(self._load_npz(f'{k}_{self.action_idx:03d}.npz')).cuda() num_channels = observations[k].shape[1] // 4 rl_obj = observations[k][0][-num_channels:] if save_png: debug_dir = os.path.join('/mnt/data/debug/', str(self.action_idx)) os.makedirs(debug_dir, exist_ok=True) show(il_obj).save(os.path.join(debug_dir, f'il_{k}.png')) show(rl_obj).save(os.path.join(debug_dir, f'rl_{k}.png')) diff = torch.sum(il_obj - rl_obj) if printer: print(f'Key {k}: {diff}') return diff def _debug(self, observations): self._cmp_with_il('map', observations, save_png=self.same_as_il, printer=self.same_as_il) self._cmp_with_il('target', observations, printer=self.same_as_il) self._cmp_with_il('rgb_filled', observations, img=True, save_png=self.same_as_il, printer=self.same_as_il) self._cmp_with_il('taskonomy', observations, printer=self.same_as_il) def act(self, observations, states, mask_done, deterministic=True): action = self._load_npz(f'action_{self.action_idx:03d}.npz') if len(action.shape) == 0: action = int(action) else: action = np.argmax(action) if self.compare_with_saved_trajs: mapd = self._cmp_with_il('map', observations, printer=False) taskonomyd = self._cmp_with_il('taskonomy', observations, printer=False) targetd = self._cmp_with_il('target', observations, printer=False) if abs(mapd) > 0.1 or abs(taskonomyd) > 0.1 or abs(targetd) > 1e-6: print('-' * 50) print(f'Running {self.traj_dir} on step {self.action_idx}. expert: {action}, targetd {targetd} mapdif {mapd}, taskdif {taskonomyd}') self._debug(observations) self.same_as_il = False if self.follower is not None: _, follower_action, _, _ = self.follower.act(observations, states, mask_done, True) follower_action = follower_action.squeeze(1).cpu().numpy()[0] if follower_action != action and action != 3: print('-' * 50) print(f'Running {self.traj_dir} on step {self.action_idx}. expert: {action}, follower: {follower_action}, mapdif {mapd}, taskdif {taskonomyd}') self._debug(observations) self.same_as_il = False if action == 3: action = 2 self.action_idx += 1 return 0, torch.Tensor([action]).unsqueeze(1), 0, states def cuda(self, *inputs, **kwargs): pass def eval(self, *inputs, **kwargs): pass ``` #### File: evkit/models/forward_inverse.py ```python from gym import spaces import multiprocessing.dummy as mp import multiprocessing import numpy as np import os import torch import torch import torch.nn as nn from torch.nn import Parameter, ModuleList import torch.nn.functional as F from evkit.rl.utils import init, init_normc_ from evkit.utils.misc import is_cuda from evkit.preprocess import transforms import pickle as pkl init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain('relu')) ################################ # Inverse Models # Predict s_{t+1} | s_t, a_t ################################ class ForwardModel(nn.Module): def __init__(self, state_shape, action_shape, hidden_size): super().__init__() self.fc1 = init_(nn.Linear(state_shape + action_shape[1], hidden_size)) self.fc2 = init_(nn.Linear(hidden_size, state_shape)) def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x ################################ # Inverse Models # Predict a_t | s_t, s_{t+1} ################################ class InverseModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.fc1 = init_(nn.Linear(input_size * 2, hidden_size)) # Note to stoip gradient self.fc2 = init_(nn.Linear(hidden_size, output_size)) def forward(self, phi_t, phi_t_plus_1): x = torch.cat([phi_t, phi_t_plus_1], 1) x = F.relu(self.fc1(x)) logits = self.fc2(x) return logits # ainvprobs = nn.softmax(logits, dim=-1) ``` #### File: evkit/models/srl_architectures.py ```python import torch.nn as nn from torch.nn import Parameter, ModuleList import torch.nn.functional as F import torch import multiprocessing import numpy as np import os from gym import spaces from torchvision.models import resnet18 from evkit.rl.utils import init, init_normc_ from evkit.preprocess import transforms import torchvision as vision from evkit.models.architectures import FrameStacked, Flatten, atari_conv init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain('relu')) N_CHANNELS = 3 def getNChannels(): return N_CHANNELS ######################## # SRL ######################## class BaseModelSRL(nn.Module): """ Base Class for a SRL network It implements a getState method to retrieve a state from observations """ def __init__(self): super(BaseModelSRL, self).__init__() def getStates(self, observations): """ :param observations: (th.Tensor) :return: (th.Tensor) """ return self.forward(observations) def forward(self, x): raise NotImplementedError class BaseModelAutoEncoder(BaseModelSRL): """ Base Class for a SRL network (autoencoder family) It implements a getState method to retrieve a state from observations """ def __init__(self, n_frames, n_map_channels=0, use_target=True, output_size=512): super(BaseModelAutoEncoder, self).__init__() self.output_size = output_size self.n_frames = 4 self.n_frames = n_frames self.output_size = output_size self.n_map_channels = n_map_channels self.use_target = use_target self.use_map = n_map_channels > 0 if self.use_map: self.map_tower = nn.Sequential( atari_conv(self.n_frames * self.n_map_channels), nn.Conv2d(32, 64, kernel_size=4, stride=1), #, padding=3, bias=False), nn.ReLU(inplace=True), ) if self.use_target: self.target_channels = 3 else: self.target_channels = 0 # Inspired by ResNet: # conv3x3 followed by BatchNorm2d self.encoder_conv = nn.Sequential( # 224x224xN_CHANNELS -> 112x112x64 nn.Conv2d(getNChannels(), 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # 56x56x64 conv3x3(in_planes=64, out_planes=64, stride=1), # 56x56x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # 27x27x64 conv3x3(in_planes=64, out_planes=64, stride=2), # 14x14x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) # 6x6x64 ) self.decoder_conv = nn.Sequential( nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 13x13x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 27x27x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 55x55x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2), # 111x111x64 nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, getNChannels(), kernel_size=4, stride=2), # 224x224xN_CHANNELS ) self.encoder = FrameStacked(self.encoder_conv, self.n_frames) self.conv1 = nn.Conv2d(self.n_frames * (64 + self.target_channels), 64, 3, stride=1) # c4 s 4 self.flatten = Flatten() self.fc1 = init_(nn.Linear(64 * 4 * 4 * (self.use_map) + 64 * 4 * 4 * (1), 1024)) self.fc2 = init_(nn.Linear(1024, self.output_size)) def getStates(self, observations): """ :param observations: (th.Tensor) :return: (th.Tensor) """ return self.encode(observations) def encode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # raise NotImplementedError self.encoder_conv(x) def decode(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ # raise NotImplementedError self.decoder_conv(x) def forward(self, x): """ :param x: (th.Tensor) :return: (th.Tensor) """ x_taskonomy = x['taskonomy'] if self.use_target: x_taskonomy = torch.cat([x_taskonomy, x["target"]], dim=1) x_taskonomy = F.relu(self.conv1(x_taskonomy)) if self.use_map: x_map = x['map'] x_map = self.map_tower(x_map) x_taskonomy = torch.cat([x_map, x_taskonomy], dim=1) x = self.flatten(x_taskonomy) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return x encoded = self.encode(x) # decoded = self.decode(encoded).view(input_shape) return encoded #, decoded def conv3x3(in_planes, out_planes, stride=1): """" From PyTorch Resnet implementation 3x3 convolution with padding :param in_planes: (int) :param out_planes: (int) :param stride: (int) """ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def srl_features_transform(task_path, dtype=np.float32): ''' rescale_centercrop_resize Args: output_size: A tuple CxWxH dtype: of the output (must be np, not torch) Returns: a function which returns takes 'env' and returns transform, output_size, dtype ''' _rescale_thunk = transforms.rescale_centercrop_resize((3, 224, 224)) if task_path != 'pixels_as_state': # net = TaskonomyEncoder().cuda() net = nn.Sequential( # 224x224xN_CHANNELS -> 112x112x64 nn.Conv2d(getNChannels(), 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # 56x56x64 conv3x3(in_planes=64, out_planes=64, stride=1), # 56x56x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # 27x27x64 conv3x3(in_planes=64, out_planes=64, stride=2), # 14x14x64 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) # 6x6x64 ).cuda() net.eval() if task_path != 'None': checkpoint = torch.load(task_path) # checkpoint = {k.replace('model.encoder_conv.', ''): v for k, v in checkpoint.items() if 'encoder_conv' in k} checkpoint = {k.replace('model.conv_layers.', '').replace('model.encoder_conv.', ''): v for k, v in checkpoint.items() if 'encoder_conv' in k or 'conv_layers' in k} net.load_state_dict(checkpoint) def encode(x): if task_path == 'pixels_as_state': return x with torch.no_grad(): return net(x) def _features_transform_thunk(obs_space): rescale, _ = _rescale_thunk(obs_space) def pipeline(x): # x = rescale(x).view(1, 3, 224, 224) x = torch.Tensor(x).cuda() x = encode(x) return x.cpu() if task_path == 'pixels_as_state': raise NotImplementedError return pixels_as_state_pipeline, spaces.Box(-1, 1, (8, 16, 16), dtype) else: return pipeline, spaces.Box(-1, 1, (64, 6, 6), dtype) return _features_transform_thunk ``` #### File: evkit/models/unet.py ```python import os, sys, math, random, itertools import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms, models from torch.optim.lr_scheduler import MultiStepLR from torch.utils.checkpoint import checkpoint # from utils import * class UNet_up_block(nn.Module): def __init__(self, prev_channel, input_channel, output_channel, up_sample=True): super().__init__() self.up_sampling = nn.Upsample(scale_factor=2, mode='bilinear') self.conv1 = nn.Conv2d(prev_channel + input_channel, output_channel, 3, padding=1) self.bn1 = nn.GroupNorm(8, output_channel) self.conv2 = nn.Conv2d(output_channel, output_channel, 3, padding=1) self.bn2 = nn.GroupNorm(8, output_channel) self.conv3 = nn.Conv2d(output_channel, output_channel, 3, padding=1) self.bn3 = nn.GroupNorm(8, output_channel) self.relu = torch.nn.ReLU() self.up_sample = up_sample def forward(self, prev_feature_map, x): if self.up_sample: x = self.up_sampling(x) x = torch.cat((x, prev_feature_map), dim=1) x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) x = self.relu(self.bn3(self.conv3(x))) return x class UNet_down_block(nn.Module): def __init__(self, input_channel, output_channel, down_size=True): super().__init__() self.conv1 = nn.Conv2d(input_channel, output_channel, 3, padding=1) self.bn1 = nn.GroupNorm(8, output_channel) self.conv2 = nn.Conv2d(output_channel, output_channel, 3, padding=1) self.bn2 = nn.GroupNorm(8, output_channel) self.conv3 = nn.Conv2d(output_channel, output_channel, 3, padding=1) self.bn3 = nn.GroupNorm(8, output_channel) self.max_pool = nn.MaxPool2d(2, 2) self.relu = nn.ReLU() self.down_size = down_size def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) x = self.relu(self.bn3(self.conv3(x))) if self.down_size: x = self.max_pool(x) return x class UNet(nn.Module): def __init__(self, downsample=6, in_channels=3, out_channels=3): super().__init__() self.in_channels, self.out_channels, self.downsample = in_channels, out_channels, downsample self.down1 = UNet_down_block(in_channels, 16, False) self.down_blocks = nn.ModuleList( [UNet_down_block(2 ** (4 + i), 2 ** (5 + i), True) for i in range(0, downsample)] ) bottleneck = 2 ** (4 + downsample) self.mid_conv1 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn1 = nn.GroupNorm(8, bottleneck) self.mid_conv2 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn2 = nn.GroupNorm(8, bottleneck) self.mid_conv3 = torch.nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn3 = nn.GroupNorm(8, bottleneck) self.up_blocks = nn.ModuleList( [UNet_up_block(2 ** (4 + i), 2 ** (5 + i), 2 ** (4 + i)) for i in range(0, downsample)] ) self.last_conv1 = nn.Conv2d(16, 16, 3, padding=1) self.last_bn = nn.GroupNorm(8, 16) self.last_conv2 = nn.Conv2d(16, out_channels, 1, padding=0) self.relu = nn.ReLU() def forward(self, x): x = self.down1(x) xvals = [x] for i in range(0, self.downsample): x = self.down_blocks[i](x) xvals.append(x) x = self.relu(self.bn1(self.mid_conv1(x))) x = self.relu(self.bn2(self.mid_conv2(x))) x = self.relu(self.bn3(self.mid_conv3(x))) for i in range(0, self.downsample)[::-1]: x = self.up_blocks[i](xvals[i], x) x = self.relu(self.last_bn(self.last_conv1(x))) # x = self.relu(self.last_conv2(x)) x = self.last_conv2(x) # x = F.tanh(x) x = x.clamp(min=-1.0, max=1.0) # -1, F.tanh(x) return x def loss(self, pred, target): loss = torch.tensor(0.0, device=pred.device) return loss, (loss.detach(),) class UNetHeteroscedasticFull(nn.Module): def __init__(self, downsample=6, in_channels=3, out_channels=3, eps=1e-5): super().__init__() self.in_channels, self.out_channels, self.downsample = in_channels, out_channels, downsample self.down1 = UNet_down_block(in_channels, 16, False) self.down_blocks = nn.ModuleList( [UNet_down_block(2 ** (4 + i), 2 ** (5 + i), True) for i in range(0, downsample)] ) bottleneck = 2 ** (4 + downsample) self.mid_conv1 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn1 = nn.GroupNorm(8, bottleneck) self.mid_conv2 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn2 = nn.GroupNorm(8, bottleneck) self.mid_conv3 = torch.nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn3 = nn.GroupNorm(8, bottleneck) self.up_blocks = nn.ModuleList( [UNet_up_block(2 ** (4 + i), 2 ** (5 + i), 2 ** (4 + i)) for i in range(0, downsample)] ) self.last_conv1 = nn.Conv2d(16, 16, 3, padding=1) self.last_bn = nn.GroupNorm(8, 16) self.last_conv2 = nn.Conv2d(16, out_channels, 1, padding=0) self.last_conv1_uncert = nn.Conv2d(16, 16, 3, padding=1) self.last_bn_uncert = nn.GroupNorm(8, 16) self.last_conv2_uncert = nn.Conv2d(16, ((out_channels + 1) * (out_channels)) / 2, 1, padding=0) self.relu = nn.ReLU() self.eps = eps def forward(self, x): x = self.down1(x) xvals = [x] for i in range(0, self.downsample): x = self.down_blocks[i](x) xvals.append(x) x = self.relu(self.bn1(self.mid_conv1(x))) x = self.relu(self.bn2(self.mid_conv2(x))) x = self.relu(self.bn3(self.mid_conv3(x))) for i in range(0, self.downsample)[::-1]: x = self.up_blocks[i](xvals[i], x) mu = self.relu(self.last_bn(self.last_conv1(x))) mu = self.last_conv2(mu) # mu = F.tanh(mu) mu = mu.clamp(min=-1.0, max=1.0) scale = self.relu(self.last_bn_uncert(self.last_conv1_uncert(x))) scale = self.last_conv2_uncert(scale) scale = F.softplus(scale) return mu, scale class UNetHeteroscedasticIndep(nn.Module): def __init__(self, downsample=6, in_channels=3, out_channels=3, eps=1e-5): super().__init__() self.in_channels, self.out_channels, self.downsample = in_channels, out_channels, downsample self.down1 = UNet_down_block(in_channels, 16, False) self.down_blocks = nn.ModuleList( [UNet_down_block(2 ** (4 + i), 2 ** (5 + i), True) for i in range(0, downsample)] ) bottleneck = 2 ** (4 + downsample) self.mid_conv1 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn1 = nn.GroupNorm(8, bottleneck) self.mid_conv2 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn2 = nn.GroupNorm(8, bottleneck) self.mid_conv3 = torch.nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn3 = nn.GroupNorm(8, bottleneck) self.up_blocks = nn.ModuleList( [UNet_up_block(2 ** (4 + i), 2 ** (5 + i), 2 ** (4 + i)) for i in range(0, downsample)] ) self.last_conv1 = nn.Conv2d(16, 16, 3, padding=1) self.last_bn = nn.GroupNorm(8, 16) self.last_conv2 = nn.Conv2d(16, out_channels, 1, padding=0) self.last_conv1_uncert = nn.Conv2d(16, 16, 3, padding=1) self.last_bn_uncert = nn.GroupNorm(8, 16) self.last_conv2_uncert = nn.Conv2d(16, out_channels, 1, padding=0) self.relu = nn.ReLU() self.eps = eps def forward(self, x): x = self.down1(x) xvals = [x] for i in range(0, self.downsample): x = self.down_blocks[i](x) xvals.append(x) x = self.relu(self.bn1(self.mid_conv1(x))) x = self.relu(self.bn2(self.mid_conv2(x))) x = self.relu(self.bn3(self.mid_conv3(x))) for i in range(0, self.downsample)[::-1]: x = self.up_blocks[i](xvals[i], x) mu = self.relu(self.last_bn(self.last_conv1(x))) mu = self.last_conv2(mu) # mu = F.tanh(mu) mu = mu.clamp(min=-1.0, max=1.0) scale = self.relu(self.last_bn_uncert(self.last_conv1_uncert(x))) scale = self.last_conv2_uncert(scale) scale = F.softplus(scale) return mu, scale class UNetHeteroscedasticPooled(nn.Module): def __init__(self, downsample=6, in_channels=3, out_channels=3, eps=1e-5, use_clamp=False): super().__init__() self.in_channels, self.out_channels, self.downsample = in_channels, out_channels, downsample self.down1 = UNet_down_block(in_channels, 16, False) self.down_blocks = nn.ModuleList( [UNet_down_block(2 ** (4 + i), 2 ** (5 + i), True) for i in range(0, downsample)] ) bottleneck = 2 ** (4 + downsample) self.mid_conv1 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn1 = nn.GroupNorm(8, bottleneck) self.mid_conv2 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn2 = nn.GroupNorm(8, bottleneck) self.mid_conv3 = torch.nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn3 = nn.GroupNorm(8, bottleneck) self.up_blocks = nn.ModuleList( [UNet_up_block(2 ** (4 + i), 2 ** (5 + i), 2 ** (4 + i)) for i in range(0, downsample)] ) self.last_conv1 = nn.Conv2d(16, 16, 3, padding=1) self.last_bn = nn.GroupNorm(8, 16) self.last_conv2 = nn.Conv2d(16, out_channels, 1, padding=0) self.last_conv1_uncert = nn.Conv2d(16, 16, 3, padding=1) self.last_bn_uncert = nn.GroupNorm(8, 16) self.last_conv2_uncert = nn.Conv2d(16, 1, 1, padding=0) self.relu = nn.ReLU() self.eps = eps self.use_clamp = use_clamp def forward(self, x): x = self.down1(x) xvals = [x] for i in range(0, self.downsample): x = self.down_blocks[i](x) xvals.append(x) x = self.relu(self.bn1(self.mid_conv1(x))) x = self.relu(self.bn2(self.mid_conv2(x))) x = self.relu(self.bn3(self.mid_conv3(x))) for i in range(0, self.downsample)[::-1]: x = self.up_blocks[i](xvals[i], x) mu = self.relu(self.last_bn(self.last_conv1(x))) mu = self.last_conv2(mu) if self.use_clamp: mu = mu.clamp(min=-1.0, max=1.0) else: mu = F.tanh(mu) # mu = mu.clamp(min=-1.0, max=1.0) scale = self.relu(self.last_bn_uncert(self.last_conv1_uncert(x))) scale = self.last_conv2_uncert(scale) scale = F.softplus(scale) return mu, scale class UNetReshade(nn.Module): def __init__(self, downsample=6, in_channels=3, out_channels=3): super().__init__() self.in_channels, self.out_channels, self.downsample = in_channels, out_channels, downsample self.down1 = UNet_down_block(in_channels, 16, False) self.down_blocks = nn.ModuleList( [UNet_down_block(2 ** (4 + i), 2 ** (5 + i), True) for i in range(0, downsample)] ) bottleneck = 2 ** (4 + downsample) self.mid_conv1 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn1 = nn.GroupNorm(8, bottleneck) self.mid_conv2 = nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn2 = nn.GroupNorm(8, bottleneck) self.mid_conv3 = torch.nn.Conv2d(bottleneck, bottleneck, 3, padding=1) self.bn3 = nn.GroupNorm(8, bottleneck) self.up_blocks = nn.ModuleList( [UNet_up_block(2 ** (4 + i), 2 ** (5 + i), 2 ** (4 + i)) for i in range(0, downsample)] ) self.last_conv1 = nn.Conv2d(16, 16, 3, padding=1) self.last_bn = nn.GroupNorm(8, 16) self.last_conv2 = nn.Conv2d(16, out_channels, 1, padding=0) self.relu = nn.ReLU() def forward(self, x): x = self.down1(x) xvals = [x] for i in range(0, self.downsample): x = self.down_blocks[i](x) xvals.append(x) x = self.relu(self.bn1(self.mid_conv1(x))) x = self.relu(self.bn2(self.mid_conv2(x))) x = self.relu(self.bn3(self.mid_conv3(x))) for i in range(0, self.downsample)[::-1]: x = self.up_blocks[i](xvals[i], x) x = self.relu(self.last_bn(self.last_conv1(x))) x = self.relu(self.last_conv2(x)) x = x.clamp(max=1, min=0).mean(dim=1, keepdim=True) x = x.expand(-1, 3, -1, -1) return x def loss(self, pred, target): loss = torch.tensor(0.0, device=pred.device) return loss, (loss.detach(),) class ConvBlock(nn.Module): def __init__(self, f1, f2, kernel_size=3, padding=1, use_groupnorm=True, groups=8, dilation=1, transpose=False): super().__init__() self.transpose = transpose self.conv = nn.Conv2d(f1, f2, (kernel_size, kernel_size), dilation=dilation, padding=padding * dilation) if self.transpose: self.convt = nn.ConvTranspose2d( f1, f1, (3, 3), dilation=dilation, stride=2, padding=dilation, output_padding=1 ) if use_groupnorm: self.bn = nn.GroupNorm(groups, f1) else: self.bn = nn.BatchNorm2d(f1) def forward(self, x): # x = F.dropout(x, 0.04, self.training) x = self.bn(x) if self.transpose: # x = F.upsample(x, scale_factor=2, mode='bilinear') x = F.relu(self.convt(x)) # x = x[:, :, :-1, :-1] x = F.relu(self.conv(x)) return x def load_from_file(net, checkpoint_path): checkpoint = torch.load(checkpoint_path) sd = {k.replace("module.", ""): v for k, v in checkpoint['state_dict'].items()} net.load_state_dict(sd) for p in net.parameters(): p.requires_grad = False return net ``` #### File: rl/algo/ppo_curiosity.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import os import random class PPOCuriosity(object): def __init__(self, actor_critic, clip_param, ppo_epoch, num_mini_batch, value_loss_coef, entropy_coef, optimizer=None, lr=None, eps=None, max_grad_norm=None, amsgrad=True, weight_decay=0.0): self.actor_critic = actor_critic self.clip_param = clip_param self.ppo_epoch = ppo_epoch self.num_mini_batch = num_mini_batch self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.forward_loss_coef = 0.2 self.inverse_loss_coef = 0.8 self.curiosity_coef = 0.2 self.original_task_reward_proportion = 1.0 self.max_grad_norm = max_grad_norm self.optimizer = optimizer if self.optimizer is None: self.optimizer = optim.Adam(actor_critic.parameters(), lr=lr, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) self.last_grad_norm = None def update(self, rollouts): advantages = rollouts.returns * self.original_task_reward_proportion - rollouts.value_preds # advantages = (advantages - advantages.mean()) / ( # advantages.std() + 1e-5) value_loss_epoch = 0 action_loss_epoch = 0 dist_entropy_epoch = 0 max_importance_weight_epoch = 0 self.forward_loss_epoch = 0 self.inverse_loss_epoch = 0 for e in range(self.ppo_epoch): if hasattr(self.actor_critic.base, 'gru'): data_generator = rollouts.recurrent_generator( advantages, self.num_mini_batch) raise NotImplementedError("PPOCuriosity has not implemented for recurrent networks because masking is undefined") else: # data_generator = rollouts.feed_forward_generator( # advantages, self.num_mini_batch) data_generator = rollouts.feed_forward_generator_with_next_state( advantages, self.num_mini_batch) for sample in data_generator: observations_batch, next_observations_batch, rnn_history_state, actions_batch, \ return_batch, masks_batch, old_action_log_probs_batch, \ adv_targ = sample # observations_batch, rnn_history_state, actions_batch, \ # return_batch, masks_batch, old_action_log_probs_batch, \ # adv_targ = sample # Reshape to do in a single forward pass for all steps values, action_log_probs, dist_entropy, next_rnn_history_state, state_features = self.actor_critic.evaluate_actions( observations_batch, rnn_history_state, masks_batch, actions_batch) # import pdb # pdb.set_trace() # masks_batch is from state_t but we ned for state_t_plus_1. Bad if recurrent! value, next_state_features, _ = self.actor_critic.base( next_observations_batch, next_rnn_history_state, masks_batch) # Curiosity # Inverse Loss pred_action = self.actor_critic.base.inverse_model(state_features.detach(), next_state_features) self.inverse_loss = F.cross_entropy(pred_action, actions_batch.squeeze(1)) # Forward Loss: Only works for categorical actions one_hot_actions = torch.zeros((actions_batch.shape[0], self.actor_critic.dist.num_outputs), device=actions_batch.device) one_hot_actions.scatter_(1, actions_batch, 1.0) pred_next_state = self.actor_critic.base.forward_model(state_features.detach(), one_hot_actions) self.forward_loss = F.mse_loss(pred_next_state, next_state_features.detach()) # Exploration bonus curiosity_bonus = (1.0 - self.original_task_reward_proportion) * self.curiosity_coef * self.forward_loss return_batch += curiosity_bonus adv_targ += curiosity_bonus adv_targ = (adv_targ - adv_targ.mean()) / (adv_targ.std() + 1e-5) ratio = torch.exp(action_log_probs - old_action_log_probs_batch) clipped_ratio = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) surr1 = ratio * adv_targ surr2 = clipped_ratio * adv_targ self.action_loss = -torch.min(surr1, surr2).mean() # value_loss = torch.mean(clipped_ratio * (values - return_batch) ** 2) self.value_loss = F.mse_loss(values, return_batch) self.dist_entropy = dist_entropy self.optimizer.zero_grad() self.get_loss().backward() nn.utils.clip_grad_norm_(self.forward_loss.parameters(), self.max_grad_norm) nn.utils.clip_grad_norm_(self.inverse_loss.parameters(), self.max_grad_norm) self.last_grad_norm = nn.utils.clip_grad_norm_( self.actor_critic.parameters(), self.max_grad_norm) self.optimizer.step() value_loss_epoch += self.value_loss.item() action_loss_epoch += self.action_loss.item() dist_entropy_epoch += self.dist_entropy.item() self.forward_loss_epoch += self.forward_loss.item() self.inverse_loss_epoch += self.inverse_loss.item() max_importance_weight_epoch = max(torch.max(ratio).item(), max_importance_weight_epoch) num_updates = self.ppo_epoch * self.num_mini_batch value_loss_epoch /= num_updates action_loss_epoch /= num_updates dist_entropy_epoch /= num_updates self.forward_loss_epoch /= num_updates self.inverse_loss_epoch /= num_updates self.last_update_max_importance_weight = max_importance_weight_epoch return value_loss_epoch, action_loss_epoch, dist_entropy_epoch, {} def get_loss(self): return self.value_loss * self.value_loss_coef \ + self.action_loss \ - self.dist_entropy * self.entropy_coef \ + self.forward_loss * self.forward_loss_coef \ + self.inverse_loss * self.inverse_loss_coef class PPOReplayCuriosity(object): def __init__(self, actor_critic, clip_param, ppo_epoch, num_mini_batch, value_loss_coef, entropy_coef, on_policy_epoch, off_policy_epoch, lr=None, eps=None, max_grad_norm=None, amsgrad=True, weight_decay=0.0, curiosity_reward_coef=0.1, forward_loss_coef=0.2, inverse_loss_coef=0.8): self.actor_critic = actor_critic self.clip_param = clip_param self.ppo_epoch = ppo_epoch self.on_policy_epoch = on_policy_epoch self.off_policy_epoch = off_policy_epoch self.num_mini_batch = num_mini_batch self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.forward_loss_coef = forward_loss_coef self.inverse_loss_coef = inverse_loss_coef self.curiosity_reward_coef = curiosity_reward_coef self.max_grad_norm = max_grad_norm self.optimizer = optim.Adam(actor_critic.parameters(), lr=lr, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) self.last_grad_norm = None def update(self, rollouts): value_loss_epoch = 0 action_loss_epoch = 0 dist_entropy_epoch = 0 self.forward_loss_epoch = 0 self.inverse_loss_epoch = 0 max_importance_weight_epoch = 0 on_policy = [0] * self.on_policy_epoch off_policy = [1] * self.off_policy_epoch epochs = on_policy + off_policy random.shuffle(epochs) for e in epochs: if e == 0: data_generator = rollouts.feed_forward_generator_with_next_state( None, self.num_mini_batch, on_policy=True) else: data_generator = rollouts.feed_forward_generator_with_next_state( None, self.num_mini_batch, on_policy=False) for sample in data_generator: observations_batch, next_observations_batch, states_batch, actions_batch, \ return_batch, masks_batch, old_action_log_probs_batch, \ adv_targ = sample actions_batch_long = actions_batch.type(torch.cuda.LongTensor) # Reshape to do in a single forward pass for all steps values, action_log_probs, dist_entropy, next_states_batch = self.actor_critic.evaluate_actions( observations_batch, states_batch, masks_batch, actions_batch) # Curiosity # Inverse Loss state_feats = self.actor_critic.base.perception_unit(observations_batch) next_state_feats = self.actor_critic.base.perception_unit(next_observations_batch) pred_action = self.actor_critic.base.inverse_model( state_feats, next_state_feats) self.inverse_loss = F.cross_entropy(pred_action, actions_batch_long.squeeze(1)) # Forward Loss: Only works for categorical actions one_hot_actions = torch.zeros((actions_batch.shape[0], self.actor_critic.dist.num_outputs), device=actions_batch.device) one_hot_actions.scatter_(1, actions_batch_long, 1.0) pred_next_state = self.actor_critic.base.forward_model( state_feats, one_hot_actions) self.forward_loss = F.mse_loss(pred_next_state, next_state_feats) curiosity_bonus = self.curiosity_reward_coef * self.forward_loss adv_targ += curiosity_bonus.detach() adv_targ = (adv_targ - adv_targ.mean()) / (adv_targ.std() + 1e-5) ratio = torch.exp(action_log_probs - old_action_log_probs_batch) surr1 = ratio * adv_targ surr2 = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) * adv_targ self.action_loss = -torch.min(surr1, surr2).mean() self.value_loss = F.mse_loss(values, return_batch) self.dist_entropy = dist_entropy self.optimizer.zero_grad() self.get_loss().backward() nn.utils.clip_grad_norm_(self.actor_critic.base.forward_model.parameters(), self.max_grad_norm) nn.utils.clip_grad_norm_(self.actor_critic.base.inverse_model.parameters(), self.max_grad_norm) self.last_grad_norm = nn.utils.clip_grad_norm_(self.actor_critic.parameters(), self.max_grad_norm) self.optimizer.step() value_loss_epoch += self.value_loss.item() action_loss_epoch += self.action_loss.item() dist_entropy_epoch += dist_entropy.item() self.forward_loss_epoch += self.forward_loss.item() self.inverse_loss_epoch += self.inverse_loss.item() max_importance_weight_epoch = max(torch.max(ratio).item(), max_importance_weight_epoch) self.last_update_max_importance_weight = max_importance_weight_epoch num_updates = self.ppo_epoch * self.num_mini_batch value_loss_epoch /= num_updates action_loss_epoch /= num_updates dist_entropy_epoch /= num_updates return value_loss_epoch, action_loss_epoch, dist_entropy_epoch, max_importance_weight_epoch, {} def get_loss(self): return self.value_loss * self.value_loss_coef \ + self.action_loss \ - self.dist_entropy * self.entropy_coef \ + self.forward_loss * self.forward_loss_coef \ + self.inverse_loss * self.inverse_loss_coef ``` #### File: evkit/utils/misc.py ```python import collections import torch import pprint import string from evkit.preprocess.transforms import rescale_centercrop_resize, rescale, grayscale_rescale, cross_modal_transform, \ identity_transform, rescale_centercrop_resize_collated, map_pool_collated, map_pool, taskonomy_features_transform, \ image_to_input_collated, taskonomy_multi_features_transform from evkit.models.alexnet import alexnet_transform, alexnet_features_transform from evkit.preprocess.baseline_transforms import blind, pixels_as_state from evkit.models.srl_architectures import srl_features_transform import warnings remove_whitespace = str.maketrans('', '', string.whitespace) def cfg_to_md(cfg, uuid): ''' Because tensorboard uses markdown''' return uuid + "\n\n " + pprint.pformat((cfg)).replace("\n", " \n").replace("\n \'", "\n \'") + "" def count_trainable_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def count_total_parameters(model): return sum(p.numel() for p in model.parameters()) def is_interactive(): try: ip = get_ipython() return ip.has_trait('kernel') except: return False def is_cuda(model): return next(model.parameters()).is_cuda class Bunch(object): def __init__(self, adict): self.__dict__.update(adict) self._keys, self._vals = zip(*adict.items()) self._keys, self._vals = list(self._keys), list(self._vals) def keys(self): return self._keys def vals(self): return self._vals def compute_weight_norm(parameters): ''' no grads! ''' total = 0.0 count = 0 for p in parameters: total += torch.sum(p.data**2) # total += p.numel() count += p.numel() return (total / count) def get_number(name): """ use regex to get the first integer in the name if none exists, return -1 """ try: num = int(re.findall("[0-9]+", name)[0]) except: num = -1 return num def append_dict(d, u, stop_recurse_keys=[]): for k, v in u.items(): if isinstance(v, collections.Mapping) and k not in stop_recurse_keys: d[k] = append_dict(d.get(k, {}), v, stop_recurse_keys=stop_recurse_keys) else: if k not in d: d[k] = [] d[k].append(v) return d def update_dict_deepcopy(d, u): # we need a deep dictionary update for k, v in u.items(): if isinstance(v, collections.Mapping): d[k] = update_dict_deepcopy(d.get(k, {}), v) else: d[k] = v return d def eval_dict_values(d): for k in d.keys(): if isinstance(d[k], collections.Mapping): d[k] = eval_dict_values(d[k]) elif isinstance(d[k], str): d[k] = eval(d[k].replace("---", "'")) return d def search_and_replace_dict(model_kwargs, task_initial): for k, v in model_kwargs.items(): if isinstance(v, collections.Mapping): search_and_replace_dict(v, task_initial) else: if isinstance(v, str) and 'encoder' in v and task_initial not in v: new_pth = v.replace('curvature', task_initial) # TODO make this the string between / and encoder warnings.warn(f'BE CAREFUL - CHANGING ENCODER PATH: {v} is being replaced for {new_pth}') model_kwargs[k] = new_pth return ``` #### File: utils/viz/core.py ```python import numpy as np from skimage.transform import resize import skimage import torchvision.utils as tvutils import torch import PIL from PIL import Image import torchvision class UnNormalize(object): def __init__(self, mean, std): self.mean = torch.tensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3) self.std = torch.tensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3) def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ # for t, m, s in zip(tensor, self.mean, self.std): # t * s + m # # The normalize code -> t.sub_(m).div_(s) return tensor * self.std.to(tensor.device) + self.mean.to(tensor.device) imagenet_unnormalize = UnNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) taskononomy_unnormalize = UnNormalize([0.5,0.5,0.5], [0.5, 0.5, 0.5]) def log_input_images(obs_unpacked, mlog, num_stack, key_names=['map'], meter_name='debug/input_images', step_num=0, reset_meter=True, phase='train', unnormalize=taskononomy_unnormalize): # Plots the observations from the first process stacked = [] for key_name in key_names: if key_name not in obs_unpacked: print(key_name, "not found") continue obs = obs_unpacked[key_name][0] obs = (obs + 1.0) / 2.0 # obs = unnormalize(obs) # obs = (obs * 2. - 1.) try: obs = obs.cpu() except: pass obs_chunked = list(torch.chunk(obs, num_stack, dim=0)) if obs_chunked[0].shape[2] == 1 or obs_chunked[0].shape[2] == 3: obs_chunked = [o.permute(2, 0, 1) for o in obs_chunked] obs_chunked = [hacky_resize(obs) for obs in obs_chunked] key_stacked = torchvision.utils.make_grid(obs_chunked, nrow=num_stack, padding=2) stacked.append(key_stacked) stacked = torch.cat(stacked, dim=1) mlog.update_meter(stacked, meters={meter_name}, phase=phase) if reset_meter: mlog.reset_meter(step_num, meterlist={meter_name}) def hacky_resize(obs: torch.Tensor) -> torch.Tensor: obs_img_format = np.transpose((255 * obs.cpu().numpy()).astype(np.uint8), (1,2,0)) obs_resized = torch.Tensor(np.array(Image.fromarray(obs_img_format).resize((84,84))).astype(np.float32)).permute((2,0,1)) return obs_resized / 255. def rescale_for_display( batch, rescale=True, normalize=False ): ''' Prepares network output for display by optionally rescaling from [-1,1], and by setting some pixels to the min/max of 0/1. This prevents matplotlib from rescaling the images. ''' if rescale: display_batch = [ rescale_image( im.copy(), new_scale=[0, 1], current_scale=[-1, 1] ) for im in batch ] else: display_batch = batch.copy() if not normalize: for im in display_batch: im[0,0,0] = 1.0 # Adjust some values so that matplotlib doesn't rescale im[0,1,0] = 0.0 # Now adjust the min return display_batch def rescale_image(im, new_scale=[-1.,1.], current_scale=None, no_clip=False): """ Rescales an image pixel values to target_scale Args: img: A np.float_32 array, assumed between [0,1] new_scale: [min,max] current_scale: If not supplied, it is assumed to be in: [0, 1]: if dtype=float [0, 2^16]: if dtype=uint [0, 255]: if dtype=ubyte Returns: rescaled_image """ # im = im.astype(np.float32) if current_scale is not None: min_val, max_val = current_scale if not no_clip: im = np.clip(im, min_val, max_val) im = im - min_val im /= (max_val - min_val) min_val, max_val = new_scale im *= (max_val - min_val) im += min_val im = skimage.img_as_float(im) return im def resize_image(im, new_dims, interp_order=1): """ Resize an image array with interpolation. Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) By kchen @ https://github.com/kchen92/joint-representation/blob/24b30ca6963d2ec99618af379c1e05e1f7026710/lib/data/input_pipeline_feed_dict.py """ if type(im) == PIL.PngImagePlugin.PngImageFile: interps = [PIL.Image.NEAREST, PIL.Image.BILINEAR] return skimage.util.img_as_float(im.resize(new_dims, interps[interp_order])) if all( new_dims[i] == im.shape[i] for i in range( len( new_dims ) ) ): resized_im = im #return im.astype(np.float32) elif im.shape[-1] == 1 or im.shape[-1] == 3: # # skimage is fast but only understands {1,3} channel images resized_im = resize(im, new_dims, order=interp_order, preserve_range=True) else: # ndimage interpolates anything but more slowly. scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2])) resized_im = zoom(im, scale + (1,), order=interp_order) # resized_im = resized_im.astype(np.float32) return resized_im def resize_rescale_image(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img def pack_images(x, prediction, label, mask=None): uncertainty = None if isinstance(prediction, tuple): prediction, uncertainty = prediction if len(label.shape) == 4 and label.shape[1] == 2: zeros = torch.zeros(label.shape[0], 1, label.shape[2], label.shape[3]).to(label.device) label = torch.cat([label, zeros], dim=1) prediction = torch.cat([prediction, zeros], dim=1) if uncertainty is not None: uncertainty = torch.cat([uncertainty, zeros], dim=1) if mask is not None: mask = torch.cat([mask, mask[:,0].unsqueeze(1)], dim=1) if len(x.shape) == 4 and x.shape[1] == 2: zeros = torch.zeros(x.shape[0], 1, x.shape[2], x.shape[3]).to(x.device) x = torch.cat([x, zeros], dim=1) to_cat = [] if x.shape[1] <= 3: to_cat.append(x) shape_with_three_channels = list(x.shape) shape_with_three_channels[1] = 3 to_cat.append(prediction.expand(shape_with_three_channels)) if uncertainty is not None: print(uncertainty.min(), uncertainty.max()) uncertainty = 2*uncertainty - 1.0 uncertainty = uncertainty.clamp(min=-1.0, max=1.0) to_cat.append(uncertainty.expand(shape_with_three_channels)) to_cat.append(label.expand(shape_with_three_channels)) if mask is not None: to_cat.append(mask.expand(shape_with_three_channels)) # print([p.shape for p in to_cat]) im_samples = torch.cat(to_cat, dim=3) im_samples = tvutils.make_grid(im_samples.detach().cpu(), nrow=1, padding=2) return im_samples def maybe_entriple(x, is_mask=False): if x.shape[1] == 2: if is_mask: x = torch.cat([x, x[:,0].unsqueeze(1)], dim=1) else: zeros = torch.zeros(x.shape[0], 1, x.shape[2], x.shape[3]).to(x.device) x = torch.cat([x, zeros], dim=1) shape_with_three_channels = list(x.shape) shape_with_three_channels[1] = 3 return x.expand(shape_with_three_channels) def pack_chained_images(x, predictions, labels, mask=None): x = maybe_entriple(x) if mask is not None: mask = maybe_entriple(mask, is_mask=True) tripled_predictions, uncertainties = [], [] for p in predictions: if isinstance(p, tuple): p, u = p uncertainties.append(maybe_entriple(u)) else: uncertainties.append(None) tripled_predictions.append(maybe_entriple(p)) predictions = tripled_predictions labels = [maybe_entriple(l) for l in labels] to_cat = [] if x.shape[1] <= 3: to_cat.append(x) for pred, uncert, label in zip(predictions, uncertainties, labels): to_cat.append(label) to_cat.append(pred) if uncert is not None: print(uncert.min(), uncert.max()) uncert = 2*uncert - 1.0 uncert = uncert.clamp(min=-1.0, max=1.0) to_cat.append(uncert) if mask is not None: to_cat.append(mask) # print([p.shape for p in to_cat]) im_samples = torch.cat(to_cat, dim=3) im_samples = tvutils.make_grid(im_samples.detach().cpu(), nrow=1, padding=2) return im_samples ``` #### File: scripts/prep/make_masks.py ```python import copy import cv2 from functools import partial import logging from multiprocessing import Pool import multiprocessing import numpy as np import os from sacred import Experiment import torch import torch.nn.functional as F import torchvision.transforms as transforms from tqdm import tqdm as tqdm from evkit.models.taskonomy_network import TaskonomyDecoder, TaskonomyNetwork from tlkit.utils import get_parent_dirname, LIST_OF_TASKS, SINGLE_IMAGE_TASKS, TASKS_TO_CHANNELS from tlkit.data.datasets.taskonomy_dataset import get_dataloaders, TRAIN_BUILDINGS, VAL_BUILDINGS, TEST_BUILDINGS import tlkit.data.splits as splits from evkit.models.taskonomy_network import TaskonomyEncoder logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ex = Experiment(name="Save activations") SOURCE_TASK = 'depth_zbuffer' def save_as_png(file_path, decoding): decoding = 0.5 * decoding + 0.5 decoding *= (2 ** 16 - 1) decoding = decoding.astype(np.uint16) # This is fine but need to parse out the empty channel afterwords decoding = np.transpose(decoding, (1,2,0)) if decoding.shape[2] > 1: cv2.imwrite(file_path, cv2.cvtColor(decoding, cv2.COLOR_RGB2BGR)) else: cv2.imwrite(file_path, decoding.astype(np.uint8)) return def save_to_file(arr, original_image_fname, new_root, subfolder, filetype='.npy'): abspath = os.path.abspath(original_image_fname) base_name = os.path.basename(abspath).replace('.png', filetype) parent_name = get_parent_dirname(abspath).replace(SOURCE_TASK, "mask_valid") file_path = os.path.join(new_root, subfolder, parent_name, base_name) os.makedirs(os.path.join(new_root, subfolder, parent_name), exist_ok=True) if filetype == '.npy': np.save(file_path, arr) elif filetype == '.npz': np.savez_compressed(file_path, arr) elif filetype == '.png': cv2.imwrite(file_path, np.uint8(arr[0])) else: raise NotImplementedError("Cannot save {}. Unrecognized filetype {}.".format(file_path, filetype)) def save_mappable(x): return save_to_file(*x) def build_mask(target, val=65000): mask = (target >= val) # mask = F.conv2d(mask.float(), torch.ones(1, 1, 5, 5, device=mask.device), padding=2, stride=2) != 0 # mask = F.conv2d(mask.float(), torch.ones(1, 1, 5, 5, device=mask.device), padding=2, stride=2) != 0 # mask2 = F.max_pool2d(mask.float(), 5, padding=2, stride=1) == 0 # mask = mask * 127 + mask2*127 mask = F.max_pool2d(mask.float(), 5, padding=2, stride=2) == 0 return(mask)*255 @ex.main def make_mask(folders_to_convert, split_to_convert, data_dir, save_dir, n_dataloader_workers=4, batch_size=64): if folders_to_convert is None and split_to_convert is not None: split_to_convert = eval(split_to_convert) logger.info(f'Converting from split {split_to_convert}') folders_to_convert = sorted(list(set(split_to_convert['train'] + split_to_convert['val'] + split_to_convert['test']))) if folders_to_convert is None: logger.info(f'Converting all folders in {data_dir}') else: logger.info(f'Converting folders {str(folders_to_convert)}') dataloader = get_dataloaders( data_path=data_dir, tasks=SOURCE_TASK, batch_size=batch_size, batch_size_val=batch_size, num_workers=n_dataloader_workers, train_folders=None, val_folders=folders_to_convert, test_folders=None, zip_file_name=True, transform=transforms.Compose([transforms.ToTensor()]), )['val'] pool = Pool(n_dataloader_workers) for fpaths, x in tqdm(dataloader): dirname = get_parent_dirname(fpaths[0]) with torch.no_grad(): x = build_mask(x) pool.map(save_mappable, zip(x, fpaths, [save_dir]*batch_size, ['mask_valid']*batch_size, ['.png']*batch_size)) # return @ex.config def cfg_base(): folders_to_convert = None split_to_convert = None batch_size = 64 n_dataloader_workers = 8 data_dir = '/mnt/data' save_dir = '/mnt/data' if __name__ == "__main__": ex.run_commandline() ``` #### File: Side-tuning/scripts/train_lifelong.py ```python import os import GPUtil # If you need one GPU, I will pick it here for you if 'CUDA_VISIBLE_DEVICES' not in os.environ: gpu = [str(g) for g in GPUtil.getAvailable(maxMemory=0.2)] assert len(gpu) > 0, 'No available GPUs' print('Using GPU', ','.join(gpu)) os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(gpu) import argparse import copy from docopt import docopt import functools import json import logging import math import numpy as np import pprint import psutil import random import runpy from sacred.arg_parser import get_config_updates from sacred import Experiment import subprocess import sys import time import torch import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torchvision.transforms as transforms import torchvision.utils as tvutils import torch.nn.functional as F import torchsummary from tqdm import tqdm as tqdm from multiprocessing.pool import ThreadPool import threading import warnings from tlkit.data.synset import synset_arr from tlkit.models.ewc import EWC from tlkit.models.student_models import FCN3, FCN4, FCN5, FCN8 from tlkit.models.lifelong_framework import load_submodule from tlkit.logging_helpers import log, log_image, reset_log, add_classification_specific_logging, get_logger, write_logs from tlkit.utils import update, var_to_numpy, index_to_image, load_state_dict_from_path import tlkit.utils import tlkit.data.datasets.taskonomy_dataset as taskonomy_dataset import tlkit.data.datasets.fashion_mnist_dataset as fashion_mnist_dataset import tlkit.data.datasets.imagenet_dataset as imagenet_dataset import tlkit.data.datasets.icifar_dataset as icifar_dataset import tlkit.data.splits as splits from tlkit.utils import LIST_OF_TASKS, TASKS_TO_CHANNELS, SINGLE_IMAGE_TASKS from evkit.saving.observers import FileStorageObserverWithExUuid import evkit.saving.checkpoints as checkpoints from evkit.utils.profiler import Profiler from evkit.utils.random import set_seed from evkit.utils.misc import cfg_to_md, count_trainable_parameters, count_total_parameters, search_and_replace_dict from evkit.utils.parallel import _CustomDataParallel from evkit.utils.losses import heteroscedastic_double_exponential, heteroscedastic_normal, weighted_mse_loss, softmax_cross_entropy, weighted_l1_loss, perceptual_l1_loss, perceptual_l2_loss, perceptual_cross_entropy_loss, identity_regularizer, transfer_regularizer, perceptual_regularizer, dense_cross_entropy, dense_softmax_cross_entropy, weighted_l2_loss from evkit.utils.viz.core import pack_images, imagenet_unnormalize from evkit.models.taskonomy_network import TaskonomyEncoder, TaskonomyDecoder, TaskonomyNetwork from evkit.models.unet import UNet, UNetHeteroscedasticFull, UNetHeteroscedasticIndep, UNetHeteroscedasticPooled from tlkit.models.student_models import FCN4Reshaped from tlkit.models.resnet_cifar import ResnetiCifar44 from tlkit.models.sidetune_architecture import GenericSidetuneNetwork, TransferConv3, PreTransferedDecoder from tlkit.models.models_additional import BoostedNetwork, ConstantModel from tlkit.models.lifelong_framework import LifelongSidetuneNetwork import tnt.torchnet as tnt from tnt.torchnet.logger import FileLogger device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logging.basicConfig(level=logging.DEBUG, format='%(message)s') logger = logging.getLogger() ex = Experiment(name="Train Lifelong Learning agent") LOG_DIR = sys.argv[1] sys.argv.pop(1) runpy.run_module('configs.vision_lifelong', init_globals=globals()) runpy.run_module('configs.icifar_cfg', init_globals=globals()) runpy.run_module('configs.seq_taskonomy_cfg', init_globals=globals()) runpy.run_module('configs.seq_taskonomy_cfg_extra', init_globals=globals()) runpy.run_module('configs.shared', init_globals=globals()) @ex.command def prologue(cfg, uuid): os.makedirs(LOG_DIR, exist_ok=True) assert not (cfg['saving']['obliterate_logs'] and cfg['training']['resume_training']), 'Cannot obliterate logs and resume training' if cfg['saving']['obliterate_logs']: assert LOG_DIR, 'LOG_DIR cannot be empty' subprocess.call(f'rm -rf {LOG_DIR}', shell=True) if cfg['training']['resume_training']: checkpoints.archive_current_run(LOG_DIR, uuid) @ex.main def train(cfg, uuid): set_seed(cfg['training']['seed']) ############################################################ # Logger ############################################################ logger.setLevel(logging.INFO) logger.info(pprint.pformat(cfg)) logger.debug(f'Loaded Torch version: {torch.__version__}') logger.debug(f'Using device: {device}') logger.info(f"Training following tasks: ") for i, (s, t) in enumerate(zip(cfg['training']['sources'], cfg['training']['targets'])): logger.info(f"\tTask {i}: {s} -> {t}") logger.debug(f'Starting data loaders') ############################################################ # Model (and possibly resume from checkpoint) ############################################################ logger.debug(f'Setting up model') search_and_replace_dict(cfg['learner']['model_kwargs'], cfg['training']['targets'][0][0]) # switches to the proper pretrained encoder model = eval(cfg['learner']['model'])(**cfg['learner']['model_kwargs']) logger.info(f"Created model. Number of trainable parameters: {count_trainable_parameters(model)}. Number of total parameters: {count_total_parameters(model)}") try: logger.info(f"Number of trainable transfer parameters: {count_trainable_parameters(model.transfers)}. Number of total transfer parameters: {count_total_parameters(model.transfers)}") if isinstance(model.encoder, nn.Module): logger.info(f"Number of trainable encoder parameters: {count_trainable_parameters(model.base)}. Number of total encoder parameters: {count_total_parameters(model.base)}") if isinstance(model.side_networks, nn.Module): logger.info(f"Number of trainable side parameters: {count_trainable_parameters(model.sides)}. Number of total side parameters: {count_total_parameters(model.sides)}") if isinstance(model.merge_operators, nn.Module): logger.info(f"Number of trainable merge (alpha) parameters: {count_trainable_parameters(model.merge_operators)}. Number of total merge (alpha) parameters: {count_total_parameters(model.merge_operators)}") except: pass ckpt_fpath = cfg['training']['resume_from_checkpoint_path'] loaded_optimizer = None start_epoch = 0 if ckpt_fpath is not None and not cfg['training']['resume_training']: warnings.warn('Checkpoint path provided but resume_training is set to False, are you sure??') if ckpt_fpath is not None and cfg['training']['resume_training']: if not os.path.exists(ckpt_fpath): logger.warning(f'Trying to resume training, but checkpoint path {ckpt_fpath} does not exist. Starting training from beginning...') else: model, checkpoint = load_state_dict_from_path(model, ckpt_fpath) start_epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0 logger.info(f"Loaded model (epoch {start_epoch if 'epoch' in checkpoint else 'unknown'}) from {ckpt_fpath}") if 'optimizer' in checkpoint: loaded_optimizer = checkpoint['optimizer'] else: warnings.warn('No optimizer in checkpoint, are you sure?') try: # we do not use state_dict, do not let it take up precious CUDA memory del checkpoint['state_dict'] except KeyError: pass model.to(device) if torch.cuda.device_count() > 1: logger.info(f"Using {torch.cuda.device_count()} GPUs!") assert cfg['learner']['model'] != 'ConstantModel', 'ConstantModel (blind) does not operate with multiple devices' model = nn.DataParallel(model, range(torch.cuda.device_count())) model.to(device) ############################################################ # Data Loading ############################################################ for key in ['sources', 'targets', 'masks']: cfg['training']['dataloader_fn_kwargs'][key] = cfg['training'][key] dataloaders = eval(cfg['training']['dataloader_fn'])(**cfg['training']['dataloader_fn_kwargs']) if cfg['training']['resume_training']: if 'curr_iter_idx' in checkpoint and checkpoint['curr_iter_idx'] == -1: warnings.warn(f'curr_iter_idx is -1, Guessing curr_iter_idx to be start_epoch {start_epoch}') dataloaders['train'].start_dl = start_epoch elif 'curr_iter_idx' in checkpoint: logger.info(f"Starting dataloader at {checkpoint['curr_iter_idx']}") dataloaders['train'].start_dl = checkpoint['curr_iter_idx'] else: warnings.warn(f'Guessing curr_iter_idx to be start_epoch {start_epoch}') dataloaders['train'].start_dl = start_epoch ############################################################ # Loss Functions ############################################################ loss_fn_lst = cfg['training']['loss_fn'] loss_kwargs_lst = cfg['training']['loss_kwargs'] if not isinstance(loss_fn_lst, list): loss_fn_lst = [ loss_fn_lst ] loss_kwargs_lst = [ loss_kwargs_lst ] elif isinstance(loss_kwargs_lst, dict): loss_kwargs_lst = [loss_kwargs_lst for _ in range(len(loss_fn_lst))] loss_fns = [] assert len(loss_fn_lst) == len(loss_kwargs_lst), 'number of loss fn/kwargs not the same' for loss_fn, loss_kwargs in zip(loss_fn_lst, loss_kwargs_lst): if loss_fn == 'perceptual_l1': loss_fn = perceptual_l1_loss(cfg['training']['loss_kwargs']['decoder_path'], cfg['training']['loss_kwargs']['bake_decodings']) elif loss_fn == 'perceptual_l2': loss_fn = perceptual_l2_loss(cfg['training']['loss_kwargs']['decoder_path'], cfg['training']['loss_kwargs']['bake_decodings']) elif loss_fn == 'perceptual_cross_entropy': loss_fn = perceptual_cross_entropy_loss(cfg['training']['loss_kwargs']['decoder_path'], cfg['training']['loss_kwargs']['bake_decodings']) else: loss_fn = functools.partial(eval(loss_fn), **loss_kwargs) loss_fns.append(loss_fn) if len(loss_fns) == 1 and len(cfg['training']['sources']) > 1: loss_fns = [loss_fns[0] for _ in range(len(cfg['training']['sources']))] if 'regularizer_fn' in cfg['training'] and cfg['training']['regularizer_fn'] is not None: assert torch.cuda.device_count() <= 1, 'Regularization does not support multi GPU, unable to access model attributes from DataParallel wrapper' bare_model = model.module if torch.cuda.device_count() > 1 else model loss_fns = [eval(cfg['training']['regularizer_fn'])(loss_fn=loss_fn, model=bare_model, **cfg['training']['regularizer_kwargs']) for loss_fn in loss_fns] ############################################################ # More Logging ############################################################ flog = tnt.logger.FileLogger(cfg['saving']['results_log_file'], overwrite=True) mlog = get_logger(cfg, uuid) mlog.add_meter('config', tnt.meter.SingletonMeter(), ptype='text') mlog.update_meter(cfg_to_md(cfg, uuid), meters={'config'}, phase='train') for task, _ in enumerate(cfg['training']['targets']): mlog.add_meter(f'alpha/task_{task}', tnt.meter.ValueSummaryMeter()) mlog.add_meter(f'output/task_{task}', tnt.meter.ValueSummaryMeter(), ptype='image') mlog.add_meter(f'input/task_{task}', tnt.meter.ValueSummaryMeter(), ptype='image') mlog.add_meter('weight_histogram/task_{task}', tnt.meter.ValueSummaryMeter(), ptype='histogram') for loss in cfg['training']['loss_list']: mlog.add_meter(f'losses/{loss}_{task}', tnt.meter.ValueSummaryMeter()) if cfg['training']['task_is_classification'][task] : mlog.add_meter(f'accuracy_top1/task_{task}', tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)) mlog.add_meter(f'accuracy_top5/task_{task}', tnt.meter.ClassErrorMeter(topk=[5], accuracy=True)) mlog.add_meter(f'perplexity_pred/task_{task}', tnt.meter.ValueSummaryMeter()) mlog.add_meter(f'perplexity_label/task_{task}', tnt.meter.ValueSummaryMeter()) ############################################################ # Training ############################################################ try: if cfg['training']['train']: # Optimizer if cfg['training']['resume_training'] and loaded_optimizer is not None: optimizer = loaded_optimizer else: optimizer = eval(cfg['learner']['optimizer_class'])( [ {'params': [param for name, param in model.named_parameters() if 'merge_operator' in name or 'context' in name or 'alpha' in name], 'weight_decay': 0.0}, {'params': [param for name, param in model.named_parameters() if 'merge_operator' not in name and 'context' not in name and 'alpha' not in name]}, ], lr=cfg['learner']['lr'], **cfg['learner']['optimizer_kwargs'] ) # Scheduler scheduler = None if cfg['learner']['lr_scheduler_method'] is not None: scheduler = eval(cfg['learner']['lr_scheduler_method'])(optimizer, **cfg['learner']['lr_scheduler_method_kwargs']) model.start_training() # For PSP variant # Mixed precision training if cfg['training']['amp']: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') logger.info("Starting training...") context = train_model(cfg, model, dataloaders, loss_fns, optimizer, start_epoch=start_epoch, num_epochs=cfg['training']['num_epochs'], save_epochs=cfg['saving']['save_interval'], scheduler=scheduler, mlog=mlog, flog=flog) finally: print(psutil.virtual_memory()) GPUtil.showUtilization(all=True) #################### # Final Test #################### if cfg['training']['test']: run_kwargs = { 'cfg': cfg, 'mlog': mlog, 'flog': flog, 'optimizer': None, 'loss_fns': loss_fns, 'model': model, 'use_thread': cfg['saving']['in_background'], } context, _ = run_one_epoch(dataloader=dataloaders['val'], epoch=0, train=False, **run_kwargs) logger.info('Waiting up to 10 minutes for all files to save...') mlog.flush() [c.join(600) for c in context] logger.info('All saving is finished.') def train_model(cfg, model, dataloaders, loss_fns, optimizer, start_epoch=0, num_epochs=250, save_epochs=25, scheduler=None, mlog=None, flog=None): ''' Main training loop. Multiple tasks might happen in the same epoch. 0 to 1 random validation only 1 to 2 train task 0 labeled as epoch 2, validate all i to {i+1} train task {i-1} labeled as epoch {i+1} ''' checkpoint_dir = os.path.join(cfg['saving']['log_dir'], cfg['saving']['save_dir']) run_kwargs = { 'cfg': cfg, 'mlog': mlog, 'flog': flog, 'optimizer': optimizer, 'loss_fns': loss_fns, 'model': model, 'use_thread': cfg['saving']['in_background'], } context = [] log_interval = cfg['saving']['log_interval'] log_interval = int(log_interval) if log_interval > 1 else log_interval end_epoch = start_epoch + num_epochs print(f'training for {num_epochs} epochs') for epoch in range(start_epoch, end_epoch): # tlkit.utils.count_open() # Turn on to check for memory leak torch.cuda.empty_cache() if epoch == 0 or epoch % save_epochs == save_epochs - 1: context += save_checkpoint(model, optimizer, epoch, dataloaders, checkpoint_dir, use_thread=cfg['saving']['in_background']) should_run_validation = (epoch == 0) or (log_interval <= 1) or ((epoch % log_interval) == (log_interval - 1)) if should_run_validation: assert math.isnan(mlog.peek_meter()['losses/total_0']), 'Loggers are not empty at the beginning of evaluation. Were training logs cleared?' context1, loss_dict = run_one_epoch(dataloader=dataloaders['val'], epoch=epoch, train=False, **run_kwargs) context += context1 if scheduler is not None: try: scheduler.step(loss_dict['total']) except: scheduler.step() # training starts logging at epoch 1, val epoch 0 is fully random, each task should only last ONE epoch context1, _ = run_one_epoch(dataloader=dataloaders['train'], epoch=epoch+1, train=True, **run_kwargs) context += context1 # Compute needed after the end of an epoch - e.g. EWC computes ~Fisher info matrix post_training_epoch(dataloader=dataloaders['train'], epoch=epoch, **run_kwargs) context1, _ = run_one_epoch(dataloader=dataloaders['val'], epoch=end_epoch, train=False, **run_kwargs) context += context1 context += save_checkpoint(model, optimizer, end_epoch, dataloaders, checkpoint_dir, use_thread=cfg['saving']['in_background']) return context def post_training_epoch(dataloader=None, epoch=-1, model=None, loss_fns=None, **kwargs): post_training_cache = {} if hasattr(loss_fns[dataloader.curr_iter_idx], 'post_training_epoch'): # this lets respective loss_fn compute F loss_fns[dataloader.curr_iter_idx].post_training_epoch(model, dataloader, post_training_cache, **kwargs) for i, loss_fn in enumerate(loss_fns): if hasattr(loss_fn, 'post_training_epoch') and i != dataloader.curr_iter_idx: loss_fn.post_training_epoch(model, dataloader, post_training_cache, **kwargs) def run_one_epoch(model: LifelongSidetuneNetwork, dataloader, loss_fns, optimizer, epoch, cfg, mlog, flog, train=True, use_thread=False)->(list,dict): # logs through the progress of the epoch from [epoch, epoch + 1) start_time = time.time() model.train(train) params_with_grad = model.parameters() phase = 'train' if train else 'val' sources = cfg['training']['sources'] targets = cfg['training']['targets'] tasks = [t for t in SINGLE_IMAGE_TASKS if len([tt for tt in cfg['training']['targets'] if t in tt]) > 0] cache = {'phase': phase, 'sources': sources, 'targets': targets, 'tasks': tasks} context = [] losses = {x:[] for x in cfg['training']['loss_list']} log_steps = [] log_interval = cfg['saving']['log_interval'] log_interval = int(log_interval) if log_interval >= 1 else log_interval if log_interval < 1 and train: num_logs_per_epoch = int(1 // log_interval) log_steps = [i * int(len(dataloader)/num_logs_per_epoch) for i in range(1, num_logs_per_epoch)] if cfg['training']['post_aggregation_transform_fn'] is not None: post_agg_transform = eval(cfg['training']['post_aggregation_transform_fn']) if cfg['learner']['use_feedback']: num_passes = cfg['learner']['feedback_kwargs']['num_feedback_iter'] backward_kwargs = {'retain_graph': True} else: num_passes = 1 backward_kwargs = {} if isinstance(model, _CustomDataParallel): warnings.warn('DataParallel does not allow you to put part of the model on CPU') model.cuda() with torch.set_grad_enabled(train): # print(type(model.encoder.encoder), torch.norm(next(model.encoder.encoder.parameters()))) # print(type(model.encoder.side_network), torch.norm(next(model.encoder.side_network.parameters()))) seen = set() for i, (task_idx, batch_tuple) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch} ({phase})")): if cfg['training']['post_aggregation_transform_fn'] is not None: batch_tuple = post_agg_transform(batch_tuple, **cfg['training']['post_aggregation_transform_fn_kwargs']) # Determine and handle new task old_size = len(seen) seen.add(task_idx) if len(seen) > old_size: logger.info(f"Moving to task: {task_idx}") model.start_task(task_idx, train, print_alpha=True) # Decompose batch, Forward, Compute Loss x, label, masks = tlkit.utils.process_batch_tuple(batch_tuple, task_idx, cfg) for pass_i in range(num_passes): prediction = model(x, task_idx=task_idx, pass_i=pass_i) loss_dict = loss_fns[task_idx](prediction, label, masks, cache) # If training, Backward if train: optimizer.zero_grad() loss_dict['total'].backward(**backward_kwargs) if cfg['learner']['max_grad_norm'] is not None: torch.nn.utils.clip_grad_norm_(params_with_grad, cfg['learner']['max_grad_norm']) optimizer.step() # Logging mlog.update_meter(model.merge_operator.param, meters={f'alpha/task_{task_idx}'}, phase=phase) for loss in cfg['training']['loss_list']: assert loss in loss_dict.keys(), f'Promised to report loss {loss}, but missing from loss_dict' mlog.update_meter(loss_dict[loss].detach().item(), meters={f'losses/{loss}_{task_idx}'}, phase=phase) if cfg['training']['task_is_classification'][task_idx]: add_classification_specific_logging(cache, mlog, task_idx, phase) if len(seen) > old_size: log_image(mlog, task_idx, cfg, x, label, prediction, masks=masks, cache=cache) # for super long epochs where we want some information between epochs if i in log_steps: step = epoch + i / len(dataloader) step = int(np.floor(step * cfg['saving']['ticks_per_epoch'])) for loss in cfg['training']['loss_list']: losses[loss].append(mlog.peek_meter(phase=phase)[f'losses/{loss}_{task_idx}'].item()) context += write_logs(mlog, flog, task_idx, step, cfg, cache, to_print=False) for loss in cfg['training']['loss_list']: losses[loss].append(mlog.peek_meter(phase=phase)[f'losses/{loss}_{task_idx}'].item()) if log_interval <= 1 or epoch % log_interval == log_interval - 1 or epoch == 0: step = epoch + (len(dataloader) - 1) / len(dataloader) step = int(np.floor(step * cfg['saving']['ticks_per_epoch'])) context += write_logs(mlog, flog, task_idx, step, cfg, cache, to_print=True) assert len(losses['total']) > 0, 'Need to report loss' for k in losses.keys(): losses[k] = sum(losses[k]) / len(losses[k]) loss_str = ''.join([' | ' + k + ' loss: {0:.6f} '.format(v) for k, v in losses.items()]) duration = int(time.time() - start_time) logger.info(f'End of epoch {epoch} ({phase}) ({duration//60}m {duration%60}s) {loss_str}') # this is cumulative from previous train epochs in the same log_interval return context, losses def save_checkpoint(model, optimizer, epoch, dataloaders, checkpoint_dir, use_thread=False): dict_to_save = { 'state_dict': model.state_dict(), 'epoch': epoch, 'model': model, 'optimizer': optimizer, 'curr_iter_idx': dataloaders['train'].curr_iter_idx, } checkpoints.save_checkpoint(dict_to_save, checkpoint_dir, epoch) return [] if __name__ == '__main__': assert LOG_DIR, 'log dir cannot be empty' # Manually parse command line opts short_usage, usage, internal_usage = ex.get_usage() args = docopt(internal_usage, [str(a) for a in sys.argv[1:]], help=False) config_updates, named_configs = get_config_updates(args['UPDATE']) ex.run('prologue', config_updates, named_configs, options=args) ex.observers.append(FileStorageObserverWithExUuid.create(LOG_DIR)) ex.run_commandline() else: print(__name__) ``` #### File: data/datasets/expert_dataset.py ```python from evkit.models.taskonomy_network import task_mapping import os from PIL import Image import torch.utils.data as data from torch.utils.data import DataLoader import torchvision.transforms as transforms from tlkit.data.img_transforms import MAKE_RESCALE_0_1_NEG1_POS1 import numpy as np from tqdm import tqdm KEYS =['rgb_filled', 'taskonomy', 'map', 'target', 'global_pos', 'action'] KEYS.extend([f'taskonomy_{task}' for task in task_mapping.values()]) class ExpertData(data.Dataset): def __init__(self, data_path, keys, num_frames, split='train', transform: dict = {}, load_to_mem=False, remove_last_step_in_traj=True, removed_actions=[]): """ data expected format /path/to/data/ scenek/ trajj/ rgb_1.png map_1.npz action_1.npz ... rgb_24.png map_24.npz action_24.npz """ if not os.path.isdir(data_path): assert "bad directory" # write down all the data paths self.keys = keys self.urls = {k: [] for k in self.keys} print(f'Loading {split} data') for scene in tqdm(sorted(os.listdir(os.path.join(data_path, split)))): for traj in sorted(os.listdir(os.path.join(data_path, split, scene))): for step in sorted(os.listdir(os.path.join(data_path, split, scene, traj))): path = os.path.join(data_path, split, scene, traj, step) key = [k for k in self.keys if k in path] if len(key) != 1: continue self.urls[key[0]].append(path) if remove_last_step_in_traj: for k in self.keys: self.urls[k].pop() # remove the stop action, which is the last one in the sequence lens = [len(v) for k, v in self.urls.items()] assert max(lens) == min(lens), f'should have same number of each key: {keys} with len f{lens}' self.load_to_mem = load_to_mem if self.load_to_mem: print('Loading trajectories to memory') self.cached_data = {} for k, objs in self.urls.items(): if 'rgb' in k: self.cached_data[k] = [np.asarray(Image.open(obj)) for obj in objs] else: self.cached_data[k] = [np.load(obj) for obj in objs] self.num_frames = num_frames self.transform = transform for k in self.transform.keys(): assert k in self.keys, f'transform {k} not in keys {self.keys}' self.removed_actions = removed_actions def __len__(self): return len(self.urls[self.keys[0]]) def __getitem__(self, index): episode_num = self._episode_num(index) ret = [[] for _ in self.keys] # stack previously seen frames. ret = [o_{t}, ..., o_{t-N}] for i in range(self.num_frames): if episode_num == self._episode_num(index - i): for key_idx, data in enumerate(self._get_index(index - i)): ret[key_idx].append(data) else: for key_idx in range(len(self.keys)): ret[key_idx].append(np.zeros_like(ret[key_idx][0])) for i in range(len(self.keys)): if i == self.keys.index('action'): ret[i] = ret[i][0] # pick only the last action - do not frame stack if isinstance(ret[i], list) or (isinstance(ret[i], np.ndarray) and len(ret[i].shape) > 0): num_acts = len(ret[i]) while np.argmax(ret[i]) in self.removed_actions: # we do not want to include some actions rand_act = np.zeros(num_acts, dtype=np.uint8) rand_act[np.random.randint(num_acts)] = 1 ret[i] = rand_act keep_indices = [i for i in range(num_acts) if i not in self.removed_actions] ret[i] = ret[i][keep_indices] else: if ret[i] in self.removed_actions: ret[i] = np.array(np.random.randint(min(self.removed_actions))) # resample else: ret[i] = np.concatenate(ret[i][::-1], axis=0) return ret def _episode_num(self, index): return self.urls[self.keys[0]][index].split('/')[-2] def _get_index(self, index): if self.load_to_mem: ret = [self.cached_data[k][index] for k in self.keys()] else: ret = [] for k in self.keys: path = self.urls[k][index] if 'rgb' in k: with open(path, 'rb') as f: img = Image.open(f) img.convert(img.mode) ret.append(img) else: ret.append(np.load(path)['arr_0']) for k, t in self.transform.items(): idx = self.keys.index(k) ret[idx] = t(ret[idx]) return ret def get_dataloaders(data_path, tasks, num_frames, batch_size=64, batch_size_val=4, transform={}, num_workers=0, load_to_mem=False, pin_memory=False, remove_last_step_in_traj=True, removed_actions=[]): if 'rgb_filled' in tasks: transform['rgb_filled'] = transforms.Compose([ transforms.CenterCrop([256, 256]), transforms.Resize(256), transforms.ToTensor(), MAKE_RESCALE_0_1_NEG1_POS1(3), ]) keys = [t for t in tasks if t in KEYS] assert len(keys) == len(tasks), f'unrecognized task in {tasks} not in {KEYS}! cannot be added to Dataset' dataloaders = {} dataset = ExpertData(data_path, keys=keys, num_frames=num_frames, split='train', transform=transform, load_to_mem=load_to_mem, remove_last_step_in_traj=remove_last_step_in_traj, removed_actions=removed_actions) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) dataloaders['train'] = dataloader dataset = ExpertData(data_path, keys=keys, num_frames=num_frames, split='val', transform=transform, load_to_mem=load_to_mem, remove_last_step_in_traj=remove_last_step_in_traj, removed_actions=removed_actions) dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['val'] = dataloader dataset = ExpertData(data_path, keys=keys, num_frames=num_frames, split='test', transform=transform, load_to_mem=load_to_mem, remove_last_step_in_traj=remove_last_step_in_traj, removed_actions=removed_actions) dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['test'] = dataloader return dataloaders if __name__ == '__main__': data_path = '/mnt/data/expert_trajs/largeplus' keys = ['rgb_filled', 'taskonomy_denoising', 'map', 'target', 'action'] dataset = ExpertData(data_path, keys=keys, num_frames=4, split='train', transform={}, remove_last_step_in_traj=False) ``` #### File: data/datasets/icifar_dataset.py ```python from itertools import chain, cycle import torch import torchvision from torchvision import transforms import torchvision.transforms.functional as TF import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate import numpy as np import threading import math from tqdm import tqdm import warnings from tlkit.data.sequential_tasks_dataloaders import KthDataLoader, CyclingDataLoader, ConcatenatedDataLoader class iCIFAR100(torchvision.datasets.CIFAR100): def __init__(self, root, class_idxs, train=True, transform=None, target_transform=None, download=False): super().__init__(root, train, transform, target_transform, download) self.class_idxs = list(class_idxs) self.old_targets = self.targets is_valid = np.isin(self.targets, self.class_idxs) self.data = self.data[is_valid] self.targets = np.int32(self.targets)[is_valid] self.new_to_old_class_idx = np.sort(np.unique(self.targets)) self.old_to_new_class_idx = np.full((np.max(self.targets) + 1,), -1, dtype=np.int32) self.old_to_new_class_idx[self.new_to_old_class_idx] = np.arange(len(self.new_to_old_class_idx)) self.targets = self.old_to_new_class_idx[self.targets] self.targets = torch.LongTensor(self.targets) self.classes = [c for c in self.classes if self.class_to_idx[c] in self.class_idxs] # print(self.classes) # self.data = self.data[:5] # self.targets = self.targets[:5] # print(len(self.data)) # return # def __getitem__(self, index): # """ # Args: # index (int): Index # Returns: # tuple: (image, target) where target is index of the target class. # """ # img, target = self.data[index], self.targets[index] # # doing this so that it is consistent with all other datasets # # to return a PIL Image # img = Image.fromarray(img) # if self.transform is not None: # img = self.transform(img) # if self.target_transform is not None: # target = self.target_transform(target) # return img, target def get_dataloaders(data_path, targets, sources=None, # Ignored masks=None, # Ignored tasks=None, # Ignored epochlength=20000, epochs_until_cycle=1, batch_size=64, batch_size_val=4, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, imsize=256): ''' Targets can either be of the form [iterable1, iterable2] or of the form 'cifarXX-YY' ''' if transform is None: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # transform = transforms.Compose([ # transforms.CenterCrop(imsize), # transforms.RandomHorizontalFlip(), # transforms.ToTensor(), # normalize, # ]) dataloaders = {} train_dataloaders = [] classes = [] for target in targets: if isinstance(target[0], str): start, end = [int(i) for i in target[0].lower().replace('cifar', '').split('-')] classes.append(np.arange(start, end + 1)) else: classes.append(target) for i, task in enumerate(tqdm(classes, 'Loading training data')): should_dl = int(i)==0 dataset = iCIFAR100(data_path, task, train=True, transform=transform, target_transform=None, download=should_dl) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) train_dataloaders.append(dataloader) dataloaders['train'] = CyclingDataLoader(train_dataloaders, epochlength, epochs_until_cycle=epochs_until_cycle) val_dataloaders = [] for task in tqdm(classes, 'Loading validation data'): dataset = iCIFAR100(data_path, task, train=False, transform=transform, target_transform=None, download=False) dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) #, val_dataloaders.append(dataloader) dataloaders['val'] = ConcatenatedDataLoader(val_dataloaders) # dataset = iCIFAR100(data_path, train=False, transform=transform, target_transform=None, download=False) # dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['test'] = [] return dataloaders def get_limited_dataloaders(data_path, sources, # Ignored targets, masks, # Ignored tasks=None, # Ignored epochlength=20000, batch_size=64, batch_size_val=4, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, imsize=256): ''' Targets can either be of the form [iterable1, iterable2] or of the form 'cifarXX-YY' ''' if transform is None: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) dataloaders = {} train_dataloaders = [] classes = [] for target in targets: if isinstance(target[0], str): start, end = [int(i) for i in target[0].lower().replace('cifar', '').split('-')] classes.append(np.arange(start, end + 1)) else: classes.append(target) for i, task in enumerate(tqdm(classes, 'Loading training data')): should_dl = int(i)==0 dataset = iCIFAR100(data_path, task, train=True, transform=transform, target_transform=None, download=should_dl) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) train_dataloaders.append(dataloader) dataloaders['train'] = KthDataLoader(train_dataloaders, k=0, epochlength=1000) val_dataloaders = [] for task in tqdm(classes, 'Loading validation data'): dataset = iCIFAR100(data_path, task, train=False, transform=transform, target_transform=None, download=False) dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) #, val_dataloaders.append(dataloader) dataloaders['val'] = KthDataLoader(val_dataloaders, k=0) dataloaders['test'] = [] return dataloaders def get_cifar_dataloaders(data_path, sources, # Ignored targets, masks, # Ignored tasks=None, # Ignored epochlength=20000, batch_size=64, batch_size_val=4, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, imsize=256): ''' Targets can either be of the form [iterable1, iterable2] or of the form 'cifarXX-YY' ''' if transform is None: transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_val = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) else: transform_train = transform transform_val = transform dataloaders = {} dataset = torchvision.datasets.CIFAR10(data_path, train=True, transform=transform_train, target_transform=None, download=True) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) dataloaders['train'] = dataloader dataset = torchvision.datasets.CIFAR10(data_path, train=False, transform=transform_val, target_transform=None, download=False) dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) #, dataloaders['val'] = dataloader dataloaders['test'] = [] return dataloaders ``` #### File: data/datasets/taskonomy_dataset.py ```python from collections import namedtuple, Counter, defaultdict from tlkit.data.sequential_tasks_dataloaders import ConcatenatedDataLoader, CyclingDataLoader, ErrorPassingConcatenatedDataLoader, ErrorPassingCyclingDataLoader from tlkit.utils import SINGLE_IMAGE_TASKS, TASKS_TO_CHANNELS import torch import torch.utils.data as utils import torchvision.transforms as transforms import torchvision.datasets as ds import torch.utils.data as data from tqdm import tqdm from PIL import Image, ImageFile import numpy as np import os import torch.multiprocessing as mp from torch.utils.data import DataLoader import warnings from tlkit.data.img_transforms import default_loader, get_transform from tlkit.data.splits import SPLIT_TO_NUM_IMAGES, taskonomy_no_midlevel as split_taskonomy_no_midlevel TRAIN_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['train'] VAL_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['val'] TEST_BUILDINGS = split_taskonomy_no_midlevel['fullplus']['test'] ImageFile.LOAD_TRUNCATED_IMAGES = True # TODO Test this class TaskonomyData(data.Dataset): ''' Loads data for the Taskonomy dataset. This expects that the data is structured /path/to/data/ rgb/ modelk/ point_i_view_j.png ... depth_euclidean/ ... (other tasks) If one would like to use pretrained representations, then they can be added into the directory as: /path/to/data/ rgb_encoding/ modelk/ point_i_view_j.npy ... Basically, any other folder name will work as long as it is named the same way. ''' def __init__(self, data_path, tasks, buildings, transform=None, load_to_mem=False, zip_file_name=False, max_images=None): ''' data_path: Path to data tasks: Which tasks to load. Any subfolder will work as long as data is named accordingly buildings: Which models to include. See `splits.taskonomy` transform: one transform per task. Note: This assumes that all images are present in all (used) subfolders ''' self.return_tuple = True if isinstance(tasks, str): tasks = [tasks] transform = [transform] self.return_tuple = False self.buildings = buildings self.cached_data = {} self.data_path = data_path self.load_to_mem = load_to_mem self.tasks = tasks self.zip_file_name = zip_file_name self.urls = {task: make_dataset(os.path.join(data_path, task), buildings, max_images) for task in tasks} # Validate number of images n_images_task = [(len(obs), task) for task, obs in self.urls.items()] print("\t" + " | ".join(["{}: {}".format(k, task) for task, k in n_images_task])) if max(n_images_task)[0] != min(n_images_task)[0]: print("Each task must have the same number of images. However, the max != min ({} != {}). Number of images per task is: \n\t{}".format( max(n_images_task)[0], min(n_images_task)[0], "\n\t".join([str(t) for t in n_images_task]))) # count number of frames per building per task all_buildings = defaultdict(dict) for task, obs in self.urls.items(): c = Counter([url.split("/")[-2] for url in obs]) for building in c: all_buildings[building][task] = c[building] # find where the number of distinct counts is more than 1 print('Removing data from the following buildings') buildings_to_remove = [] for b, count in all_buildings.items(): if len(set(list(count.values()))) > 1: print(f"\t{b}:", count) buildings_to_remove.append(b) # [(len(obs), task) for task, obs in self.urls.items()] # redo the loading with fewer buildings buildings_redo = [b for b in buildings if b not in buildings_to_remove] self.urls = {task: make_dataset(os.path.join(data_path, task), buildings_redo) for task in tasks} n_images_task = [(len(obs), task) for task, obs in self.urls.items()] print("\t" + " | ".join(["{}: {}".format(k, task) for task, k in n_images_task])) assert max(n_images_task)[0] == min(n_images_task)[0], \ "Each task must have the same number of images. However, the max != min ({} != {}). Number of images per task is: \n\t{}".format( max(n_images_task)[0], min(n_images_task)[0], "\n\t".join([str(t) for t in n_images_task])) self.size = max(n_images_task)[0] # Perhaps load some things into main memory if load_to_mem: print('Writing activations to memory') for t, task in zip(transform, tasks): self.cached_data[task] = [None] * len(self) for i, url in enumerate(self.urls[task]): self.cached_data[task][i] = t(default_loader(url)) self.cached_data[task] = torch.stack(self.cached_data[task]) # self.cached_data = torch.stack(self.cached_data) print('Finished writing some activations to memory') self.transform = transform def __len__(self): return self.size def __getitem__(self, index): fpaths = [self.urls[task][index] for task in self.tasks] if self.load_to_mem: result = tuple([self.cached_data[task][index] for task in self.tasks]) else: result = [default_loader(path) for path in fpaths] if self.transform is not None: # result = [transform(tensor) for transform, tensor in zip(self.transform, result)] result_post = [] for i, (transform, tensor) in enumerate(zip(self.transform, result)): try: result_post.append(transform(tensor)) except Exception as e: print(self.tasks[i], transform, tensor) raise e result = result_post # handle 2 channel outputs for i in range(len(self.tasks)): task = self.tasks[i] base_task = [t for t in SINGLE_IMAGE_TASKS if t in task] if len(base_task) == 0: continue else: base_task = base_task[0] num_channels = TASKS_TO_CHANNELS[base_task] if 'decoding' in task and result[i].shape[0] != num_channels: assert torch.sum(result[i][num_channels:,:,:]) < 1e-5, 'unused channels should be 0.' result[i] = result[i][:num_channels,:,:] if self.zip_file_name: result = tuple(zip(fpaths, result)) if self.return_tuple: return result else: return result[0] def make_dataset(dir, folders=None, max_images=None): # folders are building names. If None, get all the images (from both building folders and dir) has_reached_capacity = lambda images, max_images: not max_images is None and len(images) >= max_images images = [] dir = os.path.expanduser(dir) if not os.path.isdir(dir): assert "bad directory" for subfolder in sorted(os.listdir(dir)): subfolder_path = os.path.join(dir, subfolder) if os.path.isdir(subfolder_path) and (folders is None or subfolder in folders): for fname in sorted(os.listdir(subfolder_path)): path = os.path.join(subfolder_path, fname) if not has_reached_capacity(images, max_images): images.append(path) # If folders/buildings are not specified, use images in dir if folders is None and os.path.isfile(subfolder_path) and not has_reached_capacity(images, max_images): images.append(subfolder_path) return images def get_dataloaders(data_path, tasks, batch_size=64, batch_size_val=4, zip_file_name=False, train_folders=TRAIN_BUILDINGS, val_folders=VAL_BUILDINGS, test_folders=TEST_BUILDINGS, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, max_images=None): """ :param data_path: directory that data is stored at :param tasks: names of subdirectories to return observations from :param batch_size: :param zip_file_name: when returning an observation, this will zip the fpath to it. E.g. (/path/to/img.png, OBS) :param train_folders: in a big data dir, which subfolders contain our training data :param val_folders: in a big data dir, which subfolders contain our val data :param max_images: maximum number of images in any dataset :return: dictionary of dataloaders """ if transform is None: if isinstance(tasks, str): transform = get_transform(tasks) else: transform = [get_transform(task) if len(task.split(' ')) == 1 else get_transform(*task.split(' ')) for task in tasks] tasks = [t.split(' ')[0] for t in tasks] # handle special data operations if isinstance(train_folders, str): train_folders = split_taskonomy_no_midlevel[train_folders]['train'] if isinstance(val_folders, str): val_folders = split_taskonomy_no_midlevel[val_folders]['val'] if isinstance(test_folders, str): test_folders = split_taskonomy_no_midlevel[test_folders]['test'] dataloaders = {} print(f"Taskonomy dataset TRAIN folders: {train_folders}") dataset = TaskonomyData(data_path, tasks, buildings=train_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) dataloaders['train'] = dataloader print(f"Taskonomy dataset VAL folders: {val_folders}") dataset = TaskonomyData(data_path, tasks, buildings=val_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['val'] = dataloader print(f"Taskonomy dataset TEST folders: {test_folders}") dataset = TaskonomyData(data_path, tasks, buildings=test_folders, transform=transform, zip_file_name=zip_file_name, load_to_mem=load_to_mem, max_images=max_images) if len(dataset) == 0: print(f'\tNO IMAGES FOUND for tasks {tasks} at path {data_path}') dataloader = DataLoader(dataset, batch_size=batch_size_val, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) dataloaders['test'] = dataloader return dataloaders def get_lifelong_dataloaders(data_path, sources, targets, masks, epochs_per_task=5, epochs_until_cycle=0, split='fullplus', batch_size=64, batch_size_val=4, transform=None, num_workers=0, load_to_mem=False, pin_memory=False, speedup_no_rigidity=False, max_images_per_task=None): phases = ['train', 'val', 'test'] dataloaders = {phase: [] for phase in phases} if isinstance(masks, bool): masks = [masks] * len(sources) masks = [['mask_valid'] if mask else [] for mask in masks] for i, (source, target, mask) in enumerate(zip(sources, targets, masks)): print(f'# Task {i} dataloader: {source} -> {target}') tasks = source + target + mask dl = get_dataloaders( data_path, tasks, batch_size=batch_size, batch_size_val=batch_size_val, train_folders=split, val_folders=split, test_folders=split, transform=transform, num_workers=num_workers, load_to_mem=load_to_mem, pin_memory=pin_memory, max_images=max_images_per_task, ) for phase in phases: dataloaders[phase].append(dl[phase]) if speedup_no_rigidity: # For methods that do not forget (no intransigence) by construction. # In validation, we only compute task performance for just-trained task and next-to-be-trained task epoch_lengths = [len(dl.dataset) for dl in dataloaders['val']] epoch_length = min(epoch_lengths) if min(epoch_lengths) == max(epoch_lengths) else None dl_just_trained = CyclingDataLoader(dataloaders['val'], epochs_until_cycle=1, start_dl=0, epoch_length_per_dl=epoch_length) dl_next_to_be_trained = CyclingDataLoader(dataloaders['val'], epochs_until_cycle=0, start_dl=0, epoch_length_per_dl=epoch_length) dataloaders['val'] = ErrorPassingConcatenatedDataLoader([dl_just_trained, dl_next_to_be_trained], zip_idx=False) else: dataloaders['val'] = ErrorPassingConcatenatedDataLoader(dataloaders['val']) train_epoch_length = SPLIT_TO_NUM_IMAGES[split] if split is not None else min([len(dl.dataset) for dl in dataloaders['train']]) dataloaders['train'] = ErrorPassingCyclingDataLoader(dataloaders['train'], epoch_length_per_dl=epochs_per_task * train_epoch_length, epochs_until_cycle=epochs_until_cycle) dataloaders['test'] = ErrorPassingConcatenatedDataLoader(dataloaders['test']) return dataloaders ``` #### File: tlkit/data/img_transforms.py ```python from PIL import Image import numpy as np import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F from tlkit.utils import TASKS_TO_CHANNELS, FEED_FORWARD_TASKS MAKE_RESCALE_0_1_NEG1_POS1 = lambda n_chan: transforms.Normalize([0.5]*n_chan, [0.5]*n_chan) RESCALE_0_1_NEG1_POS1 = transforms.Normalize([0.5], [0.5]) # This needs to be different depending on num out chans MAKE_RESCALE_0_MAX_NEG1_POS1 = lambda maxx: transforms.Normalize([maxx / 2.], [maxx * 1.0]) RESCALE_0_255_NEG1_POS1 = transforms.Normalize([127.5,127.5,127.5], [255, 255, 255]) shrinker = nn.Upsample(scale_factor=0.125, mode='nearest') def get_transform(task, special=None): if task in ['rgb', 'normal', 'reshading']: if special is None: return transform_8bit elif special == 'compressed': return lambda x: downsample_group_stack(transform_8bit(x)) elif task in ['mask_valid']: return transforms.ToTensor() elif task in ['keypoints2d', 'keypoints3d', 'depth_euclidean', 'depth_zbuffer', 'edge_texture', 'edge_occlusion']: # return transform_16bit_int return transform_16bit_single_channel elif task in ['principal_curvature', 'curvature']: if special is None: return transform_8bit_n_channel(2) elif special == 'compressed': return lambda x: downsample_group_stack(transform_8bit_n_channel(2)(x)) elif task in ['segment_semantic']: # this is stored as 1 channel image (H,W) where each pixel value is a different class return transform_dense_labels elif len([t for t in FEED_FORWARD_TASKS if t in task]) > 0: return torch.Tensor elif 'decoding' in task: return transform_16bit_n_channel(TASKS_TO_CHANNELS[task.replace('_decoding', '')]) elif 'encoding' in task: return torch.Tensor else: raise NotImplementedError("Unknown transform for task {}".format(task)) def downsample_group_stack(img): # (k, 256, 256) -> (k, 32, 32) -> (4*k, 16, 16) no_batch = False if len(img.shape) == 3: no_batch = True img = img.unsqueeze(dim=0) assert len(img.shape) == 4 img = shrinker(img) assert img.shape[2] == img.shape[3] == 32 img = F.unfold(img, kernel_size=2, stride=2).view(img.shape[0],-1,16,16) # img = F.unfold(img, kernel_size=2, stride=2).view(1,-1,8,8) img = img[:,:8,:,:] # keep only first 8 channels if no_batch: img = img.squeeze() return img transform_dense_labels = lambda img: torch.Tensor(np.array(img)).long() # avoids normalizing transform_8bit = transforms.Compose([ transforms.ToTensor(), MAKE_RESCALE_0_1_NEG1_POS1(3), ]) def transform_8bit_n_channel(n_channel=1): crop_channels = lambda x: x[:n_channel] if x.shape[0] > n_channel else x return transforms.Compose([ transforms.ToTensor(), crop_channels, MAKE_RESCALE_0_1_NEG1_POS1(n_channel), ]) def transform_16bit_single_channel(im): im = transforms.ToTensor()(im) im = im.float() / (2 ** 16 - 1.0) return RESCALE_0_1_NEG1_POS1(im) def transform_16bit_n_channel(n_channel=1): if n_channel == 1: return transform_16bit_single_channel # PyTorch handles these differently else: return transforms.Compose([ transforms.ToTensor(), MAKE_RESCALE_0_1_NEG1_POS1(n_channel), ]) def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): if '.npy' in path: return np.load(path) elif '.json' in path: raise NotImplementedError("Not sure how to load files of type: {}".format(os.path.basename(path))) else: from torchvision import get_image_backend if get_image_backend() == 'accimage': im = accimage_loader(path) else: im = pil_loader(path) return im def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert(img.mode) ``` #### File: Side-tuning/tlkit/logging_helpers.py ```python import numpy as np import torch from torch.distributions import Categorical import torch.nn as nn import torch.nn.functional as F from evkit.utils.viz.core import pack_images import tnt.torchnet as tnt import warnings class UnNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) # The normalize code -> t.sub_(m).div_(s) return tensor unorm = UnNormalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) def log(mlog, key, val, phase): if mlog is not None: # logger.add_scalar(tag=key, scalar_value=val, global_step=t) if 'image' in key: if isinstance(val, np.ndarray): val = torch.from_numpy(val) val = unorm(val) elif 'histogram' in key: if isinstance(val, torch.Tensor): val = val.cpu().numpy() outlier_bound = 10. while np.count_nonzero(val > outlier_bound) > val.size * 0.01: # high number of outliers val = val[ val < outlier_bound ] outlier_bound -= 0.5 mlog.update_meter(val, meters={key}, phase=phase) def reset_log(mlog, flog, epoch, phase, use_thread=False): if use_thread: warnings.warn('use_threads set to True, but done synchronously still') if not mlog: return results = mlog.peek_meter(phase=phase) # need to be run before reset mlog.reset_meter(epoch, mode=phase) # Log to file results_to_log = {} results['step_num'] = epoch for k in results.keys(): if 'input/task' in k or 'output/task' in k: # these are too big to log continue else: results_to_log[k] = results[k] if flog: flog.log('all_results', results_to_log) return [] def add_classification_specific_logging(cache, mlog, task=None, phase='train'): ''' Adds in top1 and top5 ''' prediction = cache['predictions'] label = cache['labels'] is_one_hot = len(label.shape) == 1 if is_one_hot: # one-hot labels: top5_label = torch.stack([label] * 5, dim=-1) else: top5_label = torch.argsort(label, dim=1, descending=True)[:, :5] meter_suffix = f'/task_{task}' if task is not None else '' top1_label = top5_label[:,:1] mlog.update_meter(prediction, target=top1_label, meters={f'accuracy_top1{meter_suffix}'}, phase=phase) mlog.update_meter(prediction, target=top1_label, meters={f'accuracy_top5{meter_suffix}'}, phase=phase) top5_pred = torch.argsort(prediction, dim=1, descending=True)[:, :5] top1_pred = top5_pred[:,:1] entropy_pred = -1 * torch.sum(torch.softmax(prediction, dim=1) * F.log_softmax(prediction, dim=1)) / prediction.shape[0] perplexity_pred = torch.exp(entropy_pred).cpu() mlog.update_meter(perplexity_pred, meters={f'perplexity_pred{meter_suffix}'}, phase=phase) if is_one_hot: perplexity_label = 1 else: if 0 <= torch.min(label) and torch.max(label) <= 1: # already probably measure entropy_label = -1 * torch.sum(label * torch.log(label)) / label.shape[0] else: entropy_label = -1 * torch.sum(torch.softmax(label, dim=1) * F.log_softmax(label, dim=1)) / label.shape[0] perplexity_label = torch.exp(entropy_label).cpu() mlog.update_meter(perplexity_label, meters={f'perplexity_label{meter_suffix}'}, phase=phase) cache['top5_label'] = top5_label cache['top5_pred'] = top5_pred def add_imitation_specific_logging(prediction, label, mlog, phase): perplexity = torch.mean(torch.exp(Categorical(logits=prediction).entropy())) mlog.update_meter(perplexity.cpu(), meters={'diagnostics/perplexity'}, phase=phase) if len(label.shape) == 2: mlog.update_meter(prediction.cpu(), target=torch.argmax(label.cpu(), dim=1), meters={'diagnostics/accuracy'}, phase=phase) elif len(label.shape) == 1: mlog.update_meter(prediction.cpu(), target=label.cpu(), meters={'diagnostics/accuracy'}, phase=phase) MAX_NUM_IMAGES = 64 def log_image(mlog, task, cfg, x, label, prediction, masks=None, cache={}): targets = cache['targets'] phase = cache['phase'] encoding_only = all(['encoding' in t for t in targets]) and not isinstance(cfg['training']['loss_fn'], list) and not 'perceptual' in cfg['training']['loss_fn'] masks = masks.cpu() if masks is not None else None if len(label.shape) == 4 and not encoding_only: if not isinstance(x, torch.Tensor): x = x[0] if any(['encoding' in t for t in targets]): # there should have been something to do this earlier, where'd it go? prediction = cache['inputs_decoded'] if 'targets_decoded' in cache: label = cache['targets_decoded'] if 'class_object' in targets[task]: # handle classification tasks warnings.warn('index_to_image will crash the program on k') return if not isinstance(x, torch.Tensor): x = x[0] _, _, img_size, _ = x.shape label = index_to_image(cache['top5_label'].cpu(), synset_arr, img_size).cuda() prediction = index_to_image(cache['top5_pred'].cpu(), synset_arr, img_size).cuda() if prediction.shape[1] == 2: # handle 2 channels zero_layer = torch.zeros_like(prediction)[:,:1,:,:] prediction = torch.cat((prediction, zero_layer), dim=1) label = torch.cat((label, zero_layer), dim=1) if len(label.shape) == 4 and not encoding_only: # Unnormalize x_out = to_human(x.cpu())[:MAX_NUM_IMAGES] prediction_out = to_human(prediction.cpu())[:MAX_NUM_IMAGES] label_out = to_human(label.cpu())[:MAX_NUM_IMAGES] if masks is not None: masks_out = to_human(masks.cpu())[:MAX_NUM_IMAGES] else: masks_out = None im_samples = pack_images(x_out, prediction_out, label_out, mask=masks_out) log(mlog, f'output/task_{task}', im_samples, phase=phase) if isinstance(x, list): # for more than single inputs (rgb, curv) ... can I do this earlier? not sure... x = x[0] if len(x.shape) == 4: x_out = to_human(x.cpu()) log(mlog, f'input/task_{task}', x_out[0], phase=phase) def write_logs(mlog, flog, task, step, cfg, cache={}, to_print=True)->list: phase = cache['phase'] logs = mlog.peek_meter(phase=phase) if to_print: loss_str = '' for loss in cfg['training']['loss_list']: loss_name = f'losses/{loss}' if task is None else f'losses/{loss}_{task}' loss_value = logs[loss_name] # warning: this will become nan if nothing has been logged loss_value = loss_value.item() if not isinstance(loss_value, float) else loss_value loss_str += ' | ' + loss + ' loss: {0:.6f} '.format(loss_value) print(f'Logging step {step} ({phase}) {loss_str}') context = reset_log(mlog, flog, step, phase) return context def get_logger(cfg, uuid): if cfg['saving']['logging_type'] == 'visdom': mlog = tnt.logger.VisdomMeterLogger( title=uuid, env=uuid, server=cfg['saving']['visdom_server'], port=cfg['saving']['visdom_port'], log_to_filename=cfg['saving']['visdom_log_file'] ) elif cfg['saving']['logging_type'] == 'tensorboard': mlog = tnt.logger.TensorboardMeterLogger( env=uuid, log_dir=cfg['saving']['log_dir'], plotstylecombined=True ) else: assert False, 'no proper logger!' return mlog def multidim_apply(x, dims, fn): if len(dims) == 0: return x else: return multidim_apply(fn(x, dim=dims[0], keepdim=True)[0], dims[1:], fn) def to_human(x): # normalizes batch of image to (0,1) assert len(x.shape) == 4, 'working with batched images only' max_dim = multidim_apply(x, dims=[0, 2, 3], fn=torch.max) min_dim = multidim_apply(x, dims=[0, 2, 3], fn=torch.min) x_out = (x - min_dim) / (max_dim - min_dim) return x_out ``` #### File: tlkit/models/resnet_cifar.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable import numpy as np import warnings from tlkit.utils import forward_sequential from .superposition import HashBasicBlock from tlkit.models.basic_models import EvalOnlyModel from .basic_models import LambdaLayer __all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202'] def _weights_init(m): classname = m.__class__.__name__ if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, option='A', batchnorm_kwargs={'track_running_stats': True}): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, **batchnorm_kwargs) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes, **batchnorm_kwargs) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: if option == 'A': """ For CIFAR10 ResNet paper uses option A. """ self.shortcut = LambdaLayer(lambda x: F.pad(x[:, :, fdf8:f53e:61e4::18, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0)) elif option == 'B': self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes, **batchnorm_kwargs) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(EvalOnlyModel): def __init__(self, block, num_blocks, num_classes=10, period=None, debug=False, **kwargs): super(ResNet, self).__init__(**kwargs) self.in_planes = 16 self.num_classes = num_classes self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1, period=period, debug=debug) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2, period=period, debug=debug) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2, period=period, debug=debug) self.linear = nn.Linear(64, num_classes) self.apply(_weights_init) def _make_layer(self, block, planes, num_blocks, stride, period, debug): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: try: layers.append(block(self.in_planes, planes, period=period, stride=stride, debug=debug)) except TypeError: layers.append(block(self.in_planes, planes, stride=stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out def resnet20(num_classes=10): return ResNet(BasicBlock, [3, 3, 3], num_classes) def resnet32(num_classes=10): return ResNet(BasicBlock, [5, 5, 5], num_classes) def resnet44(num_classes=10): return ResNet(BasicBlock, [7, 7, 7], num_classes) def resnet56(num_classes=10): return ResNet(BasicBlock, [9, 9, 9], num_classes) def resnet110(num_classes=10): return ResNet(BasicBlock, [18, 18, 18], num_classes) def resnet1202(num_classes=10): return ResNet(BasicBlock, [200, 200, 200], num_classes) def test(net): import numpy as np total_params = 0 for x in filter(lambda p: p.requires_grad, net.parameters()): total_params += np.prod(x.data.numpy().shape) print("Total number of params", total_params) print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size())>1, net.parameters())))) #### new stuff class ResnetiCifar44(ResNet): def __init__(self, bsp=False, **new_kwargs): if bsp: super().__init__(HashBasicBlock, [7, 7, 7], **new_kwargs) else: super().__init__(BasicBlock, [7, 7, 7], **new_kwargs) self.bsp = bsp def forward(self, x, task_idx:int=-1): out = F.relu(self.bn1(self.conv1(x))) if self.bsp: # bsp mode out = forward_sequential(out, self.layer1, task_idx) out = forward_sequential(out, self.layer2, task_idx) out = forward_sequential(out, self.layer3, task_idx) else: out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out class ResnetiCifar(ResNet): def __init__(self, **new_kwargs): super().__init__(BasicBlock, [3, 3, 3], **new_kwargs) def forward(self, x): return super().forward(x) class ResnetiCifar44NoLinear(ResNet): def __init__(self, bsp=False, final_act=True, **new_kwargs): if bsp: super().__init__(HashBasicBlock, [7, 7, 7], **new_kwargs) else: super().__init__(BasicBlock, [7, 7, 7], **new_kwargs) self.bsp = bsp self.final_act = final_act del self.linear def forward(self, x, time:int=-1): out = F.relu(self.bn1(self.conv1(x))) if self.bsp: # bsp mode out = forward_sequential(out, self.layer1, time) out = forward_sequential(out, self.layer2, time) out = forward_sequential(out, self.layer3, time) else: out = self.layer1(out) out = self.layer2(out) if self.final_act: out = self.layer3(out) else: for i in range(6): out = self.layer3[i](out) basic_block = self.layer3[6] block_input = out out = F.relu(basic_block.bn1(basic_block.conv1(out))) # out = basic_block.bn2(basic_block.conv2(out)) out = basic_block.conv2(out) out += basic_block.shortcut(block_input) # out = F.relu(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) return out def start_training(self): if self.bsp: warnings.warn('Before training: Applying context to weights, Are you sure?') for name, param in self.named_parameters(): if 'conv' in name and 'weight' in name and 'layer' in name: o = torch.from_numpy( np.random.binomial(p=0.5, n=1, size=param.shape[1:]).astype(np.float32) * 2 - 1 ).cuda() self.state_dict()[name] = param * o class ResnetiCifar44NoLinearWithCache(ResnetiCifar44NoLinear): def forward(self, x, time:int=-1): self.x_pre_layer1 = F.relu(self.bn1(self.conv1(x))) # (16,32,32) self.x_layer1 = self.layer1(self.x_pre_layer1) # (16,32,32) self.x_layer2 = self.layer2(self.x_layer1) # (32,16,16) self.x_layer3 = self.layer3(self.x_layer2) # (64, 8, 8) out = F.avg_pool2d(self.x_layer3, self.x_layer3.size()[3]) out = out.view(out.size(0), -1) return out, [self.x_pre_layer1.detach(), self.x_layer1.detach(), self.x_layer2.detach(), self.x_layer3.detach()] ``` #### File: torchnet/meter/medianimagemeter.py ```python import torch import numpy as np class MedianImageMeter(object): def __init__(self, bit_depth, im_shape, device='cpu'): self.bit_depth = bit_depth self.im_shape = list(im_shape) self.device = device if bit_depth == 8: self.dtype = np.uint8 elif bit_depth == 16: self.dtype = np.uint16 else: raise NotImplementedError( "MedianMeter cannot find the median of non 8/16 bit-depth images.") self.reset() def reset(self): self.freqs = self.make_freqs_array() def add(self, val, mask=1): self.val = torch.LongTensor( val.astype(np.int64).flatten()[np.newaxis,:] ).to(self.device) if type(mask) == int: mask = torch.IntTensor(self.val.size()).fill_(mask).to(self.device) else: mask = torch.IntTensor(mask.astype(np.int32).flatten()[np.newaxis,:]).to(self.device) self.freqs.scatter_add_(0, self.val, mask) self.saved_val = val def value(self): self._avg = np.cumsum( self.freqs.cpu().numpy(), axis=0) self._avg = np.apply_along_axis( lambda a: a.searchsorted(a[-1] / 2.), axis=0, arr=self._avg)\ .reshape(tuple([-1] + self.im_shape)) return np.squeeze(self._avg, 0) def make_freqs_array(self): # freqs has shape N_categories x W x H x N_channels shape = tuple([2**self.bit_depth] + self.im_shape) freqs = torch.IntTensor(shape[0], int(np.prod(shape[1:]))).zero_() return freqs.to(self.device) ```
{ "source": "JozielOliveira/estrtura-de-dados-2", "score": 4 }
#### File: estrtura-de-dados-2/Estrutura/Arvore.py ```python import sys class Tree : def __init__(self): self.item = None self.direita = None self.esquerda = None def insert(self,item): if self.item == None: # verifiaca se há elemento na raiz self.item = item return elif item < self.item: if self.esquerda == None: self.esquerda = Tree() return self.esquerda.insert(item) else: if self.direita == None: self.direita = Tree() return self.direita.insert(item) def search(self, item): if self.item == item: # verifiaca se há elemento na raiz return True elif item < self.item: if self.esquerda == None: return False return self.esquerda.search(item) else: if self.direita == None: return False return self.direita.search(item) def inOrdem(self): if self.item != None: if self.esquerda != None : self.esquerda.inOrdem()#E print(self.item) #R if self.direita != None : self.direita.inOrdem() #D def posOrdem(self) : if self.item != None: if self.esquerda != None : self.esquerda.posOrdem()#E if self.direita != None : self.direita.posOrdem() #D print(self.item) #R def preOrdem(self) : if self.item != None: sys.stdout.write("(") sys.stdout.write(str(self.item)) #R if self.esquerda != None : self.esquerda.preOrdem()#E if self.direita != None : self.direita.preOrdem() #D sys.stdout.write(")") def regra1(self): if self.esquerda != None: return self.esquerda.regra2() # Vai pra esquerda e procura o maior valor pra atribuir no lugar elif self.direita != None : return self.direita.regra22() # Vai pra direita e procura o menor valor pra atribuir no lugar else : return None def regra2(self): if self.direita != None : return self.direita.regra2() elif self.esquerda != None : value = self.item self.item = self.esquerda.item self.direita = self.esquerda.direita self.esquerda = self.esquerda.esquerda return value else : value = self.item self.item = None self.direita = None self.esquerda = None return value def regra22(self): if self.esquerda != None : return self.esquerda.regra22() elif self.direita != None : value = self.item self.item = self.direita.item self.direita = self.direita.direita self.esquerda = self.direita.esquerda return value else : value = self.item self.item = None self.direita = None self.esquerda = None return value def delete(self, item): if self.item == item: self.item = self.regra1() elif item < self.item and self.esquerda != None: self.esquerda.delete(item) elif self.direita != None: self.direita.delete(item) return arvore = Tree() arvore.insert(10) arvore.insert(5) arvore.insert(4) arvore.insert(7) arvore.insert(6) arvore.insert(3) arvore.insert(13) arvore.insert(12) arvore.insert(11) arvore.insert(14) arvore.insert(15) arvore.insert(8) arvore.insert(9) # Mostrar em preOrdem print("Mostrar em preOrdem") arvore.preOrdem() # Mostrar em ordem print() print("Mostrar em ordem") arvore.inOrdem() # Mostrar em posOrdem print("Mostrar em posOrdem") arvore.posOrdem() print("Buscar numero 3") print(arvore.search(3)) print("Buscar numero 18") print(arvore.search(18)) print("") print("Delete 10") arvore.delete(10) print("Mostrar em preOrdem") arvore.preOrdem() ``` #### File: estrtura-de-dados-2/EstruturaPython/Pilha.py ```python class Pilha : # construtor def __init__(self, lista): self.lista = lista # metodo de insercao def push(self, elem): self.lista.append(elem) # metodo de remocao do def pop(self): self.lista.pop() # metodo de listagem def listar(self): a = 0 for item in self.lista: a += 1 print(a,' ', item) ```
{ "source": "JoZimmer/Beam-Models", "score": 2 }
#### File: Beam-Models/2DBeam/element_functions.py ```python import numpy as np def get_stiffness_matrix_var(alpha, L=15.0, E=8750.0,Iy=17500.0): k_yy_11 = 12.0 * E * Iy / L**3 k_yy_12 = -k_yy_11 k_gg_11 = 4.0 * E * Iy / L k_gg_12 = 2.0 * E * Iy / L k_yg = 6.0 * E * Iy / L**2 akyg = alpha * k_yg k = np.array([[ k_yy_11, -akyg, k_yy_12, -akyg], [-akyg, k_gg_11, akyg, k_gg_12], [ k_yy_12, akyg, k_yy_11, akyg], [-akyg, k_gg_12, akyg, k_gg_11]]) return k def get_stiffness_matrix_tar(): return get_stiffness_matrix_var(alpha=1.0) def get_mass_matrix_var(beta1, beta2, rho=150.0, L=15.0): m_yy_11 = rho * L * 13./35. m_yy_12 = rho * L * 9./70. m_gg_11 = rho * L**3 /105. m_gg_12 = rho * L**3 /140. m_yg_11 = rho * (L**2) * 11./210. m_yg_12 = rho * (L**2) * 13./420. b1myg = beta1 * m_yg_11 b2myg = beta2 * m_yg_12 m = np.array([[ m_yy_11, -b1myg, m_yy_12, b2myg], [-b1myg, m_gg_11, -m_yg_12, -m_gg_12], [ m_yy_12, -m_yg_12, m_yy_11, b1myg], [ b2myg, -m_gg_12, b1myg, m_gg_11 ]]) return m def get_mass_matrix_tar(): return get_mass_matrix_var(beta1=1.0,beta2=1.0) if __name__ == '__main__': print('Stiffness target: ') print(get_stiffness_matrix_tar()) print('Stiffness initial: ') print(get_stiffness_matrix_var(alpha=0.00005)) print('Mass target: ') print(get_mass_matrix_tar()) print('Mass initial: ') print(get_mass_matrix_var(beta1=0.00025,beta2=0.00075)) ``` #### File: Beam-Models/2DBeam/system_functions.py ```python import numpy as np from element_functions import get_stiffness_matrix_var, get_stiffness_matrix_tar, get_mass_matrix_var, get_mass_matrix_tar def build_system_matrix(var_handles, n_el=3, n_dofs_per_node=2): n_nodes = n_el + 1 nodes_per_elem = 2 k_sys = np.zeros((n_nodes * n_dofs_per_node, n_nodes * n_dofs_per_node)) m_sys = np.zeros((n_nodes * n_dofs_per_node, n_nodes * n_dofs_per_node)) for el_id in range(0,n_el,1): k_el = get_stiffness_matrix_var(var_handles[0]) m_el = get_mass_matrix_var(var_handles[1],var_handles[2]) start = n_dofs_per_node * el_id end = start + n_dofs_per_node * nodes_per_elem k_sys[start: end, start: end] += k_el m_sys[start: end, start: end] += m_el return k_sys, m_sys def apply_bc_by_reduction(matrix, dofs_of_bc=[0,1], n_el=3, n_dofs_per_node=2, axis='both'): n_nodes = n_el + 1 nodes_per_elem = 2 n_dofs_total = np.arange(n_nodes * n_dofs_per_node) dofs_to_keep = list(set(n_dofs_total) - set(dofs_of_bc)) if axis == 'both': ixgrid = np.ix_(dofs_to_keep, dofs_to_keep) # for a force vector elif axis == 'row_vector': ixgrid = np.ix_(dofs_to_keep, [0]) matrix = matrix.reshape([len(matrix), 1]) return matrix[ixgrid] def recuperate_bc_by_extension(matrix, dofs_of_bc=[0,1], n_el=3, n_dofs_per_node=2, axis='both'): n_nodes = n_el + 1 nodes_per_elem = 2 n_dofs_total = np.arange(n_nodes * n_dofs_per_node) dofs_to_keep = list(set(n_dofs_total) - set(dofs_of_bc)) if axis == 'both': rows = len(n_dofs_total) cols = rows ixgrid = np.ix_(dofs_to_keep,dofs_to_keep) extended_matrix = np.zeros((rows,cols)) elif axis == 'row': rows = len(n_dofs_total) cols = matrix.shape[1] # make a grid of indices on interest ixgrid = np.ix_(dofs_to_keep, np.arange(matrix.shape[1])) extended_matrix = np.zeros((rows, cols)) elif axis == 'column': rows = matrix.shape[0] cols = len(n_dofs_total) # make a grid of indices on interest ixgrid = np.ix_(np.arange(matrix.shape[0]), dofs_to_keep) extended_matrix = np.zeros((rows, cols)) elif axis == 'row_vector': rows = len(n_dofs_total) cols = 1 ixgrid = np.ix_(dofs_to_keep, [0]) matrix = matrix.reshape([len(matrix), 1]) extended_matrix = np.zeros((rows, cols)) elif axis == 'column_vector': rows = len(n_dofs_total) cols = 1 ixgrid = np.ix_(dofs_to_keep) extended_matrix = np.zeros((rows,)) extended_matrix[ixgrid] = matrix return extended_matrix if __name__ == '__main__': print('Full system stiffness matrix: ') k_full, m_full = build_system_matrix([1.0,1.0,1.0]) print(k_full) print(np.shape(k_full)) print('Reduced system stiffness matrix: ') k_red = apply_bc_by_reduction(k_full) print(k_red) print(np.shape(k_red)) print(np.array_equal(k_full[2:,2:],k_red)) print('Extended (padded by zeros) stiffness matrix: ') k_ext = recuperate_bc_by_extension(k_red) print(k_ext) print(np.array_equal(np.array(np.shape(k_full)),np.array(np.shape(k_ext)))) print('Full system mass matrix: ') print(m_full) print(np.shape(m_full)) print('Reduced system stiffness matrix: ') m_red = apply_bc_by_reduction(m_full) print(m_red) print(np.shape(m_red)) print(np.array_equal(m_full[2:,2:],m_red)) print('Extended (padded by zeros) mass matrix: ') m_ext = recuperate_bc_by_extension(m_red) print(m_ext) print(np.array_equal(np.array(np.shape(m_full)),np.array(np.shape(m_ext)))) ``` #### File: 3DBeam/source/optimizations.py ```python import numpy as np import matplotlib.pyplot as plt from os.path import join as os_join import scipy.optimize as spo from scipy.optimize import minimize, minimize_scalar from scipy import linalg from functools import partial import source.postprocess from source.utilities import utilities as utils class Optimizations(object): def __init__(self, model, optimization_parameters=None): ''' an inital model is given to this object ''' self.model = model self.opt_geometric_props = {} if optimization_parameters: self.opt_params = optimization_parameters self.consider_mode = optimization_parameters['consider_mode'] self.method = optimization_parameters['method'] self.weights = optimization_parameters['weights'] else: self.opt_params = False # FOR EIGENFREQUENCIES ''' These are functions taken from ParOptBeam ''' def adjust_sway_y_stiffness_for_target_eigenfreq(self, target_freq, target_mode, print_to_console=False): ''' displacement in z direction -> sway_y = schwingung um y - Achse ''' initial_iy = list(e.Iy for e in self.model.elements) # using partial to fix some parameters for the self.optimizable_function = partial(self.bending_y_geometric_stiffness_objective_function, target_freq, target_mode, initial_iy) init_guess = 1.0 upper_bnd = self.model.elements[0].Iz / self.model.elements[0].Iy bnds_iy = (0.001, upper_bnd)#100) # (1/8,8) # minimization_result = minimize(self.optimizable_function, # init_guess, # method='L-BFGS-B', # 'SLSQP',# # bounds=(bnds_iy, bnds_a_sz)) min_res = minimize_scalar(self.optimizable_function, tol=1e-06)#, options={'disp':True}) # returning only one value! opt_fctr = min_res.x # NOTE this is only for constant Iy over the height self.opt_geometric_props['Iy'] = [min_res.x * iy_i for iy_i in initial_iy] if print_to_console: print('INITIAL Iy:', ', '.join([str(val) for val in initial_iy])) print() print('OPTIMIZED Iy: ', ', '.join([str(opt_fctr * val) for val in initial_iy])) print() print('FACTOR: ', opt_fctr) print() def bending_y_geometric_stiffness_objective_function(self, target_freq, target_mode, initial_iy, multiplier_fctr): for e in self.model.elements: e.Iy = multiplier_fctr * initial_iy[e.index] # assuming a linear dependency of shear areas # NOTE: do not forget to update further dependencies e.evaluate_relative_importance_of_shear() e.evaluate_torsional_inertia() # re-evaluate self.model.build_system_matricies(self.model.parameters['inital_params_yg'], self.model.parameters['params_k_ya'], self.model.parameters['params_m_ya']) self.model.eigenvalue_solve() eig_freq_cur = self.model.eigenfrequencies[target_mode] return (eig_freq_cur - target_freq)**2 / target_freq**2 def adjust_sway_z_stiffness_for_target_eigenfreq(self, target_freq, target_mode, print_to_console=False): ''' sway_z = schwingung in y richtung, um z Achse, ''' initial_iz = list(e.Iz for e in self.model.elements) # using partial to fix some parameters for the self.optimizable_function = partial(self.bending_z_geometric_stiffness_objective_function, target_freq, target_mode, initial_iz) initi_guess = 1.0 # NOTE this is correct only for homogenous cross section along length upper_bnd = self.model.elements[0].Iy / self.model.elements[0].Iz bnds_iz = (0.001, upper_bnd)#(0.001, 100) # (1/8,8) # minimization_result = minimize(self.optimizable_function, # initi_guess, # method ='L-BFGS-B', # bounds = bnds_iz) min_res = minimize_scalar(self.optimizable_function, method='Bounded', tol=1e-06, bounds=bnds_iz)#, options={'disp':True}) # returning only one value! #opt_iz_fctr = minimization_result.x opt_iz_fctr = min_res.x self.opt_geometric_props['Iz'] = [min_res.x * iz_i for iz_i in initial_iz] if print_to_console: print(' INITIAL iz:', ', '.join([str(val) for val in initial_iz])) print() print(' OPTIMIZED iz: ', ', '.join( [str(opt_iz_fctr * val) for val in initial_iz])) print() print(' FACTOR: ', opt_iz_fctr) print (' Final Func:', min_res.fun) print() def bending_z_geometric_stiffness_objective_function(self, target_freq, target_mode, initial_iz, multiplier_fctr): for e in self.model.elements: e.Iz = multiplier_fctr * initial_iz[e.index] # NOTE: do not forget to update further dependencies e.evaluate_relative_importance_of_shear() e.evaluate_torsional_inertia() # re-evaluate self.model.build_system_matricies(self.model.parameters['inital_params_yg'], self.model.parameters['params_k_ya'], self.model.parameters['params_m_ya']) self.model.eigenvalue_solve() eig_freq_cur = self.model.eigenfrequencies[target_mode] # mode_type_results is an ordered list result = (eig_freq_cur - target_freq)**2 / target_freq**2 return result def adjust_torsional_stiffness_for_target_eigenfreq(self, target_freq, target_mode, print_to_console=False): initial_it = list(e.It for e in self.model.elements) initial_ip = list(e.Ip for e in self.model.elements) # NOTE: single parameter optimization seems not to be enough # using partial to fix some parameters for the self.optimizable_function = partial(self.torsional_geometric_stiffness_objective_function, target_freq, target_mode, initial_it, initial_ip) self.weights = [0.0,0.0,0.0] # NOTE: some additional reduction factor so that ip gets changes less init_guess = (1.0, 1.0) # NOTE: this seems not to be enough # bnds_it = (1/OptimizableStraightBeam.OPT_FCTR, OptimizableStraightBeam.OPT_FCTR) # bnds_ip = (1/OptimizableStraightBeam.OPT_FCTR, OptimizableStraightBeam.OPT_FCTR) # NOTE: seems that the stiffness contribution takes lower bound, the inertia one the upper bound bnds_it = (1/100, 10) bnds_ip = (1/11, 20) if self.opt_params: init_guess = self.opt_params['init_guess'] bnds_it = self.opt_params['bounds'] bnds_ip = self.opt_params['bounds'] # NOTE: TNC, SLSQP, L-BFGS-B seems to work with bounds correctly, COBYLA not min_res = minimize(self.optimizable_function, init_guess, method='L-BFGS-B', bounds=(bnds_it, bnds_ip), options={'disp':False}) # returning only one value! opt_fctr = min_res.x self.opt_geometric_props['It'] = [min_res.x[0] * it_i for it_i in initial_it] self.opt_geometric_props['Ip'] = [min_res.x[1] * ip_i for ip_i in initial_ip] if print_to_console: print('\nFACTORS It, Ip: ', ', '.join([str(val) for val in opt_fctr])) print ('final frequency: ', self.model.eigenfrequencies[target_mode]) print() def torsional_geometric_stiffness_objective_function(self, target_freq, target_mode, initial_it, initial_ip, multiplier_fctr): for e in self.model.elements: e.It = multiplier_fctr[0] * initial_it[e.index] e.Ip = multiplier_fctr[1] * initial_ip[e.index] # re-evaluate self.model.build_system_matricies(self.model.parameters['inital_params_yg'], self.model.parameters['params_k_ya'], self.model.parameters['params_m_ya']) self.model.eigenvalue_solve() weights = [0] eig_freq_cur = self.model.eigenfrequencies[target_mode] return (eig_freq_cur - target_freq)**2 *100# / target_freq**2 # TORSION COUPLING OPTIMIZATIONS ''' Coupling with one design variable. Either y-a or g-a ''' def eigen_ya_stiffness_opt(self, which = 'kya'): ''' Optimizes EITHER 'kya' or 'kga' to couple the y-displacement (gamma-rotation) to the torsional twist. The optimization target is hard coded in here -> see eigenmodes_target_*y*a The eigenfrequnecy_target is mostly not used (uncomment it in the objective function to see what happens). which: 'kya' or 'kga' ''' if self.model.parameters['params_k_ya'] != [0.0,0.0]: raise Exception('inital parameters of ya are not 0 - check if sensible') eigenmodes_target_y = self.model.eigenmodes['y'][self.consider_mode]*0.9 # an assumption: y gets less if a is also deforming eigenmodes_target_a = np.linspace(0, eigenmodes_target_y[-1] * 0.012, eigenmodes_target_y.shape[0]) # 0.12 is the ratio of caarc tip a / tip y 1st mode eigenfreq_target = self.model.eigenfrequencies[self.consider_mode] self.inital = {'y':self.model.eigenmodes['y'][self.consider_mode],'a':self.model.eigenmodes['a'][self.consider_mode]} self.targets = {'y':eigenmodes_target_y, 'a':eigenmodes_target_a} self.optimizable_function = partial(self.obj_func_eigen_ya_stiffnes, self.consider_mode, eigenmodes_target_y, eigenmodes_target_a, eigenfreq_target, which) ids = ['kya','kga'] bounds = None #bounds = self.opt_params['bounds'][ids.index(which)] method_scalar = 'brent' #bounds = (0.001, 100)#,(0.001, 100))#,(0.001, 100)) if bounds: method_scalar = 'bounded' res_scalar = minimize_scalar(self.optimizable_function, method=method_scalar, bounds= bounds, tol=1e-6) # SLSQP works with bounds #res_scalar = minimize(self.optimizable_function, x0= 0.0, method=self.method, bounds=bounds, tol=1e-6, options={'disp': True}) # SLSQP works with constraints as well #res_scalar = minimize(self.optimizable_function, x0 = init_guess, method='SLSQP', constraints=cnstrts, tol=1e-3, options={'gtol': 1e-3, 'ftol': 1e-3, 'disp': True}) #print( 'final F: ', str(self.optimizable_function)) #self.optimized_design_params = res_scalar.x if which == 'kya': self.optimized_design_params = {'params_k_ya':[res_scalar.x, 0.0]} elif which == 'kga': self.optimized_design_params = {'params_k_ya':[0.0, res_scalar.x]} print('\noptimization result for design variable k'+which+':', res_scalar.x) def obj_func_eigen_ya_stiffnes(self, mode_id, eigenmodes_target_y, eigenmodes_target_a, eigenfreq_target, which, design_param): ''' Objective function for one design variable (either kya or kga). ''' if isinstance(design_param, np.ndarray): if design_param.size == 2: if design_param[0] == design_param[1]: design_param = design_param[0] else: raise Exception('design parameter has 2 variables that differ') else: design_param = design_param[0] if which == 'kya': self.model.build_system_matricies(params_k_ya=[design_param, 0.0]) elif which == 'kga': self.model.build_system_matricies(params_k_ya=[0.0, design_param]) self.model.eigenvalue_solve() eigenmodes_cur = self.model.eigenmodes eigenfreq_cur = self.model.eigenfrequencies[self.consider_mode] f1 = utils.evaluate_residual(eigenmodes_cur['y'][mode_id], eigenmodes_target_y) f2 = utils.evaluate_residual(eigenmodes_cur['a'][mode_id], eigenmodes_target_a) #f3 = utils.evaluate_residual([eigenfreq_cur], [eigenfreq_target]) weights = self.weights f = weights[0]*f1**2 + weights[1]*f2**2 # + weights[2] * f3**2 return f ''' Coupling with two design variables. Either y-a and g-a ''' def eigen_vectorial_ya_opt(self, target_to_use = 'custom'): ''' optimizing BOTH the stiffness coupling entries K_ya K_ga and the mass coupling entries mostly mass couling is not necessary or sensible - see also Thesis JZ ch. 3.3.3 in optimization_parameters a boolean for turning this option on and off is used M_ya, M_yg (both with the same parameter ) target_to_use: - 'custom': 0.9 times the initial lateral displacement & ratio alpha/disp = 0.012; a displacement is assumed linear - 'realistic': taking values from full 3D FE simulation of exccentirc building (ARiedls work) - 'semi_realistic': uses values from the optimization_params: 'ratio_a_y_tar', 'factor_y'; a twist displacement is amplified -> original shape is taken ''' include_mass = self.opt_params['include_mass'] # defining bounds # NOTE: k_ya takes lower bounds than 0.1 bnds = self.opt_params['bounds'] init_guess = self.opt_params['init_guess']#,1.0]#[0.0, 0.0,0.0]#[0.12, 0.15, 0.17] self.n_iter = 0 self.optimization_history = {'iter':[0],'func':[], 'k_ya':[init_guess[0]], 'k_ga':[init_guess[1]]} if include_mass: self.optimization_history['m_ya_ga'] = [init_guess[2]] def get_callback(x): # not really working self.n_iter += 1 #self.optimization_history['func'].append(self.optimizable_function(x)) self.optimization_history['k_ya'].append(x[0]) self.optimization_history['k_ga'].append(x[1]) self.optimization_history['iter'].append(self.n_iter) if include_mass: self.optimization_history['m_ya_ga'].append(x[2]) def print_callback(x): print (x[0], x[1], x[2], self.optimizable_function(x)) if self.model.parameters['params_k_ya'] != [0.0,0.0]: raise Exception('inital parameters of ya are not 0 - check if the targets are still sensible') if target_to_use == 'custom': eigenmodes_target_y = self.model.eigenmodes['y'][self.consider_mode]*0.9 eigenmodes_target_a = np.linspace(0, eigenmodes_target_y[-1] * self.opt_params['ratio_a_y_tar'], eigenmodes_target_y.shape[0]) # 0.012 is the ratio of caarc tip a / tip y 1st mode eigenfreq_target = self.model.eigenfrequencies[self.consider_mode] elif target_to_use == 'realistic': modi = np.load(os_join(*['inputs', 'eigenvectors', 'EigenvectorsGid.npy'])) z_coords = np.load(os_join(*['inputs','eigenvectors', 'z_coords_gid_45.npy'])) # is only available with 45 nodes but is fitted if the current model has a different number of nodes if self.model.nodal_coordinates['x0'].size == 46: eigenmodes_target_y = modi[self.consider_mode][:,4] eigenmodes_target_a = modi[self.consider_mode][:,2] # here the ratio is 0.00373 else: modi_fitted = utils.get_eigenform_polyfit(modi[self.consider_mode], z_coords, self.model.nodal_coordinates['x0'], plot_compare=False) eigenmodes_target_y = modi_fitted['eigenmodes']['y'] eigenmodes_target_a = -1*modi_fitted['eigenmodes']['a'] eigenfreq_target = self.opt_params['eigen_freqs_tar'] #self.model.eigenfrequencies[self.consider_mode] elif target_to_use == 'semi_realistic': ''' assumes a reduction of y displacement by a custom factor < 1 uses shape of a initial with a factor to get a-y tip ratio as specified -> reason see inital shapes uncoupled max normed: a has the typical torsion shape -> needs amplification ''' ratio_a_y = self.opt_params['ratio_a_y_tar'] factor_y = self.opt_params['factor_y'] eigenmodes_target_y = self.model.eigenmodes['y'][self.consider_mode]*factor_y a_factor = ratio_a_y * max(eigenmodes_target_y)/max(self.model.eigenmodes['a'][self.consider_mode]) eigenmodes_target_a = self.model.eigenmodes['a'][self.consider_mode] * a_factor eigenfreq_target = self.opt_params['eigen_freqs_tar'] #self.model.eigenfrequencies[self.consider_mode] self.inital = {'y':self.model.eigenmodes['y'][self.consider_mode],'a':self.model.eigenmodes['a'][self.consider_mode]} self.targets = {'y':eigenmodes_target_y, 'a':eigenmodes_target_a} self.optimizable_function = partial(self.obj_func_eigen_vectorial_k_ya, self.consider_mode, eigenmodes_target_y, eigenmodes_target_a, eigenfreq_target, include_mass) self.optimization_history['func'].append(self.optimizable_function(init_guess)) if not include_mass: print ('\nnot optimizing the mass entries, thus...') if len(bnds) != 2: bnds = bnds[:2] print (' ...dropping the 3rd bound given') if len(init_guess) != 2: init_guess = init_guess[:2] print (' ...dropping the 3rd initial guess given\n') # alternatively inequality constraints cnstrts = [{'type': 'ineq', 'fun': lambda x: 100 - x[0]}, {'type': 'ineq', 'fun': lambda x: 100 - x[1]}, {'type': 'ineq', 'fun': lambda x: 100 - x[2]}, {'type': 'ineq', 'fun': lambda x: x[0] - 0.001}, {'type': 'ineq', 'fun': lambda x: x[1] - 0.001}, {'type': 'ineq', 'fun': lambda x: x[2] - 0.001}] # SLSQP works with bounds res_scalar = minimize(self.optimizable_function, x0 = init_guess, method=self.method, bounds=bnds, callback=get_callback, options={'ftol': 1e-6, 'disp': True}) evals = [0,10,10] #print ('func with manual opt params: ', self.optimizable_function(evals)) self.optimized_design_params = {'params_k_ya':res_scalar.x[:2]} if include_mass: self.optimized_design_params['params_m_ya'] = [res_scalar.x[-1],res_scalar.x[-1],0.0] self.optimization_history['k_ya'].append(res_scalar.x[0]) self.optimization_history['k_ga'].append(res_scalar.x[1]) self.optimization_history['iter'].append(self.n_iter+1) digits = 5 # SLSQP works with constraints as well # res_scalar = minimize(self.optimizable_function, x0 = init_guess, method='SLSQP', constraints=cnstrts, tol=1e-3, options={'gtol': 1e-3, 'ftol': 1e-3, 'disp': True}) print() print('optimized parameters:') print (' k_ya:', round(res_scalar.x[0],digits), 'absolute:', round(self.model.comp_k[1][3])) print (' k_ga:', round(res_scalar.x[1],digits), 'absolute:', round(self.model.comp_k[3][5])) if include_mass: print (' m_ya:', round(res_scalar.x[2],digits+4), 'absolute m_ya_11:', round(self.model.comp_m[1][3]), 'absolute m_ya_12:', round(self.model.comp_m[1][9])) def obj_func_eigen_vectorial_k_ya(self, mode_id, eigenmodes_target_y, eigenmodes_target_a, eigenfreq_target, include_mass, design_params): ''' Objective function for more than one design variable (kya and kga optional mass entries). ''' if include_mass: self.model.build_system_matricies(params_k_ya = design_params[:2], params_m_ya=[design_params[-1], design_params[-1],0]) else: self.model.build_system_matricies(params_k_ya = design_params) self.model.eigenvalue_solve() eigenmodes_cur = self.model.eigenmodes eigenfreq_cur = self.model.eigenfrequencies[mode_id] f1 = utils.evaluate_residual(eigenmodes_cur['y'][mode_id], eigenmodes_target_y) f2 = utils.evaluate_residual(eigenmodes_cur['a'][mode_id], eigenmodes_target_a) f3 = utils.evaluate_residual([eigenfreq_cur], [eigenfreq_target]) weights = self.weights gamma = 2 components = [weights[0]*f1**gamma, weights[1]*f2**gamma, weights[2]*f3**gamma] f = sum(components) return f # MASS MATRIX OPTIMIZATIONS def mass_entries_opt_ya(self): target = np.eye(self.model.n_dofs_node * self.model.n_elems) self.optimizable_function = partial(self.obj_func_gen_mass, target) bounds = self.opt_params['bounds']#,(0.001, 100)) init_guess = self.opt_params['init_guess']#,1.0]#[0.0, 0.0,0.0]#[0.12, 0.15, 0.17] #res_scalar = minimize_scalar(self.optimizable_function, method=method, bounds= bounds, options={'gtol': 1e-6, 'disp': True}) # SLSQP works with bounds res_scalar = minimize(self.optimizable_function, x0= init_guess, method=self.method, bounds=bounds, options={'ftol': 1e-5, 'disp': True}) print ('optimizaion result:', res_scalar.x) def obj_func_gen_mass(self, target, design_params): ''' 1. design_params are psi1, psi2 -> only ya entries the rest 0 ''' self.model.build_system_matricies(params_m_ya=[design_params[0],design_params[1], 0.0]) eig_values_raw, eigen_modes_raw = linalg.eigh(self.model.comp_k, self.model.comp_m) gen_mass_cur = np.matmul(np.matmul(np.transpose(eigen_modes_raw), self.model.comp_m), eigen_modes_raw) f1 = utils.evaluate_residual(gen_mass_cur, target) return f1**2 ``` #### File: solving_strategies/strategies/linear_solver.py ```python from source.solving_strategies.strategies.solver import Solver class LinearSolver(Solver): def __init__(self, array_time, time_integration_scheme, dt, comp_model, initial_conditions, force, structure_model): super().__init__(array_time, time_integration_scheme, dt, comp_model, initial_conditions, force, structure_model) def _print_solver_info(self): print("Linear Solver") def solve(self): # time loop for i in range(0, len(self.array_time)): self.step = i current_time = self.array_time[i] #print("time: {0:.2f}".format(current_time)) self.scheme.solve_single_step(self.force[:, i]) # appending results to the list self.displacement[:, i] = self.scheme.get_displacement() self.velocity[:, i] = self.scheme.get_velocity() self.acceleration[:, i] = self.scheme.get_acceleration() # TODO: only calculate reaction when user wants it # if self.structure_model is not None: # self.dynamic_reaction[:, i] = self._compute_reaction() # reaction computed in dynamic analysis # TODO: only calculate reaction when user wants it # moved reaction computation to dynamic analysis level # AK . this doesnt considers the support reaction check #if self.structure_model is not None: # self.dynamic_reaction[:, i] = self._compute_reaction() # update results self.scheme.update() ``` #### File: source/utilities/CAARC_utilities.py ```python import numpy as np from os.path import join as os_join import matplotlib.pyplot as plt import source.postprocess as post from source.utilities import utilities as utils from source.utilities import global_definitions as GD from plot_settings import plot_settings COLORS = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red'] #params = plot_settings.get_params(w=7.3, h=5.2) dest_folder = 'plots_new\\CAARC' def get_CAARC_properties(src_file_name = 'CAARC_advanced_eigenmodes.txt', evaluate_at = None, interpolation_degree = 3): ''' a dictionary is returned with information about the building A - storey (number), storey_level, mass, frequencies, eigenmodes the eigenmodes are appened to a list for each dof a list is created in a dictionary ''' src = os_join(*['inputs','eigenvectors', src_file_name]) caarc = {} caarc['storey'] = np.flip(np.loadtxt(src, usecols = (0,))) # [-] caarc['storey_level'] = np.flip(np.loadtxt(src, usecols = (1,))) # [m] caarc['dimensons'] = {'x':240,'y':24, 'z':72} caarc['mass'] = 1231000.0 caarc['frequencies'] = [0.231, 0.429, 0.536] caarc['eigenmodes'] = {'x':[],'y':[],'z':[],'a':[]} caarc['eigenmodes_fitted'] = {'x':[],'y':[],'z':[],'a':[]} for i in range (3): caarc['eigenmodes']['x'].append(np.zeros(60)) caarc['eigenmodes']['y'].append(np.flip(np.loadtxt(src, usecols = (3+3*i,)))) caarc['eigenmodes']['z'].append(np.flip(np.loadtxt(src, usecols = (2+3*i,)))) caarc['eigenmodes']['a'].append(np.flip(np.loadtxt(src, usecols = (4+3*i,)))) if not evaluate_at: x = caarc['storey_level'] else: x = evaluate_at for dof_label in ['y', 'z', 'a']: for mode_id in range(3): y = caarc['eigenmodes'][dof_label][mode_id] current_polynomial = np.poly1d(np.polyfit(caarc['storey_level'] ,y , interpolation_degree)) values = [] for x_i in x:# evaluate the fitted eigenmode at certain intervals values.append(current_polynomial(x_i)) caarc['eigenmodes_fitted'][dof_label].append(np.asarray(values)) return caarc def get_CAARC_eigenform_polyfit (CAARC_eigenmodes, evaluate_at = None, degree = 5): ''' retruns the values of a fitted caarc eigenmode. evaluate_at must be a list of x coordiantes at which the fitted curve should be evaluated. if it is not provided the fitted curve is evaluated at each storey level of caarc. ''' eigenmodes_fitted = {} #CAARC_eigenmodes = self.structure_model.CAARC_eigenmodes # returns the fitted polynomial and the discrete array of displacements if not evaluate_at: x = CAARC_eigenmodes['storey_level'] else: x = evaluate_at eigenmodes_fitted['storey_level'] = np.copy(x) eigenmodes_fitted['eigenmodes'] = [] for mode_id in range(1,4): eigenmodes_fitted['eigenmodes'].append({}) for dof_label in ['y', 'z', 'a']: y = CAARC_eigenmodes['eigenmodes'][mode_id][dof_label] current_polynomial = np.poly1d(np.polyfit(CAARC_eigenmodes['storey_level'],y,degree)) values = [] for x_i in x:# evaluate the fitted eigenmode at certain intervals values.append(current_polynomial(x_i)) eigenmodes_fitted['eigenmodes'][mode_id][dof_label] = np.asarray(values) return eigenmodes_fitted def get_m_eff(eigenmodes_dict, mode_id, main_direction_only, print_to_console): ''' retruns the generalized mass and the participation factor of a mode prints the effective mass that should be around 60% of the total mass (first modes) ''' mass = eigenmodes_dict['mass'] # constant over height phi_y = eigenmodes_dict['eigenmodes']['y'][mode_id] phi_z = eigenmodes_dict['eigenmodes']['z'][mode_id] if main_direction_only: if mode_id == 1: participation_factor = (mass * sum(phi_y))**2 # mass not in the sum since it is constant elif mode_id == 2: participation_factor = (mass * sum(phi_z))**2 else: participation_factor = (mass * sum(np.add(phi_y, phi_z)))**2 if main_direction_only: if mode_id == 1: generalized_mass = mass * sum(np.square(phi_y)) elif mode_id == 2: generalized_mass = mass * sum(np.square(phi_z)) else: generalized_mass = mass * sum(np.add(np.square(phi_y), np.square(phi_z))) total_mass = 60*mass m_eff = participation_factor/generalized_mass if print_to_console: print('m_eff of mode_id', mode_id, ':', round(m_eff/total_mass, 4), 'of m_tot') print ('generalized_mass:', round(generalized_mass, 2), 'should be 1 if mass normalized') print ('participation_factor:', round(participation_factor,2)) print () return participation_factor, generalized_mass def plot_caarc_eigenmodes(caarc_dict, number_of_modes = 3, dofs_to_plot = ['y','a','z'], max_normed = False, do_rad_scale =False, use_caarc_fitted = False, savefig = False, savefig_latex = False, fig_title = '', filename_for_save = '0_no_name'): c_norm = 1 rad_scale = np.sqrt(caarc_dict['dimensons']['y'] *caarc_dict['dimensons']['z']) if max_normed: do_rad_scale = False if use_caarc_fitted: c_modes = caarc_dict['eigenmodes_fitted'] else: c_modes = caarc_dict['eigenmodes'] if number_of_modes == 1: raise Exception('for 1 mode not implemented yet') fig, ax = plt.subplots(ncols = number_of_modes, num='eigenmode results')#figsize=(2,3.5), if not self.savefig and not self.savefig_latex: fig.suptitle(fig_title) x = beam_model.nodal_coordinates['x0'] ax.plot( beam_model.nodal_coordinates['y0'], x, #label = r'$structure$', color = 'grey', linestyle = '--') ax.set_title(r'$mode\,1$ '+'\n' +r'$f = $ ' + r'${}$'.format(str(round(beam_model.eigenfrequencies[0],3))) + r' $Hz$' + weights) for d_i, dof in enumerate(dofs_to_plot): scale=1.0 if do_rad_scale: if dof in ['a','b','g']: scale = rad_scale else: scale = 1.0 y = utils.check_and_flip_sign_array(beam_model.eigenmodes[dof][0]) if include_caarc: c_y = utils.check_and_flip_sign_array(c_modes[dof][0]) if max_normed: norm = 1/max(y) c_norm = 1/max(c_y) if opt_targets: if dof in opt_targets.keys(): y2 = opt_targets[dof] *scale ax.plot(y2*norm, x, label = r'${}$'.format(GD.greek[dof]) + r'$_{target}$', linestyle = '--', color = COLORS[d_i]) if initial: if dof in initial.keys(): y3 = initial[dof] ax.plot(y3*norm*scale, x, label = r'${}$'.format(GD.greek[dof]) + r'$_{inital}$', linestyle = ':', color = COLORS[d_i]) lab = GD.greek[dof] ax.plot(y*norm*scale, x, label = r'${}$'.format(GD.greek[dof]) + r'$_{max}:$' + r'${0:.2e}$'.format(max(y)),#'max: ' + linestyle = '-', color = COLORS[d_i]) if include_caarc: ax.plot(c_y*c_norm*scale, c_x, label = r'${}$'.format(GD.greek[dof]) + r'$benchmark$',#'max: ' + linestyle = ':', color = caarc_cols[d_i]) ax.legend() ax.grid() ax.set_ylim(bottom=0) ax.set_xlabel(r'$deflection$') ax.set_ylabel(r'$x \, [m]$') ratio = max(utils.check_and_flip_sign_array(beam_model.eigenmodes['a'][0])) / max(utils.check_and_flip_sign_array(beam_model.eigenmodes['y'][0])) ax.plot(0,0, label = r'$\alpha_{max}/y_{max}: $' + str(round(ratio,3)), linestyle = 'None') ax.legend() else: fig, ax = plt.subplots(ncols = number_of_modes, sharey=True, num='eigenmode results')#figsize=(5,4), for i in range(number_of_modes): x = caarc_dict['storey_level'] ax[i].plot( np.zeros(len(x)), x, #label = r'$structure$', color = 'grey', linestyle = '--') ax[i].set_title(r'$mode$ ' + r'${}$'.format(str(i+1)) + '\n' +r'$f=$ ' + r'${}$'.format(str(round(caarc_dict['frequencies'][i],3))) +r' $Hz$') for d_i, dof in enumerate(dofs_to_plot): scale=1.0 if do_rad_scale: if dof in ['a','b','g']: scale = rad_scale else: scale = 1.0 y = utils.check_and_flip_sign_array(c_modes[dof][i]) if max_normed: c_norm = 1/max(y) ax[i].plot(y*c_norm*scale, x, label = r'${}$'.format(GD.greek[dof]),# + r'$_{max}:$ ' + r'${0:.2e}$'.format(max(y)), linestyle = '-', color = COLORS[d_i]) ax[i].legend(loc = 'lower right') ax[i].grid() ax[i].set_ylim(bottom=0) ax[i].set_xlabel(r'$deflection$') ax[0].set_ylabel(r'$x \, [m]$') ratio = max(utils.check_and_flip_sign_array(caarc_dict['eigenmodes']['a'][0])) / max(utils.check_and_flip_sign_array(caarc_dict['eigenmodes']['y'][0])) #ax[0].plot(0,0, label = r'$\alpha_{max}/y_{max} = $' + str(round(ratio,3)), linestyle = 'None') ax[0].legend(loc= 'lower right') #plt.tight_layout() #if self.show_plots: #plt.grid() plt.show() plt.close() if __name__ == '__main__': plt.rcParams.update({'axes.formatter.limits':(-3,3)}) plt.rcParams.update(params) caarc_dict = get_CAARC_properties() plot_caarc_eigenmodes(caarc_dict, do_rad_scale=True, savefig=1, savefig_latex=1, filename_for_save='caarc_modes') ``` #### File: source/utilities/utilities.py ```python import numpy as np import json import os.path import matplotlib.pyplot as plt from os.path import join as os_join from os.path import sep as os_sep from source.utilities import statistics_utilities as stats_utils caarc_freqs = [0.231, 0.429, 0.536] # VALUES COPIED WITH FULL MATRICIES CALCULATED eigenmodes_target_2D_3_elems = {'y':[np.array([0. , 0.0040305 , 0.013317 , 0.02434817]), np.array([ 0. , -0.01444802, -0.01037197, 0.02449357]), np.array([ 0. , -0.01819986, 0.01604842, -0.02446053])], 'g':[np.array([ 0. , -0.0004894 , -0.00070823, -0.00074479]), np.array([ 0. , 0.00095991, -0.00161083, -0.00260447]), np.array([ 0. , -0.0009034 , -0.00068957, 0.00432069])]} eigenmodes_target_2D_10_elems ={'y':[np.array([0.0, -0.000223647046255273, -0.0008516138734941783, -0.0018197756020471587, -0.0030651302400258222, -0.00452698257707041, -0.006148471228742031, -0.007878364112695452, -0.009673052432583382, -0.011498680245678633, -0.01333335614230312]), np.array([ 0. , 0.00123514, 0.00401433, 0.00701557, 0.00911353, 0.00951618, 0.0078602 , 0.00422764, -0.00093387, -0.00698381, -0.01333421]), np.array([ 0. , 0.00304246, 0.00806418, 0.01008837, 0.007016 , 0.00026276, -0.00632 , -0.00877015, -0.00526778, 0.00304816, 0.01334002])], 'g':[np.array([0.00000000e+00, 2.91028048e-05, 5.39127464e-05, 7.44741342e-05,9.08970510e-05, 1.03382795e-04, 1.12244221e-04, 1.17921246e-04,1.20991889e-04, 1.22179408e-04, 1.22356253e-04]), np.array([ 0.00000000e+00, -1.49126242e-04, -2.06595585e-04, -1.80905410e-04,-8.99100753e-05, 4.02818206e-05, 1.79513859e-04, 2.99658399e-04,3.81148479e-04, 4.18652321e-04, 4.24986410e-04]), np.array([ 0.00000000e+00, -3.34883542e-04, -2.77308592e-04, 3.15745412e-05,3.61060122e-04, 4.93762038e-04, 3.37172087e-04, -3.17237701e-05,-4.21134643e-04, -6.52640493e-04, -6.98021127e-04])]} def evaluate_residual(a_cur, a_tar): residual = np.linalg.norm(np.subtract(a_cur, a_tar)) / np.amax(np.absolute(a_tar)) # print ('current: ', a_cur) # print ('target: ', a_tar) # print('residual:', residual) # print() return residual def cm2inch(value): return value/2.54 def increasing_by(val_old, val_new): ''' returns the increase in % from the origin = old ''' increase = (val_new - val_old)/val_old * 100 return round(increase,2) def check_and_flip_sign_dict(eigenmodes_dict): ''' flips the sign of y and a deformation of modes to be positive at the first node after ground dependend/coupled dofs are flip accordingly ''' for idx in range(len(eigenmodes_dict['y'])): if eigenmodes_dict['y'][idx][1] < 0: eigenmodes_dict['y'][idx] = np.negative(eigenmodes_dict['y'][idx]) try: eigenmodes_dict['g'][idx] = np.negative(eigenmodes_dict['g'][idx]) except KeyError: pass try: if eigenmodes_dict['a'][idx][1] < 0: eigenmodes_dict['a'][idx] = np.negative(eigenmodes_dict['a'][idx]) except KeyError: pass return eigenmodes_dict def check_and_flip_sign_array(mode_shape_array): ''' check_and_change_sign change the sign of the mode shape such that the first entry is positive ''' if mode_shape_array[1] < 0: return mode_shape_array * -1 elif mode_shape_array [1] > 0: return mode_shape_array def analytic_function_static_disp(parameters, x, load_type = 'single'): l = parameters['lx_total_beam'] EI = parameters['E_Modul'] * parameters['Iy'] magnitude = parameters['static_load_magnitude'] if load_type == 'single': #print (' w_max soll:', magnitude*l**3/(3*EI)) return (magnitude/EI) * (0.5 * l * (x**2) - (x**3)/6) elif load_type == 'continous': #print (' w_max soll:', magnitude*l**4/(8*EI)) return -(magnitude/EI) * (-x**4/24 + l * x**3 /6 - l**2 * x**2 /4) def analytic_eigenfrequencies(beam_model): # von https://me-lrt.de/eigenfrequenzen-eigenformen-beim-balken parameters = beam_model.parameters l = parameters['lx_total_beam'] EI = parameters['E_Modul'] * parameters['Iy'] A = parameters['cross_section_area'] rho = parameters['material_density'] lambdas = [1.875, 4.694, 7.855] f_j = np.zeros(3) for i, l_i in enumerate(lambdas): f_j[i] = np.sqrt((l_i**4 * EI)/(l**4 * rho *A)) / (2*np.pi) return f_j def analytic_eigenmode_shapes(beam_model): # von https://me-lrt.de/eigenfrequenzen-eigenformen-beim-balken #parameters = beam_model.parameters l = beam_model.parameters['lx_total_beam'] x = beam_model.nodal_coordinates['x0'] lambdas = [1.875, 4.694, 7.855] # could also be computed as seen in the link w = [] for j in range(3): zeta = lambdas[j] * x / l a = (np.sin(lambdas[j]) - np.sinh(lambdas[j])) / (np.cos(lambdas[j]) + np.cosh(lambdas[j])) w_j = np.cos(zeta) - np.cosh(zeta) + a*(np.sin(zeta) -np.sinh(zeta)) w.append(w_j) reduced_m = beam_model.m[::2,::2] gen_mass = np.dot(np.dot(w_j, reduced_m), w_j) norm_fac = np.sqrt(gen_mass) w_j /= norm_fac is_unity = np.dot(np.dot(w_j, reduced_m), w_j) if round(is_unity, 4) != 1.0: raise Exception ('analytic mode shape normalization failed') return w def get_eigenform_polyfit(modeshape_i, z_coords, evaluate_at, degree = 5, plot_compare = False): ''' - modeshape_i: all modal deformations als 2D array, each column belongs to one dof - z_coords: the original floor levels from the 45 floor model - evaluate_at: nodal coordiantes at whcih the fitted curve should be evaluated -> this is returned ''' eigenmodes_fitted = {} #CAARC_eigenmodes = self.structure_model.CAARC_eigenmodes # returns the fitted polynomial and the discrete array of displacements if not evaluate_at.any(): raise Exception('provied evaluation coordiantes of the eigenform') else: x = evaluate_at eigenmodes_fitted['storey_level'] = np.copy(x) eigenmodes_fitted['eigenmodes'] = {} dof_direction_map = {'y':4, 'z':3,'a':2} for dof_label in ['y', 'z', 'a']: y = modeshape_i[:, dof_direction_map[dof_label]] current_polynomial = np.poly1d(np.polyfit(z_coords,y,degree)) values = [] for x_i in x:# evaluate the fitted eigenmode at certain intervals values.append(current_polynomial(x_i)) if values[0] != 0.0: values[0] = 0.0 eigenmodes_fitted['eigenmodes'][dof_label] = np.asarray(values) if plot_compare: fig, ax = plt.subplots(ncols=3, num='fitted compared') for d_i, dof_label in enumerate(['y', 'z', 'a']): ax[d_i].plot(modeshape_i[:, dof_direction_map[dof_label]], z_coords, label = 'origin ' + dof_label) ax[d_i].plot(eigenmodes_fitted['eigenmodes'][dof_label], x, label = 'fitted ' + dof_label) ax[d_i].legend() ax[d_i].grid() plt.show() return eigenmodes_fitted def save_optimized_beam_parameters(opt_beam_model, fname): new = 'optimized_parameters'+os_sep+fname+'.json' if os.path.isfile(new): print('WARNING', new, 'already exists!') new = 'optimized_parameters'+os_sep+fname+'_1.json' f = open(new,'w') json.dump(opt_beam_model.parameters, f) f.close() print('\nsaved:', new) def get_targets(beam_model, target='semi_realistic', opt_params =None): ''' just used to have them especially for the initial comparison ''' if target == 'realistic': modi = np.load(os_join(*['inputs', 'EigenvectorsGid.npy'])) z_coords = np.load(os_join(*['inputs', 'z_coords_gid_45.npy'])) modi_fitted = get_eigenform_polyfit(modi[0], z_coords, beam_model.nodal_coordinates['x0'], plot_compare=False) eigenmodes_target_y = modi_fitted['eigenmodes']['y'] eigenmodes_target_a = -1*modi_fitted['eigenmodes']['a'] elif target == 'semi_realistic': ratio_a_y = opt_params['ratio_a_y_tar'] factor_y = opt_params['factor_y'] eigenmodes_target_y = beam_model.eigenmodes['y'][0]*factor_y a_factor = ratio_a_y * max(eigenmodes_target_y)/max(beam_model.eigenmodes['a'][0]) eigenmodes_target_a = beam_model.eigenmodes['a'][0] * a_factor return {'y':eigenmodes_target_y, 'a':eigenmodes_target_a} def prepare_string_for_latex(string): greek = {'ya':'y'+r'\alpha','ga':r'\gamma' + r'\alpha'} if '_' in string: var, label = string.split('_')[0], string.split('_')[1] latex = r'${}$'.format(var) + r'$_{{{}}}$'.format(greek[label]) #return string.replace('_','') return latex else: return string def join_whitespaced_string(string): return string.replace(' ','_') # # DYNAMIC ANALYSIS def get_fft(given_series, sampling_freq): ''' The function get_fft estimates the Fast Fourier transform of the given signal sampling_freq = 1/dt ''' signal_length=len(given_series) freq_half = np.arange(0, sampling_freq/2 - sampling_freq/signal_length + sampling_freq/signal_length, sampling_freq/signal_length) # single sided fourier series_fft = np.fft.fft(given_series) series_fft = np.abs(series_fft[0:int(np.floor(signal_length/2))])/np.floor(signal_length/2) max_length = len(freq_half) if max_length < len(series_fft): max_length = len(series_fft) freq_half = freq_half[:max_length-1] series_fft = series_fft[:max_length-1] return freq_half, series_fft def extreme_value_analysis_nist(given_series, dt, response_label = None, type_of_return = 'estimate', P1 = 0.98): ''' dynamic_analysi_solved: dynamic_analysis.solver object response: label given as dof_label, if given as response label it is convertedd type_of_return: wheter the estimated or the quantile value of P1 is returned (both are computed) ''' T_series = dt * len(given_series) dur_ratio = 600 / T_series # # MAXMINEST NIST #P1 = 0.98 max_qnt, min_qnt, max_est, min_est, max_std, min_std, Nupcross = stats_utils.maxmin_qnt_est(given_series , cdf_p_max = P1 , cdf_p_min = 0.0001, cdf_qnt = P1, dur_ratio = dur_ratio) abs_max_est = max([abs(max_est[0][0]), abs(min_est[0][0])]) abs_max_qnt = max([abs(max_qnt[0]), abs(min_qnt[0])]) if type_of_return == 'estimate': extreme_response = abs_max_est elif type_of_return == 'quantile': extreme_response = abs_max_qnt glob_max = max(abs(given_series)) return abs_max_qnt, abs_max_est ```
{ "source": "JoZimmer/ParOptBeam", "score": 3 }
#### File: source/analysis/analysis_type.py ```python class AnalysisType(object): """ Base class for the different analysis types """ def __init__(self, structure_model, name="DefaultAnalysisType"): self.name = name # the structure model - geometry and physics - has the Dirichlet BC # for the bottom node included self.structure_model = structure_model self.displacement = None self.rotation = None self.force = None self.reaction = None self.moment = None def solve(self): """ Solve for something """ print("Solving for something in AnalysisType base class \n") pass def postprocess(self): """ Postprocess something """ print("Postprocessing in AnalysisType base class \n") pass ``` #### File: source/auxiliary/other_utilities.py ```python from os.path import sep as os_sep def get_adjusted_path_string(path_string): for separator in ['\\\\', '\\', '/', '//']: path_string = path_string.replace(separator, os_sep) return path_string[:] ``` #### File: postprocess/skin_model/line_structure_model.py ```python import numpy as np from source.postprocess.skin_model.node_model import Node class LineStructure: def __init__(self, params): """ initializing line structure with dofs """ # initializing beam info with param self.params = params self.beam_length = params["length"] self.num_of_nodes = len(params["dofs_input"]["x0"]) self.dofs_input = params["dofs_input"] self.steps = len(self.dofs_input["x"][0]) self.input_x = np.asarray(self.dofs_input["x"]).reshape( self.steps * self.num_of_nodes) self.input_y = np.asarray(self.dofs_input["y"]).reshape( self.steps * self.num_of_nodes) self.input_z = np.asarray(self.dofs_input["z"]).reshape( self.steps * self.num_of_nodes) self.input_a = np.asarray(self.dofs_input["a"]).reshape( self.steps * self.num_of_nodes) self.input_b = np.asarray(self.dofs_input["b"]).reshape( self.steps * self.num_of_nodes) self.input_g = np.asarray(self.dofs_input["g"]).reshape( self.steps * self.num_of_nodes) # initializing variables needed by LineStructure self.nodes = np.empty(self.num_of_nodes, dtype=Node) self.undeformed = np.ndarray((3, self.num_of_nodes), dtype=float) self.deformed = np.ndarray((3, self.num_of_nodes), dtype=float) self.displacement = np.ndarray((3, self.num_of_nodes), dtype=float) self.angular_displacement = np.ndarray( (3, self.num_of_nodes), dtype=float) self.init() self.print_line_structure_info() def init(self): for i in range(self.num_of_nodes): position = [self.dofs_input["x0"][i], self.dofs_input["y0"][i], self.dofs_input["z0"][i]] self.nodes[i] = Node(position) self.undeformed[0][i] = self.nodes[i].undeformed[0] self.undeformed[1][i] = self.nodes[i].undeformed[1] self.undeformed[2][i] = self.nodes[i].undeformed[2] self.deformed[0][i] = self.nodes[i].deformed[2] self.deformed[1][i] = self.nodes[i].deformed[2] self.deformed[2][i] = self.nodes[i].deformed[2] self.update_dofs(0) print("Undeformed Nodes added successfully!") def update_dofs(self, step): x = self.input_x[step::self.steps] y = self.input_y[step::self.steps] z = self.input_z[step::self.steps] a = self.input_a[step::self.steps] b = self.input_b[step::self.steps] g = self.input_g[step::self.steps] self.displacement = np.array([x, y, z]) self.angular_displacement = np.array([a, b, g]) displacement = self.displacement.transpose().reshape(self.num_of_nodes, 3) angular_displacement = self.angular_displacement.transpose().reshape(self.num_of_nodes, 3) def assign_nodal_dof(i): self.nodes[i].assign_dofs(displacement[i], angular_displacement[i]) return self.nodes[i] for i in range(self.num_of_nodes): self.nodes[i].assign_dofs(displacement[i], angular_displacement[i]) def print_line_structure_info(self): msg = "=============================================\n" msg += "LINE STRUCTURE MODEL INFO \n" msg += "NUMBER OF NODES:\t" + str(self.num_of_nodes) + "\n" msg += "UNDEFORMED GEOMETRY:\t" + str(self.undeformed) + "\n" msg += "=============================================\n" print(msg) def print_nodal_info(self): for node in self.nodes: node.print_info() def apply_transformation_for_line_structure(self): def apply_nodal_transformation(i): self.nodes[i].apply_transformation() self.deformed[0][i] = self.nodes[i].deformed[0] self.deformed[1][i] = self.nodes[i].deformed[1] self.deformed[2][i] = self.nodes[i].deformed[2] merged = [self.nodes[i], self.deformed[0][i], self.deformed[1][i], self.deformed[2][i]] return merged for i in range(self.num_of_nodes): self.nodes[i].apply_transformation() self.deformed[0][i] = self.nodes[i].deformed[0] self.deformed[1][i] = self.nodes[i].deformed[1] self.deformed[2][i] = self.nodes[i].deformed[2] def test(): param = {"length": 100.0, "dofs_input": { "x0": [0.0, 25.0, 50.0, 75.0, 100.0], "y0": [0.0, 0.0, 0.0, 0.0, 0.0], "z0": [0.0, 0.0, 0.0, 0.0, 0.0], "a0": [0.0, 0.0, 0.0, 0.0, 0.0], "b0": [0.0, 0.0, 0.0, 0.0, 0.0], "g0": [0.0, 0.0, 0.0, 0.0, 0.0], "y": [[0.0, 1.0], [0.0, 2.0], [0.0, 3.0], [0.0, 4.0], [0.4, 5.0]], "z": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [4.0, 0.0]], "a": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "b": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "g": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [np.pi, np.pi / 2]], "x": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]}} ls = LineStructure(param) ls.apply_transformation_for_line_structure() solution = np.array([-100, 0.4, 4.0]) err = solution - ls.nodes[4].deformed print(ls.nodes[4].deformed) try: assert all(err < 1e-12), "Transformation wrong" print("passed test") except AssertionError: print("failed test") if __name__ == "__main__": test() ``` #### File: postprocess/skin_model/mapper.py ```python from scipy.interpolate import CubicSpline import numpy as np from source.postprocess.skin_model.node_model import Node from source.postprocess.skin_model.line_structure_model import LineStructure # curvature - 2nd order deriv DERIV_ORDER = 2 PRESCRIBED_2ND_ORDER_DERIV = [0, 0] INTERPOLATION_DENSITY = 5 def interpolate_points(v, x, y): interp_x = CubicSpline(x, y, bc_type=( (DERIV_ORDER, PRESCRIBED_2ND_ORDER_DERIV[0]), (DERIV_ORDER, PRESCRIBED_2ND_ORDER_DERIV[1]))) # normal = interp_x.derivative()(v) return interp_x(v) class Mapper: def __init__(self, line_structure, structure): self.structure = structure self.line_structure = line_structure self.map_line_structure_to_structure() def map_line_structure_to_structure(self): s_vec = self.line_structure.undeformed[int( self.structure.beam_direction)] disp_vec = self.line_structure.displacement ang_disp_vec = self.line_structure.angular_displacement for i in range(self.structure.num_of_elements): mid_p = self._get_element_mid_points(self.structure.elements[i]) s = mid_p[int(self.structure.beam_direction)] inter_disp, inter_ang_disp = self._interpolate_dofs( s, s_vec, disp_vec, ang_disp_vec) for node in self.structure.elements[i].nodes: node.assign_dofs(inter_disp, inter_ang_disp) for frame in self.structure.frames: frame.nodes[i].assign_dofs(inter_disp, inter_ang_disp) @staticmethod def _get_element_mid_points(element): mid_x = sum(element.undeformed[0]) / element.num_of_nodes mid_y = sum(element.undeformed[1]) / element.num_of_nodes mid_z = sum(element.undeformed[2]) / element.num_of_nodes return [mid_x, mid_y, mid_z] @staticmethod def _interpolate_dofs(s, s_vec, displacement, angular_displacement): dx = interpolate_points(s, s_vec, displacement[0]) dy = interpolate_points(s, s_vec, displacement[1]) dz = interpolate_points(s, s_vec, displacement[2]) inter_disp = [dx, dy, dz] theta_x = interpolate_points(s, s_vec, angular_displacement[0]) theta_y = interpolate_points(s, s_vec, angular_displacement[1]) theta_z = interpolate_points(s, s_vec, angular_displacement[2]) inter_ang_disp = [theta_x, theta_y, theta_z] return inter_disp, inter_ang_disp def test(): param = {"length": 100.0, "num_of_elements": 5, "geometry": [[0, 15.0, 3.0], [0, 6.0, 9.0], [0, -6.0, 9.0], [0, -15.0, 3.0], [0, -6.0, -9.0], [0, 6.0, -9.0] ], "contour_density": 1, "record_animation": False, "visualize_line_structure": True, "beam_direction": "x", "scaling_vector": [1.5, 1.0, 2.0], "dofs_input": { "x0": [0.0, 25.0, 50.0, 75.0, 100.0], "y0": [0.0, 0.0, 0.0, 0.0, 0.0], "z0": [0.0, 0.0, 0.0, 0.0, 0.0], "a0": [0.0, 0.0, 0.0, 0.0, 0.0], "b0": [0.0, 0.0, 0.0, 0.0, 0.0], "g0": [0.0, 0.0, 0.0, 0.0, 0.0], "y": [[0.0, 1.0], [0.0, 2.0], [0.0, 3.0], [0.0, 4.0], [0.4, 5.0]], "z": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [4.0, 0.0]], "a": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "b": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "g": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [np.pi, np.pi/2]], "x": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]}} from source.postprocess.skin_model.StructureModel import Structure from source.postprocess.skin_model.LineStructureModel import LineStructure s = Structure(param) ls = LineStructure(param) m = Mapper(ls, s) if __name__ == "__main__": test() ``` #### File: postprocess/skin_model/node_model.py ```python from math import sin, cos import numpy as np class Node: def __init__(self, undeformed): self.undeformed = undeformed self.deformed = undeformed self.displacement = np.empty(3, dtype=float) self.angular_displacement = np.empty(3, dtype=float) def assign_dofs(self, displacement, angular_displacement): self.displacement = displacement self.angular_displacement = angular_displacement def print_info(self): msg = "########################################################\n" msg += "Node Fix Position [" + str(self.undeformed[0]) + " " + \ str(self.undeformed[1]) + " " + \ str(self.undeformed[2]) + "]: \n" try: msg += "dx = " + str(self.displacement[0]) + "\t" msg += "dy = " + str(self.displacement[1]) + "\t" msg += "dz = " + str(self.displacement[2]) + "\n" msg += "theta_x = " + str(self.angular_displacement[0]) + "\t" msg += "theta_y = " + str(self.angular_displacement[1]) + "\t" msg += "theta_z = " + str(self.angular_displacement[2]) + "\n" msg += "Transformed Position: [" + str(self.deformed[0]) + " " + \ str(self.deformed[1]) + " " + str(self.deformed[2]) + "]:\n" msg += "########################################################\n" except AttributeError: pass print(msg) def apply_transformation(self): dx = self.displacement[0] dy = self.displacement[1] dz = self.displacement[2] alpha = self.angular_displacement[0] beta = self.angular_displacement[1] gamma = self.angular_displacement[2] # transformation matrix derived from the symbolic generation M = np.array([ [1.0 * cos(beta) * cos(gamma), -1.0 * cos(alpha) * sin(gamma) + 1.0 * cos(gamma) * sin(alpha) * sin(beta), 1.0 * cos(alpha) * cos(gamma) * sin(beta) + 1.0 * sin(alpha) * sin(gamma), 1.0 * dx], [1.0 * cos(beta) * sin(gamma), 1.0 * cos(alpha) * cos(gamma) + 1.0 * sin(alpha) * sin(beta) * sin(gamma), 1.0 * cos(alpha) * sin(beta) * sin(gamma) - 1.0 * cos(gamma) * sin(alpha), 1.0 * dy], [-1.0 * sin(beta), 1.0 * cos(beta) * sin(alpha), 1.0 * cos(alpha) * cos(beta), 1.0 * dz], [0, 0, 0, 1.0] ]) previous_coordinate = np.append( self.undeformed, np.array(1.0)).reshape(4, 1) new_coordinate = M.dot(previous_coordinate) new_coordinate = new_coordinate.reshape(1, 4) self.deformed = new_coordinate[0][0:3] def test(): p = np.array([1.0, 1.0, 0.0]) displacement = np.array([0.0, 0.0, 3.0]) angular_displacement = np.array([0.0, 0.0, np.pi/2]) node = Node(p) node.assign_dofs(displacement, angular_displacement) node.apply_transformation() node.print_info() solution = np.array([-1.0, 1.0, 3.0]) err = solution - node.deformed try: assert all(err < 1e-12), "Transformation wrong" print("passed test") except AssertionError: print("failed test") if __name__ == "__main__": test() ``` #### File: postprocess/skin_model/skin_components_model.py ```python from typing import List import numpy as np from enum import IntEnum from source.postprocess.skin_model.node_model import Node from source.postprocess.skin_model.mapper import interpolate_points DIRECTION_VECTOR = ["x", "y", "z", "x", "y", "z"] class BeamDirection(IntEnum): x = 0 y = 1 z = 2 class Element: def __init__(self, geometry, current_length, beam_direction, scale=1.): """ creating single element based on the given element geometry with the element height """ self.num_of_nodes = len(geometry) self.nodes = np.empty(self.num_of_nodes, dtype=Node) self.undeformed = np.ndarray((3, self.num_of_nodes), dtype=float) self.deformed = np.ndarray((3, self.num_of_nodes), dtype=float) self.scale = scale for i in range(len(geometry)): x = geometry[i][0] y = geometry[i][1] z = geometry[i][2] # Note: beam_direction won't be scaled position = [x, y, z] position *= scale position[int(beam_direction)] = current_length self.nodes[i] = Node(position) self.undeformed[0][i] = self.nodes[i].undeformed[0] self.undeformed[1][i] = self.nodes[i].undeformed[1] self.undeformed[2][i] = self.nodes[i].undeformed[2] self.deformed[0][i] = self.nodes[i].deformed[0] self.deformed[1][i] = self.nodes[i].deformed[1] self.deformed[2][i] = self.nodes[i].deformed[2] def print_element(self): for node in self.nodes: node.print_info() class Frame: def __init__(self, elements, index): """ connecting all points from the same geometry point for each element """ self.num_of_nodes = len(elements) self.nodes = np.empty(self.num_of_nodes, dtype=Node) self.undeformed = np.ndarray((3, self.num_of_nodes), dtype=float) self.deformed = np.ndarray((3, self.num_of_nodes), dtype=float) for i in range(len(elements)): self.nodes[i] = elements[i].nodes[index] self.undeformed[0][i] = self.nodes[i].undeformed[0] self.undeformed[1][i] = self.nodes[i].undeformed[1] self.undeformed[2][i] = self.nodes[i].undeformed[2] self.deformed[0][i] = self.nodes[i].deformed[0] self.deformed[1][i] = self.nodes[i].deformed[1] self.deformed[2][i] = self.nodes[i].deformed[2] def print_frame(self): for node in self.nodes: node.print_info() class Structure: def __init__(self, params): """ initializing structure with geometry """ self.dofs = params["dofs_input"] self.element_geometry = params["geometry"] self.beam_length = params["length"] self.scaling_vector = params["scaling_vector"] self.num_of_frames = len(self.element_geometry) self.num_of_elements = len(self.scaling_vector) + 1 self.beam_direction = BeamDirection[params["beam_direction"]] self.element_length = self.beam_length / (self.num_of_elements - 1) self.print_structure_info() self.elements = np.empty(self.num_of_elements, dtype=Element) self.create_elements() self.frames = np.empty(self.num_of_frames, dtype=Frame) self.create_frames() def print_structure_info(self): msg = "=============================================\n" msg += "VISUALISING SKIN MODEL" msg += "BEAM MODEL INFO \n" msg += str(self.beam_direction) + "\n" msg += "LENGTH:\t" + str(self.beam_length) + "\n" msg += "#ELEMENTS:\t" + str(self.num_of_elements) + "\n" msg += "ELEMENT LENGTH:\t" + str(self.element_length) + "\n" msg += "=============================================" print(msg) def create_elements(self): element_vec = np.linspace(self.element_length / 2, self.beam_length - self.element_length / 2, self.num_of_elements - 1) def create_single_element(i): current_length = i * self.element_length current_scale = interpolate_points( current_length, element_vec, self.scaling_vector) element = Element(self.element_geometry, current_length, self.beam_direction, current_scale) return element for i in range(self.num_of_elements): current_length = i * self.element_length current_scale = interpolate_points( current_length, element_vec, self.scaling_vector) element = Element(self.element_geometry, current_length, self.beam_direction, current_scale) self.elements[i] = element def create_frames(self): def create_single_frame(i): frame = Frame(self.elements, i) return frame for i in range(self.num_of_frames): frame = Frame(self.elements, i) self.frames[i] = frame def apply_transformation_for_structure(self): for e in self.elements: for i in range(len(e.nodes)): e.nodes[i].apply_transformation() e.deformed[0][i] = e.nodes[i].deformed[0] e.deformed[1][i] = e.nodes[i].deformed[1] e.deformed[2][i] = e.nodes[i].deformed[2] for f in self.frames: for i in range(len(f.nodes)): f.nodes[i].apply_transformation() f.deformed[0][i] = f.nodes[i].deformed[0] f.deformed[1][i] = f.nodes[i].deformed[1] f.deformed[2][i] = f.nodes[i].deformed[2] def print_structure_element(self, element_id): print("Printing element: " + str(element_id)) self.elements[element_id].print_element() def print_structure_frame(self, frame_id): print("Printing frame: " + str(frame_id)) self.frames[frame_id].print_frame() def test(): param = {"length": 100.0, "geometry": [[0, 15.0, 3.0], [0, 6.0, 9.0], [0, -6.0, 9.0], [0, -15.0, 3.0], [0, -6.0, -9.0], [0, 6.0, -9.0] ], "record_animation": False, "visualize_line_structure": True, "beam_direction": "x", "scaling_vector": [1.01, 1.0, 1.02], 'result_path': '.', 'mode': '1', 'frequency': 0.4, 'period': 2.5, "deformation_scaling_factor": 2.0, "dofs_input": { "x0": [0.0, 25.0, 50.0, 75.0, 100.0], "y0": [0.0, 0.0, 0.0, 0.0, 0.0], "z0": [0.0, 0.0, 0.0, 0.0, 0.0], "a0": [0.0, 0.0, 0.0, 0.0, 0.0], "b0": [0.0, 0.0, 0.0, 0.0, 0.0], "g0": [0.0, 0.0, 0.0, 0.0, 0.0], "y": [[0.1, 1.0], [0.2, 2.0], [0.3, 3.0], [0.4, 4.0], [0.4, 5.0]], "z": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [4.0, 0.0]], "a": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "b": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], "g": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [np.pi, np.pi / 2]], "x": [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]}} s = Structure(param) s.apply_transformation_for_structure() # s.print_structure_element(1) # s.print_structure_frame(0) if __name__ == "__main__": test() ``` #### File: source/preprocess/load_type_TO_MAKE_FUNCTIONAL.py ```python import numpy as np # TODO: update script so that it works with current code structure # =========================dynamic analysis ========================== # generating signals in time domain def load_type(force_dynamic, array_time, num_of_levels, freq=10, force_static=1): """ Choose from "signalSin", "signalRand", "signalConst", "signalSuperposed" or for free vibration choose "signalNone" """ if (force_dynamic == "signalNone"): # constant signal with given amplitude = 10 force_dynamic = np.zeros([num_of_levels, len(array_time)]) elif (force_dynamic == "signalSin"): # sine with given amplitude = 1 and frequency amplSin = force_static[:, np.newaxis] force_dynamic = amplSin * np.sin(2*np.pi*freq * array_time) elif (force_dynamic == "signalRand"): # normal random signal with given mean m = 0 and standard dev sd = 0.25 -> # check out difference compared to unifrnd - uniform random distribution force_dynamic = np.random.normal( 0, 0.25, [num_of_levels, len(array_time)]) elif (force_dynamic == "signalConst"): # constant signal with given amplitude = 10 amplConst = force_static[:, np.newaxis] force_dynamic = amplConst * np.ones(len(array_time)) elif (force_dynamic == "signalSuperposed"): # superposing the signals amplConst = force_static[:, np.newaxis] signalConst = amplConst * np.ones(len(array_time)) amplSin = 1 * np.ones([num_of_levels, 1]) signalSin = amplSin * np.sin(2*np.pi*freq * array_time) signalRand = np.random.normal( 0, 0.25, [num_of_levels, len(array_time)]) # superposition weighting coefSignal1 = 1 coefSignal2 = 0.25 coefSignal3 = 0.25 force_dynamic = coefSignal1 * signalConst + \ coefSignal2 * signalSin + coefSignal3 * signalRand else: err_msg = "The requested dynamic load \"" + force_dynamic err_msg += "\" is not available \n" err_msg += "Choose one of: \"signalConst\", \"signalSin\", \"signalRand\", \"signalSuperposed\", \"signalNone\"" raise Exception(err_msg) return force_dynamic ``` #### File: solving_strategies/schemes/time_integration_scheme.py ```python import numpy as np class TimeIntegrationScheme(object): def __init__(self, dt, comp_model, initial_conditions): # time step self.dt = dt # mass, damping and spring stiffness self.M = comp_model[0] self.B = comp_model[1] self.K = comp_model[2] # initial displacement, velocity and acceleration self.u0 = initial_conditions[0] self.v0 = initial_conditions[1] self.a0 = initial_conditions[2] # initial previous step displacement, velocity and acceleration self.un1 = self.u0 self.vn1 = self.v0 self.an1 = self.a0 # initial current step displacement, velocity and acceleration self.u1 = self.u0 self.v1 = self.v0 self.a1 = self.a0 # force from a previous time step (initial force) self.f0 = None self.f1 = None def _print_time_integration_setup(self): pass def predict_displacement(self): return 2.0 * self.u1 - self.u0 def predict_velocity(self, u1): pass def predict_acceleration(self, v1): pass def solve_single_step(self, f1): pass def update(self): pass def update_displacement(self, u_new): self.u1 = u_new self.v1 = self.predict_velocity(self.u1) self.a1 = self.predict_acceleration(self.v1) def update_comp_model(self, new_comp_model): self.M = new_comp_model[0] self.B = new_comp_model[1] self.K = new_comp_model[2] def print_values_at_current_step(self, n): print("Printing values at step no: ", n, " (+1)") print("u0: ", self.u1) print("v0: ", self.v1) print("a0: ", self.a1) print("f0: ", self.f1) print(" ") def get_displacement(self): return self.u1 def get_velocity(self): return self.v1 def get_acceleration(self): return self.a1 def get_old_displacement(self): return self.un1 def get_old_velocity(self): return self.vn1 def get_old_acceleration(self): return self.an1 ``` #### File: solving_strategies/strategies/symbolic_derivation.py ```python from sympy import * init_printing(use_unicode=True) a_n1, a_n, u_n2, u_n1, u_n, u_nm1, u_nm2, u_nm3, t, dt = symbols( 'a1 an u2 u1 self.un1 self.un2 self.un3 self.un4 t dt') f, C, M, K = symbols('f self.B self.M self.K') def euler(): # ### euler ### # v_n+1 = v_n + dt f(tn, v_n) print("##### Euler #####") v_n = (u_n1 - u_n) / dt v_nm1 = (u_n - u_nm1) / dt a_nm1 = (v_n - v_nm1) / dt du, ru = symbols('du ru') r_u = f - (M * a_nm1 + C * v_nm1 + K * u_nm1) print("ru = ", r_u) drudu = diff(r_u, u_n1) eq_u = ru + drudu * du sol = solve(eq_u, du) du = (sol[0]) print("du = ", du) def bdf1(): # ### BDF1 ### # v_n+1 = v_n + dt f(tn+1, v_n+1) print("##### BDF1 #####") v_n1 = (u_n1 - u_n) / dt v_n = (u_n - u_nm1) / dt a_n1 = (v_n1 - v_n) / dt du, ru = symbols('du ru') r_u = f - (M * a_n1 + C * v_n1 + K * u_n1) print("ru = ", r_u) drudu = diff(r_u, u_n1) eq_u = ru + drudu * du sol = solve(eq_u, du) du = (sol[0]) print("du = ", du) def bdf2(): # ### BDF2 ### # v_n+1 = 4/3 v_n - 1/3 v_n-1 + 2/3 dt f(tn+1, v_n+1) print("##### BDF2 #####") bdf0, bdf1, bdf2 = symbols('self.bdf0 self.bdf1 self.bdf2') v_n1 = bdf0 * u_n1 + bdf1 * u_n + bdf2 * u_nm1 v_n = bdf0 * u_n + bdf1 * u_nm1 + bdf2 * u_nm2 v_nm1 = bdf0 * u_nm1 + bdf1 * u_nm2 + bdf2 * u_nm3 a_n1 = bdf0 * v_n1 + bdf1 * v_n + bdf2 * v_nm1 du, ru = symbols('du ru') r_u = f - (M * a_n1 + C * v_n1 + K * u_n1) print("ru = ", r_u) drudu = diff(r_u, u_n1) eq_u = ru + drudu * du sol = solve(eq_u, du) du = (sol[0]) print("du = ", du) if __name__ == "__main__": euler() bdf1() bdf2() ``` #### File: ParOptBeam/test_scripts/test_residual_solver_dynamic.py ```python import numpy as np import matplotlib.pyplot as plt from cycler import cycler from source.solving_strategies.strategies.residual_based_newton_raphson_solver import ResidualBasedNewtonRaphsonSolver from source.solving_strategies.strategies.residual_based_picard_solver import ResidualBasedPicardSolver from source.model.structure_model import StraightBeam np.set_printoptions(suppress=False, precision=2, linewidth=140) params = { "name": "CaarcBeamPrototypeOptimizable", "domain_size": "3D", "system_parameters": { "element_params": { "type": "CRBeam", "is_nonlinear": True }, "material": { "density": 7850.0, "youngs_modulus": 2069000000, "poisson_ratio": 0.29, "damping_ratio": 0.1 }, "geometry": { "length_x": 1.2, "number_of_elements": 1, "defined_on_intervals": [{ "interval_bounds": [0.0, "End"], "length_y": [1.0], "length_z": [1.0], "area": [0.0001], "shear_area_y": [0.0], "shear_area_z": [0.0], "moment_of_inertia_y": [0.0001], "moment_of_inertia_z": [0.0001], "torsional_moment_of_inertia": [0.0001], "outrigger_mass": [0.0], "outrigger_stiffness": [0.0]}] } }, "boundary_conditions": "fixed-free" } dt = 0.1 tend = 10. steps = int(tend / dt) array_time = np.linspace(0.0, tend, steps + 1) array_time_kratos = np.linspace(0.1, 10, 101) def test_residual_based_solvers(): f_ext = np.array([np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 100.0 * np.sin(t), 0.0, 0.0, 0.0]) for t in np.sin(array_time)]) u0 = np.zeros(6) v0 = np.zeros(6) a0 = np.zeros(6) scheme = "BackwardEuler1" beam = StraightBeam(params) f_ext = beam.apply_bc_by_reduction(f_ext, 'column').T newton_solver = ResidualBasedNewtonRaphsonSolver(array_time, scheme, dt, [beam.comp_m, beam.comp_b, beam.comp_k], [u0, v0, a0], f_ext, beam) picard_solver = ResidualBasedPicardSolver(array_time, scheme, dt, [beam.comp_m, beam.comp_b, beam.comp_k], [u0, v0, a0], f_ext, beam) newton_solver.solve() picard_solver.solve() reference_file = "kratos_reference_results/dynamic_displacement_z.txt" disp_z_soln = np.loadtxt(reference_file)[:, 1] plt.plot(array_time, newton_solver.displacement[2, :], c='b', label='Newton Raphson') plt.plot(array_time, picard_solver.displacement[2, :], c='g', label='Picard') plt.plot(array_time_kratos, disp_z_soln, c='k', label='Kratos reference') plt.grid() plt.legend() plt.show() ``` #### File: ParOptBeam/test_scripts/test_structure_model.py ```python from source.model.structure_model import StraightBeam import numpy as np params = { "name": "CaarcBeamPrototypeOptimizable", "domain_size": "3D", "system_parameters": { "element_params": { "type": "CRBeam", "is_nonlinear": True }, "material": { "density": 7850.0, "youngs_modulus": 2069000000, "poisson_ratio": 0.29, "damping_ratio": 1 }, "geometry": { "length_x": 1.2, "number_of_elements": 1, "defined_on_intervals": [{ "interval_bounds": [0.0, "End"], "length_y": [1.0], "length_z": [1.0], "area": [0.0001], "shear_area_y": [0.0], "shear_area_z": [0.0], "moment_of_inertia_y": [0.0001], "moment_of_inertia_z": [0.0001], "torsional_moment_of_inertia": [0.0001], "outrigger_mass": [0.0], "outrigger_stiffness": [0.0]}] } }, "boundary_conditions": "fixed-free" } def test_structure_model(): beam = StraightBeam(params) ```
{ "source": "jozo/ioi-assignment", "score": 3 }
#### File: ioi-assignment/api/db.py ```python import logging from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession from sqlalchemy.future import select from sqlalchemy.orm import sessionmaker from api import settings from api.models import Currency log = logging.getLogger(__name__) def get_session(db: AsyncEngine): return sessionmaker(db, expire_on_commit=False, class_=AsyncSession) async def save_price(currency: str, bid: float, timestamp: int, db: AsyncEngine): try: async with get_session(db)() as session: session.add(Currency(currency=currency, price=bid, date_=timestamp)) await session.commit() except SQLAlchemyError: log.exception("Can't save price to DB") async def fetch_history(page: int, db: AsyncEngine): items = [] async with get_session(db)() as session: stmt = ( select(Currency) .order_by(Currency.id.desc()) .slice(page * settings.PAGE_SIZE, (page + 1) * settings.PAGE_SIZE) ) rows = await session.execute(stmt) for currency in rows.scalars().all(): items.append( { "currency": currency.currency, "bid": currency.price, "timestamp": currency.date_, } ) return items ```
{ "source": "jozsa/AirBnB_clone", "score": 3 }
#### File: tests/test_models/test_amenity.py ```python import unittest from datetime import datetime from models.base_model import BaseModel from models.amenity import Amenity class TestAmenity(unittest.TestCase): """Testing Amenity""" def setUp(self): """ Create a new instance of Amenity before each test """ self.a1 = Amenity() def tearDown(self): """ Delete Amenity instance before next test """ del self.a1 def test_uniqueUUID(self): """ Make sure each UUID is unique """ a2 = Amenity() self.assertNotEqual(self.a1.id, a2.id) def test_id_type(self): """ Make sure id is a string not uuid data type """ self.assertEqual(type(self.a1.id), str) def test_created_at_type(self): """ Make sure created_at is datetime data type """ self.assertEqual(type(self.a1.created_at), datetime) def test_updated_at_type(self): """ Make sure updated_at is datetime data type """ self.assertEqual(type(self.a1.updated_at), datetime) def test_name_type(self): """ Make sure name is str data type """ self.assertEqual(type(Amenity.name), str) def test_save(self): """ Make sure save does update the updated_at attribute """ old_updated_at = self.a1.updated_at self.a1.save() self.assertNotEqual(old_updated_at, self.a1.updated_at) def test_str(self): """ Testing return of __str__ """ self.assertEqual(str(self.a1), "[Amenity] ({}) {}". format(self.a1.id, self.a1.__dict__)) def test_to_dict(self): """ Make sure to_dict returns the right dictionary and the dict has the right attributes with the right types. """ model_json = self.a1.to_dict() self.assertEqual(type(model_json), dict) self.assertTrue(hasattr(model_json, '__class__')) self.assertEqual(type(model_json['created_at']), str) self.assertEqual(type(model_json['updated_at']), str) def test_kwargs(self): """ Test passing kwargs to Amenity instantation """ json_dict = self.a1.to_dict() a2 = Amenity(**json_dict) self.assertEqual(self.a1.id, a2.id) self.assertEqual(self.a1.created_at, a2.created_at) self.assertEqual(self.a1.updated_at, a2.updated_at) self.assertNotEqual(self.a1, a2) ```
{ "source": "jozsa/pixguise", "score": 2 }
#### File: pixguise/app/models.py ```python from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager from django.db.models.manager import BaseManager from django.core.validators import RegexValidator from uuid import uuid4 from django.conf import settings import zipfile import os from PIL import Image from io import BytesIO from django.core.files.base import ContentFile # Goal: Add this feature and uncomment it out """ phone_regex = RegexValidator(regex=r'^\+?1?\d{9,15}$', message="Mobile number must be entered in the format:" " '+999999999'. Up to 15 digits allowed.") """ class MyUserManager(BaseUserManager): """ Custom UserManager with email normalization """ def create_user(self, email): """ Creates and saves User """ if not email: raise ValueError('Email is required') user = self.model(email=MyUserManager.normalize_email(email)) user.save(using=self._db) return user class CustomUser(AbstractBaseUser): """ Custom user model with email and email_verified fields """ email = models.EmailField(max_length=255, unique=True, blank=True, null=True) email_verified = models.BooleanField(default=False) # Goal: add this feature """ mobile = models.CharField(validators=[phone_regex], max_length=15, unique=True, blank=True, null=True) mobile_verified = models.BooleanField(default=False) """ objects = MyUserManager() USERNAME_FIELD = 'email' class Base(models.Model): """ Base model for all models to inherit from. """ created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class AlbumManager(models.Manager): """ Naive manager """ def create(self, title, owner_id): """ Create album object with required parameters: title and owner_id. """ if not title: raise ValueError('Title is required') if not owner_id: raise ValueError('Owner id is required') album = self.model(title=title, owner_id=owner_id) album.save(using=self._db) return album class Album(Base): """ Album objects - each photo is linked to one or more Album. title and owner_id must be passed into object instantation. archive_id is updated after archive of album is created. is_private - True by default, users can choose to make their albums public. """ title = models.CharField(max_length=100, null=True) owner_id = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) archive_id = models.ForeignKey('app.Archive', on_delete=models.CASCADE, null=True) is_private = models.BooleanField(default=True) def add_archive(self, archive): """ Update album.archive_id with appropriate archive object. """ self.archive_id = archive self.save() class PhotoManager(models.Manager): """ Naive manager. """ def create(self, filename, albums): if not filename: raise ValueError('Filename is required') photo = self.model(filename=filename) photo.save(using=self._db) return photo class Photo(Base): """ Photo class that stores all information related to each uploaded image. """ # TODO: Figure out filepath. Currently this saves to uploads/uploads - we just want it to save to uploads/ - until we figure out S3 - when we will change the MEDIA_ROOT to s3. filename = models.ImageField(upload_to='photos/', default='image.jpg') users = models.ManyToManyField(settings.AUTH_USER_MODEL) albums = models.ManyToManyField(Album) thumbnail = models.ImageField(upload_to='thumbnails/', default='thumbnail.jpg') def save(self, *args, **kwargs): """ Overrides default save() method by calling create_thumbnail before Photo object is saved. """ if not self.create_thumbnail(): raise Exception('Invalid file type') super(Photo, self).save(*args, **kwargs) def create_thumbnail(self): """ Instance method to create thumbnail of Photo """ thumbnail_name, thumbnail_extension = os.path.splitext(self.filename.name) thumbnail_extension = thumbnail_extension.lower() if thumbnail_extension in ['.jpg', '.jpeg']: FTYPE = 'JPEG' elif thumbnail_extension == '.gif': FTYPE = 'GIF' elif thumbnail_extension == '.png': FTYPE = 'PNG' elif thumbnail_extension == '.bmp': FTYPE = 'BMP' else: return False image = Image.open(self.filename) image.thumbnail((400, 400)) temp_thumbnail = BytesIO() image.save(temp_thumbnail, FTYPE) temp_thumbnail.seek(0) self.thumbnail.save('{}_thumbnail{}'.format(thumbnail_name, thumbnail_extension), ContentFile(temp_thumbnail.read()), save=False) temp_thumbnail.close() return True class ArchiveManager(models.Manager): """ Manager for Archive objects - creates zip archive containing all photos within an album """ def create(self, album_id): """ Overrides create method of models.Manager by including compression of images. """ if not album_id: raise ValueError('Album id is required') filename = os.path.join(settings.MEDIA_ROOT, 'zipfiles/{}.zip'.format(uuid4())) # Get a list of all filenames where album id matches the requested album photos = Photo.objects.filter(albums=album_id).values_list('filename', flat=True) # Compress all photos into one zip file with zipfile.ZipFile(filename, 'w') as archive: for photo in photos: photo = os.path.join(settings.MEDIA_ROOT, photo) archive.write(photo, os.path.relpath(photo, settings.MEDIA_ROOT)) archive = self.model(album_id=album_id, filename=filename) archive.save(using=self._db) return archive class Archive(Base): """ Class for archive objects containing file name and foreign key for album. """ filename = models.URLField(unique=True) album_id = models.ForeignKey(Album, on_delete=models.CASCADE) objects = ArchiveManager() class LinkManager(models.Manager): """ Manager to create Link objects """ def create(self, archive): """ Overrides default create method to include url creation for each archive. """ if not archive: raise ValueError('Archive id is required') # TODO - finalize URL name and edit download route and HTML based on final URL url = 'http://localhost:8000/download/{}/{}/'.format(archive.id, uuid4()) link = self.model(url=url, archive_id=archive) link.save(using=self._db) return link class Link(Base): """ Link class containing URL, is_expired, and archive_id Foreign Key for related archives. """ is_expired = models.BooleanField(default=False) url = models.URLField(unique=True) archive_id = models.ForeignKey(Archive, on_delete=models.CASCADE) objects = LinkManager() ```
{ "source": "jozsinakhivnak/diacriticrestoration", "score": 3 }
#### File: jozsinakhivnak/diacriticrestoration/accent_ngram.py ```python import operator import re import csv from unicodedata import normalize import os from io import open import xml.etree.ElementTree as ET import sys reload(sys) # Reload does the trick! sys.setdefaultencoding('UTF8') import getopt import time import pickle import argparse import codecs import math from sys import stdin import unicodedata from importlib import import_module # Import common module for shared operations common = import_module("common") # Accents word with n-gram solution using local context def accentWithNgram(buffer, deaccented, padding_char, diff, N, accents,words_dictionary): # Remove first unnecessary element buffer.pop(0) # Append the new one buffer.append(deaccented) # Create local context prevText = padding_char.join(buffer[0:diff]) follText = padding_char.join(buffer[diff+1:N]) word = buffer[diff] # Invoke the shared NGram accent method word = common.ngramAccent(word,words_dictionary, diff, accents,prevText, follText, padding_char) return word def main(): # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument("-n", "--ngram", help="N value for N-gram, such as 1,2,3,4,5..",type=int, default=2) parser.add_argument('--timer', dest='timer', help="Timer enabled", action='store_true') parser.add_argument('-d', '--dict', dest='dict', help="Dictionary file name", default="../Resources/HU_2gram_dict") parser.add_argument('-s', '--dsize', dest='dsize', help="Dictionary size in lines") parser.add_argument('-a', '--accents', type=str, default='áaéeíióoöoőoúuüuűu', help='accent mapping') parser.set_defaults(feature=False) args = parser.parse_args() timer_enabled = args.timer accents = args.accents dictionary_size = int(args.dsize) # N-gram parameter N = (args.ngram*2)+1 diff = args.ngram # Start timer if enabled if (timer_enabled): start = time.time() # Get the dictionary for the ngrams dictionary_filename = args.dict # Declare the dictionary words_dictionary = {} #dictionary_temp = list(csv.reader(open(dictionary_filename,'r',encoding='utf8'), delimiter='\t')) # Build dictionary common.buildDict(words_dictionary, dictionary_filename, dictionary_size) # Get the shared padding char padding_char = common.getPaddingChar() word_buffer = [] for i in range(0,N): word_buffer.append("") initCounter = 0 # read every line of the input for l in stdin: #TEXT = l.translate(None, '()?,.:{}[]') TEXT = l.decode("utf-8") TEXT = TEXT.rstrip('\n') # strip newline from the end of the line if (common.isAccentable(TEXT, accents)): TEXT = common.replace(TEXT) deaccented = common.remove_accents(unicode(TEXT)) if (initCounter < diff): initCounter += 1 word_buffer.pop(0) word_buffer.append(deaccented) else: # Invoke the shared NGram accent method word = accentWithNgram(word_buffer, deaccented, padding_char, diff,N, accents, words_dictionary) print (word) # Last ngram_diff iterations for i in range(0,diff): #Invoke the shared NGram accent method word = accentWithNgram(word_buffer, "", padding_char, diff,N, accents, words_dictionary) print (word) # Print timer info if (timer_enabled): end = time.time() print ("Finished in " + str(end-start)+" seconds.") if __name__ == '__main__': main() ``` #### File: diacriticrestoration/Helpers/dictionarify.py ```python from sys import stdin from collections import defaultdict import re def replace(text): for ch in ['\\', ',', '"', '\'', '?',';',':','`','*','_','{','}','[',']','(',')','>','<','#','+','-','.','!','$','\'']: text = text.replace(ch," ") return text def main(): counter = defaultdict(int) for l in stdin: # every line in the input text = l.decode('utf8') # decode from utf-8 encoded string text = text.rstrip('\n') # strip newline from the end of the line text = replace(text) words = text.split() for word in words: print (word.encode('utf8').strip()) # if the script is called directly (as opposed to being imported) # call the main function. # This prevents it from being run when this module is imported if __name__ == '__main__': main() ```
{ "source": "jozz024/smash-amiibo-editor", "score": 2 }
#### File: jozz024/smash-amiibo-editor/ssbu_amiibo.py ```python from amiibo import AmiiboDump from amiibo.crypto import AmiiboBaseError import copy class InvalidAmiiboDump(AmiiboBaseError): pass class IncorrectGameDataIdException(Exception): pass class InvalidSsbuChecksum(Exception): pass class SettingsNotInitializedError(Exception): pass class SsbuAmiiboDump(AmiiboDump): """ Class that's a thin wrapper around AmiiboDump. Checks the amiibo has the super smash bros game id in the game data section on unlock Writes the HMAC for the game data before locking """ def __init__(self, master_keys, dump, is_locked=True): super().__init__(master_keys, dump, is_locked) self.dumpcopy = copy.deepcopy(self) if is_locked == True: self.dumpcopy.unlock() def unlock(self, verify=True): super().unlock(verify=verify) # Checks if the amiibo has been initialized with an owner and name. if not (self.data[0x14] >> 4) & 1: raise SettingsNotInitializedError # Checks if the amiibo's game is Super Smash Bros. Ultimate, and if not, we initialize it. if bytes(self.data[266:270]).hex() != "34f80200": self.data[0x14] = self.data[0x14] | (1 << 5) self.data[266:270] = bytes.fromhex("34f80200") self.data[0x100:0x108] = bytes.fromhex('01006A803016E000') self.data[0x130:0x208] = bytes.fromhex("00" * 0xD8) self.data[304:308] = self._calculate_crc32(self.data[308:520]).to_bytes(4, "little") if self.data[304:308].hex() != self._calculate_crc32(self.data[308:520]).to_bytes(4, "little").hex(): raise InvalidSsbuChecksum(f'The checksum for this game data is not correct. Please use an untampered amiibo') def lock(self): if self.data[444:502] != self.dumpcopy.data[444:502]: self.data[311] = self.data[311] | 1 if self.amiibo_nickname[-1] != '□': if len(self.amiibo_nickname) == 10: self.amiibo_nickname = self.amiibo_nickname[:-1] + '□' else: self.amiibo_nickname = self.amiibo_nickname + '□' elif self.dumpcopy.amiibo_nickname[-1] == '□' and self.amiibo_nickname[-1] != '□': if len(self.amiibo_nickname) == 10: self.amiibo_nickname = self.amiibo_nickname[:-1] + '□' else: self.amiibo_nickname = self.amiibo_nickname + '□' checksum = self._calculate_crc32(self.data[308:520]) mii_checksum = str(hex(self.crc16_ccitt_wii(self.data[0xA0:0xFE]))).lstrip('0x') while len(mii_checksum) < 4: mii_checksum = '0' + mii_checksum self.data[304:308] = checksum.to_bytes(4, "little") self.data[0xFE:0x100] = bytes.fromhex(mii_checksum) super().lock() @staticmethod def _calculate_crc32(input): # Setup CRC 32 table. Translated from js to python from amiibox codebase # (should move this out so it sets up once, but it's quick enough as is) p0 = 0xEDB88320 | 0x80000000 p0 = p0 >> 0 u0 = [0] * 0x100 i = 1 while (i & 0xFF): t0 = i for _ in range(8): b = (t0 & 0x1) >> 0 t0 = (t0 >> 0x1) >> 0 if b: t0 = (t0 ^ p0) >> 0 u0[i] = t0 >> 0 i += 1 # Calculate CRC32 from table t = 0x0 for k in input: t = ((t >> 0x8) ^ u0[(k ^ t) & 0xFF]) >> 0 return (t ^ 0xFFFFFFFF) >> 0 def crc16_ccitt_wii(self, data): crc = 0 for byte in data: byte = int.from_bytes([byte], 'big') crc = crc ^ (byte << 8) for _ in range(8): crc = crc << 1 if (crc & 0x10000) > 0: crc ^= 0x1021 return (crc & 0xFFFF) @property def amiibo_nickname(self): # TODO: why is the Amiibo nickname big endian, # but the Mii nickname litle endian? return self.data[0x020:0x034].decode('utf-16-be').rstrip('\x00') @amiibo_nickname.setter def amiibo_nickname(self, name): utf16 = name.encode('utf-16-be') if len(utf16) > 20: raise ValueError self.data[0x020:0x034] = utf16.ljust(20, b'\x00') ```
{ "source": "JP007-star/Django-Crud", "score": 2 }
#### File: Django-Crud/operations/views.py ```python from django.http.response import HttpResponse from operations.models import Employee from django.shortcuts import redirect, render from operations.forms import EmployeeForm # Create your views here. def index(request): obj=Employee.objects.all() return render(request, 'index.html',{'data':obj}) def create(request): if request.method =="POST": form=EmployeeForm(request.POST) if form.is_valid(): form.save() return redirect('read') else: form = EmployeeForm context={ 'form':form } return render(request, 'create.html',context) def update(request,id): obj=Employee.objects.get(id=id) if request.method =="POST": form=EmployeeForm(request.POST, instance=obj) if form.is_valid(): form.save() return redirect('read') else: form = EmployeeForm context={ 'form':form } return render(request, 'update.html',context) def delete(request,id): obj=Employee.objects.get(id=id) obj.delete() return redirect('read') ```
{ "source": "jp172/covid19-hospital-scheduler", "score": 3 }
#### File: src/schedulers/capacity_coefficient_scheduler.py ```python from .utils import get_feasible_hospitals from ..objects.proposal import RankedProposal class CapacityScheduler: def assign_request(self, instance, request): hospitals = instance.get_hospitals_in_area(request.person.position) # get feasible hospitals checks for vehicle range and free beds feasible_hospitals = get_feasible_hospitals( hospitals, request.person.position ) # todo: Take the min really from all hospitals here? if not feasible_hospitals: best_hospital = min(instance.hospitals.values(), key=lambda h: h.capacity_coefficient) return RankedProposal([best_hospital]) else: feasible_hospitals = sorted(feasible_hospitals, key=lambda h: h.capacity_coefficient)[:3] return RankedProposal(feasible_hospitals) ``` #### File: covid19-hospital-scheduler/src/visualize.py ```python import plotly.express as px import pandas as pd def add_data(data, instance, hospital_scores, cur_time): for ident, h in instance.hospitals.items(): data.append( [cur_time, ident, h.position.lat, h.position.lon, hospital_scores[ident]] ) x_min = 5.6 x_max = 15.35 y_min = 47.1 y_max = 55.1 def hospital_visualization(instance, start, end, ticks, index): instance.snapshots = sorted(instance.snapshots, key=lambda s: s.filed_at) data_list = [] hospital_scores = {ident: 0 for ident, h in instance.hospitals.items()} i = 0 for t in range(ticks): cur_time = round(start + t / ticks * (end - start)) while ( i + 1 < len(instance.snapshots) and instance.snapshots[i + 1].filed_at <= cur_time ): s = instance.snapshots[i] hospital_scores[str(s.hospital_ident)] = s.capacity_coefficient i += 1 add_data(data_list, instance, hospital_scores, cur_time) df = pd.DataFrame(data_list, columns=["time", "id", "y", "x", "capacity_score"]) fig = px.scatter( df, x="x", y="y", animation_frame="time", animation_group="id", color="capacity_score", color_continuous_scale=[(0.00, "green"), (0.5, "yellow"), (1, "red")], range_color=[0, 2], hover_name="id", range_x=[x_min, x_max], range_y=[y_min, y_max], width=900, height=1200, ) fig.add_layout_image( dict( source="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Karte_Deutschland.svg/1000px-Karte_Deutschland.svg.png" ), xref="x", yref="y", x=x_min, y=y_max, sizex=(x_max - x_min), sizey=(y_max - y_min), sizing="stretch", opacity=0.5, layer="below", ) fig.update_traces(marker=dict(size=10)) for frame in fig.frames: for i in range(len(frame.data)): frame.data[i]["marker"]["symbol"] = "square" # fig.show() html_dump = fig.to_html() with open(f"data/visualization/hospitals{index}.html", "w") as f: f.write(html_dump) def corona_visualization(instance, start, end, ticks, index): # visible for more time steps nbr_ticks_visible = 10 reqs = sorted(instance.requests.values(), key=lambda r: r.filed_at) data_list = [] times = [round(start + t / ticks * (end - start)) for t in range(ticks)] r_id = 0 for t in range(ticks): cur_time = times[t] while r_id + 1 < len(reqs) and reqs[r_id + 1].filed_at <= cur_time: r = instance.requests[str(r_id)] for i in range(nbr_ticks_visible): if i + t >= ticks: break data_list.append( [ times[i + t], r.ident, r.person.position.lon, r.person.position.lat, ] ) r_id += 1 df = pd.DataFrame(data_list, columns=["time", "id", "x", "y"]) fig = px.scatter( df, x="x", y="y", animation_frame="time", animation_group="id", hover_name="id", range_x=[x_min, x_max], range_y=[y_min, y_max], width=900, height=1200, ) fig.add_layout_image( dict( source="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Karte_Deutschland.svg/1000px-Karte_Deutschland.svg.png" ), xref="x", yref="y", x=x_min, y=y_max, sizex=(x_max - x_min), sizey=(y_max - y_min), sizing="stretch", opacity=0.5, layer="below", ) # fig.show() html_dump = fig.to_html() with open(f"data/visualization/patients{index}.html", "w") as f: f.write(html_dump) def visualize(instance, snapshot_list): for index in range(len(snapshot_list)): instance.snapshots = snapshot_list[index] time_frame_start = min(r.filed_at for r in instance.requests.values()) time_frame_end = max(r.filed_at for r in instance.requests.values()) nbr_ticks = 50 hospital_visualization( instance, time_frame_start, time_frame_end, nbr_ticks, index ) corona_visualization( instance, time_frame_start, time_frame_end, nbr_ticks, index ) ```
{ "source": "jp19-lafa/IoT-Node", "score": 2 }
#### File: IoT-Node/pair/bluetoothManager.py ```python import subprocess import time import pair.autopair as pairable import pair.config as config import pair.helper as helper import pair.logger as logger import pair.wifi as wifi import pair.wpa as wpa import bluetooth from bluetooth.ble import DiscoveryService # The MAC address of a Bluetooth adapter on the server. Leave blank to use default connection hostMACAddress = "" port = bluetooth.PORT_ANY backlog = 1 size = 1024 server = bluetooth.BluetoothSocket(bluetooth.RFCOMM) class wifiConnection: def __init__(self): self.password = None self.ssid = None logger.log("WPA2 connection created") def try_connect(self): """ Trying to connect to the network """ logger.log("Trying to connect to the network {}".format(self.ssid)) # TODO: try to connect to the network using the given credentials cli = wpa.wpa(["ssid {}".format(self.ssid), "psk {}".format(self.password)]) cli.execute() # give time to connect time.sleep(config.WIFI_WAIT_UNTIL_CONNECTION) return wifi.ConnectedToTheNetwork() class wifiMCHAPConnection: def __init__(self): self.password = None self.username = None self.ssid = None logger.log("MCHAP connection created") def try_connect(self): """ Trying to connect to the network """ logger.log("Trying to connect to the network {}".format(self.ssid)) # TODO: try to connect to the network using the given credentials cli = wpa.wpa(["ssid {}".format(self.ssid), "key_mgmt WPA_EAP", "eap PEAP", "identity {}".format(self.username), "password {}".format(self.password)]) cli.execute() # give time to connect time.sleep(config.WIFI_WAIT_UNTIL_CONNECTION) return wifi.ConnectedToTheNetwork() def pair(): """ Function to try to pair with a phone. Note that this function accepts all pair request that come in """ logger.log("Trying to pair with a device", logger.LOG_DEBUG) # only continue if there is no network if wifi.ConnectedToTheNetwork(): return # wait unitl we pair with a devices AutoPair = pairable.BtAutoPair() logger.log("Configuring discoverability settings") AutoPair.enable_pairing() logger.log("Done configuring bluetooth settings") # check if we paired with a new device has_connected = subprocess.check_output("bluetoothctl info | head -n1", shell=True).decode("utf-8") logger.log(has_connected) while "Missing" in has_connected: has_connected = subprocess.check_output("bluetoothctl info | head -n1", shell=True).decode("utf-8") time.sleep(0.1) logger.log("Connected with device: " + has_connected) return has_connected.split(" ")[1] def startup(server): """ Initialize a bluetooth server so that we can communicate with the client phone @server is the bluetooth connection server """ logger.log("Starting up the bluetooth module", logger.LOG_DEBUG) logger.log("Connected to bluetooth device: {} ".format(pair()), logger.LOG_DEBUG) if wifi.ConnectedToTheNetwork(): return server.bind((hostMACAddress, port)) server.listen(backlog) uuid = "94f39d29-7d6d-437d-973b-fba39e49d4ee" bluetooth.advertise_service( sock=server, name="Bluetooth Speaker", service_id=uuid, service_classes=[bluetooth.SERIAL_PORT_CLASS], profiles=[bluetooth.SERIAL_PORT_PROFILE], ) return server def idle(server): """ Wait until a bluetooth connection is made @server is the bluetooth connection server """ logger.log("Waiting for a bluetooth connection", logger.LOG_DEBUG) if wifi.ConnectedToTheNetwork(): return None, None try: client, clientInfo = server.accept() except: print("Closing socket") client.close() server.close() return client, clientInfo def extractData(command, data): """ We split the payload and extract the command and value from it. If the command is equal to the expected command then we can return the value Otherwise we return a nullptr @command is a string containing the expected bluetooth command @data is the payload send over bluetooth (also a string) """ split = data.replace("\r\n", "").split(":") if len(data) < 2: logger.log("Incomming data payload is to small, {}".format(split)) return None if not split[0] == command: logger.log( "Extracted data doesn't match expected type, {} but got {} instead" .format(command, split[0])) return None logger.log( "Retreived data from bluetooth socker: {}".format("".join(split[1:])), logger.LOG_DEBUG, ) return "".join(split[1:]) def extractSSID(data): """ Retreive the network ssid from the bluetooth Command should be as followed SSID:Your_ssid """ return extractData("SSID", data) def extractPassword(data): """ Retreive the password from the bluetooth connection Command should be as followed PWD:Your_password """ return extractData("PWD", data) def extractUsername(data): """ Retreive the password from the bluetooth connection Command should be as followed PWD:<PASSWORD>_password """ return extractData("USER", data) def getWifiData(client, clientInfo, server): """ Comminicate with the phone over bluetooth to gather the wifi data here """ if wifi.ConnectedToTheNetwork(): return logger.log("Receiving wifi credentials", logger.LOG_DEBUG) connection = None while 1: data = client.recv(size).decode("utf-8") if data: if "TYPE:" in data: type = extractData("TYPE", data) if type == "wpa2": connection = wifiConnection() elif type == "mchap": connection = wifiMCHAPConnection() else: client.send("ERROR:2 - Server doesn't recognize wifi type") if "SSID:" in data: if connection: connection.ssid = extractSSID(data) else: client.send("ERROR:1 - No connection specified") elif "PWD:" in data: if connection: connection.password = extractPassword(data) else: client.send("ERROR:1 - No connection specified") elif "USER:" in data: if connection: if isinstance(connection, wifiMCHAPConnection): connection.username = extractUsername(data) else: client.send("ERROR:4 cannot set property that is not part of the connection type") else: client.send("ERROR:1 - No connection specified") elif "TRY:1" in data: if connection: if connection.try_connect( ): # try to connect to the network client.send("SUCCESS:1 - connected to a network") else: client.send("ERROR:3 - Network credentials are wrong") else: client.send("ERROR:1 - No connection specified") else: client.send(data) # Echo back to client def set_name(name): """ We change the bluetooth pretier name here """ logger.log("Changing bluetooth name to {}".format(name)) subprocess.call("bluetoothctl <<EOF\nsystem-alias {}\nEOF".format(name), shell=True) subprocess.call("bluetoothctl <<EOF\ndiscoverable-timeout 86400\nEOF", shell=True) subprocess.call("bluetoothctl <<EOF\ndiscoverable on\nEOF", shell=True) logger.log("Done setting bluetooth settings {}".format(name)) def EstablishConnection(): # TODO: make a unique id as the farm name set_name(config.BLUETOOTH_NAME + helper.unique_id()) startup(server) client, info = idle(server) getWifiData(client, info, server) logger.log("Established wifi data. Starting up farm now", logger.LOG_WARM) ``` #### File: IoT-Node/pair/bluezutils.py ```python import dbus SERVICE_NAME = "org.bluez" ADAPTER_INTERFACE = SERVICE_NAME + ".Adapter1" DEVICE_INTERFACE = SERVICE_NAME + ".Device1" def get_managed_objects(): bus = dbus.SystemBus() manager = dbus.Interface(bus.get_object("org.bluez", "/"), "org.freedesktop.DBus.ObjectManager") return manager.GetManagedObjects() def find_adapter(pattern=None): return find_adapter_in_objects(get_managed_objects(), pattern) def find_adapter_in_objects(objects, pattern=None): bus = dbus.SystemBus() for path, ifaces in objects.iteritems(): adapter = ifaces.get(ADAPTER_INTERFACE) if adapter is None: continue if not pattern or pattern == adapter["Address"] or \ path.endswith(pattern): obj = bus.get_object(SERVICE_NAME, path) return dbus.Interface(obj, ADAPTER_INTERFACE) raise Exception("Bluetooth adapter not found") def find_device(device_address, adapter_pattern=None): return find_device_in_objects(get_managed_objects(), device_address, adapter_pattern) def find_device_in_objects(objects, device_address, adapter_pattern=None): bus = dbus.SystemBus() path_prefix = "" if adapter_pattern: adapter = find_adapter_in_objects(objects, adapter_pattern) path_prefix = adapter.object_path for path, ifaces in objects.iteritems(): device = ifaces.get(DEVICE_INTERFACE) if device is None: continue if (device["Address"] == device_address and path.startswith(path_prefix)): obj = bus.get_object(SERVICE_NAME, path) return dbus.Interface(obj, DEVICE_INTERFACE) raise Exception("Bluetooth device not found") ``` #### File: IoT-Node/src/sensordata.py ```python import glob import os import time import random import src.config as config import src.logger as logger # TODO: uncomment when using rpi import smbus os.system("modprobe w1-gpio") # enable one wire gpio interface os.system("modprobe w1-therm") bus = smbus.SMBus(1) # RPI used i2C bus 1 class Payload: """ Payload to send data over a mqtt connection """ def __init__(self, payload, topic): self.payload = payload self.topic = topic def getOneWireSensor(): """ Returns the file that contains the one wire sensor data """ base_dir = "/sys/bus/w1/devices/" device_folder = glob.glob(base_dir + "28*")[0] return device_folder + "/w1_slave" def read_temp_raw(file): """ Read out the temperature file and return the raw lines. It returns a list of lines in the file (in string format utf-8) """ f = open(file, "r") lines = f.readlines() f.close() return lines def readLevel(addr): """ Read one byte from the I2C bus based on its address """ data = None try: time.sleep(0.1) data = bus.read_byte(addr) except Exception as e: print(e) # don't call to quick on the I2C bus time.sleep(1.5) if data != None: return "{}".format(data) return "0" def readHumidity(): try: bus.write_quick(0x27) time.sleep(0.1) # HIH6020 address, 0x27(39) # Read data back from 0x00(00), 4 bytes # humidity MSB, humidity LSB, temp MSB, temp LSB data = bus.read_i2c_block_data(0x27, 0x00, 4) # Convert the data to 14-bits humidity = ((((data[0] & 0x3F) * 256.0) + data[1]) * 100.0) / 16382.0 temp = ((data[2] * 256) + (data[3] & 0xFC)) / 4 cTemp = (temp / 16382.0) * 165.0 - 40.0 # Output data to screen return humidity, cTemp except Exception as e: print(e) return -1, -1 def GetWaterLevel(): """ Read from the 3 sensors and determin the worst level to relay back This is the watersensor with the highest value """ water1 = int(readLevel(config.sensorPins[1])) water2 = int(readLevel(config.sensorPins[2])) water3 = int(readLevel(config.sensorPins[3])) if water1 > water2 and water1 > water3: return str(water1) elif water2 > water3: return str(water2) return str(water3) def readlight(): bus.write_byte_data(config.sensorPins[3], 0x00 | 0x80, 0x03) # TSL2561 address, 0x39(57) # Select timing register, 0x01(01) with command register, 0x80(128) # 0x02(02) Nominal integration time = 402ms bus.write_byte_data(config.sensorPins[3], 0x01 | 0x80, 0x02) time.sleep(0.5) # poll light data # pull data data = bus.read_i2c_block_data(config.sensorPins[3], 0x0C | 0x80, 2) # convert to lux ch0 = data[1] * 256 + data[0] return ch0 # Read section def readMock(): """ Used during testing. This can be usefull when not all sensors are present """ return [ Payload(str((random.random()*4) + 5), "/sensor/waterph"), Payload(str((random.random()*10) + 14), "/sensor/watertemp"), Payload(str((random.random()*600) + 100), "/sensor/lightstr"), Payload(str((random.random()*20) + 40), "/sensor/airhumidity"), Payload(str((random.random()*10) + 14), "/sensor/airtemp") ] def readReal(): """ Used to read real sensor data """ phValue = str(float(readLevel(config.sensorPins[-1]))/18.214) phValue = str(random.random() + 7) try: waterTemp = str(readTemperature(getOneWireSensor())) logger.log("Read from w1 the water temp {} C".format(waterTemp), logger.LOG_DEBUG) except Exception as e: waterTemp = "-1" logger.log("Count not read temperature from w1", logger.LOG_ERROR) light = readlight() humidity, humidityTemp = readHumidity() humidity = str((random.random()*20) + 40) return [ Payload(phValue, "/sensor/waterph"), Payload(waterTemp, "/sensor/watertemp"), Payload(light, "/sensor/lightstr"), Payload(humidity, "/sensor/airhumidity"), Payload(waterTemp, "/sensor/airtemp") ] def readAll(): """ Read all sensors out. Build a MQTT payload and send it over """ return readReal() def readTemperature(file): """ Returns the temperature of the one wire sensor. Pass in the file containing the one wire data (ds18b20+) """ lines = read_temp_raw(file) while lines[0].strip()[-3:] != "YES": time.sleep(0.2) lines = read_temp_raw(file) equals_pos = lines[1].find("t=") if equals_pos != -1: temp_string = lines[1][equals_pos + 2:] # convert temperature to C temp_c = float(temp_string) / 1000.0 return temp_c return -273.15 # absolute 0 if __name__ == "__main__": file = getOneWireSensor() while True: time.sleep(1) logger.log(readTemperature(file), logger.LOG_DEBUG) logger.log(readLevel(config.sensors[0]), logger.LOG_DEBUG) # readout the first i2C sensor ```
{ "source": "jp2011/spatial-poisson-mixtures", "score": 3 }
#### File: src/data/create_crime_db.py ```python import click import logging from dotenv import find_dotenv, load_dotenv import os import sqlite3 from sqlite3 import Error import pandas as pd TABLE_NAME = "LONDON" CSV_COL_NAMES = ["Month", "Latitude", "Longitude", "Location", "Crime type"] DB_COL_NAMES = ["MONTH", "LATITUDE", "LONGITUDE", "DESCRIPTION", "CRIME_TYPE"] DB_COL_TYPES = ["TEXT", "REAL", "REAL", "TEXT", "TEXT"] def list_files(startpath): full_file_paths = [] for root, directories, filenames in os.walk(startpath): for filename in filenames: if filename.endswith('.csv'): full_file_paths.append(os.path.join(root, filename)) return full_file_paths def create_connection(db_file): """ create a database connection to a SQLite database """ try: conn = sqlite3.connect(db_file) print(sqlite3.version) return conn except Error as e: print(e) def create_crime_table(db_conn): cursor = db_conn.cursor() cursor.execute("CREATE TABLE {tn} (ID INTEGER)".format(tn=TABLE_NAME)) for (col_name, col_type) in zip(DB_COL_NAMES, DB_COL_TYPES): cursor.execute("ALTER TABLE {tn} ADD COLUMN {cn} {ct}".format(tn=TABLE_NAME, cn=col_name, ct=col_type)) def move_csv_to_sql(sql_conn, csv_file_paths): for file_path in csv_file_paths: print(file_path) crime_df = pd.read_csv(file_path, usecols=CSV_COL_NAMES) crime_df.columns = DB_COL_NAMES print(crime_df.shape) crime_df.to_sql(TABLE_NAME, sql_conn, if_exists='append', index_label="ID") def get_specific_crimes(db_conn, crime_type, start_date, end_date): query = """ SELECT * FROM {tn} WHERE {tn}.CRIME_TYPE='{ct}' AND LATITUDE IS NOT NULL """.format(tn=TABLE_NAME, ct=crime_type) crime_all_period = pd.read_sql(query, db_conn, parse_dates=["MONTH"], index_col="ID") return crime_all_period[(crime_all_period['MONTH'] >= start_date) & (crime_all_period['MONTH'] <= end_date)] def bootstrap_scripts(input_filepath, output_filepath): db_conn = create_connection(output_filepath) try: create_crime_table(db_conn) except sqlite3.OperationalError as error: print(error) all_crime_csv_file_paths = list_files(input_filepath) move_csv_to_sql(db_conn, all_crime_csv_file_paths) db_conn.close() @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('Making final data set from raw data') if os.path.isfile(output_filepath): logger.info("Removing previous database.") os.remove(output_filepath) bootstrap_scripts(input_filepath, output_filepath) if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) load_dotenv(find_dotenv()) main() ``` #### File: src/inference/priors.py ```python import numpy as np from scipy.spatial.distance import cdist from sklearn.gaussian_process.kernels import Matern, RBF from src.numeric.kronecker_algebra import kron_invert_matrices, kron_mv_prod, kron_log_det class BetaPriorWithIntercept: """ Normal-InvGamma prior for the regression coefficients. The intercept is given a uniform (improper) prior. """ def __init__(self, a=1, b=0.001): self.a = a self.b = b def log_pdf(self, beta, J): non_intercept_beta = np.delete(beta, np.arange(0, beta.shape[0], J)) output = (-self.a - 0.5) * np.sum(np.log(0.5 * np.square(non_intercept_beta) + self.b)) return output def nabla_beta_log_pdf(self, beta, J): """ Return the gradient of the log of the pdf of the prior with respect to the beta values. """ part1 = (-self.a - 0.5) * beta part2 = 0.5 * np.square(beta) + self.b gradient = np.divide(part1, part2) gradient[::J] = 0 # intercept has uniform prior return gradient class BetaPriorNoIntercept: """ Normal-InvGamma prior for the regression coefficients which do not include the intercept. """ def __init__(self, a=1, b=0.001): self.a = a self.b = b def log_pdf(self, beta): """ Return the log of the pdf of the prior for the regression coefficients. """ output = (-self.a - 0.5) * np.sum(np.log(0.5 * np.square(beta) + self.b)) return output def nabla_beta_log_pdf(self, beta): """ Return the gradient of the log of the pdf of the prior with respect to the beta values. """ part1 = (-self.a - 0.5) * beta part2 = 0.5 * np.square(beta) + self.b gradient = np.divide(part1, part2) return gradient class GaussianPrior: """A generic prior for N iid Gaussian random variables""" def __init__(self, mean, variance): self.mean = mean self.variance = variance def log_pdf(self, x): output = -0.5 * np.dot(np.square(x - self.mean), 1 / self.variance) return output def nabla_x_log_pdf(self, x): """ The gradient of the log-pdf with respect to the values of x """ output = -1 * np.divide(x - self.mean, self.variance) return output class GPPrior: """ Generic class for the zero-mean Gaussian process prior with the covariance function that has paremeters theta. """ def __init__(self): pass def get_cov_mmatrix(self, *, variance=1, lengthscale=1): pass def get_logpdf(self, *, variance=1, lengthscale=1, f=None): pass def get_nabla_f(self, *, variance=None, lengthscale=None, f=None): pass def get_nabla_theta(self, *, variance=None, lengthscale=None, f=None): pass class GPGridPriorMatern: """ Gaussian process prior for a 2D grid with zero-mean and Matern covariance function. Given that the domain is a grid, Kronecker algebra can be used to speed up the computations. Before reading the code, we recommend reading the relevant parts of PhD thesis of Yunus Saatci: <NAME>. 2012. ‘Scalable Inference for Structured Gaussian Process Models’. PhD Thesis, Citeseer. """ def __init__(self, coord_x=None, coord_y=None, smoothness=1.5): self.smoothness = smoothness self.x_coordinates = np.reshape(coord_x, (-1, 1)) self.y_coordinates = np.reshape(coord_y, (-1, 1)) def get_cov_matrix(self, *, variance=1, lengthscale=1, expanded=False): k1 = Matern(length_scale=lengthscale, nu=self.smoothness) k2 = Matern(length_scale=lengthscale, nu=self.smoothness) # we need to split the signal variance into two parts K1 = np.sqrt(variance) * k1(self.x_coordinates) K2 = np.sqrt(variance) * k2(self.y_coordinates) return np.kron(K1, K2) if expanded else [K1, K2] def get_logpdf(self, *, variance=1, lengthscale=1, f=None): """ The log-pdf of the GP """ Ks = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) log_det_K = kron_log_det(Ks) Ks_inv = kron_invert_matrices(Ks) return -0.5 * log_det_K - 0.5 * np.dot(f, kron_mv_prod(Ks_inv, f)) def get_nabla_f(self, *, variance=None, lengthscale=None, f=None): """ Gradient of the log-pdf of the GP with respect to the GP values. """ Ks = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) Ks_inv = kron_invert_matrices(Ks) output = -1 * kron_mv_prod(Ks_inv, f) return output def get_nabla_theta(self, *, variance=1, lengthscale=1, f=None): """ Gradient of the log-pdf of the GP with respect to the hyper-parameters. """ k1 = Matern(length_scale=lengthscale, nu=self.smoothness) k2 = Matern(length_scale=lengthscale, nu=self.smoothness) C1, C_grad_1 = k1(self.x_coordinates, eval_gradient=True) C2, C_grad_2 = k2(self.y_coordinates, eval_gradient=True) # we need to split the signal variance into two parts K1 = np.sqrt(variance) * C1 K2 = np.sqrt(variance) * C2 Ks = [K1, K2] K_invs = kron_invert_matrices(Ks) K1_nabla_var = (0.5 / np.sqrt(variance)) * C1 K2_nabla_var = (0.5 / np.sqrt(variance)) * C2 K1_nabla_l = np.sqrt(variance) * C_grad_1[:, :, 0] K2_nabla_l = np.sqrt(variance) * C_grad_2[:, :, 0] trace_comp_lengtscale = -0.5 * ( np.trace(np.dot(K_invs[0], K1_nabla_l)) * np.trace(np.dot(K_invs[1], Ks[1])) + np.trace( np.dot(K_invs[1], K2_nabla_l)) * np.trace(np.dot(K_invs[0], Ks[0]))) trace_comp_var = -0.5 * ( np.trace(np.dot(K_invs[0], K1_nabla_var)) * np.trace(np.dot(K_invs[1], Ks[1])) + np.trace( np.dot(K_invs[1], K2_nabla_var)) * np.trace(np.dot(K_invs[0], Ks[0]))) # non-trace component l temp = kron_mv_prod(K_invs, f) temp = kron_mv_prod([K1_nabla_l, K2], temp) + kron_mv_prod([K1, K2_nabla_l], temp) temp = kron_mv_prod(K_invs, temp) non_trace_lengthscale = 0.5 * np.dot(f, temp) # non-trace component var temp = kron_mv_prod(K_invs, f) temp = kron_mv_prod([K1_nabla_var, K2], temp) + kron_mv_prod([K1, K2_nabla_var], temp) temp = kron_mv_prod(K_invs, temp) non_trace_var = 0.5 * np.dot(f, temp) return np.asarray([trace_comp_var + non_trace_var, trace_comp_lengtscale + non_trace_lengthscale]) class GPNonGridPriorSqExp: """ Gaussian process prior for an arbitrary 2D domain with zero-mean and squared exponential covariance function. """ def __init__(self, coord_x=None, coord_y=None): self.x_coordinates = coord_x self.y_coordinates = coord_y self.cov_func = RBF def get_cov_matrix(self, *, variance=1, lengthscale=1): self.XY = np.stack((self.x_coordinates, self.y_coordinates), axis=1) distances = cdist(self.XY, self.XY) / lengthscale K = np.sqrt(variance) * np.exp(-0.5 * np.square(distances)) return K def get_logpdf(self, *, variance=1, lengthscale=1, f=None): K = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) sign, val = np.linalg.slogdet(K) log_det_K = sign * val K_inv = np.linalg.pinv(K) return -0.5 * log_det_K - 0.5 * np.dot(f, np.dot(K_inv, f)) def get_nabla_f(self, *, variance=None, lengthscale=None, f=None): """ Gradient of the log-pdf of the GP with respect to the GP values. """ K = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) K_inv = np.linalg.pinv(K) output = -1 * np.dot(K_inv, f) return output def get_nabla_theta(self, *, variance=1, lengthscale=1, f=None): """ Gradient of the log-pdf of the GP with respect to the hyper-parameters. """ K = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) K_inv = np.linalg.pinv(K) K_nabla_theta = (1 / lengthscale ** 3) * K K_inv__time__K_nabla_theta = np.dot(K_inv, K_nabla_theta) part1 = 0.5 * np.dot(f, np.dot(K_inv__time__K_nabla_theta, np.dot(K_inv, f))) part2 = 0.5 * np.trace(K_inv__time__K_nabla_theta) return np.asarray([part1 - part2]) class GPNonGridPriorSqExpFixed: """ Gaussian process prior for an arbitrary 2D domain with zero-mean and squared exponential covariance function, but with fixed hyper-parameters. """ def __init__(self, coord_x=None, coord_y=None, variance=1, lengthscale=1): self.cov_func = RBF self.XY = np.stack((coord_x, coord_y), axis=1) distances = cdist(self.XY, self.XY) / lengthscale self.K = np.sqrt(variance) * np.exp(-0.5 * np.square(distances)) self.K_inv = np.linalg.pinv(self.K) def get_logpdf(self, *, f=None): return - 0.5 * np.dot(f, np.dot(self.K_inv, f)) def get_nabla_f(self, *, f=None): """ Gradient of the log-pdf of the GP with respect to the GP values. """ output = -1 * np.dot(self.K_inv, f) return output class GPGridPriorSqExp: """ Gaussian process prior for a 2D grid with zero-mean and squared exponential covariance function. Given that the domain is a grid, Kronecker algebra can be used to speed up the computations. Before reading the code, we recommend reading the relevant parts of PhD thesis of Yunus Saatci: <NAME>. 2012. ‘Scalable Inference for Structured Gaussian Process Models’. PhD Thesis, Citeseer. """ def __init__(self, coord_x=None, coord_y=None): self.x_coordinates = np.reshape(coord_x, (-1, 1)) self.y_coordinates = np.reshape(coord_y, (-1, 1)) self.cov_func = RBF def get_cov_matrix(self, *, variance=1, lengthscale=1, expanded=False): distances_X = cdist(self.x_coordinates, self.x_coordinates) / lengthscale K1 = np.sqrt(variance) * np.exp(-0.5 * np.square(distances_X)) distances_Y = cdist(self.y_coordinates, self.y_coordinates) / lengthscale K2 = np.sqrt(variance) * np.exp(-0.5 * np.square(distances_Y)) return np.kron(K1, K2) if expanded else [K1, K2] def get_logpdf(self, *, variance=1, lengthscale=1, f=None): Ks = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) log_det_K = kron_log_det(Ks) Ks_inv = kron_invert_matrices(Ks) return -0.5 * log_det_K - 0.5 * np.dot(f, kron_mv_prod(Ks_inv, f)) def get_nabla_f(self, *, variance=None, lengthscale=None, f=None): """ Gradient of the log-pdf of the GP with respect to the GP values. """ Ks = self.get_cov_matrix(variance=variance, lengthscale=lengthscale) Ks_inv = kron_invert_matrices(Ks) output = -1 * kron_mv_prod(Ks_inv, f) return output def get_nabla_theta(self, *, variance=1, lengthscale=1, f=None): """ Gradient of the log-pdf of the GP with respect to the hyper-parameters. """ distances_X = cdist(self.x_coordinates, self.x_coordinates) / lengthscale C1 = np.exp(-0.5 * np.square(distances_X)) C_grad_1 = np.multiply(C1, np.square(distances_X) / lengthscale) distances_Y = cdist(self.y_coordinates, self.y_coordinates) / lengthscale C2 = np.exp(-0.5 * np.square(distances_Y)) C_grad_2 = np.multiply(C2, np.square(distances_Y) / lengthscale) # we need to split the signal variance into two parts K1 = np.sqrt(variance) * C1 K2 = np.sqrt(variance) * C2 Ks = [K1, K2] K_invs = kron_invert_matrices(Ks) K1_nabla_var = (0.5 / np.sqrt(variance)) * C1 K2_nabla_var = (0.5 / np.sqrt(variance)) * C2 K1_nabla_l = np.sqrt(variance) * C_grad_1 K2_nabla_l = np.sqrt(variance) * C_grad_2 trace_comp_lengtscale = -0.5 * ( np.trace(np.dot(K_invs[0], K1_nabla_l)) * np.trace(np.dot(K_invs[1], Ks[1])) + np.trace( np.dot(K_invs[1], K2_nabla_l)) * np.trace(np.dot(K_invs[0], Ks[0]))) trace_comp_var = -0.5 * ( np.trace(np.dot(K_invs[0], K1_nabla_var)) * np.trace(np.dot(K_invs[1], Ks[1])) + np.trace( np.dot(K_invs[1], K2_nabla_var)) * np.trace(np.dot(K_invs[0], Ks[0]))) # non-trace component l temp = kron_mv_prod(K_invs, f) temp = kron_mv_prod([K1_nabla_l, K2], temp) + kron_mv_prod([K1, K2_nabla_l], temp) temp = kron_mv_prod(K_invs, temp) non_trace_lengthscale = 0.5 * np.dot(f, temp) # non-trace component var temp = kron_mv_prod(K_invs, f) temp = kron_mv_prod([K1_nabla_var, K2], temp) + kron_mv_prod([K1, K2_nabla_var], temp) temp = kron_mv_prod(K_invs, temp) non_trace_var = 0.5 * np.dot(f, temp) return np.asarray([trace_comp_var + non_trace_var, trace_comp_lengtscale + non_trace_lengthscale]) ``` #### File: src/models/block_mixture_flat.py ```python import logging import os import pickle import sys from pathlib import Path import click import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import zsampler from dotenv import load_dotenv, find_dotenv from src.inference.context_geo import GridContextGeo from src.inference.hmc import HMCSampler from src.inference.priors import BetaPriorWithIntercept from src.experiment.model_management import build_block_mixture_flat_uid from src.experiment.visualize import plot_traceplots class FlatRegionMixture: def __init__(self, *, uid=None, grid_context=None, K=1, thinning=5, n_info_interval=1000, block_type="msoa"): self.uid = uid self.context = grid_context self.K = K self.NN = self.context.mask.shape[0] self.thinning = thinning self.n_info_interval = n_info_interval N = grid_context.counts.shape[0] # do a random assignment to mixtures initial_Z = np.zeros((N, K), dtype=int) initial_Z[np.arange(N), np.random.choice(K, N)] = 1 # Create an (N x 1) vector which gives the corresponding block for each cell. if block_type == "lad": block_assignment = np.asarray(grid_context.lads) elif block_type == "msoa": block_assignment = np.asarray(grid_context.msoas) elif block_type == "ward": block_assignment = np.asarray(grid_context.wards) elif block_type == "lsoa": block_assignment = np.asarray(grid_context.lsoas) else: block_assignment = np.repeat(1, N) # a single block unique_block_labels = np.unique(block_assignment) self.block_assignment_numeric = np.zeros(block_assignment.shape[0], dtype=np.int) for idx_cell, block_label in enumerate(block_assignment): self.block_assignment_numeric[idx_cell] = np.where(unique_block_labels == block_label)[0] self.block_assignment = block_assignment self.B = np.max(self.block_assignment_numeric) + 1 # Create B x K matrix which counts number of cells in a block b with assignment k. self.block_label_counts = np.zeros(shape=(self.B, K), dtype=np.int64) for i in range(N): self.block_label_counts[self.block_assignment_numeric[i], :] += initial_Z[i, :] # Beta prior self.beta_prior = BetaPriorWithIntercept(a=1, b=0.01) self.Z = initial_Z self.Z_samples = [] self.alpha_samples = [] self.beta_samples = [] self.logger = logging.getLogger(__name__) def loglik(self, estimand): """ Compute log p(y | beta, Z) + log p(beta)""" J = self.context.J K = self.K covariates = self.context.covariates counts = self.context.counts beta = estimand[:(J * K)] beta_matrix = beta.reshape((J, K), order='F') fixed_effects = np.sum(np.multiply(self.Z, np.dot(covariates, beta_matrix)), axis=1) poisson_part = np.sum(np.multiply(counts, fixed_effects) - np.exp(fixed_effects)) self.logger.debug(f"Poisson part: {poisson_part}") beta_part = self.beta_prior.log_pdf(beta, J) output = poisson_part + beta_part return output def nabla_loglik(self, estimand): """ Compute the gradient of log p(y | beta, Z) + log p(beta) with respect to beta""" J = self.context.J K = self.K covariates = self.context.covariates counts = self.context.counts beta = estimand[:(J * K)] beta_matrix = beta.reshape((J, K), order='F') fixed_effects = np.sum(np.multiply(self.Z, np.dot(covariates, beta_matrix)), axis=1) # nabla beta nabla_beta_matrix = np.zeros(beta_matrix.shape) nabla_beta_matrix += np.dot(covariates.T, self.Z * counts[:, np.newaxis]) temp = np.exp(fixed_effects) nabla_beta_matrix += (- np.dot(covariates.T, self.Z * temp[:, np.newaxis])) nabla_beta = nabla_beta_matrix.flatten('F') nabla_beta += self.beta_prior.nabla_beta_log_pdf(beta, J) output = nabla_beta return output def plot_traces(self, hmc_samples): samples_array = np.asarray(hmc_samples) S = samples_array.shape[0] J = self.context.J N = self.context.N K = self.K # discard irrelevant samples self.Z_samples = self.Z_samples[(-S):] Z_samples_array = np.asarray(self.Z_samples) mixture_allocation = np.zeros((S, N, K)) mixture_allocation[np.repeat(range(S), N), np.tile(range(N), S), Z_samples_array.flatten(order='C')] = 1 average_alloc = np.mean(mixture_allocation, axis=0) for k in range(self.K): plt.figure() self.context.plot_realisations(average_alloc[:, k], 111) plt.show() beta_k_samples = samples_array[:, (k * J):((k + 1) * J)] plot_traceplots(beta_k_samples, self.context.covariates_names) plt.show() k_component_indices = np.where(average_alloc[:, k] > (1 / K))[0] # Fitted surface fitted_surface_map = np.multiply(average_alloc[:, k], np.dot(self.context.covariates, np.mean(beta_k_samples, axis=0))) plt.figure() self.context.plot_realisations(fitted_surface_map, 111, plot_title="Log-intensity fitted") plt.show() # Correlation Matrix crime_surface_k = np.dot(self.context.covariates[k_component_indices, :], np.mean(beta_k_samples, axis=0)) surface_vars = np.concatenate((np.log(1 + self.context.counts[k_component_indices]).reshape(-1, 1), crime_surface_k.reshape(-1, 1), self.context.covariates[k_component_indices, 1:]), axis=1) surface_vars_df = pd.DataFrame(surface_vars) surface_vars_df.columns = ['log-y', 'log-fitted'] + self.context.covariates_names[1:] corr = surface_vars_df.corr() f, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(corr, annot=True, linewidths=.5, ax=ax) plt.show() def load_samples_snapshot(self, iteration_no): beta_filepath = Path(os.getcwd()) / "models" / "snapshots" / f"beta-samples--{self.uid}--{iteration_no}.npy" z_filepath = Path(os.getcwd()) / "models" / "snapshots" / f"Z-samples--{self.uid}--{iteration_no}.npy" alpha_filepath = Path(os.getcwd()) / "models" / "snapshots" / f"alpha-samples--{self.uid}--{iteration_no}.npy" beta_samples = np.load(beta_filepath) z_samples = np.load(z_filepath) try: alpha_samples = np.load(alpha_filepath) return beta_samples, z_samples, alpha_samples except FileNotFoundError: alpha_samples = np.zeros((1, self.K)) return beta_samples, z_samples, alpha_samples def get_initial_estimand(self): beta = np.random.normal(0, 1, self.context.J * self.K) return beta def get_mass_matrix_diag(self): beta_m_diag = 5e2 * np.ones(self.context.J * self.K) return beta_m_diag def __save_output(self, iteration): folder_name = Path(os.getcwd()) / "models" / "snapshots" if not os.path.exists(folder_name): os.makedirs(folder_name) Z_full_path = folder_name / f"Z-samples--{self.uid}--{iteration}" Z_samples_array = np.asarray(self.Z_samples) if Z_samples_array.shape[0] > 0: np.save(Z_full_path, Z_samples_array[::self.thinning, :]) alpha_full_path = folder_name / f"alpha-samples--{self.uid}--{iteration}" alpha_array = np.asarray(self.alpha_samples) if alpha_array.shape[0] > 0: np.save(alpha_full_path, alpha_array[::self.thinning, :]) beta_full_path = folder_name / f"beta-samples--{self.uid}--{iteration}" beta_array = np.asarray(self.beta_samples) if beta_array.shape[0] > 0: np.save(beta_full_path, beta_array[::self.thinning, :]) def run_sampling(self, beta_sampler, number_of_iterations): N = self.context.N J = self.context.J K = self.K B = self.block_label_counts.shape[0] alpha = np.repeat(1/K, K) covariates = self.context.covariates counts = self.context.counts iteration = 0 while iteration < number_of_iterations: ########################################################################################## # BOOKKEEPING ########################################################################################## # The HMC sampler is adaptive and therefore will discard samples during adaptive phase. if len(beta_sampler.samples) < len(self.Z_samples): num_current_samples = len(beta_sampler.samples) self.Z_samples = self.Z_samples[(-num_current_samples):] self.alpha_samples = self.alpha_samples[(-num_current_samples):] self.beta_samples = beta_sampler.samples if (iteration + 1) % self.n_info_interval == 0: self.__save_output(iteration) ########################################################################################## # SAMPLE ALPHA ########################################################################################## # We fix alpha to 1/K so there is no need for sampling. Should we choose to treat alpha # as random, the samples would have to be saved so we keep the code below for that eventuality. self.alpha_samples.append(alpha) self.logger.debug(f"Alpha: {alpha[0]}") ########################################################################################## # SAMPLE BETA ########################################################################################## beta_sampler.sample_one() ########################################################################################## # SAMPLE Z ########################################################################################## current_hmc_estimand = beta_sampler.estimand current_beta = current_hmc_estimand[:(J * K)].reshape((J, K), order='F') Z_new = zsampler.sample_region(self.Z.astype(np.int64), counts.astype(np.int64), covariates.astype(np.float64), current_beta.astype(np.float64), alpha.astype(np.float64), self.block_assignment_numeric.astype(np.int64), self.block_label_counts) self.Z_samples.append(np.where(Z_new > 0)[1]) self.Z = Z_new iteration += 1 self.logger.info("Sampling completed - saving model.") self.beta_samples = beta_sampler.samples self.__save_output(iteration) @click.command() @click.option('--year', '-y', type=str, default='12015-122015') @click.option('--type', '-t', default='burglary') @click.option('--resolution', '-r', type=int, default=400) @click.option('--model_name', '-m', type=str, default='burglary_raw_0') @click.option('--interpolation', '-i', type=str, default='weighted') @click.option('--num_mixtures', '-K', type=int, default=3) @click.option('--uid', type=str, default=None) @click.option('--verbose', is_flag=True) @click.option('--block_type', type=str, default="msoa") @click.option('--collection_unit', type=str, default="lsoa") def main(year, type, resolution, model_name, interpolation, num_mixtures, uid, verbose, block_type, collection_unit): if uid is None: uid = build_block_mixture_flat_uid(prefix="BLOCK-MIXTURE-FLAT", chain_no=1, block_scheme=block_type, c_type=type, t_period=year, model_spec=model_name, cov_interpolation=interpolation, resolution=resolution, K=num_mixtures) log_fmt = '[%(levelname)s] [%(asctime)s] [%(name)s] %(message)s' datefmt = '%H:%M:%S' if verbose: logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format=log_fmt) else: logging.basicConfig(filename=Path('models') / f"log-{uid}.log", filemode='a', format=log_fmt, datefmt=datefmt, level=logging.DEBUG) logger = logging.getLogger(__name__) logger.info("Building the context.") grid_context = GridContextGeo(interpolation=interpolation, year=year, resolution=resolution, crime_type=type, model_name=model_name, cov_collection_unit=collection_unit, covariates_type='raw') logger.info("Writing sampling context into a file.") context_filename = Path(os.getcwd()) / "models" / f"context--{uid}.pickle" with open(context_filename, 'wb') as context_file: context_info = { 'context': grid_context, 'K': num_mixtures } pickle.dump(context_info, context_file) logger.info("Initialising the model with estimand and mass matrix diagonal") model = FlatRegionMixture(uid=uid, grid_context=grid_context, K=num_mixtures, n_info_interval=50_000, thinning=10, block_type=block_type) init_estimand = model.get_initial_estimand() mass_matrix_diag = model.get_mass_matrix_diag() logger.info("Launching HMC sampler.") hmc_all_iterations = 120_000 sampler = HMCSampler(func_lpdf=model.loglik, func_nabla_lpdf=model.nabla_loglik, func_plot=model.plot_traces if verbose else None, init_estimand=init_estimand, init_M_diag=mass_matrix_diag, init_L=10, init_epsilon=5.0e-2, n_burnin=30_000, n_calib=60_000, S=hmc_all_iterations, n_info_interval=model.n_info_interval, thinning=model.thinning, unique_estimation_id=uid, adaptive=True) if verbose: plt.figure() grid_context.plot_realisations(np.log(model.block_assignment_numeric + 1), 111) plt.show() model.run_sampling(sampler, hmc_all_iterations) logger.info("Procedure finished.") if __name__ == "__main__": load_dotenv(find_dotenv()) main() ```
{ "source": "jp20indian/HacktoberFest2021", "score": 3 }
#### File: jp20indian/HacktoberFest2021/weather_notifier.py ```python import requests from bs4 import BeautifulSoup from win10toast import ToastNotifier # create an object to ToastNotifier class n = ToastNotifier() # define a function def getdata(url): r = requests.get(url) return r.text htmldata = getdata("https://weather.com/en-IN/weather/today/l/25.59,85.14?par=google&temp=c/") soup = BeautifulSoup(htmldata, 'html.parser') current_temp = soup.find_all("span", class_= "_-_-components-src-organism-CurrentConditions-CurrentConditions--tempValue--MHmYY") chances_rain = soup.find_all("div", class_= "_-_-components-src-organism-CurrentConditions-CurrentConditions--precipValue--2aJSf") temp = (str(current_temp)) temp_rain = str(chances_rain) result = "current_temp " + temp[128:-9] + " in patna bihar" + "\n" + temp_rain[131:-14] n.show_toast("live Weather update", result, duration = 10) ```
{ "source": "jp2321/dl4cv_dev", "score": 3 }
#### File: dl4cv_dev/exercises/solution_03_01.py ```python from tensorflow.keras import layers, models, datasets import numpy as np #(X_train, y_train), (X_test,y_test) = datasets.cifar10.load_data() X_train = np.zeros((60000,32,32)) X_train_reshape=np.reshape(X_train,(60000, 1024)) def model(): input_layer = layers.Input(shape=(1024,)) hidden_layer = layers.Dense(10, activation="relu") (input_layer) hidden_layer = layers.Dense(20, activation="relu") (hidden_layer) output_layer = layers.Dense(10, activation="softmax") (hidden_layer) m = models.Model(input_layer, output_layer) m.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["acc"]) return m model = model() # get model print(model.summary()) ``` #### File: dl4cv_dev/exercises/solution_04_01.py ```python from tensorflow.keras import layers, models, datasets, optimizers import numpy as np def neural_network(): input_ = layers.Input(shape=(32,32,3)) cnn = layers.Conv2D(16, (3,3), activation="relu") (input_) cnn = layers.MaxPooling2D() (cnn) cnn = layers.Conv2D(32, (3,3), activation="relu") (cnn) cnn = layers.MaxPooling2D() (cnn) flatten = layers.Flatten() (cnn) dense = layers.Dense(32, activation="relu") (flatten) dense = layers.Dense(16, activation="relu") (dense) output = layers.Dense(10, activation="softmax") (dense) opt = optimizers.Adam() m= models.Model(input_, output) m.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) return m model = neural_network() # get model print(model.summary()) ``` #### File: dl4cv_dev/exercises/test_05_02.py ```python def test(): from tensorflow.keras import datasets assert model.layers[3].get_config()["strides"] == (2,2), "Check the stride sizes" assert model.layers[3].get_config()["filters"] == 16, "Check the number of filters" assert model.layers[4].get_config()["filters"] == 16, "Check the number of filters in the bottelnack" assert model.layers[4].get_config()["strides"] == (2,2), "Check the stride sizes" assert model.layers[7].get_config()["filters"] == 32, "Check the number of filters in the bottelnack" assert model.layers[7].get_config()["strides"] == (1,1), "Check the stride sizes" assert model.layers[10].get_config()["name"] == "concatenate", "Did you concatenate the results" assert model.layers[10].output.shape[3] == 128, "You might missed some layers in the concatenation" assert model.layers[11].get_config()["strides"]==(1,1), "In the second inception module there is no downsampling anymore" __msg__.good("WELL DONE!") ``` #### File: dl4cv_dev/exercises/test_05_03.py ```python def test(): from tensorflow.keras import datasets for i in range(0,10): if transf_model.layers[i].trainable != False: assert transf_model.layers[i].trainable != False, "Are the first 10 layers frozen?" assert transf_model.layers[19].get_config()["name"] == 'global_average_pooling2d', "Did you use a global average pooling?" assert transf_model.layers[0].get_config()['batch_input_shape'] == (None, 224, 224, 3) , "Do you use the right input?" __msg__.good("WELL DONE!") ``` #### File: dl4cv_dev/exercises/test_06_01.py ```python def test(): from tensorflow.keras import datasets assert model.get_layer("class_prediction").get_config()["units"]==43, "Check the number of output classes" assert model.get_layer("class_prediction").get_config()["activation"]=="softmax", "Check your activation function" assert model.output[0].name== 'class_prediction/Identity:0', "How does the output look like?" assert model.output[2].name== 'y1_prediction/Identity:0', "How does the output look like?" assert model.output[3].name== 'x2_prediction/Identity:0', "How does the output look like?" assert model.output[4].name== 'y2_prediction/Identity:0', "How does the output look like?" assert model.get_layer("y1_prediction").get_config()["units"]==1, "Check the number of outputs" assert model.get_layer("x2_prediction").get_config()["units"]==1, "Check the number of outputs" assert model.get_layer("y2_prediction").get_config()["units"]==1, "Check the number of outputs" assert model.get_layer("x1_prediction").get_config()["units"]==1, "Check the number of outputs" __msg__.good("WELL DONE!") ```
{ "source": "Jp29tkDg79/samplewebsite", "score": 3 }
#### File: samplewebsite/python/samplesite.py ```python from flask import Flask from flask import render_template from flask import request from flask import url_for import os from database import person app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def login(): if request.method == 'GET': return render_template('login.html', info='') if request.method == 'POST': # get data and check data username = request.form.get('username') password = request.form.get('password') info = '' if username == '': info = 'ユーザ名が未入力です' elif password == '': info = 'パスワードが未入力です' else: # create persons object persondb = person.persondb() # check login data match_count = persondb.check_login(username, password) if match_count == 1: return viewhome(username) else: info = '登録されていません' return render_template('login.html', info=info) @app.route('/newentry', methods=['GET', 'POST']) def newuser(): if request.method == 'GET': return render_template('newentry.html', info='') if request.method == 'POST': # get data and check data username = request.form.get('username') password = request.form.get('password') info = '' if username == '': info = 'ユーザ名が未入力です' elif 14 < len(username): info = 'ユーザ名は14文字内で入力してください' elif password == '': info = 'パスワードが未入力です' elif password != request.form.get('re<PASSWORD>'): info = '入力したパスワードが異なります 再度入力してください' else: # create persons object persondb = person.persondb() # insert data err = persondb.insert(username, password) if err == '': return viewhome(username) else: info = '既に登録されています' return render_template('newentry.html', info=info) @app.route('/change_pw/<username>', methods=['GET', 'POST']) def change_pw(username): if request.method == 'GET': return render_template('change_pw.html', username=username, info='') if request.method == 'POST': befor_pw = request.form.get('befor_pw') after_pw = request.form.get('after_pw') info = '' if befor_pw == '': info = '変更前のパスワードが入力されていません' elif after_pw == '': info = '変更後のパスワードが入力されていません' # check password elif after_pw != request.form.get('check_pw'): info = '変更後と再確認のパスワードが相違しています' else: # create person object persondb = person.persondb() err = persondb.update(username, befor_pw, after_pw) if err == '': return viewhome(username) else: info = '変更前のパスワードが誤っています' return render_template('change_pw.html', username=username, info=info) @app.route('/home/<username>', methods=['GET']) def viewhome(username): return render_template('home.html', username=username) @app.context_processor def override_url_for(): return dict(url_for=dated_url_for) def dated_url_for(endpoint, **values): if endpoint == 'static': filename = values.get('filename', None) if filename: file_path = os.path.join(app.root_path, endpoint, filename) values['q'] = int(os.stat(file_path).st_mtime) return url_for(endpoint, **values) def main(debug=False): app.run(host='0.0.0.0', port='5000', debug=debug) ```
{ "source": "jp30101995/AWS-practise", "score": 2 }
#### File: pythonDeployment/lib/sensim.py ```python import pandas as pd import numpy as np import scipy import math import os import matplotlib.pyplot as plt import seaborn as sns import requests import nltk import gensim import csv from sklearn.metrics.pairwise import cosine_similarity from collections import Counter import math from nltk import word_tokenize import gensim.downloader as api from gensim.models import Word2Vec from gensim.scripts.glove2word2vec import glove2word2vec import argparse from google.cloud import language from google.cloud.language import enums from google.cloud.language import types from nltk.corpus import wordnet as wn import re from subprocess import check_output from nltk.metrics import edit_distance def callMe(): return 'you called me' #method 1 def run_avg_benchmark(sentences1, sentences2, model=None, use_stoplist=False, doc_freqs=None): if doc_freqs is not None: N = doc_freqs["NUM_DOCS"] sims = [] for (sent1, sent2) in zip(sentences1, sentences2): tokens1 = sent1.tokens_without_stop if use_stoplist else sent1 tokens2 = sent2.tokens_without_stop if use_stoplist else sent2 tokens1 = [token for token in tokens1 if token in model] tokens2 = [token for token in tokens2 if token in model] if len(tokens1) == 0 or len(tokens2) == 0: sims.append(0) continue tokfreqs1 = Counter(tokens1) tokfreqs2 = Counter(tokens2) weights1 = [tokfreqs1[token] * math.log(N/(doc_freqs.get(token, 0)+1)) for token in tokfreqs1] if doc_freqs else None weights2 = [tokfreqs2[token] * math.log(N/(doc_freqs.get(token, 0)+1)) for token in tokfreqs2] if doc_freqs else None embedding1 = np.average([model[token] for token in tokfreqs1], axis=0, weights=weights1).reshape(1, -1) embedding2 = np.average([model[token] for token in tokfreqs2], axis=0, weights=weights2).reshape(1, -1) sim = cosine_similarity(embedding1, embedding2)[0][0] sims.append(sim) print (sum(sims) / float(len(sims))) return sims #method 3 def findSentiment(sentense): client = language.LanguageServiceClient() document = types.Document( content=sentense, type=enums.Document.Type.PLAIN_TEXT) jsonStr = client.analyze_sentiment(document=document) return jsonStr.document_sentiment.score def download_sick(f): response = requests.get(f).text lines = response.split("\n")[1:] lines = [l.split("\t") for l in lines if len(l) > 0] lines = [l for l in lines if len(l) == 5] df = pd.DataFrame(lines, columns=["idx", "sent_1", "sent_2", "sim", "label"]) df['sim'] = pd.to_numeric(df['sim']) return df def read_tsv(f): frequencies = {} with open(f) as tsv: tsv_reader = csv.reader(tsv, delimiter="\t") for row in tsv_reader: frequencies[row[0]] = int(row[1]) return frequencies def tokenize(q1, q2): """ q1 and q2 are sentences/questions. Function returns a list of tokens for both. """ return word_tokenize(q1), word_tokenize(q2) def posTag(q1, q2): """ q1 and q2 are lists. Function returns a list of POS tagged tokens for both. """ return nltk.pos_tag(q1), nltk.pos_tag(q2) def stemmer(tag_q1, tag_q2): """ tag_q = tagged lists. Function returns a stemmed list. """ stem_q1 = [] stem_q2 = [] for token in tag_q1: stem_q1.append(stem(token)) for token in tag_q2: stem_q2.append(stem(token)) return stem_q1, stem_q2 def path(set1, set2): return wn.path_similarity(set1, set2) def wup(set1, set2): return wn.wup_similarity(set1, set2) def edit(word1, word2): if float(edit_distance(word1, word2)) == 0.0: return 0.0 return 1.0 / float(edit_distance(word1, word2)) def computePath(q1, q2): R = np.zeros((len(q1), len(q2))) for i in range(len(q1)): for j in range(len(q2)): if q1[i][1] == None or q2[j][1] == None: sim = edit(q1[i][0], q2[j][0]) else: sim = path(wn.synset(q1[i][1]), wn.synset(q2[j][1])) if sim == None: sim = edit(q1[i][0], q2[j][0]) R[i, j] = sim # print R return R def computeWup(q1, q2): R = np.zeros((len(q1), len(q2))) for i in range(len(q1)): for j in range(len(q2)): if q1[i][1] == None or q2[j][1] == None: sim = edit(q1[i][0], q2[j][0]) else: sim = wup(wn.synset(q1[i][1]), wn.synset(q2[j][1])) if sim == None: sim = edit(q1[i][0], q2[j][0]) R[i, j] = sim # print R return R def overallSim(q1, q2, R): sum_X = 0.0 sum_Y = 0.0 for i in range(len(q1)): max_i = 0.0 for j in range(len(q2)): if R[i, j] > max_i: max_i = R[i, j] sum_X += max_i for i in range(len(q1)): max_j = 0.0 for j in range(len(q2)): if R[i, j] > max_j: max_j = R[i, j] sum_Y += max_j if (float(len(q1)) + float(len(q2))) == 0.0: return 0.0 overall = (sum_X + sum_Y) / (2 * (float(len(q1)) + float(len(q2)))) return overall def semanticSimilarity(q1, q2): tokens_q1, tokens_q2 = tokenize(q1, q2) # stem_q1, stem_q2 = stemmer(tokens_q1, tokens_q2) tag_q1, tag_q2 = posTag(tokens_q1, tokens_q2) sentence = [] for i, word in enumerate(tag_q1): if 'NN' in word[1] or 'JJ' in word[1] or 'VB' in word[1]: sentence.append(word[0]) sense1 = Lesk(sentence) sentence1Means = [] for word in sentence: sentence1Means.append(sense1.lesk(word, sentence)) sentence = [] for i, word in enumerate(tag_q2): if 'NN' in word[1] or 'JJ' in word[1] or 'VB' in word[1]: sentence.append(word[0]) sense2 = Lesk(sentence) sentence2Means = [] for word in sentence: sentence2Means.append(sense2.lesk(word, sentence)) # for i, word in enumerate(sentence1Means): # print sentence1Means[i][0], sentence2Means[i][0] R1 = computePath(sentence1Means, sentence2Means) R2 = computeWup(sentence1Means, sentence2Means) R = (R1 + R2) / 2 # print R return overallSim(sentence1Means, sentence2Means, R) def clean_sentence(val): "remove chars that are not letters or numbers, downcase, then remove stop words" regex = re.compile('([^\s\w]|_)+') sentence = regex.sub('', val).lower() sentence = sentence.split(" ") for word in list(sentence): if word in STOP_WORDS: sentence.remove(word) sentence = " ".join(sentence) return sentence class Lesk(object): def __init__(self, sentence): self.sentence = sentence self.meanings = {} for word in sentence: self.meanings[word] = '' def getSenses(self, word): # print word return wn.synsets(word.lower()) def getGloss(self, senses): gloss = {} for sense in senses: gloss[sense.name()] = [] for sense in senses: gloss[sense.name()] += word_tokenize(sense.definition()) return gloss def getAll(self, word): senses = self.getSenses(word) if senses == []: return {word.lower(): senses} return self.getGloss(senses) def Score(self, set1, set2): # Base overlap = 0 # Step for word in set1: if word in set2: overlap += 1 return overlap def overlapScore(self, word1, word2): gloss_set1 = self.getAll(word1) if self.meanings[word2] == '': gloss_set2 = self.getAll(word2) else: # print 'here' gloss_set2 = self.getGloss([wn.synset(self.meanings[word2])]) # print gloss_set2 score = {} for i in gloss_set1.keys(): score[i] = 0 for j in gloss_set2.keys(): score[i] += self.Score(gloss_set1[i], gloss_set2[j]) bestSense = None max_score = 0 for i in gloss_set1.keys(): if score[i] > max_score: max_score = score[i] bestSense = i return bestSense, max_score def lesk(self, word, sentence): maxOverlap = 0 context = sentence word_sense = [] meaning = {} senses = self.getSenses(word) for sense in senses: meaning[sense.name()] = 0 for word_context in context: if not word == word_context: score = self.overlapScore(word, word_context) if score[0] == None: continue meaning[score[0]] += score[1] if senses == []: return word, None, None self.meanings[word] = max(meaning.keys(), key=lambda x: meaning[x]) return word, self.meanings[word], wn.synset(self.meanings[word]).definition() sick_train = download_sick("https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_train.txt") sick_dev = download_sick("https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_trial.txt") sick_test = download_sick("https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_test_annotated.txt") sick_all = sick_train.append(sick_test).append(sick_dev) PATH_TO_WORD2VEC = os.path.expanduser("/mount/data/GoogleNews-vectors-negative300.bin") #PATH_TO_GLOVE = os.path.expanduser("D:\\Backup\\nlp-notebooks-master\\data\\sentence_similarity\\glove.840B.300d.txt") # PATH_TO_FREQUENCIES_FILE = "D:\\Backup\\nlp-notebooks-master\\data\\sentence_similarity\\frequencies.tsv" # PATH_TO_DOC_FREQUENCIES_FILE = "D:\\Backup\\nlp-notebooks-master\\data\\sentence_similarity\\doc_frequencies.tsv" word2vec = gensim.models.KeyedVectors.load_word2vec_format(PATH_TO_WORD2VEC, binary=True) # frequencies = read_tsv(PATH_TO_FREQUENCIES_FILE) # doc_frequencies = read_tsv(PATH_TO_DOC_FREQUENCIES_FILE) # doc_frequencies["NUM_DOCS"] = 1288431 word_vectors = api.load("glove-wiki-gigaword-100") os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/mount/data/astral-shape-187315-e8e3ba35bd82.json" STOP_WORDS = nltk.download('stopwords') nltk.download('punkt') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') ```
{ "source": "jp3141/60Hz", "score": 3 }
#### File: jp3141/60Hz/60Hz.py ```python import time import sys import os import datetime as dt import serial from signal import signal, SIGINT from sys import exit def handler(signal_received, frame): print('\nCtrl+C detected.') TeensyFreq.reset_input_buffer() TeensyFreq.close() LOGFile.close() exit(0) signal(SIGINT, handler) ######################################### main ################################## LineNum = 0 TeensyFreq = serial.Serial(baudrate=57600) Interval = 5.0 # time between frequency requests #Interval = 2.0 # time between frequency requests #TeensyFreq.port = '/dev/ttyS5' TeensyFreq.port = '/dev/serial0' #TeensyFreq.port = 'COM5' TeensyFreq.timeout = 0.5 TeensyFreq.open() TeensyCMD = b' \n' LOGName = "60Hz.log" #LOGName = "/home/pi/networkdrive/" + LOGName LOGName = "/home/pi/60HzDrive/" + LOGName LOGFile = open(LOGName, 'a', 1) # buffered by line TeensyFreq.reset_input_buffer() TeensyFreq.reset_output_buffer() # This is the header. includes a leading \n TeensyFreq.write(b' \n') # write a space to make Teensy initialize TimeStamp = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] + "," TeensyFreq.readline() # This is a blank line F0 = 60.0 deltaF = 0.025 PlotSpan = 25 #print("# Plot resolution = %6.3f Hz < %+5.3f Hz ..............0.............. %+5.3f Hz >" % (deltaF/PlotSpan, -deltaF, deltaF)) print("# Plot resolution = %6.3f Hz < %+5.3f Hz ··············0·············· %+5.3f Hz >" % (deltaF/PlotSpan, -deltaF, deltaF)) #print("# < %+5.3f Hz ..............0.............. %+5.3f Hz >" % (-deltaF, deltaF)) #print("# <--------------------------------------------------->") #LinePlot = "-" + PlotSpan * "." + "0" + PlotSpan * "." + "+" LinePlot = "-" + PlotSpan * "·" + "0" + PlotSpan * "·" + "+" TotalTimeError = 0.0 #lastStep = datetime.now() lastPlotFreq=0 print(TimeStamp, '#') print(TimeStamp, '#', file = LOGFile) FreqString=TeensyFreq.readline().decode("ascii", errors = "replace")[:-1] print(TimeStamp, FreqString) print(TimeStamp, FreqString, file = LOGFile) starttime = int((time.time()+(Interval-1))/10)*10 # on whole 5 s intervals while True: LineNum += 1 TeensyFreq.write(b'\n') TimeStamp = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] + "," FreqString=TeensyFreq.readline().decode("ascii", errors = "replace")[:-1] # print(TimeStamp, FreqString) # print(TimeStamp, FreqString, file = LOGFile) ThisFreq=float(FreqString.split(", ")[2]) try: PlotFreq=round(PlotSpan*(float(ThisFreq)-F0)/deltaF) except ValueError: print("# Missing Data %s" % TimeStamp) #print("# Missing Data %s" % TimeStamp, file=LOGFile) LineNum -= 1 TotalTimeError = 0 continue PlotChar = "|" if (PlotFreq > lastPlotFreq): PlotChar = "\\" if (PlotFreq < lastPlotFreq): PlotChar = "/" lastPlotFreq = PlotFreq if (PlotFreq < -(PlotSpan+1)): PlotFreq = -(PlotSpan+1) PlotChar = "<" if (PlotFreq > (PlotSpan+1)): PlotFreq = (PlotSpan+1) PlotChar = ">" #print("%4i, %9.4f " % (PlotFreq, CounterString), end='') ThisPlot=LinePlot[:(PlotSpan+PlotFreq+1)] + PlotChar + LinePlot[(PlotSpan+PlotFreq+2):] # deltaT = (ThisStep-lastStep).total_seconds() # lastStep = ThisStep # TotalTimeError += (float(CounterString)-F0)*deltaT/F0 # print("%8d, %s, %11s, %10.6f" % (LineNum, now, CounterString, TotalTimeError), file=LOGFile) print(TimeStamp, FreqString+",", ThisPlot) print(TimeStamp, FreqString, file = LOGFile) # should not be any line available to read FreqString=TeensyFreq.readline().decode("ascii", errors = "replace")[:-1] # should get a timeout here; avoids resetting buffer and losing partial lines. # should never actually get a string if (FreqString != ""): # but print anyway if one is read print(TimeStamp, "#" + FreqString[1:]) print(TimeStamp, "#" + FreqString[1:], file = LOGFile) time.sleep(Interval - ((time.time() - starttime) % Interval)) LOGFile.flush() TeensyFreq.close() LOGFile.close() print("Done") ```
{ "source": "jp3141/Vector-Network-Analyzer", "score": 3 }
#### File: jp3141/Vector-Network-Analyzer/VNA.py ```python import visa import time import math import pdb import sys import numpy as np import matplotlib.pyplot as plt import re import os import keyboard def HelpAndExit(): print("Usage: ", sys.argv[0], " [-b BeginF] [-e EndF] [-p Points/Decade] [-f FILE_Prefix]\ \noptional: [-n] Don't plot after gathering data\ \noptional: [-z] Set current-measuring resistance and plot Z data\ \nFILE_Prefix defaults to RG1054Z\ \n<NAME> Sep 2, 2018"\ ) sys.exit(1) def NextArg(i): #Return the next command line argument (if there is one) if ((i+1) >= len(sys.argv)): Fatal("'%s' expected an argument" % sys.argv[i]) return(1, sys.argv[i+1]) ######################################### main ################################## debug = 0 FILEPREFIX = "RG1054Z" MDEPTH = 30000 #pdb.set_trace() StartF = 1 StopF = 1e6 PlotOK = True ListOnly = False PointsPerDecade = 10 # Changed from 30, 8/28/2018 KEAP HighFrequency = False # used to indicate crossed over max Sync frequency from SDG1025 SweepModeLog = True Voltage = 1.0 Resistance = 0.0 # non-zero when -z resistance argument is used -> Z is plotted Sine = True # Parse command line skip = 0 for i in range(1, len(sys.argv)): if not skip: if sys.argv[i][:2] == "-d": debug = 1 elif sys.argv[i][:2] == "-f": (skip,FILEPREFIX) = NextArg(i) elif sys.argv[i][:2] == "-n": PlotOK = False elif sys.argv[i][:2] == "-l": ListOnly = True elif sys.argv[i][:2] == "-q": Sine = False elif sys.argv[i][:2] == "-v": (skip,Voltage) = 1, float(NextArg(i)[1]) elif sys.argv[i][:2] == "-z": (skip,Resistance) = 1, float(NextArg(i)[1]) elif sys.argv[i][:2] == "-s": (skip,StepSizeF) = 1, float(NextArg(i)[1]); SweepModeLog = False elif sys.argv[i][:2] == "-b": (skip,StartF) = 1, float(NextArg(i)[1]) elif sys.argv[i][:2] == "-e": (skip,StopF) = 1, float(NextArg(i)[1]) elif sys.argv[i][:2] == "-p": (skip,PointsPerDecade) = 1, int(NextArg(i)[1]); SweepModeLog = True elif sys.argv[i][:2] == "-h": HelpAndExit() elif sys.argv[i][:1] == "-": sys.stderr.write("%s: Bad argument\n" % (sys.argv[0])) sys.exit(1) else: pass else: skip = 0 #if (len(sys.argv) <= 1): HelpAndExit() if (ListOnly): PlotOK = False # don't plot if just listing GPIB = visa.ResourceManager() #print(GPIB.list_resources()) GPIB_Resources = GPIB.list_resources() for resource in GPIB_Resources: print(resource) print() LOGFile = open(FILEPREFIX+"_VNA.log" if (not ListOnly) else os.devnull, 'w') #else: LOGFile = open(os.devnull, 'w') print(time.strftime("# %Y-%m-%d %H:%M"), file = LOGFile) #GPIB_BUS = GPIB.open_resource('GPIB0::INTFC') SDG1025 = GPIB.open_resource([_ for _ in GPIB_Resources if re.search('^USB.*:SDG.*INSTR$', _)][0]) #SDG1025 = GPIB.open_resource('USB0::0xF4ED::0xEE3A::SDG00004120363::INSTR') Q = SDG1025.query("*IDN?") print("SDG1025:", Q, end='') print("# SDG1025:", Q, end='', file=LOGFile) DS1054Z = GPIB.open_resource([_ for _ in GPIB_Resources if re.search('^USB.*:DS.*INSTR$', _)][0]) #DS1054Z = GPIB.open_resource('USB0::0x1AB1::0x04CE::DS1ZA201003553::INSTR') Q = DS1054Z.query("*IDN?") print("DS1054Z:", Q) print("# DS1054Z:", Q, end='', file=LOGFile) DS1054Z.timeout = 2000 # ms DecadesF = math.log10(StopF/StartF) print(sys.argv) if SweepModeLog: print( "Analysing from %f Hz to %f Hz, %6.1f points/decade; %i decades" % (StartF, StopF, PointsPerDecade, DecadesF)) print("# Analysing from %f Hz to %f Hz, %6.1f points/decade; %i decades" % (StartF, StopF, PointsPerDecade, DecadesF), file = LOGFile) else: print( "Analysing from %f Hz to %f Hz, %f Hz steps; %i total steps" % (StartF, StopF, StepSizeF, 1 + math.ceil((StopF-StartF)/StepSizeF))) print("# Analysing from %f Hz to %f Hz, %f Hz steps; %i total steps" % (StartF, StopF, StepSizeF, 1 + math.ceil((StopF-StartF)/StepSizeF)), file = LOGFile) # Signal Generator SYNCMax = 2.0e6 SDG1025.write("C1: BSWV FRQ, %11.3f" % StartF) if (Sine): SDG1025.write("C1: BSWV WVTP,SINE,AMP,%5.2f,OFST,0,PHSE,0" % Voltage) # 1 Vpp else: SDG1025.write("C1: BSWV WVTP,SQUARE,AMP,%5.2f,OFST,0,PHSE,0" % Voltage) # 1 Vpp SDG1025.write("C1:OUTP ON,LOAD,HZ") SDG1025.write("C1:SYNC ON") DS1054Z.write(":WAV:FORMAT BYTE;:WAV:MODE RAW") #DS1054Z.write(":SYSTEM:BEEPER OFF") DS1054Z.write(":STOP") # so preamble can get YINCR #Channel 1 DS1054Z.write(":CHANNEL1:COUPLING AC") DS1054Z.write(":CHANNEL1:DISPLAY ON") DS1054Z.write(":CHANNEL1:SCALE 5") DS1054Z.write(":CHANNEL1:BWLimit 20M") print("1: ",DS1054Z.query(":WAV:SOURCE CHAN1;:WAV:PREAMBLE?"), end='') #Channel 2 DS1054Z.write(":CHANNEL2:COUPLING AC") DS1054Z.write(":CHANNEL2:DISPLAY ON") DS1054Z.write(":CHANNEL2:SCALE 5") DS1054Z.write(":CHANNEL2:BWLimit 20M") print("2: ",DS1054Z.query(":WAV:SOURCE CHAN2;:WAV:PREAMBLE?")) #Channel 4 (Trigger) DS1054Z.write(":CHANNEL4:COUPLING DC") DS1054Z.write(":CHANNEL4:DISPLAY OFF") DS1054Z.write(":CHANNEL4:SCALE 5.0") DS1054Z.write(":TRIGGER:MODE EDGE") DS1054Z.write(":TRIGGER:EDGE:SOURCE CHANNEL4") DS1054Z.write(":TRIGGER:COUPLING DC") DS1054Z.write(":TRIGGER:EDGE:SLOPE POSITIVE") DS1054Z.write(":TRIGGER:EDGE:LEVEL 2.5") DS1054Z.write(":RUN") DS1054Z.write(":ACQUIRE:MDEPTH %i" % MDEPTH) VNA=[] #DS1054Z.chunk_size = MDEPTH print("#Sample, Frequency, Mag1, Mag2, Ratio (dB), Phase", file = LOGFile) if SweepModeLog: LastTestPOINT = 1 + math.ceil(PointsPerDecade*math.log10(StopF/StartF)) else: LastTestPOINT = 1 + math.ceil((StopF-StartF)/StepSizeF) #for TestPOINT in range(-1, 1+math.ceil(PointsPerDecade*math.log10(StopF/StartF))): for TestPOINT in range(-1, LastTestPOINT): # 1st cycle which is used to initialize vertical scale isn't logged POINT = max(0, TestPOINT) # -1 maps to 0 TestF = StartF*math.pow(10,POINT/PointsPerDecade) if SweepModeLog else StartF+POINT*StepSizeF if (TestF > StopF): break if (TestF > 25e6): break # Max frequency of SDG1025 if keyboard.is_pressed('q'): print('Key pressed') break print("Sample %3i, %11.3f Hz" % (TestPOINT, TestF), end='') if (ListOnly): print();continue # only list sample frequencies if (TestF >= SYNCMax) and not HighFrequency: # Can't generate sync above 2 MHz -- so switch to Channel 1. This also allows S/s to double SDG1025.write("C1:SYNC OFF") DS1054Z.write(":CHANNEL4:DISPLAY OFF") DS1054Z.write(":TRIGGER:COUPLING LFReject") DS1054Z.write(":TRIGGER:MODE EDGE") DS1054Z.write(":TRIGGER:EDGE:SOURCE CHANNEL1") DS1054Z.write(":TRIGGER:EDGE:SLOPE POSITIVE") DS1054Z.write(":TRIGGER:EDGE:LEVEL 0") time.sleep(0.3) # wait for this to change MDEPTH *= 2 # double sample rate when Ch4 is not used by trigger HighFrequency = True # Only switchover once SDG1025.write("C1: BSWV FRQ, %11.3f" % TestF) #pdb.set_trace() DS1054Z.write(":TIMEBASE:MAIN:SCALE %13.9f" % (1./TestF/12.)) # Scope rounds up ActualTB = float(DS1054Z.query(":TIMEBASE:MAIN:SCALE?").rstrip()) ActualSs = min(250e6 if (TestF < SYNCMax) else 500e6, round(MDEPTH/(ActualTB*12),0)) ActualSs_ = str(int(ActualSs)) if (ActualSs_[-9:] == "000000000"): ActualSs_ = ActualSs_[:-9] + " G" if (ActualSs_[-6:] == "000000"): ActualSs_ = ActualSs_[:-6] + " M" if (ActualSs_[-3:] == "000"): ActualSs_ = ActualSs_[:-3] + " k" print(", %sS/s" % ActualSs_, end='') DS1054Z.write(":RUN;:TRIGGER:SWEEP SINGLE") while (DS1054Z.query(":TRIGGER:STATUS?")[:4] != "STOP"): pass PreambleList = DS1054Z.query(":WAV:SOURCE CHAN1;:WAV:PREAMBLE?").split(',') XINCR = float(PreambleList[4]) YINCR1 = float(PreambleList[7]) YOFF1 = int(PreambleList[8]) + int(PreambleList[9]) NPOINTS_PerCycle = 1./(TestF*XINCR) # Number of points for 1 cycle of this frequency NCYCLES = math.floor(MDEPTH/NPOINTS_PerCycle) NPOINTS = int(round(NPOINTS_PerCycle * NCYCLES)) print(", %i points; %i cycle%s @ %10.1f/cycle" % (NPOINTS, NCYCLES, " " if (NCYCLES==1) else "s", NPOINTS_PerCycle)) SAMPLEPOINTS = np.linspace(0, NCYCLES*2*np.pi, NPOINTS) SINEARRAY = np.sin(SAMPLEPOINTS) COSARRAY = np.cos(SAMPLEPOINTS) # DS1054Z has transfer errors over USB if over ~ 8200; download whole array and truncate is simplest CURVE1=DS1054Z.query_binary_values(":WAV:START 1;:WAV:STOP %i;:WAV:DATA?" %(MDEPTH), datatype='b', container=np.array, header_fmt=u'ieee')[:NPOINTS] CURVE1 = (CURVE1-YOFF1)*YINCR1 PreambleList = DS1054Z.query(":WAV:SOURCE CHAN2;:WAV:PREAMBLE?").split(',') # Refresh after range change YINCR2 = float(PreambleList[7]) YOFF2 = int(PreambleList[8]) + int(PreambleList[9]) CURVE2=DS1054Z.query_binary_values(":WAV:START 1;:WAV:STOP %i;:WAV:DATA?" %(MDEPTH), datatype='b', container=np.array, header_fmt=u'ieee')[:NPOINTS] CURVE2 = (CURVE2-YOFF2)*YINCR2 SINDOT1 = np.dot(CURVE1,SINEARRAY)/NPOINTS COSDOT1 = np.dot(CURVE1,COSARRAY)/NPOINTS CHANNEL1 = complex(SINDOT1, COSDOT1) MAG1 = 2*abs(CHANNEL1) PHASE1 = np.angle(CHANNEL1)*180/math.pi DS1054Z.write(":CHANNEL1:SCALE %9.4f" % (MAG1/3)) SINDOT2 = np.dot(CURVE2,SINEARRAY)/NPOINTS COSDOT2 = np.dot(CURVE2,COSARRAY)/NPOINTS CHANNEL2 = complex(SINDOT2, COSDOT2) MAG2 = 2*abs(CHANNEL2) PHASE2 = np.angle(CHANNEL2)*180/math.pi DS1054Z.write(":CHANNEL2:SCALE %9.4f" % (MAG2/3)) Channel_Z = CHANNEL2/(CHANNEL1-CHANNEL2)*Resistance print("Ch1: Sin, Cos = %9.4f, %9.4f; Mag = %9.5f, Phase = %7.2f deg." % (SINDOT1, COSDOT1, MAG1, PHASE1)) print("Ch2: Sin, Cos = %9.4f, %9.4f; Mag = %9.5f, Phase = %7.2f deg." % (SINDOT2, COSDOT2, MAG2, PHASE2)) Mag_dB = 20*math.log10(MAG2/MAG1) Phase = (PHASE2-PHASE1) % 360 if (Phase) > 180: Phase -= 360 # center around +/- 180 CHZ = '%12.4f %sj%12.4f' % (Channel_Z.real, '+-'[Channel_Z.imag < 0], abs(Channel_Z.imag)) print("Ch2:Ch1 = %7.2f dB @ %7.2f deg.; Z =" % (Mag_dB, Phase), CHZ, '\n') if (TestPOINT >= 0): # only after 1st round VNA.append((TestF, Mag_dB, Phase, Channel_Z)) print("%6i, %12.3f, %9.5f, %9.5f, %7.2f, %7.2f, " %\ (POINT, TestF, MAG1, MAG2, Mag_dB, Phase), CHZ, file = LOGFile) LOGFile.close() DS1054Z.close() SDG1025.close() GPIB.close() print("Done") if (PlotOK): fig, ax1 = plt.subplots() fig.canvas.set_window_title('VNA 2:1') plt.title("Channel 2 : Channel 1") color = 'tab:red' ax1.set_xlabel('Frequency (Hz)') ax1.set_ylabel('dB', color=color) if SweepModeLog: ax1.semilogx([_[0] for _ in VNA], [_[1] for _ in VNA], color=color) else: ax1.plot([_[0] for _ in VNA], [_[1] for _ in VNA], color=color) ax1.tick_params(axis='y', labelcolor=color) ax1.grid(True) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:blue' ax2.set_ylabel('Phase (°)', color=color) # we already handled the x-label with ax1 if SweepModeLog: ax2.semilogx([_[0] for _ in VNA], [_[2] for _ in VNA], color=color) ax2.semilogx([_[0] for _ in VNA], [_[2] for _ in VNA], color=color) else: ax2.plot([_[0] for _ in VNA], [_[2] for _ in VNA], color=color) ax2.tick_params(axis='y', labelcolor=color) #ax2.grid(True) fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show(block=False) # should only block if R=0 ? #plt.show(block=False) if (PlotOK and Resistance != 0): fig, ax1 = plt.subplots() fig.canvas.set_window_title('VNA Z') plt.title("Impedance (ohms)") color = 'tab:green' ax1.set_xlabel('Frequency (Hz)') ax1.set_ylabel('|Z| (ohms)', color=color) if SweepModeLog: ax1.loglog( [_[0] for _ in VNA], [abs(_[3]) for _ in VNA], color=color) else: ax1.semilogy([_[0] for _ in VNA], [abs(_[3]) for _ in VNA], color=color) # Mag(Z) ax1.tick_params(axis='y', labelcolor=color) ax1.grid(True) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:purple' ax2.set_ylabel('Z∠ (°)', color=color) # we already handled the x-label with ax1 if SweepModeLog: ax2.semilogx([_[0] for _ in VNA], [np.angle(_[3])*180/math.pi for _ in VNA], color=color) else: ax2.plot( [_[0] for _ in VNA], [np.angle(_[3])*180/math.pi for _ in VNA], color=color) ax2.tick_params(axis='y', labelcolor=color) #ax2.grid(True) fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show(block=True) ```
{ "source": "jp3477/curation", "score": 3 }
#### File: controlled_tier_qc/code/check_concept_suppression.py ```python import pandas as pd from utils.helpers import run_check_by_row from sql.query_templates import (QUERY_SUPPRESSED_CONCEPT) def check_concept_suppression(check_df, project_id, post_dataset_id, pre_deid_dataset=None, mapping_dataset=None): """Run concept suppression check Parameters ---------- check_df: pd.DataFrame Dataframe containing the checks that need to be done project_id: str Google Bigquery project_id post_dataset_id: str Bigquery dataset after de-id rules were run pre_deid_dataset: str Bigquery dataset before de-id rules were run Returns ------- pd.DataFrame """ concept_check = run_check_by_row(check_df, QUERY_SUPPRESSED_CONCEPT, project_id, post_dataset_id) return concept_check.reset_index(drop=True) ``` #### File: controlled_tier_qc/code/check_field_suppression.py ```python import pandas as pd from utils.helpers import run_check_by_row from sql.query_templates import (QUERY_SUPPRESSED_NULLABLE_FIELD_NOT_NULL, QUERY_SUPPRESSED_REQUIRED_FIELD_NOT_EMPTY, QUERY_SUPPRESSED_NUMERIC_NOT_ZERO, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD9, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD10, QUERY_CANCER_CONCEPT_SUPPRESSION, QUERY_SUPPRESSED_FREE_TEXT_RESPONSE, QUERY_GEOLOCATION_SUPPRESSION) def check_field_suppression(check_df, project_id, post_dataset_id, pre_deid_dataset=None, mapping_dataset=None): """Run field suppression check Parameters ---------- check_df: pd.DataFrame Dataframe containing the checks that need to be done project_id: str Google Bigquery project_id post_dataset_id: str Bigquery dataset after de-id rules were run pre_deid_dataset: str Bigquery dataset before de-id rules were run Returns ------- pd.DataFrame """ nullable_field = check_df[check_df['is_nullable'] == 'YES'] required_numeric_field = check_df[(check_df['is_nullable'] == 'NO') & (check_df['data_type'] == 'INT64')] required_other_field = check_df[(check_df['is_nullable'] == 'NO') & (check_df['data_type'] != 'INT64')] nullable_field_check = run_check_by_row(nullable_field, QUERY_SUPPRESSED_NULLABLE_FIELD_NOT_NULL, project_id, post_dataset_id) required_numeric_field_check = run_check_by_row(required_numeric_field, QUERY_SUPPRESSED_NUMERIC_NOT_ZERO, project_id, post_dataset_id) required_other_field_check = run_check_by_row(required_other_field, QUERY_SUPPRESSED_REQUIRED_FIELD_NOT_EMPTY, project_id, post_dataset_id) return pd.concat([nullable_field_check, required_numeric_field_check, required_other_field_check], sort=True) def check_vehicle_accident_suppression(check_df, project_id, post_deid_dataset, pre_deid_dataset=None, mapping_dataset=None): """Run motor vehicle accident suppression check Parameters ---------- check_df: pd.DataFrame Dataframe containing the checks that need to be done project_id: str Google Bigquery project_id post_dataset_id: str Bigquery dataset after de-id rules were run pre_deid_dataset: str Bigquery dataset before de-id rules were run Returns ------- pd.DataFrame """ icd9_vehicle_accident = run_check_by_row(check_df, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD9, project_id, post_deid_dataset) icd10_vehicle_accident = run_check_by_row(check_df, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD10, project_id, post_deid_dataset) return pd.concat([icd9_vehicle_accident, icd10_vehicle_accident], sort=True) def check_field_cancer_concept_suppression(check_df, project_id, post_deid_dataset, pre_deid_dataset=None, mapping_dataset=None): """Run suppression check for some cancer concepts Parameters ---------- check_df: pd.DataFrame Dataframe containing the checks that need to be done project_id: str Google Bigquery project_id post_dataset_id: str Bigquery dataset after de-id rules were run pre_deid_dataset: str Bigquery dataset before de-id rules were run Returns ------- pd.DataFrame """ cancer_concept = run_check_by_row(check_df, QUERY_CANCER_CONCEPT_SUPPRESSION, project_id, post_deid_dataset) return cancer_concept def check_field_freetext_response_suppression(check_df, project_id, post_deid_dataset, pre_deid_dataset=None, mapping_dataset=None): free_text_concept = run_check_by_row(check_df, QUERY_SUPPRESSED_FREE_TEXT_RESPONSE, project_id, post_deid_dataset) return free_text_concept def check_field_geolocation_records_suppression(check_df, project_id, post_deid_dataset, pre_deid_dataset=None, mapping_dataset=None): return run_check_by_row(check_df, QUERY_GEOLOCATION_SUPPRESSION, project_id, post_deid_dataset) ``` #### File: tools/email_generator/create_dqms.py ```python from dictionaries_and_lists import \ metric_type_to_english_dict, data_quality_dimension_dict, \ columns_to_document_for_sheet_email, table_based_on_column_provided from functions_to_create_dqm_objects import find_hpo_row, \ get_info from data_quality_metric_class import DataQualityMetric def create_dqm_objects_for_sheet( dataframe, hpo_names, user_choice, metric_is_percent, date): """ Function is used to create DataQualityMetric objects for all of the pertinent values on the various sheets being loaded. Parameters --------- dataframe (df): contains the information for a particular dimension of data quality on a particular date hpo_names (list): list of the strings that should go into an HPO ID column. for use in generating HPO objects. user_choice (string): represents the sheet from the analysis reports whose metrics will be compared over time metric_is_percent (bool): determines whether the data will be seen as 'percentage complete' or individual instances of a particular error date (datetime): datetime object that represents the time that the data quality metric was documented (corresponding to the title of the file from which it was extracted) Returns ------- dqm_objects (list): list of DataQualityMetrics objects these are objects that all should have the same metric_type, data_quality_dimension, and date attributes columns (list): the column names that whose data will be extracted. these will eventually be converted to either the rows of dataframes or the names of the different dataframes to be output. """ # to instantiate dqm objects later on metric_type = metric_type_to_english_dict[user_choice] dqm_type = data_quality_dimension_dict[user_choice] columns = columns_to_document_for_sheet_email[user_choice] dqm_objects = [] # for each HPO (row) in the dataframe for name in hpo_names: row_number = find_hpo_row(sheet=dataframe, hpo=name) data_dict = get_info( sheet=dataframe, row_num=row_number, percentage=metric_is_percent, sheet_name=user_choice, columns_to_collect=columns) # for each table / class (column) in the dataframe for table, data in data_dict.items(): table_or_class_name = table_based_on_column_provided[table] new_dqm_object = DataQualityMetric( hpo=name, table_or_class=table_or_class_name, metric_type=metric_type, value=data, data_quality_dimension=dqm_type, date=date) dqm_objects.append(new_dqm_object) return dqm_objects, columns def create_dqm_list(dfs, file_names, datetimes, user_choice, percent_bool, hpo_names): """ Function is used to create all of the possible 'DataQualityMetric' objects that are needed given all of the inputted data. Parameters ---------- dfs (list): list of pandas dataframes. each dataframe contains info about data quality for all of the sites for a date. each index of the list should represent a particular date's metrics. file_names (list): list of the user-specified Excel files that are in the current directory. Files are analytics reports to be scanned. datetimes (list): list of datetime objects that represent the dates of the files that are being ingested user_choies (string): represents the sheet from the analysis reports whose metrics will be compared over time percent_bool (bool): determines whether the data will be seen as 'percentage complete' or individual instances of a particular error hpo_names (list): list of the strings that should go into an HPO ID column. for use in generating subsequent dataframes. Return ------- dqm_list (lst): list of DataQualityMetric objects """ dqm_list = [] # creating the DQM objects and assigning to HPOs for dataframe, file_name, date in zip(dfs, file_names, datetimes): dqm_objects, col_names = create_dqm_objects_for_sheet( dataframe=dataframe, hpo_names=hpo_names, user_choice=user_choice, metric_is_percent=percent_bool, date=date) dqm_list.extend(dqm_objects) return dqm_list ``` #### File: cleaning_rules/deid/genaralize_cope_insurance_answers.py ```python import logging # Project imports from cdr_cleaner.cleaning_rules.base_cleaning_rule import BaseCleaningRule from constants.cdr_cleaner import clean_cdr as cdr_consts from common import JINJA_ENV, OBSERVATION from utils import pipeline_logging LOGGER = logging.getLogger(__name__) ANSWER_GENERALIZATION_QUERY = JINJA_ENV.from_string(""" UPDATE `{{project_id}}.{{dataset_id}}.observation` SET value_source_concept_id = 1333127, value_as_concept_id = 1333127, value_source_value = 'cope_a_33' WHERE observation_source_concept_id = 1332737 AND value_source_concept_id IN (1332904, 1333140) """) REMOVE_DUPLICATE_GENERALIZED_ANSWERS = JINJA_ENV.from_string(""" DELETE FROM `{{project_id}}.{{dataset_id}}.observation` WHERE observation_id IN ( SELECT observation_id FROM ( SELECT observation_id, ROW_NUMBER() OVER(PARTITION BY person_id ORDER BY observation_date DESC) AS rn FROM `{{project_id}}.{{dataset_id}}.observation` WHERE (observation_source_concept_id = 1332737 AND value_source_concept_id = 1333127 AND value_as_concept_id = 1333127 AND value_source_value = 'cope_a_33')) WHERE rn <> 1) """) class GeneralizeCopeInsuranceAnswers(BaseCleaningRule): def __init__(self, project_id, dataset_id, sandbox_dataset_id): """ Initialize the class with proper information. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! """ desc = "This cleaning rules generalizes answers to COPE insurance question." super().__init__(issue_numbers=['DC1665'], description=desc, affected_datasets=[cdr_consts.REGISTERED_TIER_DEID], affected_tables=[OBSERVATION], project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id) def get_sandbox_tablenames(self): raise NotImplementedError("Please fix me.") def get_query_specs(self, *args, **keyword_args): """ Interface to return a list of query dictionaries. :returns: a list of query dictionaries. Each dictionary specifies the query to execute and how to execute. The dictionaries are stored in list order and returned in list order to maintain an ordering. """ insurance_answers_generalization_query = dict() insurance_answers_generalization_query[ cdr_consts.QUERY] = ANSWER_GENERALIZATION_QUERY.render( project_id=self.project_id, dataset_id=self.dataset_id) generalized_answers_deduplication_query = dict() generalized_answers_deduplication_query[ cdr_consts.QUERY] = REMOVE_DUPLICATE_GENERALIZED_ANSWERS.render( project_id=self.project_id, dataset_id=self.dataset_id) return [ insurance_answers_generalization_query, generalized_answers_deduplication_query ] def validate_rule(self, client, *args, **keyword_args): """ Validates the cleaning rule which deletes or updates the data from the tables Method to run validation on cleaning rules that will be updating the values. For example: if your class updates all the datetime fields you should be implementing the validation that checks if the date time values that needs to be updated no longer exists in the table. if your class deletes a subset of rows in the tables you should be implementing the validation that checks if the count of final final row counts + deleted rows should equals to initial row counts of the affected tables. Raises RunTimeError if the validation fails. """ raise NotImplementedError("Please fix me.") def setup_rule(self, client, *args, **keyword_args): """ Load required resources prior to executing cleaning rule queries. Method to run data upload options before executing the first cleaning rule of a class. For example, if your class requires loading a static table, that load operation should be defined here. It SHOULD NOT BE defined as part of get_query_specs(). """ pass def setup_validation(self, client, *args, **keyword_args): """ Run required steps for validation setup Method to run to setup validation on cleaning rules that will be updating or deleting the values. For example: if your class updates all the datetime fields you should be implementing the logic to get the initial list of values which adhere to a condition we are looking for. if your class deletes a subset of rows in the tables you should be implementing the logic to get the row counts of the tables prior to applying cleaning rule """ raise NotImplementedError("Please fix me.") if __name__ == '__main__': import cdr_cleaner.args_parser as parser import cdr_cleaner.clean_cdr_engine as clean_engine ARGS = parser.parse_args() pipeline_logging.configure(level=logging.DEBUG, add_console_handler=True) if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(GeneralizeCopeInsuranceAnswers,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(GeneralizeCopeInsuranceAnswers,)]) ``` #### File: cdr_cleaner/cleaning_rules/field_mapping.py ```python import re from collections import OrderedDict from io import open import resources from cdr_cleaner.cleaning_rules import domain_mapping from cdr_cleaner.cleaning_rules.domain_mapping import DOMAIN_TABLE_NAMES, get_field_mappings,\ exist_domain_mappings, NULL_VALUE from resources import get_domain_id_field, get_domain NAME_FIELD = 'name' FIELD_MODE = 'mode' FIELD_REQUIRED = 'required' TYPE_CONCEPT_SUFFIX = '_type_concept_id' DOMAIN_COMMON_FIELDS = 'common_fields' DOMAIN_SPECIFIC_FIELDS = 'specific_fields' DOMAIN_DATE_FIELDS = 'date_fields' COMMON_DOMAIN_FIELD_SUFFIXES = [ 'person_id', 'visit_occurrence_id', 'provider_id', '_concept_id', '_type_concept_id', '_source_value', '_source_concept_id' ] DATE_FIELD_SUFFIXES = [ '_start_date', '_start_datetime', '_end_date', '_end_datetime', '_date', '_datetime' ] ATTRIBUTE_MAPPING_TEMPLATE = '{src_table},{dest_table},{src_field},{dest_field},{translation}' CDM_TABLE_SCHEMAS = resources.cdm_schemas(False, False) FIELD_MAPPING_HEADER = 'src_table,dest_table,src_field,dest_field,translation\n' def generate_field_mappings(_src_table, _dest_table, src_table_fields, dest_table_fields): """ This functions generates a list of field mappings between the src_table and dest_table :param _src_table: the source CDM table :param _dest_table: the destination CDM table :param src_table_fields: the dictionary that contains all the source fields (common fields, date fields and domain specific fields) :param dest_table_fields: the dictionary that contains all the destination fields (common fields, date fields and domain specific fields) :return: a list of field mappings between _src_table and _dest_table """ _field_mappings = OrderedDict() for field_type in dest_table_fields: if field_type == DOMAIN_SPECIFIC_FIELDS: specific_field_mappings = resolve_specific_field_mappings( _src_table, _dest_table, dest_table_fields[DOMAIN_SPECIFIC_FIELDS]) _field_mappings.update(specific_field_mappings) elif field_type == DOMAIN_DATE_FIELDS: date_field_mappings = resolve_date_field_mappings( src_table_fields[DOMAIN_DATE_FIELDS], dest_table_fields[DOMAIN_DATE_FIELDS]) _field_mappings.update(date_field_mappings) else: common_field_mappings = resolve_common_field_mappings( src_table_fields[DOMAIN_COMMON_FIELDS], dest_table_fields[DOMAIN_COMMON_FIELDS]) _field_mappings.update(common_field_mappings) return _field_mappings def resolve_common_field_mappings(src_common_fields, dest_common_fields): """ This function generates a list of field mappings for common domain fields. :param src_common_fields: a dictionary that contains the source common fields :param dest_common_fields: a dictionary that contains the destination common fields :return: """ common_field_mappings = OrderedDict() for field_suffix in dest_common_fields: _dest_field = dest_common_fields[field_suffix] _src_field = src_common_fields[ field_suffix] if field_suffix in src_common_fields else NULL_VALUE common_field_mappings[_dest_field] = _src_field return common_field_mappings def resolve_specific_field_mappings(_src_table, _dest_table, _dest_specific_fields): """ This function generates a list of field mappings between _src_table and _dest_table for the domain specific fields. E.g. The fields value_as_number and value_as_concept_id can be mapped between observation and measurement. :param _src_table: the source CDM table :param _dest_table: the destination CDM table :param _dest_specific_fields: an array that contains the specific destination fields :return: """ specific_field_mappings = OrderedDict() # If the src_table and dest_table are the same, map all the fields onto themselves. if _src_table == _dest_table: for dest_specific_field in _dest_specific_fields: specific_field_mappings[dest_specific_field] = dest_specific_field else: # Retrieve the field mappings and put them into the dict specific_field_mappings.update( get_field_mappings(_src_table, _dest_table)) # For dest_specific_field that is not defined, map it to NULL for dest_specific_field in _dest_specific_fields: if dest_specific_field not in specific_field_mappings: specific_field_mappings[dest_specific_field] = NULL_VALUE return specific_field_mappings def resolve_date_field_mappings(src_date_fields, dest_date_fields): """ This function generates a list of date field mappings based on simple heuristics. 1. if numbers of date fields are equal between src_date_fields and dest_date_fields, that means both have either two date fields (domain_date, domain_datetime) or four date fields (domain_start_date, domain_start_datetime, domain_end_date, domain_end_datetime). So we can map the corresponding date fields to each other. 2. if numbers of date fields are not equal, one must have two fields (domain_date, domain_datetime), and the other must have four fields (domain_start_date, domain_start_datetime, domain_end_date, domain_end_datetime). We need to map the domain_date to domain_start_date and domain_datetime to domain_start_datetime :param src_date_fields: an array that contains the source date fields :param dest_date_fields: an array that contains the destination date fields :return: a list of date field mappings """ date_field_mappings = OrderedDict() if len(src_date_fields) == len(dest_date_fields): for src_date_suffix in src_date_fields: if src_date_suffix in dest_date_fields: _src_field = src_date_fields[src_date_suffix] _dest_field = dest_date_fields[src_date_suffix] date_field_mappings[_dest_field] = _src_field else: for dest_date_suffix in dest_date_fields: if '_end' in dest_date_suffix: src_date_suffix = None elif '_start' in dest_date_suffix: src_date_suffix = dest_date_suffix[len('_start'):] else: src_date_suffix = '_start{}'.format(dest_date_suffix) _src_field = src_date_fields[ src_date_suffix] if src_date_suffix is not None else NULL_VALUE _dest_field = dest_date_fields[dest_date_suffix] date_field_mappings[_dest_field] = _src_field return date_field_mappings def create_domain_field_dict(): """ This function categorizes the CDM table fields and puts them into different 'buckets' of the dictionary. The purpose of creating this dictionary is to facilitate the mapping of the fields in the downstream process. person_id :return: a dictionary that contains CDM table fields """ domain_fields = OrderedDict() for domain_table in domain_mapping.DOMAIN_TABLE_NAMES: _field_mappings = OrderedDict() common_field_mappings = OrderedDict() date_field_mappings = OrderedDict() specific_fields = [] domain = get_domain(domain_table) domain_id_field = get_domain_id_field(domain_table) for field_name in [ field_name for field_name in get_domain_fields(domain_table) if field_name != domain_id_field ]: # Added a special check for drug_exposure because the drug_exposure columns don't follow the same pattern # E.g. drug_exposure_start_time doesn't follow the pattern {domain}_start_datetime if field_name.find(domain_table) != -1: field_suffix = re.sub(domain_table, '', field_name) else: field_suffix = re.sub(domain.lower(), '', field_name) # Put different types of fields into dictionary if field_suffix in COMMON_DOMAIN_FIELD_SUFFIXES: common_field_mappings[field_suffix] = field_name elif field_suffix in DATE_FIELD_SUFFIXES: date_field_mappings[field_suffix] = field_name elif field_name in COMMON_DOMAIN_FIELD_SUFFIXES: common_field_mappings[field_name] = field_name elif field_name != domain_id_field: specific_fields.append(field_name) _field_mappings[DOMAIN_COMMON_FIELDS] = common_field_mappings _field_mappings[DOMAIN_SPECIFIC_FIELDS] = specific_fields _field_mappings[DOMAIN_DATE_FIELDS] = date_field_mappings domain_fields[domain_table] = _field_mappings return domain_fields def get_domain_fields(_domain_table): """ This function retrieves all field names of a CDM table :param _domain_table: :return: """ fields = CDM_TABLE_SCHEMAS[_domain_table] return [field[NAME_FIELD] for field in fields] def is_field_required(_domain_table, field_name): """ The function checks if the field is nullable :param _domain_table: the name of the domain table :param field_name: the name of the field :return: """ fields = CDM_TABLE_SCHEMAS[_domain_table] for field in fields: if field[NAME_FIELD] == field_name: return field[FIELD_MODE] == FIELD_REQUIRED return False if __name__ == '__main__': with open(resources.field_mappings_replaced_path, 'w') as fr: fr.write(FIELD_MAPPING_HEADER) field_dict = create_domain_field_dict() for src_table in DOMAIN_TABLE_NAMES: for dest_table in DOMAIN_TABLE_NAMES: if src_table == dest_table or exist_domain_mappings( src_table, dest_table): field_mappings = generate_field_mappings( src_table, dest_table, field_dict[src_table], field_dict[dest_table]) for dest_field, src_field in field_mappings.items(): translation = 1 if TYPE_CONCEPT_SUFFIX in src_field \ and TYPE_CONCEPT_SUFFIX in dest_field \ and src_table != dest_table else 0 field_mapping = ATTRIBUTE_MAPPING_TEMPLATE.format( src_table=src_table, dest_table=dest_table, src_field=src_field, dest_field=dest_field, translation=translation) fr.write(field_mapping) fr.write('\n') fr.close() ``` #### File: cdr_cleaner/cleaning_rules/null_concept_ids_for_numeric_ppi.py ```python import logging # Project imports from cdr_cleaner.cleaning_rules.base_cleaning_rule import BaseCleaningRule from common import OBSERVATION, JINJA_ENV from constants.cdr_cleaner import clean_cdr as cdr_consts LOGGER = logging.getLogger(__name__) SAVE_TABLE_NAME = "dc_703_obs_changed_rows_saved" # Query to create tables in sandbox with the rows that will be removed per cleaning rule SANDBOX_QUERY = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox_dataset}}.{{intermediary_table}}` AS ( SELECT * FROM `{{project}}.{{dataset}}.observation` WHERE questionnaire_response_id IS NOT NULL AND value_as_number IS NOT NULL AND (value_source_concept_id IS NOT NULL OR value_as_concept_id IS NOT NULL)) """) CLEAN_NUMERIC_PPI_QUERY = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{dataset}}.observation` AS ( SELECT observation_id, person_id, observation_concept_id, observation_date, observation_datetime, observation_type_concept_id, value_as_number, CASE WHEN questionnaire_response_id IS NOT NULL AND value_as_number IS NOT NULL AND (value_source_concept_id IS NOT NULL OR value_as_concept_id IS NOT NULL) THEN NULL ELSE value_as_string END AS value_as_string, CASE WHEN questionnaire_response_id IS NOT NULL AND value_as_number IS NOT NULL AND (value_source_concept_id IS NOT NULL OR value_as_concept_id IS NOT NULL) THEN NULL ELSE value_as_concept_id END AS value_as_concept_id, qualifier_concept_id, unit_concept_id, provider_id, visit_occurrence_id, observation_source_value, observation_source_concept_id, unit_source_value, qualifier_source_value, CASE WHEN questionnaire_response_id IS NOT NULL AND value_as_number IS NOT NULL AND (value_source_concept_id IS NOT NULL OR value_as_concept_id IS NOT NULL) THEN NULL ELSE value_source_concept_id END AS value_source_concept_id, CASE WHEN questionnaire_response_id IS NOT NULL AND value_as_number IS NOT NULL AND (value_source_concept_id IS NOT NULL OR value_as_concept_id IS NOT NULL) THEN NULL ELSE value_source_value END AS value_source_value, questionnaire_response_id FROM {{project}}.{{dataset}}.observation )""") class NullConceptIDForNumericPPI(BaseCleaningRule): """ Nulls answer concept_ids for numeric PPI questions """ def __init__(self, project_id, dataset_id, sandbox_dataset_id): """ Initialize the class with proper information. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! """ desc = ( 'Nulls answer concept_ids for numeric PPI questions if:\n' '(1) questionnaire_response_id is not null\n' '(2) value_as_number is not null\n' '(3) value_source_concept_id or value_as_concept_id is not null') super().__init__(issue_numbers=['DC-537', 'DC-703', 'DC-1098'], description=desc, affected_datasets=[cdr_consts.RDR], project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id, affected_tables=[OBSERVATION]) def get_query_specs(self): """ Return a list of dictionary query specifications. :return: A list of dictionaries. Each dictionary contains a single query and a specification for how to execute that query. The specifications are optional but the query is required. """ save_changed_rows = { cdr_consts.QUERY: SANDBOX_QUERY.render(project=self.project_id, dataset=self.dataset_id, sandbox_dataset=self.sandbox_dataset_id, intermediary_table=SAVE_TABLE_NAME), } clean_numeric_ppi_query = { cdr_consts.QUERY: CLEAN_NUMERIC_PPI_QUERY.render(project=self.project_id, dataset=self.dataset_id), } return [save_changed_rows, clean_numeric_ppi_query] def setup_rule(self, client): """ Function to run any data upload options before executing a query. """ pass def get_sandbox_tablenames(self): return [SAVE_TABLE_NAME] def setup_validation(self, client): """ Run required steps for validation setup This abstract method was added to the base class after this rule was authored. This rule needs to implement logic to setup validation on cleaning rules that will be updating or deleting the values. Until done no issue exists for this yet. """ raise NotImplementedError("Please fix me.") def validate_rule(self, client): """ Validates the cleaning rule which deletes or updates the data from the tables This abstract method was added to the base class after this rule was authored. This rule needs to implement logic to run validation on cleaning rules that will be updating or deleting the values. Until done no issue exists for this yet. """ raise NotImplementedError("Please fix me.") if __name__ == '__main__': import cdr_cleaner.clean_cdr_engine as clean_engine import cdr_cleaner.args_parser as parser ARGS = parser.parse_args() if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(NullConceptIDForNumericPPI,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(NullConceptIDForNumericPPI,)]) ``` #### File: cdr_cleaner/cleaning_rules/remove_ehr_data_past_deactivation_date.py ```python import logging # Third party imports import google.cloud.bigquery as gbq # Project imports from utils import bq, pipeline_logging import utils.participant_summary_requests as psr import retraction.retract_deactivated_pids as rdp import retraction.retract_utils as ru from constants.retraction.retract_deactivated_pids import DEACTIVATED_PARTICIPANTS LOGGER = logging.getLogger(__name__) DEACTIVATED_PARTICIPANTS_COLUMNS = [ 'participantId', 'suspensionStatus', 'suspensionTime' ] def remove_ehr_data_queries(client, api_project_id, project_id, dataset_id, sandbox_dataset_id): """ Sandboxes and drops all EHR data found for deactivated participants after their deactivation date :param client: BQ client :param api_project_id: Project containing the RDR Participant Summary API :param project_id: Identifies the project containing the target dataset :param dataset_id: Identifies the dataset to retract deactivated participants from :param sandbox_dataset_id: Identifies the sandbox dataset to store records for dataset_id :returns queries: List of query dictionaries """ # gets the deactivated participant dataset to ensure it's up-to-date df = psr.get_deactivated_participants(api_project_id, DEACTIVATED_PARTICIPANTS_COLUMNS) # To store dataframe in a BQ dataset table named _deactivated_participants destination_table = f'{sandbox_dataset_id}.{DEACTIVATED_PARTICIPANTS}' psr.store_participant_data(df, project_id, destination_table) fq_deact_table = f'{project_id}.{destination_table}' deact_table_ref = gbq.TableReference.from_string(f"{fq_deact_table}") LOGGER.info(f"Retracting deactivated participants from '{dataset_id}'") LOGGER.info( f"Using sandbox dataset '{sandbox_dataset_id}' for '{dataset_id}'") # creates sandbox and truncate queries to run for deactivated participant data drops queries = rdp.generate_queries(client, project_id, dataset_id, sandbox_dataset_id, deact_table_ref) return queries if __name__ == '__main__': parser = rdp.get_base_parser() parser.add_argument( '-d', '--dataset_id', action='store', dest='dataset_id', help= 'Identifies the target dataset to retract deactivated participant data', required=True) parser.add_argument( '-q', '--api_project_id', action='store', dest='api_project_id', help='Identifies the RDR project for participant summary API', required=True) parser.add_argument('-b', '--sandbox_dataset_id', action='store', dest='sandbox_dataset_id', help='Identifies sandbox dataset to store records', required=True) args = parser.parse_args() pipeline_logging.configure(level=logging.DEBUG, add_console_handler=args.console_log) client = bq.get_client(args.project_id) # keep only datasets existing in project dataset_ids = ru.get_datasets_list(args.project_id, [args.dataset_id]) # dataset_ids should contain only one dataset (unioned_ehr) if len(dataset_ids) == 1: dataset_id = dataset_ids[0] else: raise RuntimeError(f'More than one dataset specified: {dataset_ids}') LOGGER.info( f"Dataset to retract deactivated participants from: {dataset_id}. " f"Using sandbox dataset: {args.sandbox_dataset_id}") deactivation_queries = remove_ehr_data_queries(client, args.api_project_id, args.project_id, dataset_id, args.sandbox_dataset_id) job_ids = [] for query in deactivation_queries: job_id = rdp.query_runner(client, query) job_ids.append(job_id) LOGGER.info( f"Retraction of deactivated participants from {dataset_id} complete") ``` #### File: cdr_cleaner/cleaning_rules/remove_ehr_data_without_consent.py ```python import logging # Third party imports from google.cloud.exceptions import GoogleCloudError # Project imports import common import constants.cdr_cleaner.clean_cdr as cdr_consts from resources import get_person_id_tables from cdr_cleaner.cleaning_rules.base_cleaning_rule import BaseCleaningRule from cdr_cleaner.clean_cdr_utils import get_tables_in_dataset LOGGER = logging.getLogger(__name__) EHR_UNCONSENTED_PARTICIPANTS_LOOKUP_TABLE = '_ehr_unconsented_pids' AFFECTED_TABLES = [ table for table in get_person_id_tables(common.AOU_REQUIRED) if table not in [common.PERSON, common.DEATH] ] UNCONSENTED_PID_QUERY = common.JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox_dataset}}.{{unconsented_lookup}}` AS ( WITH ordered_response AS ( SELECT person_id, value_source_concept_id, observation_datetime, ROW_NUMBER() OVER(PARTITION BY person_id ORDER BY observation_datetime DESC, value_source_concept_id ASC) AS rn FROM `{{project}}.{{dataset}}.observation` WHERE observation_source_value = 'EHRConsentPII_ConsentPermission') SELECT person_id FROM `{{project}}.{{dataset}}.person` WHERE person_id NOT IN ( SELECT person_id FROM ordered_response WHERE rn = 1 AND value_source_concept_id = 1586100) ) """) SANDBOX_ROWS = common.JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox_dataset}}.{{sandbox_table}}` AS ( SELECT * FROM `{{project}}.{{dataset}}.{{domain_table}}` d JOIN `{{project}}.{{dataset}}.{{mapping_domain_table}}` md USING ({{domain_table}}_id) WHERE person_id IN ( SELECT person_id FROM `{{project}}.{{sandbox_dataset}}.{{unconsented_lookup}}`) AND src_dataset_id LIKE '%ehr%' ) """) DROP_ROWS = common.JINJA_ENV.from_string(""" DELETE FROM `{{project}}.{{dataset}}.{{domain_table}}` WHERE {{domain_table}}_id IN ( SELECT {{domain_table}}_id FROM `{{project}}.{{sandbox_dataset}}.{{sandbox_table}}`) """) class RemoveEhrDataWithoutConsent(BaseCleaningRule): """ All EHR data associated with a participant if their EHR consent is not present in the observation table is to be sandboxed and dropped from the CDR. """ def __init__(self, project_id, dataset_id, sandbox_dataset_id): """ Initialize the class with proper information. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! :params: truncation_date: the last date that should be included in the dataset """ desc = ( 'All EHR data associated with a participant if their EHR consent is not present in the observation ' 'table will be sandboxed and dropped from the CDR.') super().__init__(issue_numbers=['DC1644'], description=desc, affected_datasets=[cdr_consts.COMBINED], affected_tables=AFFECTED_TABLES, project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id) def get_query_specs(self): """ Return a list of dictionary query specifications. :return: A list of dictionaries. Each dictionary contains a single query and a specification for how to execute that query. The specifications are optional but the query is required. """ lookup_queries = [] sandbox_queries = [] drop_queries = [] unconsented_lookup_query = { cdr_consts.QUERY: UNCONSENTED_PID_QUERY.render( project=self.project_id, dataset=self.dataset_id, sandbox_dataset=self.sandbox_dataset_id, unconsented_lookup=EHR_UNCONSENTED_PARTICIPANTS_LOOKUP_TABLE ) } lookup_queries.append(unconsented_lookup_query) for table in self.affected_tables: sandbox_query = { cdr_consts.QUERY: SANDBOX_ROWS.render( project=self.project_id, dataset=self.dataset_id, sandbox_dataset=self.sandbox_dataset_id, sandbox_table=self.get_sandbox_tablenames(table), domain_table=table, unconsented_lookup= EHR_UNCONSENTED_PARTICIPANTS_LOOKUP_TABLE, mapping_domain_table=f'_mapping_{table}') } sandbox_queries.append(sandbox_query) drop_query = { cdr_consts.QUERY: DROP_ROWS.render( project=self.project_id, dataset=self.dataset_id, sandbox_dataset=self.sandbox_dataset_id, domain_table=table, sandbox_table=self.get_sandbox_tablenames(table)) } drop_queries.append(drop_query) return lookup_queries + sandbox_queries + drop_queries def setup_rule(self, client): """ Function to run any data upload options before executing a query. """ try: self.affected_tables = get_tables_in_dataset( client, self.project_id, self.dataset_id, self.affected_tables) except GoogleCloudError as error: LOGGER.error(error) raise def setup_validation(self, client): """ Run required steps for validation setup """ raise NotImplementedError("Please fix me.") def validate_rule(self, client): """ Validates the cleaning rule which deletes or updates the data from the tables """ raise NotImplementedError("Please fix me.") def get_sandbox_tablenames(self, table_name): """ Generates sandbox table name for a given domain table """ return f'{self._issue_numbers[0].lower()}_{table_name}' if __name__ == '__main__': import cdr_cleaner.args_parser as parser import cdr_cleaner.clean_cdr_engine as clean_engine ext_parser = parser.get_argument_parser() ARGS = ext_parser.parse_args() if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(RemoveEhrDataWithoutConsent,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, ARGS.cutoff_date, [(RemoveEhrDataWithoutConsent,)]) ``` #### File: cdr_cleaner/cleaning_rules/round_ppi_values_to_nearest_integer.py ```python import logging import constants.cdr_cleaner.clean_cdr as cdr_consts LOGGER = logging.getLogger(__name__) ROUND_PPI_VALUES_QUERY = """ UPDATE `{project}.{dataset}.observation` SET value_as_number = CAST(ROUND(value_as_number) AS INT64) WHERE observation_source_concept_id IN (1585889, 1585890, 1585795, 1585802, 1585820, 1585864, 1585870, 1585873, 1586159, 1586162) AND value_as_number IS NOT NULL """ def get_round_ppi_values_queries(project_id, dataset_id, sandbox_dataset_id=None): """ This function parser the query required to round the PPI numeric values to nearest integer :param project_id: Name of the project :param dataset_id: Name of the dataset where the queries should be run :param sandbox_dataset_id: Identifies the sandbox dataset to store rows #TODO use sandbox_dataset_id for CR :return: """ queries_list = [] query = dict() query[cdr_consts.QUERY] = ROUND_PPI_VALUES_QUERY.format(dataset=dataset_id, project=project_id) queries_list.append(query) return queries_list if __name__ == '__main__': import cdr_cleaner.args_parser as parser import cdr_cleaner.clean_cdr_engine as clean_engine ARGS = parser.parse_args() if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(get_round_ppi_values_queries,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.sandbox_dataset_id, ARGS.dataset_id, [(get_round_ppi_values_queries,)]) ``` #### File: data_steward/cdr_cleaner/reporter.py ```python import csv import logging import os from copy import copy # Third party imports from googleapiclient.errors import HttpError from google.api_core.exceptions import BadRequest from google.auth.exceptions import DefaultCredentialsError # Project imports import cdr_cleaner.args_parser as cleaning_parser import cdr_cleaner.clean_cdr as control import cdr_cleaner.clean_cdr_engine as engine import constants.cdr_cleaner.clean_cdr as cdr_consts import constants.cdr_cleaner.reporter as report_consts LOGGER = logging.getLogger(__name__) def parse_args(raw_args=None): """ Parse command line arguments for the cdr_cleaner package reporting utility. :param raw_args: The argument to parse, if passed as a list form another module. If None, the command line is parsed. :returns: a namespace object for the given arguments. """ parser = cleaning_parser.get_report_parser() return parser.parse_args(raw_args) def get_function_info(func, fields_list): """ For a function, provide the info that can be provided. Defaults all requested fields to 'unknown' values. Adds a 'name' and 'module' field even if not requested to give more information in the clean rules report. Adds the documentation string of the function only if a description is requested. :param func: The function that is part of the clean rules report. :param fields_list: The list of fields the user requested. :return: A dictionary of values representing the known and requested fields for the given function. """ func_info = dict() for field in fields_list: func_info[field] = report_consts.UNKNOWN if report_consts.NAME not in fields_list: LOGGER.info( f"Adding '{report_consts.NAME}' field to notify report reader this " f"function ({func.__qualname__}), " "needs to be implemented as a class.") func_info[report_consts.NAME] = func.__name__ if report_consts.MODULE not in fields_list: LOGGER.info( f"Adding '{report_consts.MODULE}' field to notify report reader this " f"function ({func.__qualname__}) " "needs to be implemented as a class.") func_info[report_consts.MODULE] = func.__module__ if report_consts.DESCRIPTION in fields_list: func_info[report_consts.DESCRIPTION] = func.__doc__ return func_info def get_stage_elements(data_stage, fields_list): """ Return the field info for rules defined for this data_stage. For the given data_stage, this will determine the values of the requested fields. This information will be returned as a list of dictionaries to preserve the information order. Each dictionary contains values for the report for a single cleaning rule. :param data_stage: The data stage to report for. :param fields_list: The user defined fields to report back. :returns: a list of dictionaries representing the requested fields. """ report_rows = [] for rule in control.DATA_STAGE_RULES_MAPPING.get(data_stage, []): rule_info = {} try: clazz = rule[0] instance = clazz('foo', 'bar', 'baz') LOGGER.info(f"{clazz} ducktyped to a class") except (RuntimeError, TypeError, HttpError, BadRequest, DefaultCredentialsError): LOGGER.info(f"{rule} did NOT ducktype to a class") rule_info = get_function_info(clazz, fields_list) report_rows.append(rule_info) else: try: # this is a class _ = instance.get_query_specs() LOGGER.info(f"{clazz} is a class") for field in fields_list: try: value = 'NO DATA' if field in report_consts.FIELDS_PROPERTIES_MAP: func = report_consts.FIELDS_PROPERTIES_MAP[field] value = getattr(instance, func, 'no data') elif field in report_consts.FIELDS_METHODS_MAP: func = report_consts.FIELDS_METHODS_MAP[field] value = getattr(instance, func, 'no data')() elif field in report_consts.CLASS_ATTRIBUTES_MAP: func = report_consts.CLASS_ATTRIBUTES_MAP[field] value = None for item in func.split('.'): if not value: value = getattr(instance, item) else: value = getattr(value, item) rule_info[field] = value except AttributeError: # an error occurred trying to access an expected attribute. # did the base class definition change recently? LOGGER.exception( f'An error occurred trying to get the value for {field}' ) rule_info[field] = report_consts.UNKNOWN except (TypeError, AttributeError): # an error occurred indicating this is not a rule extending the # base cleaning rule. provide the info we can and move on. LOGGER.exception(f'{clazz} is not a class') # this is a function rule_info = get_function_info(clazz, fields_list) report_rows.append(rule_info) return report_rows def separate_sql_statements(unformatted_values): """ Separate SQL statements into items with other identical fields. This must maintain the SQL statement order. For example, if the user requests the fields 'name module sql', the input for this function will be a list of dictionaries of the where each dictionary will have the keys, '{name: <value>, module: <value>, sql: "unknown" or [{dictionary attributes}]}'. The purpose of this function is to break into the 'sql' values (because a cleaning rule may contain more than one sql statement) and copy the other field values. For example, the following input: [{'name': 'foo', 'sql':[{'query': 'q1',...},{'query': 'q2'...}]}] Should be formatted as: [{'name': 'foo', 'sql': 'q1'} {'name': 'foo', 'sql': 'q2'}] """ formatted_values = [] for rule_values in unformatted_values: sql_list = [] # gather the queries as a list sql_value = rule_values.get(report_consts.SQL, []) for query_dict in sql_value: try: sql_list.append( query_dict.get(report_consts.QUERY, report_consts.UNKNOWN)) except AttributeError: if sql_value == report_consts.UNKNOWN: sql_list.append(report_consts.UNKNOWN) break else: raise if sql_list: # generate a dictionary for each query for query in sql_list: # get a fresh copy for each rule. separated = copy(rule_values) separated[report_consts.SQL] = query.strip() formatted_values.append(separated) else: separated = copy(rule_values) separated[report_consts.SQL] = report_consts.UNKNOWN formatted_values.append(separated) return formatted_values def format_values(rules_values, fields_list): """ Format the fields' values for input to the DictWriter. This formats fields whose values are lists as joined strings. If the sql field is chosen, a line break is used to joing the sql strings. :param rules_values: The list of dictionaries containing field/value pairs for each field specified via arguments for each cleaning rule. """ formatted_values = [] if report_consts.SQL in fields_list: LOGGER.debug("SQL field exists") rules_values = separate_sql_statements(rules_values) for rule_values in rules_values: field_values = {} for field, value in rule_values.items(): if isinstance(value, list): try: value = ', '.join(value) except TypeError: LOGGER.exception(f"erroneous field is {field}\n" f"erroneous value is {value}") raise field_values[field] = value formatted_values.append(field_values) return formatted_values def check_field_list_validity(fields_list, required_fields_dict): """ Helper function to create a valid fields list for writing the CSV file. The CSV writer is a dictionary writer. :param fields_list: list of fields provided via the parse arguments command. these are user requested feilds. :param required_fields_dict: The list of dictionaries that are actually generated by the get_stage_elements function. It may have some additional fields that are not user specified. :returns: a list of fields that should be written to the csv file """ known_fields = set() for value_dict in required_fields_dict: keys = value_dict.keys() known_fields.update(keys) final_fields = [field for field in fields_list] for field in known_fields: if field not in fields_list: final_fields.append(field) return final_fields def write_csv_report(output_filepath, stages_list, fields_list): """ Write a csv file for the indicated stages and fields. :param output_filepath: the filepath of a csv file. :param stages_list: a list of strings indicating the data stage to report for. Should match to a stage value in curation/data_steward/constants/cdr_cleaner/clean_cdr.py DataStage. :param fields_list: a list of string fields that will be added to the csv file. """ if not output_filepath.endswith('.csv'): raise RuntimeError(f"This file is not a csv file: {output_filepath}.") required_fields_dict = [{}] output_list = [{}] for stage in stages_list: # get the fields and values required_fields_dict = get_stage_elements(stage, fields_list) # format dictionaries for writing required_fields_dict = format_values(required_fields_dict, fields_list) output_list.extend(required_fields_dict) fields_list = check_field_list_validity(fields_list, output_list) # write the contents to a csv file with open(output_filepath, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fields_list, delimiter=',', lineterminator=os.linesep, quoting=csv.QUOTE_ALL) writer.writeheader() for info in output_list: writer.writerow(info) def main(raw_args=None): """ Entry point for the clean rules reporter module. If you provide a list of arguments and settings, these will be parsed. If you leave this blank, the command line arguments are parsed. This allows this module to be easily called from other python modules. :param raw_args: The list of arguments to parse. Defaults to parsing the command line. """ args = parse_args(raw_args) engine.add_console_logging(args.console_log) if cdr_consts.DataStage.UNSPECIFIED.value in args.data_stage: args.data_stage = [ s.value for s in cdr_consts.DataStage if s is not cdr_consts.DataStage.UNSPECIFIED ] LOGGER.info( f"Data stage was {cdr_consts.DataStage.UNSPECIFIED.value}, so all stages " f"will be reported on: {args.data_stage}") write_csv_report(args.output_filepath, args.data_stage, args.fields) LOGGER.info("Finished the reporting module") if __name__ == '__main__': # run as main main() ``` #### File: data_steward/tools/clean_project_datasets.py ```python import argparse import logging import sys # Third party imports from googleapiclient.errors import HttpError # Project imports from utils import bq logging.basicConfig( stream=sys.stdout, level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") def get_datasets_with_substrings(datasets_list, name_substrings): """ Filters list of datasets with specified substrings (e.g. github usernames) in them :param datasets_list: list of dataset_ids :param name_substrings: identifies substrings that help identify datasets to delete :return: list of dataset_ids with any substring in their dataset_id """ datasets_with_substrings = [] for dataset in datasets_list: if any(name_substring in dataset for name_substring in name_substrings): datasets_with_substrings.append(dataset) return datasets_with_substrings def delete_datasets(project_id, datasets_to_delete_list): """ Deletes datasets using their dataset_ids :param project_id: identifies the project :param datasets_to_delete_list: list of dataset_ids to delete :return: """ failed_to_delete = [] for dataset in datasets_to_delete_list: try: bq.delete_dataset(project_id, dataset) logging.info(f'Deleted dataset {dataset}') except HttpError: logging.exception(f'Could not delete dataset {dataset}') failed_to_delete.append(dataset) logging.info( f'The following datasets could not be deleted: {failed_to_delete}') def run_deletion(project_id, name_substrings): """ Deletes datasets from project containing any of the name_substrings :param project_id: identifies the project :param name_substrings: Identifies substrings that help identify datasets to delete :return: """ all_datasets = [ dataset.dataset_id for dataset in bq.list_datasets(project_id) ] datasets_with_substrings = get_datasets_with_substrings( all_datasets, name_substrings) logging.info(f'Datasets marked for deletion: {datasets_with_substrings}') logging.info('Proceed?') response = get_response() if response == "Y": delete_datasets(project_id, datasets_with_substrings) elif response.lower() == "n": logging.info("Aborting deletion") # Make sure user types Y to proceed def get_response(): """Return input from user denoting yes/no""" prompt_text = 'Please press Y/n\n' response = input(prompt_text) while response not in ('Y', 'n', 'N'): response = input(prompt_text) return response if __name__ == '__main__': parser = argparse.ArgumentParser( description= 'Deletes datasets containing specific strings in the dataset_id.', formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-p', '--project_id', action='store', dest='project_id', help='Identifies the project to delete datasets from', required=True) parser.add_argument( '-n', '--name_substrings', nargs='+', dest='name_substrings', help='Identifies substrings that help identify datasets to delete. ' 'A dataset containing any of these substrings within in their dataset_id will be deleted. ', required=True) args = parser.parse_args() run_deletion(args.project_id, args.name_substrings) ``` #### File: data_steward/utils/slack_alerts.py ```python import sys import os import logging # Third party imports import slack from slack.errors import SlackApiError # environment variable names SLACK_TOKEN = 'SLACK_TOKEN' SLACK_CHANNEL = 'SLACK_CHANNEL' UNSET_SLACK_TOKEN_MSG = 'Slack token not set in environment variable %s' % SLACK_TOKEN UNSET_SLACK_CHANNEL_MSG = 'Slack channel not set in environment variable %s' % SLACK_CHANNEL class SlackConfigurationError(RuntimeError): """ Raised when the required slack variables are not properly configured """ def __init__(self, msg): super(SlackConfigurationError, self).__init__(msg) self.msg = msg def _get_slack_token(): """ Get the token used to interact with the Slack API :raises: SlackConfigurationError: token is not configured :return: configured Slack API token as str """ if SLACK_TOKEN not in os.environ.keys(): raise SlackConfigurationError(UNSET_SLACK_TOKEN_MSG) return os.environ[SLACK_TOKEN] def _get_slack_channel_name(): """ Get name of the Slack channel to post notifications to :raises: SlackConfigurationError: channel name is not configured :return: the configured Slack channel name as str """ if SLACK_CHANNEL not in os.environ.keys(): raise SlackConfigurationError(UNSET_SLACK_CHANNEL_MSG) return os.environ[SLACK_CHANNEL] def is_channel_available(): """ Test if the Slack channel is available :return: """ try: client = _get_slack_client() channel_name = _get_slack_channel_name() response = client.conversations_list(limit=sys.maxsize) if response.status_code == 200: for channel in response.data['channels']: if channel['name'] == channel_name: return True except (SlackConfigurationError, SlackApiError) as e: # if the environment variables are missing or the slack api failed to identify the channel logging.error(e) return False def _get_slack_client(): """ Get web client for Slack :return: WebClient object to communicate with Slack """ slack_token = _get_slack_token() return slack.WebClient(slack_token) def post_message(text): """ Post a system notification :param text: the message to post :return: """ slack_client = _get_slack_client() slack_channel_name = _get_slack_channel_name() return slack_client.chat_postMessage(channel=slack_channel_name, text=text, verify=False) def log_event_factory(job_name=None): # TODO: This is only a temporary solution. The problem is that slack_logging_handler is # set to the WARNING level, calling logging.info would not send the message to the slack # channel. The reason we set it to WARNING is that we don't want to flood the slack # channel with trivial information and only want to get logs at the warning level and # above. We need to replace the below code with the unified logging infrastructure in # the future def log_event(func): display_job_name = job_name if job_name else func.__name__ start_message = f'The {display_job_name} job has started.' end_message = f'The {display_job_name} job has completed successfully.' def wrapper(*args, **kwargs): try: post_message(start_message) logging.info(start_message) returned_val = func(*args, **kwargs) post_message(end_message) logging.info(end_message) return returned_val except (SlackConfigurationError, SlackApiError) as e: # if the environment variables are missing or the slack api failed to identify the # channel logging.exception( f'Slack is not configured for posting messages, refer to playbook. {e}' ) raise return wrapper return log_event ``` #### File: data_steward/tools/load_vocab_test.py ```python import os import shutil import tempfile import unittest from pathlib import Path import mock from google.cloud import storage, bigquery import app_identity from common import CONCEPT, VOCABULARY from tests.test_util import TEST_VOCABULARY_PATH from tools import load_vocab as lv class LoadVocabTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.dataset_id = os.environ.get('UNIONED_DATASET_ID') self.staging_dataset_id = f'{self.dataset_id}_staging' self.bucket = os.environ.get('BUCKET_NAME_FAKE') self.bq_client = bigquery.Client(project=self.project_id) self.gcs_client = storage.Client(project=self.project_id) self.test_vocabs = [CONCEPT, VOCABULARY] # copy files to temp dir where safe to modify self.test_vocab_folder_path = Path(tempfile.mkdtemp()) for vocab in self.test_vocabs: filename = lv._table_name_to_filename(vocab) file_path = os.path.join(TEST_VOCABULARY_PATH, filename) shutil.copy(file_path, self.test_vocab_folder_path) # mock dataset_properties_from_file # using the default properties dataset = self.bq_client.create_dataset( f'{self.project_id}.{self.dataset_id}', exists_ok=True) mock_dataset_properties_from_file = mock.patch( 'tools.load_vocab.dataset_properties_from_file') self.mock_bq_query = mock_dataset_properties_from_file.start() self.mock_bq_query.return_value = { 'access_entries': dataset.access_entries } self.addCleanup(mock_dataset_properties_from_file.stop) @mock.patch('tools.load_vocab.VOCABULARY_TABLES', [CONCEPT, VOCABULARY]) def test_upload_stage(self): lv.main(self.project_id, self.bucket, self.test_vocab_folder_path, self.dataset_id, 'fake_dataset_props.json') expected_row_count = {CONCEPT: 101, VOCABULARY: 52} for dataset in [self.staging_dataset_id, self.dataset_id]: for vocab in self.test_vocabs: content_query = f'SELECT * FROM `{self.project_id}.{dataset}.{vocab}`' content_job = self.bq_client.query(content_query) rows = content_job.result() self.assertEqual(len(list(rows)), expected_row_count[vocab]) def tearDown(self) -> None: # Delete files using a single API request bucket = self.gcs_client.bucket(self.bucket) blob_names = [lv._table_name_to_filename(t) for t in self.test_vocabs] bucket.delete_blobs(blob_names) # Drop tables using a single API request drop_tables_query = '\n'.join([ f'''DROP TABLE IF EXISTS `{self.project_id}.{dataset}.{table}`;''' for dataset in [self.dataset_id, self.staging_dataset_id] for table in self.test_vocabs ]) self.bq_client.query(drop_tables_query).result() # remove the temp dir shutil.rmtree(self.test_vocab_folder_path) ``` #### File: data_steward/utils/sandbox_test.py ```python import os import unittest import app_identity # Project Imports from utils import sandbox from utils.bq import get_client, list_datasets, delete_dataset class SandboxTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.dataset_id = os.environ.get('UNIONED_DATASET_ID') self.sandbox_id = sandbox.get_sandbox_dataset_id(self.dataset_id) # Removing any existing datasets that might interfere with the test self.client = get_client(self.project_id) self.client.delete_dataset(f'{self.project_id}.{self.sandbox_id}', delete_contents=True, not_found_ok=True) def test_create_sandbox_dataset(self): # Create sandbox dataset sandbox_dataset = sandbox.create_sandbox_dataset( self.project_id, self.dataset_id) all_datasets_obj = list_datasets(self.project_id) all_datasets = [d.dataset_id for d in all_datasets_obj] self.assertTrue(sandbox_dataset in all_datasets) # Try to create same sandbox, which now already exists self.assertRaises(RuntimeError, sandbox.create_sandbox_dataset, self.project_id, self.dataset_id) # Remove fake dataset created in project delete_dataset(self.project_id, sandbox_dataset) ``` #### File: data_steward/validation/achilles_test.py ```python import os import unittest import bq_utils import gcs_utils import resources import tests.test_util as test_util from tests.test_util import FAKE_HPO_ID from validation import achilles import validation.sql_wrangle as sql_wrangle # This may change if we strip out unused analyses ACHILLES_LOOKUP_COUNT = 215 ACHILLES_RESULTS_COUNT = 2779 class AchillesTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(test_util.FAKE_HPO_ID) test_util.empty_bucket(self.hpo_bucket) test_util.delete_all_tables(bq_utils.get_dataset_id()) def tearDown(self): test_util.delete_all_tables(bq_utils.get_dataset_id()) test_util.empty_bucket(self.hpo_bucket) def _load_dataset(self): for cdm_table in resources.CDM_TABLES: cdm_file_name = os.path.join(test_util.FIVE_PERSONS_PATH, cdm_table + '.csv') if os.path.exists(cdm_file_name): test_util.write_cloud_file(self.hpo_bucket, cdm_file_name) else: test_util.write_cloud_str(self.hpo_bucket, cdm_table + '.csv', 'dummy\n') bq_utils.load_cdm_csv(FAKE_HPO_ID, cdm_table) def test_load_analyses(self): achilles.create_tables(FAKE_HPO_ID, True) achilles.load_analyses(FAKE_HPO_ID) cmd = sql_wrangle.qualify_tables( 'SELECT DISTINCT(analysis_id) FROM %sachilles_analysis' % sql_wrangle.PREFIX_PLACEHOLDER, FAKE_HPO_ID) result = bq_utils.query(cmd) self.assertEqual(ACHILLES_LOOKUP_COUNT, int(result['totalRows'])) def test_run_analyses(self): # Long-running test self._load_dataset() achilles.create_tables(FAKE_HPO_ID, True) achilles.load_analyses(FAKE_HPO_ID) achilles.run_analyses(hpo_id=FAKE_HPO_ID) cmd = sql_wrangle.qualify_tables( 'SELECT COUNT(1) FROM %sachilles_results' % sql_wrangle.PREFIX_PLACEHOLDER, FAKE_HPO_ID) result = bq_utils.query(cmd) self.assertEqual(int(result['rows'][0]['f'][0]['v']), ACHILLES_RESULTS_COUNT) ``` #### File: data_steward/validation/export_test.py ```python import json import os import unittest import mock import bq_utils import common import gcs_utils from tests import test_util from tests.test_util import FAKE_HPO_ID from validation import export, main BQ_TIMEOUT_RETRIES = 3 class ExportTest(unittest.TestCase): @classmethod def setUpClass(cls): print( '\n**************************************************************') print(cls.__name__) print('**************************************************************') fake_bucket = gcs_utils.get_hpo_bucket(test_util.FAKE_HPO_ID) dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(dataset_id) test_util.get_synpuf_results_files() test_util.populate_achilles(fake_bucket) def setUp(self): self.hpo_bucket = gcs_utils.get_hpo_bucket(FAKE_HPO_ID) def _empty_bucket(self): bucket_items = gcs_utils.list_bucket(self.hpo_bucket) for bucket_item in bucket_items: gcs_utils.delete_object(self.hpo_bucket, bucket_item['name']) def _test_report_export(self, report): data_density_path = os.path.join(export.EXPORT_PATH, report) result = export.export_from_path(data_density_path, FAKE_HPO_ID) return result # TODO more strict testing of result payload. The following doesn't work because field order is random. # actual_payload = json.dumps(result, sort_keys=True, indent=4, separators=(',', ': ')) # expected_path = os.path.join(test_util.TEST_DATA_EXPORT_SYNPUF_PATH, report + '.json') # with open(expected_path, 'r') as f: # expected_payload = f.read() # self.assertEqual(actual_payload, expected_payload) # return result @mock.patch('validation.export.is_hpo_id') def test_export_data_density(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('datadensity') expected_keys = [ 'CONCEPTS_PER_PERSON', 'RECORDS_PER_PERSON', 'TOTAL_RECORDS' ] for expected_key in expected_keys: self.assertTrue(expected_key in export_result) self.assertEqual( len(export_result['TOTAL_RECORDS']['X_CALENDAR_MONTH']), 283) @mock.patch('validation.export.is_hpo_id') def test_export_person(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('person') expected_keys = [ 'BIRTH_YEAR_HISTOGRAM', 'ETHNICITY_DATA', 'GENDER_DATA', 'RACE_DATA', 'SUMMARY' ] for expected_key in expected_keys: self.assertTrue(expected_key in export_result) self.assertEqual( len(export_result['BIRTH_YEAR_HISTOGRAM']['DATA']['COUNT_VALUE']), 72) @mock.patch('validation.export.is_hpo_id') def test_export_achillesheel(self, mock_is_hpo_id): # INTEGRATION TEST mock_is_hpo_id.return_value = True export_result = self._test_report_export('achillesheel') self.assertTrue('MESSAGES' in export_result) self.assertEqual(len(export_result['MESSAGES']['ATTRIBUTENAME']), 14) @mock.patch('validation.export.is_hpo_id') def test_run_export(self, mock_is_hpo_id): # validation/main.py INTEGRATION TEST mock_is_hpo_id.return_value = True folder_prefix = 'dummy-prefix-2018-03-24/' main._upload_achilles_files(FAKE_HPO_ID, folder_prefix) main.run_export(datasource_id=FAKE_HPO_ID, folder_prefix=folder_prefix) bucket_objects = gcs_utils.list_bucket(self.hpo_bucket) actual_object_names = [obj['name'] for obj in bucket_objects] for report in common.ALL_REPORT_FILES: prefix = folder_prefix + common.ACHILLES_EXPORT_PREFIX_STRING + FAKE_HPO_ID + '/' expected_object_name = prefix + report self.assertIn(expected_object_name, actual_object_names) datasources_json_path = folder_prefix + common.ACHILLES_EXPORT_DATASOURCES_JSON self.assertIn(datasources_json_path, actual_object_names) datasources_json = gcs_utils.get_object(self.hpo_bucket, datasources_json_path) datasources_actual = json.loads(datasources_json) datasources_expected = { 'datasources': [{ 'name': FAKE_HPO_ID, 'folder': FAKE_HPO_ID, 'cdmVersion': 5 }] } self.assertDictEqual(datasources_expected, datasources_actual) def test_run_export_without_datasource_id(self): # validation/main.py INTEGRATION TEST with self.assertRaises(RuntimeError): main.run_export(datasource_id=None, target_bucket=None) @mock.patch('validation.export.is_hpo_id') def test_run_export_with_target_bucket_and_datasource_id( self, mock_is_hpo_id): # validation/main.py INTEGRATION TEST mock_is_hpo_id.return_value = True folder_prefix = 'dummy-prefix-2018-03-24/' bucket_nyc = gcs_utils.get_hpo_bucket('nyc') main.run_export(datasource_id=FAKE_HPO_ID, folder_prefix=folder_prefix, target_bucket=bucket_nyc) bucket_objects = gcs_utils.list_bucket(bucket_nyc) actual_object_names = [obj['name'] for obj in bucket_objects] for report in common.ALL_REPORT_FILES: prefix = folder_prefix + common.ACHILLES_EXPORT_PREFIX_STRING + FAKE_HPO_ID + '/' expected_object_name = prefix + report self.assertIn(expected_object_name, actual_object_names) datasources_json_path = folder_prefix + common.ACHILLES_EXPORT_DATASOURCES_JSON self.assertIn(datasources_json_path, actual_object_names) datasources_json = gcs_utils.get_object(bucket_nyc, datasources_json_path) datasources_actual = json.loads(datasources_json) datasources_expected = { 'datasources': [{ 'name': FAKE_HPO_ID, 'folder': FAKE_HPO_ID, 'cdmVersion': 5 }] } self.assertDictEqual(datasources_expected, datasources_actual) def tearDown(self): self._empty_bucket() bucket_nyc = gcs_utils.get_hpo_bucket('nyc') test_util.empty_bucket(bucket_nyc) @classmethod def tearDownClass(cls): dataset_id = bq_utils.get_dataset_id() test_util.delete_all_tables(dataset_id) ``` #### File: cdr_cleaner/cleaning_rules/update_family_history_qa_codes_test.py ```python import unittest import constants.cdr_cleaner.clean_cdr as cdr_consts from cdr_cleaner.cleaning_rules import update_family_history_qa_codes as family_history class UpdateFamilyHistory(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.dataset_id = 'dataset_id' self.project_id = 'project_id' def test_get_update_family_history_qa_queries(self): actual_dict = family_history.get_update_family_history_qa_queries( self.project_id, self.dataset_id) actual = actual_dict[0][cdr_consts.QUERY] expected = family_history.UPDATE_FAMILY_HISTORY_QUERY.format( project_id=self.project_id, dataset_id=self.dataset_id) self.assertEqual(expected, actual) ```
{ "source": "jp3cyc/jam19_underwater_balloon_detect", "score": 3 }
#### File: jp3cyc/jam19_underwater_balloon_detect/detect_object.py ```python import cv2 import numpy as np # 指定した画像(path)の物体を検出し、外接矩形の画像を出力します def detect_contour(path): # 画像を読込 src = cv2.imread(path, cv2.IMREAD_COLOR) hsvLower = np.array([90,100,100]) hsvUpper = np.array([150,255,255]) hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) hsvMask = cv2.inRange(hsv, hsvLower, hsvUpper) srcMasked = cv2.bitwise_and(src, src, mask = hsvMask) cv2.imshow('output1', srcMasked) # グレースケール画像へ変換 gray = cv2.cvtColor(srcMasked, cv2.COLOR_BGR2GRAY) # 2値化 retval, bw = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # 輪郭を抽出 # contours : [領域][Point No][0][x=0, y=1] # cv2.CHAIN_APPROX_NONE: 中間点も保持する # cv2.CHAIN_APPROX_SIMPLE: 中間点は保持しない contours, hierarchy = cv2.findContours(bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) # 矩形検出された数(デフォルトで0を指定) detect_count = 0 # 各輪郭に対する処理 for i in range(0, len(contours)): # 輪郭の領域を計算 area = cv2.contourArea(contours[i]) # ノイズ(小さすぎる領域)と全体の輪郭(大きすぎる領域)を除外 if area < 1e4 : #or 1e8 < area: continue # 外接矩形 if len(contours[i]) > 0: rect = contours[i] x, y, w, h = cv2.boundingRect(rect) cv2.rectangle(src, (x, y), (x + w, y + h), (0, 255, 0), 2) # 外接矩形毎に画像を保存 cv2.imwrite('photos/' + str(detect_count) + '.jpg', src[y:y + h, x:x + w]) detect_count = detect_count + 1 # 外接矩形された画像を表示 cv2.imshow('output', src) cv2.waitKey(0) # 終了処理 cv2.destroyAllWindows() if __name__ == '__main__': detect_contour('photos/RGB.bmp') ```
{ "source": "jp43/DockingToolBox", "score": 2 }
#### File: DockingToolBox/dockbox/dock.py ```python import os import sys import method import shutil import subprocess from glob import glob from mdkit.amber import ambertools from mdkit.utility import reader from mdkit.utility import mol2 from mdkit.utility import utils required_programs = ['chimera', 'dms', 'sphgen_cpp', 'sphere_selector', 'showbox', 'grid', 'dock6'] default_settings = {'probe_radius': '1.4', 'minimum_sphere_radius': '1.4', 'maximum_sphere_radius': '4.0', \ 'grid_spacing': '0.3', 'extra_margin': '2.0', 'attractive_exponent': '6', 'repulsive_exponent': '12', \ 'max_orientations': '10000', 'num_scored_conformers': '5000', 'nposes': '20', 'charge_method': 'gas', 'rmsd': '2.0', 'grid_dir': None} class Dock(method.DockingMethod): def __init__(self, instance, site, options): super(Dock, self).__init__(instance, site, options) self.options['center'] = '\"' + ' '.join(map(str.strip, site[1].split(','))) + '\"' # set box center self.options['site'] = site[0] # set box size self.options['boxsize'] = map(float, map(str.strip, site[2].split(','))) self.options['sphgen_radius'] = str(max(self.options['boxsize'])/2) if self.options['site'] is None: self.options['dockdir'] = 'dock' else: self.options['dockdir'] = 'dock.' + self.options['site'] def write_rescoring_script(self, filename, file_r, files_l): """Rescore using DOCK6 grid scoring function""" locals().update(self.options) self.write_script_ligand_prep() # cat mol2 files into a single mol2 file_all_poses = 'poses.mol2' if self.options['charge_method']: amber_version = utils.check_amber_version() ambertools.run_antechamber(files_l[0], 'pose-1.mol2', at='sybyl', c=self.options['charge_method'], version=amber_version) else: shutil.copyfile(files_l[0], 'pose-1.mol2') for idx, file_l in enumerate(files_l): if idx > 0: if self.options['charge_method']: # if not first one, do not regenerate the charges, copy charges generated the first time coords_l = mol2.get_coordinates(file_l) struct = mol2.Reader('pose-1.mol2').next() struct = mol2.replace_coordinates(struct, coords_l) mol2.Writer().write('pose-%i.mol2'%(idx+1), struct) else: shutil.copyfile(file_l, 'pose-%i.mol2'%(idx+1)) subprocess.check_output("cat pose-%i.mol2 >> %s"%(idx+1, file_all_poses), shell=True) if idx > 0: os.remove('pose-%i.mol2'%(idx+1)) script ="""#!/bin/bash set -e # shift ligand coordinates python prepare_ligand_dock.py pose-1.mol2 pose-1-centered.mol2 %(center)s\n"""%locals() if self.options['grid_dir'] is None: script += """\n# remove hydrogens from target echo "delete element.H write format pdb #0 target_noH.pdb" > removeH.cmd chimera --nogui %(file_r)s removeH.cmd rm -rf removeH.cmd # prepare receptor (add missing h, add partial charges,...) echo "import chimera from DockPrep import prep models = chimera.openModels.list(modelTypes=[chimera.Molecule]) prep(models) from WriteMol2 import writeMol2 writeMol2(models, 'target.mol2')" > dockprep.py chimera --nogui %(file_r)s dockprep.py # generating receptor surface dms target_noH.pdb -n -w %(probe_radius)s -v -o target_noH.ms # generating spheres echo "target_noH.ms R X 0.0 %(maximum_sphere_radius)s %(minimum_sphere_radius)s target_noH_site.sph" > INSPH sphgen_cpp # selecting spheres within a user-defined radius (sphgen_radius) sphere_selector target_noH_site.sph pose-1-centered.mol2 %(sphgen_radius)s # create box - the second argument in the file showbox.in # is the extra margin to also be enclosed to the box (angstroms) echo "Y %(extra_margin)s selected_spheres.sph 1 target_noH_box.pdb" > showbox.in showbox < showbox.in dock6path=`which dock6` vdwfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/vdw_AMBER_parm99.defn'"` flexfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex.defn'"` flexdfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex_drive.tbl'"` # create grid echo "compute_grids yes grid_spacing %(grid_spacing)s output_molecule no contact_score yes energy_score yes energy_cutoff_distance 9999 atom_model a attractive_exponent %(attractive_exponent)s repulsive_exponent %(repulsive_exponent)s distance_dielectric yes dielectric_factor 4 bump_filter yes bump_overlap 0.75 receptor_file target.mol2 box_file target_noH_box.pdb vdw_definition_file $vdwfile score_grid_prefix grid contact_cutoff_distance 4.5" > grid.in grid -i grid.in\n"""%locals() else: # get directory where grid files are located grid_prefix = self.options['grid_dir'] + '/' + self.options['dockdir'] + '/grid' # check if grid file exists if os.path.isfile(grid_prefix+'.in'): # copy grid files to avoid opening the same file from multiple locations for gridfile in glob(grid_prefix+'*'): basename = os.path.basename(gridfile) shutil.copyfile(gridfile, basename) else: raise ValueError('No grid file detected in specified location %s'%self.options['grid_dir']) script += """\ndock6path=`which dock6` vdwfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/vdw_AMBER_parm99.defn'"` flexfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex.defn'"` flexdfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex_drive.tbl'"`\n""" script += """\necho "ligand_atom_file %(file_all_poses)s limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand no use_internal_energy yes internal_energy_rep_exp 12 flexible_ligand no bump_filter no score_molecules yes contact_score_primary no contact_score_secondary no grid_score_primary yes grid_score_secondary no grid_score_rep_rad_scale 1 grid_score_vdw_scale 1 grid_score_es_scale 1 grid_score_grid_prefix grid multigrid_score_secondary no dock3.5_score_secondary no continuous_score_secondary no descriptor_score_secondary no gbsa_zou_score_secondary no gbsa_hawkins_score_secondary no SASA_descriptor_score_secondary no amber_score_secondary no minimize_ligand no atom_model all vdw_defn_file $vdwfile flex_defn_file $flexfile flex_drive_file $flexdfile ligand_outfile_prefix poses_out write_orientations no num_scored_conformers 1 rank_ligands no" > dock6.in dock6 -i dock6.in > dock.out\n"""%locals() # write DOCK6 rescoring script with open(filename, 'w') as ff: ff.write(script) def write_docking_script(self, filename, file_r, file_l): """Dock using DOCK6 flexible docking with grid scoring as primary score""" locals().update(self.options) self.write_script_ligand_prep() if self.options['charge_method']: amber_version = utils.check_amber_version() ambertools.run_antechamber(file_l, 'ligand-ref.mol2', at='sybyl', c=self.options['charge_method'], version=amber_version) else: shutil.copyfile(file_l, 'ligand-ref.mol2') script ="""#!/bin/bash set -e # shift ligand coordinates python prepare_ligand_dock.py ligand-ref.mol2 ligand-ref-centered.mol2 %(center)s\n"""%locals() if self.options['grid_dir'] is None: script += """\n# remove hydrogens from target echo "delete element.H write format pdb #0 target_noH.pdb" > removeH.cmd chimera --nogui %(file_r)s removeH.cmd rm -rf removeH.cmd # prepare receptor (add missing h, add partial charges,...) echo "import chimera from DockPrep import prep models = chimera.openModels.list(modelTypes=[chimera.Molecule]) prep(models) from WriteMol2 import writeMol2 writeMol2(models, 'target.mol2')" > dockprep.py chimera --nogui %(file_r)s dockprep.py # generating receptor surface dms target_noH.pdb -n -w %(probe_radius)s -v -o target_noH.ms # generating spheres echo "target_noH.ms R X 0.0 %(maximum_sphere_radius)s %(minimum_sphere_radius)s target_noH_site.sph" > INSPH sphgen_cpp # selecting spheres within a user-defined radius (sphgen_radius) sphere_selector target_noH_site.sph ligand-ref-centered.mol2 %(sphgen_radius)s # create box - the second argument in the file showbox.in # is the extra margin to also be enclosed to the box (angstroms) echo "Y %(extra_margin)s selected_spheres.sph 1 target_noH_box.pdb" > showbox.in showbox < showbox.in dock6path=`which dock6` vdwfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/vdw_AMBER_parm99.defn'"` flexfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex.defn'"` flexdfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex_drive.tbl'"` # create grid echo "compute_grids yes grid_spacing %(grid_spacing)s output_molecule no contact_score yes energy_score yes energy_cutoff_distance 9999 atom_model a attractive_exponent %(attractive_exponent)s repulsive_exponent %(repulsive_exponent)s distance_dielectric yes dielectric_factor 4 bump_filter yes bump_overlap 0.75 receptor_file target.mol2 box_file target_noH_box.pdb vdw_definition_file $vdwfile score_grid_prefix grid contact_cutoff_distance 4.5" > grid.in grid -i grid.in # create box - the second argument in the file showbox.in # is the extra margin to also be enclosed to the box (angstroms) echo "Y %(extra_margin)s selected_spheres.sph 1 target_noH_box.pdb" > showbox.in showbox < showbox.in\n"""%locals() else: # get directory where grid files are located grid_prefix = self.options['grid_dir'] + '/' + self.options['dockdir'] + '/grid' # check if grid file exists if os.path.isfile(grid_prefix+'.in'): # copy grid files to avoid opening the same file from multiple locations for gridfile in glob(grid_prefix+'*'): basename = os.path.basename(gridfile) shutil.copyfile(gridfile, basename) else: raise ValueError('No grid file detected in specified location %s'%self.options['grid_dir']) sphfile = self.options['grid_dir'] + '/' + self.options['dockdir'] + '/selected_spheres.sph' # check if sphere file exists if os.path.isfile(sphfile): shutil.copyfile(sphfile, 'selected_spheres.sph') else: raise ValueError('No selected_spheres.sph file detected in specified location %s'%self.options['grid_dir']) script += """\ndock6path=`which dock6` vdwfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/vdw_AMBER_parm99.defn'"` flexfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex.defn'"` flexdfile=`python -c "print '/'.join('$dock6path'.split('/')[:-2]) + '/parameters/flex_drive.tbl'"`\n""" script += """\n# flexible docking using grid score as primary score and no secondary score echo "ligand_atom_file ligand-ref-centered.mol2 limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand yes automated_matching yes receptor_site_file selected_spheres.sph max_orientations %(max_orientations)s critical_points no chemical_matching no use_ligand_spheres no use_internal_energy yes internal_energy_rep_exp 12 flexible_ligand yes user_specified_anchor no limit_max_anchors no min_anchor_size 5 pruning_use_clustering yes pruning_max_orients 1000 pruning_clustering_cutoff 100 pruning_conformer_score_cutoff 100 use_clash_overlap yes clash_overlap 0.5 write_growth_tree no bump_filter yes bump_grid_prefix grid max_bumps_anchor 12 max_bumps_growth 12 score_molecules yes contact_score_primary no contact_score_secondary no grid_score_primary yes grid_score_secondary no grid_score_rep_rad_scale 1 grid_score_vdw_scale 1 grid_score_es_scale 1 grid_score_grid_prefix grid multigrid_score_secondary no dock3.5_score_secondary no continuous_score_secondary no descriptor_score_secondary no gbsa_zou_score_secondary no gbsa_hawkins_score_secondary no SASA_descriptor_score_secondary no pbsa_score_secondary no amber_score_secondary no minimize_ligand yes minimize_anchor yes minimize_flexible_growth yes use_advanced_simplex_parameters no simplex_max_cycles 1 simplex_score_converge 0.1 simplex_cycle_converge 1.0 simplex_trans_step 1.0 simplex_rot_step 0.1 simplex_tors_step 10.0 simplex_anchor_max_iterations 1000 simplex_grow_max_iterations 1000 simplex_grow_tors_premin_iterations 0 simplex_random_seed 0 simplex_restraint_min no atom_model all vdw_defn_file $vdwfile flex_defn_file $flexfile flex_drive_file $flexdfile ligand_outfile_prefix poses_out write_orientations no num_scored_conformers %(num_scored_conformers)s write_conformations no cluster_conformations yes cluster_rmsd_threshold %(rmsd)s rank_ligands no" > dock6.in dock6 -i dock6.in\n"""%locals() # write DOCK6 script with open(filename, 'w') as ff: ff.write(script) def extract_docking_results(self, file_s, input_file_r, input_file_l): # save scores if os.path.isfile('poses_out_scored.mol2'): with open('poses_out_scored.mol2', 'r') as ffin: with open(file_s, 'w') as ffout: idx = 0 for line in ffin: if line.startswith('########## Grid Score:'): ffout.write(line.split()[3]+'\n') idx += 1 if idx == int(self.options['nposes']): break # create multiple mol2 files ligname = reader.open('poses_out_scored.mol2').ligname mol2.update_mol2file('poses_out_scored.mol2', 'pose-.mol2', ligname=ligname, multi=True, last=int(self.options['nposes'])) else: open(file_s, 'w').close() def extract_rescoring_results(self, filename, nligands=None): with open(filename, 'a') as ff: with open('dock.out', 'r') as outf: for line in outf: if line.strip().startswith('Grid Score:'): line_s = line.split() if len(line_s) > 2: ff.write(line.split()[2]+'\n') else: ff.write('NaN\n') elif line.strip().startswith('ERROR: Conformation could not be scored.'): ff.write('NaN\n') def write_script_ligand_prep(self): with open('prepare_ligand_dock.py', 'w') as ff: script ="""import os import sys import numpy as np import shutil from mdkit.utility import utils from mdkit.utility import mol2 # read mol2 file mol2file = sys.argv[1] new_mol2file = sys.argv[2] center = map(float,(sys.argv[3]).split()) coords = np.array(mol2.get_coordinates(mol2file)) cog = utils.center_of_geometry(coords) coords = coords - (cog - center) idx = 0 with open(new_mol2file, 'w') as nmol2f: with open(mol2file, 'r') as mol2f: is_structure = False for line in mol2f: if line.startswith('@<TRIPOS>ATOM'): is_structure = True nmol2f.write(line) elif line.startswith('@<TRIPOS>'): is_structure = False nmol2f.write(line) elif is_structure: new_coords = [format(coord, '.4f') for coord in coords[idx]] newline = line[:16] + ' '*(10-len(new_coords[0])) + str(new_coords[0]) + \ ' '*(10-len(new_coords[1])) + str(new_coords[1]) + ' '*(10-len(new_coords[2])) + str(new_coords[2]) + line[46:] nmol2f.write(newline) idx += 1 else: nmol2f.write(line)"""%locals() ff.write(script) ``` #### File: DockingToolBox/dockbox/glide.py ```python import os import sys import glob import shutil import subprocess import numpy as np import method import license from mdkit.utility import reader from mdkit.utility import mol2 required_programs = ['prepwizard', 'glide', 'glide_sort', 'pdbconvert'] default_settings = {'poses_per_lig': '10', 'pose_rmsd': '0.5', 'precision': 'SP', 'use_prepwizard': 'True'} known_settings = {'precision': ['SP', 'XP'], 'use_prepwizard': ['true', 'false', 'yes', 'no']} class Glide(method.DockingMethod): def __init__(self, instance, site, options): super(Glide, self).__init__(instance, site, options) # set box center center = site[1] # set box self.options['grid_center'] = ', '.join(map(str.strip, center.split(','))) # set box size boxsize = site[2] boxsize = map(str.strip, boxsize.split(',')) self.options['innerbox'] = ', '.join(["%i"%int(float(boxsize[idx])) for idx in range(3)]) outerbox = [] for idx, xyz in enumerate(['x', 'y', 'z']): self.options['act'+xyz+'range'] = str("%.1f"%float(boxsize[idx])) outerbox.append(self.options['act'+xyz+'range']) self.options['outerbox'] = ', '.join(outerbox) self.tmpdirline = "" if 'tmpdir' in self.options: self.tmpdirline = "export SCHRODINGER_TMPDIR=%s"%self.options['tmpdir'] if self.options['use_prepwizard'].lower() in ['yes', 'true']: self.use_prepwizard = True elif self.options['use_prepwizard'].lower() in ['no', 'false']: self.use_prepwizard = False else: raise ValueError("Value for use_prepwizard non recognized") def write_docking_script(self, filename, file_r, file_l): """ Write docking script for glide """ locals().update(self.options) if self.use_prepwizard: # prepare protein cmd (the protein structure is already assumed to be minimized/protonated with prepwizard) prepwizard_cmd = license.wrap_command("prepwizard -fix %(file_r)s target.mae"%locals(), 'schrodinger') else: prepwizard_cmd = "structconvert -ipdb %(file_r)s -omae target.mae"%locals() # prepare grid and docking cmd glide_grid_cmd = license.wrap_command("glide grid.in", 'schrodinger') glide_dock_cmd = license.wrap_command("glide dock.in", 'schrodinger') tmpdirline = self.tmpdirline # write glide script with open(filename, 'w') as file: script ="""#!/bin/bash %(tmpdirline)s # (A) Prepare receptor %(prepwizard_cmd)s # (B) Prepare grid echo "USECOMPMAE YES INNERBOX %(innerbox)s ACTXRANGE %(actxrange)s ACTYRANGE %(actyrange)s ACTZRANGE %(actzrange)s GRID_CENTER %(grid_center)s OUTERBOX %(outerbox)s ENTRYTITLE target GRIDFILE grid.zip RECEP_FILE target.mae" > grid.in %(glide_grid_cmd)s # (C) convert ligand to maestro format structconvert -imol2 %(file_l)s -omae lig.mae # (D) perform docking echo "WRITEREPT YES USECOMPMAE YES DOCKING_METHOD confgen POSES_PER_LIG %(poses_per_lig)s POSE_RMSD %(pose_rmsd)s GRIDFILE $PWD/grid.zip LIGANDFILE $PWD/lig.mae PRECISION %(precision)s" > dock.in %(glide_dock_cmd)s"""% locals() file.write(script) def extract_docking_results(self, file_s, input_file_r, input_file_l): """Extract Glide docking results""" if os.path.exists('dock_pv.maegz'): # (1) cmd to extract results subprocess.check_output('glide_sort -r sort.rept dock_pv.maegz -o dock_sorted.mae', shell=True, executable='/bin/bash') # (2) convert to .mol2 subprocess.check_output('mol2convert -n 2: -imae dock_sorted.mae -omol2 dock_sorted.mol2', shell=True, executable='/bin/bash') if os.path.exists('dock_sorted.mol2'): ligname = reader.open(input_file_l).ligname mol2.update_mol2file('dock_sorted.mol2', 'lig-.mol2', ligname=ligname, multi=True) # extract scores with open('dock.rept', 'r') as ffin: with open(file_s, 'w') as ffout: line = ffin.next() while not line.startswith('===='): line = ffin.next() while True: line = ffin.next() if line.strip(): print >> ffout, line[43:51].strip() else: break def get_tmpdir_line(self): if self.options['tmpdir']: line = "export SCHRODINGER_TMPDIR=%(tmpdir)s"%locals() else: line = "" def write_rescoring_script(self, filename, file_r, files_l): """Rescore using Glide SP scoring function""" locals().update(self.options) files_l_joined = ' '.join(files_l) if self.use_prepwizard: # prepare protein cmd (the protein structure is already assumed to be minimized/protonated with prepwizard) prepwizard_cmd = license.wrap_command("prepwizard -fix %(file_r)s target.mae"%locals(), 'schrodinger') else: prepwizard_cmd = "structconvert -ipdb %(file_r)s -omae target.mae"%locals() # prepare grid and scoring cmd glide_grid_cmd = license.wrap_command("glide grid.in", 'schrodinger') # grid prepare glide_dock_cmd = license.wrap_command("glide dock.in", 'schrodinger') # docking command tmpdirline = self.tmpdirline with open(filename, 'w') as file: script ="""#!/bin/bash %(tmpdirline)s cat %(files_l_joined)s > lig.mol2 # (A) Prepare receptor %(prepwizard_cmd)s # (B) Prepare grid echo "USECOMPMAE YES INNERBOX %(innerbox)s ACTXRANGE %(actxrange)s ACTYRANGE %(actyrange)s ACTZRANGE %(actzrange)s GRID_CENTER %(grid_center)s OUTERBOX %(outerbox)s ENTRYTITLE target GRIDFILE grid.zip RECEP_FILE target.mae" > grid.in %(glide_grid_cmd)s # (C) convert ligand to maestro format structconvert -imol2 lig.mol2 -omae lig.mae # (D) perform rescoring echo "WRITEREPT YES USECOMPMAE YES DOCKING_METHOD inplace GRIDFILE $PWD/grid.zip LIGANDFILE $PWD/lig.mae PRECISION SP" > dock.in %(glide_dock_cmd)s"""% locals() file.write(script) def extract_rescoring_results(self, filename, nligands=None): idxs = [] scores = [] if os.path.exists('dock.scor'): with open('dock.scor', 'r') as ffin: line = ffin.next() while not line.startswith('===='): line = ffin.next() while True: line = ffin.next() if line.strip(): idxs.append(int(line[36:42].strip())) scores.append(line[43:51].strip()) else: break scores = np.array(scores) scores = scores[np.argsort(idxs)] else: scores = [ 'NaN' for idx in range(nligands)] with open(filename, 'w') as ffout: for sc in scores: print >> ffout, sc ``` #### File: DockingToolBox/dockbox/method.py ```python import os import sys import stat import shutil import subprocess from glob import glob from mdkit.amber import minimization from mdkit.utility import mol2 import configure class DockingMethod(object): def __init__(self, instance, site, options): """Initialize docking instance""" self.instance = instance self.site = site self.options = options self.program = self.__class__.__name__.lower() def run_docking(self, file_r, file_l, minimize_options=None, cleanup=0, prepare_only=False, skip_docking=False): """Run docking one (file per ligand and receptor)""" curdir = os.getcwd() # find name for docking directory if 'name' in self.options: dockdir = self.options['name'] else: dockdir = self.instance if self.site[0]: dockdir += '.' + self.site[0] if not skip_docking: # create directory for docking (remove directory if exists) shutil.rmtree(dockdir, ignore_errors=True) os.mkdir(dockdir) os.chdir(dockdir) if not skip_docking: print "Starting docking with %s..."%self.program.capitalize() print "The following options will be used:" options_info = "" for key, value in self.options.iteritems(): options_info += str(key) + ': ' + str(value) + ', ' print options_info[:-2] # (A) run docking script_name = "run_" + self.program + ".sh" self.write_docking_script(script_name, file_r, file_l) os.chmod(script_name, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH | stat.S_IXUSR) if prepare_only: return try: # try running docking procedure subprocess.check_output('./' + script_name + " &> " + self.program + ".log", shell=True, executable='/bin/bash') except subprocess.CalledProcessError as e: print e print "Error: check %s file for more details!"%(dockdir+'/'+self.program+'.log') os.chdir(curdir) return if prepare_only: return # (B) extract docking results self.extract_docking_results('score.out', file_r, file_l) # (C) cleanup poses (minimization, remove out-of-box poses) if minimize_options['minimization']: self.backup_files('origin') self.minimize_extracted_poses(file_r, 'score.out', cleanup=cleanup, **minimize_options) self.remove_out_of_range_poses('score.out') # (D) remove intermediate files if required if cleanup >= 1: self.cleanup() os.chdir(curdir) print "Docking with %s done."%self.program.capitalize() def run_rescoring(self, file_r, files_l): """Rescore multiple ligands on one receptor""" curdir = os.getcwd() # get name of rescoring from instance rescordir = self.instance if self.site[0]: rescordir += '.' + self.site[0] # overwrite previous directory if exists shutil.rmtree(rescordir, ignore_errors=True) os.mkdir(rescordir) # change directory os.chdir(rescordir) mol2files = files_l if self.program in configure.single_run_scoring_programs or (self.program == 'colvar' and self.options['type'] == 'sasa'): # if the program rescores in one run, provides a list of files mol2files = [mol2files] if mol2files: # iterate over all the poses for idx, file_l in enumerate(mol2files): # (A) write script script_name = "run_scoring_" + self.program + ".sh" self.write_rescoring_script(script_name, file_r, file_l) os.chmod(script_name, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH | stat.S_IXUSR) # (B) run scoring method try: subprocess.check_output('./' + script_name + ' &> ' + self.program + '.log', shell=True, executable='/bin/bash') except subprocess.CalledProcessError as e: print e.output pass # (C) extract rescoring results if self.program in configure.single_run_scoring_programs: nligands = len(file_l) self.extract_rescoring_results('score.out', nligands=nligands) else: self.extract_rescoring_results('score.out') else: # if no files provided, create an empty score.out file open('score.out', 'w').close() os.chdir(curdir) return rescordir + '/score.out' def get_output_mol2files(self): """Get output mol2files sorted by pose ranking after docking""" filenames_idxs = [] for filename in glob('pose-*.mol2'): suffix, ext = os.path.splitext(filename) filenames_idxs.append(int(suffix.split('-')[-1])) filenames_idxs = sorted(filenames_idxs) mol2files = [] for idx in filenames_idxs: mol2files.append('pose-%s.mol2'%idx) return mol2files def backup_files(self, dir): """Do a backup of output mol2files""" mol2files = self.get_output_mol2files() shutil.rmtree(dir, ignore_errors=True) os.mkdir(dir) for filename in mol2files: shutil.copyfile(filename, dir+'/'+filename) def remove_scores_from_scorefile(self, file_s, indices, nligands=None): """Remove scores of bad poses (failed minimization, out of the box...) from score.out""" if os.path.exists(file_s): new_content = [] with open(file_s, 'r') as sf: for idx, line in enumerate(sf): if idx not in indices: new_content.append(line) if nligands: # consistency check assert nligands == idx+1, "number of ligand mol2files should be equal to number of lines in score.out" with open(file_s, 'w') as sf: for line in new_content: sf.write(line) def minimize_extracted_poses(self, file_r, file_s, cleanup=0, **minimize_options): """Perform AMBER minimization on extracted poses""" mol2files = self.get_output_mol2files() if mol2files: # do energy minimization on ligand minimization.do_minimization_after_docking(file_r, mol2files, keep_hydrogens=True, charge_method=minimize_options['charge_method'],\ ncyc=minimize_options['ncyc'], maxcyc=minimize_options['maxcyc'], cut=minimize_options['cut'], amber_version=minimize_options['amber_version']) failed_idxs = [] # extract results from minimization and purge out for idx, filename_before_min in enumerate(mol2files): suffix, ext = os.path.splitext(filename_before_min) filename = 'em/' + suffix + '-out' + ext if os.path.isfile(filename): # the minimization succeeded shutil.copyfile(filename, filename_before_min) else: # the minimization failed os.remove(filename_before_min) failed_idxs.append(idx) # remove scores of failed poses self.remove_scores_from_scorefile(file_s, failed_idxs, nligands=len(mol2files)) if failed_idxs: # display warning message failed_mol2files = [mol2files[idx] for idx in failed_idxs] print "Warning: minimization of poses %s failed, poses were removed!"%(', '.join(failed_mol2files)) if cleanup >= 1: # if cleanup is more than 1, remove EM directory shutil.rmtree('em', ignore_errors=True) def remove_out_of_range_poses(self, file_s): """Get rid of poses which were predicted outside the box""" mol2files = self.get_output_mol2files() if mol2files: sitename, center, boxsize = self.site # get values of docking box center and boxsize center = map(float, center.split(',')) boxsize = map(float, boxsize.split(',')) out_of_range_idxs = [] for jdx, filename in enumerate(mol2files): is_out = False for coord in mol2.get_coordinates(filename): for idx, value in enumerate(coord): # check if the pose is out of the box if abs(value - center[idx]) > boxsize[idx]*1./2: is_out = True break if is_out: os.remove(filename) out_of_range_idxs.append(jdx) break # remove scores of failed poses self.remove_scores_from_scorefile(file_s, out_of_range_idxs, nligands=len(mol2files)) if out_of_range_idxs: # display warning message out_of_range_mol2files = [mol2files[idx] for idx in out_of_range_idxs] print "Warning: poses %s were found out of the box, poses were removed!"%(', '.join(out_of_range_mol2files)) def cleanup(self): """Remove all intermediate files""" for filename in glob('*'): if os.path.isfile(filename) and not filename.startswith('pose-') and filename != 'score.out': os.remove(filename) def write_rescoring_script(self, script_name, file_r, file_l): pass def extract_rescoring_results(self, filename): pass def write_docking_script(self, script_name, file_r, file_l): pass def extract_docking_results(self, file_r, file_l, file_s, input_file_r): pass class ScoringMethod(DockingMethod): def run_docking(self, file_r, file_l, minimize=False, cleanup=0, extract_only=False): pass def remove_out_of_range_poses(self, file_s): pass def minimize_extracted_poses(self, file_r): pass ```
{ "source": "jp43/mdtools", "score": 3 }
#### File: mdkit/namd/namdtools.py ```python import os def create_constrained_pdbfile(pdbfile, startpdb, ligname): with open(startpdb, 'r') as startfile: with open(pdbfile, 'w') as posresfile: for line in startfile: if line.startswith(('ATOM', 'HETATM')): atom_name = line[12:16].strip() res_name = line[17:20].strip() if res_name == 'WAT': # water molecules newline = line[0:30] + '%8.3f'%0.0 + line[38:] elif res_name in ligname: # atoms of the ligand if atom_name.startswith(('C', 'N', 'O')): newline = line[0:30] + '%8.3f'%50.0 + line[38:] else: newline = line[0:30] + '%8.3f'%0.0 + line[38:] else: # atoms of the protein if atom_name in ['C', 'CA', 'N', 'O']: newline = line[0:30] + '%8.3f'%50.0 + line[38:] else: newline = line[0:30] + '%8.3f'%0.0 + line[38:] else: newline = line print >> posresfile, newline.replace('\n','') def create_steered_constrained_pdbfile(pdbfile, startpdb, ligname): has_found_first_atom = False has_found_last_atom = False # check pdb once to find first and last C alpha atoms with open(startpdb, 'r') as startfile: for line in startfile: if line.startswith(('ATOM', 'HETATM')): atom_name = line[12:16].strip() atom_num = line[6:11].strip() if not has_found_first_atom and atom_name == 'CA': atom_num_first = atom_num has_found_first_atom = True elif atom_name == 'CA': atom_num_last = atom_num has_found_last_atom = True if not has_found_first_atom: raise ValueError("First CA atom not found in %s"%startpdb) if not has_found_last_atom: raise ValueError("Last CA atom not found in %s"%startpdb) with open(startpdb, 'r') as startfile: with open(pdbfile, 'w') as posresfile: for line in startfile: if line.startswith(('ATOM', 'HETATM')): atom_num = line[6:11].strip() if atom_num == atom_num_first: newline = line[0:56] + "0.00 1.00\n" elif atom_num == atom_num_last: newline = line[0:56] + "1.00 0.00\n" else: newline = line[0:56] + "0.00 0.00\n" else: newline = line posresfile.write(newline) ``` #### File: mdkit/utility/mol2.py ```python import os import sys import shutil import subprocess import networkx as nx from utils import center_of_geometry # recognized sections known_section = ['MOLECULE', 'ATOM', 'BOND', 'SUBSTRUCTURE'] class Reader(object): def __init__(self, filename): self.filename = filename self.file = open(filename, 'r') # move to first molecule for line in self.file: if line.startswith('@<TRIPOS>MOLECULE'): break @property def ligname(self): ff = open(self.filename, 'r') first_atom = False ligname = None for line in ff: if line.startswith('@<TRIPOS>ATOM'): first_atom = True elif first_atom: line_s = line.split() if not ligname: ligname = line_s[7] elif line_s[7] != ligname: raise ValueError('Ligand name not consistent between structures') first_atom = False ff.close() return ligname @property def nmolecules(self): ff = open(self.filename, 'r') nmolecules = 0 for line in ff: if line.startswith('@<TRIPOS>MOLECULE'): nmolecules += 1 ff.close() return nmolecules def read(self): struct = self.next() while struct is not None: yield struct struct = self.next() def readlines(self): structs = [] struct = self.next() while struct is not None: structs.append(struct) struct = self.next() return structs def next(self): struct = None for idx, line in enumerate(self.file): # initialize stucture if idx == 0: struct = {} section = 'MOLECULE' struct[section] = [] # new molecule detected if line.startswith('@<TRIPOS>MOLECULE'): break elif line.startswith('@<TRIPOS>'): section = line[9:].strip() struct[section] = [] elif section and line.strip(): if section == 'ATOM': atom = line.split() if len(atom) > 9: atom = atom[:9] struct[section].append(atom) else: struct[section].append(line) elif section and not line.strip(): struct[section].append(line) section = None return struct def close(self): self.file.close() def __iter__(self): return self.read() readline = next class Writer(object): def write(self, filename, structs, mode='w', multi=False, last=None): if not isinstance(structs, list): structs = [structs] if not isinstance(filename, str): raise ValueError('filename should be a string!') if multi: suffix, ext = os.path.splitext(filename) filename = [] for idx, struct in enumerate(structs): if (last and (idx+1) <= last) or not last: filename.append((idx, suffix+str(idx+1)+ext)) else: if len(structs) == 1: filename = [(0, filename)] else: raise ValueError(".mol2 writer not implemented to write a single file \ with multiple structures!") for idx, fname in filename: with open(fname, mode) as ff: for section in known_section: struct = structs[idx] if section in struct: ff.write('@<TRIPOS>'+section+'\n') for line in struct[section]: if section == 'ATOM': newline = '%7s %-5s %9s %9s %9s %-5s %2s %-5s %9s\n'%tuple(line) else: newline = line ff.write(newline) def update_mol2file(inputfile, outputfile, ADupdate=None, multi=False, ligname=None, unique=False, mask=None, remove=None, last=None, shift=None): f = Reader(inputfile) structs = f.readlines() f.close() updated_structs = [] for struct in structs: if ADupdate: struct = update_AD_output_from_original_struct(struct, ADupdate) if shift is not None: struct = shift_coordinates(struct, shift) if ligname: struct = update_ligand_name(struct, ligname) if unique: struct = give_unique_atom_names(struct, mask) if remove: struct = remove_atoms(struct, remove) updated_structs.append(struct) Writer().write(outputfile, updated_structs, multi=multi, last=last) def pdb2mol2(inputfile, outputfile, sample, keep_charges_from=None): # get atom lines in PDB: atom_lines_pdb = [] with open(inputfile, 'r') as pdbf: for line in pdbf: if line.startswith(('ATOM','HETATM')): atom_lines_pdb.append(line) f = Reader(sample) structs = f.readlines() f.close() struct = structs[0] new_struct = struct for idx, line in enumerate(struct['ATOM']): atom_name_mol2 = line[1].lower() is_atom = False for line_pdb in atom_lines_pdb: atom_name_pdb = line_pdb[12:16].strip().lower() if atom_name_pdb == atom_name_mol2: if is_atom: raise ValueError("Mol2 atom name already found in PDB file, your files should have unique atom names!") is_atom = True coords = [coord.strip() + '0' for coord in [line_pdb[30:38], line_pdb[38:46], line_pdb[46:54]]] for jdx in range(3): new_struct['ATOM'][idx][jdx+2] = coords[jdx] if not is_atom: raise IOError("Mol2 atom name not found in PDB file, check your input files!") if keep_charges_from: f_ref = Reader(keep_charges_from) struct_charges = f_ref.readlines()[0] f_ref.close() new_struct['MOLECULE'] = struct_charges['MOLECULE'] for idx, line in enumerate(struct['ATOM']): atom_name_mol2 = line[1].lower() atom_name_mol2_charges = struct_charges['ATOM'][idx][1].lower() if atom_name_mol2 != atom_name_mol2_charges: raise ValueError("Atom names in ref mol2file for charges does not fit names in sample!") else: new_struct['ATOM'][idx][-1] = struct_charges['ATOM'][idx][-1] Writer().write(outputfile, new_struct) def get_graph(inputfile): f = Reader(inputfile) struct = f.next() f.close() G = nx.Graph() for line in struct['ATOM']: sybyl_atom_type = line[5] atom_type = sybyl_atom_type.split('.')[0].upper() G.add_node(int(line[0]), type=atom_type) for line in struct['BOND']: line_s = line.split() node_1 = int(line_s[1]) node_2 = int(line_s[2]) G.add_edge(node_1, node_2) return G def update_ligand_name(struct, ligname): ligname_p = struct['ATOM'][0][-2] new_struct = struct for idx, line in enumerate(struct['ATOM']): new_struct['ATOM'][idx][-2] = ligname if 'SUBSTRUCTURE' in struct: for idx, line in enumerate(struct['SUBSTRUCTURE']): new_struct['SUBSTRUCTURE'][idx] = line.replace(ligname_p, ligname) return new_struct def shift_coordinates(struct, shift): coords = [] for line in struct['ATOM']: coords.append(map(float, line[2:5])) cog = center_of_geometry(coords) center_x, center_y, center_z = cog - shift new_struct = struct for idx, line in enumerate(struct['ATOM']): x, y, z = map(float, line[2:5]) new_struct['ATOM'][idx][2] = "%.4f"%(x-center_x) new_struct['ATOM'][idx][3] = "%.4f"%(y-center_y) new_struct['ATOM'][idx][4] = "%.4f"%(z-center_z) return new_struct def replace_coordinates(struct, coords): new_struct = struct for idx, line in enumerate(struct['ATOM']): x, y, z = coords[idx] new_struct['ATOM'][idx][2] = "%.4f"%x new_struct['ATOM'][idx][3] = "%.4f"%y new_struct['ATOM'][idx][4] = "%.4f"%z return new_struct def is_unique_name(struct): known_atom_names = [] for line in struct['ATOM']: atom_name = line[1] if atom_name not in known_atom_names: known_atom_names.append(atom_name) else: return False return True def update_AD_output_from_original_struct(struct1, filename): # read original structure f = Reader(filename) struct2 = f.next() new_struct = struct2 f.close() for idx, struct in enumerate([struct1, struct2]): if not is_unique_name(struct): raise ValueError("Mol2 structure (%i) should have unique atom names"%(idx+1)) for idx, line2 in enumerate(struct2['ATOM']): for line1 in struct1['ATOM']: if line1[1] == line2[1]: for jdx in range(2,5): new_struct['ATOM'][idx][jdx] = line1[jdx] return new_struct def remove_atoms(struct, atomtype): if not isinstance(atomtype, list): atomtype = [atomtype] new_struct = struct atom_section = [] bond_section = [] jdx = 0 old_atoms_idxs = [] new_atoms_idxs = [] removed_atom_idxs = [] for idx, line in enumerate(struct['ATOM']): old_atoms_idxs.append(line[0]) if line[5] in atomtype: new_atoms_idxs.append('-1') removed_atom_idxs.append(line[0]) else: jdx += 1 new_atoms_idxs.append(str(jdx)) line[0] = jdx atom_section.append(line) natoms = jdx jdx = 0 for line in struct['BOND']: line_s = line.split() origin_atom_id = line_s[1] target_atom_id = line_s[2] if (not origin_atom_id in removed_atom_idxs) and (not target_atom_id in removed_atom_idxs): jdx += 1 line_s[0] = str(jdx) line_s[1] = new_atoms_idxs[old_atoms_idxs.index(origin_atom_id)] line_s[2] = new_atoms_idxs[old_atoms_idxs.index(target_atom_id)] bond_section.append("%4s %4s %4s %-4s\n"%tuple(line_s)) nbonds = jdx line_s = new_struct['MOLECULE'][1].split() line_s[0] = str(natoms) line_s[1] = str(nbonds) new_struct['MOLECULE'][1] = ' ' + ' '.join(line_s) + '\n' new_struct['ATOM'] = atom_section new_struct['BOND'] = bond_section return new_struct def arrange_hydrogens(inputfile, outputfile, path=None): if path and path not in sys.path: sys.path.append(path) from MolKit import Read from PyBabel.atomTypes import AtomHybridization from babel import ArrangeHydrogens mol = Read(inputfile) base, ext = os.path.splitext(inputfile) # remove hydrogens from structure inputfile_noH = base + '_noH' + ext subprocess.check_output('babel -imol2 %s -omol2 %s -d &>/dev/null'%(inputfile,inputfile_noH), shell=True, executable='/bin/bash') molnoH = Read(inputfile_noH) allAtoms = mol.allAtoms allAtomsNoH = molnoH.allAtoms babel = AtomHybridization() babel.assignHybridization(allAtoms) babel.assignHybridization(allAtomsNoH) # get mol2 ids of all atoms and all hydrogens ff = Reader(inputfile) struct = ff.next() hat_mol2_ids = [] at_mol2_ids = [] for line in struct['ATOM']: atom_name = line[5] #print line[2] if atom_name[0] in ['H', 'h']: hat_mol2_ids.append(line[0]) at_mol2_ids.append(line[0]) hat_mol2_ids = map(int, hat_mol2_ids) at_mol2_ids = map(int, at_mol2_ids) # find out the heavy atom each hydrogen is bound with at_with_hat_mol2_ids = [] for id in hat_mol2_ids: for line in struct['BOND']: line_s = line.split() origin_atom_id = int(line_s[1]) target_atom_id = int(line_s[2]) #print origin_atom_id if id == origin_atom_id: at_with_hat_mol2_ids.append(target_atom_id) elif id == target_atom_id: at_with_hat_mol2_ids.append(origin_atom_id) if len(at_with_hat_mol2_ids) != len(hat_mol2_ids): raise ValueError("Each hydrogen should have only one bound! Check you .mol2 file") addh = ArrangeHydrogens() # at_with_hat_idxs are the indices of atoms related to each hydrogen of hat hat, at_with_hat_idxs = addh.addHydrogens(allAtoms, allAtomsNoH) hat_coords = [] hat_done_mol2_ids = [] for idx, at_with_hat_idx in enumerate(at_with_hat_idxs): at_with_hat_mol2_id = at_mol2_ids[at_with_hat_idx] hat_mol2_ids_cur = [hat_mol2_ids[jdx] for jdx, id in enumerate(at_with_hat_mol2_ids) \ if id == at_with_hat_mol2_id] kdx = 0 while hat_mol2_ids_cur[kdx] in hat_done_mol2_ids: kdx += 1 hat_done_mol2_ids.append(hat_mol2_ids_cur[kdx]) hat_coords.append(hat[idx][0]) for line in struct['ATOM']: id = int(line[0]) if id in hat_done_mol2_ids: idx = hat_done_mol2_ids.index(id) line[2:5] = ["%.4f"%coords for coords in hat_coords[idx]] Writer().write(outputfile, struct) os.remove(inputfile_noH) def give_unique_atom_names(struct, mask=None): new_struct = struct known_atom_types = {} for jdx, line in enumerate(struct['ATOM']): if not mask or line[5] in mask: sybyl_atom_type = line[5] atom_type = sybyl_atom_type.split('.')[0].upper() if atom_type in known_atom_types: known_atom_types[atom_type] += 1 else: known_atom_types[atom_type] = 1 new_struct['ATOM'][jdx][1] = atom_type + str(known_atom_types[atom_type]) return new_struct def get_atoms_names(filename): atoms_names = [] with open(filename, 'r') as mol2f: is_structure = False for line in mol2f: if line.startswith('@<TRIPOS>ATOM'): is_structure = True elif line.startswith('@<TRIPOS>'): is_structure = False elif is_structure: line_s = line.split() atoms_names.append(line_s[1]) return atoms_names def get_coordinates(filename, keep_h=True): coords = [] with open(filename, 'r') as mol2f: is_structure = False for line in mol2f: if line.startswith('@<TRIPOS>ATOM'): is_structure = True elif line.startswith('@<TRIPOS>'): is_structure = False elif is_structure: line_s = line.split() if keep_h or line_s[5][0].lower() != 'h': coords.append(map(float,line_s[2:5])) return coords ``` #### File: mdkit/utility/pdb.py ```python import numpy as np import itertools as it _known_entries = [ "ATOM ", "HETATM", "ANISOU", "CRYST1", "COMPND", "MODEL", "ENDMDL", "TER", "HEADER", "TITLE", "REMARK", "CONECT"] class PDBError(Exception): pass class Reader(object): def __init__(self, filename, **kwargs): self.filename = filename self.file = open(filename, 'r') def read(self): struct = self.next() while struct is not None: yield struct struct = self.next() def next(self): struct = None for idx, line in enumerate(self.file): # initialize stucture if idx == 0: struct = {} struct['ATOM'] = [] if line.startswith(('ATOM','HETATM')): line_s = [line[6:11], line[12:16], line[17:20], line[22:26], line[30:38], line[38:46], line[46:54]] struct['ATOM'].append(map(str.strip, line_s)) elif line.startswith('END'): break return struct def _skip(self): try: self.file.next() except StopIteration: return None try: natoms = int(self.file.next()) except StopIteration: raise PDBError("File ended unexpectedly when reading number of atoms.") for atom in it.izip(xrange(natoms), self.file): pass try: self.file.next() except StopIteration: raise PDBError("File ended unexpectedly when reading box line.") return None def readlines(self, *args): if len(args) == 0: configs = [] config = self.next() while config is not None: configs.append(config) config = self.next() elif len(args) == 1: lines = args[0] if isinstance(lines, int): lines = [lines] else: lines = list(set(lines)) lines.sort() lines = np.array(lines) lines = np.hstack((-1, lines)) sklines = np.diff(lines) - 1 configs = [] for skline in sklines: for idx in xrange(skline): self._skip() config = self.next() configs.append(config) else: raise PDBError("invalid number of arguments to readlines") return np.array(configs) def close(self): self.file.close() def __iter__(self): return self.read() readline = next class Writer(object): pass def split_file_rl(file_r, file_l, file_rl, ligname): with open(file_rl, 'r') as frl: with open(file_r, 'w') as fr: with open(file_l, 'w') as fl: for line in frl: if line.startswith(('HETATM', 'ATOM')) and line[17:20].strip() == ligname: fl.write(line) else: fr.write(line) ```
{ "source": "jp4jp4/Fall_Detect", "score": 3 }
#### File: jp4jp4/Fall_Detect/Fall.py ```python import ui def read_data(sender): import motion, location import time, datetime import io import numpy as np import matplotlib.pyplot as plt val = view['switch1'].value if val==True: motion.start_updates() y=0 nx = np.empty(1) ny = np.empty(1) nz = np.empty(1) view['mag'].text = '' view['accel'].text = '' view['gyro'].text = '' view['gravity'].text = '' while (y<=100): time.sleep(.05) x = motion.get_attitude() view['gyro'].text = str(x) + '\n' + view['gyro'].text x = motion.get_gravity() view['gravity'].text = str(x) + '\n' + view['gravity'].text x = motion.get_user_acceleration() nx = np.append(nx,x[0]) ny = np.append(ny,x[1]) nz = np.append(nz,x[2]) view['accel'].text = str(x) + '\n' + view['accel'].text x = motion.get_magnetic_field() view['mag'].text = str(x) + '\n' + view['mag'].text y +=1 view['y'].text = str(y) + 'measurements' motion.stop_updates() plt.plot(nx) plt.show() plt.savefig('x.tif') plt.close() plt.plot(ny) plt.show() plt.savefig('y.tif') plt.close() plt.plot(nz) plt.show() plt.savefig('z.tif') plt.close() medianx = np.median(nz) stdx = np.std(nz) apex = np.amax(np.absolute(nz)) print (apex) print (stdx) if apex >= stdx*2: if apex > stdx*5: view['fell'].text = 'Fall' else: view['fell'].text = 'Trip' fname = 'motion' + str(datetime.datetime.now()).split('.')[1] + '.txt' with open(fname, 'w') as fo: fo.write('gyro\n') fo.write(view['gyro'].text) fo.write('gravity\n') fo.write(view['gravity'].text) fo.write('accel\n') fo.write(view['accel'].text) fo.write('mag\n') fo.write(view['mag'].text) else: view['mag'].text = '' view['accel'].text = '' view['gyro'].text = '' view['gravity'].text = '' view['y'].text = str(0) view = ui.load_view('Fall') view.name = "fall" view.present('sheet') ```
{ "source": "jp5000/LandBOSSE", "score": 3 }
#### File: landbosse/excelio/XlsxFileOperations.py ```python import os import sys from datetime import datetime from shutil import copy2 from shutil import copytree from .XlsxOperationException import XlsxOperationException class XlsxFileOperations: """ This class is made to handle file naming and copying. """ def __init__(self): """ The __init__() method just makes a timestamp that will be used throughout the lifetime of this instance. """ dt = datetime.now() self.timestamp = f'{dt.year}-{dt.month}-{dt.day}-{dt.hour}-{dt.minute}-{dt.second}' def get_input_output_paths_from_argv_or_env(self): """ This uses the sys.argv object to inspect the command line to find input and output paths as specified on the command line. It expects the command line to have options in the following form: -i [input file] -o [output file] If one or both of these is missing, then it is filled with the defaults from the environment variables LANDBOSSE_INPUT_DIR or LANDBOSSE_OUTPUT_DIR If all of them are missing the method defaults to 'inputs/' and 'outputs/' There is a third option this method looks for: --validate or -v If that parameter is present, then --output or -o is optional. If enabled, validation mode will accept an input directory with --input that must also have a landbosse-output.xlsx file. The model will then run on the inputs. Instead of writing a file of the output, the output will stay in memory. The landbosse-output.xlsx will then be loaded and compared against the in memory output. If the outputs are the same, the validation passes because the results were reproduced. Otherwise, the validation failed because something broke in the model. Parameters ---------- This function takes no parameters. Returns ------- str, str, bool The first two strings are paths to the input and output files respectively. The third bool is True if validation mode is enabled, False for normal operation. """ # Get the fallback paths from the environment variables and set their # defaults. These defualts are used input_path_from_env = os.environ.get('LANDBOSSE_INPUT_DIR', 'input') output_path_from_env = os.environ.get('LANDBOSSE_OUTPUT_DIR', 'output') # input and output paths from command line are initially set to None # to indicate they have not been found yet. input_path_from_arg = None output_path_from_arg = None # This is for validation option detection validation_enabled = '--validate' in sys.argv or '-v' in sys.argv # Look for the input path on command line if '--input' in sys.argv and sys.argv.index('--input') + 1 < len(sys.argv): input_idx = sys.argv.index('--input') + 1 input_path_from_arg = sys.argv[input_idx] if '-i' in sys.argv and sys.argv.index('-i') + 1 < len(sys.argv): input_idx = sys.argv.index('-i') + 1 input_path_from_arg = sys.argv[input_idx] # Look for the output path on command line if '--output' in sys.argv and sys.argv.index('--output') + 1 < len(sys.argv): output_idx = sys.argv.index('--output') + 1 output_path_from_arg = sys.argv[output_idx] if '-o' in sys.argv and sys.argv.index('-o') + 1 < len(sys.argv): output_idx = sys.argv.index('-o') + 1 output_path_from_arg = sys.argv[output_idx] # Find the final input and output paths. If a command line argument was # found for input and/or output, that is used. If it wasn't found, # the value from the environment variable search is returned, which includes # the default if the environment variable itself wasn't found. input_path = input_path_from_arg if input_path_from_arg is not None else input_path_from_env output_path = output_path_from_arg if output_path_from_arg is not None else output_path_from_env # Return the state of the command lin arguments. return input_path, output_path, validation_enabled def landbosse_input_dir(self): """ See the get_input_output_paths_from_argv_or_env() function above. This function is simply a wrapper around that function to get the input path. Returns ------- str The input directory. """ input_path, _, _ = self.get_input_output_paths_from_argv_or_env() return input_path def landbosse_output_dir(self): """ See the get_input_output_paths_from_argv_or_env() function above. This method gets the base path from there. Then, it checks for a timestamped directory that matches the timestamp in this instance. If it finds that directory, it simply returns the path to that directory. If it does not find that directory, it creates the directory and returns the path to the newly created directory. Returns ------- str The output directory. """ _, output_base_path, _ = self.get_input_output_paths_from_argv_or_env() output_path = os.path.join(output_base_path, f'landbosse-{self.timestamp}') if os.path.exists(output_path) and not os.path.isdir(output_path): raise FileExistsError(f'Cannot overwrite {output_path} with LandBOSSE data.') elif not os.path.exists(output_path): os.mkdir(output_path) return output_path else: return output_path def parametric_project_data_output_path(self): """ Returns th path to the project output data folder. This folder is to put the parameterized project data sheets generated during model runs. If the directory does not exist, it is created. Returns ------- str Path to project data output folder. """ path = os.path.join(self.landbosse_output_dir(), 'calculated_parametric_inputs', 'parametric_project_data') if os.path.exists(path) and not os.path.isdir(path): raise XlsxOperationException(f'Attempt to write project data to {path} failed. File exists and is not a directory.') os.makedirs(path, exist_ok=True) return path def extended_project_list_path(self): """ This returns the path to which the extended project list, which has all the parametric values, should be copied. If the folder does not exist yet, this method creates it. Returns ------- str The absolute path to the destiantion of the extended project list. """ path = os.path.join(self.landbosse_output_dir(), 'calculated_parametric_inputs') if os.path.exists(path) and not os.path.isdir(path): raise XlsxOperationException(f'Attempt to write project data to {path} failed. File exists and is not a directory.') os.makedirs(path, exist_ok=True) return path def copy_input_data(self): """ This copies all input data to the outputs folder. The input data it copies are all the data BEFORE they have been modified for parametric runs. """ dst_inputs_copy_path = os.path.join(self.landbosse_output_dir(), 'inputs') os.makedirs(dst_inputs_copy_path, exist_ok=True) src_project_list_xlsx = os.path.join(self.landbosse_input_dir(), 'project_list.xlsx') dst_project_list_xlsx = os.path.join(dst_inputs_copy_path, 'project_list.xlsx') src_project_data_dir = os.path.join(self.landbosse_input_dir(), 'project_data') dst_project_data_dir = os.path.join(dst_inputs_copy_path, 'project_data') copy2(src_project_list_xlsx, dst_project_list_xlsx) copytree(src_project_data_dir, dst_project_data_dir) src_expected_validation_data = os.path.join(self.landbosse_input_dir(), 'landbosse-expected-validation-data.xlsx') dst_expected_validation_data = os.path.join(self.landbosse_output_dir(), 'landbosse-expected-validation-data.xlsx') if os.path.isfile(src_expected_validation_data): copy2(src_expected_validation_data, dst_expected_validation_data) def timestamp_filename(self, directory, basename, extension): """ This function creates a timestamped filename. It uses a filename in the format of: basename-timestamp.extension And joins it to the directory specified by directory. It uses os.path.join() so it's OS independent. Parameters ---------- directory : str The directory for this filename basename : str The filename without the timestamp or extension extension : str The last part of the filname, without the "." Returns ------- str The path for the host operating system. """ filename = '{}-{}.{}'.format(basename, self.timestamp, extension) result = os.path.join(directory, filename) return result ``` #### File: landbosse/model/Manager.py ```python import traceback import math from .ManagementCost import ManagementCost from .FoundationCost import FoundationCost from .SubstationCost import SubstationCost from .GridConnectionCost import GridConnectionCost from .SitePreparationCost import SitePreparationCost from .CollectionCost import Cable, Array, ArraySystem from .ErectionCost import ErectionCost from .DevelopmentCost import DevelopmentCost class Manager: """ The Manager class distributes input and output dictionaries among the various modules. It maintains the hierarchical dictionary structure. """ def __init__(self, input_dict, output_dict): """ This initializer sets up the instance variables of: self.cost_modules: A list of cost module instances. Each of the instances must implement the method input_output. self.input_dict: A placeholder for the inputs dictionary self.output_dict: A placeholder for the output dictionary """ self.input_dict = input_dict self.output_dict = output_dict def execute_landbosse(self, project_name): try: # Create weather window that will be used for all tasks (window for entire project; selected to restrict to seasons and hours specified) weather_data_user_input = self.input_dict['weather_window'] season_construct = self.input_dict['season_construct'] time_construct = self.input_dict['time_construct'] daily_operational_hours = self.input_dict['hour_day'][time_construct] # Filtered window. Restrict to the seasons and hours specified. filtered_weather_window = weather_data_user_input.loc[(weather_data_user_input['Season'].isin(season_construct)) & (weather_data_user_input['Time window'] == time_construct)] filtered_weather_window = filtered_weather_window[0:(math.ceil(self.input_dict['construct_duration'] * 30 * daily_operational_hours))] # Rename weather data to specify types self.input_dict['weather_window'] = filtered_weather_window self.input_dict['weather_data_user_input'] = weather_data_user_input foundation_cost = FoundationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) foundation_cost.run_module() roads_cost = SitePreparationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) roads_cost.run_module() substation_cost = SubstationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) substation_cost.run_module() transdist_cost = GridConnectionCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) transdist_cost.run_module() collection_cost = ArraySystem(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) collection_cost.run_module() development_cost = DevelopmentCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) development_cost.run_module() erection_cost_output_dict = dict() erection_cost = ErectionCost( input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name ) erection_cost.run_module() self.output_dict['erection_cost'] = erection_cost_output_dict total_costs = self.output_dict['total_collection_cost'] total_costs = total_costs.append(self.output_dict['total_road_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_transdist_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_substation_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_foundation_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_erection_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_development_cost'],sort=False) self.input_dict['project_value_usd'] = total_costs.sum(numeric_only=True)[0] self.input_dict['foundation_cost_usd'] = self.output_dict['total_foundation_cost'].sum(numeric_only=True)[0] management_cost = ManagementCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) management_cost.run_module() return 0 except Exception: traceback.print_exc() return 1 # module did not run successfully ```
{ "source": "jp7492code/classification-and-regression", "score": 2 }
#### File: Ch02/02_04/get_mean_function.py ```python Files/Ch02/02_04/get_mean_function.py<gh_stars>0 def get_mean(column): return df[column].mean() ``` #### File: Ch03/helper_funcs/line_helpers.py ```python def monthly_avg_calc(mo,col): return df[df['date'].str.contains('201[2345]_[0]?'+ str(mo))][col].mean() ``` #### File: Ch03/helper_funcs/table_helpers.py ```python def max_temp(s): return s[s['Air_Temp']==s['Air_Temp'].max()] def min_temp(s): return s[s['Air_Temp']==s['Air_Temp'].min()] def min_max_temps(yr): return [(max_temp(s)['Air_Temp'].values[0], max_temp(s)['date'].values[0], min_temp(s)['Air_Temp'].values[0], min_temp(s)['date'].values[0] ) for s in get_seasons(yr)] ```
{ "source": "jp7492code/multiple-linear-regression", "score": 4 }
#### File: multiple-linear-regression/Accidents/4_calculate_median.py ```python import sqlite3 # provides python with a library for sqlite SQLITE_FILE = "UKRoadData.sqlite" conn = sqlite3.connect(SQLITE_FILE) myCursor = conn.cursor() # SQLite does not have a "median" function. Use create_function # first, create a function to calculate median def calcMedian(theListofValues): quotient, remainder = divmod(len(theListofValues),2) if remainder: return sorted(theListofValues)[quotient] return sum(sorted(theListofValues)[quotient - 1:quotient + 1]) / 2 # then install the function in sqlite # create_function(name, # of parameters, func) conn.create_function("median",1,calcMedian) do_this_sqlite = """ SELECT median(Accident_Severity),avg(Accident_Severity) as Severity,Label FROM Accidents_2015 LEFT JOIN Vehicles_2015 ON Accidents_2015.Accident_Index = Vehicles_2015.Accident_Index LEFT JOIN vehicle_type ON Vehicle_Type LIKE vehicle_type.Code WHERE Label LIKE "%otorcycle%" GROUP BY Label ORDER BY Severity """ print '{:>40} {:>13} {:>13}'.format("Motorcycle","Med Severity","Avg Severity") print "=" * (40+13+13+3) for aRow in myCursor.execute(do_this_sqlite): print '{2:>40} {0:^13} {1:^13.2f}'.format(*aRow) ```
{ "source": "jp8042/oppia", "score": 2 }
#### File: core/domain/stats_services.py ```python import collections import copy import itertools from core.domain import interaction_registry from core.domain import stats_domain from core.platform import models import feconf (stats_models,) = models.Registry.import_models([models.NAMES.statistics]) transaction_services = models.Registry.import_transaction_services() # Counts contributions from all versions. VERSION_ALL = 'all' def _migrate_to_latest_issue_schema(exp_issue_dict): """Holds the responsibility of performing a step-by-step sequential update of an exploration issue dict based on its schema version. If the current issue schema version changes (stats_models.CURRENT_ISSUE_SCHEMA_VERSION), a new conversion function must be added and some code appended to this function to account for that new version. Args: exp_issue_dict: dict. Dict representing the exploration issue. Raises: Exception. The issue_schema_version is invalid. """ issue_schema_version = exp_issue_dict['schema_version'] if issue_schema_version is None or issue_schema_version < 1: issue_schema_version = 0 if not (0 <= issue_schema_version <= stats_models.CURRENT_ISSUE_SCHEMA_VERSION): raise Exception( 'Sorry, we can only process v1-v%d and unversioned issue schemas at' 'present.' % stats_models.CURRENT_ISSUE_SCHEMA_VERSION) while issue_schema_version < stats_models.CURRENT_ISSUE_SCHEMA_VERSION: stats_domain.ExplorationIssue.update_exp_issue_from_model( exp_issue_dict) issue_schema_version += 1 def _migrate_to_latest_action_schema(learner_action_dict): """Holds the responsibility of performing a step-by-step sequential update of an learner action dict based on its schema version. If the current action schema version changes (stats_models.CURRENT_ACTION_SCHEMA_VERSION), a new conversion function must be added and some code appended to this function to account for that new version. Args: learner_action_dict: dict. Dict representing the learner action. Raises: Exception. The action_schema_version is invalid. """ action_schema_version = learner_action_dict['schema_version'] if action_schema_version is None or action_schema_version < 1: action_schema_version = 0 if not (0 <= action_schema_version <= stats_models.CURRENT_ACTION_SCHEMA_VERSION): raise Exception( 'Sorry, we can only process v1-v%d and unversioned action schemas ' 'at present.' % stats_models.CURRENT_ACTION_SCHEMA_VERSION) while action_schema_version < stats_models.CURRENT_ACTION_SCHEMA_VERSION: stats_domain.LearnerAction.update_learner_action_from_model( learner_action_dict) action_schema_version += 1 def get_exploration_stats(exp_id, exp_version): """Retrieves the ExplorationStats domain instance. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. Returns: ExplorationStats. The exploration stats domain object. """ exploration_stats = get_exploration_stats_by_id(exp_id, exp_version) if exploration_stats is None: exploration_stats = stats_domain.ExplorationStats.create_default( exp_id, exp_version, {}) return exploration_stats def update_stats(exp_id, exp_version, aggregated_stats): """Updates ExplorationStatsModel according to the dict containing aggregated stats. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. aggregated_stats: dict. Dict representing an ExplorationStatsModel instance with stats aggregated in the frontend. """ exploration_stats = get_exploration_stats_by_id( exp_id, exp_version) exploration_stats.num_starts_v2 += aggregated_stats['num_starts'] exploration_stats.num_completions_v2 += aggregated_stats['num_completions'] exploration_stats.num_actual_starts_v2 += aggregated_stats[ 'num_actual_starts'] for state_name in aggregated_stats['state_stats_mapping']: exploration_stats.state_stats_mapping[ state_name].total_answers_count_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['total_answers_count'] exploration_stats.state_stats_mapping[ state_name].useful_feedback_count_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['useful_feedback_count'] exploration_stats.state_stats_mapping[ state_name].total_hit_count_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['total_hit_count'] exploration_stats.state_stats_mapping[ state_name].first_hit_count_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['first_hit_count'] exploration_stats.state_stats_mapping[ state_name].num_times_solution_viewed_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['num_times_solution_viewed'] exploration_stats.state_stats_mapping[ state_name].num_completions_v2 += aggregated_stats[ 'state_stats_mapping'][state_name]['num_completions'] save_stats_model_transactional(exploration_stats) def handle_stats_creation_for_new_exploration(exp_id, exp_version, state_names): """Creates ExplorationStatsModel for the freshly created exploration and sets all initial values to zero. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. state_names: list(str). State names of the exploration. """ state_stats_mapping = { state_name: stats_domain.StateStats.create_default() for state_name in state_names } exploration_stats = stats_domain.ExplorationStats.create_default( exp_id, exp_version, state_stats_mapping) create_stats_model(exploration_stats) def handle_stats_creation_for_new_exp_version( exp_id, exp_version, state_names, exp_versions_diff, revert_to_version): """Retrieves the ExplorationStatsModel for the old exp_version and makes any required changes to the structure of the model. Then, a new ExplorationStatsModel is created for the new exp_version. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. state_names: list(str). State names of the exploration. exp_versions_diff: ExplorationVersionsDiff|None. The domain object for the exploration versions difference, None if it is a revert. revert_to_version: int|None. If the change is a revert, the version. Otherwise, None. """ old_exp_version = exp_version - 1 new_exp_version = exp_version exploration_stats = get_exploration_stats_by_id( exp_id, old_exp_version) if exploration_stats is None: handle_stats_creation_for_new_exploration( exp_id, new_exp_version, state_names) return # Handling reverts. if revert_to_version: old_exp_stats = get_exploration_stats_by_id(exp_id, revert_to_version) # If the old exploration issues model doesn't exist, the current model # is carried over (this is a fallback case for some tests, and can # never happen in production.) if old_exp_stats: exploration_stats.num_starts_v2 = old_exp_stats.num_starts_v2 exploration_stats.num_actual_starts_v2 = ( old_exp_stats.num_actual_starts_v2) exploration_stats.num_completions_v2 = ( old_exp_stats.num_completions_v2) exploration_stats.state_stats_mapping = ( old_exp_stats.state_stats_mapping) exploration_stats.exp_version = new_exp_version create_stats_model(exploration_stats) return # Handling state deletions. for state_name in exp_versions_diff.deleted_state_names: exploration_stats.state_stats_mapping.pop(state_name) # Handling state additions. for state_name in exp_versions_diff.added_state_names: exploration_stats.state_stats_mapping[state_name] = ( stats_domain.StateStats.create_default()) # Handling state renames. for new_state_name in exp_versions_diff.new_to_old_state_names: exploration_stats.state_stats_mapping[new_state_name] = ( exploration_stats.state_stats_mapping.pop( exp_versions_diff.new_to_old_state_names[new_state_name])) exploration_stats.exp_version = new_exp_version # Create new statistics model. create_stats_model(exploration_stats) def create_exp_issues_for_new_exploration(exp_id, exp_version): """Creates the ExplorationIssuesModel instance for the exploration. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. """ stats_models.ExplorationIssuesModel.create(exp_id, exp_version, []) def _handle_exp_issues_after_state_deletion( state_name, exp_issue, deleted_state_names): """Checks if the exploration issue's concerned state is a deleted state and invalidates the exploration issue accoridngly. Args: state_name: str. The issue's concerened state name. exp_issue: ExplorationIssue. The exploration issue domain object. deleted_state_names: list(str). The list of deleted state names in this commit. Returns: ExplorationIssue. The exploration issue domain object. """ if state_name in deleted_state_names: exp_issue.is_valid = False return exp_issue def _handle_exp_issues_after_state_rename( state_name, exp_issue, old_to_new_state_names, playthrough_ids_by_state_name): """Checks if the exploration issue's concerned state is a renamed state and modifies the exploration issue accoridngly. Args: state_name: str. The issue's concerened state name. exp_issue: ExplorationIssue. The exploration issue domain object. old_to_new_state_names: dict. The dict mapping state names to their renamed versions. This mapping contains state names only if it is actually renamed. playthrough_ids_by_state_name: dict. The dict mapping old state names to their new ones Returns: ExplorationIssue. The exploration issue domain object. """ if state_name not in old_to_new_state_names: return exp_issue, playthrough_ids_by_state_name old_state_name = state_name new_state_name = old_to_new_state_names[old_state_name] if stats_models.ISSUE_TYPE_KEYNAME_MAPPING[ exp_issue.issue_type] == 'state_names': state_names = exp_issue.issue_customization_args['state_names'][ 'value'] exp_issue.issue_customization_args['state_names']['value'] = [ new_state_name if state_name == old_state_name else state_name for state_name in state_names] else: exp_issue.issue_customization_args['state_name']['value'] = ( new_state_name) playthrough_ids_by_state_name[old_state_name].extend( exp_issue.playthrough_ids) return exp_issue, playthrough_ids_by_state_name def update_exp_issues_for_new_exp_version( exploration, exp_versions_diff, revert_to_version): """Retrieves the ExplorationIssuesModel for the old exp_version and makes any required changes to the structure of the model. Args: exploration: Exploration. Domain object for the exploration. exp_versions_diff: ExplorationVersionsDiff|None. The domain object for the exploration versions difference, None if it is a revert. revert_to_version: int|None. If the change is a revert, the version. Otherwise, None. """ exp_issues = get_exp_issues(exploration.id, exploration.version - 1) if exp_issues is None: create_exp_issues_for_new_exploration( exploration.id, exploration.version - 1) return # Handling reverts. if revert_to_version: old_exp_issues = get_exp_issues(exploration.id, revert_to_version) # If the old exploration issues model doesn't exist, the current model # is carried over (this is a fallback case for some tests, and can # never happen in production.) if old_exp_issues: exp_issues.unresolved_issues = old_exp_issues.unresolved_issues exp_issues.exp_version = exploration.version + 1 create_exp_issues_model(exp_issues) return playthrough_ids_by_state_name = collections.defaultdict(list) for i_idx, exp_issue in enumerate(exp_issues.unresolved_issues): keyname = stats_models.ISSUE_TYPE_KEYNAME_MAPPING[exp_issue.issue_type] if keyname == 'state_names': state_names = exp_issue.issue_customization_args[keyname]['value'] for state_name in state_names: # Handle exp issues changes for deleted states. exp_issues.unresolved_issues[i_idx] = ( _handle_exp_issues_after_state_deletion( state_name, exp_issue, exp_versions_diff.deleted_state_names)) # Handle exp issues changes for renamed states. exp_issues.unresolved_issues[ i_idx], playthrough_ids_by_state_name = ( _handle_exp_issues_after_state_rename( state_name, exp_issue, exp_versions_diff.old_to_new_state_names, playthrough_ids_by_state_name)) else: state_name = exp_issue.issue_customization_args[keyname]['value'] # Handle exp issues changes for deleted states. exp_issues.unresolved_issues[i_idx] = ( _handle_exp_issues_after_state_deletion( state_name, exp_issue, exp_versions_diff.deleted_state_names)) # Handle exp issues changes for renamed states. exp_issues.unresolved_issues[ i_idx], playthrough_ids_by_state_name = ( _handle_exp_issues_after_state_rename( state_name, exp_issue, exp_versions_diff.old_to_new_state_names, playthrough_ids_by_state_name)) # Handling changes to playthrough instances. all_playthrough_ids = [] all_playthroughs = [] for old_state_name in playthrough_ids_by_state_name: new_state_name = exp_versions_diff.old_to_new_state_names[ old_state_name] playthrough_ids = playthrough_ids_by_state_name[old_state_name] playthroughs = get_playthroughs_multi(playthrough_ids) for p_idx, playthrough in enumerate(playthroughs): if stats_models.ISSUE_TYPE_KEYNAME_MAPPING[ playthrough.issue_type] == 'state_names': state_names = playthrough.issue_customization_args[ 'state_names']['value'] playthrough.issue_customization_args['state_names']['value'] = [ new_state_name if state_name == old_state_name else state_name for state_name in state_names] else: playthrough.issue_customization_args['state_name']['value'] = ( new_state_name) for a_idx, action in enumerate(playthrough.actions): if action.action_customization_args['state_name']['value'] == ( old_state_name): playthroughs[p_idx].actions[ a_idx].action_customization_args['state_name'][ 'value'] = new_state_name all_playthrough_ids.extend(playthrough_ids) all_playthroughs.extend(playthroughs) update_playthroughs_multi(all_playthrough_ids, all_playthroughs) exp_issues.exp_version += 1 create_exp_issues_model(exp_issues) def get_exp_issues(exp_id, exp_version): """Retrieves the ExplorationIssues domain object. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. Returns: ExplorationIssues|None: The domain object for exploration issues or None if the exp_id is invalid. """ exp_issues = None exp_issues_model = stats_models.ExplorationIssuesModel.get_model( exp_id, exp_version) if exp_issues_model is not None: exp_issues = get_exp_issues_from_model(exp_issues_model) return exp_issues def get_playthrough_by_id(playthrough_id): """Retrieves the Playthrough domain object. Args: playthrough_id: str. ID of the playthrough. Returns: Playthrough|None: The domain object for the playthrough or None if the playthrough_id is invalid. """ playthrough = None playthrough_model = stats_models.PlaythroughModel.get( playthrough_id, strict=False) if playthrough_model is not None: playthrough = get_playthrough_from_model(playthrough_model) return playthrough def get_playthroughs_multi(playthrough_ids): """Retrieves multiple Playthrough domain objects. Args: playthrough_ids: list(str). List of playthrough IDs. Returns: list(Playthrough). List of playthrough domain objects. """ playthrough_instances = stats_models.PlaythroughModel.get_multi( playthrough_ids) playthroughs = [ get_playthrough_from_model(playthrough_instance) for playthrough_instance in playthrough_instances] return playthroughs def update_playthroughs_multi(playthrough_ids, playthroughs): """Updates the playthrough instances. Args: playthrough_ids: list(str). List of playthrough IDs. playthroughs: list(Playthrough). List of playthrough domain objects. """ playthrough_instances = stats_models.PlaythroughModel.get_multi( playthrough_ids) updated_instances = [] for idx, playthrough_instance in enumerate(playthrough_instances): playthrough_dict = playthroughs[idx].to_dict() playthrough_instance.issue_type = playthrough_dict['issue_type'] playthrough_instance.issue_customization_args = ( playthrough_dict['issue_customization_args']) playthrough_instance.actions = playthrough_dict['actions'] updated_instances.append(playthrough_instance) stats_models.PlaythroughModel.put_multi(updated_instances) def get_exploration_stats_by_id(exp_id, exp_version): """Retrieves the ExplorationStats domain object. Args: exp_id: str. ID of the exploration. exp_version: int. Version of the exploration. Returns: ExplorationStats. The domain object for exploration statistics. Raises: Exception: Entity for class ExplorationStatsModel with id not found. """ exploration_stats = None exploration_stats_model = stats_models.ExplorationStatsModel.get_model( exp_id, exp_version) if exploration_stats_model is not None: exploration_stats = get_exploration_stats_from_model( exploration_stats_model) return exploration_stats def get_multiple_exploration_stats_by_version(exp_id, version_numbers): """Returns a list of ExplorationStats domain objects corresponding to the specified versions. Args: exp_id: str. ID of the exploration. version_numbers: list(int). List of version numbers. Returns: list(ExplorationStats|None). List of ExplorationStats domain class instances. """ exploration_stats = [] exploration_stats_models = ( stats_models.ExplorationStatsModel.get_multi_versions( exp_id, version_numbers)) for exploration_stats_model in exploration_stats_models: if exploration_stats_model is None: exploration_stats.append(None) else: exploration_stats.append(get_exploration_stats_from_model( exploration_stats_model)) return exploration_stats def get_exp_issues_from_model(exp_issues_model): """Gets an ExplorationIssues domain object from an ExplorationIssuesModel instance. Args: exp_issues_model: ExplorationIssuesModel. Exploration issues model in datastore. Returns: ExplorationIssues. The domain object for exploration issues. """ unresolved_issues = [] for unresolved_issue_dict in exp_issues_model.unresolved_issues: _migrate_to_latest_issue_schema(copy.deepcopy(unresolved_issue_dict)) unresolved_issues.append( stats_domain.ExplorationIssue.from_dict(unresolved_issue_dict)) return stats_domain.ExplorationIssues( exp_issues_model.exp_id, exp_issues_model.exp_version, unresolved_issues) def get_exploration_stats_from_model(exploration_stats_model): """Gets an ExplorationStats domain object from an ExplorationStatsModel instance. Args: exploration_stats_model: ExplorationStatsModel. Exploration statistics model in datastore. Returns: ExplorationStats. The domain object for exploration statistics. """ new_state_stats_mapping = { state_name: stats_domain.StateStats.from_dict( exploration_stats_model.state_stats_mapping[state_name]) for state_name in exploration_stats_model.state_stats_mapping } return stats_domain.ExplorationStats( exploration_stats_model.exp_id, exploration_stats_model.exp_version, exploration_stats_model.num_starts_v1, exploration_stats_model.num_starts_v2, exploration_stats_model.num_actual_starts_v1, exploration_stats_model.num_actual_starts_v2, exploration_stats_model.num_completions_v1, exploration_stats_model.num_completions_v2, new_state_stats_mapping) def get_playthrough_from_model(playthrough_model): """Gets a PlaythroughModel domain object from a PlaythroughModel instance. Args: playthrough_model: PlaythroughModel. Playthrough model in datastore. Returns: Playthrough. The domain object for a playthrough. """ actions = [] for action_dict in playthrough_model.actions: _migrate_to_latest_action_schema(action_dict) actions.append(stats_domain.LearnerAction.from_dict(action_dict)) return stats_domain.Playthrough( playthrough_model.exp_id, playthrough_model.exp_version, playthrough_model.issue_type, playthrough_model.issue_customization_args, actions) def create_stats_model(exploration_stats): """Creates an ExplorationStatsModel in datastore given an ExplorationStats domain object. Args: exploration_stats: ExplorationStats. The domain object for exploration statistics. Returns: str. ID of the datastore instance for ExplorationStatsModel. """ new_state_stats_mapping = { state_name: exploration_stats.state_stats_mapping[state_name].to_dict() for state_name in exploration_stats.state_stats_mapping } instance_id = stats_models.ExplorationStatsModel.create( exploration_stats.exp_id, exploration_stats.exp_version, exploration_stats.num_starts_v1, exploration_stats.num_starts_v2, exploration_stats.num_actual_starts_v1, exploration_stats.num_actual_starts_v2, exploration_stats.num_completions_v1, exploration_stats.num_completions_v2, new_state_stats_mapping ) return instance_id def _save_stats_model(exploration_stats): """Updates the ExplorationStatsModel datastore instance with the passed ExplorationStats domain object. Args: exploration_stats. ExplorationStats. The exploration statistics domain object. """ new_state_stats_mapping = { state_name: exploration_stats.state_stats_mapping[state_name].to_dict() for state_name in exploration_stats.state_stats_mapping } exploration_stats_model = stats_models.ExplorationStatsModel.get_model( exploration_stats.exp_id, exploration_stats.exp_version) exploration_stats_model.num_starts_v1 = exploration_stats.num_starts_v1 exploration_stats_model.num_starts_v2 = exploration_stats.num_starts_v2 exploration_stats_model.num_actual_starts_v1 = ( exploration_stats.num_actual_starts_v1) exploration_stats_model.num_actual_starts_v2 = ( exploration_stats.num_actual_starts_v2) exploration_stats_model.num_completions_v1 = ( exploration_stats.num_completions_v1) exploration_stats_model.num_completions_v2 = ( exploration_stats.num_completions_v2) exploration_stats_model.state_stats_mapping = new_state_stats_mapping exploration_stats_model.put() def save_stats_model_transactional(exploration_stats): """Updates the ExplorationStatsModel datastore instance with the passed ExplorationStats domain object in a transaction. Args: exploration_stats. ExplorationStats. The exploration statistics domain object. """ transaction_services.run_in_transaction( _save_stats_model, exploration_stats) def create_exp_issues_model(exp_issues): """Creates a new ExplorationIssuesModel in the datastore. Args: exp_issues: ExplorationIssues. The exploration issues domain object. """ unresolved_issues_dicts = [ unresolved_issue.to_dict() for unresolved_issue in exp_issues.unresolved_issues] stats_models.ExplorationIssuesModel.create( exp_issues.exp_id, exp_issues.exp_version, unresolved_issues_dicts) def _save_exp_issues_model(exp_issues): """Updates the ExplorationIssuesModel datastore instance with the passed ExplorationIssues domain object. Args: exp_issues: ExplorationIssues. The exploration issues domain object. """ unresolved_issues_dicts = [ unresolved_issue.to_dict() for unresolved_issue in exp_issues.unresolved_issues] exp_issues_model = stats_models.ExplorationIssuesModel.get_model( exp_issues.exp_id, exp_issues.exp_version) exp_issues_model.exp_version = exp_issues.exp_version exp_issues_model.unresolved_issues = unresolved_issues_dicts exp_issues_model.put() def save_exp_issues_model_transactional(exp_issues): """Updates the ExplorationIssuesModel datastore instance with the passed ExplorationIssues domain object in a transaction. Args: exp_issues: ExplorationIssues. The exploration issues domain object. """ transaction_services.run_in_transaction( _save_exp_issues_model, exp_issues) def get_exploration_stats_multi(exp_version_references): """Retrieves the exploration stats for the given explorations. Args: exp_version_references: list(ExpVersionReference). List of exploration version reference domain objects. Returns: list(ExplorationStats). The list of exploration stats domain objects. """ exploration_stats_models = ( stats_models.ExplorationStatsModel.get_multi_stats_models( exp_version_references)) exploration_stats_list = [] for index, exploration_stats_model in enumerate(exploration_stats_models): if exploration_stats_model is None: exploration_stats_list.append( stats_domain.ExplorationStats.create_default( exp_version_references[index].exp_id, exp_version_references[index].version, {})) else: exploration_stats_list.append( get_exploration_stats_from_model(exploration_stats_model)) return exploration_stats_list def delete_playthroughs_multi(playthrough_ids): """Deletes multiple playthrough instances. Args: playthrough_ids: list(str). List of playthrough IDs to be deleted. """ stats_models.PlaythroughModel.delete_playthroughs_multi(playthrough_ids) def get_visualizations_info(exp_id, state_name, interaction_id): """Returns a list of visualization info. Each item in the list is a dict with keys 'data' and 'options'. Args: exp_id: str. The ID of the exploration. state_name: str. Name of the state. interaction_id: str. The interaction type. Returns: list(dict). Each item in the list is a dict with keys representing - 'id': str. The visualization ID. - 'data': list(dict). A list of answer/frequency dicts. - 'options': dict. The visualization options. An example of the returned value may be: [{'options': {'y_axis_label': 'Count', 'x_axis_label': 'Answer'}, 'id': 'BarChart', 'data': [{u'frequency': 1, u'answer': 0}]}] """ if interaction_id is None: return [] visualizations = interaction_registry.Registry.get_interaction_by_id( interaction_id).answer_visualizations calculation_ids = set([ visualization.calculation_id for visualization in visualizations]) calculation_ids_to_outputs = {} for calculation_id in calculation_ids: # Don't show top unresolved answers calculation ouutput in stats of # exploration. if calculation_id == 'TopNUnresolvedAnswersByFrequency': continue # This is None if the calculation job has not yet been run for this # state. calc_output_domain_object = _get_calc_output( exp_id, state_name, calculation_id) # If the calculation job has not yet been run for this state, we simply # exclude the corresponding visualization results. if calc_output_domain_object is None: continue # If the output was associated with a different interaction ID, skip the # results. This filtering step is needed since the same calculation_id # can be shared across multiple interaction types. if calc_output_domain_object.interaction_id != interaction_id: continue calculation_ids_to_outputs[calculation_id] = ( calc_output_domain_object.calculation_output.to_raw_type()) return [{ 'id': visualization.id, 'data': calculation_ids_to_outputs[visualization.calculation_id], 'options': visualization.options, 'addressed_info_is_supported': ( visualization.addressed_info_is_supported), } for visualization in visualizations if visualization.calculation_id in calculation_ids_to_outputs] def record_answer( exploration_id, exploration_version, state_name, interaction_id, submitted_answer): """Record an answer by storing it to the corresponding StateAnswers entity. Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration. state_name: str. The name of the state. interaction_id: str. The ID of the interaction. submitted_answer: SubmittedAnswer. The submitted answer. """ record_answers( exploration_id, exploration_version, state_name, interaction_id, [submitted_answer]) def record_answers( exploration_id, exploration_version, state_name, interaction_id, submitted_answer_list): """Optimally record a group of answers using an already loaded exploration.. The submitted_answer_list is a list of SubmittedAnswer domain objects. Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration. state_name: str. The name of the state. interaction_id: str. The ID of the interaction. submitted_answer_list: list(SubmittedAnswer). The list of answers to be recorded. """ state_answers = stats_domain.StateAnswers( exploration_id, exploration_version, state_name, interaction_id, submitted_answer_list) for submitted_answer in submitted_answer_list: submitted_answer.validate() stats_models.StateAnswersModel.insert_submitted_answers( state_answers.exploration_id, state_answers.exploration_version, state_answers.state_name, state_answers.interaction_id, state_answers.get_submitted_answer_dict_list()) def get_state_answers(exploration_id, exploration_version, state_name): """Returns a StateAnswers object containing all answers associated with the specified exploration state, or None if no such answers have yet been submitted. Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration to fetch answers for. state_name: str. The name of the state to fetch answers for. Returns: StateAnswers or None. A StateAnswers object containing all answers associated with the state, or None if no such answers exist. """ state_answers_models = stats_models.StateAnswersModel.get_all_models( exploration_id, exploration_version, state_name) if state_answers_models: main_state_answers_model = state_answers_models[0] submitted_answer_dict_list = itertools.chain.from_iterable([ state_answers_model.submitted_answer_list for state_answers_model in state_answers_models]) return stats_domain.StateAnswers( exploration_id, exploration_version, state_name, main_state_answers_model.interaction_id, [stats_domain.SubmittedAnswer.from_dict(submitted_answer_dict) for submitted_answer_dict in submitted_answer_dict_list], schema_version=main_state_answers_model.schema_version) else: return None def get_sample_answers(exploration_id, exploration_version, state_name): """Fetches a list of sample answers that were submitted to the specified exploration state (at the given version of the exploration). Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration to fetch answers for. state_name: str. The name of the state to fetch answers for. Returns: list(*). A list of some sample raw answers. At most 100 answers are returned. """ answers_model = stats_models.StateAnswersModel.get_master_model( exploration_id, exploration_version, state_name) if answers_model is None: return [] # Return at most 100 answers, and only answers from the initial shard (If # we needed to use subsequent shards then the answers are probably too big # anyway). sample_answers = answers_model.submitted_answer_list[:100] return [ stats_domain.SubmittedAnswer.from_dict(submitted_answer_dict).answer for submitted_answer_dict in sample_answers] def get_top_state_answer_stats(exploration_id, state_name): """Fetches the top (at most) 10 answers from the given state_name in the corresponding exploration. Only answers that occur with frequency >= STATE_ANSWER_STATS_MIN_FREQUENCY are returned. Args: exploration_id: str. The exploration ID. state_name: str. The name of the state to fetch answers for. Returns: list(*). A list of the top 10 answers, sorted by decreasing frequency. """ calc_output = ( _get_calc_output(exploration_id, state_name, 'Top10AnswerFrequencies')) raw_calc_output = ( [] if calc_output is None else calc_output.calculation_output.to_raw_type()) return [ {'answer': output['answer'], 'frequency': output['frequency']} for output in raw_calc_output if output['frequency'] >= feconf.STATE_ANSWER_STATS_MIN_FREQUENCY ] def get_top_state_unresolved_answers(exploration_id, state_name): """Fetches the top unresolved answers for the given state_name in the corresponding exploration. Only answers that occur with frequency >= STATE_ANSWER_STATS_MIN_FREQUENCY are returned. Args: exploration_id: str. The exploration ID. state_name: str. The name of the state to fetch answers for. Returns: list(*). A list of the top 10 answers, sorted by decreasing frequency. """ calc_output_model = _get_calc_output( exploration_id, state_name, 'TopNUnresolvedAnswersByFrequency') if not calc_output_model: return [] calculation_output = calc_output_model.calculation_output.to_raw_type() return [ {'answer': output['answer'], 'frequency': output['frequency']} for output in calculation_output if output['frequency'] >= feconf.STATE_ANSWER_STATS_MIN_FREQUENCY ] def get_top_state_answer_stats_multi(exploration_id, state_names): """Fetches the top (at most) 10 answers from each given state_name in the corresponding exploration. Only answers that occur with frequency >= STATE_ANSWER_STATS_MIN_FREQUENCY are returned. Args: exploration_id: str. The exploration ID. state_names: list(str). The name of the state to fetch answers for. Returns: dict(str: list(*)). Dict mapping each state name to the list of its top (at most) 10 answers, sorted by decreasing frequency. """ return { state_name: get_top_state_answer_stats(exploration_id, state_name) for state_name in state_names } def _get_calc_output(exploration_id, state_name, calculation_id): """Get state answers calculation output domain object obtained from StateAnswersCalcOutputModel instance stored in the data store. The calculation ID comes from the name of the calculation class used to compute aggregate data from submitted user answers. This returns aggregated output for all versions of the specified state and exploration. Args: exploration_id: str. ID of the exploration. state_name: str. Name of the state. calculation_id: str. Name of the calculation class. Returns: StateAnswersCalcOutput|None. The state answers calculation output domain object or None. """ calc_output_model = stats_models.StateAnswersCalcOutputModel.get_model( exploration_id, VERSION_ALL, state_name, calculation_id) if calc_output_model: calculation_output = None if (calc_output_model.calculation_output_type == stats_domain.CALC_OUTPUT_TYPE_ANSWER_FREQUENCY_LIST): calculation_output = ( stats_domain.AnswerFrequencyList.from_raw_type( calc_output_model.calculation_output)) elif (calc_output_model.calculation_output_type == stats_domain.CALC_OUTPUT_TYPE_CATEGORIZED_ANSWER_FREQUENCY_LISTS): calculation_output = ( stats_domain.CategorizedAnswerFrequencyLists.from_raw_type( calc_output_model.calculation_output)) return stats_domain.StateAnswersCalcOutput( exploration_id, VERSION_ALL, state_name, calc_output_model.interaction_id, calculation_id, calculation_output) else: return None ``` #### File: extensions/answer_summarizers/models.py ```python import collections import itertools import operator from core.domain import exp_domain from core.domain import stats_domain import feconf import utils CLASSIFICATION_CATEGORIES = frozenset([ exp_domain.EXPLICIT_CLASSIFICATION, exp_domain.TRAINING_DATA_CLASSIFICATION, exp_domain.STATISTICAL_CLASSIFICATION, exp_domain.DEFAULT_OUTCOME_CLASSIFICATION, ]) UNRESOLVED_ANSWER_CLASSIFICATION_CATEGORIES = frozenset([ exp_domain.STATISTICAL_CLASSIFICATION, exp_domain.DEFAULT_OUTCOME_CLASSIFICATION, ]) class _HashableAnswer(object): """Wraps answer with object that can be placed into sets and dicts.""" def __init__(self, answer): self.answer = answer self.hashable_answer = utils.get_hashable_value(answer) def __hash__(self): return hash(self.hashable_answer) def __eq__(self, other): if isinstance(other, _HashableAnswer): return self.hashable_answer == other.hashable_answer return False def _get_top_answers_by_frequency(answers, limit=None): """Computes the number of occurrences of each answer, keeping only the top limit answers, and returns an AnswerFrequencyList. This method is run from within the context of a MapReduce job. Args: answers: iterable(*). The collection of answers to be tallied. limit: int or None. The maximum number of answers to return. When None, all answers are returned. Returns: stats_domain.AnswerFrequencyList. A list of the top "limit" answers. """ answer_counter = utils.OrderedCounter(_HashableAnswer(a) for a in answers) return stats_domain.AnswerFrequencyList([ stats_domain.AnswerOccurrence(hashable_answer.answer, frequency) for hashable_answer, frequency in answer_counter.most_common(n=limit) ]) def _get_top_unresolved_answers_by_frequency( answers_with_classification, limit=None): """Computes the list of unresolved answers by keeping track of their latest classification categorization and then computes the occurrences of each unresolved answer, keeping only limit answers, and returns an AnswerFrequencyList. This method is run from within the context of a MapReduce job. Args: answers_with_classification: iterable(*). The collection of answers with their corresponding classification categorization. limit: int or None. The maximum number of answers to return. When None, all answers are returned. Returns: stats_domain.AnswerFrequencyList. A list of the top "limit" unresolved answers. """ classification_results_dict = {} # The list of answers is sorted according to the time of answer submission. # Thus following loop goes through the list and aggregates the most recent # classification categorization of each answer. for ans in answers_with_classification: frequency = 0 if _HashableAnswer(ans['answer']) in classification_results_dict: frequency = classification_results_dict[_HashableAnswer( ans['answer'])]['frequency'] classification_results_dict[_HashableAnswer(ans['answer'])] = { 'classification_categorization': ( ans['classification_categorization']), 'frequency': frequency + 1 } unresolved_answers_with_frequency_list = [{ 'answer': ans.answer, 'frequency': val['frequency'] } for ans, val in classification_results_dict.iteritems() if val[ 'classification_categorization'] in ( UNRESOLVED_ANSWER_CLASSIFICATION_CATEGORIES)] unresolved_answers_with_frequency_list.sort( key=lambda x: x['frequency'], reverse=True) return stats_domain.AnswerFrequencyList([ stats_domain.AnswerOccurrence(item['answer'], item['frequency']) for item in unresolved_answers_with_frequency_list[:limit] ]) class BaseCalculation(object): """Base calculation class. This is the superclass for all calculations used to generate interaction answer views. """ @property def id(self): return self.__class__.__name__ def calculate_from_state_answers_dict(self, state_answers_dict): """Perform calculation on a single StateAnswers entity. This is run in the context of a batch MapReduce job. This method must be overwritten in subclasses. """ raise NotImplementedError( 'Subclasses of BaseCalculation should implement the ' 'calculate_from_state_answers_dict(state_answers_dict) method.') class AnswerFrequencies(BaseCalculation): """Calculation for answers' frequencies (how often each answer was submitted). """ def calculate_from_state_answers_dict(self, state_answers_dict): """Computes the number of occurrences of each answer, and returns a list of dicts; each dict has keys 'answer' and 'frequency'. This method is run from within the context of a MapReduce job. """ answer_dicts = state_answers_dict['submitted_answer_list'] answer_frequency_list = ( _get_top_answers_by_frequency(d['answer'] for d in answer_dicts)) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, answer_frequency_list) class Top5AnswerFrequencies(BaseCalculation): """Calculation for the top 5 answers, by frequency.""" def calculate_from_state_answers_dict(self, state_answers_dict): """Computes the number of occurrences of each answer, keeping only the top 5 answers, and returns a list of dicts; each dict has keys 'answer' and 'frequency'. This method is run from within the context of a MapReduce job. """ answer_dicts = state_answers_dict['submitted_answer_list'] answer_frequency_list = _get_top_answers_by_frequency( (d['answer'] for d in answer_dicts), limit=5) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, answer_frequency_list) class Top10AnswerFrequencies(BaseCalculation): """Calculation for the top 10 answers, by frequency.""" def calculate_from_state_answers_dict(self, state_answers_dict): """Computes the number of occurrences of each answer, keeping only the top 10 answers, and returns a list of dicts; each dict has keys 'answer' and 'frequency'. This method is run from within the context of a MapReduce job. """ answer_dicts = state_answers_dict['submitted_answer_list'] answer_frequency_list = _get_top_answers_by_frequency( (d['answer'] for d in answer_dicts), limit=10) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, answer_frequency_list) class FrequencyCommonlySubmittedElements(BaseCalculation): """Calculation for determining the frequency of commonly submitted individual answers among multiple set answers (such as of type SetOfUnicodeString). """ def calculate_from_state_answers_dict(self, state_answers_dict): """Computes the number of occurrences of each individual answer across all given answer sets, keeping only the top 10. Returns a list of dicts; each dict has keys 'answer' and 'frequency'. This method is run from within the context of a MapReduce job. """ answer_dicts = state_answers_dict['submitted_answer_list'] answer_frequency_list = _get_top_answers_by_frequency( itertools.chain.from_iterable(d['answer'] for d in answer_dicts), limit=10) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, answer_frequency_list) class TopAnswersByCategorization(BaseCalculation): """Calculation for the top answers by both frequency and respective categorizations. The output from this calculation is one list for each classification category, where each list is a ranked list of answers, by frequency. """ def calculate_from_state_answers_dict(self, state_answers_dict): """Computes the number of occurrences of each answer, split into groups based on the number of classification categories. This method is run from within the context of a MapReduce job. """ grouped_submitted_answer_dicts = itertools.groupby( state_answers_dict['submitted_answer_list'], operator.itemgetter('classification_categorization')) submitted_answers_by_categorization = collections.defaultdict(list) for category, answer_dicts in grouped_submitted_answer_dicts: if category in CLASSIFICATION_CATEGORIES: submitted_answers_by_categorization[category].extend( d['answer'] for d in answer_dicts) categorized_answer_frequency_lists = ( stats_domain.CategorizedAnswerFrequencyLists({ category: _get_top_answers_by_frequency(categorized_answers) for category, categorized_answers in submitted_answers_by_categorization.iteritems()})) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, categorized_answer_frequency_lists) class TopNUnresolvedAnswersByFrequency(BaseCalculation): """Calculation for the top unresolved answers by frequency The output from this calculation is a ranked list of unresolved answers, in descending order of frequency. """ def calculate_from_state_answers_dict(self, state_answers_dict): """Filters unresolved answers and then computes the number of occurrences of each unresolved answer. This method is run within the context of a MapReduce job. Args: state_answers_dict: dict. A dict containing state answers and exploration information such as: * exploration_id: id of the exploration. * exploration_version: Specific version of the exploration or VERSION_ALL is used if answers are aggragated across multiple versions. * state_name: Name of the state. * interaction_id: id of the interaction. * submitted_answer_list: A list of submitted answers. NOTE: The answers in this list must be sorted in chronological order of their submission. Returns: stats_domain.StateAnswersCalcOutput. A calculation output object containing the list of top unresolved answers, in descending order of frequency (up to at most limit answers). """ answers_with_classification = [{ 'answer': ans['answer'], 'classification_categorization': ( ans['classification_categorization']) } for ans in state_answers_dict['submitted_answer_list']] unresolved_answers = _get_top_unresolved_answers_by_frequency( answers_with_classification, limit=feconf.TOP_UNRESOLVED_ANSWERS_LIMIT) return stats_domain.StateAnswersCalcOutput( state_answers_dict['exploration_id'], state_answers_dict['exploration_version'], state_answers_dict['state_name'], state_answers_dict['interaction_id'], self.id, unresolved_answers) ``` #### File: oppia/scripts/docstrings_checker.py ```python import os import re import sys _PARENT_DIR = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) _PYLINT_PATH = os.path.join(_PARENT_DIR, 'oppia_tools', 'pylint-1.8.4') sys.path.insert(0, _PYLINT_PATH) # pylint: disable=wrong-import-position import astroid # isort:skip from pylint.checkers import utils # isort:skip from pylint.extensions import _check_docs_utils # isort:skip # pylint: enable=wrong-import-position def space_indentation(s): """The number of leading spaces in a string Args: s: str. The input string. Returns: int. The number of leading spaces. """ return len(s) - len(s.lstrip(' ')) def get_setters_property_name(node): """Get the name of the property that the given node is a setter for. Args: node: str. The node to get the property name for. Returns: str|None. The name of the property that the node is a setter for, or None if one could not be found. """ decorators = node.decorators.nodes if node.decorators else [] for decorator in decorators: if (isinstance(decorator, astroid.Attribute) and decorator.attrname == "setter" and isinstance(decorator.expr, astroid.Name)): return decorator.expr.name return None def get_setters_property(node): """Get the property node for the given setter node. Args: node: astroid.FunctionDef. The node to get the property for. Returns: astroid.FunctionDef|None. The node relating to the property of the given setter node, or None if one could not be found. """ property_ = None property_name = get_setters_property_name(node) class_node = utils.node_frame_class(node) if property_name and class_node: class_attrs = class_node.getattr(node.name) for attr in class_attrs: if utils.decorated_with_property(attr): property_ = attr break return property_ def returns_something(return_node): """Check if a return node returns a value other than None. Args: return_node: astroid.Return. The return node to check. Returns: bool. True if the return node returns a value other than None, False otherwise. """ returns = return_node.value if returns is None: return False return not (isinstance(returns, astroid.Const) and returns.value is None) def possible_exc_types(node): """Gets all of the possible raised exception types for the given raise node. Caught exception types are ignored. Args: node: astroid.node_classes.NodeNG. The raise to find exception types for. Returns: set(str). A list of exception types. """ excs = [] if isinstance(node.exc, astroid.Name): inferred = utils.safe_infer(node.exc) if inferred: excs = [inferred.name] elif (isinstance(node.exc, astroid.Call) and isinstance(node.exc.func, astroid.Name)): target = utils.safe_infer(node.exc.func) if isinstance(target, astroid.ClassDef): excs = [target.name] elif isinstance(target, astroid.FunctionDef): for ret in target.nodes_of_class(astroid.Return): if ret.frame() != target: continue val = utils.safe_infer(ret.value) if (val and isinstance(val, ( astroid.Instance, astroid.ClassDef)) and utils.inherit_from_std_ex(val)): excs.append(val.name) elif node.exc is None: handler = node.parent while handler and not isinstance(handler, astroid.ExceptHandler): handler = handler.parent if handler and handler.type: inferred_excs = astroid.unpack_infer(handler.type) excs = (exc.name for exc in inferred_excs if exc is not astroid.Uninferable) try: return set( exc for exc in excs if not utils.node_ignores_exception( node, exc)) except astroid.InferenceError: return set() def docstringify(docstring): for docstring_type in [GoogleDocstring]: instance = docstring_type(docstring) if instance.is_valid(): return instance return _check_docs_utils.Docstring(docstring) class GoogleDocstring(_check_docs_utils.GoogleDocstring): re_multiple_type = _check_docs_utils.GoogleDocstring.re_multiple_type re_param_line = re.compile(r''' \s* \*{{0,2}}(\w+) # identifier potentially with asterisks \s* ( [:] \s* ({type}|\S*) (?:,\s+optional)? [.] )? \s* # optional type declaration \s* (.*) # beginning of optional description '''.format( type=re_multiple_type, ), flags=re.X | re.S | re.M) re_returns_line = re.compile(r''' \s* (({type}|\S*).)? # identifier \s* (.*) # beginning of description '''.format( type=re_multiple_type, ), flags=re.X | re.S | re.M) re_yields_line = re_returns_line ```
{ "source": "jp-96/esp32-micropython-ble-example", "score": 2 }
#### File: jp-96/esp32-micropython-ble-example/ble_heartratemonitor_central.py ```python import bluetooth import struct import time from ble_advertising import decode_services, decode_name from micropython import const # _IRQ_CENTRAL_CONNECT = const(1) # _IRQ_CENTRAL_DISCONNECT = const(2) # _IRQ_GATTS_WRITE = const(3) # _IRQ_GATTS_READ_REQUEST = const(4) _IRQ_SCAN_RESULT = const(5) _IRQ_SCAN_DONE = const(6) _IRQ_PERIPHERAL_CONNECT = const(7) _IRQ_PERIPHERAL_DISCONNECT = const(8) _IRQ_GATTC_SERVICE_RESULT = const(9) _IRQ_GATTC_SERVICE_DONE = const(10) _IRQ_GATTC_CHARACTERISTIC_RESULT = const(11) _IRQ_GATTC_CHARACTERISTIC_DONE = const(12) _IRQ_GATTC_DESCRIPTOR_RESULT = const(13) _IRQ_GATTC_DESCRIPTOR_DONE = const(14) _IRQ_GATTC_READ_RESULT = const(15) _IRQ_GATTC_READ_DONE = const(16) _IRQ_GATTC_WRITE_DONE = const(17) _IRQ_GATTC_NOTIFY = const(18) # _IRQ_GATTC_INDICATE = const(19) # _IRQ_GATTS_INDICATE_DONE = const(20) # _IRQ_MTU_EXCHANGED = const(21) # _IRQ_L2CAP_ACCEPT = const(22) # _IRQ_L2CAP_CONNECT = const(23) # _IRQ_L2CAP_DISCONNECT = const(24) # _IRQ_L2CAP_RECV = const(25) # _IRQ_L2CAP_SEND_READY = const(26) _IRQ_CONNECTION_UPDATE = const(27) # _IRQ_ENCRYPTION_UPDATE = const(28) # _IRQ_GET_SECRET = const(29) # _IRQ_SET_SECRET = const(30) _ADV_IND = const(0x00) _ADV_DIRECT_IND = const(0x01) # _ADV_SCAN_IND = const(0x02) # _ADV_NONCONN_IND = const(0x03) _SERV_HRM_UUID = bluetooth.UUID(0x180D) # org.bluetooth.service.heart_rate.xml _CHAR_HRM_UUID = bluetooth.UUID(0x2A37) # org.bluetooth.characteristic.heart_rate_measurement.xml _CHAR_BSL_UUID = bluetooth.UUID(0x2A38) # org.bluetooth.characteristic.body_sensor_location.xml _CHAR_HRC_UUID = bluetooth.UUID(0x2A39) # org.bluetooth.characteristic.heart_rate_control_point.xml _SERV_BATT_UUID = bluetooth.UUID(0x180F) # org.bluetooth.service.battery_service.xml _CHAR_BATT_UUID = bluetooth.UUID(0x2A19) # org.bluetooth.characteristic.battery_level.xml _DESC_CCC_UUID = bluetooth.UUID(0x2902) # org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml # decode_heart_rate_measurement t _HRM_HRV = const(1) # Heart Rate Measurement Value _HRM_SCS = const(2) # Sensor Contact Status _HRM_EES = const(3) # Energy Expended _HRM_RRI = const(4) # RR-Interval def decode_heart_rate_measurement(b, t): # org.bluetooth.characteristic.heart_rate_measurement.xml # Flags Field flags = b[0] # bit:0 Heart Rate Value Format bit hrv_flag = flags & 1 if t == _HRM_HRV: # Heart Rate Measurement Value - org.bluetooth.unit.period.beats_per_minute if hrv_flag == 0: # Heart Rate Measurement Value (uint8) hrv = b[1] else: # Heart Rate Measurement Value (uint16) hrv = b[1] | (b[2] << 8) return hrv # bit:2-1 Sensor Contact Status bits scs_flag = (flags >> 1) & 3 if t == _HRM_SCS: return scs_flag # bit:3 Energy Expended Status bit ees_flag = (flags >> 3) & 1 if t == _HRM_EES: # Energy Expended - org.bluetooth.unit.energy.joule eev = None if ees_flag == 1: idx = 2 + hrv_flag eev = b[idx] | (b[idx + 1] << 8) return eev # bit:4 RR-Interval bit rri_flag = (flags >> 4) & 1 if t == _HRM_RRI: # RR-Interval - Resolution of 1/1024 second rr = [] if rri_flag == 1: idx = 2 + hrv_flag + ees_flag * 2 while idx < len(b): rr.append(b[idx] | (b[idx + 1] << 8)) idx += 2 return rr def decode_heart_rate_value(b): # Heart Rate Measurement Value return decode_heart_rate_measurement(b, _HRM_HRV) def decode_sensor_contact_status(b): # Sensor Contact Status return decode_heart_rate_measurement(b, _HRM_SCS) def decode_sensor_contact_status_str(b): scs_flag = decode_sensor_contact_status(b) # Sensor Contact Status if scs_flag == 0: #scs = "0 - Sensor Contact feature is not supported in the current connection" scs = "0:Not supported" elif scs_flag == 1: #scs = "1 - Sensor Contact feature is not supported in the current connection" scs = "1:Not supported" elif scs_flag == 2: #scs = "2 - Sensor Contact feature is supported, but contact is not detected" scs = "2:Not detected" else: #scs = "3 - Sensor Contact feature is supported and contact is detected" scs = "3:Detected" return scs def decode_energy_expended(b): # Energy Expended return decode_heart_rate_measurement(b, _HRM_EES) def decode_rr_interval(b): # RR-Interval return decode_heart_rate_measurement(b, _HRM_RRI) class BLEHeartRateMonitorCentral: def __init__(self, ble): self._ble = ble self._ble.active(True) self._ble.irq(self._irq) self._reset() def _reset(self): # Cached name and address from a successful scan. self._name = None self._addr_type = None self._addr = None # Callbacks for completion of various operations. # These reset back to None after being invoked. self._scan_callback = None self._conn_callback = None self._read_callback = None self._write_callback = None # Persistent callback for when new data is notified from the device. self._notify_callback = None self._batt_notify_callback = None # Connected device. self._conn_handle = None self._start_handle = None self._end_handle = None self._batt_start_handle = None self._batt_end_handle = None # GATTC_CHARACTERISTIC self._heartrate_handle = None self._config_handle = None self._location_handle = None self._control_handle = None self._batt_level_handle = None self._batt_config_handle = None self._connected = False def _irq(self, event, data): print("_irq() event=", event) if event == _IRQ_SCAN_RESULT: # A single scan result, gap_scan(). addr_type, addr, adv_type, rssi, adv_data = data if adv_type in (_ADV_IND, _ADV_DIRECT_IND) and _SERV_HRM_UUID in decode_services(adv_data): # _SERV_HRM_UUID found. # Found a potential device, remember it and stop scanning. self._addr_type = addr_type self._addr = bytes( addr ) # Note: addr buffer is owned by caller so need to copy it. self._name = decode_name(adv_data) or "?" self._ble.gap_scan(None) # manually stop. elif event == _IRQ_SCAN_DONE: # Scan duration finished or manually stopped, gap_scan(). if self._scan_callback: if self._addr: # Found a device during the scan (and the scan was explicitly stopped). self._scan_callback(self._addr_type, self._addr, self._name) self._scan_callback = None else: # Scan timed out. self._scan_callback(None, None, None) elif event == _IRQ_PERIPHERAL_CONNECT: # A successful gap_connect(). conn_handle, addr_type, addr = data if addr_type == self._addr_type and addr == self._addr: self._conn_handle = conn_handle self._ble.gattc_discover_services(self._conn_handle) elif event == _IRQ_PERIPHERAL_DISCONNECT: # Connected peripheral has disconnected. conn_handle, addr_type, addr = data if conn_handle == self._conn_handle: # If it was initiated by us, it'll already be reset. self._reset() elif event == _IRQ_GATTC_SERVICE_RESULT: # Called for each service found by gattc_discover_services(). conn_handle, start_handle, end_handle, uuid = data if conn_handle == self._conn_handle: if uuid == _SERV_HRM_UUID: # _SERV_HRM_UUID found. self._start_handle, self._end_handle = start_handle, end_handle if uuid == _SERV_BATT_UUID: # _SERV_BATT_UUID found. self._batt_start_handle, self._batt_end_handle = start_handle, end_handle elif event == _IRQ_GATTC_SERVICE_DONE: # Called once service discovery is complete. # Note: Status will be zero on success, implementation-specific value otherwise. conn_handle, status = data if self._start_handle and self._end_handle and self._batt_start_handle and self._batt_end_handle: self._ble.gattc_discover_characteristics( self._conn_handle, min(self._start_handle, self._batt_start_handle), max(self._end_handle, self._batt_end_handle) ) elif self._start_handle and self._end_handle: self._ble.gattc_discover_characteristics( self._conn_handle, self._start_handle, self._end_handle ) else: print("Failed to find service.") elif event == _IRQ_GATTC_CHARACTERISTIC_RESULT: # Called for each characteristic found by gattc_discover_services(). conn_handle, def_handle, value_handle, properties, uuid = data if conn_handle == self._conn_handle: if uuid == _CHAR_HRM_UUID: # _CHAR_HRM_UUID found. self._heartrate_handle = value_handle if uuid == _CHAR_BSL_UUID: # _CHAR_BSL_UUID found. self._location_handle = value_handle if uuid == _CHAR_HRC_UUID: # _CHAR_HRC_UUID found. self._control_handle = value_handle if uuid == _CHAR_BATT_UUID: # _CHAR_BATT_UUID found. self._batt_level_handle = value_handle elif event == _IRQ_GATTC_CHARACTERISTIC_DONE: # Called once service discovery is complete. # Note: Status will be zero on success, implementation-specific value otherwise. conn_handle, status = data if self._heartrate_handle: self._ble.gattc_discover_descriptors(self._conn_handle, self._heartrate_handle, self._end_handle) else: print("Failed to find characteristic.") elif event == _IRQ_GATTC_DESCRIPTOR_RESULT: # Called for each descriptor found by gattc_discover_descriptors(). conn_handle, dsc_handle, uuid = data if conn_handle == self._conn_handle and uuid == _DESC_CCC_UUID: # _DESC_CCC_UUID found. if not self._config_handle: self._config_handle = dsc_handle elif event == _IRQ_GATTC_DESCRIPTOR_DONE: # Called once service discovery is complete. # Note: Status will be zero on success, implementation-specific value otherwise. conn_handle, status = data if self._config_handle: # We've finished connecting and discovering device, fire the connect callback. self._connected = True if self._conn_callback: self._conn_callback() else: print("Failed to find descriptor.") elif event == _IRQ_GATTC_WRITE_DONE: # A gattc_write() has completed. # Note: The value_handle will be zero on btstack (but present on NimBLE). # Note: Status will be zero on success, implementation-specific value otherwise. conn_handle, value_handle, status = data if self._write_callback: self._write_callback(status) self._write_callback = None elif event == _IRQ_GATTC_READ_RESULT: # A read completed successfully. conn_handle, value_handle, char_data = data if conn_handle == self._conn_handle: # and value_handle in [self._location_handle, self._batt_level_handle]: if self._read_callback: self._read_callback(bytes(char_data)) self._read_callback = None elif event == _IRQ_GATTC_READ_DONE: # Read completed (no-op). conn_handle, value_handle, status = data elif event == _IRQ_GATTC_NOTIFY: # A server has sent a notify request. conn_handle, value_handle, notify_data = data if conn_handle == self._conn_handle: if value_handle == self._heartrate_handle and self._notify_callback: self._notify_callback(value_handle, bytes(notify_data)) elif value_handle == self._batt_level_handle and self._batt_notify_callback: self._batt_notify_callback(value_handle, bytes(notify_data)) elif event == _IRQ_CONNECTION_UPDATE: # The remote device has updated connection parameters. conn_handle, conn_interval, conn_latency, supervision_timeout, status = data print("_IRQ_CONNECTION_UPDATE") else: # Unhandled print("************ Unhandled ************ event=", event) # Returns true if we've successfully connected and discovered characteristics. def is_connected(self): return self._connected # Find a device advertising the environmental sensor service. def scan(self, callback=None): self._addr_type = None self._addr = None self._scan_callback = callback self._ble.gap_scan(2000, 30000, 30000) # Connect to the specified device (otherwise use cached address from a scan). def connect(self, addr_type=None, addr=None, callback=None): self._addr_type = addr_type or self._addr_type self._addr = addr or self._addr self._conn_callback = callback if self._addr_type is None or self._addr is None: return False self._ble.gap_connect(self._addr_type, self._addr) return True # Disconnect from current device. def disconnect(self): if not self._conn_handle: return self._ble.gap_disconnect(self._conn_handle) self._reset() def _gattc_read_sync(self, conn_handle, value_handle): result = None def on_read(v): nonlocal result result = v[0] self._read_callback = on_read # Issues an (asynchronous) read, will invoke callback with data. self._ble.gattc_read(conn_handle, value_handle) counter = 0 while self._read_callback and counter < 10: time.sleep_ms(50) counter += 1 return result def _gattc_write_sync(self, conn_handle, value_handle, data, mode=0): result = None if mode == 1: def on_write(v): nonlocal result result = v self._write_callback = on_write self._ble.gattc_write(conn_handle, value_handle, data, mode) if mode == 1: counter = 0 while self._write_callback and counter < 10: time.sleep_ms(50) counter += 1 return result # Enable device notifications, and sets a callback to be invoked when the device notifies us. def enable_notify(self, callback): self._notify_callback = callback if self.is_connected(): result = self._gattc_write_sync(self._conn_handle, self._config_handle, struct.pack('<h', 1), 1) print("enable_notify:", result) # Body sensor location def read_body_sensor_location(self): if not self.is_connected(): return if self._location_handle: return self._gattc_read_sync(self._conn_handle, self._location_handle) # Energy Expended (not tested) def enable_energy(self): if not self.is_connected(): return if self._control_handle: result = self._gattc_write_sync(self._conn_handle, self._control_handle, struct.pack('b', 1), 1) print("enable_energy:", result) # Battery level def read_battery_level(self): if not self.is_connected(): return if self._batt_level_handle: return self._gattc_read_sync(self._conn_handle, self._batt_level_handle) def demo(): ble = bluetooth.BLE() central = BLEHeartRateMonitorCentral(ble) def execute(): not_found = False def on_scan(addr_type, addr, name): def b2s(b): if b: s=[] for v in b: s.append("{:02x}".format(v).upper()) return ":".join(s) else: return "" if addr_type is not None: print("Found device:", addr_type, b2s(addr), "'" + name + "'") central.connect() else: nonlocal not_found not_found = True print("No device found.") central.scan(callback=on_scan) # Wait for connection... retry_count = 50 while not central.is_connected(): time.sleep_ms(100) if not_found: return retry_count = retry_count - 1 if retry_count < 0: print("No connection.") return print("Connected") # Battery level level = central.read_battery_level() print("-----------------------------------------") print(" Battery level:", level) print("-----------------------------------------") def on_notify(value_handle, notify_data): # print("on_notify()", value_handle, notify_data) print(" 1)", decode_heart_rate_value(notify_data), "bpm") print(" 2)", decode_sensor_contact_status_str(notify_data)) print(" 3)", decode_energy_expended(notify_data), "joule") print(" 4)", decode_rr_interval(notify_data), "RR (1/1024 sec)") # org.bluetooth.characteristic.heart_rate_measurement.xml idx = 0 # Flags Field flags = notify_data[idx] idx += 1 # bit:0 Heart Rate Value Format bit hrv_flag = (flags ) & 1 # bit:2-1 Sensor Contact Status bits scs_flag = (flags >> 1) & 3 # bit:3 Energy Expended Status bit ees_flag = (flags >> 3) & 1 # bit:4 RR-Interval bit rri_flag = (flags >> 4) & 1 # Heart Rate Measurement Value - org.bluetooth.unit.period.beats_per_minute if hrv_flag == 0: # Heart Rate Measurement Value (uint8) hrv = notify_data[idx] idx += 1 else: # Heart Rate Measurement Value (uint16) hrv = notify_data[idx] | (notify_data[idx + 1] << 8) idx += 2 # Sensor Contact Status scs = None if scs_flag == 0: #scs = "0 - Sensor Contact feature is not supported in the current connection" scs = "0:Not supported" elif scs_flag == 1: #scs = "1 - Sensor Contact feature is not supported in the current connection" scs = "1:Not supported" elif scs_flag == 2: #scs = "2 - Sensor Contact feature is supported, but contact is not detected" scs = "2:Not detected" else: #scs = "3 - Sensor Contact feature is supported and contact is detected" scs = "3:Detected" # Energy Expended - org.bluetooth.unit.energy.joule eev = None if ees_flag == 1: eev = notify_data[idx] | (notify_data[idx + 1] << 8) idx += 2 # RR-Interval - Resolution of 1/1024 second rr = [] if rri_flag == 1: while idx < len(notify_data): rr.append(notify_data[idx] | (notify_data[idx + 1] << 8)) idx += 2 print("Heart Rate Monitor:", hrv, "bpm ,", scs, ",", eev, ",", rr) # enable notify central.enable_notify(callback=on_notify) # Body sensor location loc = central.read_body_sensor_location() if loc >= 0 and loc <= 6: loc += 1 else: loc = 0 loc_name = ["(None)", "0-Other", "1-Chest", "2-Wrist", "3-Finger", "4-Hand", "5-Ear Lobe", "6-Foot"] print("-----------------------------------------") print(" body sensor location:", loc_name[loc]) print("-----------------------------------------") # Enable energy expanded central.enable_energy() # connection loop while central.is_connected(): time.sleep_ms(100) print("Disconnected") try: while True: execute() except: ble.active(False) if __name__ == "__main__": demo() ```
{ "source": "jp-96/micropython", "score": 4 }
#### File: tests/basics/class_contains.py ```python class A: def __contains__(self, key): return True a = A() print(True in a) print(1 in a) print(() in a) # B contains given things class B: def __init__(self, items): self.items = items def __contains__(self, key): return key in self.items b = B([]) print(1 in b) b = B([1, 2]) print(1 in b) print(2 in b) print(3 in b) class C: def __contains__(self, arg): return arg print(C().__contains__(0)) print(C().__contains__(1)) print(C().__contains__('')) print(C().__contains__('foo')) print(C().__contains__(None)) print(0 in C()) print(1 in C()) print('' in C()) print('foo' in C()) print(None in C()) print(0 not in C()) print(1 not in C()) print('' not in C()) print('foo' not in C()) print(None not in C()) ``` #### File: tests/basics/fun_calldblstar4.py ```python def f(a, b=None, c=None): print(a, b, c) f(**{"a": 1}, **{"b": 2}) f(**{"a": 1}, **{"b": 2}, c=3) f(**{"a": 1}, b=2, **{"c": 3}) try: f(1, **{"b": 2}, **{"b": 3}) except TypeError: print("TypeError") # test calling a method with multiple **args class A: def f(self, a, b=None, c=None): print(a, b, c) a = A() a.f(**{"a": 1}, **{"b": 2}) a.f(**{"a": 1}, **{"b": 2}, c=3) a.f(**{"a": 1}, b=2, **{"c": 3}) try: a.f(1, **{"b": 2}, **{"b": 3}) except TypeError: print("TypeError") ```
{ "source": "jp-96/upy_bleperipheral", "score": 2 }
#### File: upy_bleperipheral/bleperipheral/util.py ```python import bluetooth import micropython import uasyncio from micropython import const def _f(): pass async def _g(): pass class _B(): def _b(self): pass _type_function = type(_f) _type_generator = type(_g) _type_bound_method = type(_B()._b) def isFunction(obj): return type(obj) == _type_function def isGenerator(obj): return type(obj) == _type_generator def isBoundMethod(obj): return type(obj) == _type_bound_method ``` #### File: upy_bleperipheral/examples/ble_uart_peripheral.py ```python import bluetooth #from ble_advertising import advertising_payload from bleperipheral import BLEPeripheral from micropython import const _IRQ_CENTRAL_CONNECT = const(1 << 0) _IRQ_CENTRAL_DISCONNECT = const(1 << 1) _IRQ_GATTS_WRITE = const(1 << 2) _UART_UUID = bluetooth.UUID("6E400001-B5A3-F393-E0A9-E50E24DCCA9E") _UART_TX = ( bluetooth.UUID("6E400003-B5A3-F393-E0A9-E50E24DCCA9E"), bluetooth.FLAG_NOTIFY, ) _UART_RX = ( bluetooth.UUID("6E400002-B5A3-F393-E0A9-E50E24DCCA9E"), bluetooth.FLAG_WRITE, ) _UART_SERVICE = ( _UART_UUID, (_UART_TX, _UART_RX,), ) # org.bluetooth.characteristic.gap.appearance.xml _ADV_APPEARANCE_GENERIC_COMPUTER = const(128) class BLEUART: def __init__(self, name="upy-uart", rxbuf=100): self._bleperipheral = BLEPeripheral() # Optionally add services=[_UART_UUID], but this is likely to make the payload too large. ((self._tx_handle, self._rx_handle,),) = self._bleperipheral.build( (_UART_SERVICE,), adv_name=name, adv_appearance=_ADV_APPEARANCE_GENERIC_COMPUTER ) # Increase the size of the rx buffer and enable append mode. self._bleperipheral.setBuffer(self._rx_handle, rxbuf, True) self._rx_buffer = bytearray() self._bleperipheral.irq(handlerGattsWrite=self._gattsWrite) self._bleperipheral.advertise() def irq(self, handler): self._handler = handler def _gattsWrite(self, handle, value_handle, data): if value_handle == self._rx_handle: self._rx_buffer += data if self._handler: self._handler() def any(self): return len(self._rx_buffer) def read(self, sz=None): if not sz: sz = len(self._rx_buffer) result = self._rx_buffer[0:sz] self._rx_buffer = self._rx_buffer[sz:] return result def write(self, data): self._bleperipheral.notify(self._tx_handle, data) def close(self): self._bleperipheral.close() def demo(): import time uart = BLEUART() def on_rx(): print("rx: ", uart.read().decode().strip()) uart.irq(on_rx) nums = [4, 8, 15, 16, 23, 42] i = 0 try: while True: uart.write(str(nums[i]) + "\n") i = (i + 1) % len(nums) time.sleep_ms(1000) except KeyboardInterrupt: pass uart.close() if __name__ == "__main__": demo() ```
{ "source": "jpa38/pytheme_material_design", "score": 2 }
#### File: pytheme_material_design/pytheme-color/version.py ```python def get_version(): return __version__ def get_auteur(): return __author__ def get_copyright(): return __copyright__ def get_license(): return __license__ def get_name(): return __name__ def get_last_version(): versionning = [] versionning.append(["0.0.1", "Création du script"]) versionning.append(["0.1.1", "Insertion de la GUI"]) versionning.append(["0.2.0", "Ajout du versionning"]) return versionning[-1][0] __author__ = "<NAME>" __owner__ = "BOUYGUES ENERGIES ET SERVICES" __year__ = "2019" __copyright__ = "©" +" " + __owner__ + " " + __year__ __credits__ = [] __license__ = "Creative Commons Attribution Share Alike 4.0" __license_keyword__ = "cc-by-sa-4.0" __license_link__ = "https://creativecommons.org/licenses/by-nc-sa/4.0/" __version__ = get_last_version() __maintainer__ = "<NAME>" __email__ = "" __status__ = "Production" __name__ = "Export SEE TO SQLite" ```
{ "source": "jpa38/Thumbs_doll", "score": 3 }
#### File: Thumbs_doll/thumbs_doll/script.py ```python import random import urllib.request from urllib.parse import urlparse from PIL import Image import glob, os from pathlib import Path import shutil global img_travail img_travail = 'image_doll_working_img' global img_name img_name = '' def set_image_name(url): # TODO veriier utilité global img_name img_name = get_img_name(url)+get_url_extension(url) def get_full_image_name(url): """Get the name + extension Args: url (str): the entry Returns: str : The name and extension about an URL / Path """ return str(get_img_name(url) + get_url_extension(url)) def set_path_destination(path): # TODO veriier utilité global path_destination # path_destination = Path(path) # path = "'''r" + path + "'''" path_destination = path print(path_destination) def get_path_destination(): # TODO veriier utilité return path_output def get_path_input(): return path_input def download_image(url,name): # fullname = get_img_name(url)+get_url_extension(url) try: urllib.request.urlretrieve(url,name) except: reset_preview() print("Probleme URL") # global img_name # # img_name = fullname def get_url_extension(url): path = urlparse(url).path ext = os.path.splitext(path)[1] return str(ext) def get_img_name(url): path = urlparse(url).path filename_w_ext = os.path.basename(path) filename, file_extension = os.path.splitext(filename_w_ext) return str(filename) def get_full_destination(): pass def is_url(input): if "http" in input : return True else : return False def is_file(input): if os.path.isfile(input) and os.access(input, os.R_OK): return True else: return False def get_image_size(img): im = Image.open(img) # width, height = im.size return max(im.size) def resize(img,size,destination, name): thumb_size = size, size file, ext = os.path.splitext(img) im = Image.open(img) im.thumbnail(thumb_size) new_destination = os.path.join(destination, (str(name) + "_"+ str(size)+"px"+ext)) print(new_destination) im.save(new_destination, format=None) def conditions_initiales(): # set_path_destination(r'''.\output''') global path_initial path_initial = os.getcwd() global path_input path_input = os.path.join(path_initial,"input\\") global path_output path_output = os.path.join(path_initial,"output\\") # shutil.rmtree(path_input) reset_folder(path_input) reset_preview() # todo verifier les dossiers existes print("conditions initiales Done") def reset_preview(): source = os.path.join(path_initial,'img','icon.png') destination = os.path.join(path_initial,'preview.jpg') shutil.copyfile(source, destination) def reset_folder(folder): try : shutil.rmtree(folder) except: pass if not os.path.exists(folder): os.makedirs(folder) # Keep presets # set_path_destination(r'''C:\Users\J.PALANCA\Desktop''') conditions_initiales() # TODO gerer les paths pour l'execution via commande line if __name__ == '__main__': if True: pass else: url = "http://www.planetrock.fr/wp-content/uploads/2019/01/chaton.png" rename = "test_img" download_image(url, str(rename)) for px in [512, 256, 128, 64, 32, 24, 16]: manip(rename + get_url_extension(url), px, url) ```
{ "source": "jpa99/dependency-analyzer", "score": 3 }
#### File: dependency-analyzer/src/cli.py ```python import sys import utils import argparse from analyzer import DependencyAnalyzer, Config ## Parse command line arguments def parse_args(): logging_levels = ["notset", "debug", "info", "warning", "error", "critical"] parser = argparse.ArgumentParser(description="Analyze dependencies for input Python file.") parser.add_argument("dirpath", type=str, help="directory path to analyze") parser.add_argument("filepath", type=str, help="python file path to analyze") parser.add_argument("-l", "--logging_level", type=str, default="error", choices=set(logging_levels), help="logging level") parser.add_argument("-s", "--search_imports", action='store_true', help="flag to search local machine and check if all dependencies are installed") parser.add_argument("-g", "--render_graph", action='store_true', help="flag to render dependency graph") parser.add_argument("-u", "--mark_unused", action='store_true', help="flag to mark unused dependencies") args = parser.parse_args() render_graph = args.render_graph if not utils.is_valid_dir(args.dirpath): print("\n[Command Line Error] Invalid directory \"{dirpath}\".".format(dirpath=args.dirpath), file=sys.stderr) elif not utils.is_valid_file(args.filepath): print("\n[Command Line Error] Invalid file \"{filepath}\".".format(filepath=args.filepath), file=sys.stderr) else: logging_level = logging_levels.index(args.logging_level)*10 config = Config(logging_level=logging_level, resolve_all_imports=not args.search_imports, render_graph=args.render_graph, mark_unused = args.mark_unused) dependency_analyzer = DependencyAnalyzer(config) dependency_analyzer.run(args.dirpath, args.filepath) ```
{ "source": "jpaadre/Whole30Recipes", "score": 3 }
#### File: jpaadre/Whole30Recipes/email_script.py ```python import requests import json import yagmail from datetime import datetime def pull_recipes(): with open(".//credentials//recipe_api.json", "r") as handler: recipes = json.load(handler) headers = {} headers['x-rapidapi-key'] = recipes['x-rapidapi-key'] headers['x-rapidapi-host'] = recipes['x-rapidapi-host'] url = "https://spoonacular-recipe-food-nutrition-v1.p.rapidapi.com/recipes/random" querystring = {"number":"5","tags":"whole30"} response = requests.request("GET", url, headers=headers, params=querystring) json_recipes = json.loads(response.text) return json_recipes def format_recipe_string(key): recipe_string = f"""<h3><strong>{key['title']}</strong></h3> <p><strong><a href="{key['sourceUrl']}">Recipe</a></strong></p> <p>{key['summary']}</p> <p>&nbsp;</p>""" return recipe_string def format_recipe_email_body(json_recipes): recipe_html = [] for i in json_recipes['recipes']: recipe_string = format_recipe_string(i) recipe_html.append(recipe_string) recipe_body = "<p>&nbsp;</p>".join(recipe_html) email_contents = "<h2><strong>Whole30 Recipes for the Week</strong></h2>" + recipe_body return email_contents def send_email(email_contents): today = datetime.now() today_form = today.strftime("%B %d") subject = "Whole30 Suggestions: " + today_form with open(".//credentials//gmail_api.json", "r") as handler: gmail = json.load(handler) yag = yagmail.SMTP(user=gmail['user'], password=gmail['password']) yag.send(to='<EMAIL>', subject=subject, contents=email_contents) return def email_pipeline(): json_recipes = pull_recipes() email_contents = format_recipe_email_body(json_recipes) send_email(email_contents) return if __name__ == "__main__": email_pipeline() ```
{ "source": "jpaalasm/sleep-musicalization-web", "score": 3 }
#### File: sleep-musicalization-web/webapp/models.py ```python import tempfile import os import random from django.core.files.base import File from django.db import models from django.conf import settings class SongManager(models.Manager): def make_song(self, username, date): """Creates a new song by fetching users data from Beddit and storing it to mp3 file. """ key = unicode(''.join([random.choice("<KEY>") for i in range(12)])) song = self.create(user_nickname=username, beddit_username=username, key=key, title=username + " " + date.strftime("%x")) return song def get_latest_public_songs(self): return self.filter(public=True, state="finished").order_by("-created") def get_number_of_public_songs(self): return self.filter(public=True, state="finished").count() def get_my_songs(self, beddit_username): return self.filter(public=True, state="finished", beddit_username=beddit_username) class Song(models.Model): STATE_CHOICES = (("new", "Waiting for processing"), ("processing", "Processing"), ("finished", "Finished"), ("error", "Error"), ) key = models.CharField(max_length=20, db_index=True) state = models.CharField(max_length=20, choices=STATE_CHOICES, default="new") # Automatically generated metadata, user may not change created = models.DateTimeField(auto_now_add=True) beddit_username = models.CharField(max_length=40) times_listened = models.IntegerField(default=0) length_seconds = models.IntegerField(default=0) # User editable fields user_nickname = models.CharField(max_length=40) public = models.BooleanField(default=False, help_text="Include this song in public list of songs?") title = models.CharField(max_length=100, help_text="You can make up a nice title for your song") description = models.TextField(blank=True, help_text="If you like, you can write something about this night and song") song_file = models.FileField(upload_to="songs", blank=True) sleep_data = models.TextField(blank=True) objects = SongManager() def set_state(self, new_state): self.state = new_state self.save() def __unicode__(self): return self.title ``` #### File: sleep-musicalization-web/webapp/tasks.py ```python import os import tempfile import logging from django.core.files.base import File from celery.task import Task from celery.registry import tasks from models import Song import musicalization class GenerateSongTask(Task): def run(self, song_id, date, access_token, **kwargs): song = Song.objects.get(id=song_id) logging.debug("Fetched song " + song.key) try: song.set_state("processing") logging.debug("Processing song") sleep_data_json_string = musicalization.make_beddit_api_request("sleep", song.beddit_username, date, access_token) output_file_name = tempfile.mktemp(suffix=".mp3") musicalization.kunquat_musicalization(song.beddit_username, date, access_token, output_file_name) song.sleep_data = sleep_data_json_string with open(output_file_name) as outfile: logging.debug("Saving song file") song.song_file.save(song.key + ".mp3", File(outfile)) os.unlink(output_file_name) song.set_state("finished") logging.debug("Finished processing song") except: logging.exception("Exception while processing song") song.set_state("error") tasks.register(GenerateSongTask) ```
{ "source": "JPaalman/M5-Project", "score": 3 }
#### File: game/map/map.py ```python import os from game import settings import game.tiles from game.map.colorMap import air_tiles from game.resources import resourceManager from game.resources.textures import textureManager as tM class Map: PADDING_CHAR = 32 MAPBORDER_CHAR = 66 """ This class retrieves contents of a map file, puts all values into the proper variables and make them available for retrieving. """ def __init__(self, mname): self.mapHeight = None self.mapWidth = None self.mapLayout = None self.mapName = None self.bgImage = None self.tileData = None self.MAP_STYLE = None self.PLAYER_ACC = None self.PLAYER_ACC = None self.PLAYER_FRICTION = None self.PLAYER_GRAV = None self.PLAYER_JUMP = None self.BACKGROUND_IMAGE = None self.ENEMY_SPEED = None self.PLATFORM_SPEED = None self.BACKGROUND_MUSIC = None self.FFT_LOW = None self.FFT_HIGH = None self.rawMapLines = resourceManager.getMap(mname) self.initMap(self.rawMapLines) def getTiles(self): """ Converts all data stored in the map file to Tile objects :return: Tile[] of tiles representing the map """ res = [] rownr = 0 tmp = [] arr = bytearray([]) i = 0 while i < len(self.mapLayout[0]): arr.append(self.PADDING_CHAR) i += 1 tmp.append(arr) for x in self.mapLayout: tmp.append(x) self.mapLayout = tmp # print(len(self.mapLayout)) # for x in self.mapLayout: # print(str(x)) while rownr < len(self.mapLayout): colnr = 0 while colnr < len(self.mapLayout[rownr]) - 1: if self.mapLayout[rownr][colnr] != 32 and self.mapLayout[rownr][colnr] != 66: data = self.findTileData(self.mapLayout[rownr][colnr]) res.append(game.tiles.Tile(self.getX(colnr), self.getY(rownr), self.mapLayout[rownr][colnr], data)) colnr += 1 rownr += 1 return res def initMap(self, lines): """ Initializes all the instance variables by reading the file contents and converting the contents to their proper representation :param lines: Array of raw lines retrieved from the map file """ lines = self.cleanLines(lines) index = 0; # Read map name self.mapName = self.getParamValue(lines[index]) index += 1 # Read map height self.mapHeight = int(float(self.getParamValue(lines[index]))) index += 1 # Read map width param = self.getParamValue(lines[index]) if param != "AUTO": self.mapWidth = int(float(param)) index += 1 # Read background stuff self.BACKGROUND_IMAGE = str(self.getParamValue(lines[index])) index += 1 self.BACKGROUND_MUSIC = str(self.getParamValue(lines[index])) index += 1 self.bgImage = tM.getImage(self.BACKGROUND_IMAGE, False) # Read player properties self.PLAYER_ACC = float(self.getParamValue(lines[index])) index += 1 self.PLAYER_FRICTION = float(self.getParamValue(lines[index])) index += 1 self.PLAYER_GRAV = float(self.getParamValue(lines[index])) index += 1 self.PLAYER_JUMP = float(self.getParamValue(lines[index])) index += 1 # Read enemy properties self.ENEMY_SPEED = float(self.getParamValue(lines[index])) index += 1 # Read platform properties self.PLATFORM_SPEED = float(self.getParamValue(lines[index])) index += 1 self.MAP_STYLE = self.getParamValue(lines[index]) index += 1 try: self.FFT_LOW = self.getParamValue(lines[index]) index += 1 except: print("No FFT_LOW found") try: self.FFT_HIGH = self.getParamValue(lines[index]) index += 1 except: print("No FFT_HIGH found") # Load maplayout self.mapLayout = self.getMapLayout(lines[index:]) self.mapLayout = self.fillMapBottom(self.mapLayout) index += len(self.mapLayout) + 1 # Load tile data self.tileData = self.getTileData(lines[index:]) # print("Map initiated:") # print("Map name: " + self.mapName) # print("Width: " + str(self.mapWidth)) # print("Height: " + str(self.mapHeight)) # print("\nMapdata:") # for x in self.mapLayout: # print(x) def cleanLines(self, ls): """ Cleans the input lines by removing newline characters and ignoring empty lines or comment lines that start with '#' :param ls: The list that you want to clean :return: The cleaned list """ tempList = [] for x in ls: tempList.append(x[:-1]) ls = tempList out = [] i = self.nextLine(ls, -1) while i < len(ls): out.append(ls[i]) i = self.nextLine(ls, i) return out def nextLine(self, ls, index): """ Returns the index of the next line that contains information. Emtpy lines or comment lines starting with '#' are skipped. :param ls: List with possibly relevant values. :param index: The last index read by the program :return: The index of the next line that is relevant """ for x in range(index + 1, len(ls) - 1): if (len(ls[x]) > 0) and (ls[x][0] != "#") and (ls[x][0] != 10): return x return len(ls) def getParamValue(self, input): """ Retrieves the string value of a parameter stored in the map file :param input: [PARAMNAME]=[VALUE] :return: VALUE """ return input.split("=")[1] def getMapLayout(self, data): """ Processes the raw lines that represent the map to a complete map. This includes adding padding to lines if they are shorter than the MAPWIDTH param in the map file specifies, and truncates lines if they are longer than the MAPWIDTH specifies. The same padding and truncation is applied to the map vertically. The map is padded with "space" characters, and border characters at the borders. :param data: The raw lines that represent the map layout itself. :return: A matrix of bytes that contains the byte for every tile on the map. """ if self.mapWidth is None: self.mapWidth = len(data[0]) + 1 print("Auto detected mapwidth set to: " + str(self.mapWidth)) res = [] padding = [self.PADDING_CHAR] * self.mapWidth padding[0] = self.MAPBORDER_CHAR padding[len(padding) - 1] = self.MAPBORDER_CHAR bottom_padding = [self.MAPBORDER_CHAR] * self.mapWidth i = 0 while (i < len(data)) and (data[i] != "!MAPEND") and len(res) != self.mapHeight + 1: if len(res) == self.mapHeight: return res add = bytearray(data[i][:self.mapWidth], "ascii") if len(add) < self.mapWidth: while len(add) < self.mapWidth - 1: if i == 0: add.append(self.MAPBORDER_CHAR) else: add.append(self.PADDING_CHAR) add.append(self.MAPBORDER_CHAR) res.append(add) i += 1 if len(res) != self.mapHeight: while len(res) < self.mapHeight - 1: res.append(padding) res.append(bottom_padding) return res def getTileData(self, lines): values = [] for x in lines: values.append(int(x)) return values def findTileData(self, tid): temp = 0 if len(self.tileData) > 0: # moving platform if tid == 77: temp = self.tileData[0] self.tileData = self.tileData[1:] return temp def getX(self, x): return settings.TILESIZE * x def getY(self, y): return settings.TILESIZE * y def fillMapBottom(self, data): rownr = len(data) - 2 while rownr > 0: colnr = 0 while colnr < len(data[rownr]): if data[rownr][colnr] == 32: if (data[rownr + 1][colnr] == 66) or (data[rownr + 1][colnr] == 70): data[rownr][colnr] = 70 colnr += 1 rownr -= 1 rownr = 0 while rownr < len(data): colnr = 0 while colnr < len(data[rownr]): if data[rownr][colnr] == 70: if (data[rownr][colnr - 1] not in air_tiles) \ and (data[rownr][colnr + 1] not in air_tiles and (data[rownr - 1][colnr] not in air_tiles and (data[rownr + 1][colnr] not in air_tiles))): data[rownr][colnr] = 120 colnr += 1 rownr += 1 return data ```
{ "source": "jpaav/comm", "score": 2 }
#### File: comm/accounts/models.py ```python from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver # Custom Profile linked to a User from rooms.models import Org class Profile(models.Model): def __str__(self): return 'Profile: ' + self.user.get_full_name() user = models.OneToOneField(User, on_delete=models.CASCADE) # The manager to get Profile objects objects = models.Manager() # The primary key # uid = models.IntegerField(primary_key=True) timezone = models.CharField(max_length=50, default='EST', blank=True) # The user variable to allow authentication to work username = models.CharField(max_length=200, default="") bio = models.CharField(max_length=1000, default="", blank=True) permission = {} # the key is the permission itself which can be a url or just a word for the permission the value is a list of orgainizations it can do this action for # TODO: remove the below var orgs it seems unnecessary. orgs = models.ForeignKey( Org, models.CASCADE, null=True, blank=True ) # add permission to the profile for the PERM and the ORG def addPermission(self, perm, org): if self.permission.get(perm, None) is None: self.permission[perm] = [org] else: self.permission[perm].extend(org) # checks to see if permission contains PERM for ORG def hasPerm(self, perm, org): for i in self.permission[perm]: if i == org: return True return False # checks to see if anyone has the permission adn returns authorized organizations def allWithPerm(self, perm): return self.permission.get(perm, None) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): # TODO: should be able to delete all the except: stuff after all the users have run this try: instance.profile.save() except: print("stuff") print(sender.username, sender.id) print(instance.username, instance.id) p = Profile.objects.filter(username=instance.get_username()).first() if p is None: print("cool") instance.profile = Profile(username=instance.get_username()) else: print("cool a") instance.profile = p instance.profile.user = instance instance.save() ``` #### File: comm/orgs/models.py ```python from django.contrib.auth.models import User from django.db import models class Org(models.Model): def __str__(self): return 'Org: ' + self.name objects = models.Manager() name = models.CharField(max_length=50, null=True) description = models.CharField(max_length=1000, null=True, blank=True) location = models.CharField(max_length=100, null=True, blank=True) owner = models.ForeignKey( User, null=True, related_name='owner', ) # TODO Check if this should be "CASCADE" members = models.ManyToManyField( User, related_name='members', blank=True ) unapproved = models.ManyToManyField( User, related_name='unapproved', blank=True ) ``` #### File: patientlog/templatetags/linebreakless.py ```python from django.utils import six from django import template from django.template.base import Node from django.utils.functional import allow_lazy register = template.Library() @register.tag def linebreakless(parser, token): nodelist = parser.parse(('endlinebreakless',)) parser.delete_first_token() return LinebreaklessNode(nodelist) class LinebreaklessNode(Node): def __init__(self, nodelist): self.nodelist = nodelist def render(self, context): strip_line_breaks = allow_lazy(lambda x: x.replace('\n', ''), six.text_type) return strip_line_breaks(self.nodelist.render(context).strip()) ``` #### File: comm/rooms/views.py ```python from django.shortcuts import render from rooms.models import Room def room(request, room_id): room = Room.objects.filter(pk=room_id) return render(request, 'rooms/room.html') ```
{ "source": "jpabb7/p2pScrapper", "score": 2 }
#### File: BitTorrent-5.2.2/BitTorrent/Choker.py ```python from __future__ import division import math import random from BTL.obsoletepythonsupport import set class Choker(object): def __init__(self, config, schedule): self.config = config self.schedule = schedule self.connections = [] self.count = 0 self.unchokes_since_last = 0 self.interval = 5 self.shutting_down = False #self.magic_number = 6 # magic 6 : (30 / self.interval) self.magic_number = (30 / self.interval) schedule(self.interval, self._round_robin) def _round_robin(self): self.schedule(self.interval, self._round_robin) self.count += 1 # don't do more work than you have to if not self.connections: return # rotation for round-robin if self.count % self.magic_number == 0: for i, c in enumerate(self.connections): u = c.upload if u.choked and u.interested: self.connections = self.connections[i:] + self.connections[:i] break self._rechoke() ## new ############################################################################ def _rechoke(self): # step 1: # get sorted in order of preference lists of peers # one for downloading torrents, and one for seeding torrents down_pref = [] seed_pref = [] for i, c in enumerate(self.connections): u = c.upload if c.download.have.numfalse == 0 or not u.interested: continue # I cry. if c.download.multidownload.storage.have.numfalse != 0: ## heuristic for downloading torrents if not c.download.is_snubbed(): ## simple download rate based down_pref.append((-c.download.get_rate(), i)) ## ratio based #dr = c.download.get_rate() #ur = max(1, u.get_rate()) #ratio = dr / ur #down_pref.append((-ratio, i)) else: ## heuristic for seeding torrents ## Uoti special ## if c._decrypt is not None: ## seed_pref.append((self.count, u.get_rate(), i)) ## elif (u.unchoke_time > self.count - self.magic_number or ## u.buffer and c.connection.is_flushed()): ## seed_pref.append((u.unchoke_time, u.get_rate(), i)) ## else: ## seed_pref.append((1, u.get_rate(), i)) ## sliding, first pass (see below) r = u.get_rate() if c._decrypt is not None: seed_pref.append((2, r, i)) else: seed_pref.append((1, r, i)) down_pref.sort() seed_pref.sort() #pprint(down_pref) #pprint(seed_pref) down_pref = [ self.connections[i] for junk, i in down_pref ] seed_pref = [ self.connections[i] for junk, junk, i in seed_pref ] max_uploads = self._max_uploads() ## sliding, second pass ## # up-side-down sum for an idea of capacity ## uprate_sum = sum(rates[-max_uploads:]) ## if max_uploads == 0: ## avg_uprate = 0 ## else: ## avg_uprate = uprate_sum / max_uploads ## #print 'avg_uprate', avg_uprate, 'of', max_uploads ## self.extra_slots = max(self.extra_slots - 1, 0) ## if avg_uprate > self.arbitrary_min: ## for r in rates: ## if r < (avg_uprate * 0.80): # magic 80% ## self.extra_slots += 2 ## break ## self.extra_slots = min(len(seed_pref), self.extra_slots) ## max_uploads += self.extra_slots ## #print 'plus', self.extra_slots # step 2: # split the peer lists by a ratio to fill the available upload slots d_uploads = max(1, int(round(max_uploads * 0.70))) s_uploads = max(1, int(round(max_uploads * 0.30))) #print 'original', 'ds', d_uploads, 'us', s_uploads extra = max(0, d_uploads - len(down_pref)) if extra > 0: s_uploads += extra d_uploads -= extra extra = max(0, s_uploads - len(seed_pref)) if extra > 0: s_uploads -= extra d_uploads = min(d_uploads + extra, len(down_pref)) #print 'ds', d_uploads, 'us', s_uploads down_pref = down_pref[:d_uploads] seed_pref = seed_pref[:s_uploads] preferred = set(down_pref) preferred.update(seed_pref) # step 3: # enforce unchoke states count = 0 to_choke = [] for i, c in enumerate(self.connections): u = c.upload if c in preferred: u.unchoke(self.count) count += 1 else: to_choke.append(c) # step 4: # enforce choke states and handle optimistics count = 0 optimistics = max(self.config['min_uploads'], max_uploads - len(preferred)) #print 'optimistics', optimistics for c in to_choke: u = c.upload if c.download.have.numfalse == 0: u.choke() elif count >= optimistics: u.choke() else: # this one's optimistic u.unchoke(self.count) if u.interested: count += 1 ############################################################################ def shutdown(self): self.shutting_down = True def connection_made(self, connection): p = random.randrange(len(self.connections) + 1) self.connections.insert(p, connection) def connection_lost(self, connection): self.connections.remove(connection) if (not self.shutting_down and connection.upload.interested and not connection.upload.choked): self._rechoke() def interested(self, connection): if not connection.upload.choked: self._rechoke() def not_interested(self, connection): if not connection.upload.choked: self._rechoke() def _max_uploads(self): uploads = self.config['max_uploads'] rate = self.config['max_upload_rate'] / 1024 if uploads > 0: pass elif rate <= 0: uploads = 7 # unlimited, just guess something here... elif rate < 9: uploads = 2 elif rate < 15: uploads = 3 elif rate < 42: uploads = 4 else: uploads = int(math.sqrt(rate * .6)) return uploads ``` #### File: BitTorrent-5.2.2/BitTorrent/configfile.py ```python import os import sys import traceback from BitTorrent.translation import _ from ConfigParser import RawConfigParser from ConfigParser import MissingSectionHeaderError, ParsingError from BitTorrent import parseargs, version, BTFailure from BTL.platform import app_name from BTL.platform import encode_for_filesystem, decode_from_filesystem from BitTorrent.platform import get_save_dir, locale_root, is_frozen_exe from BitTorrent.platform import get_dot_dir, get_incomplete_data_dir from BitTorrent.platform import enforce_shortcut, enforce_association from BitTorrent.platform import smart_gettext_and_install from BitTorrent.platform import get_old_incomplete_data_dir from BitTorrent.platform import get_temp_subdir from BitTorrent.platform import old_broken_config_subencoding from BitTorrent.zurllib import bind_tracker_connection from BTL.exceptions import str_exc from BitTorrent.shortargs import convert_from_shortforms downloader_save_options = [ # General 'confirm_quit' , # Appearance 'progressbar_style' , 'toolbar_text' , 'toolbar_size' , # Bandwidth 'max_upload_rate' , 'max_download_rate' , # Saving 'save_in' , 'save_incomplete_in' , 'ask_for_save' , # Network 'minport' , 'maxport' , 'upnp' , 'ip' , 'resolve_hostnames' , # Misc 'open_from' , 'geometry' , 'start_maximized' , 'column_order' , 'enabled_columns' , 'column_widths' , 'sort_column' , 'sort_ascending' , 'show_details' , 'settings_tab' , 'details_tab' , 'splitter_height' , 'theme' , 'donated' , 'notified' , ] if os.name == 'nt': downloader_save_options.extend([ # General 'enforce_association' , 'launch_on_startup' , 'minimize_to_tray' , 'start_minimized' , 'close_to_tray' , # Bandwidth 'bandwidth_management', 'show_variance_line' , ]) MAIN_CONFIG_FILE = 'ui_config' TORRENT_CONFIG_FILE = 'torrent_config' alt_uiname = {'bittorrent':'btdownloadgui', 'maketorrent':'btmaketorrentgui',} def _read_config(filename): """Returns a RawConfigParser that has parsed the config file specified by the passed filename.""" # check for bad config files p = RawConfigParser() fp = None try: fp = open(filename) except IOError: pass if fp is not None: try: p.readfp(fp, filename=filename) except MissingSectionHeaderError: fp.close() del fp bad_config(filename) except ParsingError: fp.close() del fp bad_config(filename) else: fp.close() return p def _write_config(error_callback, filename, p): if not p.has_section('format'): p.add_section('format') p.set('format', 'encoding', 'utf-8') try: f = file(filename, 'wb') p.write(f) f.close() except Exception, e: try: f.close() except: pass error_callback(_("Could not permanently save options: ")+str_exc(e)) def bad_config(filename): base_bad_filename = filename + '.broken' bad_filename = base_bad_filename i = 0 while os.access(bad_filename, os.F_OK): bad_filename = base_bad_filename + str(i) i+=1 os.rename(filename, bad_filename) sys.stderr.write(_("Error reading config file. " "Old config file stored in \"%s\"") % bad_filename) def get_config(defaults, section): """This reads the key-value pairs from the specified section in the config file and from the common section. It then places those appearing in the defaults into a dict, which is then returned. @type defaults: dict @param defaults: dict of name-value pairs derived from the defaults list for this application (see defaultargs.py). Only the names in the name-value pairs are used. get_config only reads variables from the config file with matching names. @type section: str @param section: in the configuration from which to read options. So far, the sections have been named after applications, e.g., bittorrent, bittorrent-console, etc. @return: a dict containing option-value pairs. """ assert type(defaults)==dict assert type(section)==str configdir = get_dot_dir() if configdir is None: return {} if not os.path.isdir(configdir): try: os.mkdir(configdir, 0700) except: pass p = _read_config(os.path.join(configdir, 'config')) # returns parser. if p.has_section('format'): encoding = p.get('format', 'encoding') else: encoding = old_broken_config_subencoding values = {} if p.has_section(section): for name, value in p.items(section): if name in defaults: values[name] = value if p.has_section('common'): for name, value in p.items('common'): if name in defaults and name not in values: values[name] = value if defaults.get('data_dir') == '' and \ 'data_dir' not in values and os.path.isdir(configdir): datadir = os.path.join(configdir, 'data') values['data_dir'] = decode_from_filesystem(datadir) parseargs.parse_options(defaults, values, encoding) return values def save_global_config(defaults, section, error_callback, save_options=downloader_save_options): filename = os.path.join(defaults['data_dir'], MAIN_CONFIG_FILE) p = _read_config(filename) p.remove_section(section) if p.has_section(alt_uiname[section]): p.remove_section(alt_uiname[section]) p.add_section(section) for name in save_options: name.decode('ascii').encode('utf-8') # just to make sure we can if defaults.has_key(name): value = defaults[name] if isinstance(value, str): value = value.decode('ascii').encode('utf-8') elif isinstance(value, unicode): value = value.encode('utf-8') p.set(section, name, value) else: err_str = _("Configuration option mismatch: '%s'") % name if is_frozen_exe: err_str = _("You must quit %s and reinstall it. (%s)") % (app_name, err_str) error_callback(err_str) _write_config(error_callback, filename, p) def save_torrent_config(path, infohash, config, error_callback): section = infohash.encode('hex') filename = os.path.join(path, TORRENT_CONFIG_FILE) p = _read_config(filename) p.remove_section(section) p.add_section(section) for key, value in config.items(): p.set(section, key, value) _write_config(error_callback, filename, p) def read_torrent_config(global_config, path, infohash, error_callback): section = infohash.encode('hex') filename = os.path.join(path, TORRENT_CONFIG_FILE) p = _read_config(filename) if not p.has_section(section): return {} else: c = {} for name, value in p.items(section): if global_config.has_key(name): t = type(global_config[name]) if t == bool: c[name] = value in ('1', 'True', True) else: try: c[name] = type(global_config[name])(value) except ValueError, e: error_callback('%s (name:%s value:%s type:%s global:%s)' % (str_exc(e), name, repr(value), type(global_config[name]), global_config[name])) # is this reasonable? c[name] = global_config[name] elif name == 'save_as': # Backwards compatibility for BitTorrent 4.4 torrent_config file c[name] = value try: c[name] = c[name].decode('utf-8') except: pass return c def remove_torrent_config(path, infohash, error_callback): section = infohash.encode('hex') filename = os.path.join(path, TORRENT_CONFIG_FILE) p = _read_config(filename) if p.has_section(section): p.remove_section(section) _write_config(error_callback, filename, p) def parse_configuration_and_args(defaults, uiname, arglist=[], minargs=None, maxargs=None): """Given the default option settings and overrides these defaults from values read from the config file, and again overrides the config file with the arguments that appear in the arglist. 'defaults' is a list of tuples of the form (optname, value, desc) where 'optname' is a string containing the option's name, value is the option's default value, and desc is the option's description. 'uiname' is a string specifying the user interface that has been created by the caller. Ex: bittorrent, maketorrent. arglist is usually argv[1:], i.e., excluding the name used to execute the program. minargs specifies the minimum number of arguments that must appear in arglist. If the number of arguments is less than the minimum then a BTFailure exception is raised. maxargs specifies the maximum number of arguments that can appear in arglist. If the number of arguments exceeds the maximum then a BTFailure exception is raised. This returns the tuple (config,args) where config is a dictionary of (option, value) pairs, and args is the list of arguments in arglist after the command-line arguments have been removed. For example: bittorrent-curses.py --save_as lx-2.6.rpm lx-2.6.rpm.torrent --max_upload_rate 0 returns a (config,args) pair where the config dictionary contains many defaults plus the mappings 'save_as': 'linux-2.6.15.tar.gz' and 'max_upload_rate': 0 The args in the returned pair is args= ['linux-2.6.15.tar.gz.torrent'] """ assert type(defaults)==list assert type(uiname)==str assert type(arglist)==list assert minargs is None or type(minargs) in (int,long) and minargs>=0 assert maxargs is None or type(maxargs) in (int,long) and maxargs>=minargs # remap shortform arguments to their long-forms. arglist = convert_from_shortforms(arglist) defconfig = dict([(name, value) for (name, value, doc) in defaults]) if arglist[0:] == ['--version']: print version sys.exit(0) if arglist[0:] == '--help': parseargs.printHelp(uiname, defaults) sys.exit(0) if "--use_factory_defaults" not in arglist: presets = get_config(defconfig, uiname) # read from .bittorrent dir. # run as if fresh install using temporary directories. else: presets = {} temp_dir = get_temp_subdir() #set_config_dir(temp_dir) # is already set in platform.py. save_in = encode_for_filesystem( u"save_in" )[0] presets["save_in"] = \ decode_from_filesystem(os.path.join(temp_dir,save_in)) data = encode_for_filesystem( u"data" )[0] presets["data_dir"] = \ decode_from_filesystem(os.path.join(temp_dir,data)) incomplete = encode_for_filesystem( u"incomplete" )[0] presets["save_incomplete_in"] = \ decode_from_filesystem(os.path.join(temp_dir,incomplete)) presets["one_connection_per_ip"] = False config = args = None try: config, args = parseargs.parseargs(arglist, defaults, minargs, maxargs, presets) except parseargs.UsageException, e: print e parseargs.printHelp(uiname, defaults) sys.exit(0) datadir = config.get('data_dir') found_4x_config = False if datadir: datadir,bad = encode_for_filesystem(datadir) if bad: raise BTFailure(_("Invalid path encoding.")) if not os.path.exists(datadir): os.mkdir(datadir) if uiname in ('bittorrent', 'maketorrent'): values = {} p = _read_config(os.path.join(datadir, MAIN_CONFIG_FILE)) if p.has_section('format'): encoding = p.get('format', 'encoding') else: encoding = old_broken_config_subencoding if not p.has_section(uiname) and p.has_section(alt_uiname[uiname]): uiname = alt_uiname[uiname] if p.has_section(uiname): for name, value in p.items(uiname): if name in defconfig: values[name] = value elif not found_4x_config: # identify 4.x version config file if name in ('start_torrent_behavior', 'seed_forever', 'progressbar_hack', 'seed_last_forever', 'next_torrent_ratio', 'next_torrent_time', 'last_torrent_ratio', ): found_4x_config = True parseargs.parse_options(defconfig, values, encoding) presets.update(values) config, args = parseargs.parseargs(arglist, defaults, minargs, maxargs, presets) for d in ('', 'resume', 'metainfo', 'torrents'): ddir = os.path.join(datadir, d) if not os.path.exists(ddir): os.mkdir(ddir, 0700) else: assert(os.path.isdir(ddir)) if found_4x_config: # version 4.x stored KB/s, < version 4.x stores B/s config['max_upload_rate'] *= 1024 if config.get('language'): # this is non-blocking if the language does not exist smart_gettext_and_install('bittorrent', locale_root, languages=[config['language']]) if config.has_key('bind') and config['bind'] != '': bind_tracker_connection(config['bind']) if config.has_key('launch_on_startup'): enforce_shortcut(config, log_func=sys.stderr.write) if os.name == 'nt' and config.has_key('enforce_association'): enforce_association() if config.has_key('save_in') and config['save_in'] == '' and \ (not config.has_key("save_as") or config['save_as'] == '' ) \ and uiname != 'bittorrent': config['save_in'] = decode_from_filesystem(get_save_dir()) incomplete = decode_from_filesystem(get_incomplete_data_dir()) if config.get('save_incomplete_in') == '': config['save_incomplete_in'] = incomplete if config.get('save_incomplete_in') == get_old_incomplete_data_dir(): config['save_incomplete_in'] = incomplete if uiname == "test-client" or (uiname.startswith("bittorrent") and uiname != 'bittorrent-tracker'): if not config.get('ask_for_save'): # we check for existance, so things like "D:\" don't trip us up. if (config['save_in'] and not os.path.exists(config['save_in'])): try: os.makedirs(config['save_in']) except OSError, e: if (e.errno == 2 or # no such file or directory e.errno == 13): # permission denied traceback.print_exc() print >> sys.stderr, "save_in could not be created. Falling back to prompting." config['ask_for_save'] = True elif e.errno != 17: # path already exists raise if (config['save_incomplete_in'] and not os.path.exists(config['save_incomplete_in'])): try: os.makedirs(config['save_incomplete_in']) except OSError, e: if e.errno != 17: # path already exists traceback.print_exc() print >> sys.stderr, "save_incomplete_in could not be created. Falling back to default incomplete path." config['save_incomplete_in'] = incomplete return config, args ``` #### File: BitTorrent-5.2.2/BitTorrent/ConnectionManager.py ```python from __future__ import division import sys from BTL.platform import app_name from BTL.translation import _ from BitTorrent import BTFailure from BTL.obsoletepythonsupport import * from BTL.hash import sha from BitTorrent.RawServer_twisted import Handler from BitTorrent.Connector import Connector from BitTorrent.HTTPConnector import HTTPConnector from BitTorrent.LocalDiscovery import LocalDiscovery from BitTorrent.InternetWatcher import InternetSubscriber from BTL.DictWithLists import DictWithInts, OrderedDict from BTL.platform import bttime from BTL.rand_tools import iter_rand_pos import random import logging import urlparse ONLY_LOCAL = False GLOBAL_FILTER = None def GLOBAL_FILTER(ip, port, direction=""): #print ip, direction return False GLOBAL_FILTER = None # header, reserved, download id, my id, [length, message] LOWER_BOUND = 1 UPPER_BOUND = 120 BUFFER = 1.2 use_timeout_order = False timeout_order = [3, 15, 30] debug = False def set_timeout_metrics(delta): delta = max(delta, 0.0001) avg = ((timeout_order[0] / BUFFER) + delta) / 2 avg *= BUFFER avg = max(LOWER_BOUND, avg) avg = min(UPPER_BOUND, avg) timeout_order[0] = avg timeout_order[2] = timeout_order[0] * 30 timeout_order[1] = timeout_order[2] / 2 class GaurdedInitialConnection(Handler): def __init__(self, parent, id, encrypt=False, log_prefix="", lan=False, urgent=False, timeout=None ): self.t = None self.id = id self.lan = lan self.parent = parent self.urgent = urgent self.timeout = timeout self.encrypt = encrypt self.connector = None self.log_prefix = log_prefix def _make_connector(self, s): addr = (s.ip, s.port) self.parent.cache_complete_peer(addr, self.id, type(self), encrypt=self.encrypt, urgent=self.urgent, lan=self.lan) return Connector(self.parent, s, self.id, True, obfuscate_outgoing=self.encrypt, log_prefix=self.log_prefix, lan=self.lan) def connection_starting(self, addr): self.start = bttime() self.t = self.parent.add_task(self.timeout, self.parent._cancel_connection, addr) def _abort_timeout(self): if self.t and self.t.active(): self.t.cancel() self.t = None def connection_made(self, s): t = bttime() - self.start set_timeout_metrics(t) addr = (s.ip, s.port) if debug: self.parent.logger.warning('connection made: %s %s' % (addr, t)) del self.parent.pending_connections[addr] self._abort_timeout() con = self._make_connector(s) self.parent._add_connection(con) # if the pending queue filled and put the remaining connections # into the spare list, this will push more connections in to pending self.parent.replace_connection() def connection_failed(self, s, exception): addr = (s.ip, s.port) if debug: self.parent.logger.warning('connection failed: %s %s' % (addr, exception.getErrorMessage())) if s.connector.wasPreempted(): self.parent._resubmit_connection(addr) del self.parent.pending_connections[addr] self._abort_timeout() # only holepunch if this connection timed out entirely if self.timeout >= timeout_order[-1]: c = self.parent.find_connection_in_common(addr) if c: c.send_holepunch_request(addr) self.parent.replace_connection() class HTTPInitialConnection(GaurdedInitialConnection): def _make_connector(self, s): addr = (s.ip, s.port) self.parent.cache_complete_peer(addr, self.id, type(self), urgent=self.urgent) # ow! piece_size = self.parent.downloader.storage.piece_size urlage = self.parent.downloader.urlage return HTTPConnector(self.parent, piece_size, urlage, s, self.id, True, log_prefix=self.log_prefix) class ConnectionManager(InternetSubscriber): def __init__(self, make_upload, downloader, choker, numpieces, ratelimiter, rawserver, config, private, my_id, add_task, infohash, context, addcontactfunc, reported_port, tracker_ips, log_prefix ): """ @param downloader: MultiDownload for this torrent. @param my_id: my peer id. @param tracker_ips: list of tracker ip addresses. ConnectionManager does not drop connections from the tracker. This allows trackers to perform NAT checks even when there are max_allow_in connections. @param log_prefix: string used as the prefix for all log entries generated by the ConnectionManager and its created Connectors. """ self.make_upload = make_upload self.downloader = downloader self.choker = choker # aaargh self.piece_size = downloader.storage.piece_size self.numpieces = numpieces self.ratelimiter = ratelimiter self.rawserver = rawserver self.my_id = my_id self.private = private self.config = config self.add_task = add_task self.infohash = infohash self.context = context self.addcontact = addcontactfunc self.reported_port = reported_port self.everinc = False self.tracker_ips = tracker_ips self.log_prefix = log_prefix self.logger = logging.getLogger(self.log_prefix) self.closed = False # submitted self.pending_connections = {} # transport connected self.connectors = set() # protocol active # we do a lot of itterating and few mutations, so use a list self.complete_connectors = [] # set() # use a dict for a little semi-randomness self.spares = {} # OrderedDict() self.cached_peers = OrderedDict() self.cache_limit = 300 self.connector_ips = DictWithInts() self.connector_ids = DictWithInts() self.banned = set() self._ka_task = self.add_task(config['keepalive_interval'], self.send_keepalives) self._pex_task = None if not self.private: self._pex_task = self.add_task(config['pex_interval'], self.send_pex) self.reopen(reported_port) def cleanup(self): if not self.closed: self.close_connections() del self.context self.cached_peers.clear() if self._ka_task.active(): self._ka_task.cancel() if self._pex_task and self._pex_task.active(): self._pex_task.cancel() def reopen(self, port): self.closed = False self.reported_port = port self.unthrottle_connections() for addr in self.cached_peers: self._fire_cached_connection(addr) self.rawserver.internet_watcher.add_subscriber(self) def internet_active(self): for addr in self.cached_peers.iterkeys(): self._fire_cached_connection(addr) def remove_addr_from_cache(self, addr): # could have been an incoming connection # or could have been dropped by the cache limit if addr in self.cached_peers: del self.cached_peers[addr] def try_one_connection(self): keys = self.cached_peers.keys() if not keys: return False addr = random.choice(keys) self._fire_cached_connection(addr) return True def _fire_cached_connection(self, addr): v = self.cached_peers[addr] complete, (id, handler, a, kw) = v return self._start_connection(addr, id, handler, *a, **kw) def cache_complete_peer(self, addr, pid, handler, *a, **kw): self.cache_peer(addr, pid, handler, 1, *a, **kw) def cache_incomplete_peer(self, addr, pid, handler, *a, **kw): self.cache_peer(addr, pid, handler, 0, *a, **kw) def cache_peer(self, addr, pid, handler, complete, *a, **kw): # obey the cache size limit if (addr not in self.cached_peers and len(self.cached_peers) >= self.cache_limit): for k, v in self.cached_peers.iteritems(): if not v[0]: del self.cached_peers[k] break else: # cache full of completes, delete a random peer. # yes, this can cache an incomplete when the cache is full of # completes, but only 1 because of the filter above. oldaddr = self.cached_peers.keys()[0] del self.cached_peers[oldaddr] elif not complete: if addr in self.cached_peers and self.cached_peers[addr][0]: # don't overwrite a complete with an incomplete. return self.cached_peers[addr] = (complete, (pid, handler, a, kw)) def send_keepalives(self): self._ka_task = self.add_task(self.config['keepalive_interval'], self.send_keepalives) for c in self.complete_connectors: c.send_keepalive() def send_pex(self): self._pex_task = self.add_task(self.config['pex_interval'], self.send_pex) pex_set = set() for c in self.complete_connectors: if c.listening_port: pex_set.add((c.ip, c.listening_port)) for c in self.complete_connectors: c.send_pex(pex_set) def hashcheck_succeeded(self, i): for c in self.complete_connectors: # should we send a have message if peer already has the piece? # yes! it is low bandwidth and useful for that peer. c.send_have(i) def find_connection_in_common(self, addr): for c in self.complete_connectors: if addr in c.remote_pex_set: return c # returns False if the connection info has been pushed on to self.spares # other filters and a successful connection return True def start_connection(self, addr, id=None, encrypt=False, lan=False): """@param addr: domain name/ip address and port pair. @param id: peer id. """ return self._start_connection(addr, id, GaurdedInitialConnection, encrypt=encrypt, lan=lan) def start_http_connection(self, url): r = urlparse.urlparse(url) host = r[1] if ':' in host: host, port = host.split(':') port = int(port) else: port = 80 df = self.rawserver.gethostbyname(host) df.addCallback(self._connect_http, port, url) df.addLogback(self.logger.warning, "Resolve failed") def _connect_http(self, ip, port, url): self._start_connection((ip, port), url, HTTPInitialConnection, urgent=True) def _start_connection(self, addr, pid, handler, *a, **kw): """@param addr: domain name/ip address and port pair. @param pid: peer id. """ if self.closed: return True if addr[0] in self.banned: return True if pid == self.my_id: return True for v in self.connectors: if pid and v.id == pid: return True if self.config['one_connection_per_ip'] and v.ip == addr[0]: return True total_outstanding = len(self.connectors) # it's possible the pending connections could eventually complete, # so we have to account for those when enforcing max_initiate total_outstanding += len(self.pending_connections) if total_outstanding >= self.config['max_initiate']: self.spares[(addr, pid)] = (handler, a, kw) return False # if these fail, I'm getting a very weird addr object assert isinstance(addr, tuple) assert isinstance(addr[0], str) assert isinstance(addr[1], int) if ONLY_LOCAL and addr[0] != "127.0.0.1" and not addr[0].startswith("192.168") and addr[1] != 80: return True if GLOBAL_FILTER and not GLOBAL_FILTER(addr[0], addr[1], "out"): return True if addr not in self.cached_peers: self.cache_incomplete_peer(addr, pid, handler, *a, **kw) # sometimes we try to connect to a peer we're already trying to # connect to #assert addr not in self.pending_connections if addr in self.pending_connections: return True kw['log_prefix'] = self.log_prefix timeout = 30 if use_timeout_order: timeout = timeout_order[0] kw.setdefault('timeout', timeout) h = handler(self, pid, *a, **kw) self.pending_connections[addr] = (h, (addr, pid, handler, a, kw)) urgent = kw.pop('urgent', False) connector = self.rawserver.start_connection(addr, h, self.context, # we'll handle timeouts. # not so fond of this. timeout=None, urgent=urgent) h.connector = connector return True def _resubmit_connection(self, addr): # we leave it on pending_connections. # so the standard connection_failed handling occurs. h, info = self.pending_connections[addr] addr, pid, handler, a, kw = info self.spares[(addr, pid)] = (handler, a, kw) def _cancel_connection(self, addr): if addr not in self.pending_connections: # already made return # we leave it on pending_connections. # so the standard connection_failed handling occurs. h, info = self.pending_connections[addr] addr, pid, handler, a, kw = info if use_timeout_order and h.timeout < timeout_order[-1]: for t in timeout_order: if t > h.timeout: h.timeout = t break else: h.timeout = timeout_order[-1] # this feels odd kw['timeout'] = h.timeout self.spares[(addr, pid)] = (handler, a, kw) # do this last, since twisted might fire the event handler from inside # the function # HMM: # should be stopConnecting, but I've seen this fail. # close does the same thing, but disconnects in the case where the # connection was made. Not sure how that occurs without add being in # self.pending_connections # Maybe this was fixed recently in CRLR. #h.connector.stopConnecting() h.connector.close() def connection_handshake_completed(self, connector): self.connector_ips.add(connector.ip) self.connector_ids.add(connector.id) self.complete_connectors.append(connector) connector.upload = self.make_upload(connector) connector.download = self.downloader.make_download(connector) self.choker.connection_made(connector) if connector.uses_dht: connector.send_port(self.reported_port) if self.config['resolve_hostnames']: df = self.rawserver.gethostbyaddr(connector.ip) def save_hostname(hostname_tuple): hostname, aliases, ips = hostname_tuple connector.hostname = hostname df.addCallback(save_hostname) df.addErrback(lambda fuckoff : None) def got_port(self, connector): if self.addcontact and connector.uses_dht and \ connector.dht_port != None: self.addcontact(connector.connection.ip, connector.dht_port) def ever_got_incoming(self): return self.everinc def how_many_connections(self): return len(self.complete_connectors) def replace_connection(self): if self.closed: return while self.spares: k, v = self.spares.popitem() addr, id = k handler, a, kw = v started = self._start_connection(addr, id, handler, *a, **kw) if not started: # start_connection decided to push this connection back on to # self.spares because a limit was hit. break now or loop # forever break def throttle_connections(self): self.throttled = True for c in iter_rand_pos(self.connectors): c.connection.pause_reading() def unthrottle_connections(self): self.throttled = False for c in iter_rand_pos(self.connectors): c.connection.resume_reading() # arg. resume actually flushes the buffers in iocpreactor, so # we have to check the state constantly if self.throttled: break def close_connection(self, id): for c in self.connectors: if c.id == id and not c.closed: c.connection.close() c.closed = True def close_connections(self): self.rawserver.internet_watcher.remove_subscriber(self) self.closed = True pending = self.pending_connections.values() # drop connections which could be made after we're not interested for h, info in pending: h.connector.close() for c in self.connectors: if not c.closed: c.connection.close() c.closed = True def singleport_connection(self, connector): """hand-off from SingleportListener once the infohash is known and thus we can map a connection on to a particular Torrent.""" if connector.ip in self.banned: return False m = self.config['max_allow_in'] if (m and len(self.connectors) >= m and connector.ip not in self.tracker_ips): return False self._add_connection(connector) if self.closed: return False connector.set_parent(self) connector.connection.context = self.context return True def _add_connection(self, connector): self.connectors.add(connector) if self.closed: connector.connection.close() elif self.throttled: connector.connection.pause_reading() def ban(self, ip): self.banned.add(ip) def connection_lost(self, connector): assert isinstance(connector, Connector) self.connectors.remove(connector) if self.ratelimiter: self.ratelimiter.dequeue(connector) if connector.complete: self.connector_ips.remove(connector.ip) self.connector_ids.remove(connector.id) self.complete_connectors.remove(connector) self.choker.connection_lost(connector) class AnyportListener(Handler): def __init__(self, port, singleport): self.port = port self.singleport = singleport rawserver = singleport.rawserver s = rawserver.create_serversocket(port, config['bind']) rawserver.start_listening(s, self) def __getattr__(self, attr): return getattr(self.singleport, attr) class SingleportListener(Handler): """Manages a server socket common to all torrents. When a remote peer opens a connection to the local peer, the SingleportListener maps that peer on to the appropriate torrent's connection manager (see SingleportListener.select_torrent). See Connector which upcalls to select_torrent after the infohash is received in the opening handshake.""" def __init__(self, rawserver, nattraverser, log_prefix, use_local_discovery): self.rawserver = rawserver self.nattraverser = nattraverser self.port = 0 self.ports = {} self.port_change_notification = None self.torrents = {} self.connectors = set() self.infohash = None self.obfuscated_torrents = {} self.local_discovery = None self.ld_services = {} self.use_local_discovery = use_local_discovery self._creating_local_discovery = False self.log_prefix = log_prefix self.logger = logging.getLogger(self.log_prefix) def _close(self, port): serversocket = self.ports[port][0] if self.nattraverser: try: self.nattraverser.unregister_port(port, "TCP") except: # blanket, just incase - we don't want to interrupt things self.logger.warning("UPnP deregistration error", exc_info=sys.exc_info()) self.rawserver.stop_listening(serversocket) serversocket.close() if self.local_discovery: self.local_discovery.stop() self.local_discovery = None def _check_close(self, port): if not port or self.port == port or len(self.ports[port][1]) > 0: return self._close(port) del self.ports[port] def open_port(self, port, config): """Starts BitTorrent running as a server on the specified port.""" if port in self.ports: self.port = port return s = self.rawserver.create_serversocket(port, config['bind']) if self.nattraverser: try: d = self.nattraverser.register_port(port, port, "TCP", config['bind'], app_name) def change(*a): self.rawserver.external_add_task(0, self._change_port, *a) d.addCallback(change) def silent(*e): pass d.addErrback(silent) except: # blanket, just incase - we don't want to interrupt things self.logger.warning("UPnP registration error", exc_info=sys.exc_info()) self.rawserver.start_listening(s, self) oldport = self.port self.port = port self.ports[port] = [s, {}] self._check_close(oldport) if self.local_discovery: self.local_discovery.stop() if self.use_local_discovery: self._create_local_discovery() def _create_local_discovery(self): assert self.use_local_discovery self._creating_local_discovery = True try: self.local_discovery = LocalDiscovery(self.rawserver, self.port, self._start_connection) self._creating_local_discovery = False except: self.rawserver.add_task(5, self._create_local_discovery) def _start_connection(self, addr, infohash): infohash = infohash.decode('hex') if infohash not in self.torrents: return connection_manager = self.torrents[infohash] # TODO: peer id? connection_manager.start_connection(addr, None) def _change_port(self, port): if self.port == port: return [serversocket, callbacks] = self.ports[self.port] self.ports[port] = [serversocket, callbacks] del self.ports[self.port] self.port = port for callback in callbacks: if callback: callback(port) def get_port(self, callback = None): if self.port: callbacks = self.ports[self.port][1] callbacks.setdefault(callback, 0) callbacks[callback] += 1 return self.port def release_port(self, port, callback = None): callbacks = self.ports[port][1] callbacks[callback] -= 1 if callbacks[callback] == 0: del callbacks[callback] self._check_close(port) def close_sockets(self): for port in self.ports.iterkeys(): self._close(port) def add_torrent(self, infohash, connection_manager): if infohash in self.torrents: raise BTFailure(_("Can't start two separate instances of the same " "torrent")) self.torrents[infohash] = connection_manager key = sha('req2' + infohash).digest() self.obfuscated_torrents[key] = connection_manager if self.local_discovery: service = self.local_discovery.announce(infohash.encode('hex'), connection_manager.my_id.encode('hex')) self.ld_services[infohash] = service def remove_torrent(self, infohash): del self.torrents[infohash] del self.obfuscated_torrents[sha('req2' + infohash).digest()] if infohash in self.ld_services: service = self.ld_services.pop(infohash) if self.local_discovery: self.local_discovery.unannounce(service) def connection_made(self, connection): """Called when TCP connection has finished opening, but before BitTorrent protocol has begun.""" if ONLY_LOCAL and connection.ip != '127.0.0.1' and not connection.ip.startswith("192.168") : return if GLOBAL_FILTER and not GLOBAL_FILTER(connection.ip, connection.port, "in"): return connector = Connector(self, connection, None, False, log_prefix=self.log_prefix) self.connectors.add(connector) def select_torrent(self, connector, infohash): """Called when infohash has been received allowing us to map the connection on to a given Torrent's ConnectionManager.""" # call-up from Connector. if infohash in self.torrents: accepted = self.torrents[infohash].singleport_connection(connector) if not accepted: # the connection manager may refuse the connection, in which # case keep the connection in our list until it is dropped connector.close() else: # otherwise remove it self.connectors.remove(connector) def select_torrent_obfuscated(self, connector, streamid): if ONLY_LOCAL and connector.connection.ip != '127.0.0.1': return if streamid not in self.obfuscated_torrents: return self.obfuscated_torrents[streamid].singleport_connection(connector) def connection_lost(self, connector): if (ONLY_LOCAL or GLOBAL_FILTER) and connector not in self.connectors: return assert isinstance(connector, Connector) self.connectors.remove(connector) def remove_addr_from_cache(self, addr): # since this was incoming, we don't cache the peer anyway pass ``` #### File: BitTorrent/GUI_wx/CustomWidgets.py ```python import os import sys from BTL.platform import bttime from BTL.DictWithLists import DictWithLists from BTL.obsoletepythonsupport import set from BTL.sparse_set import SparseSet from BTL.Lists import collapse import wx if os.name == 'nt': import win32gui import win32con def _ScaleBlit(bmp, dc, dst_rect): sX = float(dst_rect.width) / float(bmp.GetWidth()) sY = float(dst_rect.height) / float(bmp.GetHeight()) dc.SetUserScale(sX, sY) old_mode = None if os.name == 'nt': h_dst = dc.GetHDC() try: old_mode = win32gui.SetStretchBltMode(h_dst, win32con.HALFTONE) except: pass if sX == 0: x = 0 else: x = dst_rect.x/sX if sY == 0: y = 0 else: y = dst_rect.y/sY if sys.platform == "darwin": # magic! y = round(y) x += 0.2 dc.SetDeviceOrigin(x, y) dc.DrawBitmap(bmp, 0, 0, True) dc.SetDeviceOrigin(0, 0) else: dc.DrawBitmap(bmp, x, y, True) if os.name == 'nt': try: win32gui.SetStretchBltMode(h_dst, old_mode) except: pass dc.SetUserScale(1, 1) class DoubleBufferedMixin(object): def __init__(self): self.bind_events() self.buffer_size = wx.Size(-1, -1) self.last_size = self._calc_size() self.init_buffer() def _calc_size(self): return self.GetClientSize() def init_buffer(self): size = self._calc_size() if ((self.buffer_size.width < size.width) or (self.buffer_size.height < size.height)): self.buffer = wx.EmptyBitmap(size.width, size.height) dc = wx.MemoryDC() dc.SelectObject(self.buffer) dc.SetBackground(wx.Brush(self.GetBackgroundColour())) dc.Clear() dc.SelectObject(wx.NullBitmap) self.buffer_size = size return True return False def bind_events(self): self.Bind(wx.EVT_ERASE_BACKGROUND, lambda e : None) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_PAINT, self.OnPaint) def redraw(self): dc = wx.MemoryDC() dc.SelectObject(self.buffer) size = self._calc_size() self.last_size = size self.draw(dc, size=size) dc.SelectObject(wx.NullBitmap) self.Refresh() def OnSize(self, event): reallocated = self.init_buffer() if reallocated or self.last_size != self._calc_size(): self.redraw() else: self.Refresh() def OnPaint(self, event): dc = wx.BufferedPaintDC(self, self.buffer) class ScaledBufferMixin(DoubleBufferedMixin): def __init__(self, w_step=200, h_step=15): self.w_step = w_step self.h_step = h_step # don't go crazy self.w_max = 1000 self.h_max = 100 DoubleBufferedMixin.__init__(self) def _round(self, d, step): return max(int(d / step), 1) * step def _calc_size(self): size = self.GetClientSize() # * 2 for the high quality w = self._round(size.width*2, self.w_step) h = self._round(size.height, self.h_step) w = max(w, self.buffer_size.width) w = min(w, self.w_max) h = max(h, self.buffer_size.height) h = min(h, self.h_max) return wx.Size(w, h) def OnPaint(self, event): dc = wx.PaintDC(self) _ScaleBlit(self.buffer, dc, self.GetClientRect(), strip_border=1) class ListCtrlPassThrough(object): def __init__(self, listctrl): # I'll be nice and ignore you. if not isinstance(listctrl, wx.ListCtrl): return self.listctrl = listctrl self.Bind(wx.EVT_LEFT_DOWN, self.LeftDown) self.Bind(wx.EVT_LEFT_DCLICK, self.LeftDClick) self.Bind(wx.EVT_CONTEXT_MENU, self.ContextMenu) def _resolve_position(self): p = self.GetPosition() p -= self.listctrl._get_origin_offset() return p def _resolve_index(self): p = self._resolve_position() try: i, flags = self.listctrl.HitTest(p) except TypeError: # unpack non-sequence return return i def ContextMenu(self, event): self.listctrl.DoPopup(self._resolve_position()) def LeftDClick(self, event): i = self._resolve_index() if i is None: return e = wx.ListEvent(wx.wxEVT_COMMAND_LIST_ITEM_ACTIVATED) e.m_itemIndex = i self.listctrl.ProcessEvent(e) def LeftDown(self, event): i = self._resolve_index() if i is None: return if not event.ControlDown(): if event.ShiftDown(): if '__WXMSW__' in wx.PlatformInfo: self.listctrl.DeselectAll() f = self.listctrl.GetFocusedItem() if f > -1: for j in xrange(min(i,f), max(i,f)): self.listctrl.Select(j) self.listctrl.Select(f) else: self.listctrl.DeselectAll() self.listctrl.Select(i) self.listctrl.SetFocus() self.listctrl.Focus(i) class NullGauge(object): def NullMethod(*a): pass __init__ = NullMethod def __getattr__(self, attr): return self.NullMethod class SimpleDownloadGauge(ListCtrlPassThrough, ScaledBufferMixin, wx.Window): def __init__(self, parent, completed_color=None, remaining_color=None, border_color=None, border=True, size=(0,0), top_line=True, **k): original = { "smooth": True, "border color": wx.NamedColour("light gray"), "completed color": wx.Colour(0, 230, 50), "line color" : wx.Colour(0, 178, 39), "remaining color": wx.NamedColour("white"), "transferring color": wx.NamedColour("yellow"), "missing color": wx.NamedColour("red"), "rare colors": [wx.Colour(235, 235, 255), wx.Colour(215, 215, 255), wx.Colour(195, 195, 255), wx.Colour(175, 175, 255), wx.Colour(155, 155, 255), wx.Colour(135, 135, 255), wx.Colour(115, 115, 255), wx.Colour(95, 95, 255), wx.Colour(75, 75, 255), wx.Colour(55, 55, 255), wx.Colour(50, 50, 255)] } new_green = { "smooth": True, "border color": wx.Colour(111, 111, 111), "completed color": wx.Colour(14, 183, 19), "line color" : wx.Colour(255, 255, 0), "remaining color": wx.NamedColour("white"), "transferring color": wx.Colour(94, 243, 99), "missing color": wx.Colour(255, 0, 0), "rare colors": [wx.Colour(185, 185, 185), wx.Colour(195, 195, 195), wx.Colour(205, 205, 205), wx.Colour(215, 215, 215), wx.Colour(225, 225, 225), wx.Colour(235, 235, 235), wx.Colour(245, 245, 245), wx.Colour(255, 255, 255)] } new_blue = { "smooth": True, "border color": wx.NamedColour("light gray"), "completed color": wx.NamedColour("blue"), "line color" : wx.NamedColour("blue"), "remaining color": wx.NamedColour("white"), "transferring color": wx.NamedColour("yellow"), "missing color": wx.Colour(255, 0, 0), "rare colors": [wx.Colour(185, 185, 185), wx.Colour(195, 195, 195), wx.Colour(205, 205, 205), wx.Colour(215, 215, 215), wx.Colour(225, 225, 225), wx.Colour(235, 235, 235), wx.Colour(245, 245, 245), wx.Colour(255, 255, 255)] } self.gauge_theme = new_green wx.Window.__init__(self, parent, size=size, **k) #wx.Gauge.__init__(self, parent, 0, 10000, style=wx.GA_SMOOTH) ListCtrlPassThrough.__init__(self, parent) if border_color == None: border_color = self.gauge_theme["border color"] if completed_color == None: completed_color = self.gauge_theme["completed color"] if remaining_color == None: remaining_color = self.gauge_theme["remaining color"] self.completed_color = completed_color self.remaining_color = remaining_color self.border_color = border_color self.border = border self.line_color = self.gauge_theme["line color"] self.top_line = top_line self.smoother = wx.BitmapFromImage( wx.GetApp().theme_library.get(("progressbar",))) self.percent = None ScaledBufferMixin.__init__(self) def invalidate(self): pass def SetValue(self, value, state=None, data=None, redraw=True): #wx.Gauge.SetValue(self, value * 10000) if value != self.percent: self.percent = value self.redraw() def OnPaint(self, event): dc = wx.PaintDC(self) rect = self.GetClientRect() if self.border: dc.SetPen(wx.Pen(self.border_color)) dc.SetBrush(wx.TRANSPARENT_BRUSH) dc.DrawRectangle(0, 0, rect.width, rect.height) rect = wx.Rect(rect.x + 1, rect.y + 1, rect.width - 2, rect.height - 2) _ScaleBlit(self.buffer, dc, rect) def draw(self, dc, size): srect = wx.Rect(0, 0, size.width, size.height) self.draw_bar(dc, srect) # dear god, I hope it's smooth if self.gauge_theme["smooth"]: dc.SetClippingRegion(srect.x, srect.y, srect.width, srect.height) _ScaleBlit(self.smoother, dc, wx.Rect(0, 0, srect.width, srect.height)) # top-line if self.top_line and self.percent is not None: dc.SetBrush(wx.TRANSPARENT_BRUSH) dc.SetPen(wx.Pen(self.line_color)) line_width = 1 # top: line_position = 0 # middle: #line_position = (srect.height) // 2 # bottom: #line_position = srect.height - line_width dc.DrawRectangle(srect.x, line_position, srect.width * self.percent, line_width) dc.SetPen(wx.Pen(self.border_color)) dc.DrawRectangle(srect.x + srect.width * self.percent, line_position, srect.width, line_width) def draw_bar(self, dc, rect): if self.percent == None: return 0 dc.SetPen(wx.TRANSPARENT_PEN) dc.SetBrush(wx.Brush(self.remaining_color)) dc.DrawRectangle(rect.x, rect.y, rect.width, rect.height) dc.SetBrush(wx.Brush(self.completed_color)) dc.DrawRectangle(rect.x, rect.y, rect.width * self.percent, rect.height) return 0 REFRESH_MAX_SEC = 3 class FancyDownloadGauge(SimpleDownloadGauge): def __init__(self, *args, **kwargs): self.resolution = 1000 self.grouped = DictWithLists() self.missing_known = False self.last_time = bttime() self.last_update = -1 SimpleDownloadGauge.__init__(self, *args, **kwargs) self.transfering_color = self.gauge_theme["transferring color"] self.missing_color = self.gauge_theme["missing color"] self.SetValue(None, redraw=False) def gradient(self, v): if v == 0: if self.missing_known: c = self.missing_color else: c = self.gauge_theme["rare colors"][0] else: v = min(v, len(self.gauge_theme["rare colors"])) c = self.gauge_theme["rare colors"][v - 1] return c def invalidate(self): self.last_time = 0 def SetValue(self, percent, state = None, data = None, redraw=True): # only draw if progress moved .01% or it's been REFRESH_MAX_SEC seconds if self.percent != None: if (percent < (self.percent + 0.0001) and bttime() < (self.last_time + REFRESH_MAX_SEC)): return self.last_time = bttime() if not redraw: return p_dirty = False if self.percent != percent: p_dirty = True self.percent = percent missing_known = state == "running" if self.missing_known != missing_known: p_dirty = True self.missing_known = missing_known if not data: # no data. allow future SetValues to continue passing # until we get something self.last_time = 0 - REFRESH_MAX_SEC # draw an empty bar data = (0, -1, {}) length, update, piece_states = data self.resolution = length if p_dirty or update != self.last_update: self.grouped = piece_states self.redraw() self.last_update = update def draw_bar(self, dc, rect): # size events can catch this if self.percent is None: return y1 = rect.y w = rect.width h = rect.height if self.resolution <= 0: return # sort, so we get 0...N, h, t keys = self.grouped.keys() keys.sort() for k in keys: v = self.grouped[k] if k == 'h': c = self.completed_color elif k == 't': c = self.transfering_color else: c = self.gradient(k) dc.SetPen(wx.TRANSPARENT_PEN) dc.SetBrush(wx.Brush(c)) def draw(b, e): b = float(b) e = float(e) r = float(self.resolution) x1 = (b / r) * w x2 = (e / r) * w # stupid floats x1 = int(rect.x + x1) x2 = int(rect.x + x2) dc.DrawRectangle(x1, y1, x2 - x1, h) if isinstance(v, SparseSet): for (b, e) in v.iterrange(): draw(b, e) elif isinstance(v, dict): for b in v.iterkeys(): draw(b, b + 1) elif isinstance(v, set): #for b in v: # draw(b, b + 1) # maybe this is better? (fewer rectangles) l = list(v) l.sort() for (b, e) in collapse(l): draw(b, e) else: # assumes sorted! for (b, e) in collapse(v): draw(b, e) class ModerateDownloadGauge(FancyDownloadGauge): def __init__(self, parent, completed_color=None, remaining_color=None, border_color=None, border=True, size=(0,0), top_line=False, *args, **kwargs): FancyDownloadGauge.__init__(self, parent, completed_color=completed_color, remaining_color=remaining_color, border_color=border_color, border=border, size=size, top_line=top_line, *args, **kwargs) self.resolution = 1000 def sort(a,b): if isinstance(a, str) and isinstance(b, str) : return cmp(a,b) elif isinstance(a, int) and isinstance(b, int) : return cmp(b,a) elif isinstance(a, str): return -1 elif isinstance(b, str): return 1 sort = staticmethod(sort) def SetValue(self, value, state=None, data=None, redraw=True): if data is not None: sorted_data = {} length, update, piece_states = data self.resolution = length keys = piece_states.keys() keys.sort(self.sort) pos = 0 h = piece_states.get('h', SparseSet()) t = piece_states.get('t', set()) t = list(t) t.sort() have_trans_sparse_set = h + t for k in keys: p = piece_states[k] if k in ('h', 't'): count = len(p) else: count = 0 # OW for i in p: if i not in have_trans_sparse_set: count += 1 if not count: continue newpos = pos+count s = SparseSet() s.add(pos, newpos) sorted_data[k] = s pos = newpos data = (length, update, sorted_data) FancyDownloadGauge.SetValue(self, value, state, data, redraw) ``` #### File: BitTorrent/GUI_wx/__init__.py ```python from __future__ import division import os import sys try: import wxversion except: pass else: # doesn't work in py2exe try: wxversion.select('2.6') except: pass import wx import wx.grid import wxPython from BTL.translation import _ from BitTorrent.platform import image_root import BTL.stackthreading as threading from BTL.defer import ThreadedDeferred import bisect vs = wxPython.__version__ min_wxpython = "2.6" assert vs >= min_wxpython, _("wxPython version %s or newer required") % min_wxpython assert 'unicode' in wx.PlatformInfo, _("The Unicode versions of wx and wxPython are required") text_wrappable = wx.__version__[4] >= '2' profile = False if profile: from BTL.profile import Profiler, Stats prof_file_name = 'ui.mainloop.prof' def gui_wrap(_f, *args, **kwargs): wx.the_app.CallAfter(_f, *args, **kwargs) SPACING = 8 # default pixels between widgets PORT_RANGE = 5 # how many ports to try WILDCARD = _("Torrent files (*.torrent)|*.torrent|"\ "All files (*.*)|*.*") def get_theme_root(theme_name): for t in (theme_name, 'default'): td = os.path.join(image_root, 'themes', t) if os.path.exists(td): return td def list_themes(): def _lt(): themes = [] tr = os.path.join(image_root, 'themes') ld = os.listdir(tr) for d in ld: if os.path.isdir(os.path.join(tr, d)): themes.append(d) return themes df = ThreadedDeferred(None, _lt, daemon=True) df.start() return df class ImageLibrary(object): def __init__(self, image_root): self.image_root = image_root self._data = {} def resolve_filename(self, key, size=None, base=None, ext='.png'): if base is None: base = self.image_root name = os.path.join(base, *key) name = os.path.abspath(name) if size is not None: sized_name = name + '_%d' % size + ext if os.path.exists(sized_name): name = sized_name else: name += ext else: name += ext name = os.path.abspath(name) if not os.path.exists(name): raise IOError(2, "No such file or directory: %r" % name) return name def get(self, key, size=None, base=None, ext='.png'): if self._data.has_key((key, size)): return self._data[(key, size)] name = self.resolve_filename(key, size, base, ext) i = wx.Image(name, wx.BITMAP_TYPE_PNG) if not i.Ok(): raise Exception("The image is not valid: %r" % name) self._data[(key, size)] = i return i class ThemeLibrary(ImageLibrary): def __init__(self, themes_root, theme_name): self.themes_root = themes_root for t in (theme_name, 'default'): image_root = os.path.join(themes_root, 'themes', t) if os.path.exists(image_root): self.theme_name = t ImageLibrary.__init__(self, image_root) return raise IOError("default theme path must exist: %r" % image_root) def resolve_filename(self, key, size=None, base=None, ext='.png'): try: return ImageLibrary.resolve_filename(self, key, size, base, ext) except Exception, e: default_base = os.path.join(self.themes_root, 'themes', 'default') return ImageLibrary.resolve_filename(self, key, size, base=default_base, ext=ext) class XSizer(wx.BoxSizer): notfirst = wx.ALL direction = wx.HORIZONTAL def __init__(self, **k): wx.BoxSizer.__init__(self, self.direction) def Add(self, widget, proportion=0, flag=0, border=SPACING): flag = flag | self.notfirst wx.BoxSizer.Add(self, widget, proportion=proportion, flag=flag, border=border) def AddFirst(self, widget, proportion=0, flag=0, border=SPACING): flag = flag | wx.ALL self.Add(widget, proportion=proportion, flag=flag, border=border) class VSizer(XSizer): notfirst = wx.BOTTOM|wx.LEFT|wx.RIGHT direction = wx.VERTICAL class HSizer(XSizer): notfirst = wx.BOTTOM|wx.RIGHT|wx.TOP direction = wx.HORIZONTAL class LabelValueFlexGridSizer(wx.FlexGridSizer): def __init__(self, parent_widget, *a, **k): wx.FlexGridSizer.__init__(self, *a, **k) self.parent_widget = parent_widget def add_label(self, label): h = ElectroStaticText(self.parent_widget, label=label) f = h.GetFont() f.SetWeight(wx.FONTWEIGHT_BOLD) h.SetFont(f) self.Add(h) def add_value(self, value, dotify=False): t = ElectroStaticText(self.parent_widget, id=wx.ID_ANY, label="", dotify=dotify) self.Add(t, flag=wx.FIXED_MINSIZE|wx.GROW) t.SetLabel(value) return t def add_pair(self, label, value, dotify_value=False): self.add_label(label) t = self.add_value(value, dotify=dotify_value) return t class ElectroStaticText(wx.StaticText): def __init__(self, parent, id=wx.ID_ANY, label='', dotify=False): wx.StaticText.__init__(self, parent, id, label) self.label = label self._string = self.label if dotify: self.Bind(wx.EVT_PAINT, self.DotifyOnPaint) def SetLabel(self, label): if label != self.label: self.label = label self._string = self.label wx.StaticText.SetLabel(self, self.label) def dotdotdot(self, label, width, max_width): label_reverse = label[::-1] beginning_values = self.dc.GetPartialTextExtents(label) ending_values = self.dc.GetPartialTextExtents(label_reverse) halfwidth = (width - self.dc.GetTextExtent("...")[0]) / 2 beginning = bisect.bisect_left(beginning_values, halfwidth) ending = bisect.bisect_left(ending_values, halfwidth) if ending > 0: string = label[:beginning] + "..." + label[(0 - ending):] else: string = label[:beginning] + "..." return string def DotifyOnPaint(self, event): self.dc = wx.PaintDC(self) self.dc.SetFont(self.GetFont()) width = self.GetSize().width str_width = self.dc.GetTextExtent(self._string)[0] max_width = self.dc.GetTextExtent(self.label)[0] if width >= max_width: self._string = self.label elif width != str_width: string = self.dotdotdot(self.label, width, max_width) self._string = string wx.StaticText.SetLabel(self, self._string) event.Skip() class ElectroStaticBitmap(wx.Window): def __init__(self, parent, bitmap=None, *a, **k): wx.Window.__init__(self, parent, *a, **k) self.Bind(wx.EVT_PAINT, self.OnPaint) self.bitmap = None if bitmap: self.SetBitmap(bitmap) else: self.SetSize((0, 0)) def SetBitmap(self, bitmap): self.bitmap = bitmap w, h = self.bitmap.GetWidth(), self.bitmap.GetHeight() self.SetSize((w, h)) self.SetMinSize((w, h)) def OnPaint(self, event): dc = wx.PaintDC(self) dc.SetBackground(wx.Brush(self.GetBackgroundColour())) if self.bitmap: dc.DrawBitmap(self.bitmap, 0, 0, True) def GetSize(self): if self.bitmap: return wx.Size(self.bitmap.GetWidth(), self.bitmap.GetHeight()) else: return 0, 0 class Validator(wx.TextCtrl): valid_chars = '1234567890' minimum = None maximum = None cast = int def __init__(self, parent, option_name, config, setfunc): wx.TextCtrl.__init__(self, parent) self.option_name = option_name self.config = config self.setfunc = setfunc self.SetValue(str(config[option_name])) self.SetBestFittingSize((self.width,-1)) self.Bind(wx.EVT_CHAR, self.text_inserted) self.Bind(wx.EVT_KILL_FOCUS, self.focus_out) def get_value(self): value = None try: value = self.cast(self.GetValue()) except ValueError: pass return value def set_value(self, value): self.SetValue(str(value)) self.setfunc(self.option_name, value) def focus_out(self, event): # guard against the the final focus lost event on wxMAC if self.IsBeingDeleted(): return value = self.get_value() if value is None: self.SetValue(str(self.config[self.option_name])) if (self.minimum is not None) and (value < self.minimum): value = self.minimum if (self.maximum is not None) and (value > self.maximum): value = self.maximum self.set_value(value) def text_inserted(self, event): key = event.KeyCode() if key < wx.WXK_SPACE or key == wx.WXK_DELETE or key > 255: event.Skip() return if (self.valid_chars is not None) and (chr(key) not in self.valid_chars): return event.Skip() class IPValidator(Validator): valid_chars = '1234567890.' width = 128 cast = str class PortValidator(Validator): width = 64 minimum = 1024 maximum = 65535 def add_end(self, end_name): self.end_option_name = end_name def set_value(self, value): self.SetValue(str(value)) self.setfunc(self.option_name, value) self.setfunc(self.end_option_name, value+PORT_RANGE) class RatioValidator(Validator): width = 48 minimum = 0 class MinutesValidator(Validator): width = 48 minimum = 1 class PathDialogButton(wx.Button): def __init__(self, parent, gen_dialog, setfunc=None, label=_("&Browse...")): wx.Button.__init__(self, parent, label=label) self.gen_dialog = gen_dialog self.setfunc = setfunc self.Bind(wx.EVT_BUTTON, self.choose) def choose(self, event): """Pop up a choose dialog and set the result if the user clicks OK.""" dialog = self.gen_dialog() result = dialog.ShowModal() if result == wx.ID_OK: path = dialog.GetPath() if self.setfunc: self.setfunc(path) class ChooseDirectorySizer(wx.BoxSizer): def __init__(self, parent, path='', setfunc=None, editable=True, dialog_title=_("Choose a folder..."), button_label=_("&Browse...")): wx.BoxSizer.__init__(self, wx.HORIZONTAL) self.parent = parent self.setfunc = setfunc self.dialog_title = dialog_title self.button_label = button_label self.pathbox = wx.TextCtrl(self.parent, size=(250, -1)) self.pathbox.SetEditable(editable) self.Add(self.pathbox, proportion=1, flag=wx.RIGHT, border=SPACING) self.pathbox.SetValue(path) self.button = PathDialogButton(parent, gen_dialog=self.dialog, setfunc=self.set_choice, label=self.button_label) self.Add(self.button) def set_choice(self, path): self.pathbox.SetValue(path) if self.setfunc: self.setfunc(path) def get_choice(self): return self.pathbox.GetValue() def dialog(self): dialog = wx.DirDialog(self.parent, message=self.dialog_title, style=wx.DD_DEFAULT_STYLE|wx.DD_NEW_DIR_BUTTON) dialog.SetPath(self.get_choice()) return dialog class ChooseFileSizer(ChooseDirectorySizer): def __init__(self, parent, path='', setfunc=None, editable=True, dialog_title=_("Choose a file..."), button_label=_("&Browse..."), wildcard=_("All files (*.*)|*.*"), dialog_style=wx.OPEN): ChooseDirectorySizer.__init__(self, parent, path=path, setfunc=setfunc, editable=editable, dialog_title=dialog_title, button_label=button_label) self.wildcard = wildcard self.dialog_style = dialog_style def dialog(self): directory, file = os.path.split(self.get_choice()) dialog = wx.FileDialog(self.parent, defaultDir=directory, defaultFile=file, message=self.dialog_title, wildcard=self.wildcard, style=self.dialog_style) #dialog.SetPath(self.get_choice()) return dialog class ChooseFileOrDirectorySizer(wx.BoxSizer): def __init__(self, parent, path='', setfunc=None, editable=True, file_dialog_title=_("Choose a file..."), directory_dialog_title=_("Choose a folder..."), file_button_label=_("Choose &file..."), directory_button_label=_("Choose f&older..."), wildcard=_("All files (*.*)|*.*"), file_dialog_style=wx.OPEN): wx.BoxSizer.__init__(self, wx.VERTICAL) self.parent = parent self.setfunc = setfunc self.file_dialog_title = file_dialog_title self.directory_dialog_title = directory_dialog_title self.file_button_label = file_button_label self.directory_button_label = directory_button_label self.wildcard = wildcard self.file_dialog_style = file_dialog_style self.pathbox = wx.TextCtrl(self.parent, size=(250, -1)) self.pathbox.SetEditable(editable) self.Add(self.pathbox, flag=wx.EXPAND|wx.BOTTOM, border=SPACING) self.pathbox.SetValue(path) self.subsizer = wx.BoxSizer(wx.HORIZONTAL) self.Add(self.subsizer, flag=wx.ALIGN_RIGHT, border=0) self.fbutton = PathDialogButton(parent, gen_dialog=self.file_dialog, setfunc=self.set_choice, label=self.file_button_label) self.subsizer.Add(self.fbutton, flag=wx.LEFT, border=SPACING) self.dbutton = PathDialogButton(parent, gen_dialog=self.directory_dialog, setfunc=self.set_choice, label=self.directory_button_label) self.subsizer.Add(self.dbutton, flag=wx.LEFT, border=SPACING) def set_choice(self, path): self.pathbox.SetValue(path) if self.setfunc: self.setfunc(path) def get_choice(self): return self.pathbox.GetValue() def directory_dialog(self): dialog = wx.DirDialog(self.parent, message=self.directory_dialog_title, style=wx.DD_DEFAULT_STYLE|wx.DD_NEW_DIR_BUTTON) dialog.SetPath(self.get_choice()) return dialog def file_dialog(self): dialog = wx.FileDialog(self.parent, message=self.file_dialog_title, defaultDir=self.get_choice(), wildcard=self.wildcard, style=self.file_dialog_style) dialog.SetPath(self.get_choice()) return dialog class Grid(wx.grid.Grid): def SetColRenderer(self, col, renderer): table = self.GetTable() attr = table.GetAttr(-1, col, wx.grid.GridCellAttr.Col) if (not attr): attr = wx.grid.GridCellAttr() attr.SetRenderer(renderer) self.SetColAttr(col, attr) def SetColEditor(self, col, editor): table = self.GetTable() attr = table.GetAttr(-1, col, wx.grid.GridCellAttr.Col) if (not attr): attr = wx.grid.GridCellAttr() attr.SetEditor(editor) self.SetColAttr(col, attr) class BTMenu(wx.Menu): """Base class for menus""" def __init__(self, *a, **k): wx.Menu.__init__(self, *a, **k) def add_item(self, label): iid = wx.NewId() self.Append(iid, label) return iid def add_check_item(self, label, value=False): iid = wx.NewId() self.AppendCheckItem(iid, label) self.Check(id=iid, check=value) return iid class CheckButton(wx.CheckBox): """Base class for check boxes""" def __init__(self, parent, label, main, option_name, initial_value, extra_callback=None): wx.CheckBox.__init__(self, parent, label=label) self.main = main self.option_name = option_name self.option_type = type(initial_value) self.SetValue(bool(initial_value)) self.extra_callback = extra_callback self.Bind(wx.EVT_CHECKBOX, self.callback) def callback(self, *args): if self.option_type is not type(None): self.main.config[self.option_name] = self.option_type( not self.main.config[self.option_name]) self.main.setfunc(self.option_name, self.main.config[self.option_name]) if self.extra_callback is not None: self.extra_callback() class BTPanel(wx.Panel): sizer_class = wx.BoxSizer sizer_args = (wx.VERTICAL,) def __init__(self, *a, **k): k['style'] = k.get('style', 0) | wx.CLIP_CHILDREN wx.Panel.__init__(self, *a, **k) self.sizer = self.sizer_class(*self.sizer_args) self.SetSizer(self.sizer) def Add(self, widget, *a, **k): self.sizer.Add(widget, *a, **k) def AddFirst(self, widget, *a, **k): if hasattr(self.sizer, 'AddFirst'): self.sizer.AddFirst(widget, *a, **k) else: self.sizer.Add(widget, *a, **k) # handles quirks in the design of wx. For example, the wx.LogWindow is not # really a window, but this make it respond to shows as if it were. def MagicShow_func(win, show=True): win.Show(show) if show: win.Raise() class MagicShow: """You know, like with a guy pulling rabbits out of a hat""" def MagicShow(self, show=True): if hasattr(self, 'magic_window'): # hackery in case we aren't actually a window win = self.magic_window else: win = self MagicShow_func(win, show) class BTDialog(wx.Dialog, MagicShow): """Base class for all BitTorrent window dialogs""" def __init__(self, *a, **k): wx.Dialog.__init__(self, *a, **k) if sys.platform == 'darwin': self.CenterOnParent() self.SetIcon(wx.the_app.icon) self.Bind(wx.EVT_KEY_DOWN, self.key) def key(self, event): c = event.GetKeyCode() if c == wx.WXK_ESCAPE: self.EndModal(wx.ID_CANCEL) event.Skip() class BTFrame(wx.Frame, MagicShow): """Base class for all BitTorrent window frames""" def __init__(self, *a, **k): metal = k.pop('metal', False) wx.Frame.__init__(self, *a, **k) if sys.platform == 'darwin' and metal: self.SetExtraStyle(wx.FRAME_EX_METAL) self.SetIcon(wx.the_app.icon) def load_geometry(self, geometry, default_size=None): if '+' in geometry: s, x, y = geometry.split('+') x, y = int(x), int(y) else: x, y = -1, -1 s = geometry if 'x' in s: w, h = s.split('x') w, h = int(w), int(h) else: w, h = -1, -1 i = 0 if '__WXMSW__' in wx.PlatformInfo: i = wx.Display.GetFromWindow(self) d = wx.Display(i) (x1, y1, x2, y2) = d.GetGeometry() x = min(x, x2-64) y = min(y, y2-64) if (w, h) <= (0, 0) and default_size is not None: w = default_size.width h = default_size.height self.SetDimensions(x, y, w, h, sizeFlags=wx.SIZE_USE_EXISTING) if (x, y) == (-1, -1): self.CenterOnScreen() def _geometry_string(self): pos = self.GetPositionTuple() size = self.GetSizeTuple() g = '' g += 'x'.join(map(str, size)) if pos > (0,0): g += '+' + '+'.join(map(str, pos)) return g def SetTitle(self, title): if title != self.GetTitle(): wx.Frame.SetTitle(self, title) class BTFrameWithSizer(BTFrame): """BitTorrent window frames with sizers, which are less flexible than normal windows""" panel_class = BTPanel sizer_class = wx.BoxSizer sizer_args = (wx.VERTICAL,) def __init__(self, *a, **k): BTFrame.__init__(self, *a, **k) try: self.SetIcon(wx.the_app.icon) self.panel = self.panel_class(self) self.sizer = self.sizer_class(*self.sizer_args) self.Add(self.panel, flag=wx.GROW, proportion=1) self.SetSizer(self.sizer) except: self.Destroy() raise def Add(self, widget, *a, **k): self.sizer.Add(widget, *a, **k) class TaskSingleton(object): def __init__(self): self.handle = None def start(self, t, _f, *a, **kw): if self.handle: self.handle.Stop() self.handle = wx.the_app.FutureCall(t, _f, *a, **kw) def stop(self): if self.handle: self.handle.Stop() self.handle = None class BTApp(wx.App): """Base class for all wx-based BitTorrent applications""" def __init__(self, *a, **k): self.doneflag = threading.Event() wx.App.__init__(self, *a, **k) def OnInit(self): self.running = True if profile: try: os.unlink(prof_file_name) except: pass self.prof = Profiler() self.prof.enable() wx.the_app = self self._DoIterationId = wx.NewEventType() self.Connect(-1, -1, self._DoIterationId, self._doIteration) self.evt = wx.PyEvent() self.evt.SetEventType(self._DoIterationId) self.event_queue = [] # this breaks TreeListCtrl, and I'm too lazy to figure out why #wx.IdleEvent_SetMode(wx.IDLE_PROCESS_SPECIFIED) # this fixes 24bit-color toolbar buttons wx.SystemOptions_SetOptionInt("msw.remap", 0) icon_path = os.path.join(image_root, 'bittorrent.ico') self.icon = wx.Icon(icon_path, wx.BITMAP_TYPE_ICO) return True def OnExit(self): self.running = False if profile: self.prof.disable() st = Stats(self.prof.getstats()) st.sort() f = open(prof_file_name, 'wb') st.dump(file=f) def who(self, _f, a): if _f.__name__ == "_recall": if not hasattr(a[0], 'gen'): return str(a[0]) return a[0].gen.gi_frame.f_code.co_name return _f.__name__ def _doIteration(self, event): if self.doneflag.isSet(): # the app is dying return _f, a, kw = self.event_queue.pop(0) ## t = bttime() ## print self.who(_f, a) _f(*a, **kw) ## print self.who(_f, a), 'done in', bttime() - t ## if bttime() - t > 1.0: ## print 'TOO SLOW!' ## assert False def CallAfter(self, callable, *args, **kw): """ Call the specified function after the current and pending event handlers have been completed. This is also good for making GUI method calls from non-GUI threads. Any extra positional or keyword args are passed on to the callable when it is called. """ # append (right) and pop (left) are atomic self.event_queue.append((callable, args, kw)) wx.PostEvent(self, self.evt) def FutureCall(self, _delay_time, callable, *a, **kw): return wx.FutureCall(_delay_time, self.CallAfter, callable, *a, **kw) ``` #### File: BitTorrent-5.2.2/BitTorrent/platform.py ```python import os import sys import locale import shutil import socket import gettext import tarfile import traceback from BTL.platform import efs, efs2, get_filesystem_encoding # NOTE: intentionally appears in the file before importing anything # from BitTorrent because it is called when setting --use_factory_defaults. def get_temp_dir(): shellvars = ['${TMP}', '${TEMP}'] dir_root = get_dir_root(shellvars, default_to_home=False) #this method is preferred to the envvars if os.name == 'nt': try_dir_root = win32api.GetTempPath() if try_dir_root is not None: dir_root = try_dir_root if dir_root is None: try_dir_root = None if os.name == 'nt': # this should basically never happen. GetTempPath always returns something try_dir_root = r'C:\WINDOWS\Temp' elif os.name == 'posix': try_dir_root = '/tmp' if (try_dir_root is not None and os.path.isdir(try_dir_root) and os.access(try_dir_root, os.R_OK|os.W_OK)): dir_root = try_dir_root return dir_root MAX_DIR = 5 _tmp_subdir = None # NOTE: intentionally appears in the file before importing anything # from BitTorrent because it is called when setting --use_factory_defaults. def get_temp_subdir(): """Creates a unique subdirectory of the platform temp directory. This revolves between MAX_DIR directory names deleting the oldest whenever MAX_DIR exist. Upon return the number of temporary subdirectories should never exceed MAX_DIR-1. If one has already been created for this execution, this returns that subdirectory. @return the absolute path of the created temporary directory. """ global _tmp_subdir if _tmp_subdir is not None: return _tmp_subdir tmp = get_temp_dir() target = None # holds the name of the directory that will be made. for i in xrange(MAX_DIR): subdir = efs2(u"BitTorrentTemp%d" % i) path = os.path.join(tmp, subdir) if not os.path.exists(path): target = path break # subdir should not in normal behavior be None. It can occur if something # prevented a directory from being removed on a previous call or if MAX_DIR # is changed. if target is None: subdir = efs2(u"BitTorrentTemp0") path = os.path.join(tmp, subdir) shutil.rmtree( path, ignore_errors = True ) target = path i = 0 # create the temp dir. os.mkdir(target) # delete the oldest directory. oldest_i = ( i + 1 ) % MAX_DIR oldest_subdir = efs2(u"BitTorrentTemp%d" % oldest_i) oldest_path = os.path.join(tmp, oldest_subdir) if os.path.exists( oldest_path ): shutil.rmtree( oldest_path, ignore_errors = True ) _tmp_subdir = target return target _config_dir = None def set_config_dir(dir): """Set the root directory for configuration information.""" global _config_dir # Normally we won't set it this way. This is called if the # --use_factory_defaults command-line option is specfied. By changing # the config directory early in the initialization we can guarantee # that the system acts like a fresh install. _config_dir = dir # Set configuration directory before importing any other BitTorrent modules. if "--use_factory_defaults" in sys.argv or "-u" in sys.argv: temp_dir = get_temp_subdir() set_config_dir(temp_dir) import BitTorrent.zurllib as urllib from BTL import language from BTL.sparse_set import SparseSet from BTL.defer import ThreadedDeferred from BTL.platform import app_name, get_module_filename, is_frozen_exe, get_shell_dir from BitTorrent import version if os.name == 'nt': import pywintypes import winerror import _winreg #import BTL.likewin32api as win32api import win32api import win32file from win32com.shell import shellcon import win32con from twisted.python.shortcut import Shortcut import ctypes import struct FILE_ATTRIBUTE_SPARSE_FILE = 0x00000200 FILE_SUPPORTS_SPARSE_FILES = 0x00000040 FSCTL_QUERY_ALLOCATED_RANGES = 0x000940CF elif os.name == 'posix' and os.uname()[0] == 'Darwin': has_pyobjc = False try: from Foundation import NSBundle has_pyobjc = True except ImportError: pass try: import statvfs except ImportError: statvfs = None def get_dir_root(shellvars, default_to_home=True): def check_sysvars(x): y = os.path.expandvars(x) if y != x and os.path.isdir(y): return y return None dir_root = None for d in shellvars: dir_root = check_sysvars(d) if dir_root is not None: break else: if default_to_home: dir_root = os.path.expanduser('~') if dir_root == '~' or not os.path.isdir(dir_root): dir_root = None if get_filesystem_encoding() == None: try: dir_root = dir_root.decode(sys.getfilesystemencoding()) except: try: dir_root = dir_root.decode('utf8') except: pass return dir_root def get_old_dot_dir(): return os.path.join(get_config_dir(), efs2(u'.bittorrent')) def get_dot_dir(): # So called because on Unix platforms (but not OS X) this returns ~/.bittorrent. dot_dir = get_old_dot_dir() new_dot_dir = None if sys.platform == 'darwin': new_dot_dir = os.path.join(get_config_dir(), 'Library', 'Application Support', app_name) elif os.name == 'nt': new_dot_dir = os.path.join(get_config_dir(), app_name) if new_dot_dir: if os.path.exists(dot_dir): if os.path.exists(new_dot_dir): count = 0 for root, dirs, files in os.walk(new_dot_dir): count = len(dirs) + len(files) break if count == 0: shutil.rmtree(new_dot_dir) shutil.move(dot_dir, new_dot_dir) else: shutil.move(dot_dir, new_dot_dir) dot_dir = new_dot_dir return dot_dir old_broken_config_subencoding = 'utf8' try: old_broken_config_subencoding = sys.getfilesystemencoding() except: pass os_name = os.name os_version = None if os_name == 'nt': wh = {(1, 4, 0): "95", (1, 4, 10): "98", (1, 4, 90): "ME", (2, 4, 0): "NT", (2, 5, 0): "2000", (2, 5, 1): "XP" , (2, 5, 2): "2003", (2, 6, 0): "Vista", } class OSVERSIONINFOEX(ctypes.Structure): _fields_ = [("dwOSVersionInfoSize", ctypes.c_ulong), ("dwMajorVersion", ctypes.c_ulong), ("dwMinorVersion", ctypes.c_ulong), ("dwBuildNumber", ctypes.c_ulong), ("dwPlatformId", ctypes.c_ulong), ("szCSDVersion", ctypes.c_char * 128), ("wServicePackMajor", ctypes.c_ushort), ("wServicePackMinor", ctypes.c_ushort), ("wSuiteMask", ctypes.c_ushort), ("wProductType", ctypes.c_byte), ("wReserved", ctypes.c_byte), ] class OSVERSIONINFO(ctypes.Structure): _fields_ = [("dwOSVersionInfoSize", ctypes.c_ulong), ("dwMajorVersion", ctypes.c_ulong), ("dwMinorVersion", ctypes.c_ulong), ("dwBuildNumber", ctypes.c_ulong), ("dwPlatformId", ctypes.c_ulong), ("szCSDVersion", ctypes.c_char * 128), ] o = OSVERSIONINFOEX() o.dwOSVersionInfoSize = 156 # sizeof(OSVERSIONINFOEX) r = ctypes.windll.kernel32.GetVersionExA(ctypes.byref(o)) if r: win_version_num = (o.dwPlatformId, o.dwMajorVersion, o.dwMinorVersion, o.wServicePackMajor, o.wServicePackMinor, o.dwBuildNumber) else: o = OSVERSIONINFOEX() o.dwOSVersionInfoSize = 148 # sizeof(OSVERSIONINFO) r = ctypes.windll.kernel32.GetVersionExA(ctypes.byref(o)) win_version_num = (o.dwPlatformId, o.dwMajorVersion, o.dwMinorVersion, 0, 0, o.dwBuildNumber) wk = (o.dwPlatformId, o.dwMajorVersion, o.dwMinorVersion) if wh.has_key(wk): os_version = wh[wk] else: os_version = wh[max(wh.keys())] sys.stderr.write("Couldn't identify windows version: wk:%s, %s, " "assuming '%s'\n" % (str(wk), str(win_version_num), os_version)) del wh, wk elif os_name == 'posix': os_version = os.uname()[0] app_root = os.path.split(get_module_filename())[0] doc_root = app_root osx = False if os.name == 'posix': if os.uname()[0] == "Darwin": doc_root = app_root = app_root.encode('utf8') if has_pyobjc: doc_root = NSBundle.mainBundle().resourcePath() osx = True def calc_unix_dirs(): appdir = '%s-%s' % (app_name, version) ip = os.path.join(efs2(u'share'), efs2(u'pixmaps'), appdir) dp = os.path.join(efs2(u'share'), efs2(u'doc'), appdir) lp = os.path.join(efs2(u'share'), efs2(u'locale')) return ip, dp, lp def no_really_makedirs(path): # the deal here is, directories like "C:\" exist but can not be created # (access denied). We check for the exception anyway because of the race # condition. if not os.path.exists(path): try: os.makedirs(path) except OSError, e: if e.errno != 17: # already exists raise def get_config_dir(): """a cross-platform way to get user's config directory. """ if _config_dir is not None: return _config_dir shellvars = ['${APPDATA}', '${HOME}', '${USERPROFILE}'] dir_root = get_dir_root(shellvars) if dir_root is None and os.name == 'nt': app_dir = get_shell_dir(shellcon.CSIDL_APPDATA) if app_dir is not None: dir_root = app_dir if dir_root is None and os.name == 'nt': tmp_dir_root = os.path.split(sys.executable)[0] if os.access(tmp_dir_root, os.R_OK|os.W_OK): dir_root = tmp_dir_root return dir_root # For string literal subdirectories, starting with unicode and then # converting to filesystem encoding may not always be necessary, but it seems # safer to do so. --Dave image_root = os.path.join(app_root, efs2(u'images')) locale_root = os.path.join(get_dot_dir(), efs2(u'locale')) no_really_makedirs(locale_root) plugin_path = [] internal_plugin = os.path.join(app_root, efs2(u'BitTorrent'), efs2(u'Plugins')) local_plugin = os.path.join(get_dot_dir(), efs2(u'Plugins')) if os.access(local_plugin, os.F_OK): plugin_path.append(local_plugin) if os.access(internal_plugin, os.F_OK): plugin_path.append(internal_plugin) if not os.access(image_root, os.F_OK) or not os.access(locale_root, os.F_OK): # we guess that probably we are installed on *nix in this case # (I have no idea whether this is right or not -- matt) if app_root[-4:] == '/bin': # yep, installed on *nix installed_prefix = app_root[:-4] image_root, doc_root, locale_root = map( lambda p: os.path.join(installed_prefix, p), calc_unix_dirs() ) systemwide_plugin = os.path.join(installed_prefix, efs2(u'lib'), efs2(u'BitTorrent')) if os.access(systemwide_plugin, os.F_OK): plugin_path.append(systemwide_plugin) if os.name == 'nt': def GetDiskFreeSpaceEx(s): if isinstance(s, unicode): GDFS = ctypes.windll.kernel32.GetDiskFreeSpaceExW else: GDFS = ctypes.windll.kernel32.GetDiskFreeSpaceExA FreeBytesAvailable = ctypes.c_ulonglong(0) TotalNumberOfBytes = ctypes.c_ulonglong(0) TotalNumberOfFreeBytes = ctypes.c_ulonglong(0) r = GDFS(s, ctypes.pointer(FreeBytesAvailable), ctypes.pointer(TotalNumberOfBytes), ctypes.pointer(TotalNumberOfFreeBytes)) return FreeBytesAvailable.value, TotalNumberOfBytes.value, TotalNumberOfFreeBytes.value def get_free_space(path): # optimistic if we can't tell free_to_user = 2**64 path, file = os.path.split(path) if os.name == 'nt': while not os.path.exists(path): path, top = os.path.split(path) free_to_user, total, total_free = GetDiskFreeSpaceEx(path) elif hasattr(os, "statvfs") and statvfs: s = os.statvfs(path) free_to_user = s[statvfs.F_BAVAIL] * long(s[statvfs.F_BSIZE]) return free_to_user def get_sparse_files_support(path): supported = False if os.name == 'nt': drive, path = os.path.splitdrive(os.path.abspath(path)) if len(drive) > 0: # might be a network path if drive[-1] != '\\': drive += '\\' volumename, serialnumber, maxpath, fsflags, fs_name = win32api.GetVolumeInformation(drive) if fsflags & FILE_SUPPORTS_SPARSE_FILES: supported = True return supported # is there a linux max path? def is_path_too_long(path): if os.name == 'nt': if len(path) > win32con.MAX_PATH: return True return False def is_sparse(path): supported = get_sparse_files_support(path) if not supported: return False if os.name == 'nt': return bool(win32file.GetFileAttributes(path) & FILE_ATTRIBUTE_SPARSE_FILE) return False def get_allocated_regions(path, f=None, begin=0, length=None): supported = get_sparse_files_support(path) if not supported: return if os.name == 'nt': if not os.path.exists(path): return False if f is None: f = file(path, 'r') handle = win32file._get_osfhandle(f.fileno()) if length is None: length = os.path.getsize(path) - begin a = SparseSet() run = 128 i = begin end = begin + length while i < end: d = struct.pack("<QQ", i, length) try: r = win32file.DeviceIoControl(handle, FSCTL_QUERY_ALLOCATED_RANGES, d, struct.calcsize("<QQ")*run, None) except pywintypes.error, e: if e.args[0] == winerror.ERROR_MORE_DATA: run *= 2 continue # I've also seen: # error: (1784, 'DeviceIoControl', 'The supplied user buffer is not valid for the requested operation.') return if not r: break for c in xrange(0, len(r), 16): qq = struct.unpack("<QQ", r[c:c+16]) b = qq[0] e = b + qq[1] a.add(b, e) i = max(i, e) return a return def get_max_filesize(path): fs_name = None # optimistic if we can't tell max_filesize = 2**64 if os.name == 'nt': drive, path = os.path.splitdrive(os.path.abspath(path)) if len(drive) > 0: # might be a network path if drive[-1] != '\\': drive += '\\' volumename, serialnumber, maxpath, fsflags, fs_name = win32api.GetVolumeInformation(drive) if fs_name == "FAT32": max_filesize = 2**32 - 1 elif (fs_name == "FAT" or fs_name == "FAT16"): # information on this varies, so I chose the description from # MS: http://support.microsoft.com/kb/q118335/ # which happens to also be the most conservative. max_clusters = 2**16 - 11 max_cluster_size = 2**15 max_filesize = max_clusters * max_cluster_size else: path = os.path.realpath(path) # not implemented yet #fsname = crawl_path_for_mount_entry(path) return fs_name, max_filesize def get_torrents_dir(): return os.path.join(get_dot_dir(), efs2(u'torrents')) def get_nebula_file(): return os.path.join(get_dot_dir(), efs2(u'nebula')) def get_home_dir(): shellvars = ['${HOME}', '${USERPROFILE}'] dir_root = get_dir_root(shellvars) if (dir_root is None) and (os.name == 'nt'): dir = get_shell_dir(shellcon.CSIDL_PROFILE) if dir is None: # there's no clear best fallback here # MS discourages you from writing directly in the home dir, # and sometimes (i.e. win98) there isn't one dir = get_shell_dir(shellcon.CSIDL_DESKTOPDIRECTORY) dir_root = dir return dir_root def get_local_data_dir(): if os.name == 'nt': # this results in paths that are too long # 86 characters: 'C:\Documents and Settings\Some Guy\Local Settings\Application Data\BitTorrent\incoming' #return os.path.join(get_shell_dir(shellcon.CSIDL_LOCAL_APPDATA), app_name) # I'm even a little nervous about this one return get_dot_dir() else: # BUG: there might be a better place to save incomplete files in under OSX return get_dot_dir() def get_old_incomplete_data_dir(): incomplete = efs2(u'incomplete') return os.path.join(get_old_dot_dir(), incomplete) def get_incomplete_data_dir(): # 'incomplete' is a directory name and should not be localized incomplete = efs2(u'incomplete') return os.path.join(get_local_data_dir(), incomplete) def get_save_dir(): dirname = u'%s Downloads' % unicode(app_name) dirname = efs2(dirname) if os.name == 'nt': d = get_shell_dir(shellcon.CSIDL_PERSONAL) if d is None: d = desktop else: d = desktop return os.path.join(d, dirname) def get_startup_dir(): """get directory where symlinks/shortcuts to be run at startup belong""" dir = None if os.name == 'nt': dir = get_shell_dir(shellcon.CSIDL_STARTUP) return dir def create_shortcut(source, dest, *args): if os.name == 'nt': if len(args) == 0: args = None path, file = os.path.split(source) sc = Shortcut(source, arguments=args, workingdir=path) sc.save(dest) else: # some other os may not support this, but throwing an error is good since # the function couldn't do what was requested os.symlink(source, dest) # linux also can't do args... maybe we should spit out a shell script? assert not args def resolve_shortcut(path): if os.name == 'nt': sc = Shortcut() sc.load(path) return sc.GetPath(0)[0] else: # boy, I don't know return path def remove_shortcut(dest): if os.name == 'nt': dest += ".lnk" os.unlink(dest) def enforce_shortcut(config, log_func): if os.name != 'nt': return path = win32api.GetModuleFileName(0) if 'python' in path.lower(): # oops, running the .py too lazy to make that work path = r"C:\Program Files\BitTorrent\bittorrent.exe" root_key = _winreg.HKEY_CURRENT_USER subkey = r'Software\Microsoft\Windows\CurrentVersion\run' key = _winreg.CreateKey(root_key, subkey) if config['launch_on_startup']: _winreg.SetValueEx(key, app_name, 0, _winreg.REG_SZ, '"%s" --force_start_minimized' % path) else: try: _winreg.DeleteValue(key, app_name) except WindowsError, e: # value doesn't exist pass def enforce_association(): if os.name != 'nt': return try: _enforce_association() except WindowsError: # access denied. not much we can do. traceback.print_exc() def _enforce_association(): INSTDIR, EXENAME = os.path.split(win32api.GetModuleFileName(0)) if 'python' in EXENAME.lower(): # oops, running the .py too lazy to make that work INSTDIR = r"C:\Program Files\BitTorrent" EXENAME = "bittorrent.exe" # owie edit_flags = chr(0x00) + chr(0x00) + chr(0x10) + chr(0x00) # lots of wrappers for more direct NSIS mapping HKCR = _winreg.HKEY_CLASSES_ROOT HKCU = _winreg.HKEY_CURRENT_USER def filter_vars(s): s = s.replace("$INSTDIR", INSTDIR) s = s.replace("${EXENAME}", EXENAME) return s def WriteReg(root_key, subkey, key_name, type, value): subkey = filter_vars(subkey) key_name = filter_vars(key_name) value = filter_vars(value) # CreateKey opens the key for us and creates it if it does not exist #key = _winreg.OpenKey(root_key, subkey, 0, _winreg.KEY_ALL_ACCESS) key = _winreg.CreateKey(root_key, subkey) _winreg.SetValueEx(key, key_name, 0, type, value) def WriteRegStr(root_key, subkey, key_name, value): WriteReg(root_key, subkey, key_name, _winreg.REG_SZ, value) def WriteRegBin(root_key, subkey, key_name, value): WriteReg(root_key, subkey, key_name, _winreg.REG_BINARY, value) def DeleteRegKey(root_key, subkey): try: _winreg.DeleteKey(root_key, subkey) except WindowsError: # key doesn't exist pass ## Begin NSIS copy/paste/translate WriteRegStr(HKCR, '.torrent', "", "bittorrent") DeleteRegKey(HKCR, r".torrent\Content Type") # This line maks it so that BT sticks around as an option # after installing some other default handler for torrent files WriteRegStr(HKCR, r".torrent\OpenWithProgids", "bittorrent", "") # this prevents user-preference from generating "Invalid Menu Handle" by looking for an app # that no longer exists, and instead points it at us. WriteRegStr(HKCU, r"Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.torrent", "Application", EXENAME) WriteRegStr(HKCR, r"Applications\${EXENAME}\shell", "", "open") WriteRegStr(HKCR, r"Applications\${EXENAME}\shell\open\command", "", r'"$INSTDIR\${EXENAME}" "%1"') # Add a mime type WriteRegStr(HKCR, r"MIME\Database\Content Type\application/x-bittorrent", "Extension", ".torrent") # Add a shell command to match the 'bittorrent' handler described above WriteRegStr(HKCR, "bittorrent", "", "TORRENT File") WriteRegBin(HKCR, "bittorrent", "EditFlags", edit_flags) # make us the default handler for bittorrent:// WriteRegBin(HKCR, "bittorrent", "URL Protocol", chr(0x0)) WriteRegStr(HKCR, r"bittorrent\Content Type", "", "application/x-bittorrent") WriteRegStr(HKCR, r"bittorrent\DefaultIcon", "", r"$INSTDIR\${EXENAME},0") WriteRegStr(HKCR, r"bittorrent\shell", "", "open") ## ReadRegStr $R1 HKCR "bittorrent\shell\open\command" "" ## StrCmp $R1 "" continue ## ## WriteRegStr HKCR "bittorrent\shell\open\command" "backup" $R1 ## ## continue: WriteRegStr(HKCR, r"bittorrent\shell\open\command", "", r'"$INSTDIR\${EXENAME}" "%1"') # Add a shell command to handle torrent:// stuff WriteRegStr(HKCR, "torrent", "", "TORRENT File") WriteRegBin(HKCR, "torrent", "EditFlags", edit_flags) # make us the default handler for torrent:// WriteRegBin(HKCR, "torrent", "URL Protocol", chr(0x0)) WriteRegStr(HKCR, r"torrent\Content Type", "", "application/x-bittorrent") WriteRegStr(HKCR, r"torrent\DefaultIcon", "", "$INSTDIR\${EXENAME},0") WriteRegStr(HKCR, r"torrent\shell", "", "open") ## ReadRegStr $R1 HKCR "torrent\shell\open\command" "" ## WriteRegStr HKCR "torrent\shell\open\command" "backup" $R1 WriteRegStr(HKCR, r"torrent\shell\open\command", "", r'"$INSTDIR\${EXENAME}" "%1"') def btspawn(cmd, *args): ext = '' if is_frozen_exe: ext = '.exe' path = os.path.join(app_root, cmd+ext) if not os.access(path, os.F_OK): if os.access(path+'.py', os.F_OK): path = path+'.py' args = [path] + list(args) # $0 spawn(*args) def spawn(*args): if os.name == 'nt': # do proper argument quoting since exec/spawn on Windows doesn't bargs = args args = [] for a in bargs: if not a.startswith("/"): a.replace('"', '\"') a = '"%s"' % a args.append(a) argstr = ' '.join(args[1:]) # use ShellExecute instead of spawn*() because we don't want # handles (like the controlsocket) to be duplicated win32api.ShellExecute(0, "open", args[0], argstr, None, 1) # 1 == SW_SHOW else: if os.access(args[0], os.X_OK): forkback = os.fork() if forkback == 0: # BUG: stop IPC! print "execl ", args[0], args os.execl(args[0], *args) else: #BUG: what should we do here? pass def language_path(): dot_dir = get_dot_dir() lang_file_name = os.path.join(dot_dir, efs(u'data')[0], efs(u'language')[0]) return lang_file_name def get_language(name): from BTL import LOCALE_URL url = LOCALE_URL + name + ".tar.gz" socket.setdefaulttimeout(5) r = urllib.urlopen(url) # urllib seems to ungzip for us tarname = os.path.join(locale_root, name + ".tar") f = file(tarname, 'wb') f.write(r.read()) f.close() tar = tarfile.open(tarname, "r") for tarinfo in tar: tar.extract(tarinfo, path=locale_root) tar.close() ##def smart_gettext_translation(domain, localedir, languages, fallback=False): ## try: ## t = gettext.translation(domain, localedir, languages=languages) ## except Exception, e: ## for lang in languages: ## try: ## get_language(lang) ## except Exception, e: ## #print "Failed on", lang, e ## pass ## t = gettext.translation(domain, localedir, languages=languages, ## fallback=fallback) ## return t def blocking_smart_gettext_and_install(domain, localedir, languages, fallback=False, unicode=False): try: t = gettext.translation(domain, localedir, languages=languages, fallback=fallback) except Exception, e: # if we failed to find the language, fetch it from the web running_count = 0 running_deferred = {} # Get some reasonable defaults for arguments that were not supplied if languages is None: languages = [] for envar in ('LANGUAGE', 'LC_ALL', 'LC_MESSAGES', 'LANG'): val = os.environ.get(envar) if val: languages = val.split(':') break if 'C' not in languages: languages.append('C') # now normalize and expand the languages nelangs = [] for lang in languages: for nelang in gettext._expand_lang(lang): if nelang not in nelangs: nelangs.append(nelang) languages = nelangs for lang in languages: # HACK if lang.startswith('en'): continue if lang.startswith('C'): continue try: get_language(lang) except: #urllib.HTTPError: pass t = gettext.translation(domain, localedir, languages=languages, fallback=True) t.install(unicode) def smart_gettext_and_install(domain, localedir, languages, fallback=False, unicode=False): try: t = gettext.translation(domain, localedir, languages=languages, fallback=fallback) except Exception, e: # if we failed to find the language, fetch it from the web async-style running_count = 0 running_deferred = {} # Get some reasonable defaults for arguments that were not supplied if languages is None: languages = [] for envar in ('LANGUAGE', 'LC_ALL', 'LC_MESSAGES', 'LANG'): val = os.environ.get(envar) if val: languages = val.split(':') break if 'C' not in languages: languages.append('C') # now normalize and expand the languages nelangs = [] for lang in languages: for nelang in gettext._expand_lang(lang): if nelang not in nelangs: nelangs.append(nelang) languages = nelangs for lang in languages: d = ThreadedDeferred(None, get_language, lang) def translate_and_install(r, td=d): running_deferred.pop(td) # only let the last one try to install if len(running_deferred) == 0: t = gettext.translation(domain, localedir, languages=languages, fallback=True) t.install(unicode) def failed(e, tlang=lang, td=d): if td in running_deferred: running_deferred.pop(td) # don't raise an error, just continue untranslated sys.stderr.write('Could not find translation for language "%s"\n' % tlang) #traceback.print_exc(e) d.addCallback(translate_and_install) d.addErrback(failed) # accumulate all the deferreds first running_deferred[d] = 1 # start them all, the last one finished will install the language for d in running_deferred: d.start() return # install it if we got it the first time t.install(unicode) def _gettext_install(domain, localedir=None, languages=None, unicode=False): # gettext on win32 does not use locale.getdefaultlocale() by default # other os's will fall through and gettext.find() will do this task if os_name == 'nt': # this code is straight out of gettext.find() if languages is None: languages = [] for envar in ('LANGUAGE', 'LC_ALL', 'LC_MESSAGES', 'LANG'): val = os.environ.get(envar) if val: languages = val.split(':') break # this is the important addition - since win32 does not typically # have any enironment variable set, append the default locale before 'C' languages.append(locale.getdefaultlocale()[0]) if 'C' not in languages: languages.append('C') # we call the smart version, because anyone calling this needs it # before they can continue. yes, we do block on network IO. there is no # alternative (installing post-startup causes already loaded strings not # to be re-loaded) blocking_smart_gettext_and_install(domain, localedir, languages=languages, unicode=unicode) def read_language_file(): """Reads the language file. The language file contains the name of the selected language, not any translations.""" lang = None if os.name == 'nt': # this pulls user-preference language from the installer location try: regko = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER, "Software\\BitTorrent") lang_num = _winreg.QueryValueEx(regko, "Language")[0] lang_num = int(lang_num) lang = language.locale_sucks[lang_num] except: pass else: lang_file_name = language_path() if os.access(lang_file_name, os.F_OK|os.R_OK): mode = 'r' if sys.version_info >= (2, 3): mode = 'U' lang_file = open(lang_file_name, mode) lang_line = lang_file.readline() lang_file.close() if lang_line: lang = '' for i in lang_line[:5]: if not i.isalpha() and i != '_': break lang += i if lang == '': lang = None return lang def write_language_file(lang): """Writes the language file. The language file contains the name of the selected language, not any translations.""" if lang != '': # system default get_language(lang) if os.name == 'nt': regko = _winreg.CreateKey(_winreg.HKEY_CURRENT_USER, "Software\\BitTorrent") if lang == '': _winreg.DeleteValue(regko, "Language") else: lcid = None # I want two-way dicts for id, code in language.locale_sucks.iteritems(): if code.lower() == lang.lower(): lcid = id break if not lcid: raise KeyError(lang) _winreg.SetValueEx(regko, "Language", 0, _winreg.REG_SZ, str(lcid)) else: lang_file_name = language_path() lang_file = open(lang_file_name, 'w') lang_file.write(lang) lang_file.close() def install_translation(unicode=False): languages = None try: lang = read_language_file() if lang is not None: languages = [lang, ] except: #pass traceback.print_exc() _gettext_install('bittorrent', locale_root, languages=languages, unicode=unicode) def write_pid_file(fname, errorfunc = None): """Creates a pid file on platforms that typically create such files; otherwise, this returns without doing anything. The fname should not include a path. The file will be placed in the appropriate platform-specific directory (/var/run in linux). """ assert type(fname) == str assert errorfunc == None or callable(errorfunc) if os.name == 'nt': return try: pid_fname = os.path.join(efs2(u'/var/run'),fname) file(pid_fname, 'w').write(str(os.getpid())) except: try: pid_fname = os.path.join(efs2(u'/etc/tmp'),fname) except: if errorfunc: errorfunc("Couldn't open pid file. Continuing without one.") else: pass # just continue without reporting warning. desktop = None if os.name == 'nt': desktop = get_shell_dir(shellcon.CSIDL_DESKTOPDIRECTORY) else: homedir = get_home_dir() if homedir == None : desktop = '/tmp/' else: desktop = homedir if os.name in ('mac', 'posix'): tmp_desktop = os.path.join(homedir, efs2(u'Desktop')) if os.access(tmp_desktop, os.R_OK|os.W_OK): desktop = tmp_desktop + os.sep ``` #### File: BitTorrent-5.2.2/BitTorrent/RTTMonitor2.py ```python debug = False #debug = True import os import Queue import socket import itertools import random from pprint import pprint from BTL.platform import bttime import BTL.stackthreading as threading from BTL.HostIP import get_host_ip, get_host_ips from BitTorrent.platform import spawn, app_root #from twisted.web.xmlrpc import Proxy if os.name == 'nt': import win32icmp IP_TTL_EXPIRED_TRANSIT = 11013 IP_SUCCESS = 0 def daemon_thread(target, args=()): t = threading.Thread(target=target, args=args) t.setDaemon(True) return t def in_common(routes): """routes is a list of lists, each containing a route to a peer.""" # Greg: This is a little weird. Nodes appear in the queue in # increasing order of TTL among nodes in the path to # a given IP. However, there is no guarantee of ordering # between IP's. As a result, a closer branching # may be missed if the traceroute following that branch # is delayed longer than the traceroutes to other IPs. # --Dave r = [] branch = False for n in itertools.izip(*routes): # strip dead nodes f = [i for i in n if i !='*'] # ignore all dead nodes if len(f) == 0: continue if len(set(f)) == 1: r.append(f[0]) else: # more than one unique node, the tree has branched branch = True break return (branch, r) class RTTMonitorBase(object): def __init__(self, new_rtt=None): self.instantanious_rtt = None def f(rtt): pass if new_rtt: self.new_rtt = new_rtt else: self.new_rtt = f def set_nodes_restart(self, nodes): pass def get_current_rtt(self): return self.instantanious_rtt # someday I'll write this using twisted. --<NAME> #class RTTMonitorUnix(RTTMonitorBase): import xmlrpclib # blech. Better with twisted, but RTTMonitorWin32 # was already written to handle blocking Icmp calls. class Icmp(object): """Implements ICMP.""" def create_file(self): return 0 def ping(self, fid, addr, ttl, timeout): # returns addr, status, rtt. pass def close(self,fid): pass class UnixIcmp(Icmp): def __init__(self, external_add_task, port): assert callable(external_add_task) # rawserver's assert type(port) in (int,long) and port > 0 and port <= 65535 #pid = os.spawnl(os.P_NOWAIT, "xicmp", str(port)) print "Spawning xicmp on port ", port xicmp = os.path.join( app_root, "icmp", "xicmp" ) spawn( xicmp, str(port) ) def _start_proxy(port): self.proxy = xmlrpclib.ServerProxy('http://localhost:%d' % port) external_add_task(4.0, _start_proxy, port) # allow time to spawn. def create_file(self): return self.proxy.IcmpCreateFile() def ping(self, fid, addr, ttl, timeout): try: return self.proxy.IcmpSendEcho( fid, addr, ttl, timeout ) except xmlrpclib.Fault: return None def close(self,fid): #print "UnixIcmp: close: fid=", fid return self.proxy.IcmpCloseHandle( fid ) class Options(object): pass class Win32Icmp(Icmp): def __init__(self): self.o = Options() def create_file(self): i = win32icmp.IcmpCreateFile() def ping(self, fid, addr, ttl, timeout): self.o.Ttl = ttl return win32icmp.IcmpSendEcho(fid, addr, None, self.o, timeout) def close(self,fid): win32icmp.IcmpCloseHandle(fid) def _set_min(x, y): if x is None: return y if y is None: return x return min(x, y) _set_max = max #class RTTMonitorWin32(RTTMonitorBase): class RTTMonitorBlocking(RTTMonitorBase): def __init__(self, new_rtt, icmp, interval = 0.5, timeout = 6.0 ): """ @param new_rtt called every time a ping arrives. @param icmp is the ICMP implementation. @param timeout (currently uses a static timeout threshold) """ assert callable(new_rtt) assert isinstance(icmp, Icmp) self.icmp = icmp self.nodes = [] self.timeout = int(1000 * timeout) # in ms. self.interval = interval self.stop_event = threading.Event() self.abort_traceroute = threading.Event() self.finished_event = threading.Event() # the thread is finished because it hasn't started self.finished_event.set() RTTMonitorBase.__init__(self, new_rtt) def set_nodes_restart(self, nodes): if debug: pprint( "set_nodes_restart: nodes=%s" % str(nodes)) self.nodes = [] for node in nodes: self.add_node(node) t = threading.Thread(target=self.run, args=(list(self.nodes),)) t.setDaemon(True) t.start() def add_node(self, node): self.nodes.append(node) def get_route(self, q, dst): try: dst = socket.gethostbyname(dst) self.traceroute(dst, self.timeout, lambda n : q.put((dst, n))) except socket.gaierror: # if hostbyname lookup fails, it's not a node we can use # maybe this should be a warning or something, but a downed # internet connection will cause a lot of these pass def run(self, nodes): q = Queue.Queue() dst = None # handy for hard-coding common node #dst = '192.168.127.12' if not dst: threads = [] for i in nodes: t = daemon_thread(target=self.get_route, args=(q, i, )) threads.append(t) t.start() waiter_done_event = threading.Event() def waiter(threads, waiter_done_event): try: for thread in threads: thread.join() # blocks until thread terminates. except Exception, e: print "waiter hiccupped", e waiter_done_event.set() waiting_thread = daemon_thread(target=waiter, args=(threads, waiter_done_event, )) waiting_thread.start() common = [] routes = {} #print "tracerouting..." hop_check = 0 # distance (in hops) being checked for branch. hop_cnt = {} # number responses received at the given distance. farthest_possible = 1000 # farthest distance possible as # determined by the shortest number of # hops to a node in the passed nodes. branch = False while not waiter_done_event.isSet(): try: msg = q.get(True, 1.0) except Queue.Empty: pass else: dst = msg[0] # nodes appear in the queue in # increasing order of TTL. new_node = msg[1] if dst not in routes: l = [] routes[dst] = l else: l = routes[dst] l.append(new_node) #print "calling in_common with ", routes.values() # BEGIN replaces in_common #hops_so_far = len(routes[dst]) ## It is not possible for the common path to be longer ## than the closest node. #if dst == new_node and hops_so_far < farthest_possible: # farthest_possible = hops_so_far #if hop_cnt.has_key(hops_so_far): # hop_cnt[hops_so_far] += 1 #else: # hop_cnt[hops_so_far] = 1 # #if hops_so_far == hop_check: # # if got all pings for a given distance then see if # # there is a branch. # while hop_cnt[hop_check] == len(nodes) and \ # hop_check <= farthest_possible: # n = None # for r in routes: # if n is not None and n != routes[d]: # branch = True # break # if routes[hop_check] != '*': # n = routes[hop_check] # else: # common.append(n) # hop_check += 1 # if hop_check > farthest_possible: # branch = True ## END branch, common = in_common(routes.values()) if branch: break #print "done tracerouting..." self.abort_traceroute.set() waiter_done_event.wait() self.abort_traceroute.clear() local_ips = get_host_ips() new_common = [] for c in common: if c not in local_ips: new_common.append(c) common = new_common if debug: pprint(common) if len(common) == 0: # this should be inspected, it's not a simple debug message if debug: print "No common node", routes return del routes dst = common[-1] # kill the old thread self.stop_event.set() # wait for it to finish self.finished_event.wait() # clear to indicate we're running self.finished_event.clear() self.stop_event.clear() if debug: print "Farthest common hop [%s]" % dst # Ping a representative peer but set the ttl to the length of the # common path so that the farthest common hop responds with # ICMP time exceeded. (Some routers will send time exceeded # messages, but they won't respond to ICMP pings directly) representative = nodes[random.randrange(0, len(nodes))] if debug: print "pinging representative %s ttl=%d" % ( representative,len(common)) try: while not self.stop_event.isSet(): start = bttime() rtt = self.ping(representative, 5000, ttl=len(common)) self.instantanious_rtt = rtt delta = bttime() - start self.stop_event.wait(self.interval - delta) if debug: print "RTTMonitor.py: new_rtt %s" % rtt self.new_rtt(self.instantanious_rtt) except Exception, e: import traceback traceback.print_exc() print "ABORTING", e self.finished_event.set() def traceroute(self, dst, timeout, report=None): """If report is None then this returns the route as a list of IP addresses. If report is not None then this calls report as each node is discovered in the path (e.g., if there are 6 hops in the path then report gets called 6 times).""" if debug: print "Tracing route to [%s]" % dst i = self.icmp.create_file() o = Options() route = None if report == None: route = [] def add_node(node): route.append(node) report = add_node for ttl in xrange(64): try: if ttl == 0: addr = get_host_ip() status = -1 rtt = 0 else: addr, status, rtt = self.icmp.ping(i,dst,ttl,timeout) if debug: print "ttl", ttl, "\t", rtt, "ms\t", addr report(addr) if status == IP_SUCCESS: if debug: print "Traceroute complete in", ttl, "hops" break except Exception, e: report('*') if debug: print "Hop", ttl, "failed:", str(e) if self.abort_traceroute.isSet(): break self.icmp.close(i) if route: return route def ping(self, dst, timeout, ttl = None): """Returns ICMP echo round-trip time to dst or returns None if a timeout occurs. timeout is measured in milliseconds. The TTL is useful if the caller wants to ping the router that is a number of hops in the direction of the dst, e.g., when a router will not respond to pings directly but will generate ICMP Time Exceeded messages.""" i = self.icmp.create_file() rtt = None try: addr, status, rtt = self.icmp.ping(i, dst, ttl, timeout) if debug: if status == IP_SUCCESS: print "Reply from", addr + ":", "time=" + str(rtt) elif status == IP_TTL_EXPIRED_TRANSIT: print "Ping ttl expired %d: from %s time=%s" %( status, str(addr), str(rtt)) else: print "Ping failed", status except Exception, e: if debug: print "Ping failed:", str(e) self.icmp.close(i) return rtt #if os.name == 'nt': # RTTMonitor = RTTMonitorWin32 #else: # RTTMonitor = RTTMonitorUnix RTTMonitor = RTTMonitorBlocking ``` #### File: BitTorrent-5.2.2/BitTorrent/uplatform.py ```python from BitTorrent import platform from BTL.platform import efs2 #get_filesystem_encoding = platform.get_filesystem_encoding #encode_for_filesystem = platform.encode_for_filesystem #decode_from_filesystem = platform.decode_from_filesystem #set_config_dir = platform.set_config_dir calc_unix_dirs = platform.calc_unix_dirs get_free_space = platform.get_free_space get_sparse_files_support = platform.get_sparse_files_support is_path_too_long = platform.is_path_too_long is_sparse = platform.is_sparse get_allocated_regions = platform.get_allocated_regions get_max_filesize = platform.get_max_filesize create_shortcut = platform.create_shortcut remove_shortcut = platform.remove_shortcut enforce_shortcut = platform.enforce_shortcut enforce_association = platform.enforce_association btspawn = platform.btspawn spawn = platform.spawn #get_language = platform.get_language smart_gettext_and_install = platform.smart_gettext_and_install #read_language_file = platform.read_language_file #write_language_file = platform.write_language_file #install_translation = platform.install_translation write_pid_file = platform.write_pid_file #old_open = open #def open(name, mode='r'): # return old_open(efs2(name), mode) # # #def language_path(): # return decode_from_filesystem(platform.language_path()) # #def get_dir_root(shellvars, default_to_home=True): # return decode_from_filesystem( # platform.get_dir_root(shellvars, default_to_home)) def get_temp_dir(): return decode_from_filesystem(platform.get_temp_dir()) def get_temp_subdir(): return decode_from_filesystem(platform.get_temp_subdir()) #def get_config_dir(): # return decode_from_filesystem(platform.get_config_dir()) # #def get_old_dot_dir(): # return decode_from_filesystem(platform.get_old_dot_dir()) # #def get_dot_dir(): # return decode_from_filesystem(platform.get_dot_dir()) # #def get_cache_dir(): # return decode_from_filesystem(platform.get_cache_dir()) def get_home_dir(): return decode_from_filesystem(platform.get_home_dir()) def get_local_data_dir(): return decode_from_filesystem(platform.get_local_data_dir()) def get_old_incomplete_data_dir(): return decode_from_filesystem(platform.get_old_incomplete_data_dir()) def get_incomplete_data_dir(): return decode_from_filesystem(platform.get_incomplete_data_dir()) def get_save_dir(): return decode_from_filesystem(platform.get_save_dir()) def get_shell_dir(value): return decode_from_filesystem(platform.get_shell_dir(value)) def get_startup_dir(): return decode_from_filesystem(platform.get_startup_dir()) ``` #### File: BitTorrent-5.2.2/BTL/asyncexecutor.py ```python from twisted.python.threadpool import ThreadPool class AsyncExecutor(object): """ defaults to minthreads=5, maxthreads=20 """ pool = ThreadPool( name = 'AsyncExecutorPool') def _execute(self, func, *args, **kwargs): if not self.pool.started: self.pool.start() self.pool.dispatch(None, func, *args, **kwargs) execute = classmethod(_execute) stop = pool.stop def test(): import random import time def test(digit): print 'Testing %d' % digit time.sleep(random.randint(1, 5000)/1000) print ' finished with test %d' % digit for i in xrange(10): AsyncExecutor.execute(test, ) AsyncExecutor.stop() if __name__ == '__main__': test() ``` #### File: BitTorrent-5.2.2/BTL/bdistutils.py ```python import sys, os, shutil from distutils import core if sys.platform == "win32": setup = core.setup # no need to import anything further. None of the remaining # functionality is available in windows. else: import pwd from distutils.sysconfig import get_python_lib import distutils.sysconfig from stat import S_IMODE, S_IRUSR, S_IXUSR, S_IRGRP, S_IXGRP, S_IROTH, S_IXOTH from daemon import getuid_from_username, getgid_from_username from daemon import getgid_from_groupname months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] class SetupException(Exception): pass def getuid_for_path(path): return os.stat(path).st_uid def seteugid_to_login(): """set effective user id and effective group id to the user and group ids of the user logged into this terminal.""" uid = pwd.getpwnam(os.getlogin())[2] # search /etc/passwd for uid and gid = pwd.getpwnam(os.getlogin())[3] # gid of user logged into this # terminal. os.setegid(gid) os.seteuid(uid) # Is there a better way? --Dave def get_svn_change_code(): """Returns the svn repository's date and revision number for the current working directory. The returned string has the format 'YYYY_MM_DD_revXXXX' where XXXX is the revision number.""" def to_dict(lines): # FRAGILE XXX splitted = [l.split(':') for l in lines] pairs = [(s[0].strip(), ':'.join(s[1:]).strip()) for s in splitted] d = dict(pairs) return d # returns date and revision number d = to_dict(os.popen("svn info").readlines()) url = d["URL"] revision = int(d["Last Changed Rev"]) date = d["Last Changed Date"] date = date.split(' ')[0] # keep only "YYYY-MM-DD" date = "_".join(date.split('-')) # replace dash with underscore date_rev = "%s_rev%.4d" % (date,revision) return date_rev def get_cdv_change_code(): # cdv won't run on the dev machines as root. nfs does not allow # root access to mounted drives. --Dave if os.getuid() == 0 and getuid_for_path(".") != 0: seteugid_to_login() # fragile. XXXX l = os.popen("cdv history -c 1").readlines()[0].split(" ") if os.getuid() == 0: os.seteuid(0) #os.setegid(oldgid) l = [x.strip() for x in l if x.strip() != ''] # remove empty strings. x,code,x,x,x,x,dow,mo,dom,t,y = l month = "%.2d" % (months.index(mo)+1) dom = "%.2d" % int(dom) # single digit day of month like 3 becomes 03 t = "_".join(t.split(':')) # convert ':' to underscores in time. return y+"_"+month+"_"+dom+"_"+t+"_"+code def get_install_prefix( appname ): """Generates directory name /opt/appname_YYYY_MM_DD_revXXXX""" # fragile. XXXX #change = get_cdv_change_code() change = get_svn_change_code() path = os.path.join("/opt", appname+"_"+change) return os.path.normpath(path) def get_unique_install_prefix( appname ): """Generates a directory name /opt/appname_YYYY_MM_DD_revXX or /opt/appname_YYYY_MM_DD_revXX_vVVV if the prior exists. VVV is a counter that is incremented with each install of the distribution with the same svn change code. Unlike get_install_prefix, this does not assume that cdv exists on the system, but instead assumes there is a version.txt file in the distribution root directory containing the cdv change date and code information. This file is created in the install directory whenever bdistutils is run with the installdev option.""" vfile = os.path.join(sys.path[0], "version.txt") if not os.path.exists(vfile): raise SetupException( "Cannot derive install prefix from cdv change date " "code, because there is no version.txt file in the " "root of the distribution tree." ) cfp = open(vfile, 'r') change_str = cfp.readline().strip() prefix = os.path.join("/opt", appname+"_"+change_str) while os.path.exists(prefix): path, name = os.path.split(prefix) code_or_cnt = prefix.split("_")[-1] if code_or_cnt[0] == 'v': cnt = int(code_or_cnt[1:]) cnt += 1 prefix = "_".join(prefix.split("_")[:-1]) else: cnt = 1 prefix = "%s_v%03.f" % (prefix, cnt) return os.path.normpath(prefix) def setup( **kwargs ): """site-specific setup. If sys.argv[1] is not installdev then this behaves as python's distutils.core.setup. If sys.argv[1] is installdev then this installs into a directory like: /opt/Mitte_2006_10_16_14_39_51_78a5 The date and time is the commit time for this version in the svn repository and 78a5 is the code for the version in svn. Also creates a symbolic link like /opt/mitte pointing to /opt/Mitte_2006_10_16_14_39_51_78a5. """ name = kwargs['name'] # setup doesn't like kwargs it doesn't know. destname = kwargs.get('destname', name) if kwargs.has_key('destname'): del kwargs['destname'] username = kwargs.get('username',None) if kwargs.has_key('username'): del kwargs['username'] groupname = kwargs.get('groupname',None) if kwargs.has_key('groupname'): del kwargs['groupname'] symlinks = kwargs.get('symlinks',None) if kwargs.has_key('symlinks'): del kwargs['symlinks'] installdev=False installprod = False old_prefix = None if len(sys.argv)>1 and sys.argv[1] == "force-installdev": # force install simply installs in a new directory. sys.prefix = get_unique_install_prefix(destname) distutils.sysconfig.PREFIX=sys.prefix print "get_unique_install_prefix returned sys.prefix=", sys.prefix installdev = True sys.argv[1] = "install" # determine old install directory. if os.path.exists( os.path.join("/opt/",destname) ): old_prefix = os.path.realpath(os.path.join("/opt/", destname)) old_prefix = os.path.split(old_prefix)[0] elif len(sys.argv)>1 and sys.argv[1] == "installdev": installdev=True sys.argv[1] = "install" # create change code file. code = get_svn_change_code() if code: # may fail if root and destination is nfs mounted. try: cfp = open(os.path.join(sys.path[0],"version.txt"), 'w') cfp.write( code ) cfp.close() except IOError: # try again as login username. old_uid = os.geteuid() seteugid_to_login() cfp = open(os.path.join(sys.path[0],"version.txt"), 'w') cfp.write( code ) cfp.close() os.seteuid(old_uid) # require root access to install into /opt or python site-packages. # determine install directory sys.prefix = get_install_prefix(destname) distutils.sysconfig.PREFIX=sys.prefix if os.path.exists(sys.prefix): raise SetupException( "This code revision has already been installed %s." " If you want to install it again then move the " "existing directory or use force-installdev." % sys.prefix ) # determine old install directory. if os.path.exists( os.path.join("/opt/",destname) ): old_prefix = os.path.realpath(os.path.join("/opt/", destname)) old_prefix = os.path.split(old_prefix)[0] if len(sys.argv)>1 and sys.argv[1] == "install": # building with root privilege can fail if the destination of the # build is nfs mounted. sys.argv[1] = "build" try: # try as root if I am root. core.setup(**kwargs) except: # try using login username old_uid = os.geteuid() seteugid_to_login() core.setup(**kwargs) os.seteuid(old_uid) sys.argv[1] = "install" try: core.setup(**kwargs) except OSError: # perms error on nfs mount, retry using login username old_uid = os.geteuid() seteugid_to_login() core.setup(**kwargs) os.seteuid(old_uid) if installdev: print "installdev is True." # shortened the directory path. #long_path = os.path.join(sys.path[0], "build", "lib", name) long_path = os.path.join(sys.prefix, "lib", "python2.4", "site-packages", name) print "long_path=",long_path dest = os.path.join(sys.prefix,name) print "dest=", dest if os.path.exists(long_path): print "copytree from ", long_path, " to ", dest shutil.copytree(long_path,dest) #shutil.rmtree(os.path.join(sys.prefix, "lib" )) # copy all files not in packages into /opt. for f in os.listdir('.'): if f == "build": continue if f == ".cdv": continue if f == ".svn": continue if f == "lib": continue if not os.path.exists( os.path.join(sys.prefix,f)): if os.path.isdir(f): shutil.copytree(f,os.path.join(sys.prefix,f),False) else: shutil.copyfile(f,os.path.join(sys.prefix,f)) # create symlink from /opt/blah to /opt/blah_YYYY_MM_DD_HH:MM:SS_code link_to = sys.prefix symlnk = os.path.join( '/opt', destname ) print "removing symlink from", symlnk if os.path.islink(symlnk): print "removing", symlnk os.remove(symlnk) print "creating symlink", symlnk, "to", link_to os.symlink(link_to, symlnk) if username: uid = getuid_from_username(username) else: uid = -1 if groupname: gid = getgid_from_groupname(groupname) elif username: gid = getgid_from_username(username) else: gid = -1 # recursively change owner and group name of install directory. ## Turns out that this is a bad idea. The account in which the ## service runs should not own its own install directory, because ## it could modify its own code. #if uid != -1 or gid != -1: # os.chown(sys.prefix,uid,gid) # dirs = os.walk(sys.prefix) # for path, dirnames, filenames in dirs: # for dir in dirnames: # os.chown(os.path.join(path, dir),uid,gid) # for fname in filenames: # os.chown(os.path.join(path, fname),uid,gid) # make world readable and make directories world cd'able (i.e., world executable) dirs = os.walk(sys.prefix) for path, dirnames, filenames in dirs: for dir in dirnames: dir = os.path.join(path,dir) mode = os.stat(dir).st_mode mode = S_IMODE(mode) mode |= S_IRUSR | S_IRGRP | S_IROTH | S_IXUSR | S_IXGRP | S_IXOTH os.chmod(dir,mode) for fname in filenames: fname = os.path.join(path, fname) mode = os.stat(fname).st_mode mode |= S_IRUSR | S_IRGRP | S_IROTH os.chmod(fname, mode) # create pid dir. pid_dir = os.path.join("/var/run/", name ) if not os.path.exists(pid_dir): os.mkdir(pid_dir) os.chown(pid_dir,uid,gid) ``` #### File: BitTorrent-5.2.2/BTL/brpclib.py ```python import xmlrpclib from xmlrpclib2 import * from BTL import brpc old_PyCurlTransport = PyCurlTransport class PyCurlTransport(old_PyCurlTransport): def set_connection_params(self, h): h.add_header('User-Agent', "brpclib.py/1.0") h.add_header('Connection', "Keep-Alive") h.add_header('Content-Type', "application/octet-stream") def _parse_response(self, response): # read response from input file/socket, and parse it return brpc.loads(response.getvalue())[0] # -------------------------------------------------------------------- # request dispatcher class _Method: # some magic to bind an B-RPC method to an RPC server. # supports "nested" methods (e.g. examples.getStateName) def __init__(self, send, name): self.__send = send self.__name = name def __getattr__(self, name): return _Method(self.__send, "%s.%s" % (self.__name, name)) def __call__(self, *args, **kwargs): args = (args, kwargs) return self.__send(self.__name, args) # ARG! prevent repr(_Method()) from submiting an RPC call! def __repr__(self): return "<%s instance at 0x%08X>" % (self.__class__, id(self)) # Double underscore is BAD! class BRPC_ServerProxy(xmlrpclib.ServerProxy): """uri [,options] -> a logical connection to an B-RPC server uri is the connection point on the server, given as scheme://host/target. The standard implementation always supports the "http" scheme. If SSL socket support is available (Python 2.0), it also supports "https". If the target part and the slash preceding it are both omitted, "/RPC2" is assumed. The following options can be given as keyword arguments: transport: a transport factory encoding: the request encoding (default is UTF-8) All 8-bit strings passed to the server proxy are assumed to use the given encoding. """ def __init__(self, uri, transport=None, encoding=None, verbose=0, allow_none=0): # establish a "logical" server connection # get the url import urllib type, uri = urllib.splittype(uri) if type not in ("http", "https"): raise IOError, "unsupported B-RPC protocol" self.__host, self.__handler = urllib.splithost(uri) if not self.__handler: self.__handler = "/RPC2" if transport is None: if type == "https": transport = xmlrpclib.SafeTransport() else: transport = xmlrpclib.Transport() self.__transport = transport self.__encoding = encoding self.__verbose = verbose self.__allow_none = allow_none def __request(self, methodname, params): # call a method on the remote server request = brpc.dumps(params, methodname, encoding=self.__encoding, allow_none=self.__allow_none) response = self.__transport.request( self.__host, self.__handler, request, verbose=self.__verbose ) if len(response) == 1: response = response[0] return response def __repr__(self): return ( "<ServerProxy for %s%s>" % (self.__host, self.__handler) ) __str__ = __repr__ def __getattr__(self, name): # magic method dispatcher return _Method(self.__request, name) def new_server_proxy(url): c = cache_set.get_cache(PyCURL_Cache, url) t = PyCurlTransport(c) return BRPC_ServerProxy(url, transport=t) ServerProxy = new_server_proxy if __name__ == '__main__': s = ServerProxy('https://greg.mitte.bittorrent.com:7080/') def ping(*a, **kw): (a2, kw2) = s.ping(*a, **kw) assert a2 == list(a), '%s list is not %s' % (r, list(a)) assert kw2 == dict(kw), '%s dict is not %s' % (kw2, dict(kw)) ping(0, 1, 1, name="potato") ping(0, 1, 1, name="anime") ping("phish", 0, 1, 1) ping("games", 0, 1, 1) ``` #### File: BitTorrent-5.2.2/BTL/circular_list.py ```python import random class Link(object): __slots__ = ['prev', 'data', 'next'] def __init__(self, data): self.prev = self self.data = data self.next = self def __str__(self): p = id(self.prev) n = id(self.next) return 'link:(%s, (%s, %s), %s)' % (p, id(self), self.data, n) class CircularList(object): def __init__(self): self.iter = None self.link_refs = {} # data: link def prepend(self, data): link = Link(data) assert data not in self.link_refs self.link_refs[data] = link if not self.iter: self.iter = link else: self._insert_before(self.iter, link) def append(self, data): link = Link(data) assert data not in self.link_refs self.link_refs[data] = link if not self.iter: self.iter = link else: self._insert_after(self.iter, link) def remove(self, data): link = self.link_refs.pop(data) if len(self.link_refs) == 0: self.iter = None return prev = link.prev next = link.next assert next is not None and prev is not None prev.next = next next.prev = prev if link == self.iter: self.iter = next ## stuff I consider to be link-related ######## def _double_link(self, link1, link2): # was a single item loop, move to a double assert link1.prev == link1 and link1.next == link1 link1.prev = link2 link1.next = link2 link2.next = link1 link2.prev = link1 def _insert_after(self, link1, link2): assert link1 != link2 if link1.next == link1: self._double_link(link1, link2) else: link2.next = link1.next link2.prev = link1 link1.next.prev = link2 link1.next = link2 def _insert_before(self, link1, link2): assert link1 != link2 if link1.prev == link1: self._double_link(link1, link2) else: link2.prev = link1.prev link2.next = link1 link1.prev.next = link2 link1.prev = link2 ######## def iterator(self): for i in iter(self): yield i def __iter__(self): if not self.iter: return while True: yield self.iter.data # someone could remove an item during iteration if not self.iter: return self.iter = self.iter.next def __len__(self): return len(self.link_refs) def __str__(self): n = len(self.link_refs) a = [] # don't interrupt iteration for a print first = self.iter next = first while next: a.append(str(next)) next = next.next if next.data == first.data: break items = '\n'.join(a) return "iter: %s \n[\n%s\n]" % (self.iter, items) if __name__ == '__main__': import time length = 80000 class ltype(list): def prepend(self, i): self.insert(0, i) from BTL.Lists import QList class qtype(QList): def prepend(self, i): self.append(i) def iterator(self): if len(self) == 0: return while True: yield self[0] if len(self) == 0: return self.append(self.popleft()) #CircularList = ltype #CircularList = qtype print CircularList s = time.clock() l = CircularList() for i in xrange(length): l.append(i) #print l print 'append ', time.clock() - s s = time.clock() l = CircularList() for i in xrange(length): l.prepend(i) #print l print 'prepend', time.clock() - s s = time.clock() l = CircularList() for i in xrange(length): if i % 2 == 0: l.prepend(i) else: l.append(i) #print l print 'sort ', time.clock() - s #fair = {} s = time.clock() l = CircularList() it = l.iterator() for i in xrange(length): l.prepend(i) #fair[i] = 0 x = it.next() #print x, i #fair[x] += 1 #assert x == i, '%s %s' % (x, i) #print l print 'iter ', time.clock() - s #for k in fair: # print k, fair[k] l = CircularList() print l l.prepend(0) print l l.prepend(1) print l l.remove(1) print l l.remove(0) print l ``` #### File: BitTorrent-5.2.2/BTL/CMap.py ```python if __name__ == '__main__': import sys sys.path = ['.','..'] + sys.path # HACK to simplify unit testing. from BTL.translation import _ class BEGIN: # represents special BEGIN location before first next. pass from UserDict import DictMixin from cmap_swig import * import sys from weakref import WeakKeyDictionary LEAK_TEST = False class CMap(object,DictMixin): """In-order mapping. Provides same operations and behavior as a dict, but provides in-order iteration. Additionally provides operations to find the nearest key <= or >= a given key. This provides a significantly wider set of operations than berkeley db BTrees, but it provides no means for persistence. LIMITATION: The key must be a python numeric type, e.g., an integer or a float. The value can be any python object. Operation: Time Applicable Complexity: Methods: --------------------------------------------------- Item insertion: O(log n) append, __setitem__ Item deletion: O(log n + k) __delitem__, erase Key search: O(log n) __getitem__, get, find, __contains__ Value search: n/a Iteration step: amortized O(1), next, prev worst-case O(log n) Memory: O(n) n = number of elements in map. k = number of iterators pointing into map. CMap assumes there are few iterators in existence at any given time. Iterators are not invalidated by insertions. Iterators are invalidated by deletions only when the key-value pair referenced is deleted. Deletion has a '+k' because the __delitem__ searches linearly through the set of iterators pointing into this map to find any iterator pointing at the deleted item and then invalidates the iterator. This class is backed by the C++ STL map class, but conforms to the Python container interface.""" class _AbstractIterator: """Iterates over elements in the map in order.""" def __init__(self, m, si = BEGIN ): # "s.." implies swig object. """Creates an iterator pointing to element si in map m. Do not instantiate directly. Use iterkeys, itervalues, or iteritems. The _AbstractIterator takes ownership of any C++ iterator (i.e., the swig object 'si') and will deallocate it when the iterator is deallocated. Examples of typical behavior: >>> from CMap import * >>> m = CMap() >>> m[12] = 6 >>> m[9] = 4 >>> for k in m: ... print int(k) ... 9 12 >>> Example edge cases (empty map): >>> from CMap import * >>> m = CMap() >>> try: ... i = m.__iter__() ... i.value() ... except IndexError: ... print 'IndexError.' ... IndexError. >>> try: ... i.next() ... except StopIteration: ... print 'stopped' ... stopped @param map: CMap. @param node: Node that this iterator will point at. If None then the iterator points to end(). If BEGIN then the iterator points to one before the beginning. """ assert isinstance(m, CMap) assert not isinstance(si, CMap._AbstractIterator) if si == None: self._si = map_end(m._smap) else: self._si = si # C++ iterator wrapped by swig. self._map = m m._iterators[self] = 1 # using map as set of weak references. def __hash__(self): return id(self) def __cmp__(self, other): if not self._si or not other._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN and other._si == BEGIN: return 0 if self._si == BEGIN and other._si != BEGIN: return -1 elif self._si != BEGIN and other._si == BEGIN: return 1 return iter_cmp(self._map._smap, self._si, other._si ) def at_begin(self): """equivalent to self == m.begin() where m is a CMap. >>> from CMap import CMap >>> m = CMap() >>> i = m.begin() >>> i == m.begin() True >>> i.at_begin() True >>> i == m.end() # no elements so begin()==end() True >>> i.at_end() True >>> m[6] = 'foo' # insertion does not invalidate iterators. >>> i = m.begin() >>> i == m.end() False >>> i.value() 'foo' >>> try: # test at_begin when not at beginning. ... i.next() ... except StopIteration: ... print 'ok' ok >>> i.at_begin() False """ if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: # BEGIN is one before begin(). Yuck!! return False return map_iter_at_begin(self._map._smap, self._si) def at_end(self): """equivalent to self == m.end() where m is a CMap, but at_end is faster because it avoids the dynamic memory alloation in m.end(). >>> from CMap import CMap >>> m = CMap() >>> m[6] = 'foo' >>> i = m.end() # test when at end. >>> i == m.end() True >>> i.at_end() True >>> int(i.prev()) 6 >>> i.at_end() # testing when not at end. False """ if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: return False return map_iter_at_end(self._map._smap, self._si) def key(self): """@return: the key of the key-value pair referenced by this iterator. """ if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: raise IndexError(_("Cannot dereference iterator until after " "first call to .next.")) elif map_iter_at_end(self._map._smap, self._si): raise IndexError() return iter_key(self._si) def value(self): """@return: the value of the key-value pair currently referenced by this iterator. """ if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: raise IndexError(_("Cannot dereference iterator until after " "first call to next.")) elif map_iter_at_end(self._map._smap, self._si): raise IndexError() return iter_value(self._si) def item(self): """@return the key-value pair referenced by this iterator. """ if not self._si: raise RuntimeError( _("invalid iterator") ) return self.key(), self.value() def _next(self): if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: self._si = map_begin(self._map._smap) if map_iter_at_end(self._map._smap,self._si): raise StopIteration return if map_iter_at_end(self._map._smap,self._si): raise StopIteration iter_incr(self._si) if map_iter_at_end(self._map._smap,self._si): raise StopIteration def _prev(self): if not self._si: raise RuntimeError( _("invalid iterator") ) if self._si == BEGIN: raise StopIteration() elif map_iter_at_begin(self._map._smap, self._si): self._si = BEGIN raise StopIteration iter_decr(self._si) def __del__(self): # Python note: if a reference to x is intentionally # eliminated using "del x" and there are other references # to x then __del__ does not get called at this time. # Only when the last reference is deleted by an intentional # "del" or when the reference goes out of scope does # the __del__ method get called. self._invalidate() def _invalidate(self): if self._si == None: return try: del self._map._iterators[self] except KeyError: pass # could've been removed because weak reference, # and because _invalidate is called from __del__. if self._si != BEGIN: iter_delete(self._si) self._si = None def __iter__(self): """If the iterator is itself iteratable then we do things like: >>> from CMap import CMap >>> m = CMap() >>> m[10] = 'foo' >>> m[11] = 'bar' >>> for x in m.itervalues(): ... print x ... foo bar """ return self def __len__(self): return len(self._map) class KeyIterator(_AbstractIterator): def next(self): """Returns the next key in the map. Insertion does not invalidate iterators. Deletion only invalidates an iterator if the iterator pointed at the key-value pair being deleted. This is implemented by moving the iterator and then dereferencing it. If we dereferenced and then moved then we would get the odd behavior: Ex: I have keys [1,2,3]. The iterator i points at 1. print i.next() # prints 1 print i.next() # prints 2 print i.prev() # prints 3 print i.prev() # prints 2 However, because we move and then dereference, when an iterator is first created it points to nowhere so that the first next moves to the first element. Ex: >>> from CMap import * >>> m = CMap() >>> m[5] = 1 >>> m[8] = 4 >>> i = m.__iter__() >>> print int(i.next()) 5 >>> print int(i.next()) 8 >>> print int(i.prev()) 5 We are still left with the odd behavior that an iterator cannot be dereferenced until after the first next(). Ex edge cases: >>> from CMap import CMap >>> m = CMap() >>> i = m.__iter__() >>> try: ... i.prev() ... except StopIteration: ... print 'StopIteration' ... StopIteration >>> m[5]='a' >>> i = m.iterkeys() >>> int(i.next()) 5 >>> try: i.next() ... except StopIteration: print 'StopIteration' ... StopIteration >>> int(i.prev()) 5 >>> try: int(i.prev()) ... except StopIteration: print 'StopIteration' ... StopIteration >>> int(i.next()) 5 """ self._next() return self.key() def prev(self): """Returns the previous key in the map. See next() for more detail and examples. """ self._prev() return self.key() class ValueIterator(_AbstractIterator): def next(self): """@return: next value in the map. >>> from CMap import * >>> m = CMap() >>> m[5] = 10 >>> m[6] = 3 >>> i = m.itervalues() >>> int(i.next()) 10 >>> int(i.next()) 3 """ self._next() return self.value() def prev(self): self._prev() return self.value() class ItemIterator(_AbstractIterator): def next(self): """@return: next item in the map's key ordering. >>> from CMap import CMap >>> m = CMap() >>> m[5] = 10 >>> m[6] = 3 >>> i = m.iteritems() >>> k,v = i.next() >>> int(k) 5 >>> int(v) 10 >>> k,v = i.next() >>> int(k) 6 >>> int(v) 3 """ self._next() return self.key(), self.value() def prev(self): self._prev() return self.key(), self.value() def __init__(self, d={} ): """Instantiate RBTree containing values from passed dict and ordered based on cmp. >>> m = CMap() >>> len(m) 0 >>> m[5]=2 >>> len(m) 1 >>> print m[5] 2 """ #self._index = {} # to speed up searches. self._smap = map_constructor() # C++ map wrapped by swig. for key, value in d.items(): self[key]=value self._iterators = WeakKeyDictionary() # whenever node is deleted. search iterators # for any iterator that becomes invalid. def __contains__(self,x): return self.get(x) != None def __iter__(self): """@return: KeyIterator positioned one before the beginning of the key ordering so that the first next() returns the first key.""" return CMap.KeyIterator(self) def begin(self): """Returns an iterator pointing at first key-value pair. This differs from iterkeys, itervalues, and iteritems which return an iterator pointing one before the first key-value pair. @return: key iterator to first key-value. >>> from CMap import * >>> m = CMap() >>> m[5.0] = 'a' >>> i = m.begin() >>> int(i.key()) # raises no IndexError. 5 >>> i = m.iterkeys() >>> try: ... i.key() ... except IndexError: ... print 'IndexError raised' ... IndexError raised """ i = CMap.KeyIterator(self, map_begin(self._smap) ) return i def end(self): """Returns an iterator pointing after end of key ordering. The iterator's prev method will move to the last key-value pair in the ordering. This in keeping with the notion that a range is specified as [i,j) where j is not in the range, and the range [i,j) where i==j is an empty range. This operation takes O(1) time. @return: key iterator one after end. """ i = CMap.KeyIterator(self,None) # None means one after last node. return i def iterkeys(self): return CMap.KeyIterator(self) def itervalues(self): return CMap.ValueIterator(self) def iteritems(self): return CMap.ItemIterator(self) def __len__(self): return map_size(self._smap) def __str__(self): s = "{" first = True for k,v in self.items(): if first: first = False else: s += ", " if type(v) == str: s += "%s: '%s'" % (k,v) else: s += "%s: %s" % (k,v) s += "}" return s def __repr__(self): return self.__str__() def __getitem__(self, key): # IMPL 1: without _index return map_find(self._smap,key) # raises KeyError if key not found # IMPL 2: with _index. #return iter_value(self._index[key]) def __setitem__(self, key, value): """ >>> from CMap import CMap >>> m = CMap() >>> m[6] = 'bar' >>> m[6] 'bar' >>> """ assert type(key) == int or type(key) == float # IMPL 1. without _index. map_set(self._smap,key,value) ## IMPL 2. with _index ## If using indices following allows us to perform only one search. #i = map_insert_iter(self._smap,key,value) #if iter_value(i) != value: # iter_set(i,value) #else: self._index[key] = i ## END IMPL2 def __delitem__(self, key): """Deletes the item with matching key from the map. This takes O(log n + k) where n is the number of elements in the map and k is the number of iterators pointing into the map. Before deleting the item it linearly searches through all iterators pointing into the map and invalidates any that are pointing at the item about to be deleted. >>> from CMap import CMap >>> m = CMap() >>> m[12] = 'foo' >>> m[13] = 'bar' >>> m[14] = 'boo' >>> del m[12] >>> try: ... m[12] ... except KeyError: ... print 'ok' ... ok >>> j = m.begin() >>> int(j.next()) 14 >>> i = m.begin() >>> i.value() 'bar' >>> del m[13] # delete object referenced by an iterator >>> try: ... i.value() ... except RuntimeError: ... print 'ok' ok >>> j.value() # deletion should not invalidate other iterators. 'boo' """ #map_erase( self._smap, key ) # map_erase is dangerous. It could # delete the node causing an iterator # to become invalid. --Dave si = map_find_iter( self._smap, key ) # si = swig'd iterator. if map_iter_at_end(self._smap, si): iter_delete(si) raise KeyError(key) for i in list(self._iterators): if iter_cmp( self._smap, i._si, si ) == 0: i._invalidate() map_iter_erase( self._smap, si ) iter_delete(si) #iter_delete( self._index[key] ) # IMPL 2. with _index. #del self._index[key] # IMPL 2. with _index. def erase(self, iter): """Remove item pointed to by the iterator. All iterators that point at the erased item including the passed iterator are immediately invalidated after the deletion completes. >>> from CMap import CMap >>> m = CMap() >>> m[12] = 'foo' >>> i = m.find(12) >>> m.erase(i) >>> len(m) == 0 True """ if not iter._si: raise RuntimeError( _("invalid iterator") ) if iter._si == BEGIN: raise IndexError(_("Iterator does not point at key-value pair" )) if self is not iter._map: raise IndexError(_("Iterator points into a different CMap.")) if map_iter_at_end(self._smap, iter._si): raise IndexError( _("Cannot erase end() iterator.") ) # invalidate iterators. for i in list(self._iterators): if iter._si is not i._si and iiter_cmp( self._smmap, iter._si, i._si ) == 0: i._invalidate() # remove item from the map. map_iter_erase( self._smap, iter._si ) # invalidate last iterator pointing to the deleted location in the map. iter._invalidate() def __del__(self): # invalidate all iterators. for i in list(self._iterators): i._invalidate() map_delete(self._smap) def get(self, key, default=None): """@return value corresponding to specified key or return 'default' if the key is not found. """ try: return map_find(self._smap,key) # IMPL 1. without _index. #return iter_value(self._index[key]) # IMPL 2. with _index. except KeyError: return default def keys(self): """ >>> from CMap import * >>> m = CMap() >>> m[4.0] = 7 >>> m[6.0] = 3 >>> [int(x) for x in m.keys()] # m.keys() but guaranteed integers. [4, 6] """ k = [] for key in self: k.append(key) return k def values(self): """ >>> from CMap import CMap >>> m = CMap() >>> m[4.0] = 7 >>> m[6.0] = 3 >>> m.values() [7, 3] """ i = self.itervalues() v = [] try: while True: v.append(i.next()) except StopIteration: pass return v def items(self): """ >>> from CMap import CMap >>> m = CMap() >>> m[4.0] = 7 >>> m[6.0] = 3 >>> [(int(x[0]),int(x[1])) for x in m.items()] [(4, 7), (6, 3)] """ i = self.iteritems() itms = [] try: while True: itms.append(i.next()) except StopIteration: pass return itms def has_key(self, key): """ >>> from CMap import CMap >>> m = CMap() >>> m[4.0] = 7 >>> if m.has_key(4): print 'ok' ... ok >>> if not m.has_key(7): print 'ok' ... ok """ try: self[key] except KeyError: return False return True def clear(self): """delete all entries >>> from CMap import CMap >>> m = CMap() >>> m[4] = 7 >>> m.clear() >>> print len(m) 0 """ self.__del__() self._smap = map_constructor() def copy(self): """return shallow copy""" return CMap(self) def lower_bound(self,key): """ Finds smallest key equal to or above the lower bound. Takes O(log n) time. @param x: Key of (key, value) pair to be located. @return: Key Iterator pointing to first item equal to or greater than key, or end() if no such item exists. >>> from CMap import CMap >>> m = CMap() >>> m[10] = 'foo' >>> m[15] = 'bar' >>> i = m.lower_bound(11) # iterator. >>> int(i.key()) 15 >>> i.value() 'bar' Edge cases: >>> from CMap import CMap >>> m = CMap() >>> i = m.lower_bound(11) >>> if i == m.end(): print 'ok' ... ok >>> m[10] = 'foo' >>> i = m.lower_bound(11) >>> if i == m.end(): print 'ok' ... ok >>> i = m.lower_bound(9) >>> if i == m.begin(): print 'ok' ... ok """ return CMap.KeyIterator(self, map_lower_bound( self._smap, key )) def upper_bound(self, key): """ Finds largest key equal to or below the upper bound. In keeping with the [begin,end) convention, the returned iterator actually points to the key one above the upper bound. Takes O(log n) time. @param x: Key of (key, value) pair to be located. @return: Iterator pointing to first element equal to or greater than key, or end() if no such item exists. >>> from CMap import CMap >>> m = CMap() >>> m[10] = 'foo' >>> m[15] = 'bar' >>> m[17] = 'choo' >>> i = m.upper_bound(11) # iterator. >>> i.value() 'bar' Edge cases: >>> from CMap import CMap >>> m = CMap() >>> i = m.upper_bound(11) >>> if i == m.end(): print 'ok' ... ok >>> m[10] = 'foo' >>> i = m.upper_bound(9) >>> i.value() 'foo' >>> i = m.upper_bound(11) >>> if i == m.end(): print 'ok' ... ok """ return CMap.KeyIterator(self, map_upper_bound( self._smap, key )) def find(self,key): """ Finds the item with matching key and returns a KeyIterator pointing at the item. If no match is found then returns end(). Takes O(log n) time. >>> from CMap import CMap >>> m = CMap() >>> i = m.find(10) >>> if i == m.end(): print 'ok' ... ok >>> m[10] = 'foo' >>> i = m.find(10) >>> int(i.key()) 10 >>> i.value() 'foo' """ return CMap.KeyIterator(self, map_find_iter( self._smap, key )) def update_key( self, iter, key ): """ Modifies the key of the item referenced by iter. If the key change is small enough that no reordering occurs then this takes amortized O(1) time. If a reordering occurs then this takes O(log n). WARNING!!! The passed iterator MUST be assumed to be invalid upon return and should be deallocated. Typical use: >>> from CMap import CMap >>> m = CMap() >>> m[10] = 'foo' >>> m[8] = 'bar' >>> i = m.find(10) >>> m.update_key(i,7) # i is assumed to be invalid upon return. >>> del i >>> [(int(x[0]),x[1]) for x in m.items()] # reordering occurred. [(7, 'foo'), (8, 'bar')] >>> i = m.find(8) >>> m.update_key(i,9) # no reordering. >>> del i >>> [(int(x[0]),x[1]) for x in m.items()] [(7, 'foo'), (9, 'bar')] Edge cases: >>> i = m.find(7) >>> i.value() 'foo' >>> try: # update to key already in the map. ... m.update_key(i,9) ... except KeyError: ... print 'ok' ... ok >>> m[7] 'foo' >>> i = m.iterkeys() >>> try: # updating an iter pointing at BEGIN. ... m.update_key(i,10) ... except IndexError: ... print 'ok' ... ok >>> i = m.end() >>> try: # updating an iter pointing at end(). ... m.update_key(i,10) ... except IndexError: ... print 'ok' ... ok """ assert isinstance(iter,CMap._AbstractIterator) if iter._si == BEGIN: raise IndexError( _("Iterator does not point at key-value pair") ) if self is not iter._map: raise IndexError(_("Iterator points into a different CIndexedMap.")) if map_iter_at_end(self._smap, iter._si): raise IndexError( _("Cannot update end() iterator.") ) map_iter_update_key(self._smap, iter._si, key) def append(self, key, value): """Performs an insertion with the hint that it probably should go at the end. Raises KeyError if the key is already in the map. >>> from CMap import CMap >>> m = CMap() >>> m.append(5.0,'foo') # append to empty map. >>> len(m) 1 >>> [int(x) for x in m.keys()] # see note (1) [5] >>> m.append(10.0, 'bar') # append in-order >>> [(int(x[0]),x[1]) for x in m.items()] [(5, 'foo'), (10, 'bar')] >>> m.append(3.0, 'coo') # out-of-order. >>> [(int(x[0]),x[1]) for x in m.items()] [(3, 'coo'), (5, 'foo'), (10, 'bar')] >>> try: ... m.append(10.0, 'blah') # append key already in map. ... except KeyError: ... print 'ok' ... ok >>> [(int(x[0]),x[1]) for x in m.items()] [(3, 'coo'), (5, 'foo'), (10, 'bar')] >>> note (1): int(x[0]) is used because 5.0 can appear as either 5 or 5.0 depending on the version of python. """ map_append(self._smap,key,value) class CIndexedMap(CMap): """This is an ordered mapping, exactly like CMap except that it provides a cross-index allowing average O(1) searches based on value. This adds the constraint that values must be unique. Operation: Time Applicable Complexity: Methods: --------------------------------------------------- Item insertion: O(log n) append, __setitem__ Item deletion: O(log n + k) __delitem__, erase Key search: O(log n) __getitem__, get, find, __contains__ Value search: average O(1) as per dict Iteration step: amortized O(1), next, prev worst-case O(log n) Memory: O(n) n = number of elements in map. k = number of iterators pointing into map. CIndexedMap assumes there are few iterators in existence at any given time. The hash table increases the factor in the O(n) memory cost of the Map by a constant """ def __init__(self, dict={} ): CMap.__init__(self,dict) self._value_index = {} # cross-index. maps value->iterator. def __setitem__(self, key, value): """ >>> from CMap import * >>> m = CIndexedMap() >>> m[6] = 'bar' >>> m[6] 'bar' >>> int(m.get_key_by_value('bar')) 6 >>> try: ... m[7] = 'bar' ... except ValueError: ... print 'value error' value error >>> m[6] = 'foo' >>> m[6] 'foo' >>> m[7] = 'bar' >>> m[7] 'bar' >>> m[7] = 'bar' # should not raise exception >>> m[7] = 'goo' >>> m.get_key_by_value('bar') # should return None. >>> """ assert type(key) == int or type(key) == float if self._value_index.has_key(value) and \ iter_key(self._value_index[value]) != key: raise ValueError( _("Value %s already exists. Values must be " "unique.") % str(value) ) si = map_insert_iter(self._smap,key,value) # si points where insert # should occur whether # insert succeeded or not. # si == "swig iterator" sival = iter_value(si) if sival != value: # if insert failed because k already exists iter_set(si,value) # then force set. self._value_index[value] = si viter = self._value_index[sival] iter_delete(viter) # remove old value from index del self._value_index[sival] else: # else insert succeeded so update index. self._value_index[value] = si #self._index[key] = si # IMPL 2. with _index. def __delitem__(self, key): """ >>> from CMap import CIndexedMap >>> m = CIndexedMap() >>> m[6] = 'bar' >>> m[6] 'bar' >>> int(m.get_key_by_value('bar')) 6 >>> del m[6] >>> if m.get_key_by_value('bar'): ... print 'found' ... else: ... print 'not found.' not found. """ i = map_find_iter( self._smap, key ) if map_iter_at_end( self._smap, i ): iter_delete(i) raise KeyError(key) else: value = iter_value(i) for i in list(self._iterators): if iter_cmp( self._smap, i._si, iter._si ) == 0: i._invalidate() map_iter_erase( self._smap, i ) viter = self._value_index[value] iter_delete(i) iter_delete( viter ) del self._value_index[value] #del self._index[key] # IMPL 2. with _index. assert map_size(self._smap) == len(self._value_index) def has_value(self, value): return self._value_index.has_key(value) def get_key_by_value(self, value): """Returns the key cross-indexed from the passed unique value, or returns None if the value is not in the map.""" si = self._value_index.get(value) # si == "swig iterator" if si == None: return None return iter_key(si) def append( self, key, value ): """See CMap.append >>> from CMap import CIndexedMap >>> m = CIndexedMap() >>> m.append(5,'foo') >>> [(int(x[0]),x[1]) for x in m.items()] [(5, 'foo')] >>> m.append(10, 'bar') >>> [(int(x[0]),x[1]) for x in m.items()] [(5, 'foo'), (10, 'bar')] >>> m.append(3, 'coo') # out-of-order. >>> [(int(x[0]),x[1]) for x in m.items()] [(3, 'coo'), (5, 'foo'), (10, 'bar')] >>> int(m.get_key_by_value( 'bar' )) 10 >>> try: ... m.append(10, 'blah') # append key already in map. ... except KeyError: ... print 'ok' ... ok >>> [(int(x[0]),x[1]) for x in m.items()] [(3, 'coo'), (5, 'foo'), (10, 'bar')] >>> try: ... m.append(10, 'coo') # append value already in map. ... except ValueError: ... print 'ok' ... ok """ if self._value_index.has_key(value) and \ iter_key(self._value_index[value]) != key: raise ValueError(_("Value %s already exists and value must be " "unique.") % str(value) ) si = map_append_iter(self._smap,key,value) if iter_value(si) != value: iter_delete(si) raise KeyError(key) self._value_index[value] = si def find_key_by_value(self, value): """Returns a key iterator cross-indexed from the passed unique value or end() if no value found. >>> from Map import * >>> m = CIndexedMap() >>> m[6] = 'abc' >>> i = m.find_key_by_value('abc') >>> int(i.key()) 6 >>> i = m.find_key_by_value('xyz') >>> if i == m.end(): print 'i points at end()' i points at end() """ si = self._value_index.get(value) # si == "swig iterator." if si != None: si = iter_copy(si); # copy else operations like increment on the # KeyIterator would modify the value index. return CMap.KeyIterator(self,si) def copy(self): """return shallow copy""" return CIndexedMap(self) def update_key( self, iter, key ): """ see CMap.update_key. WARNING!! You MUST assume that the passed iterator is invalidated upon return. Typical use: >>> from CMap import CIndexedMap >>> m = CIndexedMap() >>> m[10] = 'foo' >>> m[8] = 'bar' >>> i = m.find(10) >>> m.update_key(i,7) # i is assumed to be invalid upon return. >>> del i >>> int(m.get_key_by_value('foo')) 7 >>> [(int(x[0]),x[1]) for x in m.items()] # reordering occurred. [(7, 'foo'), (8, 'bar')] >>> i = m.find(8) >>> m.update_key(i,9) # no reordering. >>> del i >>> [(int(x[0]),x[1]) for x in m.items()] [(7, 'foo'), (9, 'bar')] Edge cases: >>> i = m.find(7) >>> i.value() 'foo' >>> try: ... m.update_key(i,9) ... except KeyError: ... print 'ok' ... ok >>> m[7] 'foo' >>> int(m.get_key_by_value('foo')) 7 >>> i = m.iterkeys() >>> try: # updating an iter pointing at BEGIN. ... m.update_key(i,10) ... except IndexError: ... print 'ok' ... ok >>> i = m.end() >>> try: # updating an iter pointing at end(). ... m.update_key(i,10) ... except IndexError: ... print 'ok' ... ok """ if not iter._si: raise RuntimeError( _("invalid iterator") ) if iter._si == BEGIN: raise IndexError(_("Iterator does not point at key-value pair" )) if self is not iter._map: raise IndexError(_("Iterator points into a different " "CIndexedMap.")) if map_iter_at_end(self._smap, iter._si): raise IndexError( _("Cannot update end() iterator.") ) si = map_iter_update_key_iter(self._smap, iter._si, key) # raises KeyError if key already in map. if si != iter._si: # if map is reordered... value = iter.value(); val_si = self._value_index[value] iter_delete(val_si) self._value_index[value] = si def erase(self, iter): """Remove item pointed to by the iterator. Iterator is immediately invalidated after the deletion completes.""" if not iter._si: raise RuntimeError( _("invalid iterator") ) if iter._si == BEGIN: raise IndexError(_("Iterator does not point at key-value pair." )) if self is not iter._map: raise IndexError(_("Iterator points into a different " "CIndexedMap.")) if map_iter_at_end(self._smap, iter._si): raise IndexError( _("Cannot update end() iterator.") ) value = iter.value() CMap.erase(self,iter) del self._value_index[value] if __name__ == "__main__": import doctest import random ############################################## # UNIT TESTS print "Testing module" doctest.testmod(sys.modules[__name__]) print "doctest complete." ############################################## # MEMORY LEAK TESTS if LEAK_TEST: i = 0 import gc class X: x = range(1000) # something moderately big. # TEST 1. This does not cause memory to grow. #m = CMap() #map_insert(m._smap,10,X()) #while True: # i += 1 # it = map_find_iter( m._smap, 10 ) # iter_delete(it) # del it # if i % 100 == 0: # gc.collect() # TEST 2: This does not caus a memory leak. #m = map_constructor_double() #while True: # i += 1 # map_insert_double(m,10,5) # here # it = map_find_iter_double( m, 10 ) # map_iter_erase_double( m, it ) # or here is the problem. # iter_delete_double(it) # del it # #assert len(m) == 0 # assert map_size_double(m) == 0 # if i % 100 == 0: # gc.collect() # TEST 3. No memory leak #m = CMap() #while True: # i += 1 # map_insert(m._smap,10,X()) # here # it = map_find_iter( m._smap, 10 ) # map_iter_erase( m._smap, it ) # or here is the problem. # iter_delete(it) # del it # assert len(m) == 0 # assert map_size(m._smap) == 0 # if i % 100 == 0: # gc.collect() # TEST 4: map creation and deletion. #while True: # m = map_constructor() # map_delete(m); # TEST 5: test iteration. #m = map_constructor() #for i in xrange(10): # map_insert(m,i,X()) #while True: # i = map_begin(m) # while not map_iter_at_begin(m,i): # iter_incr(i) # iter_delete(i) # TEST 6: #m = map_constructor() #for i in xrange(10): # map_insert(m,i,X()) #while True: # map_find( m, random.randint(0,9) ) # TEST 7: #m = map_constructor() #for i in xrange(50): # map_insert( m, i, X() ) #while True: # for i in xrange(50): # map_set( m, i, X() ) # TEST 8 # aha! Another leak! Fixed. #m = map_constructor() #while True: # i += 1 # map_insert(m,10,X()) # map_erase(m,10) # assert map_size(m) == 0 # TEST 9 m = map_constructor() for i in xrange(50): map_insert( m, i, X() ) while True: it = map_find_iter( m, 5 ) map_iter_update_key( m, it, 1000 ) iter_delete(it) it = map_find_iter( m, 1000 ) map_iter_update_key( m, it, 5) iter_delete(it) ``` #### File: BitTorrent-5.2.2/BTL/connection_cache.py ```python import logging import pycurllib from LIFOQueue import LIFOQueue import Queue MAX_WAIT = 5 MAX_PER_CACHE_DEFAULT = 15 INF_WAIT_MAX_CONNECTIONS = 1000 logger = logging.getLogger('BTL.connection_cache') class ConnectionCache(object): def __init__(self, max_per_cache=None): if None == max_per_cache: max_per_cache = MAX_PER_CACHE_DEFAULT self.size = 0 self.max_per_cache = max_per_cache self.cache = LIFOQueue(maxsize = self.max_per_cache) def get_connection(self): try: return self.cache.get_nowait() except Queue.Empty: logger.warn("ConnectionCache queue empty, size=%d, qsize=%d" % (self.size, self.cache.qsize())) pass # I chose not to lock here. Max is advisory, if two threads # eagerly await a connection near max, I say allow them both # to make one if self.size < self.max_per_cache: self.size += 1 return self._make_connection() else: logger.warn("ConnectionCache queue over, size=%d, qsize=%d" % (self.size, self.cache.qsize())) try: return self.cache.get(True, MAX_WAIT) except Queue.Empty: # ERROR: Should log this! logger.error("ConnectionCache waited more than %d seconds, size=%d, qsize=%d" % (MAX_WAIT, self.size, self.cache.qsize())) pass if self.size > INF_WAIT_MAX_CONNECTIONS: logger.warn("ConnectionCache wait forever, size=%d, max_connections=%d, qsize=%d" % (self.size, INF_WAIT_MAX_CONNECTIONS, self.cache.qsize())) return self.cache.get() self.size += 1 logger.warn("ConnectionCache wait inf, size=%d, max_connections=%d, qsize=%d" % (self.size, INF_WAIT_MAX_CONNECTIONS, self.cache.qsize())) return self._make_connection() def destroy_connection(self, c): c.c.close() self.size -= 1 def put_connection(self, c): self.cache.put(c) class PyCURL_Cache(ConnectionCache): def __init__(self, uri, max_per_cache=None): if None == max_per_cache: max_per_cache = MAX_PER_CACHE_DEFAULT self.uri = uri ConnectionCache.__init__(self, max_per_cache=max_per_cache) def _make_connection(self): r = pycurllib.Request(self.uri) return r class CacheSet(object): def __init__(self): self.cache = {} def get_cache(self, cachetype, url, max_per_cache=None): if None == max_per_cache: max_per_cache = MAX_PER_CACHE_DEFAULT if url not in self.cache: self.cache[url] = cachetype(url, max_per_cache=max_per_cache) return self.cache[url] cache_set = CacheSet() ``` #### File: BitTorrent-5.2.2/BTL/decorate.py ```python def decorate_func(new, old): def runner(*a, **kw): new(*a, **kw) return old(*a, **kw) return runner ``` #### File: BitTorrent-5.2.2/BTL/dlock.py ```python import os import sys import socket from time import asctime, gmtime, time, sleep from twisted.internet import reactor, task class dlock(object): def __init__(self, deadlockfile, update_period=300, myhost=None, debug=None): if myhost == None: myhost = socket.gethostname() self.host = myhost self.pid = os.getpid() self.deadlockfile = deadlockfile self.refresher = task.LoopingCall(self.refresh) self.update_period = update_period self.debug = debug # Block until lock is acquired, then refresh the lock file every # update_period seconds. # # Nota Bene: while blocked on acquiring the lock, this sleeps the # whole process; once the lock is acquired, an event-driven model # (twisted reactor) is presumed. The intended use (see test at # bottom) is to block on acquire before running the Twisted # reactor. # def acquire(self): while True: while self.islocked(): if self.debug: lock = self._readlock() print '%s locked by %s' % (self.deadlockfile, self._lockdict2string(lock)) sleep(self.update_period) try: # Use link count hack to work around NFS's broken # file locking. tempfile = '.' + str(self.pid) + self.host + str(time()) + '.tmp' lockfile = self.deadlockfile + '.lock' # Create temp lock file fh = open(tempfile, "w") fh.close() # Atomicallly create lockfile as a hard link try: os.link(tempfile, lockfile) except: if self.debug: print "tempfile: " + tempfile print "lockfile: " + lockfile raise # Check the number of links if os.stat(tempfile)[3] == os.stat(lockfile)[3]: # Hooray, I have the write lock on the deadlock file! self._timestamp_deadlockfile(time()) if self.debug: lock = self._readlock() print '%s acquired by %s' % (self.deadlockfile, self._lockdict2string(lock)) self.refresher.start(self.update_period) # Release the lock os.unlink(tempfile) os.unlink(lockfile) return self else: # Failed to grab write lock on deadlock file, keep looping if self.debug: print '%d failed to grab write lock on deadlock file: %s (will retry)' % (self.pid, self.deadlockfile) except: if self.debug: print 'File Lock Error: %s@%s could not acquire %s' % (self.pid, self.host, self.deadlockfile) raise def refresh(self): assert self.ownlock() # No need to grab a write lock on the deadlock file, since it's not stale self._timestamp_deadlockfile(time()) def _timestamp_deadlockfile(self, ts): try: fh = open(self.deadlockfile, 'w') fh.write(self._lockstr(ts)) fh.close() os.chmod(self.deadlockfile, 0644) except: if self.debug: print 'File Lock Error: %s@%s could not write %s' % (self.pid, self.host, self.deadlockfile) raise def release(self): if self.ownlock(): try: self.refresher.stop() self._timestamp_deadlockfile(0) if self.debug: print '%s@%s released lock %s' % (self.pid, self.host, self.deadlockfile) except: if self.debug: print 'File Lock Error: %s@%s could not release %s' % (self.pid, self.host, self.deadlockfile) raise return self def islocked(self): try: if self._isstale(): # Lock seems stale, wait for one more update period and check again sleep(self.update_period) return not self._isstale() else: return True except: if self.debug: print "islocked exception" return False def _isstale(self): lock = self._readlock() if time() - lock['timestamp'] > self.update_period: return True else: return False def _readlock(self): try: lock = {} fh = open(self.deadlockfile) data = fh.read().split() fh.close() assert len(data) == 3 lock['pid'] = int(data[0]) lock['host'] = data[1] lock['timestamp'] = float(data[2]) return lock except: if self.debug: print 'File Lock Error: %s@%s reading %s' % (self.pid, self.host, self.deadlockfile) raise # Public method to read a lockfile. @classmethod def readlock(cls, lockfile): lock = cls(deadlockfile=lockfile, myhost='dummy') return lock._readlock() def _lockdict2string(self, lock): return '%s@%s at %s' % (lock['pid'], lock['host'], asctime(gmtime(lock['timestamp']))) def _lockstr(self, ts): return '%d %s %f'%(self.pid, self.host, ts) def ownlock(self): lock = self._readlock() return (self.host == lock['host'] and self.pid == lock['pid']) def __del__(self): self.release() # Tests # # Run several in parallel on multiple machines, but have at most one # whack the deadlock file on initialization. # def run_tests(argv=None): if argv is None: argv = sys.argv deadlockfile = './dlock_test' l = dlock(deadlockfile, 5, debug=True) # Stupid argv handling; just grab first arg and run that test if len(argv) > 1: if argv[1] == 'none': print "Removing deadlock file." os.unlink(deadlockfile) elif argv[1] == 'old': print "Creating stale deadlock file owned by no one." fh = open(l.deadlockfile, 'w') fh.write('%d %s %f'%(0, 0, 0)) fh.close() elif argv[1] == 'new': print "Creating fresh deadlock file owned by no one." fh = open(l.deadlockfile, 'w') fh.write('%d %s %f'%(0, 0, time())) fh.close() else: print "Un-known arg--starting with old deadlock file." else: print "Starting with old deadlock file." # Tease for a while, then release the lock def tease(l, n): if n > 0: assert l.ownlock() print 'I (%d) have the lock--ha, ha ha!'%os.getpid() reactor.callLater(1, tease, l, n - 1) else: l.release() # Start teasing once reactor is run reactor.callLater(1, tease, l, 20) # But first, grab the lock (this blocks) l.acquire() reactor.run() if __name__ == "__main__": sys.exit(run_tests()) ``` #### File: BitTorrent-5.2.2/BTL/epollreactor.py ```python import epoll as select ######################################################## ## http://twistedmatrix.com/trac/ticket/1953#comment:20 from twisted.python import log, failure from twisted.internet.tcp import BaseClient def failIfNotConnected(self, err): if (self.connected or self.disconnected or not hasattr(self, "connector")): return self.connector.connectionFailed(failure.Failure(err)) if hasattr(self, "reactor"): # this doesn't happen if we failed in __init__ self.stopReading() self.stopWriting() del self.connector try: self._closeSocket() except AttributeError: pass else: del self.socket, self.fileno BaseClient.failIfNotConnected = failIfNotConnected ######################################################## import errno, sys from zope.interface import implements # Twisted imports from twisted.python import log, threadable, failure from twisted.internet import main, posixbase, error from twisted.internet.interfaces import IReactorFDSet # globals reads = {} writes = {} selectables = {} poller = select.poll() POLL_DISCONNECTED = (select.POLLHUP | select.POLLERR | select.POLLNVAL) class PollReactor(posixbase.PosixReactorBase): """A reactor that uses poll(2).""" implements(IReactorFDSet) def _updateRegistration(self, fd): """Register/unregister an fd with the poller.""" try: poller.unregister(fd) except KeyError: pass mask = 0 if reads.has_key(fd): mask = mask | select.POLLIN if writes.has_key(fd): mask = mask | select.POLLOUT if mask != 0: poller.register(fd, mask) else: if selectables.has_key(fd): del selectables[fd] def _dictRemove(self, selectable, mdict): try: # the easy way fd = selectable.fileno() # make sure the fd is actually real. In some situations we can get # -1 here. mdict[fd] except: # the hard way: necessary because fileno() may disappear at any # moment, thanks to python's underlying sockets impl for fd, fdes in selectables.items(): if selectable is fdes: break else: # Hmm, maybe not the right course of action? This method can't # fail, because it happens inside error detection... return if mdict.has_key(fd): del mdict[fd] self._updateRegistration(fd) def addReader(self, reader): """Add a FileDescriptor for notification of data available to read. """ fd = reader.fileno() if not reads.has_key(fd): selectables[fd] = reader reads[fd] = 1 self._updateRegistration(fd) def addWriter(self, writer, writes=writes, selectables=selectables): """Add a FileDescriptor for notification of data available to write. """ fd = writer.fileno() if not writes.has_key(fd): selectables[fd] = writer writes[fd] = 1 self._updateRegistration(fd) def removeReader(self, reader, reads=reads): """Remove a Selectable for notification of data available to read. """ return self._dictRemove(reader, reads) def removeWriter(self, writer, writes=writes): """Remove a Selectable for notification of data available to write. """ return self._dictRemove(writer, writes) def removeAll(self, reads=reads, writes=writes, selectables=selectables): """Remove all selectables, and return a list of them.""" if self.waker is not None: self.removeReader(self.waker) result = selectables.values() fds = selectables.keys() reads.clear() writes.clear() selectables.clear() for fd in fds: poller.unregister(fd) if self.waker is not None: self.addReader(self.waker) return result def doPoll(self, timeout, reads=reads, writes=writes, selectables=selectables, select=select, log=log, POLLIN=select.POLLIN, POLLOUT=select.POLLOUT): """Poll the poller for new events.""" if timeout is not None: timeout = int(timeout * 1000) # convert seconds to milliseconds try: l = poller.poll(timeout) except select.error, e: if e[0] == errno.EINTR: return else: raise _drdw = self._doReadOrWrite for fd, event in l: try: selectable = selectables[fd] except KeyError: # Handles the infrequent case where one selectable's # handler disconnects another. continue log.callWithLogger(selectable, _drdw, selectable, fd, event, POLLIN, POLLOUT, log) doIteration = doPoll def _doReadOrWrite(self, selectable, fd, event, POLLIN, POLLOUT, log, faildict={ error.ConnectionDone: failure.Failure(error.ConnectionDone()), error.ConnectionLost: failure.Failure(error.ConnectionLost()) }): why = None inRead = False if event & POLL_DISCONNECTED and not (event & POLLIN): why = main.CONNECTION_LOST else: try: if event & POLLIN: why = selectable.doRead() inRead = True if not why and event & POLLOUT: why = selectable.doWrite() inRead = False if not selectable.fileno() == fd: why = error.ConnectionFdescWentAway('Filedescriptor went away') inRead = False except: log.deferr() why = sys.exc_info()[1] if why: self._disconnectSelectable(selectable, why, inRead) def install(): """Install the poll() reactor.""" p = PollReactor() from twisted.internet import main main.installReactor(p) __all__ = ["PollReactor", "install"] ``` #### File: BitTorrent-5.2.2/BTL/iphelp.py ```python import ctypes from ctypes.wintypes import DWORD, ULONG from BTL.iptypes import inet_addr, IPAddr Iphlpapi = ctypes.windll.Iphlpapi class MIB_IPADDRROW(ctypes.Structure): _fields_ = [("dwAddr", IPAddr), ("dwIndex", DWORD), ("dwMask", DWORD), ("dwBCastAddr", IPAddr), ("dwReasmSize", DWORD), ("unused1", ctypes.c_ushort), ("wType", ctypes.c_ushort), ] MAX_INTERFACES = 10 class MIB_IPADDRTABLE(ctypes.Structure): _fields_ = [("dwNumEntries", DWORD), ("table", MIB_IPADDRROW * MAX_INTERFACES)] def get_interface_by_index(index): table = MIB_IPADDRTABLE() size = ULONG(ctypes.sizeof(table)) table.dwNumEntries = 0 Iphlpapi.GetIpAddrTable(ctypes.byref(table), ctypes.byref(size), 0) for n in xrange(table.dwNumEntries): row = table.table[n] if row.dwIndex == index: return str(row.dwAddr) raise IndexError("interface index out of range") def get_route_ip(ip=None): #ip = socket.gethostbyname('bittorrent.com') # doesn't really matter if this is out of date, we're just trying to find # the interface to get to the internet. ip = ip or '172.16.17.32' ip = inet_addr(ip) index = ctypes.c_ulong() Iphlpapi.GetBestInterface(ip, ctypes.byref(index)) index = long(index.value) try: interface_ip = get_interface_by_index(index) except: interface_ip = None return interface_ip ``` #### File: BitTorrent-5.2.2/BTL/IPTools.py ```python from struct import pack, unpack from socket import inet_aton, inet_ntoa def compact(ip, port): return pack("!4sH", inet_aton(ip), port) # ! == "network order" # 4s == "4-byte string." # H == "unsigned short" def uncompact(x): ip, port = unpack("!4sH", x) return inet_ntoa(ip), port def uncompact_sequence(b): for x in xrange(0, len(b), 6): ip, port = uncompact(b[x:x+6]) port = int(port) yield (ip, port) def compact_sequence(s): b = [] for addr in s: c = compact(addr[0], addr[1]) b.append(c) return ''.join(b) ##import ctypes ##class CompactAddr(ctypes.Structure): ## _fields_ = [('ip', ctypes.c_int32), ## ('port', ctypes.c_int16)] ## ##def compact_sequence_c(s): ## b = ctypes.create_string_buffer(6 * len(s)) ## a = ctypes.addressof(b) ## for i, addr in enumerate(s): ## c = compact(addr[0], addr[1]) ## ctypes.cast( ## offset = i*6 ## b[offset:offset + 6] = c ## return b ``` #### File: BitTorrent-5.2.2/BTL/language.py ```python import gettext class LanguageDict(dict): def __getitem__(self, key): for k in gettext._expand_lang(key): if self.has_key(k): return dict.__getitem__(self, key) raise KeyError(key) language_names = LanguageDict() language_names.update( { 'af' :u'Afrikaans' , 'bg' :u'Български' , 'da' :u'Dansk' , 'ca' :u'Català' , 'cs' :u'Čeština' , 'de' :u'Deutsch' , 'en' :u'English' , 'es' :u'Español' , 'es_MX':u'Español de Mexico ' , 'fr' :u'Français' , 'el' :u'Ελληνικά' , 'he' :u'עברית' , 'hu' :u'Magyar' , 'it' :u'Italiano' , 'is' :u'Íslenska' , 'ja' :u'日本語' , 'ko' :u'한국어' ,'nl' :u'Nederlands' , 'nb_NO':u'Norsk bokmål' , 'pl' :u'Polski' , 'pt' :u'Português' , 'pt_BR':u'Português do Brasil' , 'ro' :u'Română' , 'ru' :u'Русский' , 'sk' :u'Slovenský' , 'sl' :u'Slovensko' , 'sv' :u'Svenska' , 'tr' :u'Türkçe' , 'vi' :u'Tiê?ng Viê?t' , 'zh_CN':u'简体中文' , # Simplified 'zh_TW':u'繁體中文' , # Traditional } ) unfinished_language_names = { 'ar' :u'العربية' , 'bs' :u'Bosanski' , 'eo' :u'Esperanto' , 'eu' :u'Euskara' , 'et' :u'Eesti' , 'fi' :u'Suomi' , 'fa' :u'فارسی' , 'ga' :u'Gaeilge' , 'gl' :u'Galego' , 'hr' :u'Hrvatski' , 'hy' :u'Հայերեն' , 'in' :u'Bahasa indonesia' , 'ka' :u'ქართული ენა', 'lt' :u'Lietuvių' , 'ms' :u'Bahasa melayu' , 'ml' :u'Malayalam' , 'sq' :u'Shqipe' , 'th' :u'ภาษาไทย' , 'tlh' :u'tlhIngan-Hol' , 'uk' :u'Українська' , 'hi' :u'हिंदी' , 'cy' :u'Cymraeg' , 'nn_NO':u'<NAME>' , 'te' :u' తెలుగు' , } #language_names.update(unfinished_language_names) class LanguageCodeList(list): def index(self, value): for v in gettext._expand_lang(value): try: i = list.index(self, v) return i except ValueError: pass raise ValueError('%v not in list'%value) languages = LanguageCodeList() languages.extend(language_names.keys()) languages.sort() # windows codepage to locale mapping locale_sucks = { 0x0436: "af", # Afrikaans 0x3801: "ar_AE", # Arabic - United Arab Emirates 0x3C01: "ar_BH", # Arabic - Bahrain 0x1401: "ar_DZ", # Arabic - Algeria 0x0C01: "ar_EG", # Arabic - Egypt 0x0801: "ar_IQ", # Arabic - Iraq 0x2C01: "ar_JO", # Arabic - Jordan 0x3401: "ar_KW", # Arabic - Kuwait 0x3001: "ar_LB", # Arabic - Lebanon 0x1001: "ar_LY", # Arabic - Libya 0x1801: "ar_MA", # Arabic - Morocco 0x2001: "ar_OM", # Arabic - Oman 0x4001: "ar_QA", # Arabic - Qatar 0x0401: "ar_SA", # Arabic - Saudi Arabia 0x2801: "ar_SY", # Arabic - Syria 0x1C01: "ar_TN", # Arabic - Tunisia 0x2401: "ar_YE", # Arabic - Yemen 0x082C: "az_AZ", # Azeri - Cyrillic 0x0423: "be", # Belarusian 0x0402: "bg", # Bulgarian 0x0403: "ca", # Catalan 0x0405: "cs", # Czech 0x0406: "da", # Danish 0x0007: "de", # German 0x0C07: "de_AT", # German - Austria 0x0807: "de_CH", # German - Switzerland 0x0407: "de_DE", # German - Germany 0x1407: "de_LI", # German - Liechtenstein 0x1007: "de_LU", # German - Luxembourg 0x0408: "el", # Greek 0x0C09: "en_AU", # English - Australia 0x2809: "en_BZ", # English - Belize 0x1009: "en_CA", # English - Canada 0x2409: "en_CB", # English - Carribbean 0x0809: "en_GB", # English - United Kingdom 0x1809: "en_IE", # English - Ireland 0x2009: "en_JM", # English - Jamaica 0x1409: "en_NZ", # English - New Zealand 0x3409: "en_PH", # English - Phillippines 0x2C09: "en_TT", # English - Trinidad 0x0409: "en_US", # English - United States 0x1C09: "en_ZA", # English - South Africa 0x000A: "es", # Spanish (added) 0x2C0A: "es_AR", # Spanish - Argentina 0x400A: "es_BO", # Spanish - Bolivia 0x340A: "es_CL", # Spanish - Chile 0x240A: "es_CO", # Spanish - Colombia 0x140A: "es_CR", # Spanish - Costa Rica 0x1C0A: "es_DO", # Spanish - Dominican Republic 0x300A: "es_EC", # Spanish - Ecuador 0x040a: "es_ES", # Spanish - Spain 0x100A: "es_GT", # Spanish - Guatemala 0x480A: "es_HN", # Spanish - Honduras 0x080A: "es_MX", # Spanish - Mexico 0x4C0A: "es_NI", # Spanish - Nicaragua 0x180A: "es_PA", # Spanish - Panama 0x280A: "es_PE", # Spanish - Peru 0x500A: "es_PR", # Spanish - Puerto Rico 0x3C0A: "es_PY", # Spanish - Paraguay 0x440A: "es_SV", # Spanish - El Salvador 0x380A: "es_UY", # Spanish - Uruguay 0x200A: "es_VE", # Spanish - Venezuela 0x0425: "et", # Estonian 0x0009: "en", # English (added) 0x042D: "eu", # Basque 0x0429: "fa", # Farsi 0x040B: "fi", # Finnish 0x0438: "fo", # Faroese 0x000C: "fr", # French (added) 0x080C: "fr_BE", # French - Belgium 0x0C0C: "fr_CA", # French - Canada 0x100C: "fr_CH", # French - Switzerland 0x040C: "fr_FR", # French - France 0x140C: "fr_LU", # French - Luxembourg 0x043C: "gd", # Gaelic - Scotland 0x083C: "gd_IE", # Gaelic - Ireland 0x040D: "he", # Hebrew 0x0439: "hi", # Hindi 0x041A: "hr", # Croatian 0x040E: "hu", # Hungarian 0x042B: "hy", # Armenian 0x0421: "id", # Indonesian 0x040F: "is", # Icelandic 0x0010: "it", # Italian (added) 0x0810: "it_CH", # Italian - Switzerland 0x0410: "it_IT", # Italian - Italy 0x0411: "ja", # Japanese 0x0412: "ko", # Korean 0x0427: "lt", # Lithuanian 0x0426: "lv", # Latvian 0x042F: "mk", # FYRO Macedonian 0x044E: "mr", # Marathi 0x083E: "ms_BN", # Malay - Brunei 0x043E: "ms_MY", # Malay - Malaysia 0x043A: "mt", # Maltese 0x0013: "nl", # Dutch (added) 0x0813: "nl_BE", # Dutch - Belgium 0x0413: "nl_NL", # Dutch - The Netherlands 0x0814: "no_NO", # Norwegian - Nynorsk 0x0414: "nb_NO", # Norwegian - Bokmal (?) 0x0415: "pl", # Polish 0x0016: "pt", # Portuguese (added) 0x0416: "pt_BR", # Portuguese - Brazil 0x0816: "pt_PT", # Portuguese - Portugal 0x0417: "rm", # Raeto-Romance 0x0418: "ro", # Romanian - Romania 0x0818: "ro_MO", # Romanian - Moldova 0x0419: "ru", # Russian 0x0819: "ru_MO", # Russian - Moldova 0x044F: "sa", # Sanskrit 0x042E: "sb", # Sorbian 0x041B: "sk", # Slovak 0x0424: "sl", # Slovenian 0x041C: "sq", # Albanian 0x081A: "sr_SP", # Serbian - Latin 0x001D: "sv", # Swedish (added) 0x081D: "sv_FI", # Swedish - Finland 0x041D: "sv_SE", # Swedish - Sweden 0x0441: "sw", # Swahili 0x0430: "sx", # Sutu 0x0449: "ta", # Tamil 0x041E: "th", # Thai 0x0432: "tn", # Setsuana 0x041F: "tr", # Turkish 0x0431: "ts", # Tsonga 0X0444: "tt", # Tatar 0x0422: "uk", # Ukrainian 0x0420: "ur", # Urdu 0x0443: "uz_UZ", # Uzbek - Latin 0x042A: "vi", # Vietnamese 0x0434: "xh", # Xhosa 0x043D: "yi", # Yiddish 0x0804: "zh_CN", # Chinese - China 0x0C04: "zh_HK", # Chinese - Hong Kong S.A.R. 0x1404: "zh_MO", # Chinese - Macau S.A.R 0x1004: "zh_SG", # Chinese - Singapore 0x0404: "zh_TW", # Chinese - Taiwan 0x0435: "zu", # Zulu } if __name__ == '__main__': from BTL.obsoletepythonsupport import set internal = set([x.lower() for x in languages]) windows = set(locale_sucks.values()) if not windows.issuperset(internal): diff = list(internal.difference(windows)) diff.sort() print diff ``` #### File: BitTorrent-5.2.2/BTL/log.py ```python from logging import * import time, sys import socket import datetime import logging import logging.handlers from BTL.reactor_magic import reactor from BTL.defer import Deferred from BTL.btl_string import printable from BTL import twisted_logger # convenience re-export so that they can be used without import logging. DEBUG = DEBUG INFO = INFO WARNING = WARNING ERROR = ERROR CRITICAL = CRITICAL getLogger = getLogger # Not used at the moment but can be changed later SYSLOG_HOST = 'localhost' SYSLOG_PORT = 514 class BTLFormatter(logging.Formatter): def __init__(self, *a, **k): self.use_localtime = False if k.has_key('use_localtime'): self.use_localtime = k['use_localtime'] del k['use_localtime'] logging.Formatter.__init__(self, *a, **k) def formatTime(self, record, datefmt=None): ct = self.converter(record.created) try: if self.use_localtime: dt = datetime.datetime.fromtimestamp(record.created) else: dt = datetime.datetime.utcfromtimestamp(record.created) if datefmt: s = dt.strftime(datefmt) else: s = dt.isoformat() except: s = "Interpretter Shutdown" return s class RateLimitedLogger: """Logger that tosses log entries whenever the logged entries per second exceeds the specified rate limit by max_burst log entries.""" def __init__(self, logger, rate_limit, max_burst, log_all_level = CRITICAL ): """@param logger: logging.Logger object that this class wraps. @param rate_limit: maximum number of log entries per second. @param max_burst: maximum number of log entries that can be printed in a burst. max_burst is the sigma in a (sigma,rho) token bucket. @param log_all_level: log all entries with level >= log_all_level. Such entries are still counted against the rate limit. """ self.logger = logger self.rate_limit = rate_limit self.max_burst = max_burst self.logged_discard = False # logged that we are dropping entries? self.tokens = self.max_burst self.log_all_above_level = log_all_level reactor.callLater(1,self._increment_tokens) reactor.callLater(5,self._log_clear) def _increment_tokens(self): self.tokens += self.rate_limit if self.tokens >= self.max_burst: self.tokens = self.max_burst reactor.callLater(1, self._increment_tokens) def _log_clear(self): self.logged_discard = False def setLevel(self, level): return self.logger.setLevel(level) def _discarded(self, level): self.tokens -= 1 if self.tokens < 0: self.tokens = 0 if level >= self.log_all_above_level: return False elif not self.logged_discard: self.logger.error( "Discarding '%s' logger entries because they are arriving " "too fast. Will not log this error again for 5 " "seconds." % self.logger.name ) self.logged_discard = True return True # true = discarded return False # false = not discarded def debug(self, msg, *args, **kwargs): if not self._discarded(level = DEBUG): self.logger.debug(msg,*args, **kwargs) def info(self, msg, *args, **kwargs): if not self._discarded(level = INFO): self.logger.info(msg, *args, **kwargs) def warning(self, msg, *args, **kwargs): if not self._discarded(level = WARNING): self.logger.warning(msg, *args, **kwargs) def error(self, msg, *args, **kwargs): if not self._discarded(level = ERROR): self.logger.error(msg, *args, **kwargs) def exception(self, msg, *args): if not self._discarded(level = EXCEPTION): self.logger.exception(msg, *args) def critical(self, msg, *args, **kwargs): if not self._discarded(level = CRITICAL): self.logger.critical(msg, *args, **kwargs) def log(self, level, msg, *args, **kwargs): if not self._discarded(): self.logger.log(level, msg, *args, **kwargs) def findCaller(self): return self.logger.findCaller() def makeRecord(self, name, level, fn, lno, msg, args, exc_info): self.logger.makeRecord(name, level, fn, lno, msg, args, exc_info) def addHandler(self, hdlr): self.logger.addHandler(hdlr) def removeHandler(self, hdlr): self.logger.removeHandler(hdlr) def callHandlers(self, record): self.logger.callHandlers(record) def getEffectiveLevel(self): return self.logger.getEffectiveLevel() class StdioPretender: """Pretends to be stdout or stderr.""" # modified from twisted.python.log.StdioOnnaStick closed = 0 softspace = 0 mode = 'wb' name = '<stdio (log)>' def __init__(self, capture_name, level ): self.level = level self.logger = logging.getLogger( capture_name ) self.buf = '' def close(self): pass def flush(self): pass def fileno(self): return -1 def read(self): raise IOError("can't read from the log!") readline = read readlines = read seek = read tell = read def write(self, data): d = (self.buf + data).split('\n') self.buf = d[-1] messages = d[0:-1] for message in messages: self.logger.log( self.level, message ) def writelines(self, lines): for line in lines: self.logger.log( self.level, message ) class SysLogHandler(logging.handlers.SysLogHandler): # This is a hack to get around log entry size limits imposed by syslog. def __init__(self, address=('localhost', logging.handlers.SYSLOG_UDP_PORT), facility=logging.handlers.SysLogHandler.LOG_USER, max_msg_len = 4096, fragment_len = 900, make_printable = True ): """@param max_msg_len: maximum message length before truncation. @param fragment_len: when message length exceeds 900 it is truncated and broken into multiple consecutive log entries. @param make_printable: runs each message through BTL.btl_string.printable in emit. For example, this is useful if the messages are being sent through a UNIX socket to syslogd and the message might contain non-ascii characters. """ logging.handlers.SysLogHandler.__init__( self, address, facility ) self.max_msg_len = max_msg_len self.fragment_len = fragment_len self.make_printable = make_printable def emit(self, record): """Differs from the override emit in that it fragments the message to allow for much longer syslog messages.""" msg = self.format(record) if self.make_printable: msg = printable(msg) msg = msg[:self.max_msg_len] i = 0 while msg: remaining = msg[self.fragment_len:] if i > 0: msg = "(cont.) " + msg[:self.fragment_len] else: msg = msg[:self.fragment_len] msg = self.log_format_string % (self.encodePriority(self.facility, string.lower(record.levelname)),msg) try: if self.unixsocket: try: self.socket.send(msg) except socket.error: self._connect_unixsocket(self.address) self.socket.send(msg) else: self.socket.sendto(msg, self.address) except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) msg = remaining i += 1 def injectLogger(use_syslog = True, log_file = None, verbose = False, capture_output = True, twisted_error_log_level = ERROR, twisted_info_log_level = INFO, capture_stderr_log_level = ERROR, capture_stdout_log_level = INFO, capture_stderr_name = 'stderr', capture_stdout_name = 'stdout', log_level = DEBUG, log_twisted = True, use_localtime = False ): """ Installs logging. @param use_syslog: log to syslog. use_syslog, log_file, and verbose are not mutually exclusive. @param log_file: log to a file. @param verbose: output logs to stdout. Setting verbose and capture_output to this function does NOT result in an infinite loop. @param capture_output: redirects stdout and stderr to the logger. Be careful. This can create infinite loops with loggers that output to stdout or stderr. @param twisted_error_log_level: log level for errors reported by twisted. @param twisted_info_log_level: log level for non-errors reported by twisted. If capture_output is set then this is also the log level for anything output to stdout or stderr. @param log_level: only log events that have level >= passed level are logged. This is achieved by setting the log level in each of the installed handlers. @param capture_stderr_log_level: log level for output captured from stdout. @param capture_stdout_log_level: log level for output captured from stderr. @param capture_stderr_name: log name used for stderr. 'name' refers to the name arg passed to logging.getLogger(name). @param capture_stdout_name: log name used for stdout. Analogous to capture_stderr_name. """ logger = logging.getLogger('') logger.setLevel(DEBUG) # we use log handler levels to control output level. formatter = BTLFormatter("%(asctime)s - %(name)s - %(process)d - " "%(levelname)s - %(message)s", use_localtime=use_localtime) if log_file is not None: lf_handler = logging.handlers.RotatingFileHandler(filename=log_file, mode='a', maxBytes=2**27, backupCount=10) lf_handler.setFormatter(formatter) lf_handler.setLevel(log_level) logger.addHandler(lf_handler) if use_syslog: sl_handler = SysLogHandler('/dev/log', facility=SysLogHandler.LOG_LOCAL0) #address = (SYSLOG_HOST, SYSLOG_PORT)) # namespace - pid - level - message sl_handler.setFormatter(BTLFormatter("%(name)s - %(process)d - " "%(levelname)s - %(message)s")) sl_handler.setLevel(log_level) logger.addHandler(sl_handler) if verbose: # StreamHandler does not capture stdout, it directs output from # loggers to stdout. so_handler = logging.StreamHandler(sys.stdout) so_handler.setFormatter(formatter) so_handler.setLevel(log_level) logger.addHandler(so_handler) if capture_output: sys.stdout = StdioPretender( capture_stdout_name, capture_stdout_log_level ) sys.stderr = StdioPretender( capture_stderr_name, capture_stderr_log_level ) if log_twisted: twisted_logger.start(error_log_level = twisted_error_log_level, info_log_level = twisted_info_log_level) if __name__ == '__main__': from BTL.greenlet_yielddefer import coroutine, like_yield @coroutine def test_rate_limited_logger(): injectLogger(verbose = True) log = RateLimitedLogger(logging.getLogger("myapp"), 1,1) log.info( "should be printed." ) log.info( "should not be printed" ) # but should log "discard" message. log.info( "also should not be printed" ) # should not logging of discard message. df = Deferred() reactor.callLater(3, df.callback, True) like_yield(df) log.info( "should also be printed" ) reactor.stop() def test_injectLogger(): injectLogger(log_file = "your.log", use_syslog=False, verbose=True) logger = logging.getLogger("myapp") logger.warning("You are awesome") print 'stdout!' print >>sys.stderr, 'stderr!' from twisted.internet import reactor from twisted.python import failure def foo(): reactor.stop() zuul = dana reactor.callLater(0, foo) def test_injectLogger2(): injectLogger(log_file = "your.log", verbose=False, capture_output=True) print "hello world" def foo(): reactor.stop() zuul = dana reactor.callLater(0, foo) #test_injectLogger() test_injectLogger2() #reactor.callLater(0, test_rate_limited_logger) reactor.run() ``` #### File: BitTorrent-5.2.2/BTL/opt.py ```python from ConfigParser import RawConfigParser from optparse import OptionParser from BTL.translation import _ class ConfigOptionParser(RawConfigParser, OptionParser): def __init__(self, usage, default_section, config_file = None): """This is an option parser that reads defaults from a config file. It also allows specification of types for each option (unlike our mess that is mainline BitTorrent), and is only a slight extension on the classes provided in the Python standard libraries (unlike the wheel reinvention in mainline). @param usage: usage string for this application. @param default_section: section in the config file containing configuration for this service. This is a default that can be overriden for individual options by passing section as a kwarg to add_option. """ self._default_section = default_section OptionParser.__init__(self,usage) RawConfigParser.__init__(self) if config_file: self.read(config_file) def add_option(self, *args,**kwargs): if 'section' in kwargs: section = kwargs['section'] del kwargs['section'] else: section = self._default_section if "dest" in kwargs: if not self.has_option(section, kwargs["dest"]): if not kwargs.has_key("default"): raise Exception( _("Your .conf file is invalid. It does not specify " "a value for %s.\n %s:\t%s\n") % (kwargs["dest"],kwargs["dest"],kwargs["help"])) else: if not kwargs.has_key("value_type"): kwargs["default"]=self.get(section, kwargs["dest"]) else: if kwargs["value_type"] == "float": kwargs["default"] = float(self.get(section, kwargs["dest"] )) elif kwargs["value_type"] == "int": kwargs["default"] = int(self.get(section, kwargs["dest"] )) elif kwargs["value_type"] == "bool": v = self.get(section, kwargs["dest"]) if v == "True": kwargs["default"] = True elif v == "False": kwargs["default"] = False else: raise Exception( "Boolean value must be either 'True' or 'False'.") elif kwargs["value_type"] == "str": # canonicalize strings. v = self.get(section, kwargs["dest"]) v = v.strip('"').strip() kwargs["default"] = v elif kwargs["value_type"] == "list": v = self.get(section, kwargs["dest"]) kwargs["default"] = v.split(",") else: raise Exception( "Option has unrecognized type: %s" % kwargs["value_type"] ) if kwargs.has_key("value_type"): del kwargs["value_type"] OptionParser.add_option(self,*args,**kwargs) ``` #### File: BitTorrent-5.2.2/BTL/protocol.py ```python from twisted.internet import protocol from BTL.decorate import decorate_func ## someday twisted might do this for me class SmartReconnectingClientFactory(protocol.ReconnectingClientFactory): def buildProtocol(self, addr): prot = protocol.ReconnectingClientFactory.buildProtocol(self, addr) # decorate the protocol with a delay reset prot.connectionMade = decorate_func(self.resetDelay, prot.connectionMade) return prot ``` #### File: BitTorrent-5.2.2/BTL/ThreadProxy.py ```python from BTL.defer import Deferred, defer_to_thread class ThreadProxy(object): __slots__ = ('obj', 'local_queue_task', 'thread_queue_task') def __init__(self, obj, local_queue_task, thread_queue_task): self.obj = obj self.local_queue_task = local_queue_task self.thread_queue_task = thread_queue_task def __gen_call_wrapper__(self, f): def call_wrapper(*a, **kw): return defer_to_thread(self.local_queue_task, self.thread_queue_task, f, *a, **kw) return call_wrapper def __getattr__(self, attr): a = getattr(self.obj, attr) if callable(a): return self.__gen_call_wrapper__(a) return a def call_with_obj(self, _f, *a, **k): w = self.__gen_call_wrapper__(_f) return w(self.obj, *a, **k) ``` #### File: BitTorrent-5.2.2/BTL/TimeLeftEstimator.py ```python from BTL.platform import bttime class TimeLeftEstimator(object): def __init__(self, left): self.start = None self.last = None self.rate = 0 self.remaining = None self.left = left self.broke = False self.got_anything = False self.when_next_expected = bttime() + 5 def add_amount(self, amount): """ add number of bytes received """ if not self.got_anything: self.got_anything = True self.start = bttime() - 2 self.last = self.start self.left -= amount return self.update(bttime(), amount) def remove_amount(self, amount): self.left += amount def get_time_left(self): """ returns seconds """ if not self.got_anything: return None t = bttime() if t - self.last > 15: self.update(t, 0) return self.remaining def get_size_left(self): return self.left def update(self, t, amount): self.left -= amount if t < self.when_next_expected and amount == 0: return try: self.rate = ((self.rate * (self.last - self.start)) + amount) / (t - self.start) self.last = t self.remaining = self.left / self.rate if self.start < self.last - self.remaining: self.start = self.last - self.remaining except ZeroDivisionError: self.remaining = None if self.broke and self.last - self.start < 20: self.start = self.last - 20 if self.last - self.start > 20: self.broke = True self.when_next_expected = t + min((amount / max(self.rate, 0.0001)), 5) ``` #### File: BitTorrent-5.2.2/BTL/twisted_ebrpc.py ```python from __future__ import nested_scopes __version__ = "$Revision: 1.32 $"[11:-2] # System Imports import ebrpc import urlparse from cStringIO import StringIO from gzip import GzipFile pipeline_debug = False version = "1.0" from BTL.platform import app_name from BTL.reactor_magic import reactor from BTL.exceptions import str_exc from BTL.protocol import SmartReconnectingClientFactory from BTL.ebrpclib import ServerProxy import twisted.web if twisted.web.__version__ < '0.6.0': raise ImportError("BTL.twisted_ebrpc requires twisted.web 0.6.0 or greater," " from Twisted 2.4.0.\nYou appear to have twisted.web " "version %s installed at:\n%s" % (twisted.web.__version__, twisted.web.__file__)) from twisted.web import resource, server from twisted.internet import protocol from twisted.python import log, reflect, failure from twisted.web import http from twisted.internet import defer # Useful so people don't need to import ebrpc directly Fault = ebrpc.Fault class NoSuchFunction(Fault): """There is no function by the given name.""" pass class Handler: """Handle a EBRPC request and store the state for a request in progress. Override the run() method and return result using self.result, a Deferred. We require this class since we're not using threads, so we can't encapsulate state in a running function if we're going to have to wait for results. For example, lets say we want to authenticate against twisted.cred, run a LDAP query and then pass its result to a database query, all as a result of a single EBRPC command. We'd use a Handler instance to store the state of the running command. """ def __init__(self, resource, *args): self.resource = resource # the EBRPC resource we are connected to self.result = defer.Deferred() self.run(*args) def run(self, *args): # event driven equivalent of 'raise UnimplementedError' try: raise NotImplementedError("Implement run() in subclasses") except: self.result.errback(failure.Failure()) def parse_accept_encoding(header): a = header.split(',') l = [] for i in a: i = i.strip() if ';' not in i: type = i # hmmm l.append(('1', type)) else: type, q = i.split(';') type = type.strip() q = q.strip() junk, q = q.split('=') q = q.strip() if q != '0': l.append((q, type)) l.sort() l.reverse() l = [ t for q, t in l ] return l class EBRPC(resource.Resource): """A resource that implements EBRPC. You probably want to connect this to '/RPC2'. Methods published can return EBRPC serializable results, Faults, Binary, Boolean, DateTime, Deferreds, or Handler instances. By default methods beginning with 'ebrpc_' are published. Sub-handlers for prefixed methods (e.g., system.listMethods) can be added with putSubHandler. By default, prefixes are separated with a '.'. Override self.separator to change this. """ # Error codes for Twisted, if they conflict with yours then # modify them at runtime. NOT_FOUND = 8001 FAILURE = 8002 isLeaf = 1 separator = '.' def __init__(self): resource.Resource.__init__(self) self.subHandlers = {} def putSubHandler(self, prefix, handler): self.subHandlers[prefix] = handler def getSubHandler(self, prefix): return self.subHandlers.get(prefix, None) def getSubHandlerPrefixes(self): return self.subHandlers.keys() def _err(self, *a, **kw): log.err(*a, **kw) def render(self, request): request.setHeader('server', "%s/%s" % (app_name, version)) request.content.seek(0, 0) args, functionPath = ebrpc.loads(request.content.read()) args, kwargs = args request.functionPath = functionPath try: function = self._getFunction(functionPath) except Fault, f: self._cbRender(f, request) else: request.setHeader("content-type", "application/octet-stream") defer.maybeDeferred(function, *args, **kwargs).addErrback( self._ebRender ).addCallback( self._cbRender, request ) return server.NOT_DONE_YET def _cbRender(self, result, request): if isinstance(result, Handler): result = result.result if not isinstance(result, Fault): result = (result,) try: s = ebrpc.dumps(result, methodresponse=1) except Exception, e: f = Fault(self.FAILURE, "function:%s can't serialize output: %s" % (request.functionPath, str_exc(e))) self._err(f) s = ebrpc.dumps(f, methodresponse=1) encoding = request.getHeader("accept-encoding") if encoding: encodings = parse_accept_encoding(encoding) if 'gzip' in encodings or '*' in encodings: sio = StringIO() g = GzipFile(fileobj=sio, mode='wb', compresslevel=9) g.write(s) g.close() s = sio.getvalue() request.setHeader("Content-Encoding", "gzip") request.setHeader("content-length", str(len(s))) request.write(s) request.finish() def _ebRender(self, failure): self._err(failure) if isinstance(failure.value, Fault): return failure.value return Fault(self.FAILURE, "An unhandled exception occurred: %s" % failure.getErrorMessage()) def _getFunction(self, functionPath): """Given a string, return a function, or raise NoSuchFunction. This returned function will be called, and should return the result of the call, a Deferred, or a Fault instance. Override in subclasses if you want your own policy. The default policy is that given functionPath 'foo', return the method at self.ebrpc_foo, i.e. getattr(self, "ebrpc_" + functionPath). If functionPath contains self.separator, the sub-handler for the initial prefix is used to search for the remaining path. """ if functionPath.find(self.separator) != -1: prefix, functionPath = functionPath.split(self.separator, 1) handler = self.getSubHandler(prefix) if handler is None: raise NoSuchFunction(self.NOT_FOUND, "no such subHandler %s" % prefix) return handler._getFunction(functionPath) f = getattr(self, "ebrpc_%s" % functionPath, None) if not f: raise NoSuchFunction(self.NOT_FOUND, "function %s not found" % functionPath) elif not callable(f): raise NoSuchFunction(self.NOT_FOUND, "function %s not callable" % functionPath) else: return f def _listFunctions(self): """Return a list of the names of all ebrpc methods.""" return reflect.prefixedMethodNames(self.__class__, 'ebrpc_') class EBRPCIntrospection(EBRPC): """Implement the EBRPC Introspection API. By default, the methodHelp method returns the 'help' method attribute, if it exists, otherwise the __doc__ method attribute, if it exists, otherwise the empty string. To enable the methodSignature method, add a 'signature' method attribute containing a list of lists. See methodSignature's documentation for the format. Note the type strings should be EBRPC types, not Python types. """ def __init__(self, parent): """Implement Introspection support for an EBRPC server. @param parent: the EBRPC server to add Introspection support to. """ EBRPC.__init__(self) self._ebrpc_parent = parent def ebrpc_listMethods(self): """Return a list of the method names implemented by this server.""" functions = [] todo = [(self._ebrpc_parent, '')] while todo: obj, prefix = todo.pop(0) functions.extend([ prefix + name for name in obj._listFunctions() ]) todo.extend([ (obj.getSubHandler(name), prefix + name + obj.separator) for name in obj.getSubHandlerPrefixes() ]) return functions ebrpc_listMethods.signature = [['array']] def ebrpc_methodHelp(self, method): """Return a documentation string describing the use of the given method. """ method = self._ebrpc_parent._getFunction(method) return (getattr(method, 'help', None) or getattr(method, '__doc__', None) or '') ebrpc_methodHelp.signature = [['string', 'string']] def ebrpc_methodSignature(self, method): """Return a list of type signatures. Each type signature is a list of the form [rtype, type1, type2, ...] where rtype is the return type and typeN is the type of the Nth argument. If no signature information is available, the empty string is returned. """ method = self._ebrpc_parent._getFunction(method) return getattr(method, 'signature', None) or '' ebrpc_methodSignature.signature = [['array', 'string'], ['string', 'string']] def addIntrospection(ebrpc): """Add Introspection support to an EBRPC server. @param ebrpc: The ebrpc server to add Introspection support to. """ ebrpc.putSubHandler('system', EBRPCIntrospection(ebrpc)) class Query(object): def __init__(self, path, host, method, user=None, password=<PASSWORD>, *args): self.path = path self.host = host self.user = user self.password = password self.method = method self.payload = ebrpc.dumps(args, method) self.deferred = defer.Deferred() self.decode = False class QueryProtocol(http.HTTPClient): # All current queries are pipelined over the connection at # once. When the connection is made, or as queries are made # while a connection exists, queries are all sent to the # server. Pipelining limits can be controlled by the caller. # When a query completes (see parseResponse), if there are no # more queries then an idle timeout gets sets. # The QueryFactory reopens the connection if another query occurs. # # twisted_ebrpc does currently provide a mechanism for # per-query timeouts. This could be added with another # timeout_call mechanism that calls loseConnection and pops the # current query with an errback. timeout = 300 # idle timeout. def log(self, msg, *a): print "%s: %s: %r" % (self.peer, msg, a) def connectionMade(self): http.HTTPClient.connectionMade(self) self.current_queries = [] self.timeout_call = None if pipeline_debug: p = self.transport.getPeer() p = "%s:%d" % (p.host, p.port) self.peer = (id(self.transport), p) self.factory.connectionMade(self) def _cancelTimeout(self): if self.timeout_call and self.timeout_call.active(): self.timeout_call.cancel() self.timeout_call = None def connectionLost(self, reason): http.HTTPClient.connectionLost(self, reason) if pipeline_debug: self.log('connectionLost', reason.getErrorMessage()) self._cancelTimeout() if self.current_queries: # queries failed, put them back if pipeline_debug: self.log('putting back', [q.method for q in self.current_queries]) self.factory.prependQueries(self.current_queries) self.factory.connectionLost(self) def sendCommand(self, command, path): self.transport.write('%s %s HTTP/1.1\r\n' % (command, path)) def setLineMode(self, rest): # twisted is stupid. self.firstLine = 1 return http.HTTPClient.setLineMode(self, rest) def sendQuery(self): self._cancelTimeout() query = self.factory.popQuery() if pipeline_debug: self.log('sending', query.method) self.current_queries.append(query) self.sendCommand('POST', query.path) self.sendHeader('User-Agent', 'BTL/EBRPC 1.0') self.sendHeader('Host', query.host) self.sendHeader('Accept-encoding', 'gzip') self.sendHeader('Connection', 'Keep-Alive') self.sendHeader('Content-type', 'application/octet-stream') self.sendHeader('Content-length', str(len(query.payload))) #if query.user: # auth = '%s:%s' % (query.user, query.password) # auth = auth.encode('base64').strip() # self.sendHeader('Authorization', 'Basic %s' % (auth,)) self.endHeaders() self.transport.write(query.payload) def parseResponse(self, contents): query = self.current_queries.pop(0) if pipeline_debug: self.log('responded', query.method) if not self.current_queries: assert not self.factory.anyQueries() assert not self.timeout_call self.timeout_call = reactor.callLater(self.timeout, self.transport.loseConnection) try: response = ebrpc.loads(contents) except Exception, e: query.deferred.errback(failure.Failure()) del query.deferred else: query.deferred.callback(response[0][0]) del query.deferred def badStatus(self, status, message): query = self.current_queries.pop(0) if pipeline_debug: self.log('failed', query.method) try: raise ValueError(status, message) except: query.deferred.errback(failure.Failure()) del query.deferred self.transport.loseConnection() def handleStatus(self, version, status, message): if status != '200': self.badStatus(status, message) def handleHeader(self, key, val): if not self.current_queries[0].decode: if key.lower() == 'content-encoding' and val.lower() == 'gzip': self.current_queries[0].decode = True def handleResponse(self, contents): if self.current_queries[0].decode: s = StringIO() s.write(contents) s.seek(-1) g = GzipFile(fileobj=s, mode='rb') contents = g.read() g.close() self.parseResponse(contents) class QueryFactory(object): def __init__(self): self.queries = [] self.instance = None def connectionMade(self, instance): self.instance = instance if pipeline_debug: print 'connection made %s' % str(instance.peer) while self.anyQueries(): self.instance.sendQuery() def connectionLost(self, instance): assert self.instance == instance if pipeline_debug: print 'connection lost %s' % str(instance.peer) self.instance = None def prependQueries(self, queries): self.queries = queries + self.queries def popQuery(self): return self.queries.pop(0) def anyQueries(self): return bool(self.queries) def addQuery(self, query): self.queries.append(query) if pipeline_debug: print 'addQuery: %s %s' % (self.instance, self.queries) if self.instance: self.instance.sendQuery() def disconnect(self): if not self.instance: return if not hasattr(self.instance, 'transport'): return self.instance.transport.loseConnection() class PersistantSingletonFactory(QueryFactory, SmartReconnectingClientFactory): def clientConnectionFailed(self, connector, reason): if pipeline_debug: print 'clientConnectionFailed %s' % str(connector) return SmartReconnectingClientFactory.clientConnectionFailed(self, connector, reason) def clientConnectionLost(self, connector, unused_reason): self.started = False if not self.anyQueries(): self.continueTrying = False return SmartReconnectingClientFactory.clientConnectionLost(self, connector, unused_reason) class SingletonFactory(QueryFactory, protocol.ClientFactory): def clientConnectionFailed(self, connector, reason): if pipeline_debug: print 'clientConnectionFailed %s' % str(connector) queries = list(self.queries) del self.queries[:] for query in queries: query.deferred.errback(reason) self.started = False class Proxy: """A Proxy for making remote EBRPC calls. Pass the URL of the remote EBRPC server to the constructor. Use proxy.callRemote('foobar', *args) to call remote method 'foobar' with *args. """ def __init__(self, url, user=None, password=None, retry_forever = True): """ @type url: C{str} @param url: The URL to which to post method calls. Calls will be made over SSL if the scheme is HTTPS. If netloc contains username or password information, these will be used to authenticate, as long as the C{user} and C{password} arguments are not specified. @type user: C{str} or None @param user: The username with which to authenticate with the server when making calls. If specified, overrides any username information embedded in C{url}. If not specified, a value may be taken from C{url} if present. @type password: C{str} or None @param password: The password with which to authenticate with the server when making calls. If specified, overrides any password information embedded in C{url}. If not specified, a value may be taken from C{url} if present. """ scheme, netloc, path, params, query, fragment = urlparse.urlparse(url) netlocParts = netloc.split('@') if len(netlocParts) == 2: userpass = netlocParts.pop(0).split(':') self.user = userpass.pop(0) try: self.password = userpass.pop(0) except: self.password = None else: self.user = self.password = None hostport = netlocParts[0].split(':') self.host = hostport.pop(0) try: self.port = int(hostport.pop(0)) except: self.port = None self.path = path if self.path in ['', None]: self.path = '/' self.secure = (scheme == 'https') if user is not None: self.user = user if password is not None: self.password = password if not retry_forever: _Factory = SingletonFactory else: _Factory = PersistantSingletonFactory self.factory = _Factory() self.factory.started = False self.factory.protocol = QueryProtocol def callRemote(self, method, *args, **kwargs): if pipeline_debug: print 'callRemote to %s : %s' % (self.host, method) args = (args, kwargs) query = Query(self.path, self.host, method, self.user, self.password, *args) self.factory.addQuery(query) if pipeline_debug: print 'factory started: %s' % self.factory.started if not self.factory.started: self.factory.started = True def connect(host): if self.secure: if pipeline_debug: print 'connecting to %s' % str((host, self.port or 443)) from twisted.internet import ssl reactor.connectSSL(host, self.port or 443, self.factory, ssl.ClientContextFactory(), timeout=60) else: if pipeline_debug: print 'connecting to %s' % str((host, self.port or 80)) reactor.connectTCP(host, self.port or 80, self.factory, timeout=60) df = reactor.resolve(self.host) df.addCallback(connect) df.addErrback(query.deferred.errback) return query.deferred class AsyncServerProxy(object): def __init__(self, base_url, username=None, password=<PASSWORD>, debug=False, retry_forever = True): self.base_url = base_url self.username = username self.password = password self.proxy = Proxy(self.base_url, self.username, self.password, retry_forever) self.debug = debug def __getattr__(self, attr): return self._make_call(attr) def _make_call(self, methodname): return lambda *a, **kw : self._method(methodname, *a, **kw) def _method(self, methodname, *a, **kw): # in case they have changed self.proxy.user = self.username self.proxy.password = <PASSWORD>.password if self.debug: print ('callRemote:', self.__class__.__name__, self.base_url, methodname, a, kw) df = self.proxy.callRemote(methodname, *a, **kw) return df class EitherServerProxy(object): SYNC = 0 ASYNC = 1 SYNC_DEFERRED = 2 # BE CAREFUL to call getResult() on the returned Deferred! """Server Proxy that supports both asynchronous and synchronous calls.""" def __init__(self, base_url, username = None, password = <PASSWORD>, debug = False, async = ASYNC, retry_forever = True ): """ The EitherServerProxy can make either synchronous or asynchronous calls. The default is specified by the async parameter to __init__, but each individual call can override the default behavior by passing 'async' as a boolean keyword argument to any method call. The async keyword argument can also be set to None. However, passing async as None means simply 'use default behavior'. When calling with async=SYNC, you should not be in the same thread as the reactor or you risk blocking the reactor. @param async: determines whether the default is asynchronous or blocking calls.""" assert async in [SYNC, ASYNC, SYNC_DEFERRED] self.async = async self.async_proxy = AsyncServerProxy( base_url, username, password, debug, retry_forever = retry_forever ) # HERE HACK. retry_forever is not supported by ServerProxy. self.sync_proxy = ServerProxy( base_url ) def __getattr__(self, attr): return self._make_call(attr) def _make_call(self, methodname): return lambda *a, **kw : self._method(methodname, *a, **kw) def _method(self, methodname, *a, **kw ): async = kw.pop('async', self.async) if async is None: async = self.async if async == ASYNC: df = self.async_proxy._method(methodname, *a, **kw) elif async == SYNC_DEFERRED: df = defer.execute(getattr(self.sync_proxy, methodname), *a, **kw) else: return self.sync_proxy.__getattr__(methodname)(*a, **kw) return df SYNC = EitherServerProxy.SYNC ASYNC = EitherServerProxy.ASYNC SYNC_DEFERRED = EitherServerProxy.SYNC_DEFERRED __all__ = ["EBRPC", "Handler", "NoSuchFunction", "Fault", "Proxy", "AsyncServerProxy", "EitherServerProxy"] ``` #### File: BitTorrent-5.2.2/BTL/xmlrpclib2.py ```python import xml import xmlrpclib from connection_cache import PyCURL_Cache, cache_set import pycurllib pycurllib.set_use_compression(True) class PyCurlTransport(xmlrpclib.Transport): def __init__(self, cache, max_connects=None, timeout=None): self.host = None self.cache = cache self.max_connects = max_connects self.timeout = timeout def request(self, host, handler, request_body, verbose=0): for i in xrange(0): try: return self._request(host, handler, request_body, verbose) except: pass return self._request(host, handler, request_body, verbose) def _set_connection_params(self, h): h.add_header('User-Agent', "xmlrpclib2.py/2.0") h.add_header('Connection', "Keep-Alive") h.add_header('Content-Type', "application/octet-stream") # this timeout is intended to save us from tomcat not responding # and locking the site if None != self.timeout: h.set_timeout(self.timeout) else: h.set_timeout(2000) # for backwards compatibility, keep old default if None != self.max_connects: h.set_max_connects(self.max_connects) def _request(self, host, handler, request_body, verbose=0): # issue XML-RPC request h = self.cache.get_connection() try: self._set_connection_params(h) h.add_data(request_body) response = pycurllib.urlopen(h, close=False) except: # connection may no longer be valid self.cache.destroy_connection(h) raise self.cache.put_connection(h) if response.code != 200: raise xmlrpclib.ProtocolError( host + handler, response.code, response.msg, 'N/A', ) self.verbose = verbose return self._parse_response(response) def _parse_response(self, response): # read response from input file/socket, and parse it p, u = self.getparser() d = response.getvalue() try: p.feed(d) except xml.parsers.expat.ExpatError, e: n = xml.parsers.expat.ExpatError("%s : %s" % (e, d)) try: n.code = e.code n.lineno = e.lineno n.offset = e.offset except: pass raise n p.close() return u.close() def new_server_proxy(url, max_connects=None, timeout=None): c = cache_set.get_cache(PyCURL_Cache, url, max_per_cache=max_connects) t = PyCurlTransport(c, max_connects=max_connects, timeout=timeout) return xmlrpclib.ServerProxy(url, transport=t) ServerProxy = new_server_proxy ``` #### File: BitTorrent-5.2.2/khashmir/utkhashmir.py ```python import khashmir, knode from actions import * from khash import newID from krpc import KRPCProtocolError, KRPCFailSilently from BTL.cache import Cache from sha import sha from util import * from BTL.stackthreading import Thread from socket import gethostbyname from const import * from kstore import sample TOKEN_UPDATE_INTERVAL = 5 * 60 # five minutes NUM_PEERS = 50 # number of peers to return class UTNode(knode.KNodeBase): def announcePeer(self, info_hash, port, khashmir_id): assert type(port) == type(1) assert type(info_hash) == type('') assert type(khashmir_id) == type('') assert len(info_hash) == 20 assert len(khashmir_id) == 20 try: token = self.table.tcache[self.id] except: token = None if token: assert type(token) == type(""), repr(token) # not true #assert len(token) == 20, repr(token) df = self.conn().sendRequest('announce_peer', {'info_hash':info_hash, 'port':port, 'id':khashmir_id, 'token':token}) else: raise KRPCProtocolError("no write token for node") df.addErrback(self.errBack) df.addCallback(self.checkSender) return df def getPeers(self, info_hash, khashmir_id): df = self.conn().sendRequest('get_peers', {'info_hash':info_hash, 'id':khashmir_id}) df.addErrback(self.errBack) df.addCallback(self.checkSender) return df def checkSender(self, dict): d = knode.KNodeBase.checkSender(self, dict) try: token = d['rsp']['token'] assert type(token) == type(""), repr(token) # not true #assert len(token) == 20, repr(token) self.table.tcache[d['rsp']['id']] = token except KeyError: pass return d class UTStoreValue(StoreValue): def callNode(self, node, f): return f(self.target, self.value, node.token, self.table.node.id) class UTKhashmir(khashmir.KhashmirBase): _Node = UTNode def setup(self, host, port, data_dir, rlcount, checkpoint=True): khashmir.KhashmirBase.setup(self, host, port,data_dir, rlcount, checkpoint) self.cur_token = self.last_token = sha('') self.tcache = Cache() self.gen_token(loop=True) self.expire_cached_tokens(loop=True) def expire_cached_tokens(self, loop=False): self.tcache.expire(time() - TOKEN_UPDATE_INTERVAL) if loop: self.rawserver.external_add_task(TOKEN_UPDATE_INTERVAL, self.expire_cached_tokens, True) def gen_token(self, loop=False): self.last_token = self.cur_token self.cur_token = sha(newID()) if loop: self.rawserver.external_add_task(TOKEN_UPDATE_INTERVAL, self.gen_token, True) def get_token(self, host, port): x = self.cur_token.copy() x.update("%s%s" % (host, port)) h = x.digest() return h def val_token(self, token, host, port): x = self.cur_token.copy() x.update("%s%s" % (host, port)) a = x.digest() if token == a: return True x = self.last_token.copy() x.update("%s%s" % (host, port)) b = x.digest() if token == b: return True return False def addContact(self, host, port, callback=None): # use dns on host, then call khashmir.addContact Thread(target=self._get_host, args=[host, port, callback]).start() def _get_host(self, host, port, callback): # this exception catch can go away once we actually fix the bug try: ip = gethostbyname(host) except TypeError, e: raise TypeError(str(e) + (": host(%s) port(%s)" % (repr(host), repr(port)))) self.rawserver.external_add_task(0, self._got_host, ip, port, callback) def _got_host(self, host, port, callback): khashmir.KhashmirBase.addContact(self, host, port, callback) def announcePeer(self, info_hash, port, callback=None): """ stores the value for key in the global table, returns immediately, no status in this implementation, peers respond but don't indicate status to storing values a key can have many values """ def _storeValueForKey(nodes, key=info_hash, value=port, response=callback , table=self.table): if not response: # default callback def _storedValueHandler(sender): pass response=_storedValueHandler action = UTStoreValue(self, key, value, response, self.rawserver.add_task, "announcePeer") self.rawserver.external_add_task(0, action.goWithNodes, nodes) # this call is asynch self.findNode(info_hash, _storeValueForKey) def krpc_announce_peer(self, info_hash, port, id, token, _krpc_sender): sender = {'id' : id} sender['host'] = _krpc_sender[0] sender['port'] = _krpc_sender[1] if not self.val_token(token, sender['host'], sender['port']): raise KRPCProtocolError("Invalid Write Token") value = compact_peer_info(_krpc_sender[0], port) self.store[info_hash] = value n = self.Node().initWithDict(sender) self.insertNode(n, contacted=0) return {"id" : self.node.id} def retrieveValues(self, key): try: l = self.store.sample(key, NUM_PEERS) except KeyError: l = [] return l def getPeers(self, info_hash, callback, searchlocal = 1): """ returns the values found for key in global table callback will be called with a list of values for each peer that returns unique values final callback will be an empty list - probably should change to 'more coming' arg """ nodes = self.table.findNodes(info_hash, invalid=True) l = [x for x in nodes if x.invalid] if len(l) > 4: nodes = sample(l , 4) + self.table.findNodes(info_hash, invalid=False)[:4] # get locals if searchlocal: l = self.retrieveValues(info_hash) if len(l) > 0: self.rawserver.external_add_task(0, callback, [reducePeers(l)]) else: l = [] # create our search state state = GetValue(self, info_hash, callback, self.rawserver.add_task, 'getPeers') self.rawserver.external_add_task(0, state.goWithNodes, nodes, l) def getPeersAndAnnounce(self, info_hash, port, callback, searchlocal = 1): """ returns the values found for key in global table callback will be called with a list of values for each peer that returns unique values final callback will be an empty list - probably should change to 'more coming' arg """ nodes = self.table.findNodes(info_hash, invalid=False) nodes += self.table.findNodes(info_hash, invalid=True) # get locals if searchlocal: l = self.retrieveValues(info_hash) if len(l) > 0: self.rawserver.external_add_task(0, callback, [reducePeers(l)]) else: l = [] # create our search state x = lambda a: a state = GetAndStore(self, info_hash, port, callback, x, self.rawserver.add_task, 'getPeers', "announcePeer") self.rawserver.external_add_task(0, state.goWithNodes, nodes, l) def krpc_get_peers(self, info_hash, id, _krpc_sender): sender = {'id' : id} sender['host'] = _krpc_sender[0] sender['port'] = _krpc_sender[1] n = self.Node().initWithDict(sender) self.insertNode(n, contacted=0) l = self.retrieveValues(info_hash) if len(l) > 0: return {'values' : [reducePeers(l)], "id": self.node.id, "token" : self.get_token(sender['host'], sender['port'])} else: nodes = self.table.findNodes(info_hash, invalid=False) nodes = [node.senderDict() for node in nodes] return {'nodes' : packNodes(nodes), "id": self.node.id, "token" : self.get_token(sender['host'], sender['port'])} ``` #### File: p2pScrapper/BitTorrent-5.2.2/launchmany-curses.py ```python from __future__ import division app_name = "BitTorrent" from BTL.translation import _ DOWNLOAD_SCROLL_RATE = 1 import sys, os from threading import Event from time import time, localtime, strftime from BTL.obsoletepythonsupport import * from BTL.platform import encode_for_filesystem, decode_from_filesystem from BitTorrent import platform from BitTorrent.launchmanycore import LaunchMany from BitTorrent.defaultargs import get_defaults from BitTorrent.parseargs import parseargs, printHelp from BitTorrent.prefs import Preferences from BitTorrent import configfile from BitTorrent import version from BitTorrent import BTFailure from BitTorrent import bt_log_fmt import logging import traceback from logging import ERROR, WARNING, INFO from BitTorrent import console, STDERR, inject_main_logfile try: curses = import_curses() import curses.panel from curses.wrapper import wrapper as curses_wrapper from signal import signal, SIGWINCH except: print _("Textmode UI initialization failed, cannot proceed.") print print _("This download interface requires the standard Python module " "\"curses\", which is unfortunately not available for the native " "Windows port of Python. It is however available for the Cygwin " "port of Python, running on all Win32 systems (www.cygwin.com).") print print _("You may still use \"launchmany-console.py\" to download.") sys.exit(1) exceptions = [] def fmttime(n): if n <= 0: return None n = int(n) m, s = divmod(n, 60) h, m = divmod(m, 60) if h > 1000000: return _("connecting to peers") return _("ETA in %d:%02d:%02d") % (h, m, s) def fmtsize(n): n = long(n) unit = [' B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'] i = 0 if (n > 999): i = 1 while i + 1 < len(unit) and (n >> 10) >= 999: i += 1 n >>= 10 n /= 1024 if i > 0: size = '%.1f' % n + '%s' % unit[i] else: size = '%.0f' % n + '%s' % unit[i] return size def ljust(s, size): s = s[:size] return s + (' '*(size-len(s))) def rjust(s, size): s = s[:size] return (' '*(size-len(s)))+s class CursesDisplayer(object): def __init__(self, scrwin): self.messages = [] self.scroll_pos = 0 self.scroll_time = 0 self.scrwin = scrwin signal(SIGWINCH, self.winch_handler) self.changeflag = Event() self._remake_window() curses.use_default_colors() def winch_handler(self, signum, stackframe): self.changeflag.set() curses.endwin() self.scrwin.noutrefresh() self.scrwin = curses.newwin(0, 0, 0, 0) self._remake_window() self._display_messages() def _remake_window(self): self.scrh, self.scrw = self.scrwin.getmaxyx() self.scrpan = curses.panel.new_panel(self.scrwin) self.mainwinh = (2*self.scrh)//3 self.mainwinw = self.scrw - 4 # - 2 (bars) - 2 (spaces) self.mainwiny = 2 # + 1 (bar) + 1 (titles) self.mainwinx = 2 # + 1 (bar) + 1 (space) # + 1 to all windows so we can write at mainwinw self.mainwin = curses.newwin(self.mainwinh, self.mainwinw+1, self.mainwiny, self.mainwinx) self.mainpan = curses.panel.new_panel(self.mainwin) self.mainwin.scrollok(0) self.mainwin.nodelay(1) self.mainwin.clearok(1) self.headerwin = curses.newwin(1, self.mainwinw+1, 1, self.mainwinx) self.headerpan = curses.panel.new_panel(self.headerwin) self.headerwin.scrollok(0) self.headerwin.clearok(0) self.totalwin = curses.newwin(1, self.mainwinw+1, self.mainwinh+1, self.mainwinx) self.totalpan = curses.panel.new_panel(self.totalwin) self.totalwin.scrollok(0) self.totalwin.clearok(0) self.statuswinh = self.scrh-4-self.mainwinh self.statuswin = curses.newwin(self.statuswinh, self.mainwinw+1, self.mainwinh+3, self.mainwinx) self.statuspan = curses.panel.new_panel(self.statuswin) self.statuswin.scrollok(0) self.statuswin.clearok(1) try: self.scrwin.border(ord('|'),ord('|'),ord('-'),ord('-'),ord(' '),ord(' '),ord(' '),ord(' ')) except: pass rcols = (_("Size"),_("Download"),_("Upload")) rwids = (9, 11, 11) rwid = sum(rwids) start = self.mainwinw - rwid self.headerwin.addnstr(0, 2, '#', start, curses.A_BOLD) self.headerwin.addnstr(0, 4, _("Filename"), start, curses.A_BOLD) for s,w in zip(rcols, rwids): st = start + max(w - len(s), 0) self.headerwin.addnstr(0, st, s[:w], len(s[:w]), curses.A_BOLD) start += w self.totalwin.addnstr(0, self.mainwinw - 29, _("Totals:"), 7, curses.A_BOLD) self._display_messages() curses.panel.update_panels() curses.doupdate() self.changeflag.clear() def _display_line(self, s, bold = False): if self.disp_end: return True line = self.disp_line self.disp_line += 1 if line < 0: return False if bold: self.mainwin.addnstr(line, 0, s, self.mainwinw, curses.A_BOLD) else: self.mainwin.addnstr(line, 0, s, self.mainwinw) if self.disp_line >= self.mainwinh: self.disp_end = True return self.disp_end def _display_data(self, data): if 3*len(data) <= self.mainwinh: self.scroll_pos = 0 self.scrolling = False elif self.scroll_time + DOWNLOAD_SCROLL_RATE < time(): self.scroll_time = time() self.scroll_pos += 1 self.scrolling = True if self.scroll_pos >= 3*len(data)+2: self.scroll_pos = 0 i = self.scroll_pos//3 self.disp_line = (3*i)-self.scroll_pos self.disp_end = False while not self.disp_end: ii = i % len(data) if i and not ii: if not self.scrolling: break self._display_line('') if self._display_line(''): break ( name, status, progress, peers, seeds, seedsmsg, #dist, uprate, dnrate, upamt, dnamt, size, t, msg ) = data[ii] t = fmttime(t) if t: status = t name = ljust(name,self.mainwinw-35) size = rjust(fmtsize(size), 9) dnrate = rjust('%s/s' % fmtsize(dnrate), 11) uprate = rjust('%s/s' % fmtsize(uprate), 11) line = "%3d %s%s%s%s" % (ii+1, name, size, dnrate, uprate) self._display_line(line, True) if peers + seeds: datastr = _(" (%s) %s - %s peers %s seeds - %s dn %s up") % ( progress, status, peers, seeds, #dist, fmtsize(dnamt), fmtsize(upamt) ) else: datastr = ' '+status+' ('+progress+')' self._display_line(datastr) self._display_line(' '+ljust(msg,self.mainwinw-4)) i += 1 def display(self, data): try: if self.changeflag.isSet(): return inchar = self.mainwin.getch() if inchar == 12: # ^L self._remake_window() self.mainwin.erase() if data: self._display_data(data) else: self.mainwin.addnstr( 1, self.mainwinw//2-5, _("no torrents"), 12, curses.A_BOLD ) totalup = 0 totaldn = 0 for ( name, status, progress, peers, seeds, seedsmsg, #dist, uprate, dnrate, upamt, dnamt, size, t, msg ) in data: totalup += uprate totaldn += dnrate totalup = '%s/s' % fmtsize(totalup) totaldn = '%s/s' % fmtsize(totaldn) self.totalwin.erase() self.totalwin.addnstr(0, self.mainwinw-29, _("Totals:"), 7, curses.A_BOLD) self.totalwin.addnstr(0, self.mainwinw-22 + (11-len(totaldn)), totaldn, 11, curses.A_BOLD) self.totalwin.addnstr(0, self.mainwinw-11 + (11-len(totalup)), totalup, 11, curses.A_BOLD) curses.panel.update_panels() curses.doupdate() except: pass return inchar in (ord('q'),ord('Q')) def message(self, s): try: self.messages.append(strftime('%x %X - ',localtime(time()))+s) self._display_messages() except: pass def _display_messages(self): self.statuswin.erase() winpos = 0 for s in self.messages[-self.statuswinh:]: self.statuswin.addnstr(winpos, 0, s, self.mainwinw) winpos += 1 curses.panel.update_panels() curses.doupdate() def exception(self, s): exceptions.append(s) self.message(_("SYSTEM ERROR - EXCEPTION GENERATED")) def modify_default( defaults_tuplelist, key, newvalue ): name,value,doc = [(n,v,d) for (n,v,d) in defaults_tuplelist if n == key][0] defaults_tuplelist = [(n,v,d) for (n,v,d) in defaults_tuplelist if not n == key] defaults_tuplelist.append( (key,newvalue,doc) ) return defaults_tuplelist if __name__ == '__main__': uiname = 'launchmany-curses' defaults = get_defaults(uiname) try: if len(sys.argv) < 2: printHelp(uiname, defaults) sys.exit(1) # Modifying default values from get_defaults is annoying... # Implementing specific default values for each uiname in # defaultargs.py is even more annoying. --Dave ddir = os.path.join( platform.get_dot_dir(), "launchmany-curses" ) ddir = decode_from_filesystem(ddir) modify_default(defaults, 'data_dir', ddir) config, args = configfile.parse_configuration_and_args(defaults, uiname, sys.argv[1:], 0, 1) if args: torrent_dir = args[0] config['torrent_dir'] = decode_from_filesystem(torrent_dir) else: torrent_dir = config['torrent_dir'] torrent_dir,bad = encode_for_filesystem(torrent_dir) if bad: raise BTFailure(_("Warning: ")+config['torrent_dir']+ _(" is not a directory")) if not os.path.isdir(torrent_dir): raise BTFailure(_("Warning: ")+torrent_dir+ _(" is not a directory")) # the default behavior is to save_in files to the platform # get_save_dir. For launchmany, if no command-line argument # changed the save directory then use the torrent directory. if config['save_in'] == platform.get_save_dir(): config['save_in'] = config['torrent_dir'] except BTFailure, e: print _("error: ") + unicode(e.args[0]) + \ _("\nrun with no args for parameter explanations") sys.exit(1) except KeyboardInterrupt: sys.exit(1) inject_main_logfile() class LaunchManyApp(object): class LogHandler(logging.Handler): def __init__(self, level, displayer): logging.Handler.__init__(self,level) self.displayer = displayer def emit(self, record): if len(record.getMessage()) > 0: self.displayer.message(record.getMessage() ) if record.exc_info is not None: self.displayer.message( "Traceback (most recent call last):" ) tb = record.exc_info[2] stack = traceback.extract_tb(tb) l = traceback.format_list(stack) for s in l: self.displayer.message( " %s" % s ) self.displayer.message( " %s: %s" % ( str(record.exc_info[0]),str(record.exc_info[1]))) def __init__(self): pass def run(self,scrwin, config): self.displayer = CursesDisplayer(scrwin) log_handler = LaunchManyApp.LogHandler(STDERR, self.displayer) log_handler.setFormatter(bt_log_fmt) logging.getLogger('').addHandler(log_handler) logging.getLogger().setLevel(STDERR) logging.getLogger('').removeHandler(console) # more liberal with logging launchmany-curses specific output. lmany_logger = logging.getLogger('launchmany-curses') lmany_handler = LaunchManyApp.LogHandler(INFO, self.displayer) lmany_handler.setFormatter(bt_log_fmt) lmany_logger.setLevel(INFO) lmany_logger.addHandler(lmany_handler) config = Preferences().initWithDict(config) LaunchMany(config, self.displayer.display, 'launchmany-curses') app = LaunchManyApp() curses_wrapper(app.run, config) if exceptions: print _("\nEXCEPTION:") print exceptions[0] ``` #### File: BitTorrent-5.2.2/test/test_Feeds.py ```python import sys sys.path = ['.',] + sys.path #HACK import os from BTL.platform import plugin_path, app_root plugin_path.append(os.path.join(app_root[:-5], 'BitTorrent', 'Plugins')) #HACK from BitTorrent.FeedManager import FeedManager def gui_wrap(f, *a): f(*a) feedmanager = FeedManager({}, gui_wrap) # Test RSS 2 feed: feed = 'http://www.prodigem.com/torrents/rss/pep_delicious.xml' feedmanager.new_channel(feed) # Test RAW feed: feed = 'http://search.bittorrent.com/search.jsp?query=Ubuntu&Submit2=Search' feedmanager.new_channel(feed) import time time.sleep(10) ```
{ "source": "jpablo128/simplystatic", "score": 3 }
#### File: simplystatic/bin/addrandompages.py ```python import argparse import sys import time import os.path import os import random # ONLY FOR DEVELOPMENT TESTING add one directory up to the sys.path # so the imports work #sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from simplystatic import s2site from simplystatic import s2page def setup_parser(): '''Set up the command-line options.''' parser = argparse.ArgumentParser(description='Add random pages to existing site.') parser.add_argument('-d','--directory', action='store', default= os.getcwd(), help='Site directory (must be a valid s2 structure).') parser.add_argument('-n','--number', action='store', type=int, default = 20, help='Number of pages to generate.') return parser def make_site_obj(argdict): '''Instantiate and return the site. This will be used for all commands''' d = os.getcwd() #'.' if 'directory' in argdict: d = argdict['directory'] try: s = s2site.Site(d) except: print "Could not instantiate site object." sys.exit() return s all_tags = ['tag1','tag2','tag3','tag4'] if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() argdict = vars(args) site = make_site_obj(argdict) if site.tree_ready: for i in range(1,argdict['number']+1): ptags = random.sample(all_tags,random.randint(1,len(all_tags))) p = site.random_page(tags=ptags) p.set_published() p.write() print "added page ",p.slug ```
{ "source": "jpablocardona/platzi-django-advance", "score": 3 }
#### File: users/permissions/users.py ```python from rest_framework.permissions import BasePermission # Models from cride.users.models import User class IsAccountOwner(BasePermission): """Allow access only to objects owned by the requesting user""" def has_object_permission(self, request, view, obj): """Check object user""" return request.user == obj ``` #### File: users/serializers/users.py ```python from django.conf import settings from django.db import models from django.contrib.auth import authenticate, password_validation from django.core.validators import RegexValidator from django.contrib.auth.hashers import make_password # Djangto rest framework from rest_framework import serializers from rest_framework.authtoken.models import Token from rest_framework.validators import UniqueValidator # Task from cride.taskapp.tasks import send_confirmation_email # User from cride.users.models import User, Profile # Serializers from .profiles import ProfileModelSerializer class UserModelSerializer(serializers.ModelSerializer): """User model serializer""" profile = ProfileModelSerializer(read_only=True) class Meta: model = User fields = ( 'username', 'first_name', 'last_name', 'email', 'phone_number', 'profile' ) # Esto trae la informacion del modelo # depth = 1 class UserLoginSerializer(serializers.Serializer): """ User login serializers """ email = serializers.EmailField() password = serializers.CharField(min_length=8) def validate(self, data): """Check credencitals""" user = authenticate(username=data['email'], password=data['password']) if not user: raise serializers.ValidationError('Invalid credentials') if not user.is_verified: raise serializers.ValidationError('Account is not activate yet :(') self.context['user'] = user return data def create(self, data): """Generate token auth""" token, created = Token.objects.get_or_create(user=self.context['user']) return self.context['user'], token.key class UserSingUpSerializer(serializers.Serializer): """ User sing up serializers """ username = serializers.CharField( min_length=4, max_length=20, validators=[UniqueValidator(queryset=User.objects.all())] ) email = serializers.EmailField(validators=[UniqueValidator(queryset=User.objects.all())]) first_name = serializers.CharField(min_length=2, max_length=30) last_name = serializers.CharField(min_length=2, max_length=30) phone_regex = RegexValidator( regex=r'\+?1?\d{9,15}%', message='phone number must be entered in the format: +9999999. Up to 15 digits allowed' ) phone_number = models.CharField(validators=[phone_regex], max_length=17, blank=True) password = serializers.CharField(min_length=8, max_length=64) password_confirmation = serializers.CharField(min_length=8, max_length=64) def validate(self, data): """ Handle validate info user""" passwd = data['password'] passwd_conf = data['password_confirmation'] if passwd != passwd_conf: raise serializers.ValidationError('Passwords does not match') password_validation.validate_password(passwd) data['password'] = <PASSWORD>) return data def create(self, data): """ Handle user create""" data.pop('password_confirmation') user = User.objects.create(**data, is_verified=False) Profile.objects.create(user=user) send_confirmation_email.delay(user_pk=user.id) return user class UserVerifiedSerializer(serializers.Serializer): """Account verification serialized""" token = serializers.CharField() def validate(self, data): """Handle validate account token""" try: payload = jwt.decode(data['token'], settings.SECRET_KEY, algorithm='HS256') except jwt.ExpiredSignatureError: raise serializers.ValidationError('Verification token has expired') except jwt.PyJWTError: raise serializers.ValidationError('Invalid token') if (payload.get('type', '') != 'email_confirmation'): raise serializers.ValidationError('Incorrect token') self.context['payload'] = payload return data def save(self): """Update users verified account""" payload = self.context['payload'] user = User.objects.get(username=payload['user']) if (user.is_verified): raise serializers.ValidationError('User already verified') user.is_verified = True user.save() ```
{ "source": "jpablortiz96/Inventario-python", "score": 2 }
#### File: jpablortiz96/Inventario-python/app.py ```python from flask import Flask, render_template, request, flash import utils import os import yagmail import inventory app = Flask(__name__) app.secret_key = os.urandom(24) @app.route('/') def login(): return render_template('index.html') @app.route('/recuperar') def recuperar(): return render_template('recuperar.html') @app.route('/main') def principal(): IDs=[1,2,3,4,5,6,7,8,9] inventory1=[inventory.Inventory(i, "Producto "+str(i), 2000) for i in IDs] return render_template('principal.html', inventory=inventory1) @app.route('/agregar') def agregar(): return render_template('agregar.html') @app.route('/editar') def editar(): return render_template('editar.html') if __name__ == '__main__': app.run(debug=True) ``` #### File: jpablortiz96/Inventario-python/inventory.py ```python class Inventory: def __init__(self, ID, name, numInStock): self.ID = ID self.name = name self.numInStock = numInStock ```
{ "source": "jpacanowski/django-blog", "score": 2 }
#### File: blog/templatetags/blog_tags.py ```python from django.db.models import Count from django import template from ..models import Post register = template.Library() @register.simple_tag def total_posts(): return Post.published.count() @register.inclusion_tag('blog/post/most_commented_posts.html') def show_most_commented_posts(count=5): most_commented_posts = Post.published.annotate( total_comments=Count('comments') ).order_by('-total_comments')[:count] return {'most_commented_posts': most_commented_posts} @register.inclusion_tag('blog/post/latest_posts.html') def show_latest_posts(count=5): latest_posts = Post.published.order_by('-published_at')[:count] return {'latest_posts': latest_posts} ```
{ "source": "jpace121/dev_contain", "score": 2 }
#### File: dev_contain/dev_contain/start.py ```python import argparse import os import sys import subprocess import pathlib import dev_contain.common as common def start(in_args): parser = argparse.ArgumentParser(prog=sys.argv[0]+' start', description='Start a provided container.') parser.add_argument('--image', '-i', help='Name of image to launch.') parser.add_argument('--container', '-c', help='Name of the new container.') parser.add_argument('--volume', '-v', action='append', help='Volume on local machine to mount at same location in container.') parser.add_argument('--workdir', '-d', help='Directory to start in.') parser.add_argument('--user', '-u', help='Username to login into container as.') parser.add_argument('--graphics', '-X', action='store_true', help='Forward graphics.') parser.add_argument('--no-ssh', '-S', action='store_true', help='Do not forward ssh keys.') parser.add_argument('--args', '-a', help='Extra args to provide to the runtime. i.e. --args="--gpu"') args = parser.parse_args(in_args) manager = common.get_manager() username = args.user if not args.user: username = os.environ['USER'] image = args.image if not args.image: image = 'jwp-build-latest' volumes = args.volume if not args.volume: volumes = ['/home/{}/Develop'.format(username)] container = args.container if not args.container: container = 'dev' workdir = args.workdir if not workdir: workdir = '/home/{}'.format(username) graphics_text = '' if args.graphics: graphics_text = set_up_graphics_forwards() args_text = '' if args.args: args_text = args.args # podman needs userns set to keep-id for volumes to work. userns_text = '' if manager == 'podman': userns_text = '--userns=keep-id' # Include volume for ssh keys. ssh_text = '' if not args.no_ssh: if 'SSH_AUTH_SOCK' in os.environ.keys(): ssh_text = ('-v {ssh_auth_sock}:/.ssh_auth_sock ' '-e SSH_AUTH_SOCK=/.ssh_auth_sock').format( ssh_auth_sock=os.environ['SSH_AUTH_SOCK']) else: print('SSH_AUTH_SOCK does not exist not adding ssh keys.') volume_text = '' for volume in volumes: new_text = parse_volume(volume) volume_text = volume_text + new_text command = ('{manager} run -d' ' --user {username}' ' --name {container}' ' {userns_text}' ' --workdir {workdir}' ' --ipc=host' ' --net=host' ' -e DEV_CONTAIN_CONTAINER_NAME={container}' ' {volume_text}' ' {ssh_text} {graphics_text} {args_text}' ' {image}').format( manager=manager, username=username, image=image, volume_text=volume_text, ssh_text=ssh_text, graphics_text=graphics_text, args_text=args_text, container=container, workdir=workdir, userns_text=userns_text) print('Running: {}'.format(command)) subprocess.run(command, shell=True) def parse_volume(volume): if not ':' in volume: volume = str(pathlib.Path(volume).expanduser().resolve()) if os.path.exists(volume): return ' --volume {volume}:{volume}:Z'.format(volume=volume) else: print('Requested volume ({}) not present on host. Exiting.'.format(volume), file=sys.stderr) sys.exit(1) else: volume = volume.split(':') volume[0] = str(pathlib.Path(volume[0]).expanduser().resolve()) # Note the second path may not resolve on the host. volume[1] = str(pathlib.Path(volume[1]).expanduser()) if os.path.exists(volume[0]): return ' --volume {volume0}:{volume1}:Z'.format(volume0=volume[0], volume1=volume[1]) else: print('Requested volume ({}) not present on host. Exiting.'.format(volume[0]), file=sys.stderr) sys.exit(1) def set_up_graphics_forwards(): # XOrg xorg = '' if os.path.exists('/tmp/.X11-unix'): xorg = (' -e DISPLAY=$DISPLAY' ' -v /tmp/.X11-unix:/tmp/.X11-unix:rw') # Wayland wayland = '' if os.environ.get('WAYLAND_DISPLAY'): wayland = (' -e XDG_RUNTIME_DIR=/tmp' ' -e WAYLAND_DISPLAY=$WAYLAND_DISPLAY' ' -v $XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY') # (User) dbus socket. dbus = '' # What kind of socket is it? dbus_address = os.environ.get('DBUS_SESSION_BUS_ADDRESS') # If a real path, need to mount it. Otherwise --net=host takes care of it. if 'unix:path' in dbus_address: dbus_path = dbus_address.split('=')[1] dbus = dbus + '--volume {path}:{path}'.format(path=dbus_path) # Regardless need to know where to look. dbus = dbus + ' --env DBUS_SESSION_BUS_ADDRESS="$DBUS_SESSION_BUS_ADDRESS"' return xorg + ' ' + wayland + ' ' + dbus if __name__ == '__main__': start(sys.argv[1:]) ```
{ "source": "jpace121/development_tools", "score": 2 }
#### File: development_tools/dev_contain/clean.py ```python import argparse import sys import subprocess import shlex import dev_contain.common as common def clean(in_args): parser = argparse.ArgumentParser(prog=sys.argv[0]+' clean', description='Prune system of uneeded containers and images.') args = parser.parse_args(in_args) builder = common.get_builder() manager = common.get_manager() if builder == 'buildah': run_and_log('Removing buildah containers.', 'buildah rm --all') run_and_log('Pruning buildah images.', 'buildah rmi --prune') if builder == 'podman': run_and_log('Removing podman images.', 'podman image prune') if builder == 'docker': run_and_log('Pruning dangling images.', 'docker image prune') def run_and_log(comment, command): print(comment) print('Running: {}'.format(command)) subprocess.run(command, shell=True) if __name__ == '__main__': clean(sys.argv[1:]) ```
{ "source": "jpace121/j7s-ros2", "score": 2 }
#### File: j7s/launch/j7s-sub.launch.py ```python from launch import LaunchDescription import launch_ros.actions def generate_launch_description(): return LaunchDescription([ launch_ros.actions.Node( package='j7s', executable='j7s-sub', output='log', parameters = [{}], remappings = [ ('led_state', 'j7s_led_state') ] ) ]) ```
{ "source": "jpace121/j7s-router", "score": 2 }
#### File: netem/netem/netem.py ```python import subprocess import psutil class netem(): def __init__(self, interface, debug=False): self._interface = interface self._debug = debug def _run(self, command): if self._debug: print("Command: " + command) else: subprocess.run(command) def clear(self): command = f"tc qdisc del dev {self._interface} root" self._run(command) def delay(self, time, std_dev): command = (f"tc qdisc change dev {self._interface} root netem delay " f"{time}ms {std_dev}ms distribution normal") self._run(command) def packet_loss(self, percent): command = (f"tc qdisc change dev {self._interface} root netem loss " f"{percent}%") self._run(command) def limit(self, bandwidth_kbit): command = (f"tc qdisc add dev {self._interface} root tbf rate " f"{bandwidth_kbit}kbit burst 1600 limit 3000") self._run(command) ```
{ "source": "jpace121/ros2cli", "score": 2 }
#### File: ros2action/verb/send_goal.py ```python import importlib from action_msgs.msg import GoalStatus import rclpy from rclpy.action import ActionClient from ros2action.api import action_name_completer from ros2action.api import ActionTypeCompleter from ros2action.verb import VerbExtension from ros2cli.node import NODE_NAME_PREFIX from rosidl_runtime_py import message_to_yaml from rosidl_runtime_py import set_message_fields import yaml class SendGoalVerb(VerbExtension): """Send an action goal.""" def add_arguments(self, parser, cli_name): arg = parser.add_argument( 'action_name', help="Name of the ROS action (e.g. '/fibonacci')") arg.completer = action_name_completer arg = parser.add_argument( 'action_type', help="Type of the ROS action (e.g. 'example_interfaces/action/Fibonacci')") arg.completer = ActionTypeCompleter(action_name_key='action_name') parser.add_argument( 'goal', help="Goal request values in YAML format (e.g. '{order: 10}')") parser.add_argument( '-f', '--feedback', action='store_true', help='Echo feedback messages for the goal') def main(self, *, args): feedback_callback = None if args.feedback: feedback_callback = _feedback_callback return send_goal(args.action_name, args.action_type, args.goal, feedback_callback) def _goal_status_to_string(status): if GoalStatus.STATUS_ACCEPTED == status: return 'ACCEPTED' elif GoalStatus.STATUS_EXECUTING == status: return 'EXECUTING' elif GoalStatus.STATUS_CANCELING == status: return 'CANCELING' elif GoalStatus.STATUS_SUCCEEDED == status: return 'SUCCEEDED' elif GoalStatus.STATUS_CANCELED == status: return 'CANCELED' elif GoalStatus.STATUS_ABORTED == status: return 'ABORTED' else: return 'UNKNOWN' def _feedback_callback(feedback): print('Feedback:\n {}'.format(message_to_yaml(feedback.feedback, None))) def send_goal(action_name, action_type, goal_values, feedback_callback): goal_handle = None node = None action_client = None try: try: # TODO(jacobperron): This logic should come from a rosidl related package parts = action_type.split('/') if len(parts) == 1: raise ValueError() if len(parts) == 2: parts = [parts[0], 'action', parts[1]] package_name = parts[0] action_type = parts[-1] if not all(parts): raise ValueError() except ValueError: raise RuntimeError('The passed action type is invalid') module = importlib.import_module('.'.join(parts[:-1])) action_module = getattr(module, action_type) goal_dict = yaml.safe_load(goal_values) rclpy.init() node_name = NODE_NAME_PREFIX + '_send_goal_{}_{}'.format(package_name, action_type) node = rclpy.create_node(node_name) action_client = ActionClient(node, action_module, action_name) goal = action_module.Goal() try: set_message_fields(goal, goal_dict) except Exception as ex: return 'Failed to populate message fields: {!r}'.format(ex) print('Waiting for an action server to become available...') action_client.wait_for_server() print('Sending goal:\n {}'.format(message_to_yaml(goal, None))) goal_future = action_client.send_goal_async(goal, feedback_callback) rclpy.spin_until_future_complete(node, goal_future) goal_handle = goal_future.result() if goal_handle is None: raise RuntimeError( 'Exception while sending goal: {!r}'.format(goal_future.exception())) if not goal_handle.accepted: print('Goal was rejected.') # no need to potentially cancel the goal anymore goal_handle = None return print('Goal accepted with ID: {}\n'.format(bytes(goal_handle.goal_id.uuid).hex())) result_future = goal_handle.get_result_async() rclpy.spin_until_future_complete(node, result_future) result = result_future.result() if result is None: raise RuntimeError( 'Exception while getting result: {!r}'.format(result_future.exception())) # no need to potentially cancel the goal anymore goal_handle = None print('Result:\n {}'.format(message_to_yaml(result.result, None))) print('Goal finished with status: {}'.format(_goal_status_to_string(result.status))) finally: # Cancel the goal if it's still active if (goal_handle is not None and (GoalStatus.STATUS_ACCEPTED == goal_handle.status or GoalStatus.STATUS_EXECUTING == goal_handle.status)): print('Canceling goal...') cancel_future = goal_handle.cancel_goal_async() rclpy.spin_until_future_complete(node, cancel_future) cancel_response = cancel_future.result() if cancel_response is None: raise RuntimeError( 'Exception while canceling goal: {!r}'.format(cancel_future.exception())) if len(cancel_response.goals_canceling) == 0: raise RuntimeError('Failed to cancel goal') if len(cancel_response.goals_canceling) > 1: raise RuntimeError('More than one goal canceled') if cancel_response.goals_canceling[0].goal_id != goal_handle.goal_id: raise RuntimeError('Canceled goal with incorrect goal ID') print('Goal canceled.') if action_client is not None: action_client.destroy() if node is not None: node.destroy_node() if rclpy.ok(): rclpy.shutdown() ``` #### File: ros2interface/verb/show.py ```python from ros2interface.api import get_interface_path from ros2interface.api import type_completer from ros2interface.verb import VerbExtension class ShowVerb(VerbExtension): """Output the interface definition.""" def add_arguments(self, parser, cli_name): arg = parser.add_argument( 'type', help='Show an interface definition (e.g. "std_msgs/msg/String")') arg.completer = type_completer def main(self, *, args): # TODO(kucheria) this logic should come from a rosidl related package try: parts = args.type.split('/') if len(parts) < 2: raise ValueError() if not all(parts): raise ValueError() file_path = get_interface_path(parts) except ValueError: raise RuntimeError('The passed interface type is invalid') except LookupError as e: return str(e) with open(file_path, 'r') as h: print(h.read(), end='') ```
{ "source": "jpacerqueira/project_lost_saturn", "score": 2 }
#### File: CloudComposer-AirFlow/composer_https_post_example/dag_trigger.py ```python import argparse from datetime import datetime import json from tzlocal import get_localzone import make_iap_request as iap def main(): """This main function calls the make_iap_request function which is defined at https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/iap/make_iap_request.py and then prints the output of the function. The make_iap_request function demonstrates how to authenticate to Identity-Aware Proxy using a service account. Returns: A string containing the page body, or raises an exception if the page couldn't be retrieved. """ _LOCAL_TZ = get_localzone() parser = argparse.ArgumentParser() parser.add_argument("--url", dest='url', required=True, help="The url of a resource sitting behind identity-aware proxy.") parser.add_argument("--iapClientId", dest='iapClientId', required=True, help="The Client ID of the IAP OAuth Client.") parser.add_argument("--raw_path", dest='raw_path', required=True, help="GCS path to raw files.") args = parser.parse_args() # Force trailing slash because logic in avearge-speed DAG expects it this way. raw_path = args.raw_path if args.raw_path.endswith('/') else args.raw_path + '/' bucket = raw_path.lstrip('gs://').split('/')[0] # This transformed path is relative to the bucket Variable in the Airflow environment. # Note, the gs://<bucket> prefix is stripped because the GoogleCloudStorageToBigQueryOperator # expects the source_objects as relative to the bucket param transformed_path = raw_path.replace('/raw-', '/transformed-').replace('gs://' + bucket + '/', '') failed_path = raw_path.replace('/raw-', '/failed-').replace('gs://' + bucket + '/', '') # Note, we need to remove the trailing slash because of how the the spark saveAsTextFile # method works. transformed_path = transformed_path.rstrip('/') # Place parameters to be passed as part of the dag_run triggered by this POST here. # In this example we will pass the path where the raw files are and the path where we should # place the transformed files. conf = { 'raw_path': raw_path, 'transformed_path': transformed_path, 'failed_path': failed_path, } # The api signature requires a unique run_id payload = { 'run_id': 'post-triggered-run-%s' % datetime.now(_LOCAL_TZ).strftime('%Y%m%d%H%M%s%Z'), 'conf': json.dumps(conf), } return iap.make_iap_request(args.url, args.iapClientId, method='POST', data=json.dumps(payload)) if __name__ == "__main__": main() ```
{ "source": "jpachebat/2021-assignment-pandas", "score": 4 }
#### File: jpachebat/2021-assignment-pandas/pandas_questions.py ```python import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt def load_data(): """Load data from the CSV files referundum/regions/departments.""" referendum = pd.DataFrame(pd.read_csv('data/referendum.csv')) regions = pd.DataFrame(pd.read_csv("data/regions.csv")) departments = pd.DataFrame(pd.read_csv("data/departments.csv")) return referendum, regions, departments def merge_regions_and_departments(regions, departments): """Merge regions and departments in one DataFrame. The columns in the final DataFrame should be: ['code_reg', 'name_reg', 'code_dep', 'name_dep'] """ regions = regions.rename(columns={ "code": "code_reg", "name": "name_reg", "slug": "slug_reg" } ) departments = departments.rename(columns={ "code": "code_dep", "name": "name_dep", "slug": "slug_dep", "region_code": "code_reg" } ) regions_and_departments = pd.merge( departments, regions, how='left', on="code_reg") regions_and_departments = regions_and_departments[ ['code_dep', 'name_dep', 'code_reg', 'name_reg'] ] print(regions) print(departments) print(regions_and_departments) return regions_and_departments def merge_referendum_and_areas(referendum, regions_and_departments): """Merge referendum and regions_and_departments in one DataFrame. You can drop the lines relative to DOM-TOM-COM departments, and the french living abroad. """ referendum = referendum.rename(columns={ "Department code": "code_dep" } ) mask = [str(i) for i in range(1, 96)] referendum = referendum[referendum["code_dep"].isin(mask)] referendum['code_dep'] = referendum[ 'code_dep'].apply(lambda x: "%02d" % int(x)) referendum_and_areas = pd.merge( referendum, regions_and_departments, how='left', on='code_dep' ) return referendum_and_areas def compute_referendum_result_by_regions(referendum_and_areas): """Return a table with the absolute count for each region. The return DataFrame should be indexed by `code_reg` and have columns: ['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B'] """ referendum_result_by_regions = referendum_and_areas[ [ 'code_reg', 'name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B' ] ] referendum_result_by_regions.set_index('code_reg') referendum_result_by_regions = referendum_result_by_regions.groupby( 'code_reg').sum() return referendum_result_by_regions def plot_referendum_map(referendum_result_by_regions): """Plot a map with the results from the referendum. * Load the geographic data with geopandas from `regions.geojson`. * Merge these info into `referendum_result_by_regions`. * Use the method `GeoDataFrame.plot` to display the result map. The results should display the rate of 'Choice A' over all expressed ballots. * Return a gpd.GeoDataFrame with a column 'ratio' containing the results. """ geo_region = gpd.read_file('data/regions.geojson') geo_region = geo_region.rename(columns={'code': 'code_reg'}) referendum_result_by_regions = pd.merge(referendum_result_by_regions, geo_region, on='code_reg', how='left') referendum_result_by_regions = gpd.GeoDataFrame( referendum_result_by_regions ) referendum_result_by_regions.plot(column="Choice A") referendum_result_by_regions['ratio'] = referendum_result_by_regions[ 'Choice A']/referendum_result_by_regions['Choice B'] plt.show() return referendum_result_by_regions if __name__ == "__main__": referendum, df_reg, df_dep = load_data() regions_and_departments = merge_regions_and_departments( df_reg, df_dep ) referendum_and_areas = merge_referendum_and_areas( referendum, regions_and_departments ) referendum_results = compute_referendum_result_by_regions( referendum_and_areas ) print(referendum_results) plot_referendum_map(referendum_results) plt.show() ```
{ "source": "jpackagebot/safersympify", "score": 4 }
#### File: safersympify/safersympify/safersympify.py ```python r""" Convert user input into SymPy expressions. RECIPES: Create a SymPy expression from user input (pure Python syntax with whitelisted oprators and functions only): >>> expr = SaferSympify().str2sympy('-sqrt(1 + a**b*b)/((a**b)*b+1)') >>> expr -1/sqrt(a**b*b + 1) Get free symbols: >>> sorted(expr.free_symbols, key=lambda x: str(x)) [a, b] Evaluate expression: >>> expr.evalf(subs={'a': 1, 'b': 3, 'c': 5}) # Note extra values can be passed too -0.500000000000000 Simplify expression: >>> expr.simplify() -1/sqrt(a**b*b + 1) Pretty-print expression as Latex (could be displayed in browser with MathJax) >>> sympy.latex(expr) '- \\frac{1}{\\sqrt{a^{b} b + 1}}' Pretty-print in terminal >>> sympy.pprint(expr, use_unicode_sqrt_char=True) -1 ───────────── __________ ╱ b ╲╱ a ⋅b + 1 """ import ast import operator import sympy class SaferSympify: """ Handles unsanitized user input instead of SymPy, which does not do that yet. See SymPy PR12524 for details: https://github.com/sympy/sympy/pull/12524 """ def __init__(self): self.node_types_allowed = self._get_node_types_allowed() self.binary_operator_types_allowed = self._get_binary_operator_types_allowed() self.unary_operator_types_allowed = self._get_unary_operator_types_allowed() self.functions_allowed = self._get_functions_allowed() def str2sympy(self, string): ast_expr = ast.parse(string, mode='eval') root_node = ast_expr.body sympy_expr = self.safer_eval(root_node) return sympy_expr def safer_eval(self, node): node_type = type(node) try: node_handler = self.node_types_allowed[node_type] except KeyError: raise ValueError("Node type %s is not allowed." % node_type) return node_handler(node) def _get_node_types_allowed(self): return { ast.Name: self._symbol, ast.Num: self._number, ast.UnaryOp: self._unary_op, ast.BinOp: self._binary_op, ast.Call: self._function } def _get_unary_operator_types_allowed(self): return { ast.USub: operator.neg, } def _get_binary_operator_types_allowed(self): return { ast.Add: sympy.Add, ast.Sub: operator.sub, ast.Mult: sympy.Mul, ast.Div: operator.truediv, ast.Pow: operator.pow, ast.BitXor: operator.xor, } def _get_functions_allowed(self): return { 'sin': sympy.sin, 'cos': sympy.cos, 'sqrt': sympy.sqrt } def _symbol(self, node): return sympy.Symbol(node.id) def _number(self, node): return sympy.Number(node.n) def _unary_op(self, node): operator_type = type(node.op) o = self.unary_operator_types_allowed[operator_type] operand = self.safer_eval(node.operand) return o(operand) def _binary_op(self, node): operator_type = type(node.op) o = self.binary_operator_types_allowed[operator_type] left = self.safer_eval(node.left) right = self.safer_eval(node.right) return o(left, right) def _function(self, node): function_name = node.func.id arg_list = [] for node_arg in node.args: arg_list.append(self.safer_eval(node_arg)) try: f = self.functions_allowed[function_name] except KeyError: raise ValueError("Function %s is not allowed" % function_name) return f(*arg_list) ```
{ "source": "JPacoch/post-glacial-ds", "score": 3 }
#### File: JPacoch/post-glacial-ds/data_processing.py ```python import rasterio import numpy as np import pandas as pd import geopandas as gpd import tensorflow as tf import matplotlib.pyplot as plt import sklearn.model_selection from re import X from PIL import Image from cProfile import label from pyproj import transform #Loading prepared point dataset points = gpd.read_file("C:/Users/pacoc/Desktop/Warsztat/Studia/mag/data/punkty/punkty1.gpkg", layer = 'punkty1') #DEM / Hillshade for Poland src = rasterio.open('C:/Users/pacoc/Desktop/Warsztat/Studia/mag/data/hillshade.tif') windows_list = [] def createImgDataset(data, class_name, train_test_split=False): print(class_name) #Get window values for point in data['geometry']: x = point.xy[0][0] y = point.xy[1][0] row, col = src.index(x,y) rst = src.read(1, window=rasterio.windows.Window(col_off=col, row_off=row, width=128, height=128)) windows_list.append(rst) # plt.imshow(rst, cmap='binary') # plt.show() # print(windows_list[0]) # print(len(windows_list[0])) # print(type(windows_list[0])) #Labelling labels_list=[] for elem in range(0, len(windows_list)): elem = 0 labels_list.append(elem) labels_list = np.asarray(labels_list).astype('float32') print(labels_list) print(type(labels_list)) # labels_list = tf.keras.utils.to_categorical(labels_list) # print(labels_list) # print(type(labels_list)) #List of arrays to list of tensors #Tensor of tensors def arrayListToTensor(list): tensor_list = tf.convert_to_tensor(list, dtype=tf.float32) print(type(tensor_list)) # print(tensor_list.shape) # print(tensor_list.ndim) # print(tensor_list.dtype) return tensor_list #List of tensors # def arrayListToTensor(list): # tensor_list=[] # for arr in list: # arr = tf.convert_to_tensor(arr, dtype=tf.float32) # tensor_list.append(arr) # print(tensor_list) # # print(tensor_list[0].ndim) # return tensor_list tensor = arrayListToTensor(windows_list) # plt.imshow(tensor[1]) # plt.show() if train_test_split == True: X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(windows_list, labels_list, test_size=0.20, random_state=42) i = 0 for arr in range(1,len(X_train)): arr = Image.fromarray(X_train[i]) arr.save(f'data/train/{class_name}/{i}.png', format='PNG') i = i + 1 j = 0 for arr in range(1,len(X_val)): arr = Image.fromarray(X_val[j]) arr.save(f'data/val/{class_name}/{j}.png', format='PNG') j = j + 1 else: i = 0 for arr in range(1,len(windows_list)): arr = Image.fromarray(windows_list[i]) arr.save(f'data/manual/{class_name}/{i}.png', format='PNG') i = i + 1 createImgDataset(points, 'denuded') ```
{ "source": "jpaDeveloper/estrutura-de-dados", "score": 4 }
#### File: estrutura-de-dados-master/aula2/hanoi.py ```python cont=0 def hanoi(n, ori='A', dest='B', aux='C'): global cont cont += 1 if n == 1: print('%s -> %s' % (ori, dest)) else: hanoi(n - 1, ori, aux, dest) print('%s -> %s' % (ori, dest)) hanoi(n - 1, aux, dest, ori) for i in range(1, 5): print('###### solução %s' % i) cont=0 hanoi(i) print('Tempo de execução %s'% cont) ``` #### File: estrutura-de-dados-master/aula2/sequencias.py ```python lst = [1, 2, 3] tpl = (1, 2, 3) s = '123' primeiro, *t = tpl print(t) print(primeiro) lst[0], lst[1] = lst[1], lst[0] print(lst[0]) print(tpl[0]) print(s[0]) def f(a, b): return a * 2, b * 2 tpl = (1, 2) a, b = f(*tpl) print(a, b) print(type(tpl)) ``` #### File: estrutura-de-dados-master/aula3/lista_infinita.py ```python def gerar_lista_infinita(inicio): print('Inicio') while True: yield inicio inicio += 1 for i in gerar_lista_infinita(1): print(i) ``` #### File: estrutura-de-dados-master/aula5/expressaoAritimetica.py ```python from collections import deque #Complexidade: Tempo O(n) Espaço: O(n) from aula5.fila import Fila from aula4.pilha import Pilha class FilaVaziaErro(Exception): pass class ErroLexico(Exception): pass class ErroSintatico(Exception): pass def analise_lexica(expressao): fila = Fila() especiais = '{[()]}+-*/.' quant = '' alfabeto = 'abcdefghijklmnopqrstuvwxyz' sequenciaNumerica = '0123456789' for caracter in expressao: if caracter in especiais: if len(quant): fila.enfileirar(quant) quant = '' fila.enfileirar(caracter) if caracter in set(sequenciaNumerica): quant = quant + caracter if caracter in set(alfabeto) or caracter == '': raise ErroLexico('') if len(quant): fila.enfileirar(quant) return fila def analise_sintatica(fila): especiais = '+-*/(){}[]' filaObjeto = Fila() caracter = '' if not(len(fila)): raise ErroSintatico('') while len(fila): atual = fila.desenfileirar() if atual in especiais: if len(caracter):#Verificanto se é int ou float if '.' not in caracter: filaObjeto.enfileirar(int(caracter)) else: filaObjeto.enfileirar(float(caracter)) caracter = '' filaObjeto.enfileirar(atual) else: caracter += atual if len(caracter): if '.' not in caracter: caracter = int(caracter) else: caracter = float(caracter) filaObjeto.enfileirar(caracter) return filaObjeto def avaliar(expressao): pilha = Pilha() analise = analise_sintatica(analise_lexica(expressao)) especiais = '{[()]}' matematicos = '+-*/' for atual in analise: pilha.empilhar(atual) if len(pilha) >= 3: p1, p2, p3 = pilha.desempilhar(), pilha.desempilhar(), pilha.desempilhar() if str(p1) not in especiais and str(p3) not in especiais and str(p2) in matematicos: if p2 == '+': controle = p3 + p1 elif p2 == '-': controle = p3 - p1 elif p2 == '*': controle = p3 * p1 else: controle = p3 / p1 pilha.empilhar(controle) else: pilha.empilhar(p3) pilha.empilhar(p2) pilha.empilhar(p1) if str(atual) in ')]}': pilha.desempilhar() controle = pilha.desempilhar() pilha.desempilhar() pilha.empilhar(controle) if len(pilha) >= 3: p1, p2, p3 = pilha.desempilhar(), pilha.desempilhar(), pilha.desempilhar() if str(p1) not in especiais and str(p3) not in especiais and str(p2) in matematicos: if p2 == '+': controle = p3 + p1 elif p2 == '-': controle = p3 - p1 elif p2 == '*': controle = p3 * p1 else: controle = p3 / p1 pilha.empilhar(controle) else: pilha.empilhar(p3) pilha.empilhar(p2) pilha.empilhar(p1) return pilha.desempilhar() import unittest class AnaliseLexicaTestes(unittest.TestCase): def test_expressao_vazia(self): fila = analise_lexica('') self.assertTrue(fila.vazia()) def test_caracter_estranho(self): self.assertRaises(ErroLexico, analise_lexica, 'a') self.assertRaises(ErroLexico, analise_lexica, 'ab') def test_inteiro_com_um_algarismo(self): fila = analise_lexica('1') self.assertEqual('1', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_inteiro_com_vários_algarismos(self): fila = analise_lexica('1234567890') self.assertEqual('1234567890', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_float(self): fila = analise_lexica('1234567890.34') self.assertEqual('1234567890', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('34', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_parenteses(self): fila = analise_lexica('(1)') self.assertEqual('(', fila.desenfileirar()) self.assertEqual('1', fila.desenfileirar()) self.assertEqual(')', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_chaves(self): fila = analise_lexica('{(1)}') self.assertEqual('{', fila.desenfileirar()) self.assertEqual('(', fila.desenfileirar()) self.assertEqual('1', fila.desenfileirar()) self.assertEqual(')', fila.desenfileirar()) self.assertEqual('}', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_colchetes(self): fila = analise_lexica('[{(1.0)}]') self.assertEqual('[', fila.desenfileirar()) self.assertEqual('{', fila.desenfileirar()) self.assertEqual('(', fila.desenfileirar()) self.assertEqual('1', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('0', fila.desenfileirar()) self.assertEqual(')', fila.desenfileirar()) self.assertEqual('}', fila.desenfileirar()) self.assertEqual(']', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_adicao(self): fila = analise_lexica('1+2.0') self.assertEqual('1', fila.desenfileirar()) self.assertEqual('+', fila.desenfileirar()) self.assertEqual('2', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('0', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_subtracao(self): fila = analise_lexica('1-2.0') self.assertEqual('1', fila.desenfileirar()) self.assertEqual('-', fila.desenfileirar()) self.assertEqual('2', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('0', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_multiplicacao(self): fila = analise_lexica('1*2.0') self.assertEqual('1', fila.desenfileirar()) self.assertEqual('*', fila.desenfileirar()) self.assertEqual('2', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('0', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_divisao(self): fila = analise_lexica('1/2.0') self.assertEqual('1', fila.desenfileirar()) self.assertEqual('/', fila.desenfileirar()) self.assertEqual('2', fila.desenfileirar()) self.assertEqual('.', fila.desenfileirar()) self.assertEqual('0', fila.desenfileirar()) self.assertTrue(fila.vazia()) def test_expresao_com_todos_simbolos(self): expressao = '1/{2.0+3*[7-(5-3)]}' fila = analise_lexica(expressao) self.assertListEqual(list(expressao), [e for e in fila]) self.assertTrue(fila.vazia()) class AnaliseSintaticaTestes(unittest.TestCase): def test_fila_vazia(self): fila = Fila() self.assertRaises(ErroSintatico, analise_sintatica, fila) def test_int(self): fila = Fila() fila.enfileirar('1234567890') fila_sintatica = analise_sintatica(fila) self.assertEqual(1234567890, fila_sintatica.desenfileirar()) self.assertTrue(fila_sintatica.vazia()) def test_float(self): fila = Fila() fila.enfileirar('1234567890') fila.enfileirar('.') fila.enfileirar('4') fila_sintatica = analise_sintatica(fila) self.assertEqual(1234567890.4, fila_sintatica.desenfileirar()) self.assertTrue(fila_sintatica.vazia()) def test_expressao_com_todos_elementos(self): fila = analise_lexica('1000/{222.125+3*[7-(5-3)]}') fila_sintatica = analise_sintatica(fila) self.assertListEqual([1000, '/', '{', 222.125, '+', 3, '*', '[', 7, '-', '(', 5, '-', 3, ')', ']', '}'], [e for e in fila_sintatica]) class AvaliacaoTestes(unittest.TestCase): def test_expressao_vazia(self): self.assertRaises(ErroSintatico, avaliar, '') def test_inteiro(self): self.assert_avaliacao('1') def test_float(self): self.assert_avaliacao('2.1') def test_soma(self): self.assert_avaliacao('2+1') def test_subtracao_e_parenteses(self): self.assert_avaliacao('(2-1)') def test_expressao_com_todos_elementos(self): self.assertEqual(1.0, avaliar('2.0/[4*3+1-{15-(1+3)}]')) def assert_avaliacao(self, expressao): self.assertEqual(eval(expressao), avaliar(expressao)) if __name__ == '__main__': unittest.main() ``` #### File: estrutura-de-dados-master/aula6/insertion_sort.py ```python import unittest #Tempo: O de n^2 #Memoria: O de 1 def insertion_sort(seq): for i in range(1, len(seq)): corrente = seq[i] atul = i while atul > 0 and seq[atul - 1] > corrente: seq[atul] = seq[atul - 1] atul = atul - 1 seq[atul] = corrente return seq class OrdenacaoTestes(unittest.TestCase): def teste_lista_vazia(self): self.assertListEqual([], insertion_sort([])) def teste_lista_unitaria(self): self.assertListEqual([1], insertion_sort([1])) def teste_lista_binaria(self): self.assertListEqual([1, 2], insertion_sort([2, 1])) def teste_lista_binaria(self): self.assertListEqual([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], insertion_sort([9, 7, 1, 8, 5, 3, 6, 4, 2, 0])) if __name__ == '__main__': unittest.main() ``` #### File: estrutura-de-dados/estrutura-de-dados-master/min_max.py ```python import unittest import time G = False contN = None M = None m = None def min_max(seq, contador = contN, maior = M, menor = m ): global G #Variavel global para controle da estrutura de decisão ''' :param seq: uma sequencia :return: (min, max) Retorna tupla cujo primeiro valor mínimo (min) é o valor mínimo da sequencia seq. O segundo é o valor máximo (max) da sequencia A função max_min é O(n) por causa que seu tempo de processamento esta diretamente ligado a sua entrada, pois o numero numero de elementos na lista que determina a quantidade de vezes que a resursão sera utilizada e também após uma analise feita com a função time acoplada em cada caso de teste, foi constatado o tempo aproximado consequentemente calculado suas diferenças. Tempo com lista 500 elementos em mili segundos 0.0010001659393310547 ''' if G == True: max = maior min = menor if contador == len(seq):#Se a variavel contador for igual ao numero de elementos da lista G = False return min, max if max < seq[contador]: max = seq[contador] if min > seq[contador]: min = seq[contador] return min_max(seq, contador + 1, max, min) else: if len(seq) == 0: return None, None elif len(seq) == 1: return seq[0], seq[0] if len(seq) > 1: contN = 1 M = seq[0] m = seq[0] G = True return min_max(seq, contN, M, m) class MinMaxTestes(unittest.TestCase): def test_lista_vazia(self): self.assertTupleEqual((None, None), min_max([])) def test_lista_len_1(self): self.assertTupleEqual((1, 1), min_max([1])) def test_lista_consecutivos(self): self.assertTupleEqual((0, 500), min_max(list(range(501)))) if __name__ == '__main__': unittest.main() ```
{ "source": "jpadilla/apistar", "score": 2 }
#### File: apistar/apistar/http.py ```python from typing import Any, Callable, Dict, List, Tuple, TypeVar, Union # noqa from urllib.parse import quote from werkzeug.datastructures import Headers as WerkzeugHeaders from werkzeug.datastructures import ( EnvironHeaders, ImmutableDict, ImmutableHeadersMixin, ImmutableMultiDict ) from werkzeug.urls import url_decode from apistar.compat import json from apistar.pipelines import ArgName from apistar.schema import validate class WSGIEnviron(ImmutableDict): pass class Method(str): @classmethod def build(cls, environ: WSGIEnviron): return cls(environ['REQUEST_METHOD']) class Scheme(str): @classmethod def build(cls, environ: WSGIEnviron): return cls(environ['wsgi.url_scheme']) class Host(str): @classmethod def build(cls, environ: WSGIEnviron): return cls(environ.get('HTTP_HOST') or environ['SERVER_NAME']) class Port(int): @classmethod def build(cls, environ: WSGIEnviron): if environ['wsgi.url_scheme'] == 'https': return cls(environ.get('SERVER_PORT') or 443) return cls(environ.get('SERVER_PORT') or 80) class MountPath(str): @classmethod def build(cls, environ: WSGIEnviron): return cls(quote(environ.get('SCRIPT_NAME', ''))) class RelativePath(str): @classmethod def build(cls, environ: WSGIEnviron): return cls(quote(environ.get('PATH_INFO', ''))) class Path(str): @classmethod def build(cls, environ: WSGIEnviron): path = environ.get('SCRIPT_NAME', '') + environ.get('PATH_INFO', '') return cls(quote(path)) class QueryString(str): @classmethod def build(cls, environ: WSGIEnviron): query_string = environ.get('QUERY_STRING', '') return cls(query_string) class URL(str): @classmethod def build(cls, environ: WSGIEnviron): # https://www.python.org/dev/peps/pep-0333/#url-reconstruction url = environ['wsgi.url_scheme'] + '://' if environ.get('HTTP_HOST'): url += environ['HTTP_HOST'] else: url += environ['SERVER_NAME'] if environ['wsgi.url_scheme'] == 'https': if environ['SERVER_PORT'] != '443': url += ':' + environ['SERVER_PORT'] else: if environ['SERVER_PORT'] != '80': url += ':' + environ['SERVER_PORT'] url += quote(environ.get('SCRIPT_NAME', '')) url += quote(environ.get('PATH_INFO', '')) if environ.get('QUERY_STRING'): url += '?' + environ['QUERY_STRING'] return cls(url) class Body(bytes): @classmethod def build(cls, environ: WSGIEnviron): content_length = int(environ.get('CONTENT_LENGTH', 0)) return environ['wsgi.input'].read(content_length) class Headers(ImmutableHeadersMixin, WerkzeugHeaders): def __init__(self, *args, **kwargs): if len(args) == 1 and isinstance(args[0], dict): args = [list(args[0].items())] super().__init__(*args, **kwargs) @classmethod def build(cls, environ: WSGIEnviron): return cls(EnvironHeaders(environ)) class Header(str): @classmethod def build(cls, headers: Headers, arg_name: ArgName): return headers.get(arg_name.replace('_', '-')) class QueryParams(ImmutableMultiDict): @classmethod def build(cls, environ: WSGIEnviron): query_string = environ.get('QUERY_STRING', '') return cls(url_decode(query_string)) class QueryParam(str): schema = None # type: type @classmethod def build(cls, params: QueryParams, arg_name: ArgName): value = params.get(arg_name) if value is None or cls.schema is None: return value if not isinstance(value, cls.schema): value = validate(cls.schema, value) return value HeadersType = Union[ List[Tuple[str, str]], Dict[str, str], Headers ] ResponseData = TypeVar('ResponseData') class Request(object): __slots__ = ('method', 'url', 'headers') def __init__(self, method: str, url: str, headers: HeadersType=None) -> None: self.method = method self.url = url self.headers = Headers(headers) @classmethod def build(cls, method: Method, url: URL, headers: Headers): return cls(method=method, url=url, headers=headers) class Response(object): __slots__ = ('data', 'content', 'status', 'headers') def __init__(self, data: Any, status: int=200, headers: HeadersType=None) -> None: if headers is None: headers_dict = {} # type: Union[Dict[str, str], Headers] headers_list = [] # type: List[Tuple[str, str]] elif isinstance(headers, dict): headers_dict = headers headers_list = list(headers.items()) elif isinstance(headers, list): headers_dict = dict(headers) headers_list = headers else: headers_dict = headers headers_list = headers.to_list() if isinstance(data, str): content = data.encode('utf-8') content_type = 'text/html; charset=utf-8' elif isinstance(data, bytes): content = data content_type = 'text/html; charset=utf-8' else: content = json.dumps(data).encode('utf-8') content_type = 'application/json' if 'Content-Length' not in headers_dict: headers_list += [('Content-Length', str(len(content)))] if 'Content-Type' not in headers_dict: headers_list += [('Content-Type', content_type)] self.data = data self.content = content self.status = status self.headers = Headers(headers_list) @classmethod def build(cls, data: ResponseData): return cls(data=data) ``` #### File: apistar/apistar/templating.py ```python import os import jinja2 from apistar.exceptions import ConfigurationError from apistar.pipelines import ArgName from apistar.settings import Settings class Templates(jinja2.Environment): @classmethod def build(cls, settings: Settings): template_dirs = settings.get(['TEMPLATES', 'DIRS']) loader = None # type: jinja2.BaseLoader if len(template_dirs) == 1: loader = jinja2.FileSystemLoader(template_dirs[0]) else: loader = jinja2.ChoiceLoader([ jinja2.FileSystemLoader(template_dir) for template_dir in template_dirs ]) return Templates(loader=loader) class Template(jinja2.Template): prefix = '' suffixes = ['.html', '.txt'] path_delimiter = '__' @classmethod def build(cls, arg_name: ArgName, templates: Templates): paths = arg_name.split(cls.path_delimiter) path = os.path.join(cls.prefix, *paths) for suffix in cls.suffixes: try: return templates.get_template(path + suffix) except jinja2.TemplateNotFound: pass raise ConfigurationError('No template found for "%s".' % arg_name) ``` #### File: apistar/tests/test_commands.py ```python import os import click from apistar import __version__, exceptions from apistar.app import App from apistar.main import setup_pythonpath from apistar.test import CommandLineRunner app = App() runner = CommandLineRunner(app) def test_help_flag(): result = runner.invoke([]) assert '--help' in result.output assert '--version' in result.output assert 'new' in result.output assert 'run' in result.output assert 'test' in result.output assert result.exit_code == 0 def test_version_flag(): result = runner.invoke(['--version']) assert __version__ in result.output assert result.exit_code == 0 def test_custom_command(): def custom(var): click.echo(var) app = App(commands=[custom]) runner = CommandLineRunner(app) result = runner.invoke([]) assert 'custom' in result.output result = runner.invoke(['custom', '123']) assert result.output == '123\n' assert result.exit_code == 0 def test_custom_command_with_int_arguments(): def add(a: int, b: int): click.echo(str(a + b)) app = App(commands=[add]) runner = CommandLineRunner(app) result = runner.invoke([]) assert 'add' in result.output result = runner.invoke(['add', '1', '2']) assert result.output == '3\n' assert result.exit_code == 0 def test_new(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject', '--layout', 'minimal']) assert os.path.exists('myproject') assert os.path.exists(os.path.join('myproject', 'app.py')) assert os.path.exists(os.path.join('myproject', 'tests.py')) def test_do_not_overwrite_existing_project(): with runner.isolated_filesystem(): result = runner.invoke(['new', 'myproject', '--layout', 'minimal']) assert result.exit_code == 0 result = runner.invoke(['new', 'myproject', '--layout', 'minimal']) assert result.exit_code != 0 def test_testsuite_minimal(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject', '--layout', 'minimal']) os.chdir('myproject') setup_pythonpath() result = runner.invoke(['test']) assert '2 passed' in result.output assert result.exit_code == 0 def test_testsuite_standard(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject']) os.chdir('myproject') setup_pythonpath() result = runner.invoke(['test']) assert '2 passed' in result.output assert result.exit_code == 0 # Add a failing test case. failing_test_module = os.path.join('tests', 'test_failure.py') with open(failing_test_module, 'w') as test_module: test_module.write('def test_failure():\n raise Exception()\n') result = runner.invoke(['test']) assert '1 failed, 2 passed' in result.output assert result.exit_code != 0 def test_testsuite_missing_tests_module(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject', '--layout', 'minimal']) os.chdir('myproject') setup_pythonpath() os.remove('tests.py') result = runner.invoke(['test']) assert isinstance(result.exception, exceptions.ConfigurationError) assert result.exit_code != 0 def test_missing_app_module(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject', '--layout', 'minimal']) os.chdir('myproject') setup_pythonpath() os.remove('app.py') result = runner.invoke(['run']) assert isinstance(result.exception, exceptions.ConfigurationError) assert result.exit_code != 0 def test_misconfigured_app_module(): with runner.isolated_filesystem(): runner.invoke(['new', 'myproject', '--layout', 'minimal']) os.chdir('myproject') setup_pythonpath() with open('app.py', 'w') as app_module: app_module.write('123\n') result = runner.invoke(['run']) assert isinstance(result.exception, exceptions.ConfigurationError) assert result.exit_code != 0 ``` #### File: apistar/tests/test_settings.py ```python from apistar import App, Route, TestClient from apistar.settings import Setting, Settings def get_settings(settings: Settings): return settings def get_setting(ABC: Setting): return {'ABC': ABC} routes = [ Route('/settings/', 'GET', get_settings), Route('/setting/', 'GET', get_setting), ] settings = { 'ABC': 123, 'XYZ': 456 } app = App(routes=routes, settings=settings) client = TestClient(app) def test_settings(): response = client.get('/settings/') assert response.status_code == 200 assert response.json() == { 'ABC': 123, 'XYZ': 456 } def test_setting(): response = client.get('/setting/') assert response.status_code == 200 assert response.json() == { 'ABC': 123, } def test_use_setting_as_argument(): abc = Setting(789) assert get_setting(abc) == {'ABC': 789} def test_settings_lookup(): settings = Settings( ABC=123, DEF={'XYZ': 456} ) assert settings.get('ABC') == 123 assert settings.get(['DEF']) == {'XYZ': 456} assert settings.get(['DEF', 'XYZ']) == 456 assert settings.get('missing') is None assert settings.get(['ABC', 'missing']) is None assert settings.get(['DEF', 'missing']) is None assert settings.get(['DEF', 'missing'], '') == '' ```
{ "source": "jpadilla/black-online", "score": 2 }
#### File: black-online/api/app.py ```python import os import json import base64 import lzma import black import urllib import tempfile from flask import Flask, render_template, request, jsonify from flask_cors import cross_origin TEMP_DIR = tempfile.gettempdir() BASE_URL = "https://black.vercel.app" BLACK_VERSION = os.getenv("BLACK_VERSION") def get_black_version(): lockfile = json.load(open("./Pipfile.lock")) package = lockfile["default"]["black"] version = package.get("version") ref = package.get("ref") if version: return version.lstrip("==") if ref: return ref[0:6] app = Flask(__name__) black_version = get_black_version() def compress_state(data): compressed = lzma.compress(json.dumps(data).encode("utf-8")) return base64.urlsafe_b64encode(compressed).decode("utf-8") def decompress_state(state): compressed = base64.urlsafe_b64decode(state) return json.loads(lzma.decompress(compressed)) def normalize_exception(exc): exception_str = f"{exc}" # Try to load contents dumped to tmp file. if "helpful: " in exception_str: try: _, file_path = exception_str.split("helpful: ") if file_path.startswith(TEMP_DIR): with open(file_path) as f: contents = f.read() exception_str = f"{exception_str}\n\n{contents}" except Exception: pass return exception_str def format_code(source, fast, configuration): try: mode = black.FileMode(**configuration) formatted = black.format_file_contents(source, fast=fast, mode=mode) except black.NothingChanged: formatted = source except Exception as exc: formatted = normalize_exception(exc) return formatted @app.route("/", methods=["POST", "GET"]) @cross_origin() def index(): if request.method == "POST": data = request.get_json() source = data.get("source") options = data.get("options", {}) line_length = int(options.get("line_length", 88)) skip_string_normalization = bool( options.get("skip_string_normalization", False) ) py36 = bool(options.get("py36", False)) pyi = bool(options.get("pyi", False)) fast = bool(options.get("fast", False)) else: state = request.args.get("state") if state: state = decompress_state(state) source = state.get("sc") line_length = state.get("ll") skip_string_normalization = state.get("ssn") py36 = state.get("py36") pyi = state.get("pyi") fast = state.get("fast") else: source = render_template("source.py") line_length = 88 skip_string_normalization = False py36 = False pyi = False fast = False formatted = format_code( source, fast=fast, configuration={ "target_versions": black.PY36_VERSIONS if py36 else set(), "line_length": line_length, "is_pyi": pyi, "string_normalization": not skip_string_normalization, }, ) state = compress_state( { "sc": source, "ll": line_length, "ssn": skip_string_normalization, "py36": py36, "pyi": pyi, "fast": fast, } ) options = [f"`--line-length={line_length}`"] if skip_string_normalization: options.append("`--skip-string-normalization`") if py36: options.append("`--py36`") if pyi: options.append("`--pyi`") if fast: options.append("`--fast`") else: options.append("`--safe`") if BLACK_VERSION == "stable": version = f"v{black_version}" else: version = f"https://github.com/psf/black/commit/{black_version}" issue_data = { "source_code": source, "formatted_code": formatted, "options": "\n".join(options), "version": version, "playground_link": f"{BASE_URL}/?version={BLACK_VERSION}&state={state}", } issue_body = urllib.parse.quote_plus(render_template("issue.md", **issue_data)) issue_link = f"https://github.com/psf/black/issues/new?body={issue_body}" return jsonify( { "source_code": source, "formatted_code": formatted, "options": { "line_length": line_length, "skip_string_normalization": skip_string_normalization, "py36": py36, "pyi": pyi, "fast": fast, }, "state": state, "issue_link": issue_link, "version": black_version, } ) @app.route("/version", methods=["GET"]) @cross_origin() def version(): return jsonify({"version": black_version}) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "jpadilladev/the-guardpian", "score": 2 }
#### File: jpadilladev/the-guardpian/main.py ```python from config.Config import Config import logging as log def main(): log.info('Starting The Guardpian...') config = Config() config.guardpian_service.start() if __name__ == '__main__': main() ``` #### File: the-guardpian/util/Gpio.py ```python import logging import RPi.GPIO as GPIO log = logging.getLogger(__name__) class Gpio: def __init__(self, debug, pin=4): self.debug = debug self.pin = pin if not self.debug: GPIO.setmode(GPIO.BCM) GPIO.setup(self.pin, GPIO.IN) def add_event_detect(self, callback): if not self.debug: GPIO.add_event_detect(self.pin, GPIO.BOTH, callback=callback, bouncetime=200) log.info("Added event detect to GPIO BOTH on pin " + str(self.pin)) def remove_event_detect(self): if not self.debug: GPIO.remove_event_detect(self.pin) log.info("Removed event detect to GPIO pin " + str(self.pin)) def input(self): if not self.debug: return GPIO.input(self.pin) else: return True def cleanup(self): if not self.debug: GPIO.cleanup() ```
{ "source": "jpadilla/notaso", "score": 2 }
#### File: notaso/home/views.py ```python from django.db.models import Count from django.views.generic import TemplateView from ..comments.models import Comment from ..professors.models import Professor from ..universities.models import University class HomeView(TemplateView): template_name = "home.html" def get_context_data(self, **kwargs): if "view" not in kwargs: kwargs["view"] = self universities = University.objects.all() universities = list(universities) universities.sort(key=lambda x: x.get_grade()) professors = ( Professor.objects.annotate(num_comments=Count("comment")) .filter(score__gt=0, num_comments__gte=10) .order_by("-score") ) comments = ( Comment.objects.all().exclude(body__exact="").order_by("-created_at", "-id") ) kwargs["professors"] = professors[:5] kwargs["universities"] = universities[:5] kwargs["recent_comments"] = comments[:5] kwargs["navbarSearchShow"] = True return kwargs ``` #### File: notaso/restapiv2/views.py ```python from django.shortcuts import get_object_or_404 from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters from rest_framework.response import Response from rest_framework.viewsets import ReadOnlyModelViewSet from ..departments.models import Department from ..professors.models import Professor from ..universities.models import University from .filters import ProfessorFilter, UniversityFilter from .serializers import ( DepartmentSerializer, ProfessorListSerializer, ProfessorRetrieveSerializer, UniversityListSerializer, UniversityRetrieveSerializer, ) class UniversityViewSet(ReadOnlyModelViewSet): """ ### 1. Search Values > Search university by name keyword - ####Example: * #####Search by University Name: [?search=Universidad de Puerto Rico](?search=Universidad de Puerto Rico) --- ### 2. Ordering Values > Order universities by id, name or city - ####Examples: * #####Ordering by id: [?ordering=id](?ordering=id) * #####Ordering by name: [?ordering=name](?ordering=name) * #####Ordering by city: [?ordering=city](?ordering=city) The API may also specify reverse orderings by prefixing the field name with '-', like so: * #####Reverse ordering: [?ordering=-name](?ordering=id) Multiple orderings may also be specified: * #####Multiple ordering: [?ordering=name,city](?ordering=name,city) --- ### 3. Filters Values > Filters university by name or city. - ####Examples: * #####Filter by name: [?name=Universidad de Puerto Rico](?name=Universidad de Puerto Rico) * #####Filter by city: [?city=San Juan](?city=San Juan) --- ##Retrieve professors by university departments --- ###1. Professors list by university department > Search professors from an university by departments **Only works retrieving one university, doesn't work for university list.** - ####Example: * #####Department slug: [?department=ciencias-de-computadora](?department=ciencias-de-computadora) --- """ queryset = University.objects.all() serializer_class = UniversityListSerializer filter_backends = ( filters.OrderingFilter, filters.SearchFilter, DjangoFilterBackend, ) ordering_fields = ("id", "name", "city") search_fields = ("name",) filterset_class = UniversityFilter lookup_field = "slug" def retrieve(self, request, slug=None): university = get_object_or_404(University, slug=slug) serializer = UniversityRetrieveSerializer( university, context={"request": request} ) return Response(serializer.data) class ProfessorViewSet(ReadOnlyModelViewSet): """ ### 1. Search Values > Search professors by name keywords - ####Example: * #####Search by Name: [?search=Jose](?search=Jose) --- ### 2. Ordering Values > Order professors by id, first_name, last_name, score, university name, university city and department name - ####Examples: * #####Ordering by id: [?ordering=id](?ordering=id) * #####Ordering by first name: [?ordering=first_name](?ordering=first_name) * #####Ordering by last name: [?ordering=last_name](?ordering=last_name) * #####Ordering by score: [?ordering=score](?ordering=score) * #####Ordering by university name: [?ordering=university__name](?ordering=university__name) * #####Ordering by university city: [?ordering=university__city](?ordering=university__city) * #####Ordering by department name: [?ordering=department__name](?ordering=department__name) The API may also specify reverse orderings by prefixing the field name with '-', like so: * #####Reverse ordering: [?ordering=-first_name](?ordering=-first_name) Multiple orderings may also be specified: * #####Multiple ordering: [?ordering=first_name,last_name](?ordering=first_name,last_name) --- ###3. Filters Values > Filters professors by name, university name, universitycity, department name, gender or score. - ####Examples: * #####Filter by university name: [?university_name=Universidad de Puerto Rico](?university_name=Universidad de Puerto Rico) * #####Filter by university_city: [?university_city=San Juan](?university_city=San Juan) * #####Filter by department name: [?department=Ciencias de Computadora](?department=Ciencias de Computadora) * #####Filter by gender: [?gender=M](?gender=M) * #####Filter by score: [?score=90](?score=90) --- """ queryset = Professor.objects.all() serializer_class = ProfessorListSerializer filter_backends = ( filters.OrderingFilter, filters.SearchFilter, DjangoFilterBackend, ) ordering_fields = ( "id", "first_name", "last_name", "score", "university__name", "university__city", "department__name", ) search_fields = ("first_name", "last_name") filterset_class = ProfessorFilter lookup_field = "slug" def retrieve(self, request, slug=None): professor = get_object_or_404(self.queryset, slug=slug) serializer = ProfessorRetrieveSerializer(professor) return Response(serializer.data) class DepartmentViewSet(ReadOnlyModelViewSet): """ ### 1. Search Values > Search departments by name keywords - ####Example: * #####Search by University Name: [?search=Ciencias de Computadora](?search=Ciencias de Computadora) --- ### 2. Ordering Values > Order departments by id or name - ####Examples: * #####Ordering by id: [?ordering=id](?ordering=id) * #####Ordering by name: [?ordering=name](?ordering=name) The API may also specify reverse orderings by prefixing the field name with '-', like so: * #####Reverse ordering: [?ordering=-name](?ordering=-name) Multiple orderings may also be specified: * #####Multiple ordering: [?ordering=id,name](?ordering=id,name) --- """ queryset = Department.objects.all() serializer_class = DepartmentSerializer filter_backends = ( filters.OrderingFilter, filters.SearchFilter, DjangoFilterBackend, ) ordering_fields = ("id", "name") search_fields = ("name",) lookup_field = "slug" ``` #### File: notaso/search/views.py ```python from django.views.generic import ListView from ..professors.models import Professor class SearchView(ListView): queryset = Professor.objects.all().order_by("-first_name", "last_name") template_name = "search.html" def get_context_data(self): context = super(SearchView, self).get_context_data() context.update( {"search_term": self.request.GET.get("q", ""), "navbarSearchShow": True} ) return context def get_queryset(self): queryset = super(SearchView, self).get_queryset() search_term = self.request.GET.get("q") if search_term: return Professor.objects.filter(search_index=search_term) return queryset[:10] ```
{ "source": "jpadilla/py-backwards-online", "score": 3 }
#### File: jpadilla/py-backwards-online/app.py ```python import textwrap from flask import Flask, render_template, request from py_backwards.compiler import _transform from py_backwards.const import TARGETS app = Flask(__name__) SOURCE_CODE = textwrap.dedent( """ def returning_range(x: int): yield from range(x) return x def x_printer(x): val: int val = yield from returning_range(x) print(f'val {val}') def formatter(x: int) -> dict: items: list = [*x_printer(x), x] print(*items, *items) return {'items': items} result = {'x': 10, **formatter(10)} print(result) class NumberManager: def ten(self): return 10 @classmethod def eleven(cls): return 11 class ImportantNumberManager(NumberManager): def ten(self): return super().ten() @classmethod def eleven(cls): return super().eleven() print(ImportantNumberManager().ten()) print(ImportantNumberManager.eleven()) """ ) @app.route('/', methods=['POST', 'GET']) def index(): source = SOURCE_CODE target = request.args.get('target', '2.7') if request.method == 'POST': source = request.form['source'] target = request.form['target'] try: path = '/tmp/file.py' transformed, _ = _transform(path, source, TARGETS[target]) error = None except Exception as exc: transformed = '' error = exc data = { 'source': source, 'transformed': transformed.strip(), 'error': error, 'targets': TARGETS.keys(), 'selected_target': target } return render_template('index.html', **data) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "JPadley18/dominos", "score": 3 }
#### File: dominos/dominos/api.py ```python from ratelimit import limits, RateLimitException from backoff import on_exception, expo from dominos.exception import ApiError from dominos.models import Stores, Menu, Basket, IngredientList from dominos.utils import enum, update_session_headers import requests VARIANT = enum(PERSONAL=0, SMALL=1, MEDIUM=2, LARGE=3) PAYMENT_METHOD = enum(CASH_ON_DELIVERY=0, CARD=1, PAYPAL=2, VISA_CHECKOUT=4) FULFILMENT_METHOD = enum(COLLECTION=0, DELIVERY=1) class Client(object): ''' API class for the UK version of Dominos pizza website. ''' BASE_URL = 'https://www.dominos.co.uk' def __init__(self, session=requests.session()): self.session = update_session_headers(session) self.reset_store() def new_session(self, session): ''' Clear out the current session on the remote and setup a new one. :return: A response from having expired the current session. :rtype: requests.Response ''' response = self.__get('/Home/SessionExpire') self.session = update_session_headers(session) return response def reset_store(self): ''' Clears out the current store and gets a cookie. Set the cross site request forgery token for each subsequent request. :return: A response having cleared the current store. :rtype: requests.Response ''' response = self.__get('/Store/Reset') token = self.session.cookies['XSRF-TOKEN'] self.session.headers.update({'X-XSRF-TOKEN': token}) return response def get_stores(self, search_term): ''' Search for dominos pizza stores using a search term. :param string search: Search term. :return: A list of nearby stores matching the search term. :rtype: list ''' params = {'SearchText': search_term} response = self.__get('/storefindermap/storesearch', params=params) return Stores(response.json()) def get_nearest_store(self, postcode): ''' Search for domino pizza stores using a postcode. This will only search for local stores indicating delivery status and payment details. :param string postcode: A postcode. :return: A response containing stores matching the postcode. :rtype: requests.Response ''' return self.get_stores(postcode).local_store def set_delivery_system(self, store, postcode, fulfilment_method=FULFILMENT_METHOD.DELIVERY): ''' Set local cookies by initialising the delivery system on the remote. Requires a store ID and a delivery postcode. :param Store store: Store id. :param string postcode: A postcode. :return: A response having initialised the delivery system. :rtype: requests.Response ''' method = 'delivery' if fulfilment_method == FULFILMENT_METHOD.DELIVERY else 'collection' params = { 'fulfilmentMethod': method, 'postcode': postcode, 'storeid': store.store_id } return self.__post('/Journey/Initialize', json=params) def get_menu(self, store): ''' Retrieve the menu from the selected store. :param Store store: A store. :return: The store menu. :rtype: Menu ''' params = { 'collectionOnly': not store.delivery_available, 'menuVersion': store.menu_version, 'storeId': store.store_id, } response = self.__get('/ProductCatalog/GetStoreCatalog', params=params) return Menu(response.json()) def get_basket(self): ''' Retrieve the basket for the current session. :return: A response containing the basket for the current session. :rtype: requests.Response ''' response = self.__get('/CheckoutBasket/GetBasket') return Basket(response.json()) def get_available_ingredients(self, item, size, store): """ Retrieves an IngredientList of ingredients that can be added/removed from the pizza by name. :param item: The item to find ingredients for :param dominos.VARIANT size: The size of the pizza to be ordered :param store: The store which the order will be placed at :return: IngredientList: A list of available ingredients """ params = { 'isoCode': "en-GB", 'sizeId': size, 'id': item.item_id, 'storeId': store.store_id } response = self.__get("/PizzaCustomisation/PizzaViewModelBySize", params=params) return IngredientList(response.json()) def add_item_to_basket(self, item, variant=VARIANT.MEDIUM, options={'quantity': 1}): ''' Add an item to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Ignored if the item is a side. :param dict options: Dictionary of options like quantity and an ingredients list :return: A response having added an item to the current basket. :rtype: requests.Response ''' item_type = item.type if item_type == 'Pizza': return self.add_pizza_to_basket(item, variant, options) elif item_type == 'Side': return self.add_side_to_basket(item, options['quantity']) return None def add_pizza_to_basket(self, item, variant=VARIANT.MEDIUM, options={}): ''' Add a pizza to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Some defaults are defined in the VARIANT enum. :param dict options: Dictionary of options like quantity and an ingredients list. If nothing is specified then a default quantity of 1 and the default ingredients for the pizza will be used. :return: A response having added a pizza to the current basket. :rtype: requests.Response ''' ingredients = item.ingredients params = { 'stepId': 0, 'quantity': options['quantity'], 'sizeId': variant, 'productId': item.item_id, 'ingredients': ingredients, 'productIdHalfTwo': 0, 'ingredientsHalfTwo': [], 'recipeReferrer': 0 } return self.__post('/Basket/AddPizza', json=params) def add_side_to_basket(self, item, quantity=1): ''' Add a side to the current basket. :param Item item: Item from menu. :param int quantity: The quantity of side to be added. :return: A response having added a side to the current basket. :rtype: requests.Response ''' item_variant = item[VARIANT.PERSONAL] params = { 'productSkuId': item_variant['productSkuId'], 'quantity': quantity, 'ComplimentaryItems': [] } return self.__post('/Basket/AddProduct', json=params) def remove_item_from_basket(self, idx): ''' Remove an item from the current basket. :param int idx: Basket item id. :return: A response having removed an item from the current basket. :rtype: requests.Response ''' params = { 'basketItemId': idx, 'wizardItemDelete': False } return self.__post('/Basket/RemoveBasketItem', json=params) def set_payment_method(self, method=PAYMENT_METHOD.CASH_ON_DELIVERY): ''' Select the payment method going to be used to make a purchase. :param int method: Payment method id. :return: A response having set the payment option. :rtype: requests.Response ''' params = {'paymentMethod': method} return self.__post('/PaymentOptions/SetPaymentMethod', json=params) def set_delivery_address(self): ''' Set the delivery address for the order. ''' pass def process_payment(self): ''' Proceed with payment using the payment method selected earlier. :return: A response having processes the payment. :rtype: requests.Response ''' params = { '__RequestVerificationToken': self.session.cookies, 'method': 'submit' } return self.__post('/PaymentOptions/Proceed', json=params) def __get(self, path, **kargs): ''' Make a HTTP GET request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.get, path, **kargs) def __post(self, path, **kargs): ''' Make a HTTP POST request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.post, path, **kargs) @on_exception(expo, (ApiError, RateLimitException), max_tries=10) @limits(calls=5, period=1) def __call_api(self, verb, path, **kargs): ''' Make a HTTP request to the Dominos UK API with the given parameters for the current session. :param verb func: HTTP method on the session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' response = verb(self.__url(path), **kargs) if response.status_code != 200: raise ApiError('{}: {}'.format(response.status_code, response)) return response def __url(self, path): ''' Helper method to generate fully qualified URIs pertaining to specific API actions. :param string path: Relative API path to resource. :return: Fully qualified URI to API resource. :rtype: string ''' return self.BASE_URL + path ```
{ "source": "JPadley18/pydrake", "score": 2 }
#### File: pydrake/pydrake/ddragon.py ```python from .errors import APIError import requests ddragon_base = "http://ddragon.leagueoflegends.com/cdn/9.15.1/data/en_US/" def get_static_data(extension): """ Retrieves a JSON file from DataDragon :param extension: The filename to access :return: The JSON data of the file """ # TODO: Smart Caching r = requests.get(ddragon_base + extension) if r.status_code != 200: if r.status_code == 404: raise APIError("404 Not Found - The file '{}' doesn't seem to exist".format(extension)) elif r.status_code == 403: raise APIError("403 Forbidden - The file '{}' may not exist or may have been moved".format(extension)) else: return r.json() class Champion: """Encapsulates information about a Champion from the Data Dragon API :ivar id: The Champion's ID :ivar name: The Champion's name (e.g. `Kai'Sa`) :ivar title: The Champion's title (e.g. `Daughter of the Void`) :ivar blurb: The Champion's description .. warning:: This should only be created through :meth:`pydrake.PyDrake.get_champion_by_id` """ def __init__(self, data): """ Encapsulates information about a Champion from Data Dragon :param data: the raw JSON data associated with the champion """ self.id = data['key'] self.name = data['name'] self.title = data['title'] self.blurb = data['blurb'] self.info = data['info'] self.tags = data['tags'] self.image = data['image'] self.stats = data['stats'] def get_champion_by_id(id): """Retrieves a Champion object from the Riot database with the given ID :param id: the ID of the champion. :return: a :class:`pydrake.ddragon.Champion` object with the given ID .. warning:: This should only be called through :meth:`pydrake.PyDrake.get_champion_by_id` """ raw = get_static_data("champion.json") champion_raw = next((x for x in raw['data'].values() if x['key'] == str(id)), None) if champion_raw is None: raise ValueError("No champion found with ID: {}".format(id)) return Champion(champion_raw) ``` #### File: pydrake/pydrake/summonerv4.py ```python class Summoner: def __init__(self, data, region): """ Contains information received from the summoner/v4 endpoints :param data: The data received from the endpoint as a dict :param region: The region code that this summoner is associated with """ # Parse response data self.name = data['name'] self.id = data['id'] self.account_id = data['accountId'] self.puuid = data['puuid'] self.iconId = data['profileIconId'] self.level = data['summonerLevel'] self.region = region # This is only for later creating a Ranked Summoner object self._raw = data ``` #### File: JPadley18/pydrake/tests.py ```python from pydrake.summonerv4 import Summoner from pydrake.leaguev4 import RankedSummoner from pydrake.matchv4 import MatchList, Match from pydrake.errors import APIError from pydrake.ddragon import * from pydrake import PyDrake from os import path import unittest import json here = path.join(path.abspath(path.dirname(__file__)), "tests/") def get_attrs(obj): """ Utility function to return all non-function variables in an object :param obj: The object to retrieve vars from :return: The vars found, excluding all methods """ return [x for x in dir(obj) if not x.startswith('__') and not callable(getattr(obj, x))] def has_null_attrs(obj): """ Returns a boolean value based on whether any of this object's attributes is null or 'None' :param obj: The object to check :return: True if None attributes are found, else False """ attrs = get_attrs(obj) null = [x for x in attrs if getattr(obj, x) is None] return len(null) > 0 class TestClasses(unittest.TestCase): @classmethod def setUpClass(cls): with open(path.join(here, "summoner-v4-summoners-by-name.json")) as raw: cls.summonerv4byname = json.loads(raw.read()) with open(path.join(here, "league-v4-entries-by-summoner.json")) as raw: cls.leaguev4bysummoner = json.loads(raw.read()) with open(path.join(here, "ddragon-champion.json")) as raw: cls.ddragonchampions = json.loads(raw.read()) with open(path.join(here, "match-v4-matches.json")) as raw: cls.matchv4matches = json.loads(raw.read()) with open(path.join(here, "match-v4-matchlists-by-account.json")) as raw: cls.matchv4matchlists = json.loads(raw.read()) def test_summoner_v4_summoners_by_name(self): summoner = Summoner(self.summonerv4byname, "euw1") self.assertFalse(has_null_attrs(summoner)) self.assertEqual(summoner.name, "Janoccoli") self.assertEqual(summoner.region, "euw1") self.assertEqual(summoner.level, 103) def test_league_v4_entries_by_summoner(self): summoner = Summoner(self.summonerv4byname, "euw1") ranked = RankedSummoner(self.leaguev4bysummoner, summoner) self.assertFalse(has_null_attrs(ranked)) solo = ranked.get_ranked_queue("RANKED_SOLO_5x5") self.assertFalse(has_null_attrs(solo)) self.assertEqual(len(ranked._ranks), 2) self.assertEqual(solo.rank, 3) self.assertEqual(solo.tier, "BRONZE") def test_ddragon_champion(self): champions = self.ddragonchampions['data'].values() champion_objs = [Champion(x) for x in champions] self.assertEqual(len(champion_objs), 145) for x in champion_objs: self.assertFalse(has_null_attrs(x)) def test_match_v4_matches(self): match = Match(self.matchv4matches) self.assertFalse(has_null_attrs(match)) self.assertEqual(len(match.participants), 10) self.assertEqual(len(match.teams), 2) def test_match_v4_matchlists_by_account(self): matchlist = MatchList(self.matchv4matchlists) self.assertEqual(len(matchlist._matches), 100) self.assertFalse(has_null_attrs(matchlist)) for x in matchlist._matches: self.assertFalse(has_null_attrs(x)) if __name__ == "__main__": unittest.main() ```
{ "source": "jpadmin/qlikdemo", "score": 3 }
#### File: qlikdemo/api/api.py ```python from flask import Flask from flask import request, jsonify import time def getRequestType(headers): requestHeaders = dict(headers) return requestHeaders['Content-Type'] #defines an object for the application app = Flask(__name__) #Creates in-memory data store for the messages messageStore = [ { 'id' : 1111111111, 'message': "Welcome to Qlik message store" } ] def generateResponse(status, action, info=None, error=None, response=None): responsedata = { 'status' : status, 'action' : action, 'info' : info, 'error' : error, 'response' : response } return jsonify(responsedata) #Allows the user to post messages to the store using the HTTP POST method @app.route('/api/message', methods=['POST']) def addMessage(): if getRequestType(request.headers) == 'application/x-www-form-urlencoded': requestdata = request.form elif getRequestType(request.headers) == 'application/json': requestdata = request.json else: return generateResponse(451, "Add Message", info="Failed", error="Invalid request: Only x-www-form-urlencoded or json") if requestdata['message'] is None or requestdata['message'] == "": return generateResponse(200, "Add Message", info="Failed", error="No or Blank Message data") messageData = { 'id' : int(time.time()), 'message' : requestdata['message'] } messageStore.append(messageData) return generateResponse(200, "Add Message", info="Success", response=messageData) #Allows the user to list messages from the store using the HTTP GET method @app.route('/api/message', methods=['GET']) def ListMessage(): return generateResponse(200, "List All Messages", info="Success", response=messageStore) #Allows the user to retrieve specific message from the store using the HTTP GET method and the message ID #Palindrome check is implemented @app.route('/api/message/<msg_id>', methods=['GET']) def ListSpecificMessage(msg_id): my_message = None for sMessage in messageStore: if sMessage['id'] == int(msg_id): my_message = sMessage break if my_message is not None: if my_message['message'] == my_message['message'][::-1]: palindrome = "Palindrome Check - Passed" else: palindrome = "Palindrome Check - Failed" return generateResponse(200, "List Specific Message", info="Success::"+palindrome, response=my_message) else: return generateResponse(404, "List Specific Message", info="Failed", error="Your message id does not exist") #Allows the user to delete specific message from the store using the HTTP POST method and the message ID @app.route('/api/message/<msg_id>', methods=['POST']) def DeleteSpecificMessage(msg_id): my_message = None for sMessage in messageStore: if sMessage['id'] == int(msg_id): my_message = sMessage break if my_message is not None: messageStore.remove(my_message) return generateResponse(200, "Delete Specific Message", info="Success", response=my_message) else: return generateResponse(404, "Delete Specific Message", info="Failed", error="Your message id does not exist") if __name__ == '__main__': app.run(host='0.0.0.0',port=80) ```
{ "source": "jpaganini/plascad", "score": 2 }
#### File: plascad/plas_cad/__main__.py ```python from collections import OrderedDict import shutil import os import glob import argparse import sys import subprocess sys.path.append("..") import plas_cad def main(): usage = ("usage: Plascad -i your.plasmid.seqs.fasta") #version = 'Plascad {v}'.format(v=plas_cad.__version__) ###################################### checking dependencies ######################################## list_cmd = ['prodigal', 'blastp', 'hmmsearch'] for cmd in list_cmd: exist = subprocess.call('command -v '+ cmd + '>> /dev/null', shell=True) if exist == 0: pass else: print(cmd + " not exist in path!") sys.exit() ###################################### Arguments and declarations ######################################## parser = argparse.ArgumentParser() parser.add_argument("-i", help="input plasmids file for classification", type=str, default='example/example.fasta') parser.add_argument("-n", action='store_true', help="prodigal normal mode") parser.add_argument("-cMOBB", help="alignment coverage for MOBB HMM profile", default=75) parser.add_argument("-cMOBC", help="alignment coverage for MOBC HMM profile", default=75) parser.add_argument("-cMOBF", help="alignment coverage for MOBF HMM profile", default=75) parser.add_argument("-cMOBT", help="alignment coverage for MOBT HMM profile", default=75) parser.add_argument("-cMOBPB", help="alignment coverage for MOBPB HMM profile", default=75) parser.add_argument("-cMOBH", help="alignment coverage for MOBH HMM profile", default=70) parser.add_argument("-cMOBP", help="alignment coverage for MOBP HMM profile", default=65) parser.add_argument("-cMOBV", help="alignment coverage for MOBV HMM profile", default=60) parser.add_argument("-cMOBQ", help="alignment coverage for MOBQ HMM profile", default=55) args = parser.parse_args() directory = os.path.abspath(os.path.dirname(__file__)) file_input = os.path.basename(args.i) file_name, file_ext = os.path.splitext(file_input) dirname = os.path.dirname(os.path.abspath(args.i)) os.chdir(dirname) ###################################### Prodigal ########################################################### cmdprodigal_meta = "prodigal" + " -i " + str(file_input) + \ " -a " + str(file_name) + ".faa " + " -p meta -q -o temp.txt" cmdprodigal_normal = "prodigal" + " -i " + str(file_input) + \ " -a " + str(file_name) + ".faa " + " -q -o temp.txt" if args.n: os.system(cmdprodigal_normal) else: os.system(cmdprodigal_meta) os.remove("temp.txt") ###################################### MOB hmmer ############################################################### mob_hmm = os.path.join(directory, "database/hmm_module/MOB_hmm") for root, dirnames, filenames in os.walk(mob_hmm): for i in filenames: cmdhmmsearch = "hmmsearch" + " --domtblout " + str(file_name) + "_" + str(i) + \ "_domtblout " + str(os.path.join(mob_hmm, i)) + " " + str(file_name) + ".faa " os.system(cmdhmmsearch) ###################################### hmmer parsing ######################################################### cmdmobparsing = 'python ' + os.path.join(directory, "scripts/MOB_parser.py") + ' -i ' + str(file_name) + ' -cMOBB ' + str(args.cMOBB) + ' -cMOBC ' + str(args.cMOBC) + \ ' -cMOBF ' + str(args.cMOBF)+ ' -cMOBT ' + str(args.cMOBT) + ' -cMOBPB ' + str(args.cMOBPB) + ' -cMOBH ' + str(args.cMOBH) \ + ' -cMOBP ' + str(args.cMOBP) + ' -cMOBV ' + str(args.cMOBV) + ' -cMOBQ ' + str(args.cMOBQ) + "\n" os.system (cmdmobparsing) os.system('rm -rf *domtblout') ###################################### MPF system hmmer ####################################################### MPF_hmm = os.path.join(directory, "database/hmm_module/MPF_system_hmm") for root, dirnames, filenames in os.walk(MPF_hmm): for i in filenames: cmdMPF = "hmmsearch" + " --domtblout " + str(file_name) + "_mob_" + str(i) + \ "_domtblout " + str(os.path.join(MPF_hmm, i)) + " " + str(file_name) + "_MOB_temp_mob.faa" os.system(cmdMPF) ###################################### MPF parsing ########################################################## cmdATPase_T4CP_parsing = 'python ' + os.path.join(directory, 'scripts/MPF_hmm_parser.py') + ' -i ' + str(file_name) + "\n" os.system(cmdATPase_T4CP_parsing) ###################################### MPFF summary ########################################################## cmdcatmpff = 'cat ' + str(file_name) + '_ATPase_temp_parsed_result_out ' + str(file_name) + '_T4CP_temp_parsed_result_out ' \ + str(file_name) + "*MPFF*_result_out > " + str(file_name) + "_MPFF_summary_out" cmdcatmpfg = 'cat ' + str(file_name) + '_ATPase_temp_parsed_result_out ' + str(file_name) + '_T4CP_temp_parsed_result_out ' \ + str(file_name) + "*MPFG*_result_out > " + str(file_name) + "_MPFG_summary_out" cmdcatmpfi = 'cat ' + str(file_name) + '_ATPase_temp_parsed_result_out ' + str(file_name) + '_T4CP_temp_parsed_result_out ' \ + str(file_name) + "*MPFI*_result_out > " + str(file_name) + "_MPFI_summary_out" cmdcatmpft = 'cat ' + str(file_name) + '_ATPase_temp_parsed_result_out ' + str(file_name) + '_T4CP_temp_parsed_result_out ' \ + str(file_name) + "*MPFT*_result_out > " + str(file_name) + "_MPFT_summary_out" os.system(cmdcatmpff) os.system(cmdcatmpfg) os.system(cmdcatmpfi) os.system(cmdcatmpft) ###################################### MPFF classification ########################################################## cmdConjparsing = 'python ' + os.path.join(directory, 'scripts/Conj_parser.py') + ' -i ' + str(file_name) + "\n" os.system(cmdConjparsing) cmdcatconj = 'cat ' + str(file_name) + "*Conj_summary_out > " + str(file_name) + "_Conj_out" os.system(cmdcatconj) ###################################### Plasmids classification ###################################################### cmdPlasparsing = 'python ' + os.path.join(directory, 'scripts/Conj_mob_classification.py') + ' -i ' + str(file_name) + "\n" os.system(cmdPlasparsing) ###################################### Plasmids ARGs identification ###################################################### cmdblastp = "blastp" + " -query " + str(file_name) + ".faa" + " -db "\ + os.path.join(directory, 'database/ARGsdb/ARGsDB') + " -outfmt 6 -evalue 1e-5 -num_threads 20 " +\ "| sort -k1,1 -k12,12nr -k11,11n | sort -u -k1,1 --merge > " + str(file_name) + "_ARGs_blasp_result_out" os.system(cmdblastp) ###################################### Plasmids ARGs parsing ###################################################### cmdARGsparsing = 'python ' + os.path.join(directory, 'scripts/plasmids_ARGs_parser.py') + ' -i ' + str(file_name) + \ ' -db ' + os.path.join(directory, 'database/ARGsdb/ARGsDB.fasta') + ' -db_structure ' + os.path.join(directory, 'database/ARGsdb/ARGsDB_des.txt') os.system(cmdARGsparsing) ###################################### Plasmids ARGs summary ###################################################### cmdARGssummary = 'python ' + os.path.join(directory, 'scripts/plasmids_result_summary.py') + ' -i ' + str(file_name) os.system(cmdARGssummary) ###################################### summary result ###################################################### cmdcatsummary = 'cat ' + str(file_name) + '_Conj_plasmids_ids_result_out ' + str(file_name) + '_mob_unconj_plasmids_ids_result_out ' +\ str(file_name) + '_unmob_plasmids_ids_result_out > ' + str(file_name) + "_plasmids_classification_sum.txt" os.system(cmdcatsummary) ###################################### plasmids map plotting ###################################################### cmdplot = 'python ' + os.path.join(directory, 'scripts/Plasmids_plot.py') + ' -i ' + str(file_name) os.system(cmdplot) ###################################### remove temp ###################################################### os.system('rm -rf *out') os.system('rm -rf *faa') ###################################### function ###################################################### if __name__ == '__main__': main() ``` #### File: plas_cad/scripts/MPF_hmm_parser.py ```python from collections import OrderedDict import re from Bio import SeqIO import os import fnmatch import argparse ###################################### Arguments and declarations ######################################## parser = argparse.ArgumentParser() parser.add_argument("-i", help="input plasmids file prefix for classification",type=str) args = parser.parse_args() ###################################### parsing MPF module ############################################# def MPF_parsing(in_domtblout, coverage): dic = OrderedDict() MPF_restult = open(str(in_domtblout) + "_" + "parsed_out", "w") wanted1 = set() wanted2 = set() for line in open(in_domtblout, "r"): if not line.startswith("#"): KEY = "\t".join(str(line).strip().split()[0:6]) c_value = str(line).strip().split()[11] domain_start = str(line).strip().split()[17] domain_end = str(line).strip().split()[18] wanted1.add(KEY + "\t" + c_value + "\t" + domain_start + "\t" + domain_end) for line in wanted1: try: items = re.split("\t", line.strip()) key = '\t'.join(items[:6]) value1 = items[6] value2 = items[7] value3 = items[8] if key not in dic: dic[key] = [[item] for item in items[6:]] else: if float(value1) < float(dic[key][0][0]): dic[key][0] = value1 if float(value2) < float(dic[key][1][0]): dic[key][1][0] = value2 if float(value3) > float(dic[key][2][0]): dic[key][2][0] = value3 except: pass for k, v in dic.items(): wanted2.add('{}\t{}\t{}\t{}\n'.format(k, *map(''.join, (v)))) ###################################### parsing based on coverage ############################ MPF_wanted = OrderedDict() for line in wanted2: id = str(line).strip().split("\t")[0] lis = str(line).strip().split("\t") if ((float(lis[8]) - float(lis[7])) / float(lis[5])) * 100 >= int(coverage) or \ ((float(lis[8]) - float(lis[7])) / float(lis[2])) * 100 >= int(coverage) and float(lis[6]) <= 0.01: MPF_wanted[id] = line for v in MPF_wanted.values(): MPF_restult.write(v) MPF_restult.close() ##################################### MPF classification #################################### for root, folders, files in os.walk(os.getcwd()): for i in fnmatch.filter(files, '*hmm_domtblout'): MPF_parsing(i, 50) ##################################### ATPase and T4CP summary ######################################## catATPase = 'cat ' + '*ATPase.hmm_domtblout_parsed_out> ' + str(args.i) + '_ATPase_temp_out' catT4CP = 'cat ' + '*T4CP*_domtblout_parsed_out> ' + str(args.i) + '_T4CP_temp_out' os.system(catATPase) os.system(catT4CP) #################################### ATPase and T4CP parsing result ####################################### def MPFF_parsed_result(summary, faa): result = open(str(summary).rsplit("_", 1)[0] + "_parsed_result_out", "w") diclocation = {} location_wanted = set() for record in SeqIO.parse(open(faa, "r"), "fasta"): diclocation[record.id] = record.description.split("#")[1].strip() + "-" + record.description.split("#")[2].strip() + "\t" + record.description.split("#")[3].strip() dicATPase_T4CP = {} for line in open(summary, "r"): key = str(line).strip().split("\t")[0] e_value = float(str(line).strip().split("\t")[6]) if key not in dicATPase_T4CP.keys(): dicATPase_T4CP[key] = str(line).strip().split("\t")[3] + "\t" + \ str(line).strip().split("\t")[6] + "\t" + str(diclocation[key]) + "\n" else: if float(e_value) < float(str(dicATPase_T4CP[key]).split("\t")[1]): dicATPase_T4CP[key] = str(line).strip().split("\t")[3] + "\t" + \ str(line).strip().split("\t")[6] + "\t" + str(diclocation[key]) + "\n" for key, value in dicATPase_T4CP.items(): location_wanted.add(str(key) + "\t" + str(value).strip()) dic_wanted = {} for line in location_wanted: key = str(line).split("\t")[0].rsplit("_", 1)[0] e_value = float(str(line).strip().split("\t")[2]) if key not in dic_wanted.keys(): dic_wanted[key] = "\t".join(str(line).split("\t")[1:]) else: if float(e_value) < float(str(dic_wanted[key]).split("\t")[1]): dic_wanted[key] = "\t".join(str(line).split("\t")[1:]) for k, v in dic_wanted.items(): result.write(str(k) + "\t" + str(v).strip() + "\n") result.close() MPFF_parsed_result(str(args.i) + '_ATPase_temp_out', str(args.i) + "_MOB_temp_mob.faa") MPFF_parsed_result(str(args.i) + '_T4CP_temp_out', str(args.i) + "_MOB_temp_mob.faa") ################################################################################################ for root, folders, files in os.walk(os.getcwd()): for i in fnmatch.filter(files, '*hmm_domtblout_parsed_out'): MPFF_parsed_result(i, str(args.i) + "_MOB_temp_mob.faa") ################################################################################################ ``` #### File: plas_cad/scripts/Plasmids_plot.py ```python from xml.etree.ElementTree import Element, SubElement, Comment, tostring from ElementTree_pretty import prettify from Bio import SeqIO import argparse import os ###################################### Arguments and declarations ######################################## parser = argparse.ArgumentParser() parser.add_argument("-i", help="input plasmids file prefix for classification",type=str) args = parser.parse_args() ####################################################### plasmids plot process ##################################### curdir = os.getcwd() directory = os.path.abspath(os.path.dirname(__file__)) result_dir = os.path.join(curdir, str(args.i) +'_Conjugative_plasmids_map') if not os.path.exists(result_dir): os.makedirs(result_dir) cmdcpjs = 'cp -r ' + os.path.join(directory, 'js ') + result_dir os.system (cmdcpjs) ####################################################### main_program ##################################### def html_prepare(lis_in): m = 33 n = 33 length = lis_in[0].split("\t")[5] ID = lis_in[0].split("\t")[0] tick = str(round(float(length)/50)) tick2 = str(round(float(length)/12)) result = open(os.path.join(result_dir, ID + ".html"), "w") root = Element("html") root.set('version', '1.0') head = SubElement(root, 'head') title = SubElement(head, 'script', attrib= {"src":"js/angularplasmid.complete.min.js"}) title.text = " " # title.text = " src='js/angularplasmid.complete.min.js'" body = SubElement(root, 'body') style = SubElement(body, 'style') ti_style = SubElement(style, "setting") ti_style.text = " body {font-family: 'Lato';font-weight:400;}" \ ".boundary {stroke-dasharray:2,2;stroke-width:2px}" \ ".mdlabel {font-size:14px}" \ ".smlabel {font-size:8px}" \ ".white {fill:#fff}" \ ".red {fill:rgb(192,64,64)}" \ ".purple {fill:rgb(192,64,192)}" \ ".blue {fill:rgb(64,192,192)}" \ ".green {fill:rgb(64,192,64)}" \ ".labelline {stroke:#333;stroke-dasharray:2,2;stroke-width:2px;}" \ ".gold {fill:rgb(192,128,64)}" \ "" plasmid = SubElement(body, 'plasmid', attrib={"sequencelength": length, "plasmidheight": '700', "plasmidwidth":'700'}) plasmidtrack = SubElement(plasmid, 'plasmidtrack', attrib={"trackstyle":"fill:#ccc", "width":"5", "radius":"150"}) plasmidtrack.text = " " plasmidtrack2 = SubElement(plasmid, 'plasmidtrack', attrib={"trackstyle":"fill:rgba(225,225,225,0.5)","radius":"140"}) tracklabel = SubElement(plasmidtrack2, "tracklabel", attrib={"text":ID, "labelstyle":"font-size:20px;font-weight:400"}) tracklabel.text = " " tracklabel = SubElement(plasmidtrack2, "tracklabel", attrib={"text":length + " bp", "labelstyle":"ffont-size:10px", "vadjust":"20"}) tracklabel.text = " " trackscale = SubElement(plasmidtrack2, "trackscale", attrib={"interval":tick, "style":"stroke:#999", "ticksize":"3"}) trackscale.text = " " trackscale = SubElement(plasmidtrack2, "trackscale", attrib={"interval":tick, "style":"stroke:#999","direction": "in", "ticksize":"3"}) trackscale.text = " " trackscale = SubElement(plasmidtrack2, "trackscale", attrib={"interval":tick2, "style":"stroke:#f00", "direction":"in", "showlabels":"1", "labelstyle":"fill:#999;stroke:none;text-anchor:middle;alignment-baseline:middle;font-size:10px"}) trackscale.text = " " for i in lis_in: if "MOB" in i: mob_type = str(i).split("\t")[1] start = str(i).split("\t")[3].split("-")[0] end = str(i).split("\t")[3].split("-")[1] if str(i).split("\t")[4] == str(1): arrow_s = str(-2) arrow_e = str(2) else: arrow_s = str(2) arrow_e = str(-2) trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(85,0,170,0.9)", "arrowendlength":arrow_e, "arrowstartlength":arrow_s}) markerlabel = SubElement(trackmarker, "markerlabel", attrib={"type":"path", "class":"mdlabel purple","valign":"outer","vadjust":"23","text":mob_type}) markerlabel.text = " " trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(238,221,255,0.6)", "wadjust":"-5", "vadjust":"25"}) trackmarker.text = " " if "ATPase" in i: start = str(i).split("\t")[3].split("-")[0] end = str(i).split("\t")[3].split("-")[1] if str(i).split("\t")[4] == str(1): arrow_s = str(-2) arrow_e = str(2) else: arrow_s = str(2) arrow_e = str(-2) trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(0,85,170,0.9)", "arrowendlength":arrow_e, "arrowstartlength":arrow_s}) markerlabel = SubElement(trackmarker, "markerlabel", attrib={"type":"path", "class":"mdlabel blue","valign":"outer","vadjust":"23","text":"ATPase"}) markerlabel.text = " " trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(221,238,255,0.6)", "wadjust":"-5", "vadjust":"25"}) trackmarker.text = " " if "T4CP" in i: start = str(i).split("\t")[3].split("-")[0] end = str(i).split("\t")[3].split("-")[1] if str(i).split("\t")[4] == str(1): arrow_s = str(-2) arrow_e = str(2) else: arrow_s = str(2) arrow_e = str(-2) trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(170,85,0,0.9)", "arrowendlength":arrow_e, "arrowstartlength":arrow_s}) markerlabel = SubElement(trackmarker, "markerlabel", attrib={"type":"path", "class":"mdlabel gold", "valign":"outer","vadjust":"23", "text":"T4CP"}) markerlabel.text = " " trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(255,238,221,0.6)", "wadjust":"-5", "vadjust":"25"}) trackmarker.text = " " if "MPFG" not in i and "MPFI" not in i and "MPFT" not in i and "MPFF" not in i and "MOB" not in i: i = i + "\t" + str(n) n +=15 start = str(i).split("\t")[3].split("-")[0] end = str(i).split("\t")[3].split("-")[1] des = str(i).split("\t")[1].split("__")[1] adjARG = str(i).split("\t")[6] if str(i).split("\t")[4] == str(1): arrow_s = str(-2) arrow_e = str(2) else: arrow_s = str(2) arrow_e = str(-2) trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(170,0,85,0.9)", "arrowendlength":arrow_e, "arrowstartlength":arrow_s}) markerlabel = SubElement(trackmarker, "markerlabel", attrib={"type":"path", "class":"mdlabel red", "valign":"outer","vadjust":adjARG,"text":des,"showline":"1","lineclass":"labelline"}) markerlabel.text = " " trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(255,221,238,0.6)", "wadjust":"-5", "vadjust":"25"}) trackmarker.text = " " if "virB" in i or "traC" in i or "traE" in i or "traH" in i or "traK" in i or "MPFG_41" in i or "MPFG_44" in i or "MPFG_51" in i or "MPFG_52" in i\ or "traL" in i or "traN" in i or "traU" in i or "traV" in i or "traW" in i or "traI" in i or "traQ" in i or "traM" in i or "traP" in i\ or "traR" in i or "traY" in i: i = i + "\t" + str(m) m +=15 start = str(i).split("\t")[3].split("-")[0] end = str(i).split("\t")[3].split("-")[1] des = str(i).split("\t")[1].rsplit("_",1)[1] adj = str(i).split("\t")[6] if str(i).split("\t")[4] == str(1): arrow_s = str(-2) arrow_e = str(2) else: arrow_s = str(2) arrow_e = str(-2) trackmarker = SubElement(plasmidtrack2, "trackmarker", attrib={"start":start, "end":end,"markerstyle":"fill:rgba(85,170,0,0.9)", "arrowendlength":arrow_e, "arrowstartlength":arrow_s}) markerlabel = SubElement(trackmarker, "markerlabel", attrib={"type":"path", "class":"mdlabel green","valign":"outer","vadjust":adj, "text":des, "showline":"1","lineclass":"labelline"}) markerlabel.text = " " trackmarker = SubElement(plasmidtrack2, "trackmarker",attrib={"start": start, "end": end, "markerstyle": "fill:rgba(238,255,221,0.6)","wadjust": "-5", "vadjust": "25"}) trackmarker.text = " " result.write(prettify(root)) # ####################################################### prepare the ploting plasmids ##################################### def plasmids_prepare(plas_fasta,conj_sum): plas_length = {} for record in SeqIO.parse(open(plas_fasta, "r"), "fasta"): plas_length[str(record.id).strip()] = len(str(record.seq)) plot = [] dic = {} for line in open(conj_sum, "r"): key = str(line).strip().split("\t")[0] if key in plas_length: line = str(line).strip() + "\t" + str(plas_length[key]).strip() if key not in dic.keys(): dic[key] = [str(line).strip()] else: dic[key].append(str(line).strip()) for k, v in dic.items(): plot.append(v) for i in plot: html_prepare(i) if __name__ == "__main__": plasmids_prepare(str(args.i) + ".fasta",str(args.i) + "_Conj_plasmids_loc_sum.txt") ```
{ "source": "jpages/twopy", "score": 3 }
#### File: twopy/interpreter/simple_interpreter.py ```python from types import * import dis import importlib import frontend from frontend import model # The singleton of the Interpreter simple_interpreter_instance = None def get_interpreter(maincode, subdirectory, args): global simple_interpreter_instance if simple_interpreter_instance == None: simple_interpreter_instance = SimpleInterpreter(maincode, subdirectory, args) return simple_interpreter_instance class SimpleInterpreter: def __init__(self, maincode, subdirectory, args): # The main CodeObject self.maincode = maincode self.mainmodule = model.MModule(maincode) # All loaded modules self.modules = [] self.modules.append(self.mainmodule) # The directory of the executed file self.subdirectory = subdirectory # Command-line arguments for the vm self.args = args # A list indexed by function identifiers, the first one has indice 0 self.functions = [] # The global environment self.global_environment = {} # List of all environments, the last one is the current call self.environments = [] self.functions_called = [] # The Jit compiler instance, will be set by the launcher self.jitcompiler = None # Association between a Code object and a Function object to avoid duplication self.code_to_function = dict() # Iterate over opcodes and execute the code def execute(self): # Precompile the code by generating proper instructions and basic blocks self.precompile() # Start the execution self.start() def precompile(self): # Generate the main function and recursively other functions in module self.generate_function(self.maincode, "main", self.mainmodule, True) # TODO: use identifiers instead of names to call functions # code : the CodeObject of this function # name : Function name # module : the Module instance # is_main : true if the function is top-level of a module def generate_function(self, code, name, module, is_main): if code in self.code_to_function: return self.code_to_function[code] function = model.Function(code.co_filename, code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_consts, code.co_names, code.co_varnames, code.co_freevars, code.co_cellvars, name, dis.get_instructions(code), self, module, is_main) self.code_to_function[code] = function self.functions.append(function) if self.args.verbose: print(dis.dis(code)) return function # Start the execution after the compilation of functions def start(self): # Start from the main (toplevel) function # The execution stack self.stack = [] self.functions_called.append(self.functions[0]) env = {} self.current_function().environments.append(env) self.environments.append(env) # Initialize primitive functions for key, value in primitives.items(): self.global_environment[key] = value self.execute_function(self.functions[0]) # Return the function currently called, the last one on the stack def current_function(self): return self.functions_called[-1] ''' Generate a new class and return it func = main function of the class name = class name bases = direct superclasses metaclass = The metaclass ''' def make_class(self, func, name, *bases, metaclass=None, **kwds): return model.MClass(self, func, name, bases, metaclass, kwds) # Print the current stack from bottom to top def print_stack(self): i = len(self.stack) -1 for el in reversed(self.stack): print("\t " + str(i) + " " + str(el)) i -= 1 # Push a value onto the stack def push(self, value): if self.args.execution: print("PUSH " + str(value) + str(value.__class__)) self.stack.append(value) # Pop a value from the stack def pop(self): if self.args.execution: res = self.stack.pop() print("POP " + str(res) + str(res.__class__)) return res else: return self.stack.pop() # Execute the current function def execute_function(self, mfunction): self.functions_called.append(mfunction) # Entry block self.execute_block(mfunction.start_basic_block) def execute_block(self, block): for instruction in block.instructions: self.execute_instruction(instruction) # Dispatch of instructions def execute_instruction(self, instruction): if self.args.execution: print("Execution of " + str(instruction)) if isinstance(instruction, model.POP_TOP): self.POP_TOP(instruction) elif isinstance(instruction, model.ROT_TWO): self.ROT_TWO(instruction) elif isinstance(instruction, model.ROT_THREE): self.ROT_THREE(instruction) elif isinstance(instruction, model.DUP_TOP): self.DUP_TOP(instruction) elif isinstance(instruction, model.DUP_TOP_TWO): self.DUP_TOP_TWO(instruction) elif isinstance(instruction, model.NOP): self.NOP(instruction) elif isinstance(instruction, model.UNARY_POSITIVE): self.UNARY_POSITIVE(instruction) elif isinstance(instruction, model.UNARY_NEGATIVE): self.UNARY_NEGATIVE(instruction) elif isinstance(instruction, model.UNARY_NOT): self.UNARY_NOT(instruction) elif isinstance(instruction, model.UNARY_INVERT): self.UNARY_INVERT(instruction) elif isinstance(instruction, model.BINARY_MATRIX_MULTIPLY): self.BINARY_MATRIX_MULTIPLY(instruction) elif isinstance(instruction, model.INPLACE_MATRIX_MULTIPLY): self.INPLACE_MATRIX_MULTIPLY(instruction) elif isinstance(instruction, model.BINARY_POWER): self.BINARY_POWER(instruction) elif isinstance(instruction, model.BINARY_MULTIPLY): self.BINARY_MULTIPLY(instruction) elif isinstance(instruction, model.BINARY_MODULO): self.BINARY_MODULO(instruction) elif isinstance(instruction, model.BINARY_ADD): self.BINARY_ADD(instruction) elif isinstance(instruction, model.BINARY_SUBTRACT): self.BINARY_SUBTRACT(instruction) elif isinstance(instruction, model.BINARY_SUBSCR): self.BINARY_SUBSCR(instruction) elif isinstance(instruction, model.BINARY_FLOOR_DIVIDE): self.BINARY_FLOOR_DIVIDE(instruction) elif isinstance(instruction, model.BINARY_TRUE_DIVIDE): self.BINARY_TRUE_DIVIDE(instruction) elif isinstance(instruction, model.INPLACE_FLOOR_DIVIDE): self.INPLACE_FLOOR_DIVIDE(instruction) elif isinstance(instruction, model.INPLACE_TRUE_DIVIDE): self.INPLACE_TRUE_DIVIDE(instruction) elif isinstance(instruction, model.GET_AITER): self.GET_AITER(instruction) elif isinstance(instruction, model.GET_ANEXT): self.GET_ANEXT(instruction) elif isinstance(instruction, model.BEFORE_ASYNC_WITH): self.BEFORE_ASYNC_WITH(instruction) elif isinstance(instruction, model.INPLACE_ADD): self.INPLACE_ADD(instruction) elif isinstance(instruction, model.INPLACE_SUBTRACT): self.INPLACE_SUBTRACT(instruction) elif isinstance(instruction, model.INPLACE_MULTIPLY): self.INPLACE_MULTIPLY(instruction) elif isinstance(instruction, model.INPLACE_MODULO): self.INPLACE_MODULO(instruction) elif isinstance(instruction, model.STORE_SUBSCR): self.STORE_SUBSCR(instruction) elif isinstance(instruction, model.DELETE_SUBSCR): self.DELETE_SUBSCR(instruction) elif isinstance(instruction, model.BINARY_LSHIFT): self.BINARY_LSHIFT(instruction) elif isinstance(instruction, model.BINARY_RSHIFT): self.BINARY_RSHIFT(instruction) elif isinstance(instruction, model.BINARY_AND): self.BINARY_AND(instruction) elif isinstance(instruction, model.BINARY_XOR): self.BINARY_XOR(instruction) elif isinstance(instruction, model.BINARY_OR): self.BINARY_OR(instruction) elif isinstance(instruction, model.INPLACE_POWER): self.INPLACE_POWER(instruction) elif isinstance(instruction, model.GET_ITER): self.GET_ITER(instruction) elif isinstance(instruction, model.GET_YIELD_FROM_ITER): self.GET_YIELD_FROM_ITER(instruction) elif isinstance(instruction, model.PRINT_EXPR): self.PRINT_EXPR(instruction) elif isinstance(instruction, model.LOAD_BUILD_CLASS): self.LOAD_BUILD_CLASS(instruction) elif isinstance(instruction, model.YIELD_FROM): self.YIELD_FROM(instruction) elif isinstance(instruction, model.GET_AWAITABLE): self.GET_AWAITABLE(instruction) elif isinstance(instruction, model.INPLACE_LSHIFT): self.INPLACE_LSHIFT(instruction) elif isinstance(instruction, model.INPLACE_RSHIFT): self.INPLACE_RSHIFT(instruction) elif isinstance(instruction, model.INPLACE_AND): self.INPLACE_AND(instruction) elif isinstance(instruction, model.INPLACE_XOR): self.INPLACE_XOR(instruction) elif isinstance(instruction, model.INPLACE_OR): self.INPLACE_OR(instruction) elif isinstance(instruction, model.BREAK_LOOP): self.BREAK_LOOP(instruction) elif isinstance(instruction, model.WITH_CLEANUP_START): self.WITH_CLEANUP_START(instruction) elif isinstance(instruction, model.WITH_CLEANUP_FINISH): self.WITH_CLEANUP_FINISH(instruction) elif isinstance(instruction, model.RETURN_VALUE): self.RETURN_VALUE(instruction) elif isinstance(instruction, model.IMPORT_STAR): self.IMPORT_STAR(instruction) elif isinstance(instruction, model.SETUP_ANNOTATIONS): self.SETUP_ANNOTATIONS(instruction) elif isinstance(instruction, model.YIELD_VALUE): self.YIELD_VALUE(instruction) elif isinstance(instruction, model.POP_BLOCK): self.POP_BLOCK(instruction) elif isinstance(instruction, model.END_FINALLY): self.END_FINALLY(instruction) elif isinstance(instruction, model.POP_EXCEPT): self.POP_EXCEPT(instruction) elif isinstance(instruction, model.HAVE_ARGUMENT): self.HAVE_ARGUMENT(instruction) elif isinstance(instruction, model.STORE_NAME): self.STORE_NAME(instruction) elif isinstance(instruction, model.DELETE_NAME): self.DELETE_NAME(instruction) elif isinstance(instruction, model.UNPACK_SEQUENCE): self.UNPACK_SEQUENCE(instruction) elif isinstance(instruction, model.FOR_ITER): self.FOR_ITER(instruction) elif isinstance(instruction, model.UNPACK_EX): self.UNPACK_EX(instruction) elif isinstance(instruction, model.STORE_ATTR): self.STORE_ATTR(instruction) elif isinstance(instruction, model.DELETE_ATTR): self.DELETE_ATTR(instruction) elif isinstance(instruction, model.STORE_GLOBAL): self.STORE_GLOBAL(instruction) elif isinstance(instruction, model.DELETE_GLOBAL): self.DELETE_GLOBAL(instruction) elif isinstance(instruction, model.LOAD_CONST): self.LOAD_CONST(instruction) elif isinstance(instruction, model.LOAD_NAME): self.LOAD_NAME(instruction) elif isinstance(instruction, model.BUILD_TUPLE): self.BUILD_TUPLE(instruction) elif isinstance(instruction, model.BUILD_LIST): self.BUILD_LIST(instruction) elif isinstance(instruction, model.BUILD_SET): self.BUILD_SET(instruction) elif isinstance(instruction, model.BUILD_MAP): self.BUILD_MAP(instruction) elif isinstance(instruction, model.LOAD_ATTR): self.LOAD_ATTR(instruction) elif isinstance(instruction, model.COMPARE_OP): self.COMPARE_OP(instruction) elif isinstance(instruction, model.IMPORT_NAME): self.IMPORT_NAME(instruction) elif isinstance(instruction, model.IMPORT_FROM): self.IMPORT_FROM(instruction) elif isinstance(instruction, model.JUMP_FORWARD): self.JUMP_FORWARD(instruction) elif isinstance(instruction, model.JUMP_IF_FALSE_OR_POP): self.JUMP_IF_FALSE_OR_POP(instruction) elif isinstance(instruction, model.JUMP_IF_TRUE_OR_POP): self.JUMP_IF_TRUE_OR_POP(instruction) elif isinstance(instruction, model.JUMP_ABSOLUTE): self.JUMP_ABSOLUTE(instruction) elif isinstance(instruction, model.POP_JUMP_IF_FALSE): self.POP_JUMP_IF_FALSE(instruction) elif isinstance(instruction, model.POP_JUMP_IF_TRUE): self.POP_JUMP_IF_TRUE(instruction) elif isinstance(instruction, model.LOAD_GLOBAL): self.LOAD_GLOBAL(instruction) elif isinstance(instruction, model.CONTINUE_LOOP): self.CONTINUE_LOOP(instruction) elif isinstance(instruction, model.SETUP_LOOP): self.SETUP_LOOP(instruction) elif isinstance(instruction, model.SETUP_EXCEPT): self.SETUP_EXCEPT(instruction) elif isinstance(instruction, model.SETUP_FINALLY): self.SETUP_FINALLY(instruction) elif isinstance(instruction, model.LOAD_FAST): self.LOAD_FAST(instruction) elif isinstance(instruction, model.STORE_FAST): self.STORE_FAST(instruction) elif isinstance(instruction, model.DELETE_FAST): self.DELETE_FAST(instruction) elif isinstance(instruction, model.STORE_ANNOTATION): self.STORE_ANNOTATION(instruction) elif isinstance(instruction, model.RAISE_VARARGS): self.RAISE_VARARGS(instruction) elif isinstance(instruction, model.CALL_FUNCTION): self.CALL_FUNCTION(instruction) elif isinstance(instruction, model.MAKE_FUNCTION): self.MAKE_FUNCTION(instruction) elif isinstance(instruction, model.BUILD_SLICE): self.BUILD_SLICE(instruction) elif isinstance(instruction, model.LOAD_CLOSURE): self.LOAD_CLOSURE(instruction) elif isinstance(instruction, model.LOAD_DEREF): self.LOAD_DEREF(instruction) elif isinstance(instruction, model.STORE_DEREF): self.STORE_DEREF(instruction) elif isinstance(instruction, model.DELETE_DEREF): self.DELETE_DEREF(instruction) elif isinstance(instruction, model.CALL_FUNCTION_KW): self.CALL_FUNCTION_KW(instruction) elif isinstance(instruction, model.CALL_FUNCTION_EX): self.CALL_FUNCTION_EX(instruction) elif isinstance(instruction, model.SETUP_WITH): self.SETUP_WITH(instruction) elif isinstance(instruction, model.EXTENDED_ARG): self.EXTENDED_ARG(instruction) elif isinstance(instruction, model.LIST_APPEND): self.LIST_APPEND(instruction) elif isinstance(instruction, model.SET_ADD): self.SET_ADD(instruction) elif isinstance(instruction, model.MAP_ADD): self.MAP_ADD(instruction) elif isinstance(instruction, model.LOAD_CLASSDEREF): self.LOAD_CLASSDEREF(instruction) elif isinstance(instruction, model.BUILD_LIST_UNPACK): self.BUILD_LIST_UNPACK(instruction) elif isinstance(instruction, model.BUILD_MAP_UNPACK): self.BUILD_MAP_UNPACK(instruction) elif isinstance(instruction, model.BUILD_MAP_UNPACK_WITH_CALL): self.BUILD_MAP_UNPACK_WITH_CALL(instruction) elif isinstance(instruction, model.BUILD_TUPLE_UNPACK): self.BUILD_TUPLE_UNPACK(instruction) elif isinstance(instruction, model.BUILD_SET_UNPACK): self.BUILD_SET_UNPACK(instruction) elif isinstance(instruction, model.SETUP_ASYNC_WITH): self.SETUP_ASYNC_WITH(instruction) elif isinstance(instruction, model.FORMAT_VALUE): self.FORMAT_VALUE(instruction) elif isinstance(instruction, model.BUILD_CONST_KEY_MAP): self.BUILD_CONST_KEY_MAP(instruction) elif isinstance(instruction, model.BUILD_STRING): self.BUILD_STRING(instruction) elif isinstance(instruction, model.BUILD_TUPLE_UNPACK_WITH_CALL): self.BUILD_TUPLE_UNPACK_WITH_CALL(instruction) def POP_TOP(self, instruction): self.pop() def ROT_TWO(self, instruction): first = self.pop() second = self.pop() self.push(first) self.push(second) def ROT_THREE(self, instruction): print("NYI " + str(self)) def DUP_TOP(self, instruction): print("NYI " + str(self)) def DUP_TOP_TWO(self, instruction): print("NYI " + str(self)) def NOP(self, instruction): print("NYI " + str(self)) def UNARY_POSITIVE(self, instruction): print("NYI " + str(self)) def UNARY_NEGATIVE(self, instruction): print("NYI " + str(self)) def UNARY_NOT(self, instruction): print("NYI " + str(self)) def UNARY_INVERT(self, instruction): print("NYI " + str(self)) def BINARY_MATRIX_MULTIPLY(self, instruction): print("NYI " + str(self)) def INPLACE_MATRIX_MULTIPLY(self, instruction): print("NYI " + str(self)) def BINARY_POWER(self, instruction): tos = self.pop() tos1 = self.pop() val = pow(tos1, tos) self.push(val) def BINARY_MULTIPLY(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 * tos self.push(val) def BINARY_MODULO(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 % tos self.push(val) def BINARY_ADD(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 + tos self.push(val) def BINARY_SUBTRACT(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 - tos self.push(val) def BINARY_SUBSCR(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1[tos] self.push(val) def BINARY_FLOOR_DIVIDE(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 // tos self.push(val) def BINARY_TRUE_DIVIDE(self, instruction): tos = self.pop() tos1 = self.pop() val = tos1 / tos self.push(val) def INPLACE_FLOOR_DIVIDE(self, instruction): print("NYI " + str(self)) def INPLACE_TRUE_DIVIDE(self, instruction): print("NYI " + str(self)) def GET_AITER(self, instruction): print("NYI " + str(self)) def GET_ANEXT(self, instruction): print("NYI " + str(self)) def BEFORE_ASYNC_WITH(self, instruction): print("NYI " + str(self)) def INPLACE_ADD(self, instruction): second = self.pop() first = self.pop() self.push(first + second) def INPLACE_SUBTRACT(self, instruction): print("NYI " + str(self)) def INPLACE_MULTIPLY(self, instruction): second = self.pop() first = self.pop() self.push(first * second) def INPLACE_MODULO(self, instruction): print("NYI " + str(self)) def STORE_SUBSCR(self, instruction): print("NYI " + str(self)) def DELETE_SUBSCR(self, instruction): print("NYI " + str(self)) def BINARY_LSHIFT(self, instruction): print("NYI " + str(self)) def BINARY_RSHIFT(self, instruction): print("NYI " + str(self)) def BINARY_AND(self, instruction): print("NYI " + str(self)) def BINARY_XOR(self, instruction): print("NYI " + str(self)) def BINARY_OR(self, instruction): print("NYI " + str(self)) def INPLACE_POWER(self, instruction): print("NYI " + str(self)) def GET_ITER(self, instruction): # Create an iterator from the TOS object and push it on the stack tos = self.pop() self.push(iter(tos)) def GET_YIELD_FROM_ITER(self, instruction): print("NYI " + str(self)) def PRINT_EXPR(self, instruction): print("NYI " + str(self)) def LOAD_BUILD_CLASS(self, instruction): # Push the function which will make the class self.push(self.make_class) def YIELD_FROM(self, instruction): print("NYI " + str(self)) def GET_AWAITABLE(self, instruction): print("NYI " + str(self)) def INPLACE_LSHIFT(self, instruction): print("NYI " + str(self)) def INPLACE_RSHIFT(self, instruction): print("NYI " + str(self)) def INPLACE_AND(self, instruction): print("NYI " + str(self)) def INPLACE_XOR(self, instruction): print("NYI " + str(self)) def INPLACE_OR(self, instruction): print("NYI " + str(self)) def BREAK_LOOP(self, instruction): print("NYI " + str(self)) def WITH_CLEANUP_START(self, instruction): print("NYI " + str(self)) def WITH_CLEANUP_FINISH(self, instruction): print("NYI " + str(self)) def RETURN_VALUE(self, instruction): tos = self.pop() # Reset the environment of the call self.current_function().environments.pop() self.environments.pop() self.functions_called.pop() # Push again the result self.push(tos) def IMPORT_STAR(self, instruction): print("NYI " + str(self)) def SETUP_ANNOTATIONS(self, instruction): print("NYI " + str(self)) def YIELD_VALUE(self, instruction): #TODO self.print_stack() tos = self.pop() print("TOS of a YIELD " + str(tos)) print("Class of TOS " + str(tos.__class__)) print("Instructions in block " + str(instruction.block.instructions)) self.current_function().environments.pop() self.environments.pop() self.functions_called.pop() self.push(tos) def POP_BLOCK(self, instruction): # In the current model, this instruction is already handled pass def END_FINALLY(self, instruction): print("NYI " + str(self)) def POP_EXCEPT(self, instruction): print("NYI " + str(self)) def HAVE_ARGUMENT(self, instruction): print("NYI " + str(self)) def STORE_NAME(self, instruction): tos = self.pop() name = self.current_function().names[instruction.argument] # If tos is the main function of a class, we are in fact # adding a property to this class here, special treatment if self.current_function().is_class: self.current_function().mclass.add_attribute(name, tos) # # If we are in the top level of the program if instruction.function.is_main and instruction.function.name == "main": # also make a global store self.global_environment[name] = tos self.current_function().environments[-1][name] = tos def DELETE_NAME(self, instruction): print("NYI " + str(self)) def UNPACK_SEQUENCE(self, instruction): # Unpack tuple items and push them on the stack right to left tos = self.pop() for item in reversed(tos): self.push(item) def FOR_ITER(self, instruction): # TOS is an iterator tos = self.pop() need_jump = False # Try to get a value from the iterator try: value = tos.__next__() # Push back the iterator and the yield value self.push(tos) self.push(value) except StopIteration: # If it is exhausted, make a jump need_jump = True # Find the next block depending of the iterator for block in instruction.block.next: if block.instructions[0].offset == instruction.absolute_target: # Make the jump jump_block = block else: # Continue notjump_block = block if need_jump: self.execute_block(jump_block) else: self.execute_block(notjump_block) def UNPACK_EX(self, instruction): print("NYI " + str(self)) def STORE_ATTR(self, instruction): # Get the attribute and the value and set it obj = self.pop() value = self.pop() name = self.current_function().names[instruction.argument] obj.set_attribute(name, value) self.push(value) def DELETE_ATTR(self, instruction): print("NYI " + str(self)) def STORE_GLOBAL(self, instruction): print("NYI " + str(self)) def DELETE_GLOBAL(self, instruction): print("NYI " + str(self)) def LOAD_CONST(self, instruction): loaded_value = self.current_function().consts[instruction.argument] self.push(loaded_value) # If we load a Code Object, disassemble it if isinstance(loaded_value, CodeType): if self.args.verbose: dis.dis(loaded_value) def LOAD_NAME(self, instruction): name = str(self.current_function().names[instruction.argument]) # try to find the name in local environments if name in self.current_function().environments[-1]: self.push(self.current_function().environments[-1][name]) else: # Lookup in the global environment self.push(self.global_environment[name]) def BUILD_TUPLE(self, instruction): res = [] for i in range(0, instruction.argument): res.append(self.pop()) res.reverse() self.push(tuple(res)) def BUILD_LIST(self, instruction): res = [] for i in range(0, instruction.argument): res.append(self.pop()) res.reverse() self.push(res) def BUILD_SET(self, instruction): res = set() for i in range(0, instruction.argument): res.add(self.pop()) self.push(res) def BUILD_MAP(self, instruction): print("NYI " + str(self)) def LOAD_ATTR(self, instruction): tos = self.pop() name = self.current_function().names[instruction.argument] # Lookup a name in a python module object if isinstance(tos, model.MModule): # Special case for a Module fun = tos.lookup(name, False) self.push(fun) elif isinstance(tos, model.MObject): # Access to an attribute of the model res = tos.get_property(name) # Two cases here, we accessed to a method or an attribute value if isinstance(res, model.Function): # If it's a function, we will make a method called later # Set the object at the receiver of the method for later res.receiver = tos self.push(res) else: # Access to an attribute attr = getattr(tos, name) self.push(attr) def COMPARE_OP(self, instruction): second = self.pop() first = self.pop() # Perform the test and push the result on the stack res = compare_functions[instruction.argument](first, second) self.push(res) def IMPORT_NAME(self, instruction): module_name = self.current_function().names[instruction.argument] from_list = self.pop() level = self.pop() # Add the subdirectory to the path to import module_name = self.subdirectory + "." + module_name # Find the module file spec = importlib.util.find_spec(module_name) # Create a module without executing it pythonmodule = importlib.util.module_from_spec(spec) # Now we need to execute this module, start by compiling it co = frontend.compiler.compile_import(pythonmodule.__file__, self.args) module = model.MModule(co) self.modules.append(module) # Generate a function for the module fun = self.generate_function(co, self.current_function().names[instruction.argument], module, True) env = {} self.environments.append(env) fun.environments.append(env) self.execute_function(fun) self.push(module) def IMPORT_FROM(self, instruction): print("NYI " + str(self)) def JUMP_FORWARD(self, instruction): for block in instruction.block.next: if block.instructions[0].offset == instruction.absolute_target: self.execute_block(block) return def JUMP_IF_FALSE_OR_POP(self, instruction): value = self.pop() jump_block = None notjump_block = None # Locate the target of the jump in next basic blocks for block in instruction.block.next: # If we need to make the jump if block.instructions[0].offset == instruction.argument: jump_block = block else: # Continue the execution in the second block notjump_block = block if not value: self.push(value) self.execute_block(jump_block) else: self.execute_block(notjump_block) def JUMP_IF_TRUE_OR_POP(self, instruction): value = self.pop() jump_block = None notjump_block = None # Locate the target of the jump in next basic blocks for block in instruction.block.next: # If we need to make the jump if block.instructions[0].offset == instruction.argument: jump_block = block else: # Continue the execution in the second block notjump_block = block if value: self.push(value) self.execute_block(jump_block) else: self.execute_block(notjump_block) def JUMP_ABSOLUTE(self, instruction): for block in instruction.block.next: # Make the jump if block.instructions[0].offset == instruction.argument: self.execute_block(block) return # TODO: We should have jump before, put an assertion here def POP_JUMP_IF_FALSE(self, instruction): value = self.pop() jump_block = None notjump_block = None # Locate the target of the jump in next basic blocks for block in instruction.block.next: # If we need to make the jump if block.instructions[0].offset == instruction.argument: jump_block = block else: # Continue the execution in the second block notjump_block = block if not value: self.execute_block(jump_block) else: self.execute_block(notjump_block) def POP_JUMP_IF_TRUE(self, instruction): value = self.pop() jump_block = None notjump_block = None # Locate the target of the jump in next basic blocks for block in instruction.block.next: # If we need to make the jump if block.instructions[0].offset == instruction.argument: jump_block = block else: # Continue the execution in the second block notjump_block = block if value: self.execute_block(jump_block) else: self.execute_block(notjump_block) def LOAD_GLOBAL(self, instruction): name = self.current_function().names[instruction.argument] # Lookup in the global environment if name in self.global_environment: self.push(self.global_environment[name]) else: # Lookup in its module to find a name self.push(self.function.module.lookup(name, False)) def CONTINUE_LOOP(self, instruction): print("NYI " + str(self)) def SETUP_LOOP(self, instruction): # For now, do nothing, the end of the loop wild discard the block pass def SETUP_EXCEPT(self, instruction): print("NYI " + str(self)) def SETUP_FINALLY(self, instruction): print("NYI " + str(self)) def LOAD_FAST(self, instruction): varname = self.current_function().varnames[instruction.argument] for env in reversed(self.current_function().environments): if varname in env: self.push(env[varname]) return def STORE_FAST(self, instruction): value = self.pop() varname = self.current_function().varnames[instruction.argument] self.current_function().environments[-1][varname] = value def DELETE_FAST(self, instruction): print("NYI " + str(self)) def STORE_ANNOTATION(self, instruction): print("NYI " + str(self)) def RAISE_VARARGS(self, instruction): print("NYI " + str(self)) #TODO: factorize with other call functions def CALL_FUNCTION(self, instruction): # Default arguments args = [] for i in range(0, instruction.argument): # Pop all arguments of the call and put them in environment args.append(self.pop()) # Put arguments in right order args.reverse() # Creating an empty environment env = {} # TOS is now the function to call function = self.pop() if isinstance(function, model.MClass): # We have to make a new instance of a class self.push(function.new_instance_interpreter(args)) return elif isinstance(function, model.Function): args_call = len(args) args_function = function.argcount if args_call < args_function: # We are doing a method call here, add self parameter # this parameter must be set before args.insert(0, function.receiver) else: # Special case of a call to a primitive function self.push(function(*args)) return function.environments.append(env) self.environments.append(env) # Initialize the environment for the function call for i in range(0, len(args)): if not len(function.varnames) == 0: env[function.varnames[i]] = args[i] # Make the call self.execute_function(function) def MAKE_FUNCTION(self, instruction): function_name = self.pop() code = self.pop() #TODO free_variables = None if (instruction.argument & 8) == 8: # Making a closure, tuple of free variables free_variables = self.pop() if (instruction.argument & 4) == 4: # Annotation dictionnary annotations = self.pop() if (instruction.argument & 2) == 2: # keyword only default arguments keyword_only = self.pop() if (instruction.argument & 1) == 1: # default arguments default = self.pop() # Generate a new Function Object # TODO: check the module of the function fun = self.generate_function(code, function_name, self.modules[-1], False) # Fill the closure if free_variables != None: for value in free_variables: for env in reversed(self.current_function().environments): if value in env: fun.closure[value] = env[value] # Push the Function object on the stack self.push(fun) def BUILD_SLICE(self, instruction): print("NYI " + str(self)) def LOAD_CLOSURE(self, instruction): # Search the name of the variable varname = None if instruction.argument < len(self.current_function().cellvars): varname = self.current_function().cellvars[instruction.argument] else: i = instruction.argument - len(self.current_function().cellvars) varname = self.current_function().cellvars[i] self.push(varname) def LOAD_DEREF(self, instruction): # TODO: Flat representation of closures varname = None if instruction.argument < len(self.current_function().cellvars): varname = self.current_function().cellvars[instruction.argument] else: varname = self.current_function().freevars[instruction.argument] if varname not in self.current_function().closure: # Lookup in environment for env in reversed(self.current_function().environments): if varname in env: self.push(env[varname]) return else: # Get the value in the closure self.push(self.current_function().closure[varname]) def STORE_DEREF(self, instruction): print("NYI " + str(self)) def DELETE_DEREF(self, instruction): print("NYI " + str(self)) def CALL_FUNCTION_KW(self, instruction): # TOS is a tuple for keywords keywords_tuple = self.pop() print("keywords tuple " + str(keywords_tuple)) print(len(keywords_tuple)) # Creating an empty environment env = {} for element in keywords_tuple: env[element] = self.pop() print("env with keywords " + str(env)) # Default arguments args = [] for i in range(0, instruction.argument - len(keywords_tuple)): # Pop all arguments of the call and put them in environment args.append(self.pop()) # Put positionnal arguments in right order args.reverse() # TOS is now the function to call function = self.pop() if not isinstance(function, model.Function): # Special case of a call to a primitive function self.push(function(*args)) return # Initialize the environment for the function call for i in range(0, len(args)): env[function.varnames[i]] = args[i] function.environments.append(env) self.environments.append(env) # Make the call function.execute(self) def CALL_FUNCTION_EX(self, instruction): print("NYI " + str(self)) def SETUP_WITH(self, instruction): print("NYI " + str(self)) def EXTENDED_ARG(self, instruction): print("NYI " + str(self)) def LIST_APPEND(self, instruction): tos = self.pop() list.append(self.stack[-instruction.argument], tos) def SET_ADD(self, instruction): print("NYI " + str(self)) def MAP_ADD(self, instruction): print("NYI " + str(self)) def LOAD_CLASSDEREF(self, instruction): print("NYI " + str(self)) def BUILD_LIST_UNPACK(self, instruction): print("NYI " + str(self)) def BUILD_MAP_UNPACK(self, instruction): print("NYI " + str(self)) def BUILD_MAP_UNPACK_WITH_CALL(self, instruction): print("NYI " + str(self)) def BUILD_TUPLE_UNPACK(self, instruction): print("NYI " + str(self)) def BUILD_SET_UNPACK(self, instruction): print("NYI " + str(self)) def SETUP_ASYNC_WITH(self, instruction): print("NYI " + str(self)) def FORMAT_VALUE(self, instruction): print("NYI " + str(self)) def BUILD_CONST_KEY_MAP(self, instruction): print("NYI " + str(self)) def BUILD_STRING(self, instruction): print("NYI " + str(self)) def BUILD_TUPLE_UNPACK_WITH_CALL(self, instruction): print("NYI " + str(self)) def LOAD_METHOD(self, instruction): print("NYI " + str(self)) def CALL_METHOD(self, instruction): print("NYI " + str(self)) def op_lesser(first, second): return first < second def op_lesser_eq(first, second): return first <= second def op_eq(first, second): return first == second def op_noteq(first, second): return first != second def op_greater(first, second): return first > second def op_greater_eq(first, second): return first >= second def op_in(first, second): return first in second def op_notin(first, second): return first not in second def op_is(first, second): return first is second def op_notis(first, second): return not (first is second) # TODO def op_exception_match(first, second): print("NYI") quit() # TODO def op_bad(first, second): print("NYI") quit() compare_functions = (op_lesser, op_lesser_eq, op_eq, op_noteq, op_greater, op_greater_eq, op_in, op_notin, op_is, op_notis, op_exception_match, op_bad) # Dictionary between names and primitive functions primitives = { "abs" : abs, "dict" : dict, "help" : help, "min" : min, "setattr" : setattr, "all" : all, "dir" : dir, "hex" : hex, "next" : next, "slice" : slice, "any" : any, "divmod" : divmod, "id" : id, "object" : object, "sorted" : sorted, "ascii" : ascii, "enumerate" : enumerate, "input" : input, "oct" : oct, "staticmethod" : staticmethod, "bin" : bin, "eval" : eval, "int" : int, "open" : open, "str" : str, "bool" : bool, "exec" : exec, "isinstance" : isinstance, "ord" : ord, "sum" : sum, "bytearray" : bytearray, "filter" : filter, "issubclass" : issubclass, "pow" : pow, "super" : super, "bytes" : bytes, "float" : float, "iter" : iter, "print" : print, "tuple" : tuple, "callable" : callable, "format" : format, "len" : len, "property" : property, "type" : type, "chr" : chr, "frozenset" : frozenset, "list" : list, "range" : range, "vars" : vars, "classmethod" : classmethod, "getattr" : getattr, "locals" : locals, "repr" : repr, "zip" : zip, "globals" : globals, "map" : map, "reversed" : reversed, "__import__" : __import__, "complex" : complex, "hasattr" : hasattr, "max" : max, "round" : round, "hash" : hash, "delattr" : delattr, "memoryview" : memoryview, "set" : set, } ``` #### File: jpages/twopy/main_script.py ```python import argparse import subprocess import os.path import glob # Execute the compiler with the given arguments # cmd: the command to execute # python_file: the python file to execute with Twopy def run_cmd(cmd, python_file): command = cmd + " " + python_file subprocess.run(command, shell=True) def main(): # Argument parser parser = argparse.ArgumentParser(description="Twopy Python compiler") # TODO: option usage # TODO: all additional options must be passed to twopy parser.add_argument('--gdb', help='Enable gdb debugging of Twopy', action='store_true') parser.add_argument("python_file", help="Python file to execute") parser.add_argument("--time", help="Print the time of the process", action="store_true") # Run benchmarks and exit parser.add_argument("--benchs", "--benchmarks", help="Run all benchmarks in benchmarks/ directory and exit", action="store_true") # This option is mandatory each time the FFI with C is modified parser.add_argument("--compile_ffi", action="store_true", help="Compile the C-FFI used by Twopy") args = parser.parse_args() # Contains arguments for running gdb debug_string = "" # Used to give env variables to CPython env_vars = "PYTHONMALLOC=malloc " if args.gdb: debug_string = "gdb -ex run --args " twopy_entry_point = "twopy.py" if args.compile_ffi: twopy_entry_point += " --compile_ffi" # Current path this_path = os.path.dirname(os.path.realpath(__file__)) # Make sure to have the correct absolute path, is the project was cloned as expected this_path += "/../cpython/python" cmd = env_vars + debug_string + " " + this_path + " " + twopy_entry_point if args.time: cmd = "time " + cmd # This option launches twopy on every benchmark then exit if args.benchs: bench_dir = os.path.dirname(os.path.realpath(__file__)) + "/benchmarks/" bench_list = glob.glob(bench_dir + "*.py") # Automatically add the time if not args.time: cmd = "time " + cmd # Execute each file for file in bench_list: print(file) run_cmd(cmd, file) else: # run Twopy run_cmd(cmd, args.python_file) if __name__ == '__main__': main() ``` #### File: twopy/tests/binary_search.py ```python def binary_search(alist, item): first = 0 last = len(alist) - 1 found = False while first <= last and not found: middle = (first + last) // 2 if alist[middle] == item: found = True else: if item < alist[middle]: # Search in the left part last = middle - 1 else: first = middle + 1 return found alist = [1, 4, 6, 7, 9, 15, 33, 45, 68, 90] print(binary_search(alist, 68)) ``` #### File: twopy/tests/decorator.py ```python def mon_decorateur(fonction): print("Notre décorateur est appelé avec en paramètre la fonction {0}".format(fonction)) return fonction @mon_decorateur def salut(): print("Salut !") salut() ``` #### File: twopy/tests/objects1.py ```python class Animal: pass class Dog(Animal): def __init__(self, name): self.name = name self.tricks = [] # creates a new empty list for each dog def add_trick(self, trick): self.tricks.append(trick) def foo(self): print(self) print("test") d = Dog('Fido') e = Dog('Buddy') d.add_trick('roll over') d.add_trick('another trick') e.add_trick('play dead') e.foo() print(d.tricks) print(e.tricks) ``` #### File: twopy/tests/prime.py ```python def primes(value): for num in range(value): res = True for k in range(2, num): if k != 0: if num % k == 0: res = False if res == True: print(num) primes(100) ``` #### File: twopy/tests/pypy_example.py ```python def f(a, b): if b % 46 == 41: return a - b else: return a + b def strange_sum(n): result = 0 while n >= 0: result = f(result, n) n -= 1 return result print(strange_sum(10000000)) ``` #### File: twopy/tests/quick_sort.py ```python import random # Very inefficient bubble sort def bubble_sort(array): for i in range(len(array)): for j in range(i, len(array)): if array[i] > array[j]: # Swap these elements temp = array[i] array[i] = array[j] array[j] = temp return array # More efficient quick sort (with a pivot) def quick_sort(array): less = [] equal = [] greater = [] if len(array) > 1: # Chose a pivot pivot = array[0] for x in array: if x < pivot: less.append(x) if x == pivot: equal.append(x) if x > pivot: greater.append(x) return quick_sort(less) + equal + quick_sort(greater) else: return array random.seed() array = [12, 4, 5, 6, 7, 3, 1, 15] for i in range(10000): array.append(int(random.random()*100000)) print(quick_sort(array)) print(bubble_sort(array)) ``` #### File: twopy/tests/sum.py ```python def foo(n): res = 0 for i in range(n): res = res + i print(res) return res print(foo(10000)) ``` #### File: twopy/tests/while_loops.py ```python def test(n): i = 0 res = 0 while i < n: i = i + 1 print(res) test(100) ``` #### File: jpages/twopy/twopy.py ```python import frontend import interpreter import jit import argparse import os.path def main(): # Argument parser parser = argparse.ArgumentParser(description="Twopy Virtual Machine") parser.add_argument("file", help="path to a python file") parser.add_argument("--verbose", "-v", action="store_true", help="enable verbose output") parser.add_argument("--execution", action="store_true", help="Print each variation of the stack during execution") parser.add_argument("--inter", action="store_true", help="Interpretation of the code") parser.add_argument("--asm", action="store_true", help="Print generated assembly code") parser.add_argument("--maxvers", type=int, help="Maximum number of generated versions for BBV.\n0 means infinite versions, default is 5.") parser.add_argument("--no_std_lib", action="store_true", help="Do not compile the standard library of Twopy. Not much will be executable.") parser.add_argument("--stats", action="store_true", help="Collect statistics on execution") parser.add_argument("--compile_ffi", action="store_true", help="Compile the C-FFI used by Twopy") args = parser.parse_args() # Compile to bytecode and get the main CodeObject maincode = frontend.compiler.compile_source(args.file, args) # Get the subdirectory of the executed file head, tail = os.path.split(args.file) inter = interpreter.simple_interpreter.get_interpreter(maincode, head, args) if args.inter: inter.execute() else: jitcompiler = jit.compiler.JITCompiler(inter, maincode) inter.jitcompiler = jitcompiler jitcompiler.execute() main() ```
{ "source": "jpaggi/findbps", "score": 3 }
#### File: jpaggi/findbps/findbps.py ```python from subprocess import Popen, PIPE from pickle import dumps from os import path def findbps(reads, output, bowtie_options, motif, length, threshold, strand): """ Input: reads: str of name of file where single-end, stranded RNA-seq reads in fastq format are located output:str of desired basename of output files bowtie_options: str of bowtie options you wish to be used for alignment of reads after splitting. See the bowtie manual. Recommend "-y -p 2 -v 0 -X 5000 -m 1 <index>" motif: list of dictionaries representing 5'ss motif position weight matrix. Each dictionary has a key for each nucleotide, with a float of the probability as keys. length:int of the lowest acceptable number of bases used to align a fragment of a read. threshold: float of the lowest acceptable probability that a sequence would be sampled from the given martrix in order to attempt mapping. Recommend 0.0 unless many false positives strand:str either 'first' if reads are first-stranded or 'second' if reads are second-stranded Output: output + '.bed': A file in paired-end bed format with information about the reads with a valid alignment. output + '_no_alignment.fastq': Reads with no valid alignment in the paired-end tab-delimited format described in the bowtie manual split as they were attempted to be aligned. """ #gets the name of the directory of this file directory = path.dirname(path.realpath(__file__)) #make these arguments into strings so they can be passed to fp_checker.py motif = '"' + dumps(motif) + '"' length = str(length) threshold = str(threshold) #this process splits each read at the most likely 5'SS based on the # given weight matrix and sends them to bowtie to be mapped # see fp_checker.py for further details fp_checker = Popen('python ' + directory + '/fp_checker.py ' + motif +' '+ length +' '+ threshold +' '+ strand, stdin = open(reads,'r'), stdout = PIPE, shell = True) #this process maps each split read to the given genome bowtie = Popen('bowtie --ff ' + bowtie_options + ' --12 - --un ' + output+'_no_alignment.fastq', stdin = fp_checker.stdout, stdout = PIPE, shell = True) fp_checker.stdout.close() #this process converts the bowtie output into a bed file # see make_bed.py for further details make_bed = Popen('python ' + directory + '/make_bed.py', stdin = bowtie.stdout, stdout = open(output + ".bed",'w'), shell = True) bowtie.stdout.close() make_bed.wait() return 0 if __name__ == '__main__': from sys import argv reads = argv[1] output = argv[2] bowtie_options = argv[3] motif = eval(argv[4]) length = int(argv[5]) threshold = float(argv[6]) strand = argv[7] findbps(reads, output, bowtie_options, motif, length, threshold, strand) ``` #### File: jpaggi/findbps/make_bed.py ```python def get_first_data(first): bp_nucleotide = first[0] bp_quality = first[1] first = first[2:] (ID, strand, chromosome, first_position, first_seq, first_quality, ceiling, first_mismatches) = first.split('\t') return (bp_nucleotide, bp_quality, ID, strand, chromosome, int(first_position), first_seq, first_quality, first_mismatches) def get_second_data(second): (ID, strand, chromosome, second_position,second_seq, second_quality, ceiling, second_mismatches) = second.split('\t') return int(second_position), second_seq, second_quality, second_mismatches def complement(n): if n == 'A': out = 'T' elif n == 'T': out = 'A' elif n == 'G': out = 'C' elif n == 'C': out = 'G' else: out = n return out def read_pair(inp): #reads two lines and breaks up the first one to get information as described first=inp.readline() second=inp.readline() if first == second: return '','','','','','','','','','' (bp_nucleotide, bp_quality, ID, strand, chromosome, first_position, first_seq, first_quality, first_mismatches) = get_first_data(first) second_position, second_seq, second_quality, second_mismatches = get_second_data(second) #when strand is plus first corresponds to the 5'SS part if strand=='+': fp_start = first_position fp_end = first_position + len(first_quality) fp_seq = first_seq bp_start = second_position bp_end = second_position + len(second_quality) bp_seq = second_seq + bp_nucleotide quality = second_quality + bp_quality + first_quality #when strand is minus second corresponds to the 5'SS part else: fp_start = second_position - 1 fp_end = second_position + len(second_quality) - 1 fp_seq = second_seq bp_start = first_position - 1 bp_end = first_position + len(first_quality) bp_seq = complement(bp_nucleotide) + first_seq quality = first_quality + bp_quality + second_quality return (ID,strand,chromosome,quality, fp_start, fp_end, fp_seq, bp_start, bp_end, bp_seq) def make_bed(reads, out): (ID,strand,chromosome,quality, fp_start, fp_end, fp_seq, bp_start, bp_end, bp_seq) = read_pair(reads) total = 0 while ID: total += 1 fp_start = str(fp_start) fp_end = str(fp_end) bp_start = str(bp_start) bp_end = str(bp_end) if strand == '+': start = chromosome + '\t' + fp_start + '\t' + fp_end + '\t' stop = chromosome + '\t' + bp_start + '\t' + bp_end + '\t' seq = fp_seq + '\t' + bp_seq + '\n' else: start = chromosome + '\t' + bp_start + '\t' + bp_end + '\t' stop = chromosome + '\t' + fp_start + '\t' + fp_end + '\t' seq = bp_seq + '\t' + fp_seq + '\n' line = start+stop+ID+'\t'+quality+'\t'+strand+'\t'+strand+'\t'+seq out.write(line) (ID,strand,chromosome,quality, fp_start, fp_end, fp_seq, bp_start, bp_end, bp_seq) = read_pair(reads) return total from sys import stdin, stdout make_bed(stdin, stdout) ```
{ "source": "jpaggi/getcontacts", "score": 2 }
#### File: getcontacts/contact_calc/stratify_hbonds.py ```python from vmd import * import itertools from .contact_utils import * __all__ = ["stratify_hbond_subtypes"] ############################################################################## # Functions ############################################################################## def residue_vs_water_hbonds(hbonds, solvent_resn): """ Split hbonds into those involving residues only and those mediated by water. """ residue_hbonds, water_hbonds = [], [] for hbond in hbonds: frame_idx, atom1_label, atom2_label, itype = hbond if solvent_resn in atom1_label or solvent_resn in atom2_label: water_hbonds.append(hbond) else: residue_hbonds.append(hbond) return residue_hbonds, water_hbonds def stratify_residue_hbonds(residue_hbonds): """ Stratify residue to residue hbonds into those between sidechain-sidechain, sidechain-backbone, and backbone-backbone """ backbone_atoms = ['N', 'O'] hbss, hbsb, hbbb = [], [], [] # Iterate through each residue hbond and bin into appropriate subtype for frame_idx, atom1_label, atom2_label, itype in residue_hbonds: atom1 = atom1_label.split(":")[3] atom2 = atom2_label.split(":")[3] if atom1 not in backbone_atoms and atom2 not in backbone_atoms: hbss.append([frame_idx, "hbss", atom1_label, atom2_label]) if (atom1 not in backbone_atoms and atom2 in backbone_atoms) or \ (atom1 in backbone_atoms and atom2 not in backbone_atoms): hbsb.append([frame_idx, "hbsb", atom1_label, atom2_label]) if atom1 in backbone_atoms and atom2 in backbone_atoms: hbbb.append([frame_idx, "hbbb", atom1_label, atom2_label]) return hbss, hbsb, hbbb def stratify_water_bridge(water_hbonds, solvent_resn): """ Infer direct water bridges between residues that both have hbond with the same water (ie res1 -- water -- res2) """ frame_idx, water_to_residues, _ = calc_water_to_residues_map(water_hbonds, solvent_resn) water_bridges = set() # Infer direct water bridges for water in water_to_residues: protein_atoms = sorted(list(water_to_residues[water])) for res_atom_pair in itertools.combinations(protein_atoms, 2): res_atom1, res_atom2 = res_atom_pair if res_atom1 != res_atom2: water_bridges.add((frame_idx, "wb", res_atom1, res_atom2, water)) wb = sorted([list(entry) for entry in water_bridges]) return wb def stratify_extended_water_bridge(water_hbonds, solvent_resn): """ Infer extended water bridges between residues that form hbond with water molecules that also have hbond between them. (ie res1 -- water1 -- water2 -- res2) """ frame_idx, water_to_residues, solvent_bridges = calc_water_to_residues_map(water_hbonds, solvent_resn) extended_water_bridges = set() for water1, water2 in solvent_bridges: if water1 not in water_to_residues or water2 not in water_to_residues: continue res_atom1_list, res_atom2_list = water_to_residues[water1], water_to_residues[water2] for atom1 in res_atom1_list: for atom2 in res_atom2_list: extended_water_bridges.add((frame_idx, "wb2", atom1, atom2, water1, water2)) extended_water_bridges = sorted(list(extended_water_bridges)) wb2 = [] for frame_idx, atom1, water1, water2, atom2, itype in extended_water_bridges: wb2.append([frame_idx, atom1, water1, water2, atom2, itype]) return wb2 def stratify_hbond_subtypes(hbonds, solvent_resn): """ Stratify the full hbonds list into the following subtypes: sidechain-sidechain, sidechain-backbone, backbone-backbone, water-bridge, and extended water-bridge Parameters ---------- hbonds: list, [[frame_idx, atom1_label, atom2_label, itype], ...] List of all hydrogen bond contacts in a single frame. itype = "hb" solvent_resn: string, default = TIP3 Denotes the resname of solvent in simulation Returns ------- hbond_subtypes: list, [[frame_idx, atom1_label, atom2_label, itype], ...] List of all hydrogen contacts with itype = "hbss", "hbsb", "hbbb", "wb", or "wb2" corresponding to sidechain-sidechain, sidechain-backbone, backbone-backbone, water bridge and extended water bridge respectively. """ residue_hbonds, water_hbonds = residue_vs_water_hbonds(hbonds, solvent_resn) hbss, hbsb, hbbb = stratify_residue_hbonds(residue_hbonds) wb = stratify_water_bridge(water_hbonds, solvent_resn) wb2 = stratify_extended_water_bridge(water_hbonds, solvent_resn) hbonds = hbss + hbsb + hbbb + wb + wb2 return hbonds ``` #### File: jpaggi/getcontacts/get_contact_fingerprints.py ```python from __future__ import division import sys import argparse import numpy as np from contact_calc.flare import compose_frequencytable, write_json def parse_frequencyfiles(freq_files, freq_cutoff): columns = len(freq_files) ret = {} for fidx, freq_file in enumerate(freq_files): for line in freq_file: line = line.strip() if len(line) == 0 or line[0] == "#": continue tokens = line.split("\t") res1 = tokens[0] res2 = tokens[1] freq = float(tokens[2]) if not (res1, res2) in ret: ret[(res1, res2)] = np.zeros(columns) ret[(res1, res2)][fidx] = freq # Remove entries where no frequency exceeds 0.6 ret = {key: val for key, val in ret.items() if np.amax(val) > freq_cutoff} return ret def write_frequencytable(freq_table, col_labels, fname): with open(fname, "w") as out_file: out_file.write(",".join(["", ""] + col_labels) + "\n") for (res1, res2) in freq_table: freq_strings = [str(freq) for freq in freq_table[(res1, res2)]] out_file.write(",".join([res1, res2] + freq_strings) + "\n") def plot_frequencies(freq_table, col_labels, out_file, cluster_columns): import pandas as pd import matplotlib import os if "DISPLAY" not in os.environ: matplotlib.use('agg') import seaborn as sns; sns.set(color_codes=True) freq_matrix = np.array([freq_table[(r1, r2)] for (r1, r2) in freq_table]) row_labels = [r1 + " - " + r2 for (r1, r2) in freq_table] pdframe = pd.DataFrame(freq_matrix, index=row_labels, columns=col_labels) # Scale down figsize if too large figsize = [pdframe.shape[1], pdframe.shape[0]] if figsize[1] > 320: figsize[0] *= 320 / figsize[1] figsize[1] *= 320 / figsize[1] # Create clustermap fingerprints = sns.clustermap(pdframe, figsize=figsize, annot=True, col_cluster=cluster_columns, cmap='Blues') # Remove color bar fingerprints.cax.set_visible(False) import matplotlib.pyplot as plt plt.setp(fingerprints.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) plt.setp(fingerprints.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) fingerprints.savefig(out_file) def main(): # Parse command line arguments class MyParser(argparse.ArgumentParser): def error(self, message): # Prints full program help when error occurs self.print_help(sys.stderr) sys.stderr.write('\nError: %s\n' % message) sys.exit(2) parser = MyParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--input_frequencies', type=argparse.FileType('r'), required=True, nargs='+', help="Paths to one or more residue frequency files") parser.add_argument('--frequency_cutoff', type=float, required=False, default=0.6, help="Only interactions occurring at least this frequently will be plotted (default: 0.6)") parser.add_argument('--column_headers', type=str, required=False, nargs='+', help="Header column labels. If nothing is specified, the input_frequencies filenames are used") parser.add_argument('--cluster_columns', type=bool, required=False, default=False, help="Perform hierarchical clustering on the columns (default: False)") parser.add_argument('--table_output', type=str, required=False, default=None, help="If specified, the tab-separated frequency table will be written to this file") parser.add_argument('--plot_output', type=str, required=False, default=None, help="If specified, the heatmap will be written to this file (supports svg and png formats)") parser.add_argument('--flare_output', type=str, required=False, default=None, help="If specified, a compare-flare will be written to this json-file") args = parser.parse_args() freq_table = parse_frequencyfiles(args.input_frequencies, args.frequency_cutoff) # Determine column headers and exit on error column_headers = [f.name for f in args.input_frequencies] if args.column_headers is None else args.column_headers if len(column_headers) != len(args.input_frequencies): parser.print_help(sys.stderr) sys.stderr.write("\nError: --column_header arguments must match length of --input_frequencies\n") sys.exit(2) # Check output format and call corresponding function(s) if args.table_output is None and args.flare_output is None and args.plot_output is None: parser.print_help(sys.stderr) sys.stderr.write("\nError: Either --table_output, --flare_output, or --plot_output must be specified\n") sys.exit(2) if args.table_output is not None: write_frequencytable(freq_table, column_headers, args.table_output) print("Wrote frequency table to "+args.table_output) if args.flare_output is not None: compare_flare = compose_frequencytable(freq_table, column_headers, args.frequency_cutoff) write_json(compare_flare, args.flare_output) print("Wrote multi flare to "+args.flare_output) if args.plot_output is not None: plot_frequencies(freq_table, column_headers, args.plot_output, args.cluster_columns) print("Wrote fingerprint heatmap to "+args.plot_output) if __name__ == '__main__': main() ```
{ "source": "JPags/mcoc-cogs", "score": 2 }
#### File: mcoc-cogs/mcocTools/mcocTools.py ```python import discord import re import csv import random import os import datetime from operator import itemgetter, attrgetter from .utils import chat_formatting as chat from .utils.dataIO import dataIO from cogs.utils import checks from discord.ext import commands from . import hook as hook class MCOCTools: '''Tools for Marvel Contest of Champions''' lookup_links = { 'event': ( '<http://simians.tk/MCOC-Sched>', '[Tiny MCoC Schedule](https://docs.google.com/spreadsheets/d/e/2PACX-1vT5A1MOwm3CvOGjn7fMvYaiTKDuIdvKMnH5XHRcgzi3eqLikm9SdwfkrSuilnZ1VQt8aSfAFJzZ02zM/pubhtml?gid=390226786)', '<NAME> Schedule', 'https://d2jixqqjqj5d23.cloudfront.net/assets/developer/imgs/icons/google-spreadsheet-icon.png'), 'rttl':( '<https://drive.google.com/file/d/0B4ozoShtX2kFcDV4R3lQb1hnVnc/view>', '[Road to the Labyrinth Opponent List](https://drive.google.com/file/d/0B4ozoShtX2kFcDV4R3lQb1hnVnc/view)', 'by Regal Empire {OG Wolvz}', 'http://svgur.com/s/48'), 'hook': ( '<http://hook.github.io/champions>', '[hook/Champions by gabriel](http://hook.github.io/champions)', 'hook/champions for Collector', 'https://assets-cdn.github.com/favicon.ico'), 'spotlight': ( '<http://simians.tk/MCoCspotlight>', '[MCOC Spotlight Dataset](http://simians.tk/MCoCspotlight)\nIf you would like to donate prestige, signatures or stats, join us at \n[CollectorDevTeam](https://discord.gg/BwhgZxk)'), # 'marvelsynergy': ( # '<http://www.marvelsynergy.com/team-builder>', # '[Marvel Synergy Team Builder](http://www.marvelsynergy.com/team-builder)', # 'Marvel Synergy', # 'http://www.marvelsynergy.com/images/marvelsynergy.png'), 'alsciende':( '<https://alsciende.github.io/masteries/v10.0.1/#>', '[Alsciende Mastery Tool](https://alsciende.github.io/masteries/v17.0.2/#)', 'by u/alsciende', 'https://images-ext-2.discordapp.net/external/ymdMNrkhO9L5tUDupbFSEmu-JK0X2bpV0ZE-VYTBICc/%3Fsize%3D1024/https/cdn.discordapp.com/avatars/268829380262756357/b55ae7fc51d9b741450f949accd15fbe.webp?width=80&height=80'), 'simulator': ( '<http://simians.tk/msimSDF>', '[-SDF- Mastery Simulator](http://simians.tk/msimSDF)'), # 'streak': ( # '<http://simians.tk/-sdf-streak>' # '[Infinite Streak](http://simians.tk/-sdf-streak)'), # #'http://simians.tk/SDFstreak') } mcolor = discord.Color.red() COLLECTOR_ICON='https://raw.githubusercontent.com/JasonJW/mcoc-cogs/master/mcoc/data/cdt_icon.png' icon_sdf = 'https://raw.githubusercontent.com/JasonJW/mcoc-cogs/master/mcoc/data/sdf_icon.png' dataset = 'data/mcoc/masteries.csv' def __init__(self, bot): self.bot = bot def present(self, lookup): em=discord.Embed(color=self.mcolor,title='',description=lookup[1]) print(len(lookup)) if len(lookup) > 2: em.set_footer(text=lookup[2],icon_url=lookup[3]) else: em.set_footer(text='CollectorDevTeam',icon_url=self.COLLECTOR_ICON) return em @commands.command(pass_context=True,aliases={'collector','infocollector','about'}) async def aboutcollector(self,ctx): """Shows info about Collector""" author_repo = "https://github.com/Twentysix26" red_repo = author_repo + "/Red-DiscordBot" server_url = "https://discord.gg/wJqpYGS" dpy_repo = "https://github.com/Rapptz/discord.py" python_url = "https://www.python.org/" collectorpatreon = 'https://patreon.com/collectorbot' since = datetime.datetime(2016, 1, 2, 0, 0) days_since = (datetime.datetime.utcnow() - since).days dpy_version = "[{}]({})".format(discord.__version__, dpy_repo) py_version = "[{}.{}.{}]({})".format(*os.sys.version_info[:3], python_url) owner_set = self.bot.settings.owner is not None owner = self.bot.settings.owner if owner_set else None if owner: owner = discord.utils.get(self.bot.get_all_members(), id=owner) if not owner: try: owner = await self.bot.get_user_info(self.bot.settings.owner) except: owner = None if not owner: owner = "Unknown" about = ( "Collector is an instance of [Red, an open source Discord bot]({0}) " "created by [Twentysix]({1}) and improved by many.\n\n" "The Collector Dev Team is backed by a passionate community who contributes and " "creates content for everyone to enjoy. [Join us today]({2}) " "and help us improve!\n\n" "★ If you would like to support the Collector, please visit {3}.\n" "★ Patrons and Collaborators recieve priority support and secrety stuff.\n\n~ JJW" "".format(red_repo, author_repo, server_url, collectorpatreon)) devteam = ( "DeltaSigma#8530\n" "JJW#8071\n" ) supportteam=('phil_wo#3733\nSpiderSebas#9910\nsuprmatt#2753\ntaoness#5565\nOtriux#9964') embed = discord.Embed(colour=discord.Colour.red(), title="Collector", url=collectorpatreon) embed.add_field(name="Instance owned by", value=str(owner)) embed.add_field(name="Python", value=py_version) embed.add_field(name="discord.py", value=dpy_version) embed.add_field(name="About", value=about, inline=False) embed.add_field(name="PrestigePartner",value='mutamatt#4704',inline=True) embed.add_field(name='DuelsPartners',value='2OO2RC51#4587',inline=True) embed.add_field(name='MapsPartners',value='jpags#5202\nBlooregarde#5848 ',inline=True) embed.add_field(name='LabyrinthTeam',value='Kiryu#5755\nre-1#7595',inline=True) embed.add_field(name='CollectorSupportTeam', value=supportteam,inline=True) embed.add_field(name="CollectorDevTeam",value=devteam,inline=True) embed.set_footer(text="Bringing joy since 02 Jan 2016 (over " "{} days ago!)".format(days_since)) try: await self.bot.say(embed=embed) except discord.HTTPException: await self.bot.say("I need the `Embed links` permission " "to send this") # @checks.admin_or_permissions(manage_server=True) # @commands.command() # async def tickets(self): # ticketsjson = 'data/tickets/tickets.json' # tickets = dataIO.load_json(ticketsjson) # em = discord.Embed(title='Tickets') # cnt = 0 # ids = tickets.keys() # # for ticket in : # em.add_field(name='{} - filed by {}'.format(cnt, ticket['name'],value='{}\n id: {}'.format(ticket['message'],ticket))) # await self.bot.say(embed=em) @commands.command(help=lookup_links['event'][0], aliases=['events','schedule',]) async def event(self): x = 'event' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) @commands.command(help=lookup_links['spotlight'][0],) async def spotlight(self): x = 'spotlight' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) @commands.command(help=lookup_links['rttl'][0],) async def rttl(self): x = 'rttl' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) @commands.command(help=lookup_links['simulator'][0],aliases=['msim']) async def simulator(self): x = 'simulator' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) @commands.command(help=lookup_links['alsciende'][0], aliases=('mrig',)) async def alsciende(self): x = 'alsciende' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) @commands.command(help=lookup_links['hook'][0]) async def hook(self): x = 'hook' lookup = self.lookup_links[x] await self.bot.say(embed=self.present(lookup)) # await self.bot.say('iOS dumblink:\n{}'.format(lookup[0])) # @commands.command() # async def keygen(self, prefix='SDCC17'): # '''SDCC Code Generator # No warranty :)''' # letters='ABCDEFGHIJKLMNOPQURSTUVWXYZ' # numbers='0123456789' # package = [] # for i in range(0,9): # lets='{}{}{}{}{}{}'.format(random.choice(letters),random.choice(letters),random.choice(numbers),random.choice(numbers),random.choice(letters),random.choice(letters)) # package.append(prefix+lets) # em=discord.Embed(color=discord.Color.gold(),title='Email Code Generator',description='\n'.join(package)) # await self.bot.say(embed=em) def _get_text(self, mastery, rank): rows = csv_get_rows(self.dataset,'Mastery',mastery) for row in rows: text.append(row['Text'].format(row[str(rank)])) return text @checks.admin_or_permissions(manage_server=True, manage_roles=True) @commands.command(name='gaps', pass_context=True, hidden=True) async def _alliance_popup(self, ctx, *args): '''Guild | Alliance Popup System''' warning_msg =('The G.A.P.S. System will configure your server for basic Alliance Operations.' 'Roles will be added for summoners, alliance, officers, bg1, bg2, bg3' 'Channels will be added for announcements, alliance, & battlegroups.' 'Channel permissions will be configured.' 'After the G.A.P.S. system prepares your server, there will be additional instructions.' 'If you consent, press OK') em = discord.Embed(color=ctx.message.author.color, title='G.A.P.S. Warning Message', description=warning_msg) message = await self.bot.say(embed=em) await self.bot.add_reaction(message, '❌') await self.bot.add_reaction(message, '🆗') react = await self.bot.wait_for_reaction(message=message, user=ctx.message.author, timeout=30, emoji=['❌', '🆗']) if react is not None: if react.reaction.emoji == '❌': await self.bot.say('G.A.P.S. canceled.') return elif react.reaction.emoji == '🆗': message2 = await self.bot.say('G.A.P.S. in progess.') else: await self.bot.say('Ambiguous response. G.A.P.S. canceled') return server = ctx.message.server adminpermissions = discord.PermissionOverwrite(administrator=True) moderatorpermissions = discord.PermissionOverwrite(manage_roles=True) moderatorpermissions.manage_server=True moderatorpermissions.kick_members=True moderatorpermissions.ban_members=True moderatorpermissions.manage_channels=True moderatorpermissions.manage_server=True moderatorpermissions.manage_messages=True moderatorpermissions.view_audit_logs=True moderatorpermissions.read_messages=True moderatorpermissions.create_instant_invite=True roles = server.roles rolenames = [] for r in roles: rolenames.append('{}'.format(r.name)) aroles = ['officers', 'bg1', 'bg2', 'bg3', 'alliance', 'summoners'] # message = await self.bot.say('Stage 1: Creating roles') if 'admin' not in rolenames: admin = await self.bot.create_role(server=server, name='admin', color=discord.Color.gold(), hoist=False, mentionable=False) if 'officers' not in rolenames: officers = await self.bot.create_role(server=server, name='officers', color=discord.Color.light_grey(), hoist=False, mentionable=True) if 'bg1' not in rolenames: bg1 = await self.bot.create_role(server=server, name='bg1', color=discord.Color.blue(), hoist=False, mentionable=True) if 'bg2' not in rolenames: bg2 = await self.bot.create_role(server=server, name='bg2', color=discord.Color.purple(), hoist=False, mentionable=True) if 'bg3' not in rolenames: bg3 = await self.bot.create_role(server=server, name='bg3', color=discord.Color.orange(), hoist=False, mentionable=True) if 'alliance' not in rolenames: alliance = await self.bot.create_role(server=server, name='alliance', color=discord.Color.teal(), hoist=True, mentionable=True) if 'summoners' not in rolenames: summoners = await self.bot.create_role(server=server, name='summoners', color=discord.Color.lighter_grey(), hoist=True, mentionable=True) roles = sorted(server.roles, key=lambda roles:roles.position, reverse=True) em = discord.Embed(color=discord.Color.red(), title='Guild Alliance Popup System', description='') positions = [] for r in roles: positions.append('{} = {}'.format(r.position, r.mention)) if r.name == 'officers': officers = r elif r.name == 'bg1': bg1 = r elif r.name == 'bg2': bg2 = r elif r.name == 'bg3': bg3 = r elif r.name == 'alliance': alliance = r elif r.name == 'summoners': summoners = r elif r.name == 'admin': admin = r elif r.name=='everyone': everyone = r em.add_field(name='Stage 1 Role Creation',value='\n'.join(positions),inline=False) await self.bot.say(embed=em) everyone_perms = discord.PermissionOverwrite(read_messages = False) everyoneperms = discord.ChannelPermissions(target=server.default_role, overwrite=everyone_perms) readperm = discord.PermissionOverwrite(read_messages = True) officerperms = discord.ChannelPermissions(target=officers, overwrite=readperm) allianceperms = discord.ChannelPermissions(target=alliance, overwrite=readperm) summonerperms = discord.ChannelPermissions(target=summoners, overwrite=readperm) bg1perms = discord.ChannelPermissions(target=bg1, overwrite=readperm) bg2perms = discord.ChannelPermissions(target=bg2, overwrite=readperm) bg3perms = discord.ChannelPermissions(target=bg3, overwrite=readperm) channellist = [] for c in server.channels: channellist.append(c.name) if 'announcements' not in channellist: await self.bot.create_channel(server, 'announcements', everyoneperms, allianceperms, summonerperms) # if 'alliance' not in channellist: # await self.bot.create_channel(server, 'alliance', everyoneperms, allianceperms) if 'alliance-chatter' not in channellist: await self.bot.create_channel(server, 'alliance-chatter', everyoneperms, allianceperms) if 'officers' not in channellist: await self.bot.create_channel(server, 'officers', everyoneperms, officerperms) if 'bg1aq' not in channellist: await self.bot.create_channel(server, 'bg1aq', everyoneperms, officerperms, bg1perms) if 'bg1aw' not in channellist: await self.bot.create_channel(server, 'bg1aw', everyoneperms, officerperms, bg1perms) if 'bg2aq' not in channellist: await self.bot.create_channel(server, 'bg2aq', everyoneperms, officerperms, bg2perms) if 'bg2aw' not in channellist: await self.bot.create_channel(server, 'bg2aw', everyoneperms, officerperms, bg2perms) if 'bg3aq' not in channellist: await self.bot.create_channel(server, 'bg3aq', everyoneperms, officerperms, bg3perms) if 'bg3aw' not in channellist: await self.bot.create_channel(server, 'bg3aw', everyoneperms, officerperms, bg2perms) channels= sorted(server.channels, key=lambda channels:channels.position, reverse=False) channelnames=[] for c in channels: channelnames.append('{} = {} '.format(c.position, c.mention)) em = discord.Embed(color=discord.Color.red(), title='Guild Alliance Popup System', description='') em.add_field(name='Stage 2 Create Channels',value='\n'.join(channelnames),inline=False) await self.bot.say(embed=em) em = discord.Embed(color=discord.Color.red(), titel= 'Guild Alliance Popup System', descritpion='') # fixNotifcations = await self.bot.say('Stage 3: Attempting to set Default Notification to Direct Message Only') try: # mentions only await self.bot.http.request(discord.http.Route('PATCH', '/guilds/{guild_id}', guild_id=server.id), json={'default_message_notifications': 1}) em.add_field(name='Stage 3: Notification Settings', value='I have modified the servers to use better notification settings.') except Exception as e: await self.bot.edit_message(fixNotifcations, "An exception occurred. check your log.") await self.bot.say(embed=em) em = discord.Embed(color=ctx.message.author.color, titel= 'Guild Alliance Popup System', descritpion='Server Owner Instructions') em.add_field(name='Enroll for Collector announcements', value='Enroll a channel for Collector announcements\n```/addchan #announcements```\n', inline=False) em.add_field(name='Set up Autorole', value='Default Role should be {}\n```/autorole role summoners```\n```/autorole toggle``` '.format(summoners.mention), inline=False) await self.bot.say(embed=em) await self.bot.delete_message(message2) # @checks.is_owner() # @commands.group(pass_context=True, hidden=True) # async def inspect(self, ctx): # @checks.is_owner() @commands.command(pass_context=True, hidden=True, name='inspectroles', aliases=['inspectrole', 'ir',]) async def _inspect_roles(self, ctx): server = ctx.message.server roles = sorted(server.roles, key=lambda roles:roles.position, reverse=True) positions = [] for r in roles: positions.append('{} = {}'.format(r.position, r.name)) desc = '\n'.join(positions) em = discord.Embed(color=discord.Color.red(), title='Collector Inspector: ROLES', description=desc) await self.bot.say(embed=em) @checks.admin_or_permissions(manage_roles=True) @commands.command(name='norole',pass_context=True,hidden=True) async def _no_role(self, ctx, role : discord.Role): members = ctx.message.server.members missing = [] print(str(len(missing))) for member in members: if not member.bot: if role not in member.roles: missing.append('{0.name} : {0.id}'.format(member)) print(str(len(missing))) if len(missing) == 0: await self.bot.say('No users are missing the role: {}'.format(role.name)) else: pages = chat.pagify('\n'.join(missing)) for page in pages: await self.bot.say(chat.box(page)) # @checks.admin_or_permissions(manage_server=True, manage_roles=True) # @commands.command(name='setup', pass_context=True) # async def collectorsetup(self,ctx,*args): # '''Server Setup Guide # Collector Role Requires admin # ''' # 1) Check Roles present # 2) Check Role Permissions # 3) Check Role Order # Manage Messages required for Cleanup # Manage Server required for Role Creation / Deletion # Manage Roles required for Role assignment / removal # 2 ) Check roles # 3 ) Check role order # check1 = await self.setup_phase_one(ctx) # if check1: # await self.bot.say(embed=discord.Embed(color=discord.color.red(), # title='Collector Setup Protocol', # description='☑ setup_phase_one ')) # async def setup_phase_one(self, ctx): # '''Check Server ROLES''' # # repeat_phase = await self.setup_phase_one(ctx) # # next_phase = await self.setup_phase_two(ctx) # # server = ctx.message.server # roles = server.roles # rolenames = [] # phase = True # for r in roles: # rolenames.append(r.name) # required_roles={'Collector','officers','bg1','bg2','bg3','LEGEND','100%LOL','LOL','RTL','ROL','100%Act4','Summoner','TestRole1','TestRole2'} # roles_fields={'officers': {True, discord.Color.lighter_grey(),}, # 'bg1':{True, discord.Color.blue(), }, # 'bg2':{True, discord.Color.purple(), }, # 'bg3':{True, discord.Color.orange(), }, # 'TestRole1':{True, discord.Color.default(), }, # 'TestRole2':{True, discord.Color.light_grey()}, # } # stageone=['Setup Conditions 1:\nRoles Required for Guild Setup:',] # for i in required_roles: # if i in rolenames: # stageone.append('☑️ {}'.format(i)) # else: # stageone.append('❌ {}'.format(i)) # phase = False # desc = '\n'.join(stageone) # if phase == False: # em=discord.Embed(color=discord.Color.red(),title='Server Setup Protocol [1]',description=desc) # em.add_field(name='Corrective Action', value='Roles are missing. Create missing roles and Rerun test.\n🔁 == Rerun test\n❌ == Cancel setup') # message = await self.bot.send_message(ctx.message.channel, embed=em) # await self.bot.add_reaction(message,'\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}') # await self.bot.add_reaction(message,'\N{CROSS MARK}') # await self.bot.add_reaction(message, '\N{BLACK RIGHT-POINTING TRIANGLE}') # react = await self.bot.wait_for_reaction(message=message, user=ctx.message.author, timeout=120, emoji=['\N{CROSS MARK}','\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}','\N{BLACK RIGHT-POINTING TRIANGLE}']) # if react is None or react.reaction.emoji == '\N{CROSS MARK}': # try: # await self.bot.delete_message(message) # except: # pass # return None # elif react.reaction.emoji == '\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}': # await self.bot.delete_message(message) # return await self.setup_phase_one(ctx) # elif react.reaction.emoji == '\N{BLACK RIGHT-POINTING TRIANGLE}': # await self.bot.delete_message(message) # return await self.setup_phase_two(ctx) # elif phase == True: # await setup_phase_two # # async def setup_phase_two(self, ctx): # '''Check Role ORDER''' # server = ctx.message.server # roles = sorted(server.roles, key=lambda roles:roles.position, reverse=True) # required_roles = ('Collector','officers','bg1','bg2','bg3','LEGEND','100%LOL','LOL','RTL','ROL','100%Act4','Summoner', 'everyone') # said = [] # em = discord.Embed(color=discord.Color.red(), title='Role Order Prerequisite',description='Role: Collector') # positions = [] # for r in roles: # positions.append('{} = {}'.format(r.position, r.name)) # em.add_field(name='Role Position on Server',value=chat.box('\n'.join(positions)),inline=False) # said.append(await self.bot.say(embed=em)) # order = [] # c=len(required_roles)-1 # for r in required_roles: # order.append('{} = {}'.format(c, r)) # c-=1 # em = discord.Embed(color=discord.Color.red(), title='',description='') # em.add_field(name='Correct Role Positions', value =chat.box('\n'.join(order)),inline=False) # perm_order = [] # phase = True # for i in range(0,len(required_roles)-2): # j = i+1 # if required_roles[j] > required_roles[i]: # phase = False # # perm_order.append('{} should be above {}'.format(required_roles[i],required_roles[j])) # if phase == False: # # em=discord.Embed(color=discord.Color.red(),title='Server Setup Protocol [2]',description=desc) # em.add_field(name='Corrective Action', value='Roles are out of order. Adjust role order and Rerun test.') # # em.add_field(name='',value='\n'.join(perm_order)) # message = await self.bot.send_message(ctx.message.channel, embed=em) # said.append(message) # await self.bot.add_reaction(message,'\N{BLACK LEFT-POINTING TRIANGLE}') # await self.bot.add_reaction(message,'\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}') # await self.bot.add_reaction(message,'\N{CROSS MARK}') # await self.bot.add_reaction(message, '\N{BLACK RIGHT-POINTING TRIANGLE}') # react = await self.bot.wait_for_reaction(message=message, user=ctx.message.author, timeout=120, emoji=['\N{CROSS MARK}','\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}','\N{BLACK RIGHT-POINTING TRIANGLE}']) # if react is None or react.reaction.emoji == '\N{CROSS MARK}': # try: # for message in said: # await self.bot.delete_message(message) # except: # pass # return None # elif react.reaction.emoji == '\N{ANTICLOCKWISE DOWNWARDS AND UPWARDS OPEN CIRCLE ARROWS}': # for message in said: # await self.bot.delete_message(message) # return await self.setup_phase_two(ctx) # elif react.reaction.emoji == '\N{BLACK RIGHT-POINTING TRIANGLE}': # for message in said: # await self.bot.delete_message(message) # return await self.setup_phase_three(ctx) # elif react.reaction.emoji == '\N{BLACK LEFT-POINTING TRIANGLE}': # for message in said: # await self.bot.delete_message(message) # return await self.setup_phase_one(ctx) # elif phase == True: # await setup_phase_three # # async def setup_phase_three(self, ctx): # '''Check Role Permissions''' # message = await self.bot.say('initiate phase three') @commands.command(pass_context=True, hidden=True) async def awopp_calc(self, ctx, wr:int, gain:int, loss:int): '''MutaMatt's War Opponent Calculator https://en.wikipedia.org/wiki/Elo_rating_system ''' playera = 1/(1+exp(10,(gain-loss)/400)) await self.bot.say('{}'.format(playera)) def load_csv(filename): return csv.DictReader(open(filename)) def get_csv_row(filecsv, column, match_val, default=None): print(match_val) csvfile = load_csv(filecsv) for row in csvfile: if row[column] == match_val: if default is not None: for k, v in row.items(): if v == '': row[k] = default return row def get_csv_rows(filecsv, column, match_val, default=None): print(match_val) csvfile = load_csv(filecsv) package =[] for row in csvfile: if row[column] == match_val: if default is not None: for k, v in row.items(): if v == '': row[k] = default package.append(row) return package def tabulate(table_data, width, rotate=True, header_sep=True): rows = [] cells_in_row = None for i in iter_rows(table_data, rotate): if cells_in_row is None: cells_in_row = len(i) elif cells_in_row != len(i): raise IndexError("Array is not uniform") rows.append('|'.join(['{:^{width}}']*len(i)).format(*i, width=width)) if header_sep: rows.insert(1, '|'.join(['-' * width] * cells_in_row)) return chat.box('\n'.join(rows)) def setup(bot): bot.add_cog(MCOCTools(bot)) ```
{ "source": "J-Pai/408DaisyJetson", "score": 3 }
#### File: J-Pai/408DaisyJetson/daisy_brain.py ```python import sys import os import face_recognition import cv2 from daisy_spine import DaisySpine from daisy_spine import Dir from daisy_eye import DaisyEye from multiprocessing import Process, Queue from multiprocessing.managers import SyncManager import time import argparse class NeuronManager(SyncManager): pass NeuronManager.register('get_alexa_neuron') connected = True alexa_neuron = None manager = NeuronManager(address=('', 4081), authkey=b'daisy') try: manager.connect() alexa_neuron = manager.get_alexa_neuron() print("Brain connected to neuron manager.") except ConnectionRefusedError: print("Brain not connected to neuron manager.") connected = False faces = { "Jessie": "../faces/JPai-2.jpg", "teddy": "../faces/Teddy-1.jpg", "Vladimir": "../faces/Vlad-1.jpg" } name = "JessePai" data = None eye = None X_THRES = 100 Z_CENTER = 1500 Z_THRES = 100 STANDING_THRES = 850 pid = -1 def begin_tracking(name, data_queue, video=True): print("Begin Tracking") print("Video: ", video) eye = DaisyEye(faces, data_queue) eye.find_and_track_kinect(None, "CSRT", video_out=video) data_queue.close() def daisy_action(data_queue, debug=True): spine = DaisySpine() print("Getting Data") print("Debug: ", debug) print(spine.read_all_lines()) data = None prev_statement = "" already_waiting = False standing = True prev_standing = True while True: state = None direction = None currCount = 0 if connected: currNeuron = alexa_neuron.copy() if "state" in currNeuron: state = currNeuron.get("state") if "count" in currNeuron: currCount = currNeuron.get("count") if state == "moving": direction = currNeuron.get("direction") if state is None or state == "idle" or state == "moving" or state == "exercise": statement = "" if direction is not None: already_waiting = False out = None if direction == "left" or direction == "counterclockwise": out = spine.turn(Dir.CCW) elif direction == "right" or direction == "clockwise": out = spine.turn(Dir.CW) elif direction == "forward": out = spine.forward() elif direction == "backward": out = spine.backward() else: out = spine.halt() if debug: statement = ("Moving:", direction, out) if state == "exercise": already_waiting = False if not data_queue.empty(): data = data_queue.get() if data: (status, bbox, center, distance, res) = data if status != "WAITING": center_y = center[1] if center_y < STANDING_THRES: standing = True if center_y > STANDING_THRES: standing = False if standing != prev_standing: prev_standing = standing currCount = currCount + 1 alexa_neuron.update([('count', currCount)]) print("Num Squats:", currCount) if state == "idle" and not already_waiting: print("Waiting") alexa_neuron.update([('tracking', False)]) already_waiting = True out = spine.halt() statement = ("Idling", out) if debug and statement != prev_statement: prev_statement = statement print(statement) continue if not data_queue.empty(): data = data_queue.get() if data: (status, bbox, center, distance, res) = data if not status: continue if status == "STOP": break if status == "WAITING" and not already_waiting: print("Waiting") alexa_neuron.update([('tracking', False)]) already_waiting = True out = spine.halt() statement = ("Waiting for TARGET", out) elif status != "WAITING": already_waiting = False center_x = center[0] center_y = center[1] res_center_x = int(res[0] / 2) res_center_y = int(res[1] / 2) out = None if center_x < res_center_x - X_THRES: out = spine.turn(Dir.CW) elif center_x > res_center_x + X_THRES: out = spine.turn(Dir.CCW) elif distance > Z_CENTER + Z_THRES: out = spine.forward() elif distance < Z_CENTER - Z_THRES: out = spine.backward() else: out = spine.halt() if debug: statement = (center_x, res_center_x, center, distance, res, out) if debug and statement != prev_statement: prev_statement = statement print(statement) data = None print("Action Thread Exited") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Start Daisy's Brain") parser.add_argument("--no-debug", action="store_const", const=True, help="Disable debug output") parser.add_argument("--no-video", action="store_const", const=True, help="Disable video output") args = parser.parse_args() print("Daisy's Brain is Starting ^_^") if connected: # Clear alexa neuron. alexa_neuron.clear() data = Queue() action_p = Process(target = daisy_action, args=(data, not args.no_debug, )) action_p.daemon = True action_p.start() pid = action_p.pid begin_tracking("JessePai", data, not args.no_video) action_p.terminate() print("Brain Terminated +_+") ``` #### File: 408DaisyJetson/tests/pure_face_tracking.py ```python import numpy as np import cv2 import face_recognition import sys from multiprocessing import Queue from multiprocessing.managers import SyncManager from queue import Queue as ImageQueue from pylibfreenect2 import Freenect2, SyncMultiFrameListener from pylibfreenect2 import FrameType, Registration, Frame from pylibfreenect2 import setGlobalLogger setGlobalLogger(None) print("OpenGL Pipeline") from pylibfreenect2 import OpenGLPacketPipeline print("Starting Tracking") def __draw_bbox(valid, frame, bbox, color, text): if not valid: return cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2, 1) cv2.putText(frame, text, (bbox[0], bbox[1] - 4), \ cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1) def __scale_frame(frame, scale_factor = 1): if scale_factor == 1: return frame return cv2.resize(frame, (0,0), fx=scale_factor, fy=scale_factor) def face_locations(image): pass class NeuronManager(SyncManager): pass NeuronManager.register('get_web_neuron') NeuronManager.register('get_alexa_neuron') manager = NeuronManager(address=('', 4081), authkey=b'daisy') manager.connect() web_neuron = manager.get_web_neuron() alexa_neuron = manager.get_alexa_neuron() faces = { "JessePai": "../faces/JPai-1.jpg", # "VladMok": "./faces/Vlad.jpg", # "TeddyMen": "./faces/TMen-1.jpg" } known_faces = {} for person in faces: image = face_recognition.load_image_file(faces[person]) print(person) face_encoding_list = face_recognition.face_encodings(image) if len(face_encoding_list) > 0: known_faces[person] = face_encoding_list[0] else: print("\tCould not find face for person...") pipeline = OpenGLPacketPipeline() target = "JessePai" fn = Freenect2() num_devices = fn.enumerateDevices() if num_devices == 0: print("No device connected!") serial = fn.getDeviceSerialNumber(0) device = fn.openDevice(serial, pipeline = pipeline) listener = SyncMultiFrameListener(FrameType.Color | FrameType.Depth) device.setColorFrameListener(listener) device.setIrAndDepthFrameListener(listener) device.start() registration = Registration(device.getIrCameraParams(), device.getColorCameraParams()) undistorted = Frame(512, 424, 4) registered = Frame(512, 424, 4) bigdepth = Frame(1920, 1082, 4) trackerObj = None face_process_frame = True bbox = None track_bbox = None while True: timer = cv2.getTickCount() frames = listener.waitForNewFrame() color = frames["color"] depth = frames["depth"] registration.apply(color, depth, undistorted, registered, bigdepth=bigdepth) bd = np.resize(bigdepth.asarray(np.float32), (1080, 1920)) c = cv2.cvtColor(color.asarray(), cv2.COLOR_RGB2BGR) face_bbox = None new_track_bbox = None face_locations = face_recognition.face_locations(c, number_of_times_to_upsample=0, model="cnn") face_encodings = face_recognition.face_encodings(c, face_locations) for face_encoding in face_encodings: matches = face_recognition.compare_faces( [known_faces[target]], face_encoding, 0.6) if len(matches) > 0 and matches[0]: (top, right, bottom, left) = face_locations[0] face_bbox = (left, top, right, bottom) mid_w = int((left + right) / 2) mid_h = int((top + bottom) / 2) break __draw_bbox(face_bbox is not None, c, face_bbox, (0, 0, 255), target) c = __scale_frame(c, scale_factor = 0.5) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) cv2.putText(c, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,255), 1) image = cv2.imencode('.jpg', c)[1].tostring() web_neuron.update([('image', image)]) listener.release(frames) self.so.close() cv2.destroyAllWindows() device.stop() device.close() ``` #### File: 408DaisyJetson/tests/tracker_generic_code.py ```python import cv2 CAM_NUM = 1 def track_object(): video = cv2.VideoCapture(CAM_NUM) # Setup the input video video.set(3, 640) video.set(4, 480) ok, frame = video.read() tracker = cv2.TrackerKCF_create() # Create the tracker object bbox = cv2.selectROI(frame, False) # Select the desired object to track ok = tracker.init(frame, bbox) # Initialize tracker with bbox and starting frame while True: timer = cv2.getTickCount() _, frame = video.read() ok, bbox = tracker.update(frame) # Update tracker with new frame to obtain new bbox if ok: p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,255), 1) cv2.imshow("Tracking", frame) k = cv2.waitKey(1) & 0xff if k == ord('q'): break track_object() ```
{ "source": "jpaidoussi/lambda-router", "score": 2 }
#### File: src/lambda_router/app.py ```python import logging import threading from typing import Any, Callable, Dict, List, Mapping, Optional import attr from . import exceptions, routers from .config import Config from .events import LambdaEvent from .interfaces import Event, Router from .proxies import DictProxy @attr.s(kw_only=True) class App: """ Provides the central object and entry point for a lambda execution. :param name: The name of the application. :param config: The configuration to use for this App. Can be any dict-like object but generally is an instance of ``lambda_router.config.Config`. :param event_class: The class to use for representing lambda events. :param router: The ``Router`` instance to use for this app. :param logger: The ``logging.Logger`` compatible logger instance to use for logging. """ name: str = attr.ib() config: Config = attr.ib(factory=Config) event_class: Event = attr.ib(default=LambdaEvent) event_params: Optional[Dict[str, Any]] = attr.ib(default=None, repr=False) router: Router = attr.ib(factory=routers.SingleRoute) logger: logging.Logger = attr.ib(repr=False) local_context: threading.local = attr.ib(repr=False, init=False, factory=threading.local) execution_context: Optional[Any] = attr.ib(repr=False, init=False, default=None) middleware_chain: Optional[List[Callable]] = attr.ib(repr=False, init=False, default=None) exception_handlers: List[Callable] = attr.ib(repr=False, init=False, factory=list) @logger.default def _create_logger(self): """ Default initialiser that creates a stdlib logger. """ logger = logging.getLogger(self.name) return logger def __attrs_post_init__(self): """ Post-init hook. Used to load the middlware from the config. This requires the config to already have been initialised before creating the App. """ self.load_middleware() @property def globals(self): """ Provides a proxied dict in the ``local_context``. """ if not hasattr(self.local_context, "globals"): self.local_context.globals = DictProxy() return self.local_context.globals def route(self, **options: Mapping[str, Any]) -> Callable: """ Provides a decorator for adding a route via the configured router. """ def decorator(fn: Callable): self.router.add_route(fn=fn, **options) return fn return decorator def register_exception_handler(self, fn: Callable) -> Callable: """ Provides a decorator that registers a handler for any uncaught exceptions. """ self.exception_handlers.append(fn) def decorator(fn: Callable): return fn return decorator def load_middleware(self): """ Initialises the middlware from the app config. """ dispatch = self.router.dispatch configured_middleware = self.config.get("MIDDLEWARE", []) for middleware in configured_middleware: mw_instance = middleware(dispatch) dispatch = mw_instance self.middleware_chain = dispatch def dispatch(self, *, event: Event) -> Any: """ Dispatches a request via the configured middleware chain. :param event: The ``Event`` object pass on to the middleware chain. """ return self.middleware_chain(event=event) def _create_event(self, raw_event: Mapping[str, Any]) -> Event: """ Helper to create an event from the configured ``event_class``. """ params = { "raw": raw_event, "app": self, } if self.event_params is not None: params.update(self.event_params) return self.event_class.create(**params) def __call__(self, raw_event: Mapping[str, Any], lambda_context: Any) -> Any: """ The main entry point that is invoked by the lambda runtime environment. :param raw_event: The raw event mapping passed in from the lambda runtime. :param lambda_context: The execution contect object passed in from the lambda runtime. """ event = self._create_event(raw_event) self.execution_context = lambda_context try: response = self.dispatch(event=event) except Exception as e: # The AWS Lambda environment catches all unhandled exceptions # without ever invoking the sys.excepthook handler, so this # mechanism is provided as a way to pass on those exceptions # without using sys.excepthook. if not isinstance(e, exceptions.HandledError): for fn in self.exception_handlers: fn(self, event, e) raise return response ``` #### File: src/lambda_router/events.py ```python from typing import Any, Dict, Mapping import attr from .interfaces import Event @attr.s(kw_only=True) class LambdaEvent(Event): """ A generic encapsulation of the Lambda event. :param raw: The raw event has received from the lambda execution. :param session: Per session / invocation storage. :param app: A reference to the App this event was created from. """ raw: Mapping[str, Any] = attr.ib(repr=False) session: Dict[str, Any] = attr.ib(repr=False, factory=dict) app = attr.ib(repr=False) @classmethod def create(cls, *, raw, app): return cls(raw=raw, app=app) ``` #### File: src/lambda_router/routers.py ```python import json from typing import Any, Callable, Dict, Optional import attr from .interfaces import Event, Router @attr.s(kw_only=True) class SingleRoute(Router): """ Routes to a single defined route without any conditions. :param route: The single defined route. Only set via ``add_route``. """ route: Optional[Callable] = attr.ib(init=False, default=None) def add_route(self, *, fn: Callable) -> None: """ Adds the single route. :param fn: The callable to route to. :type fn: callable :raises ValueError: Raised when a single route has already been defined. """ if self.route is not None: raise ValueError("Single route is already defined. SingleRoute can only have a single defined route.") self.route = fn def get_route(self, *, event: Optional[Event]) -> Callable: """ Returns the defined route :raises ValueError: Raised if no route is defined. :rtype: callable """ if self.route is None: raise ValueError("No route defined.") return self.route def dispatch(self, *, event: Event) -> Any: """ Gets the configured route and invokes the callable. :param event: The event to pass to the callable route. """ route = self.get_route(event=event) return route(event=event) @attr.s(kw_only=True) class EventField(Router): """ Routes on a the value of the specified top-level ``key`` in the given ``Event.raw`` dict. :param key: The name of the top-level key to look for when routing. :param routes: The routes mapping. Only set via ``add_route`` """ key: str = attr.ib(kw_only=True) routes: Dict[str, Callable] = attr.ib(init=False, factory=dict) def add_route(self, *, fn: Callable, key: str) -> None: """ Adds the route with the given key. :param fn: The callable to route to. :type fn: callable :param key: The key to associate the route with. :type fn: str """ self.routes[key] = fn def get_route(self, *, event: Event) -> Callable: """ Returns the matching route for the value of the ``key`` in the given event. :raises ValueError: Raised if no route is defined or routing key is not present in the event. :rtype: callable """ field_value: str = event.raw.get(self.key, None) if field_value is None: raise ValueError(f"Routing key ({self.key}) not present in the event.") try: return self.routes[field_value] except KeyError: raise ValueError(f"No route configured for given field ({field_value}).") def dispatch(self, *, event: Event) -> Any: """ Gets the configured route and invokes the callable. :param event: The event to pass to the callable route. """ route = self.get_route(event=event) return route(event=event) @attr.s(kw_only=True) class SQSMessage: meta: Dict[str, Any] = attr.ib(factory=dict) body: Dict[str, Any] = attr.ib(factory=dict) key: str = attr.ib() event: Event = attr.ib() @classmethod def from_raw_sqs_message(cls, *, raw_message: Dict[str, Any], key_name: str, event: Event): meta = {} attributes = raw_message.pop("attributes", None) if attributes: meta.update(attributes) body = body = raw_message.pop("body", "") message_attribites = raw_message.pop("messageAttributes", None) key = None if message_attribites: key_attribute = message_attribites.get(key_name, None) if key_attribute is not None: key = key_attribute["stringValue"] for k, value in raw_message.items(): meta[k] = value # Attempt to decode json body. body = json.loads(body) return cls(meta=meta, body=body, key=key, event=event) @attr.s(kw_only=True) class SQSMessageField(Router): """ Processes all message records in a given ``Event``, routing each based on on the configured key. :param key: The name of the message-level key to look for when routing. :param routes: The routes mapping. Only set via ``add_route`` """ key: str = attr.ib(kw_only=True) routes: Dict[str, Callable] = attr.ib(init=False, factory=dict) def _get_message(self, raw_message: Dict[str, Any], event: Event) -> SQSMessage: return SQSMessage.from_raw_sqs_message(raw_message=raw_message, key_name=self.key, event=event) def add_route(self, *, fn: Callable, key: str) -> None: """ Adds the route with the given key. :param fn: The callable to route to. :type fn: callable :param key: The key to associate the route with. :type fn: str """ self.routes[key] = fn def get_route(self, *, message: SQSMessage) -> Callable: """ Returns the matching route for the value of the ``key`` in the given message. :raises ValueError: Raised if no route is defined or routing key is not present in the message. :rtype: callable """ field_value: str = message.key if field_value is None: raise ValueError(f"Routing key ({self.key}) not present in the message.") try: return self.routes[field_value] except KeyError: raise ValueError(f"No route configured for given field ({field_value}).") def dispatch(self, *, event: Event) -> Any: """ Iterates over all the message records in the given Event and executes the applicable callable as determined by the configured routes. :param event: The event to parse for messages. """ messages = event.raw.get("Records", None) if messages is None: raise ValueError("No messages present in Event.") for raw_message in messages: message = self._get_message(raw_message, event=event) route = self.get_route(message=message) # Process each message now. route(message=message) # SQS Lambdas don't return a value. return None @attr.s(kw_only=True) class GenericSQSMessage(Router): """ Routes to a single defined route without any conditions. :param route: The single defined route. Only set via ``add_route``. """ route: Optional[Callable] = attr.ib(init=False, default=None) def _get_message(self, raw_message: Dict[str, Any], event: Event) -> SQSMessage: return SQSMessage.from_raw_sqs_message(raw_message=raw_message, key_name=None, event=event) def add_route(self, *, fn: Callable) -> None: """ Adds the single route. :param fn: The callable to route to. :type fn: callable :raises ValueError: Raised when a single route has already been defined. """ if self.route is not None: raise ValueError("Single route is already defined. SingleRoute can only have a single defined route.") self.route = fn def get_route(self, *, message: SQSMessage) -> Callable: """ Returns the defined route :raises ValueError: Raised if no route is defined. :rtype: callable """ if self.route is None: raise ValueError("No route defined.") return self.route def dispatch(self, *, event: Event) -> Any: """ Gets the configured route and invokes the callable. :param event: The event to pass to the callable route. """ messages = event.raw.get("Records", None) if messages is None: raise ValueError("No messages present in Event.") for raw_message in messages: message = self._get_message(raw_message, event=event) route = self.get_route(message=message) # Process each message now. route(message=message) # SQS Lambdas don't return a value. return None ``` #### File: lambda-router/tests/test_appsync.py ```python import copy import pytest # noqa: F401 from lambda_router import appsync @pytest.fixture(scope="module") def example_request(): return { "field": "getAssets", "details": { "arguments": {}, "identity": { "claims": { "sub": "2067d7de-8976-4790-921a-040892531db7", "device_key": "eu-", "event_id": "bab1a4b5-5055-4580-8e5f-8587a53d7e9a", "token_use": "access", "scope": "aws.cognito.signin.user.admin", "auth_time": 1579158955, "iss": "https: //cognito-idp.eu-west-1.amazonaws.com/eu-west-1_asdasdas", "exp": 1579162555, "iat": 1579158955, "jti": "6e48da7c-7100-48a8-8faf-3d42a506f138", "client_id": "abcde", "username": "<PASSWORD>", }, "defaultAuthStrategy": "ALLOW", "groups": None, "issuer": "https://cognito-idp.eu-west-1.amazonaws.com/eu-west-1_asdasdas", "sourceIp": ["1.1.1.2"], "sub": "2067d7de-8976-4790-921a-040892531db7", "username": "<PASSWORD>", }, "source": None, "result": None, "request": { "headers": { "x-forwarded-for": "1.1.1.2, 5.5.5.5", "accept-encoding": "gzip, deflate", "cloudfront-viewer-country": "ZA", "cloudfront-is-tablet-viewer": "false", "via": "1.1 abcde.cloudfront.net (CloudFront)", "content-type": "application/json", "cloudfront-forwarded-proto": "https", "x-amzn-trace-id": "Root=1-", "x-amz-cf-id": "aaa", "authorization": "...", "content-length": "105", "x-forwarded-proto": "https", "host": "a.appsync-api.eu-west-1.amazonaws.com", "user-agent": "python-requests/2.20.1", "cloudfront-is-desktop-viewer": "true", "accept": "*/*", "cloudfront-is-mobile-viewer": "false", "x-forwarded-port": "443", "cloudfront-is-smarttv-viewer": "false", } }, "info": {"fieldName": "getAssets", "parentTypeName": "Query", "variables": {}}, "error": None, "prev": None, "stash": {}, "outErrors": [], }, } class TestAppSyncEvent: def test_create(self, example_request): template = {"context": "details"} event = appsync.AppSyncEvent.create(raw=example_request, app={}, template=template) assert isinstance(event, appsync.AppSyncEvent) assert "2067d7de-8976-4790-921a-040892531db7" == event.identity.username assert "getAssets" == event.info.field_name assert "content-length" in event.request.headers assert {} == event.arguments class TestAppSyncField: def test_add_route(self): router = appsync.AppSyncField() def test_route_one(event): return {"message": "ok"} def test_route_two(event): return {"message": "ok"} router.add_route(fn=test_route_one, field="one") router.add_route(fn=test_route_two, field="two") assert router.routes assert 2 == len(router.routes) assert "one" in router.routes assert "two" in router.routes def test_get_route(self, example_request): router = appsync.AppSyncField() router.add_route(fn=lambda event: "ok", field="getAssets") event = appsync.AppSyncEvent.create(raw=example_request, app={}, template={"context": "details"}) route = router.get_route(event=event) assert route is not None assert callable(route) def test_get_route_with_invalid_field(self, example_request): router = appsync.AppSyncField() router.add_route(fn=lambda event: "ok", field="getPeople") event = appsync.AppSyncEvent.create(raw=example_request, app={}, template={"context": "details"}) with pytest.raises(ValueError) as e: router.get_route(event=event) assert "No route configured for given field (field)." in str(e.value) def test_dispatch(self, example_request): router = appsync.AppSyncField() def test_route_one(event): return {"message": "ok"} def test_route_two(event): return {"message": "error"} router.add_route(fn=test_route_one, field="getAssets") router.add_route(fn=test_route_two, field="getPeople") second_request = copy.deepcopy(example_request) second_request["details"]["info"]["fieldName"] = "getPeople" event = appsync.AppSyncEvent.create(raw=example_request, app={}, template={"context": "details"}) event2 = appsync.AppSyncEvent.create(raw=second_request, app={}, template={"context": "details"}) response = router.dispatch(event=event) assert {"message": "ok"} == response response = router.dispatch(event=event2) assert {"message": "error"} == response def test_dispatch_without_route(self, example_request): router = appsync.AppSyncField() with pytest.raises(ValueError) as e: event = appsync.AppSyncEvent.create(raw=example_request, app={}, template={"context": "details"}) router.dispatch(event=event) assert "No route configured" in str(e.value) ```
{ "source": "jpain3/Taming-the-Bull", "score": 3 }
#### File: Taming-the-Bull/Model-Free Approaches/BeerGame_Stocastic_Train_DQN.py ```python import csv import datetime import random import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt from gym import Env from gym.spaces import Discrete, Box # https://github.com/jmpf2018/ShipAI ## Creating Environment class BeerGameEnv(Env): def __init__(self): # Define the action and observation spaces # Definition of the limits on orders the AI agent can make self.AI_Entity = True self.AI_Order_Plus = True # If set to true, then the agent order is relative to the incoming order # and the action_space above should reflect that by spanning both # positive and negative values. if self.AI_Order_Plus != True: MaxOrder = 50 self.action_space = spaces.Discrete(MaxOrder+1) # a discrete array representing the possible entity order choices, # starting from 0 else: Relative_Min_Order = -20 # Amount relative to the incoming the order the agent Relative_Max_Order = +20 # can order itself #Force sign conventions on Relative_ Max_ or Min_Order just in case self.Relative_Min_Order = (-1)*np.sign(Relative_Min_Order)*Relative_Min_Order self.Relative_Max_Order = np.sign(Relative_Max_Order)*Relative_Max_Order #Determine action space full span (including 0) Action_Space_Span = (-1)*self.Relative_Min_Order+self.Relative_Max_Order+1 self.action_space = spaces.Discrete(Action_Space_Span) # Set Global state parameters self.Random_Teams = True self.Fixed_Team_Nb = 0 # Team number to place the AI on. # If Random_Teams flag is True, then is is ignored self.Random_AI_Position = True self.AI_Position = 3 # Position in the supply chain to place the AI in, between 0 and 3. # If Random_AI_Position flag is True, then is is ignored self.Random_Horizon = True self.min_horizon = 24 # If the Horizon is random, the lower bound on the horizon length self.max_horizon = 200 # If the Horizon is random, the upper bound on the horizon length self.fixed_horizon = 104 # Fixed horizon, only used if above Random_Horizon flag is set to False self.Integer_Ordering = True self.Noisey_Ordering = True # Customer Order String # Classic Beer Game Step_Round = 4 self.Orders = ([4] * Step_Round) + ([9] * (1000 - Step_Round)) Second_Step = 150 self.Orders = self.Orders[0:Second_Step] + ([9] * (1000 - Second_Step)) # Finanical and Physical layout of the game self.Holding_Cost = 0.50 self.Backorder_Cost = 1.00 self.Initial_OrderFlows = self.Orders[0] self.Initial_Inventory = 12 self.Information_Delay = 2 self.Shipping_Delay = 2 # State space for the problem. Need to decide the scale of this.... what can the AI see and remember? Agent_Sees = {'Agent_Order_Received': Box(0, np.inf, shape=(1,)), 'Agent_OH_Inventory': Box(0, np.inf, shape=(1,)), 'Agent_Backorder': Box(0, np.inf, shape=(1,)), 'Agent_Recent_Order': Box(0, np.inf, shape=(1,)), 'period': Box(0, 1000, shape=(1,)), # NOTE: This could be bounded by np.inf but realistically t=1000 is an order of magnitude larger than the expected maximum time horizon 'AI_Entity_Index': Box(0, 3, shape=(1,)) # NOTE: This should be upper bounded by the largest possible entity index (reminder that Python indexes at 0) } # self.observation_space = gym.spaces.Dict(Agent_Sees) # State space coerced into a box shape to better work with Keras syntax, note that the ShippingFlows are two # different items here. Furthermore, note that this is defined via the Box shape, which is continuous, even # though some of these observations may always be discrete (AI_Entity_Index) as an example obs_space = spaces.Box(low=np.array([0, 0, 0, 0, 0, 0]), high=np.array([np.inf, np.inf, np.inf, np.inf, 1000, 3])) self.observation_space = obs_space # Import the parameters from the classic beer game runs for use with Random Team matching Team_Parameter_Filename = "JS Parameter Table.csv" with open(Team_Parameter_Filename, newline='') as csvfile: Team_Parameter_Data = list(csv.reader(csvfile)) All_Team_Parameters = np.asarray(Team_Parameter_Data) # Remove header row Team_Parameter_Header = All_Team_Parameters[0, :] All_Team_Parameters = np.delete(All_Team_Parameters, (0), axis=0) # Replace all blanks with 0's All_Team_Parameters = np.asarray([[x or '0' for x in xs] for xs in All_Team_Parameters]) # Extract the team numbers and convert to integers or numbers from strings as appropriate self.Team_Index = [int(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 1])] self.Team_Name = np.ndarray.tolist(All_Team_Parameters[:, 0]) self.Entity_Code = np.ndarray.tolist(All_Team_Parameters[:, 2]) self.Entity_Index = [int(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 3])] self.thetas = [float(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 4])] self.alphas = [float(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 5])] self.betas = [float(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 6])] self.S_primes = [float(item) for item in np.ndarray.tolist(All_Team_Parameters[:, 7])] if self.Fixed_Team_Nb >= min(self.Team_Index) and self.Fixed_Team_Nb <= max(self.Team_Index): Match_Team = self.Fixed_Team_Nb # Create a mask of the rows that correspond to that team number Match_Team_Mask = np.asarray(self.Team_Index) == Match_Team # Filter, using the mask, the arrays that have the data for the team that was drawn Match_Team_Theta = np.asarray(self.thetas)[Match_Team_Mask] Match_Team_Alpha = np.asarray(self.alphas)[Match_Team_Mask] Match_Team_Beta = np.asarray(self.betas)[Match_Team_Mask] Match_Team_S_prime = np.asarray(self.S_primes)[Match_Team_Mask] # Assemble the team parameters into a named list for later use in the main Beer Game function Match_Team_Parameter_df = {"theta": np.ndarray.tolist(Match_Team_Theta), "alpha_s": np.ndarray.tolist(Match_Team_Alpha), "beta": np.ndarray.tolist(Match_Team_Beta), "S_prime": np.ndarray.tolist(Match_Team_S_prime)} self.Parameter_df = Match_Team_Parameter_df else: # Set the defualt ordering parameter values (for use if the random team flag above is False or no team number is provided) self.Parameter_df = {"theta": [0.36] * 4, "alpha_s": [0.26] * 4, "beta": [0.34] * 4, "S_prime": [17] * 4} # Main function that runs the beer game for a single step def PirateBeerGame_funct(self, AI_Entity_Index, AI_Order, Orders, Order_flows, Shipping_flows, OH_Inventory, Backorder, L_hat, Production_Request, AI_Entity=False, AI_parameter_df=False, Integer_Ordering=False, Noisey_Ordering=False, Noise_Mean=0, Noise_SD=1, Parameter_df=False, Shipping_Delay=2, Information_Delay=2) -> object: Relative_Ordering = self.AI_Order_Plus #If relative ordering is true, translate the agent action into a relative number if Relative_Ordering == True: AI_Relative_Order = AI_Order + self.Relative_Min_Order # + 1 Final_Orders = np.empty(4, dtype=float) OH_Inventory = np.array(OH_Inventory) Shipping_flows = np.array(Shipping_flows) Order_flows = np.array(Order_flows) # Ensure that the order flow facing the retailer is the actual customer order Order_flows[0, 0] = Orders # Read in the ordering paramters if Parameter_df != False: theta = Parameter_df['theta'] alpha_s = Parameter_df['alpha_s'] beta = Parameter_df['beta'] S_prime = Parameter_df['S_prime'] else: theta = [0.36] * 4 alpha_s = [0.26] * 4 beta = [0.34] * 4 S_prime = [17] * 4 TeamName = "Default Average Agents" # Read in AI Ordering Parameters if present if AI_parameter_df != False: theta[AI_Entity_Index] = AI_parameter_df['theta'] alpha_s[AI_Entity_Index] = AI_parameter_df['alpha_s'] beta[AI_Entity_Index] = AI_parameter_df['beta'] S_prime[AI_Entity_Index] = AI_parameter_df['S_prime'] #####Recieve Inventory and Advance Shipping Delays##### # Recieve shipments New_OH_Inventory = OH_Inventory + Shipping_flows[:, 0] # Advance shippping delays Shipping_flows[:, 0] = Shipping_flows[:, (Shipping_Delay - 1)] # Shipping_flows[:, (Shipping_Delay - 1)] = np.nan #####Fill Orders###### # View Orders Order_Received = Order_flows[:, 0] # Calculate net order that needs to be fullfilled Incoming_Order = Order_flows[:, 0] + Backorder # Ship what you can Outbound_shipments = np.maximum(0, np.minimum(New_OH_Inventory, Incoming_Order)) # Put shipments into lefthand shipping slot Shipping_flows[0:3, 1] = Outbound_shipments[1:] # Send shipments from retailer to the final customer Final_Customer_Orders_Filled = Outbound_shipments[0] # Update the On-Hand Inventory to account for outflows OH_Inventory = New_OH_Inventory - Outbound_shipments # Determine Backlog, if any Inventory_Shortage = Order_flows[:, 0] - New_OH_Inventory New_Backorder = np.maximum(0, Backorder + Inventory_Shortage) Backorder = np.copy(New_Backorder) # Remember observed order but then Overwrite processed order flow to NaN for debuging if needed Observed_Order = np.copy(Order_flows[:, 0]) # Order_flows[:, 0] = np.nan ## ORIGINAL LINE OF CODE!!!! REPLACED TO AVOID NAN ISSUES !!!!! # Order_flows[:, 0] = 0 #####Advance Order Slips and Brewers Brew###### # Advance order slips Order_flows[:, 0] = Order_flows[:, (Information_Delay - 1)] # Order_flows[:, (Information_Delay - 1)] = np.nan # Brewers Brew Shipping_flows[3, (Shipping_Delay - 1)] = Production_Request #####PLACE ORDERS###### for i in range(0, 4): Entity_Index = i # Obsrve the total supply line and the previous demand SL = sum(Shipping_flows[Entity_Index, :]) L = Observed_Order[Entity_Index] # L hat is smoothing of observed demand from previous 2 periods # if t == 0: # L_hat[Entity_Index] = np.copy(Observed_Order[Entity_Index]) # Update L_hat (expected future orders) based on observed order L_hat_new = theta[Entity_Index] * L + (1 - theta[Entity_Index]) * L_hat[Entity_Index] L_hat[Entity_Index] = L_hat_new # Note stock of current inventory S = OH_Inventory[Entity_Index] #! Note stock of current inventory inclusive of backorder position S = OH_Inventory[Entity_Index] - Backorder[Entity_Index] # Add noise to the order if needed if (Noisey_Ordering == True): eps = np.random.normal(Noise_Mean, Noise_SD) else: eps = 0 # AI Decision if (AI_Entity == True) and (Entity_Index == AI_Entity_Index): if (AI_Order != False): #Check if agent decision is absolute or relative to the last order received if (Relative_Ordering != True): # here, agent action is absolute Order_Placed = max(0,AI_Order) else: # here, the agent action is relative to the order received Order_Placed = max(0,Order_Received[AI_Entity_Index] + AI_Relative_Order) else: Order_Placed = max(0, L_hat[Entity_Index] + alpha_s[Entity_Index] * ( S_prime[Entity_Index] - S - beta[Entity_Index] * SL) + eps) else: Order_Placed = max(0, L_hat[Entity_Index] + alpha_s[Entity_Index] * ( S_prime[Entity_Index] - S - beta[Entity_Index] * SL) + eps) ##TURN ON FOR INTEGER ONLY ORDERING if Integer_Ordering: Order_Placed = np.round(Order_Placed, 0) if Entity_Index == 3: Production_Request = Order_Placed else: Order_flows[Entity_Index + 1, (Information_Delay - 1)] = Order_Placed # End of loop # Make orders placed by each entity explict Final_Orders[0:3] = Order_flows[1:, (Information_Delay - 1)] Final_Orders[3] = Production_Request fnt_output = {"Order_flows": Order_flows, "Shipping_flows": Shipping_flows, "OH_Inventory": OH_Inventory, "Backorder": Backorder, "L_hat": L_hat, "Production_Request": Production_Request, "Entity_Orders": Final_Orders, "Order_Received": Order_Received} return fnt_output # Resets the state space to the initial conditions for anothe repisode run # Note that the output format for this function MUST match the output for the step function # Any additional clean up or resetting of helper variables should occur eslewhere def reset(self): ################## # Assign and reset random game parameters ################## #### Randomly Draw new teammates if applicable if self.Random_Teams: # Randomly draw a team number Rand_Team = random.randint(min(self.Team_Index), max(self.Team_Index)) # Create a mask of the rows that correspond to that team number Rand_Team_Mask = np.asarray(self.Team_Index) == Rand_Team # Filter, using the mask, the arrays that have the data for the team that was drawn Rand_Team_Theta = np.asarray(self.thetas)[Rand_Team_Mask] Rand_Team_Alpha = np.asarray(self.alphas)[Rand_Team_Mask] Rand_Team_Beta = np.asarray(self.betas)[Rand_Team_Mask] Rand_Team_S_prime = np.asarray(self.S_primes)[Rand_Team_Mask] # Assemble the team parameters into a named list for later use in the main Beer Game function Rand_Team_Parameter_df = {"theta": np.ndarray.tolist(Rand_Team_Theta), "alpha_s": np.ndarray.tolist(Rand_Team_Alpha), "beta": np.ndarray.tolist(Rand_Team_Beta), "S_prime": np.ndarray.tolist(Rand_Team_S_prime)} self.Parameter_df = Rand_Team_Parameter_df #### Randomly set game horizon if applicable if self.Random_Horizon == True: self.horizon = random.randint(self.min_horizon, self.max_horizon) else: self.horizon = self.fixed_horizon #### Randomly set the agent's position on the team if self.Random_AI_Position: self.AI_Entity_Index = random.randint(0, 3) else: self.AI_Entity_Index = self.AI_Position ################## # Resetting the global game parameters ################## # Reset the time period to t=0 for the beginning of the game self.period = 0 # Reset the various stocks of material both wihtin and without each player's position self.Order_flows = np.full([4, 2], self.Initial_OrderFlows, dtype=float) self.Shipping_flows = np.full([4, 2], self.Initial_OrderFlows, dtype=float) self.OH_Inventory = [self.Initial_Inventory] * 4 self.Backorder = [0] * 4 self.Order_Received = [self.Initial_OrderFlows] * 4 self.L_hat = [self.Initial_OrderFlows] * 4 self.Order_History = np.full([4, self.horizon], 0, dtype=float) self.Service_rate = [0] * self.horizon self.OH_Inventory_History = np.full([4, self.horizon], 0, dtype=float) self.Backlog_History = np.full([4, self.horizon], 0, dtype=float) self.Production_Request = self.Initial_OrderFlows self.Final_Orders = [0] * 4 # delete? self.Amp_Vector = [0] * self.horizon # delete? self.Reward_Vector = [0] * self.horizon # delete? # Largely for later debugging and for record keeping, assemble the various items to reset at a global level # together into a single list # Output = {"AI_Entity_Index": AI_Entity_Index, "Parameter_df": Parameter_df,"horizon": horizon, "period": period, # "Orders": Orders, "Order_flows": Order_flows, "Shipping_flows": Shipping_flows, # "OH_Inventory": OH_Inventory, "Backorder": Backorder, "L_hat": L_hat, # "Order_History": Order_History, "Service_rate": Service_rate, # "OH_Inventory_History": OH_Inventory_History, "Backlog_History": Backlog_History, # "Production_Request": Production_Request, "Amp_Vector": Amp_Vector, "Reward_Vector": Reward_Vector} # Global_State = Output # globals().update(Global_State) ################## # Subset the global parameters to just those the agent is able to observe ################## # Subset the full global state to just the part the agent has access to Agent_Order_Received = self.Order_Received[self.AI_Entity_Index] Agent_OH_Inventory = self.OH_Inventory[self.AI_Entity_Index] Agent_Backorder = self.Backorder[self.AI_Entity_Index] if self.AI_Entity_Index == 3: Agent_Recent_Order = self.Production_Request else: Agent_Recent_Order = self.Order_flows[self.AI_Entity_Index + 1, (self.Information_Delay - 1)] AI_Entity_Index = self.AI_Entity_Index period = self.period # Note: The observed state outputted by the reset function MUST match the shape as that from the step function # and must ONLY consist of the parts of the global state the agent can actually observe Observed_State = np.array([Agent_Order_Received, Agent_OH_Inventory, Agent_Backorder, Agent_Recent_Order, period, AI_Entity_Index]) return (Observed_State) # Takes the action by the agent, along with some simulation specific parameters, and updates the state # Note that the output format fo this function MUST match the output for the reset function # def step(self, action, Integer_Ordering, Noisey_Ordering, Parameter_df, AI_Entity_Index, CustOrders, horizon, period, OH_Inventory_History, Backlog_History): def step(self, action): # import globally assigned environmental variables global period, AI_Entity_Index # Check if the current period is the final one (the Horizon) and return dn=True for 'done' state # Recall that Python indexes starting at 0! So if Horizon is t=52, need to stop at period = 51 if self.period == (self.horizon - 1): dn = True else: dn = False # Run the beer game function for a single step BeerGame_output = self.PirateBeerGame_funct(AI_Entity_Index=self.AI_Entity_Index, AI_Order=action, Orders=self.Orders[self.period], Order_flows=self.Order_flows, Shipping_flows=self.Shipping_flows, OH_Inventory=self.OH_Inventory, Backorder=self.Backorder, L_hat=self.L_hat, Production_Request=self.Production_Request, AI_Entity=self.AI_Entity, Noisey_Ordering=self.Noisey_Ordering, Integer_Ordering=self.Integer_Ordering, Parameter_df=self.Parameter_df) # Note on output of obove function call: # fnt_output = {"Order_flows": Order_flows, "Shipping_flows": Shipping_flows, "OH_Inventory": OH_Inventory, # "Backorder": Backorder, "L_hat": L_hat, "Production_Request": Production_Request, # "Entity_Orders": Final_Orders, "Order_Received": Order_Received} self.Order_flows = BeerGame_output['Order_flows'] self.Shipping_flows = BeerGame_output['Shipping_flows'] self.OH_Inventory = BeerGame_output['OH_Inventory'] self.Backorder = BeerGame_output['Backorder'] self.L_hat = BeerGame_output['L_hat'] self.Production_Request = BeerGame_output['Production_Request'] self.Order_Received = BeerGame_output['Order_Received'] # Don't use 'Entity_Orders' output right now info = dict() # Reward in any time other than the final time is the cost incurred by the AI that round. # But in the final state, it's the total cost incurred by the entire team! # Calculation of the running cost incurred so far for the entire team... self.OH_Inventory_History[:, self.period] = BeerGame_output['OH_Inventory'] self.Backlog_History[:, self.period] = BeerGame_output['Backorder'] # Calculation of the cost incurred by the AI for just this one period... Period_OH_Inventory = BeerGame_output['OH_Inventory'] Period_Backorder = BeerGame_output['Backorder'] AI_period_OH_Inventory = Period_OH_Inventory[self.AI_Entity_Index] AI_period_Backorder = Period_Backorder[self.AI_Entity_Index] AI_period_cost = AI_period_OH_Inventory * self.Holding_Cost + AI_period_Backorder * self.Backorder_Cost AI_Reward = -AI_period_cost reward = AI_Reward #In final round, reward is total team cost, offset by costs incurred by AI so far in order to # to make the entire episode cost the standard team cost if dn == True: Costs_Per_Period = self.OH_Inventory_History * self.Holding_Cost + self.Backlog_History * self.Backorder_Cost Total_Costs_Per_Entity = np.sum(Costs_Per_Period, 1) Total_Team_Costs = sum(Total_Costs_Per_Entity) Team_Reward = -Total_Team_Costs reward = Team_Reward #+ Total_Costs_Per_Entity[self.AI_Entity_Index] #normalize final reward by the horizon #if self.Random_Horizon == True: # reward = reward/self.horizon reward = reward / self.horizon # Alt reward calculation #reward = AI_Reward + Team_Reward / (self.period + 1) # Team_Reward matters more and more as time goes on? #### Subset the global state to just the parts the agent has access to Agent_Order_Received = self.Order_Received[self.AI_Entity_Index] Agent_OH_Inventory = self.OH_Inventory[self.AI_Entity_Index] Agent_Backorder = self.Backorder[self.AI_Entity_Index] if self.AI_Entity_Index == 3: Agent_Recent_Order = self.Production_Request else: Agent_Recent_Order = self.Order_flows[self.AI_Entity_Index + 1, (self.Information_Delay - 1)] AI_Entity_Index = self.AI_Entity_Index # Add to the period number self.period += 1 period = self.period Observed_State = np.array([Agent_Order_Received, Agent_OH_Inventory, Agent_Backorder, Agent_Recent_Order, period, AI_Entity_Index]) return Observed_State, reward, dn, info ## Main Code if __name__ == '__main__': from gym import Env, spaces # Import methods to build DQN agent from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Input, Concatenate from keras.optimizers import Adam from rl.agents.dqn import DQNAgent from rl.policy import BoltzmannQPolicy,MaxBoltzmannQPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory # Get environment and set seed for reproduceability env = BeerGameEnv() Set_Random_Seed = True if Set_Random_Seed: Random_Seed = 11111111 os.environ['PYTHONHASHSEED'] = '0' np.random.seed(Random_Seed) random.seed(Random_Seed) tf.random.set_seed(Random_Seed) env.action_space.seed(Random_Seed) # Count number of actions nb_actions = env.action_space.n # Build build simple model. WINDOW_LENGTH = 4 input_shape = env.observation_space.shape model = Sequential() model.add(Flatten(input_shape = (WINDOW_LENGTH,) + env.observation_space.shape)) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dense(nb_actions)) model.add(Activation('linear')) print(model.summary()) # Configure and compile the DQN agent memory = SequentialMemory(limit=2000, window_length=WINDOW_LENGTH) policy = BoltzmannQPolicy() policy = MaxBoltzmannQPolicy() #policy = EpsGreedyQPolicy() #Note, Boltzman policy and DQN is overestimating Q values, causing probabilitiies to explode... #Double DQN helps mitigate this Q-value overestimation a bit #Dueling networks appear to allow for a full run dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, target_model_update=1e-2, policy=policy, enable_dueling_network=True, dueling_type='avg') dqn.compile(Adam(lr=1e-4), metrics=['mae']) mode = "Train" #mode = "Test" if mode == "Train": now = datetime.datetime.now() dt_string = now.strftime("%Y%m%d_%H%M%S") ENV_NAME = "Beer_Game_Stocastic_DQN" print('Training model....') Full_Hist = dqn.fit(env, nb_steps=1e5, visualize=False, verbose=2) Training_History = Full_Hist.history #wieght_filename = f'dqn_{ENV_NAME}_{dt_string}_weights.h5f' wieght_filename = 'dqn_test_fit.weights' model_filename='dqn_test_fit_wide' model_filename = 'dqn_test_fit' #model_filename = 'Entity3Test' dqn.save_weights(wieght_filename, overwrite=True) dqn.model.save(model_filename, overwrite=True) print('Training completed! Testing and printing Average Episodic Rewards') dqn.test(env, nb_episodes=10, visualize=False) avg_reward_list = Training_History['episode_reward'] plt.plot(avg_reward_list) plt.xlabel("Episode") plt.title("Avg. Episodic Reward") plt.show() if mode == "Test": ### Load a saved and trained model #wieght_filename = "ddpg_Beer_Game_Stocastic_DQN_20210614_115704_weights.h5f" wieght_filename = 'dqn_test_fit.weights' model_filename = 'dqn_test_fit.model' #Trained_DQN = tf.saved_model.load(model_filename) #dqn.load_weights(wieght_filename) #test_out = dqn.test(env,nb_episodes=10, visualize=False) agent = tf.keras.models.load_model(model_filename) #Get the implied window size used when originally training the loaded model: model_input_shape = (agent.get_layer(index=0).output_shape)[0] #Get the shape attribute from the input layer Original_Batch_Size = model_input_shape[0] #First number is the number of items looked as simulateously Original_Window_Size = model_input_shape[1] #Second number is the window used for any sequential memory Original_Observation_Size = model_input_shape[2] #Third number and (and onwards for multi dimensional inputs) is the actual observed space sub_mode = "Full" sub_mode = "Single" if sub_mode == "Single": ###Test for single observation: #Observed_State = np.array([Agent_Order_Received, Agent_OH_Inventory, Agent_Backorder, # Agent_Recent_Order, period, AI_Entity_Index]) #Note: need to muliply by window length! obs = np.array([4, 0, 5, 4, 10, 2]) #Extract the order received from the observations set for use in relative ordering Agent_Order_Received = obs[1] #Expand initial observation out to fill history or window length obs = np.tile(obs,(Original_Window_Size,1)) #Coerce the 1-D observation input into a 3-D array that TensorFlow will flattend and accept resized_obs = obs[np.newaxis, ...] qmatrix = agent.predict(resized_obs) flattened_q = np.ndarray.flatten(qmatrix) BestChoice = np.argmax(flattened_q) Relative_Order = BestChoice + env.Relative_Min_Order # + 1 double check this plus one here... Agent_Order = max(0, Agent_Order_Received + Relative_Order) print("Agent Order:") print(Agent_Order) if sub_mode == "Full": horizon = 120 reset_list = reset(horizon=horizon) locals().update(reset_list) Parameter_df = {"theta": [0.36] * 4, "alpha_s": [0.26] * 4, "beta": [0.34] * 4, "S_prime": [17] * 4} Holding_Cost = 0.50 Backorder_Cost = 1.00 AI_Entity = False AI_Entity_Index = False AI_Order = False Integer_Ordering = True Noisey_Ordering = False for t in range(0, (horizon)): if t >= 20: t = t # NESTED FUNCTION TO RUN THE GAME FOR ONE TIME STEP AND RETURN THE NEW STATE BeerGame_output = PirateBeerGame_funct(AI_Entity_Index=AI_Entity_Index, AI_Order=AI_Order, Orders=Orders[t], Order_flows=Order_flows, Shipping_flows=Shipping_flows, OH_Inventory=OH_Inventory, Backorder=Backorder, L_hat=L_hat, Production_Request=Production_Request, AI_Entity=AI_Entity, Noisey_Ordering=Noisey_Ordering, Integer_Ordering=Integer_Ordering, Parameter_df=Parameter_df) locals().update(BeerGame_output) # Write values for analysis/plotting later Order_History[:, t] = Entity_Orders OH_Inventory_History[:, t] = OH_Inventory Backlog_History[:, t] = Backorder Service_rate[t] = Final_Customer_Orders_Filled / Orders[t] # Calculate costs Net_Inventory = OH_Inventory_History - Backlog_History Costs_Per_Period = OH_Inventory_History * Holding_Cost + Backlog_History * Backorder_Cost Total_Costs_Per_Entity = np.sum(Costs_Per_Period, 1) Total_Team_Costs = sum(Total_Costs_Per_Entity) print(Order_History) print(Total_Team_Costs) ###GRAPHS### import matplotlib.pyplot as plt x = range(0, horizon) plt.figure(1) PlotObj = plt.plot(Order_History.T) plt.title('Orders per Period') plt.xlabel('Time') plt.ylabel('Orders') # showing legend plt.legend(iter(PlotObj), ('0: Retailer', '1: Wholesaler', '2: Distributor', '3: Factory')) plt.figure(2) PlotObj = plt.plot(Net_Inventory.T) plt.title('Net Inventory per Period') plt.xlabel('Time') plt.ylabel('Net Inventory (On-Hand less Backlog)') # showing legend plt.legend(iter(PlotObj), ('0: Retailer', '1: Wholesaler', '2: Distributor', '3: Factory')) plt.show() ```
{ "source": "JPaiv/rust-movie-serverless-api", "score": 2 }
#### File: rust-movie-serverless-api/source-file-download/handler.py ```python import boto3 import logging import os import subprocess import sys import tempfile import zipfile logging.getLogger().setLevel("INFO") def handler(event, context): temp_dir = tempfile.mkdtemp() process = subprocess.run(['kaggle', 'datasets', 'download', 'shivamb/netflix-shows', '--path', temp_dir], stdout=subprocess.PIPE, universal_newlines=True) process with zipfile.ZipFile(f"{temp_dir}/netflix-shows.zip", 'r') as source_file_zip: source_file_zip.extractall(temp_dir) source_file_csv = [file for file in os.listdir( temp_dir) if ".csv" in file] print(source_file_csv) _upload_source_data_to_s3(source_file_csv[0]) def _upload_source_data_to_s3(source_file_csv: str): s3 = boto3.resource('s3') s3.Bucket(os.environ["bucket_id"]).upload_file( source_file_csv, "netflix.csv") ```
{ "source": "JPaja/Game-of-Life-Parallel", "score": 3 }
#### File: Game-of-Life-Parallel/src/Projekat1_1.py ```python from threading import Condition, Event, Lock, Semaphore, Thread import numpy as np import threading from numpy.core.defchararray import count iterations = 3 n = 20 size = n**2 steps = np.zeros((iterations,n,n),dtype=bool) #table = np.random.rand(size).reshape(n, n) > 0.5 table = np.zeros((n,n),dtype=bool) table[0][1] = True table[1][2] = True table[2][0] = True table[2][1] = True table[2][2] = True steps[0] = table threads = np.zeros(table.shape,dtype=Thread) brojaciSuseda = np.zeros(table.shape,dtype=int) brojaciSusedaLocks = np.zeros(table.shape,dtype=object) semafori = np.zeros(table.shape,dtype=Semaphore) kondicijal = Condition() lock = Lock() brojac = 0 def printTable(table): for i in range(0,table.shape[0]): for j in range(0,table.shape[1]): print(1 if table[i][j] else 0 ,end='') print() def getNeighborIndexes(i, j): neighbors = [] for ii in range(-1,2): for jj in range(-1,2): if(ii == 0 and jj == 0): continue neighbors.append(((i+ii)%n, (j+jj)%n)) return neighbors def executeNode(i,j): global table global iterations global brojaciSuseda global semafori global brojaciSusedaLocks global lock global brojac global size neighbors = getNeighborIndexes(i,j) iteration = 0 while iteration < iterations: aliveNeighbors = 0 for (ii,jj) in neighbors: brojaciSusedaLocks[ii][jj].acquire() if table[ii][jj]: aliveNeighbors += 1 brojaciSuseda[ii][jj]+= 1 if(brojaciSuseda[ii][jj] == 8): #u slucaju ivica ne racunamo ne postojece nodove brojaciSuseda[ii][jj] = 0 semafori[ii][jj].release() brojaciSusedaLocks[ii][jj].release() semafori[i][j].acquire() state = table[i][j] table[i][j] = False if aliveNeighbors == 3 or (aliveNeighbors == 2 and state): table[i][j] = True steps[iteration][i][j] = table[i][j] iteration += 1 lock.acquire() brojac+= 1 kondicijal.acquire() if(brojac == size): brojac = 0 kondicijal.notifyAll() lock.release() else: lock.release() kondicijal.wait() kondicijal.release() for i in range(0,table.shape[0]): for j in range(0,table.shape[1]): t = Thread(target=executeNode, args=(i,j)) threads[i][j] = t brojaciSusedaLocks[i][j] = Lock() semafori[i][j] = Semaphore(0) for i in range(0,table.shape[0]): for j in range(0,table.shape[1]): threads[i][j].start() for i in range(0,table.shape[0]): for j in range(0,table.shape[1]): threads[i][j].join() printTable(table) print("Completed") ``` #### File: Game-of-Life-Parallel/src/Projekat1_3.py ```python from threading import Lock import multiprocessing from multiprocessing import Process, Value, Queue, Array import numpy as np import time iterations = 5 n = 10 def getNeighborIndexes(i, j): neighbors = [] for ii in range(-1,2): for jj in range(-1,2): if(ii == 0 and jj == 0): continue neighbors.append(((i+ii)%n, (j+jj)%n)) return neighbors def executeNode(i,j,state,serviceQueue,queues): global iterations neighbors = getNeighborIndexes(i,j) serviceQueue.put((0,i,j,state)) for it in range(iterations - 1): iteration = it + 1 for (ii,jj) in neighbors: queues[ii][jj].put_nowait((state,iteration)) aliveNeighbors = 0 cachedneighbors = [] for (ii,jj) in neighbors: while True: (neighborValue,neighborIteration) = queues[i][j].get() if(iteration != neighborIteration): cachedneighbors.append((neighborValue,neighborIteration)) continue if(neighborValue): aliveNeighbors+=1 break for cachedneighbor in cachedneighbors: queues[i][j].put_nowait(cachedneighbor) if aliveNeighbors == 3 or (aliveNeighbors == 2 and state): state = 1 else: state = 0 serviceQueue.put((iteration,i,j,state)) def executeService(serviceQueue,tableData): global iterations global n for _ in range(iterations * n**2): (iteration,i,j,state) = serviceQueue.get() tableData[iteration * n**2 + i * n + j] = state if __name__ == "__main__": tableData = Array('i',np.zeros(iterations * n ** 2, dtype=int)) serviceQueue = Queue() sharedProcess = Process(target=executeService, args=(serviceQueue,tableData)) sharedProcess.start() table = np.zeros((n,n),dtype=int) table[0][1] = 1 table[1][2] = 1 table[2][0] = 1 table[2][1] = 1 table[2][2] = 1 queues = np.zeros((n,n),dtype=object) for i in range(n): for j in range(n): queues[i][j] = Queue() processes = [] for i in range(n): for j in range(n): processes.append(Process(target=executeNode, args=(i,j,table[i][j],serviceQueue,queues))) for process in processes: process.start() for process in processes: process.join() sharedProcess.join() steps = np.zeros((iterations,n,n),dtype=int) for index in range(iterations * n**2): iteration = int(index / n**2) i = int((index / n) % n) j = int(index % n) steps[iteration][i][j] = tableData[index] print(steps) ```
{ "source": "JPaja/Pascal2C_Transpiler", "score": 4 }
#### File: Pascal2C_Transpiler/src/lexer.py ```python from src.token import Class, Token class Lexer: def __init__(self, text): self.text = text self.len = len(text) self.pos = -1 def read_space(self): while self.pos + 1 < self.len and self.text[self.pos + 1].isspace(): self.next_char() def read_int(self): lexeme = self.text[self.pos] while self.pos + 1 < self.len and self.text[self.pos + 1].isdigit(): lexeme += self.next_char() return int(lexeme) def read_char(self): lexeme = '' while self.pos + 1 < self.len and self.text[self.pos + 1] != '\'': lexeme += self.next_char() self.pos += 1 return lexeme def read_string(self): lexeme = '' while self.pos + 1 < self.len and self.text[self.pos + 1] != '"': lexeme += self.next_char() self.pos += 1 return lexeme def is_keyword(self,c): return c.isalnum() or c == '_' def read_keyword(self): lexeme = self.text[self.pos] while self.pos + 1 < self.len and self.is_keyword(self.text[self.pos + 1]): lexeme += self.next_char() if lexeme == 'div': return Token(Class.DIV,lexeme) elif lexeme == 'mod': return Token(Class.MOD,lexeme) elif lexeme == 'not': return Token(Class.NOT,lexeme) elif lexeme == 'or': return Token(Class.OR,lexeme) elif lexeme == 'xor': return Token(Class.OR,lexeme) elif lexeme == 'and': return Token(Class.AND,lexeme) elif lexeme == 'begin': return Token(Class.BEGIN,lexeme) elif lexeme == 'end': return Token(Class.END,lexeme) elif lexeme == 'if': return Token(Class.IF,lexeme) elif lexeme == 'else': return Token(Class.ELSE,lexeme) elif lexeme == 'then': return Token(Class.THEN,lexeme) elif lexeme == 'for': return Token(Class.FOR,lexeme) elif lexeme == 'to': return Token(Class.TO,lexeme) elif lexeme == 'downto': return Token(Class.DOWNTO,lexeme) elif lexeme == 'do': return Token(Class.DO,lexeme) elif lexeme == 'while': return Token(Class.WHILE,lexeme) elif lexeme == 'break': return Token(Class.BREAK,lexeme) elif lexeme == 'continue': return Token(Class.CONTINUE,lexeme) elif lexeme == 'repeat': return Token(Class.REPEAT,lexeme) elif lexeme == 'until': return Token(Class.UNIIL,lexeme) elif lexeme == 'var': return Token(Class.VAR,lexeme) elif lexeme == 'of': return Token(Class.OF,lexeme) elif lexeme == 'procedure': return Token(Class.PROCEDURE,lexeme) elif lexeme == 'function': return Token(Class.FUNCTION,lexeme) elif lexeme == 'integer' or lexeme == 'char' or lexeme == 'string' or lexeme == 'real' or lexeme == 'boolean': return Token(Class.TYPE, lexeme) elif lexeme == 'array': return Token(Class.Array, lexeme) elif lexeme == 'exit': return Token(Class.Exit, lexeme) elif lexeme == 'true': return Token(Class.BOOL, True) elif lexeme == 'false': return Token(Class.BOOL, False) return Token(Class.ID, lexeme) def next_char(self): self.pos += 1 if self.pos >= self.len: return None return self.text[self.pos] def next_token(self): self.read_space() curr = self.next_char() if curr is None: return Token(Class.EOF, curr) elif curr.isdigit(): value = self.read_int() curr = self.next_char() if curr != '.': self.pos -= 1 return Token(Class.INT, value) curr = self.next_char() if not curr.isdigit(): self.pos -= 2 return Token(Class.INT, value) mantisa = self.read_int() value = str(value) + '.' + str(mantisa) value = float(value) return Token(Class.Float, value) elif self.is_keyword(curr): return self.read_keyword() elif curr == '\'': text = self.read_char() if(len(text) > 1): return Token(Class.STRING, text) if(len(text) == 1): return Token(Class.CHAR, text[0]) return Token(Class.CHAR,'') elif curr == '"': return Token(Class.STRING, self.read_string()) elif curr == ':': curr = self.next_char() if curr == '=': return Token(Class.ASSIGN, ':=') self.pos -= 1 return Token(Class.Colon, ':') elif curr == '+': return Token(Class.PLUS, curr) elif curr == '-': return Token(Class.MINUS, curr) elif curr == '*': return Token(Class.STAR, curr) elif curr == '/': return Token(Class.FWDSLASH, curr) elif curr == '=': return Token(Class.EQ, curr) elif curr == '<': curr = self.next_char() if curr == '>': return Token(Class.NEQ, '<>') elif curr == '=': return Token(Class.LTE, '<=') self.pos -= 1 return Token(Class.LT, '<') elif curr == '>': curr = self.next_char() if curr == '=': return Token(Class.GTE, '>=') self.pos -= 1 return Token(Class.GT, '>') elif curr == '(': return Token(Class.LPAREN, curr) elif curr == ')': return Token(Class.RPAREN, curr) elif curr == '[': return Token(Class.LBRACKET, curr) elif curr == ']': return Token(Class.RBRACKET, curr) elif curr == ';': return Token(Class.SEMICOLON, curr) elif curr == ',': return Token(Class.COMMA, curr) elif curr == '.': curr = self.next_char(); if curr == '.': return Token(Class.DOTDOT, '..') self.pos -= 1 return Token(Class.DOT, '.') self.die(curr) def lex(self): tokens = [] while True: curr = self.next_token() tokens.append(curr) if curr.class_ == Class.EOF: break return tokens def die(self, char): raise SystemExit("Unexpected character: {}".format(char)) ``` #### File: Pascal2C_Transpiler/src/parser.py ```python from src.token import Class from src.nodes import * from functools import wraps import pickle class Parser: def __init__(self, tokens): self.tokens = tokens self.curr = tokens.pop(0) self.prev = None def restorable(call): @wraps(call) def wrapper(self, *args, **kwargs): state = pickle.dumps(self.__dict__) result = call(self, *args, **kwargs) self.__dict__ = pickle.loads(state) return result return wrapper def eat(self, class_): if self.curr.class_ == class_: self.prev = self.curr self.curr = self.tokens.pop(0) else: self.die_type(class_.name, self.curr.class_.name) def program(self): nodes = [] while self.curr.class_ in [Class.PROCEDURE, Class.FUNCTION]: if self.curr.class_ == Class.PROCEDURE: self.eat(Class.PROCEDURE) id_ = Id(self.curr.lexeme) self.eat(Class.ID) args = self.args_() self.eat(Class.SEMICOLON) body = self.body() self.eat(Class.SEMICOLON) nodes.append(ProcImpl(id_,args,body)) elif self.curr.class_ == Class.FUNCTION: self.eat(Class.FUNCTION) id_ = Id(self.curr.lexeme) self.eat(Class.ID) args = self.args_() self.eat(Class.Colon) type_ = self.type() self.eat(Class.SEMICOLON) body = self.body() self.eat(Class.SEMICOLON) nodes.append(FuncImpl(type_,id_,args,body)) main = self.body() self.eat(Class.DOT) return Program(nodes,main) def args_(self): self.eat(Class.LPAREN) declarations = [] ids =[] while(self.curr.class_ != Class.RPAREN): id_ = Id(self.curr.lexeme) self.eat(Class.ID) ids.append(id_) if self.curr.class_ == Class.COMMA: self.eat(Class.COMMA) continue self.eat(Class.Colon) type_ = self.type() declarations.append(Decl(type_, ids.copy(),None)) ids.clear() if self.curr.class_ == Class.COMMA: self.eat(Class.COMMA) self.eat(Class.RPAREN) return declarations def array_(self): self.eat(Class.LPAREN) nodes =[] while(self.curr.class_ != Class.RPAREN): node = self.factor() nodes.append(node) if self.curr.class_ == Class.COMMA: self.eat(Class.COMMA) self.eat(Class.RPAREN) return Elems(nodes) def body(self): vars_ = [] if(self.curr.class_ == Class.VAR): vars_ = self.vars() block = self.block() return Body(vars_,block) def vars(self): self.eat(Class.VAR) declarations = [] ids =[] while(True): id_ = Id(self.curr.lexeme) self.eat(Class.ID) ids.append(id_) if self.curr.class_ == Class.COMMA: self.eat(Class.COMMA) continue self.eat(Class.Colon) type_ = self.type() value_ = None if(self.curr.class_ == Class.EQ): self.eat(Class.EQ) if(self.curr.class_ == Class.LPAREN): value_ = self.array_() else: value_ = self.factor() self.eat(Class.SEMICOLON) declarations.append(Decl(type_, ids.copy(),value_)) ids.clear() if self.curr.class_ != Class.ID: break return declarations def type(self): if self.curr.class_ == Class.TYPE: type_ = Type(self.curr.lexeme) self.eat(Class.TYPE) if self.curr.class_ != Class.LBRACKET: return type_ self.eat(Class.LBRACKET) size = self.factor() self.eat(Class.RBRACKET) return SzArray(type_,size) else: self.eat(Class.Array) self.eat(Class.LBRACKET) leftRange = self.factor() self.eat(Class.DOTDOT) rightRange = self.factor() self.eat(Class.RBRACKET) self.eat(Class.OF) type_ = Type(self.curr.lexeme) self.eat(Class.TYPE) return RangeArray(type_,leftRange,rightRange) def block(self): self.eat(Class.BEGIN) nodes = self.nodes_untill(Class.END) self.eat(Class.END) return Block(nodes) def nodes_untill(self, token): nodes = [] while self.curr.class_ != token: if self.curr.class_ == Class.ID: nodes.append(self.id_()) self.eat(Class.SEMICOLON) elif (self.curr.class_ == Class.Exit): self.eat(Class.Exit) arg = None if (self.curr.class_ == Class.LPAREN): self.eat(Class.LPAREN) arg = self.expr() self.eat(Class.RPAREN) self.eat(Class.SEMICOLON) nodes.append(Exit(arg)) elif (self.curr.class_ == Class.BREAK): nodes.append(Break()) self.eat(Class.BREAK) self.eat(Class.SEMICOLON) elif (self.curr.class_ == Class.CONTINUE): nodes.append(Continue()) self.eat(Class.CONTINUE) self.eat(Class.SEMICOLON) elif (self.curr.class_ == Class.REPEAT): # nodes.append(Repeat()) self.eat(Class.REPEAT) nodes2 = self.nodes_untill(Class.UNIIL) #elif (self.curr.class_ == Class.UNIIL): self.eat(Class.UNIIL) cond = self.logic() nodes.append(Until(cond,nodes2)) self.eat(Class.SEMICOLON) elif self.curr.class_ == Class.FOR: nodes.append(self.for_()) self.eat(Class.SEMICOLON) elif self.curr.class_ == Class.WHILE: nodes.append(self.while_()) self.eat(Class.SEMICOLON) elif self.curr.class_ == Class.IF: nodes.append(self.if_()) self.eat(Class.SEMICOLON) else: self.die_deriv(self.block.__name__) return nodes def for_(self): self.eat(Class.FOR) init = self.id_() downto = False if self.curr.class_ == Class.TO: self.eat(Class.TO) else: downto = True self.eat(Class.DOWNTO) to = self.expr() self.eat(Class.DO) block = self.block() return For(init, to, block,downto) def while_(self): self.eat(Class.WHILE) cond = self.logic() self.eat(Class.DO) block = self.block() return While(cond, block) def if_(self): statements = [] else_block = None self.eat(Class.IF) while True: cond = self.logic() self.eat(Class.THEN) block = self.block() statements.append(IfStatement(cond,block)) if self.curr.class_ != Class.ELSE: break self.eat(Class.ELSE) if self.curr.class_ != Class.IF: else_block = self.block() break self.eat(Class.IF) return If(statements, else_block) def id_(self): id_ = Id(self.curr.lexeme) self.eat(Class.ID) if self.curr.class_ == Class.LPAREN: self.eat(Class.LPAREN) if id_.value in ['write','writeln','read','readln']: args = self.formatargs() else: args = self.args() self.eat(Class.RPAREN) return FuncCall(id_, args) elif self.curr.class_ == Class.ASSIGN: self.eat(Class.ASSIGN) expr = self.expr() return Assign(id_, expr) elif self.curr.class_ == Class.LBRACKET: self.eat(Class.LBRACKET) index_ = self.expr() self.eat(Class.RBRACKET) elem = ArrayElem(id_,index_) if(self.curr.class_ != Class.ASSIGN): return elem self.eat(Class.ASSIGN) expr = self.expr() return Assign(elem, expr) else: return id_ def args(self): args = [] while self.curr.class_ != Class.RPAREN: if len(args) > 0: if self.curr.class_ != Class.COMMA: a = 1 self.eat(Class.COMMA) args.append(self.expr()) return Args(args) def formatargs(self): args = [] while self.curr.class_ != Class.RPAREN: if len(args) > 0: self.eat(Class.COMMA) expr = self.expr() left = None right = None if self.curr.class_ == Class.Colon: self.eat(Class.Colon) no = self.curr.lexeme self.eat(Class.INT) left = Int(no) if self.curr.class_ == Class.Colon: self.eat(Class.Colon) no = self.curr.lexeme self.eat(Class.INT) right = Int(no) args.append(FormatArg(expr,left,right)) return Args(args) def logic(self): first = self.compare() while self.curr.class_ in [Class.AND, Class.OR, Class.XOR]: if self.curr.class_ == Class.AND: op = self.curr.lexeme self.eat(Class.AND) second = self.compare() first = BinOp(op, first, second) elif self.curr.class_ == Class.OR: op = self.curr.lexeme self.eat(Class.OR) second = self.compare() first = BinOp(op, first, second) elif self.curr.class_ == Class.XOR: op = self.curr.lexeme self.eat(Class.XOR) second = self.compare() first = BinOp(op, first, second) return first def factor(self): if self.curr.class_ == Class.INT: no = self.curr.lexeme self.eat(Class.INT) return Int(no) if self.curr.class_ == Class.BOOL: no = self.curr.lexeme self.eat(Class.BOOL) return Bool(no) elif self.curr.class_ == Class.Float: no = self.curr.lexeme self.eat(Class.Float) return Float(no) elif self.curr.class_ == Class.CHAR: value = Char(self.curr.lexeme) self.eat(Class.CHAR) return value elif self.curr.class_ == Class.STRING: value = String(self.curr.lexeme) self.eat(Class.STRING) return value elif self.curr.class_ == Class.ID: return self.id_() elif self.curr.class_ in [Class.MINUS, Class.NOT]: op = self.curr self.eat(self.curr.class_) first = None if self.curr.class_ == Class.LPAREN: self.eat(Class.LPAREN) first = self.logic() self.eat(Class.RPAREN) else: first = self.factor() return UnOp(op.lexeme, first) elif self.curr.class_ == Class.LPAREN: self.eat(Class.LPAREN) first = self.logic() self.eat(Class.RPAREN) return first elif self.curr.class_ == Class.SEMICOLON: return None else: self.die_deriv(self.factor.__name__) def term(self): if self.curr.class_ == Class.LPAREN: self.eat(Class.LPAREN) first = self.expr() self.eat(Class.RPAREN) else: first = self.factor() while self.curr.class_ in [Class.STAR, Class.FWDSLASH, Class.DIV,Class.MOD]: if self.curr.class_ == Class.STAR: op = self.curr.lexeme self.eat(Class.STAR) second = self.factor() first = BinOp(op, first, second) elif self.curr.class_ == Class.FWDSLASH: op = self.curr.lexeme self.eat(Class.FWDSLASH) second = self.factor() first = BinOp(op, first, second) elif self.curr.class_ == Class.DIV: op = self.curr.lexeme self.eat(Class.DIV) second = self.factor() first = BinOp(op, first, second) elif self.curr.class_ == Class.MOD: op = self.curr.lexeme self.eat(Class.MOD) second = self.factor() first = BinOp(op, first, second) return first def expr(self): return self.logic() def expr2(self): first = self.term() while self.curr.class_ in [Class.PLUS, Class.MINUS]: if self.curr.class_ == Class.PLUS: op = self.curr.lexeme self.eat(Class.PLUS) second = self.term() first = BinOp(op, first, second) elif self.curr.class_ == Class.MINUS: op = self.curr.lexeme self.eat(Class.MINUS) second = self.term() first = BinOp(op, first, second) return first def compare(self): first = self.expr2() while self.curr.class_ in [Class.EQ, Class.NEQ, Class.LT, Class.GT, Class.LTE, Class.GTE]: if self.curr.class_ == Class.EQ: op = self.curr.lexeme self.eat(Class.EQ) second = self.expr2() first = BinOp(op, first, second) elif self.curr.class_ == Class.NEQ: op = self.curr.lexeme self.eat(Class.NEQ) second = self.expr2() first = BinOp(op, first, second) elif self.curr.class_ == Class.LT: op = self.curr.lexeme self.eat(Class.LT) second = self.expr2() first = BinOp(op, first, second) elif self.curr.class_ == Class.GT: op = self.curr.lexeme self.eat(Class.GT) second = self.expr2() first = BinOp(op, first, second) elif self.curr.class_ == Class.LTE: op = self.curr.lexeme self.eat(Class.LTE) second = self.expr2() first = BinOp(op, first, second) elif self.curr.class_ == Class.GTE: op = self.curr.lexeme self.eat(Class.GTE) second = self.expr2() first = BinOp(op, first, second) return first def parse(self): return self.program() def die(self, text): raise SystemExit(text) def die_deriv(self, fun): self.die("Derivation error: {}".format(fun)) def die_type(self, expected, found): self.die("Expected: {}, Found: {}".format(expected, found)) ``` #### File: Pascal2C_Transpiler/src/token.py ```python from enum import Enum, auto class Class(Enum): ID = auto() EOF = auto() Exit = auto() Array = auto() TYPE = auto() INT = auto() Float = auto() BOOL = auto() CHAR = auto() STRING = auto() ASSIGN = auto() PLUS = auto() MINUS = auto() STAR = auto() FWDSLASH = auto() DIV = auto() MOD = auto() EQ = auto() NEQ = auto() LT = auto() GT = auto() LTE = auto() GTE = auto() OR = auto() AND = auto() NOT = auto() XOR = auto() LPAREN = auto() RPAREN = auto() LBRACKET = auto() RBRACKET = auto() SEMICOLON = auto() COMMA = auto() DOT = auto() Colon = auto() DOTDOT = auto() BEGIN = auto() END = auto() IF = auto() ELSE = auto() THEN = auto() FOR = auto() TO = auto() DOWNTO = auto() WHILE = auto() DO = auto() BREAK = auto() CONTINUE = auto() REPEAT = auto() UNIIL = auto() VAR = auto() OF = auto() PROCEDURE = auto() FUNCTION = auto() class Token: def __init__(self, class_, lexeme): self.class_ = class_ self.lexeme = lexeme def __str__(self): return "<{} {}>".format(self.class_, self.lexeme) ```
{ "source": "jpak1996/smashtime", "score": 3 }
#### File: smashtime/challonge/matches.py ```python from challonge import api def index(tournament, **params): """Retrieve a tournament's match list.""" return api.fetch_and_parse( "GET", "tournaments/%s/matches" % tournament, **params) def show(tournament, match_id): """Retrieve a single match record for a tournament.""" return api.fetch_and_parse( "GET", "tournaments/%s/matches/%s" % (tournament, match_id)) def update(tournament, match_id, **params): """Update/submit the score(s) for a match.""" api.fetch( "PUT", "tournaments/%s/matches/%s" % (tournament, match_id), "match", **params) ``` #### File: jpak1996/smashtime/smashtime.py ```python from collections import OrderedDict from twilio.rest import TwilioRestClient import challonge import time import string jank = raw_input("\nTournament url? [excluding \'http://challonge.com/\']:\n\n\tFor example, if url is \'http://challonge.com/melee_singles_09\',\n\ttype in \'melee_singles_09\'\n") CHALLONGE_CREDS = open('creds/challonge_creds.txt', 'r').readline() challonge.set_credentials("canigetapak", CHALLONGE_CREDS) tournament = challonge.tournaments.show(jank) participants = challonge.participants.index(tournament["id"]) num_entrants = len(participants) class PlayerObject: def __init__(self, players): self.players = players for x in range(0,num_entrants): phone_string = participants[x]["display-name-with-invitation-email-address"] index1 = phone_string.find('<') + 1 index2 = phone_string.find('@') phone_substr = phone_string[index1:index2] phone_len = index2 - index1 if phone_len!=10 and phone_len!=11 : print("Janky phone number for entrant: " + self.players[x]['name']) print("Either that or there is a '<' or '@' character in their tag >:|") self.players.append({'name': participants[x]['name'], 'id': participants[x]['id'], 'number':phone_substr, 'flag': -1}) def players_return_id(self,x): return self.players[x]['id'] def players_return_number(self,x): return self.players[x]['number'] def players_return_name(self,x): return self.players[x]['name'] def players_return_flag(self,x): return self.players[x]['flag'] def players_set_flag(self,x,f): self.players[x]['flag'] = f twilio_file = open('creds/twilio_creds.txt', 'r') ACCOUNT_SID = string.strip(twilio_file.readline()) AUTH_TOKEN = string.strip(twilio_file.readline()) FROM_NUM = string.strip(twilio_file.readline()) print ACCOUNT_SID print AUTH_TOKEN print FROM_NUM def main2(): client = TwilioRestClient(ACCOUNT_SID, AUTH_TOKEN) tournament = challonge.tournaments.show(jank) matches = challonge.matches.index(tournament["id"]) num_matches = len(matches) players = [] PO = PlayerObject(players) print tournament["state"] #tournament state possibilities #pending #underway #awaiting_review #complete if tournament["state"] == "pending": print "Please start the tournament." exit() while(tournament["state"]=="underway"): tournament = challonge.tournaments.show(jank) print tournament["state"] matches = challonge.matches.index(tournament["id"]) if tournament["state"]!="underway": break #first match_id vs second match_id #PO could have a match_id field storing the last match they played to be compared with a constantly updated match_id for x in range(0,num_matches): if matches[x]["state"] == "open": player1_id = matches[x]["player1-id"] player2_id = matches[x]["player2-id"] counter = -1 for elem in range(0,num_entrants): if PO.players_return_id(elem) == player1_id: #for round 1 players if PO.players_return_flag(elem) == -1: PO.players_set_flag(elem,matches[x]["id"]) player1_name = PO.players_return_name(elem) player1_number = PO.players_return_number(elem) counter+=1 elif PO.players_return_flag(elem) == matches[x]["id"]: #for when the match has not finished counter+=0 else: #for new matches PO.players_set_flag(elem,matches[x]["id"]) player1_name = PO.players_return_name(elem) player1_number = PO.players_return_number(elem) counter+=1 elif PO.players_return_id(elem) == player2_id: if PO.players_return_flag(elem) == -1: PO.players_set_flag(elem,matches[x]["id"]) player2_name = PO.players_return_name(elem) player2_number = PO.players_return_number(elem) counter+=1 elif PO.players_return_flag(elem) == matches[x]["id"]: counter+=0 else: PO.players_set_flag(elem,matches[x]["id"]) player2_name = PO.players_return_name(elem) player2_number = PO.players_return_number(elem) counter+=1 if counter==1: msg = player1_name + ', please report to the TO for your match with ' + player2_name + '.' client.messages.create( to = player1_number, from_ = FROM_NUM, body = msg, ) print(msg) msg = player2_name + ', please report to the TO for your match with ' + player1_name + '.' client.messages.create( to = player2_number, from_ = FROM_NUM, body = msg, ) print(msg) counter = -1 break time.sleep(10) print "Props to the winner." main2() ```
{ "source": "jpakkane/batchcompiler", "score": 2 }
#### File: jpakkane/batchcompiler/batchtest.py ```python import sys, os, subprocess, shutil, random iface_template = '''export module M{}; // Import statements here. import M{}; import M{}; export int f{}() {{ return f{}() + f{}(); }} ''' root_case = '''export module M{}; export int f{}() {{ return 1; }} ''' class BatchTest: def __init__(self): if not shutil.which('cl'): sys.exit('cl.exe not found, run from the VS tools prompt.') self.num_files = 100 self.cl_cmd = ['cl', '/nologo', '/c', '/experimental:module'] self.sources_to_compile = set() self.waiting_for = {} # Key is module ID, value is sources waiting for said module. def fnames_for(self, i): return ('src{}.ixx'.format(i), 'M{}.ifc'.format(i), 'src{}.obj'.format(i)) def create_files(self): if os.path.exists(self.fnames_for(0)[0]): print('Sources already exist.') return for i in range(self.num_files): first = i + random.randint(1, 5) second = i + random.randint(1, 5) first = min(first, self.num_files-1) second = min(second, self.num_files-1) fnames = self.fnames_for(i) if i == self.num_files - 1: with open(fnames[0], 'w') as ofile: ofile.write(root_case.format(i, i)) else: with open(fnames[0], 'w') as ofile: ofile.write(iface_template.format(i, first, second, i, first, second)) def mark_as_needing(self, trial, missing_mod): if missing_mod not in self.waiting_for: self.waiting_for[missing_mod] = [trial] else: self.waiting_for[missing_mod].append(trial) def try_compile(self, trial): src_name = self.fnames_for(trial)[0] cp = subprocess.run(self.cl_cmd + [src_name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) if cp.returncode == 0: return None assert('could not find module' in cp.stdout) for message_line in cp.stdout.split('\n'): if 'could not find module' in message_line: return int(message_line.split("'")[-2][1:]) sys.exit('Could not find module error message!') def module_created(self, modname): for new_one in self.waiting_for.pop(modname, []): self.sources_to_compile.add(new_one) print('Module', modname, 'finished') def build(self): for i in range(self.num_files): # In the real implementation the compiler would have to check # here if the input source is up to date. That is, if # the output object file exists and is newer than all files # it depends on. It might make sense to delete all # the output ifc file immediately for all stale files. self.sources_to_compile.add(i) while len(self.sources_to_compile) > 0: trial = self.sources_to_compile.pop() missing_mod = self.try_compile(trial) if missing_mod is not None: self.mark_as_needing(trial, missing_mod) else: self.module_created(trial) if len(self.waiting_for) > 0: print(self.waiting_for) sys.exit('Could not compile all sources in this target. Bad module dependencies.') if __name__ == '__main__': bt = BatchTest() bt.create_files() bt.build() ```
{ "source": "jpakkane/crename", "score": 2 }
#### File: jpakkane/crename/crename.py ```python import os, sys, os.path, pathlib, shutil, subprocess, re def handle_makefiles(): file_finder = re.compile(r'\b[-_a-zA-Z0-9/]+\.C\b') # If you want to process CMake files, then change # this glob to **/CMakeLists.txt (not tested) for f in pathlib.Path('.').glob('**/Makefile*'): outlines = [] def file_matcher(mobj): # Only change those strings that point to existing # files on disk. If your build system does something # fancier like building paths by string concatenation, # you might need to loosen the requirements here. fname = mobj.group(0) fpath = f.parent / fname if fpath.exists(): return fname[:-2] + '.cpp' else: return fname for line in f.open(): outlines.append(file_finder.sub(file_matcher, line)) f.write_text(''.join(outlines)) def rename_files(): for f in pathlib.Path('.').glob('**/*.C'): subprocess.check_call(['git', 'mv', f, f.with_suffix('.cpp')]) def process(): handle_makefiles() rename_files() if __name__ == '__main__': if not os.path.exists('.git'): sys.exit('This script must be run in the root of the git directory.') if not shutil.which('git'): sys.exit('Git not available.') process() ```
{ "source": "JPalakapilly/baselines-RAISE", "score": 3 }
#### File: baselines/behavioral_sim/agents.py ```python import pandas as pd import numpy as np import cvxpy as cvx #### file to make the simulation of people that we can work with class Person(): """ Person (parent?) class -- will define how the person takes in a points signal and puts out an energy signal baseline_energy = a list or dataframe of values. This is data from SinBerBEST points_multiplier = an int which describes how sensitive each person is to points """ def __init__(self, baseline_energy_df, points_multiplier = 1): self.baseline_energy_df = baseline_energy_df self.baseline_energy = np.array(self.baseline_energy_df["net_energy_use"]) self.points_multiplier = points_multiplier baseline_min = self.baseline_energy.min() baseline_max = self.baseline_energy.max() baseline_range = baseline_max - baseline_min self.min_demand = np.maximum(0, baseline_min + baseline_range * .05) self.max_demand = np.maximum(0, baseline_min + baseline_range * .95) def energy_output_simple_linear(self, points): """Determines the energy output of the person, based on the formula: y[n] = -sum_{rolling window of 5} points + baseline_energy + noise inputs: points - list or dataframe of points values. Assumes that the list will be in the same time increment that energy_output will be. For now, that's in 1 hour increments """ points_df = pd.DataFrame(points) points_effect = ( points_df .rolling( window = 5, min_periods = 1) .mean() ) time = points_effect.shape[0] energy_output= [] for t in range(time): temp_energy = self.baseline_energy[t] - points_effect.iloc[t]*self.points_multiplier + \ np.random.normal(1) energy_output.append(temp_energy) return pd.DataFrame(energy_output) def pure_linear_signal(self, points, baseline_day=0): """ A linear person. The more points you give them, the less energy they will use (within some bounds) for each hour. No rolling effects or anything. The simplest signal. """ # hack here to always grab the first day from the baseline_energy output = np.array(self.baseline_energy)[baseline_day*24:baseline_day*24+10] points_effect = np.array(points * self.points_multiplier) output = output - points_effect # impose bounds/constraints output = np.maximum(output, self.min_demand) output = np.minimum(output, self.max_demand) return output def get_min_demand(self): return self.min_demand # return np.quantile(self.baseline_energy, .05) def get_max_demand(self): return self.max_demand # return np.quantile(self.baseline_energy, .95) class Person_with_hysteresis(Person): """ Wendy -- Determines the energy output of the person, based on the formula: y[n] = f(points) + baseline_energy + noise f: super special secret function that Wendy designs with hysteresis inputs: points - list or dataframe of points values. Assumes that the list will be in the same time increment that energy_output will be. For now, that's in 5 minute increments""" def __init__(self, baseline_energy, points_multiplier = 1): pass class FixedDemandPerson(Person): def __init__(self, baseline_energy_df, points_multiplier = 1): super().__init__(baseline_energy_df, points_multiplier) def demand_from_points(self, points, baseline_day=0): # hack here to always grab the first day from the baseline_energy output = np.array(self.baseline_energy)[baseline_day*24:baseline_day*24+10] total_demand = np.sum(output) points_effect = np.array(points * self.points_multiplier) output = output - points_effect # scale to keep total_demand (almost) constant # almost bc imposing bounds afterwards output = output * (total_demand/np.sum(output)) # impose bounds/constraints output = np.maximum(output, self.min_demand) output = np.minimum(output, self.max_demand) return output def adverserial_linear(self, points, baseline_day=0): # hack here to always grab the first day from the baseline_energy output = np.array(self.baseline_energy)[baseline_day*24:baseline_day*24+10] total_demand = np.sum(output) points_effect = np.array(points * self.points_multiplier) output = output + points_effect # scale to keep total_demand (almost) constant # almost bc imposing bounds afterwards output = output * (total_demand/np.sum(output)) # impose bounds/constraints output = np.maximum(output, self.min_demand) output = np.minimum(output, self.max_demand) return output class DeterministicFunctionPerson(Person): def __init__(self, baseline_energy_df, points_multiplier = 1): super().__init__(baseline_energy_df, points_multiplier) def threshold_response_func(self, points): points = np.array(points) * self.points_multiplier threshold = np.mean(points) return [p if p>threshold else 0 for p in points] def exponential_response_func(self, points): points = np.array(points) * self.points_multiplier points_effect = [p**2 for p in points] return points_effect def sin_response_func(self,points): points = np.array(points) # n = np.max(points) # points = [np.sin((float(i)/float(n))*np.pi) for i in points] points = [np.sin(float(i)*np.pi)*self.points_multiplier for i in points] points = points return points def routine_output_transform(self, points_effect, baseline_day=0): output = np.array(self.baseline_energy)[baseline_day*24:baseline_day*24+10] total_demand = np.sum(output) # scale to keep total_demand (almost) constant # almost bc imposing bounds afterwards output = output - points_effect output = output * (total_demand/np.sum(output)) # impose bounds/constraints output = np.maximum(output, self.min_demand) output = np.minimum(output, self.max_demand) return output def threshold_response(self, points): points_effect = self.threshold_response_func(points) output = self.routine_output_transform(points_effect) return output def sin_response(self, points): points_effect = self.sin_response_func(points) output = self.routine_output_transform(points_effect) return output def exp_response(self, points): points_effect = self.exponential_response_func(points) output = self.routine_output_transform(points_effect) return output def threshold_exp_response(self,points): points_effect = self.exponential_response_func(points) points_effect = self.threshold_response_func(points_effect) output = self.routine_output_transform(points_effect) return output def linear_response(self, points): points_effect = points*self.points_multiplier output = self.routine_output_transform(points_effect) return output class MananPerson1(Person): def __init__(self, baseline_energy_df, points_multiplier=.8): # ignores baseline_energy_df # this is just for backwards compatability self.baseline_energy_hour = 300 self.day_of_week_multiplier = np.array([1.1, 1.15, 1, 0.9, 0.8]) self.hour_multiplier = np.array([0.8, 0.9, 1, 0.9, 0, 0.9, 1.1, 1.1, 1.0, 0.9]) self.AFFINITY_TO_POINTS = points_multiplier self.ENERGY_STD_DEV = 5 self.baseline_energy_day = np.array(self.baseline_energy_hour * self.hour_multiplier) self.total_baseline_day = np.sum(self.baseline_energy_day)*self.day_of_week_multiplier self.min_demand = self.baseline_energy_day.min()*self.day_of_week_multiplier.min() self.max_demand = self.baseline_energy_day.max()*self.day_of_week_multiplier.max() self.MAX_DIFFERENTIAL = 20 def redistributed_energy(self, points, day_num): energy_curve = cvx.Variable(len(points)) objective = cvx.Minimize(energy_curve.T * points) constraints = [ cvx.sum(energy_curve, axis=0, keepdims=True) == self.total_baseline_day[day_num] ] for hour in range(10): constraints += [energy_curve[hour] >= 0] for hour in range(1, 10): constraints += [ cvx.abs(energy_curve[hour] - energy_curve[hour - 1]) <= self.MAX_DIFFERENTIAL ] problem = cvx.Problem(objective, constraints) problem.solve() return energy_curve.value def predicted_energy_behavior(self, points, day_num): perfect_energy_use = self.redistributed_energy(points, day_num) baseline_energy_use = self.baseline_energy_day*self.day_of_week_multiplier[day_num] means = np.empty(len(perfect_energy_use)) for i in range(len(perfect_energy_use)): lesser, greater = ( (perfect_energy_use[i], baseline_energy_use[i]) if perfect_energy_use[i] < baseline_energy_use[i] else (baseline_energy_use[i], perfect_energy_use[i]) ) means[i] = lesser + 0.8 * (greater - lesser) sample = np.random.normal(means, self.ENERGY_STD_DEV) return np.maximum(np.zeros(sample.shape), sample) ```
{ "source": "jpalanco/edr", "score": 3 }
#### File: edr/scripts/repack_deb.py ```python import argparse import os import subprocess import shutil import tempfile parser = argparse.ArgumentParser( description='Repack the velocigrr package with a new config file.') parser.add_argument('config_file', type=str, help="The config file to embed.") parser.add_argument('deb_package', type=str, help="The path to the velociraptor deb.") class TempDirectory(object): """A self cleaning temporary directory.""" def __enter__(self): self.name = tempfile.mkdtemp() return self.name def __exit__(self, exc_type, exc_value, traceback): shutil.rmtree(self.name, True) def main(): args = parser.parse_args() if not args.deb_package.endswith("deb"): raise RuntimeError("Expeting a debian package not %s:" % args.deb_package) with open(args.config_file) as fd: config_lines = list(fd.readlines()) with TempDirectory() as temp_dir_name: deb_package = os.path.abspath(args.deb_package) subprocess.check_call( "ar p " + deb_package + " control.tar.xz | tar -xJ", shell=True, cwd=temp_dir_name) with open(os.path.join(temp_dir_name, "postinst")) as fd: postinst_lines = list(fd.readlines()) # Inject the config into the postinst script. new_postinst = ( [postinst_lines[0], "cat << EOF > /etc/velociraptor.config.yaml\n"] + config_lines + ["EOF\n\n"] + postinst_lines[1:]) with open(os.path.join(temp_dir_name, "postinst"), "wt") as fd: fd.write("".join(new_postinst)) subprocess.check_call("tar cJf control.tar.xz *[!z]", shell=True, cwd=temp_dir_name) subprocess.check_call(["cp", deb_package, deb_package + "_repacked.deb"], cwd=temp_dir_name) subprocess.check_call(["ar", "r", deb_package + "_repacked.deb", "control.tar.xz"], cwd=temp_dir_name) if __name__ == '__main__': main() ```
{ "source": "jpalat/AIS-Vessel-Data-Pipeline", "score": 3 }
#### File: AIS-Vessel-Data-Pipeline/src/process_ais_data.py ```python import yaml import os import math import numpy as np import pandas as pd def main(): """Driver code to run the big steps of pre-processing the data. First, all the script parameters are loaded by reading the ``.yaml`` ``config_file`` and this config is unpacked. All the csv files within a specified directory are found and returned as ``csv_files``, along with each file's year, month, and zone in ``all_files_meta``. Then, these csv files are read and organized into a large set of trajectories ordered by id (mmsi). Finally, these trajectories are discretized before being written into an output csv containing only rows of id-state-action-state transitions. Another yaml file is written to ``meta_file`` to specify the final grid parameters, output directories, and the year, month, and zone of all the files read in. """ # file containing important options, directories, parameters, etc. config_file = "config.yml" # file to write final grid_params and the csv files' respective years, months, and zones meta_file = "meta_data.yml" # gets the config dictionary and unpacks it config = get_config(config_file) options = config["options"] directories = config["directories"] meta_params = config["meta_params"] grid_params = config["grid_params"] # gets the csv files available and their metadata csv_files, all_files_meta = collect_csv_files( options, directories, meta_params ) # reads the collected csv files and assembles trajectories trajectories, grid_params = read_data(csv_files, options, grid_params) # processes (fits to grid) trajectories and writes generates sequences to output file write_data(trajectories, options, directories, grid_params) # writes file metadata, paths, and grid parameters to ``meta_file`` directories_out = { "in_dir_path": directories["out_dir_path"], "in_dir_data": directories["out_dir_file"], } out_dict = { "all_files_meta": all_files_meta, "options": options, "directories": directories_out, "grid_params": grid_params, } with open(meta_file, "w") as outfile: yaml.dump(out_dict, outfile, default_flow_style=False) def get_config(config_file): """Helper function to get dictionary of script parameters. Mostly boilerplate code to read in ``config_file`` as a ``.yaml`` file that specifies important script parameters. Upon success, this config dictionary is returned to main to be unpacked. Args: config_file (str): The name of the ``.yaml`` file containing the script configuration parameters, located in the directory the script is run. Returns: dict: The script configuration parameters. """ with open(config_file, "r") as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) def collect_csv_files(options, directories, meta_params): """Traverses the directory containing the decompressed AIS data to get the csv names for further processing. Uses the ``os`` library to find all csv files within the directory defined by ``directories``, populating the ``csv_files`` list for later reading of all valid csv files found and logging file metadata in ``all_files_meta``. Args: options (dict): The script options specified in the ``config_file``. directories (dict): The input and output paths and files specified in the ``config_file``. meta_params (dict): The time and zone boundaries specified in the ``config_file``. Returns: tuple: A list with paths to all valid csv files found and a dictionary with the year, month, and zone corresponding to each csv file's origin. """ # initialize a list that will be filled with all csv file names from root csv_files = [] all_files_meta = {} for root, dirs, files in os.walk( directories["in_dir_path"] + directories["in_dir_data"] ): for file in files: if file.endswith(".csv"): year, month, zone = get_meta_data( file ) # finds the data year, month, and zone based on the file name # only considers valid years and months if time is bounded and valid zones if zones are bounded if ( not options["bound_time"] or ( meta_params["min_year"] <= year <= meta_params["max_year"] ) ) and ( not options["bound_zone"] or ( meta_params["min_zone"] <= zone <= meta_params["max_zone"] ) ): if ( not options["bound_time"] or ( not year == meta_params["min_year"] or month >= meta_params["min_month"] ) ) and ( not options["bound_time"] or ( not year == meta_params["max_year"] or month <= meta_params["max_month"] ) ): # csv_files will contain file locations relative to current directory csv_files.append(os.path.join(root, file)) # create dictionary to describe file characteristics file_meta = { "year": year, "month": month, "zone": zone, } all_files_meta[file] = file_meta return csv_files, all_files_meta def read_data(csv_files, options, grid_params): """Iterate through each csv file to segregate each trajectory by its mmsi id. Reads each csv in ``csv_files`` to obtain coordinates and timestamp series associated with each mmsi id encountered. Optionally, the boundaries of the grid later specified can be inferred by calculating the minimum and maximum longitudes and latitudes by setting ``options['bound_lon']`` and ``options['bound_lat']`` to ``False``, respectively in the ``config_file``. It can also be specified to only read the first ``options['max_rows']`` of each csv file by setting ``options['limit_rows']`` to True in the ``config_file``. Args: csv_files (list): Paths to all valid csv files found. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: tuple: A pandas DataFrame of all data entries with the format ``['MMSI', 'LON', 'LAT', 'TIME']`` and a dictionary that specifies the minimum and maximum latitudes and longitudes in the dataset. """ # overwrite hard boundaries on longitude and latitude if not bounded in config.yaml if not options["bound_lon"]: grid_params["min_lon"] = 180 grid_params["max_lon"] = -180 if not options["bound_lat"]: grid_params["min_lat"] = 90 grid_params["max_lat"] = -90 # holds all ais data, one dataframe per csv file ais_data = [] # get data from all csv files for csv_file in csv_files: # reads in the raw data with columns and number of rows specified in config.yaml nrows = options["max_rows"] if options["limit_rows"] else None usecols = ["MMSI", "LON", "LAT", "BaseDateTime"] ais_df = pd.read_csv(csv_file, usecols=usecols, nrows=nrows) ais_df = ais_df[usecols] # interprets raw time entries as datetime objects and drops original column ais_df["TIME"] = pd.to_datetime( ais_df["BaseDateTime"], format="%Y-%m-%dT%H:%M:%S" ) ais_df.drop(columns="BaseDateTime", inplace=True) # keeps only rows in boundaries if specified if options["bound_lon"]: ais_df = ais_df.loc[ (ais_df["LON"] >= grid_params["min_lon"]) & (ais_df["LON"] <= grid_params["max_lon"]) ] if options["bound_lat"]: ais_df = ais_df.loc[ (ais_df["LAT"] >= grid_params["min_lat"]) & (ais_df["LAT"] <= grid_params["max_lat"]) ] # infers grid boundaries if no boundaries are specified if ( not options["bound_lon"] and ais_df["LON"].min() < grid_params["min_lon"] ): grid_params["min_lon"] = ais_df["LON"].min() if ( not options["bound_lon"] and ais_df["LON"].max() > grid_params["max_lon"] ): grid_params["max_lon"] = ais_df["LON"].max() if ( not options["bound_lat"] and ais_df["LAT"].min() < grid_params["min_lat"] ): grid_params["min_lat"] = ais_df["LAT"].min() if ( not options["bound_lat"] and ais_df["LAT"].max() > grid_params["max_lat"] ): grid_params["max_lat"] = ais_df["LAT"].max() # appends current dataframe to list of all dataframes ais_data.append(ais_df) # merges dataframes from all csvs trajectories = pd.concat(ais_data, axis=0, ignore_index=True) # rounds inferred grid boundaries to nearest degree to provide some padding to each boundary if not options["bound_lon"]: grid_params["min_lon"] = float(math.floor(grid_params["min_lon"])) grid_params["max_lon"] = float(math.ceil(grid_params["max_lon"])) if not options["bound_lat"]: grid_params["min_lat"] = float(math.floor(grid_params["min_lat"])) grid_params["max_lat"] = float(math.ceil(grid_params["max_lat"])) # number of columns in the resulting grid grid_params["num_cols"] = math.ceil( (grid_params["max_lon"] - grid_params["min_lon"]) / grid_params["grid_len"] ) return trajectories, grid_params def write_data(trajectories, options, directories, grid_params): """Writes all trajectories to an output csv file using a discretized state and action grid. Uses the trajectories variable to look at each id-state-action-state transition to discretize all states and to interpolate actions if specified. These discretized states with interpolated or arbitrary actions are then written to the output csv specified by ``options['out_dir'] + options['out_file']``. Each trajectory is also sorted by its timestamp. The trajectories have their ids aliased by a counter variable that only increments whenever a trajectory is going to appear in the final csv. Self-transitions are discarded, and because of the huge grid size, most trajectories will be discarded since they will never transition between grid squares. Args: trajectories (pandas.DataFrame): All data entries with columns ``['MMSI', 'LON', 'LAT', 'TIME']``. options (dict): The script options specified in the ``config_file``. directories (dict): The input and output paths and files specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. """ # sorts based on MMSI, then sorts by timestamps within MMSI groups, drops the time column trajectories.sort_values(["MMSI", "TIME"], inplace=True) trajectories.drop(columns="TIME", inplace=True) # creates a new column of discretized states based on coordinate pairs trajectories["STATE"] = get_state( trajectories["LON"].values, trajectories["LAT"].values, grid_params ) # looks at state differences within MMSI trajectories and only keeps the states with nonzero differences # trajectories with only one state are kept because they will have a first row with 'nan' for diff non_self_transitions = ( trajectories["STATE"].groupby(trajectories["MMSI"]).diff().ne(0) ) trajectories = trajectories.loc[non_self_transitions] # rounds latitude and longitude to specified precision trajectories = trajectories.round( {"LON": options["prec_coords"], "LAT": options["prec_coords"]} ) # drops the trajectories with fewer states than ``options['min_states']`` traj_lengths = trajectories["MMSI"].value_counts() traj_keep = traj_lengths[ traj_lengths > options["min_states"] - 1 ].index.values trajectories = trajectories.loc[trajectories["MMSI"].isin(traj_keep)] # aliases the MMSI column to ascending integers to enumerate trajectories and make easier to read alias = { mmsi: ind for ind, mmsi in enumerate(trajectories["MMSI"].unique()) } trajectories["MMSI"] = trajectories["MMSI"].map(alias) # resets index now that manipulation of this dataframe has finished trajectories.reset_index(drop=True, inplace=True) # creates a series of stacked dataframes, each dataframe representing an interpolated state transition sas = trajectories.groupby("MMSI").apply( lambda x: get_action(x, options, grid_params) ) if isinstance( sas, pd.DataFrame ): # becomes a DataFrame when every trajectory has only one sas triplet sas = sas[0] # merge Series of dictionaries ids = [] prevs = [] acts = [] curs = [] lons = [] lats = [] for traj in sas: ids += traj["ID"] prevs += traj["PREV"] acts += traj["ACT"] curs += traj["CUR"] if options["append_coords"]: lons += traj["LON"] lats += traj["LAT"] # prepare final dictionary with built lists and proper heading name sas_data = { "sequence_id": ids, "from_state_id": prevs, "action_id": acts, "to_state_id": curs, } if options["append_coords"]: sas_data["lon"] = lons sas_data["lat"] = lats # writes new dataframe to final csv sas = pd.DataFrame(sas_data) sas.to_csv( directories["out_dir_path"] + directories["out_dir_file"], index=False ) def get_bounds(zone): """Helper function to get longitude boundaries corresponding to zone. Calculates the minimum and maximum longitudes corresponding to an integer zone representing a Universal Transverse Mercator coordinate system zone. Each zone is 6 degrees wide, dividing the Earth into 60 zones, starting with zone 1 at 180 deg W. This function also wraps the zone with a modulo operator, so zone -1 would map to zone 58. Args: zone (int): The Universal Transverse Mercator coordinate system zone. Returns: tuple: The minimum and maximum longitudes of the zone passed in. """ min_lon = ( 6.0 * ((zone - 1) % 60) ) - 180.0 # counts 6 degrees per zone, offset by -180 return min_lon, (min_lon + 6.0) def get_meta_data(file_name): """Helper function to retrieve a given file name's year, month, and zone. Takes a string file_name formatted as ``'AIS_yyyy_mm_Zone##.csv'`` and returns the numerical values of ``yyyy, mm, ##`` corresponding to year, month, and zone number as a tuple. Args: file_name (str): The file name to be parsed in format ``'AIS_yyyy_mm_Zone##.csv'``. Returns: tuple: The year, month, and zone corresponding to the filename passed in. """ meta_file_data = file_name.split( "_" ) # splits csv file on '_' character, which separates relevant file info year = int(meta_file_data[-3]) # third to last element of file is the year month = int( meta_file_data[-2] ) # second to last element of file is the month # get zone number for csv file being read ending_raw = meta_file_data[ -1 ] # gets last part of the file, with format "ZoneXX.csv" ending_data = ending_raw.split( "." ) # splits last part of file on '.' character zone_raw = ending_data[0] # gets "ZoneXX" string zone_data = zone_raw[ -2: ] # gets last 2 characters of "ZoneXX" string - will be the zone number zone = int(zone_data) return year, month, zone def get_state(cur_lon, cur_lat, grid_params): """Discretizes a coordinate pair into its state space representation in a Euclidean grid. Takes in a coordinate pair ``cur_lon``, ``cur_lat`` and grid parameters to calculate the integer state representing the given coordinate pair. This coordinate grid is always row-major. ``(min_lon, min_lat)`` represent the bottom-left corner of the grid. Example: A 3 x 4 grid would have the following state enumeration pattern:: 8 9 10 11 4 5 6 7 0 1 2 3 With each grid square's area bounded in the following way:: (min_lon, min_lat + grid_len) (min_lon + grid_len, min_lat + grid_len) | (min_lon, min_lat) ---------------------- (min_lon + grid_len, min_lon) In this example, the bottom left of state 0's boundaries would be the point ``min_lon, min_lat``, and the total area mapping to state 0 would be the square with ``min_lon, min_lat`` as the bottom left corner and each side of the square with length ``grid_len``. The inclusive parts of the square's boundaries mapping to zero are solid lines. Args: cur_lon (float): The longitude of the data point. cur_lat (float): The latitude of the data point. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: int: A state corresponding to the discretized representation of ``cur_lon``, ``cur_lat``. """ # normalize lat and lon to the minimum values norm_lon = cur_lon - grid_params["min_lon"] norm_lat = cur_lat - grid_params["min_lat"] # find the row and column position based on grid_len col = norm_lon // grid_params["grid_len"] row = norm_lat // grid_params["grid_len"] # find total state based on num_cols in final grid return (row * grid_params["num_cols"] + col).astype(int) def get_action(traj, options, grid_params): """Wrapper function for other ``get_action`` functions. Calls the correct ``get_action`` variant based on the options input and returns the resulting output with interpolated actions for all entries in the series. Args: traj (pandas.DataFrame): A pandas DataFrame with all the states encountered in a trajectory with their respective coordinates. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: dict: The sequence of state-action-state triplets for the passed in trajectory. """ # retrieves trajectory data traj_num = traj.name states = traj["STATE"] last_state = states.iloc[-1] lon = traj["LON"] lat = traj["LAT"] # prepares a dictionary of state transitions to be fed row-by-row as a DataFrame to the interpolation functions data = { "ID": [traj_num] * (len(states) - 1), "PREV": states.iloc[:-1].values, "CUR": states.iloc[1:].values, } # if specified, appends the original entry coordinates (not discretized) for each 'PREV' entry if options["append_coords"]: data["LON"] = lon.iloc[:-1].values data["LAT"] = lat.iloc[:-1].values # formats the final data dictionary as a DataFrame traj_df = pd.DataFrame(data) # selects specified interpolation function and applies it row-wise to ``traj_df`` if not options["interp_actions"]: traj_df = traj_df.apply( lambda x: get_action_arb(x, options, grid_params), axis=1 ) else: if options["allow_diag"]: traj_df = traj_df.apply( lambda x: get_action_interp_with_diag(x, options, grid_params), axis=1, ) else: traj_df = traj_df.apply( lambda x: get_action_interp_reg(x, options, grid_params), axis=1, ) # merges the dictionary series states_out = [] acts_out = [] lon_out = [] lat_out = [] for traj in traj_df: states_out += traj["PREV"] acts_out += traj["ACT"] if options["append_coords"]: lon_out += traj["LON"] lat_out += traj["LAT"] states_out.append(last_state) # appends the final state to each trajectory as its own row to allow for easier plotting of trajectories if options["append_coords"]: states_out.append(-1) acts_out.append(-1) lon_out.append(lon.iloc[-1]) lat_out.append(lat.iloc[-1]) # instantiates final dataframe-ready dictionary with state-action-state triplets data_out = { "ID": [traj_num] * len(acts_out), "PREV": states_out[:-1], "ACT": acts_out, "CUR": states_out[1:], } # adds coordinate fields for final output if specified in options if options["append_coords"]: data_out["LON"] = lon_out data_out["LAT"] = lat_out return data_out def get_action_arb(row, options, grid_params): """Calculates an arbitrary action from the previous state to current state relative to the previous state. First, the relative offset between the current and previous state in rows and columns is calculated. The action is then calculated according to a spiral rule beginning with the previous state, so self-transitions are defined as ``0`` as an initial condition. Spiral inspired by the polar function ``r = theta``. Example: For example, if ``prev_state = 5``, ``cur_state = 7``, and ``num_cols = 4``, then our state grid is populated as follows:: 8 9 10 11 4 p 6 c 0 1 2 3 Where p represents the location of the previous state, and c represents the location of the current state. Then the current state's position relative to the previous state is ``rel_row = 0``, ``rel_col = 2``. Our action spiral then looks like this:: 15 14 13 12 11 15 14 13 12 11 16 4 3 2 10 16 4 3 2 10 17 5 0 1 9 -> 17 5 p 1 c 18 6 7 8 24 18 6 7 8 24 19 20 21 22 23 19 20 21 22 23 Thus, this algorithm will return ``9`` as the action. Args: row (pandas.Series): One row of the DataFrame the function is applied to, containing the trajectory number, previous state, current state, longitude, and latitude. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: dict: State-action-state triplets that interpolate between ``prev_state`` and ``cur_state``. """ # retrieves transition data traj_num = row["ID"].astype(int) prev_state = row["PREV"].astype(int) cur_state = row["CUR"].astype(int) num_cols = grid_params["num_cols"] # gets row, column decomposition for previous and current states prev_row = prev_state // num_cols prev_col = prev_state % num_cols cur_row = cur_state // num_cols cur_col = cur_state % num_cols # calculates current state's position relative to previous state rel_row = cur_row - prev_row rel_col = cur_col - prev_col # simple routine to calculate a spiral set of actions # the sequence defined by layer corresponds to the total number of grid squares in each spiral layer action_num = x = y = i = 0 layer = (2 * i + 1) ** 2 # sets breakpoint for when to increment i while not (x == rel_col and y == rel_row): if action_num == layer - 1: i += 1 # move to next spiral x = i layer = (2 * i + 1) ** 2 # calculate breakpoint for next spiral elif ( x == i and y < i ): # traverses from beginning of layer to top right corner y += 1 elif x > -i and y == i: # traverses from top right to top left corner x -= 1 elif ( x == -i and y > -i ): # traverses from top left to bottom left corner y -= 1 elif ( x < i and y == -i ): # traverses from bottom left to bottom right corner x += 1 elif ( x == i and y < 0 ): # traverses from bottom left corner to end of layer y += 1 action_num += 1 # prepares final data dictionary to build DataFrame out_data = { "ID": [traj_num], "PREV": [prev_state], "ACT": [action_num], "CUR": [cur_state], } # overwrites the coordinates of the first state in interpolated transitions to be original raw values if options["append_coords"]: out_data["LON"] = [row["LON"]] out_data["LAT"] = [row["LAT"]] return out_data def get_action_interp_with_diag(row, options, grid_params): """Calculates the actions taken from the previous state to reach the current state, interpolating if necessary. First, the relative offset between the current and previous state in rows and columns is calculated. Then the sign of ``rel_row`` and ``rel_col`` are then used to iteratively describe a sequence of actions from the previous state to current state, breaking up state transitions with multiple actions if the states are not adjacent (including diagonals, resulting in 9 possible actions). This interpolation assumes a deterministic system. Example: For example, if ``prev_state = 5``, ``cur_state = 7``, and ``num_cols = 4``, then our state grid is populated as follows:: 8 9 10 11 4 p 6 c 0 1 2 3 Output snippet:: pd.DataFrame({}) Where p represents the location of the previous state, and c represents the location of the current state. Then the current state's position relative to the previous state is ``rel_row = 0``, ``rel_col = 2``. Our action spiral then looks like this:: 4 3 2 4 3 2 5 0 1 -> 5 p 1 c 7 8 9 6 7 8 Output snippet:: pd.DataFrame({ 'ID': [traj_num, ], 'PREV': [prev_state, ], 'ACT': [1, ], 'CUR': [prev_state + 1, ] }) Because the current state is not adjacent (including diagonals), we interpolate by taking the action that brings us closest to the current state: action ``1``, resulting in a new action spiral and a new previous state:: 4 3 2 4 3 2 5 0 1 -> 5 p c 7 8 9 6 7 8 Final output:: pd.DataFrame({ 'ID': [traj_num] * 2, 'PREV': [prev_state, prev_state + 1], 'ACT': [1, 1], 'CUR': [prev_state + 1, cur_state] }) Now, our new previous state is adjacent to the current state, so we can take action ``1``, which updates our previous state to exactly match the current state, so the algorithm terminates and returns the list of state-action-state transitions. Args: row (pandas.Series): One row of the DataFrame the function is applied to, containing the trajectory number, previous state, current state, longitude, and latitude. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: dict: State-action-state triplets that interpolate between ``prev_state`` and ``cur_state``. """ # retrieves transition data traj_num = row["ID"].astype(int) prev_state = row["PREV"].astype(int) cur_state = row["CUR"].astype(int) num_cols = grid_params["num_cols"] # instantiate lists to hold column values for final DataFrame output prevs = [] acts = [] curs = [] lons = [] lats = [] # gets row, column decomposition for previous and current states prev_row = prev_state // num_cols prev_col = prev_state % num_cols cur_row = cur_state // num_cols cur_col = cur_state % num_cols # calculates current state's position relative to previous state rel_row = cur_row - prev_row rel_col = cur_col - prev_col # write output rows until rel_row and rel_col are both zero # out_rows = [] while not (rel_row == 0 and rel_col == 0): # selects action to minimize rel_row and rel_col action = -1 if rel_row > 0 and rel_col > 0: action = 2 elif rel_row > 0 and rel_col == 0: action = 3 elif rel_row > 0 and rel_col < 0: action = 4 elif rel_row == 0 and rel_col > 0: action = 1 elif rel_row == 0 and rel_col < 0: action = 5 elif rel_row < 0 and rel_col > 0: action = 8 elif rel_row < 0 and rel_col == 0: action = 7 elif rel_row < 0 and rel_col < 0: action = 6 # moves rel_row and rel_col in the opposite directions of their signs row_diff = -np.sign(rel_row) col_diff = -np.sign(rel_col) # updates states and relative row, column based on action selected rel_row += row_diff rel_col += col_diff temp_row = prev_row - row_diff temp_col = prev_col - col_diff temp_state = temp_row * num_cols + temp_col prev_state = prev_row * num_cols + prev_col # records an interpolated state-action-state transition prevs.append(prev_state) acts.append(action) curs.append(temp_state) # gets the coordinates of the interpolated state - will be the coordinates of the middle of the state if options["append_coords"]: lon, lat = state_to_coord(prev_state, options, grid_params) lons.append(lon) lats.append(lat) prev_row = temp_row prev_col = temp_col # prepares final data dictionary to build DataFrame out_data = { "ID": [traj_num] * len(prevs), "PREV": prevs, "ACT": acts, "CUR": curs, } # overwrites the coordinates of the first state in interpolated transitions to be original raw values if options["append_coords"]: lons[0] = row["LON"] lats[0] = row["LAT"] out_data["LON"] = lons out_data["LAT"] = lats return out_data def get_action_interp_reg(row, options, grid_params): """Calculates the actions taken from the previous state to reach the current state, interpolating if necessary. First, the relative offset between the current and previous state in rows and columns is calculated. Then the sign of ``rel_row`` and ``rel_col`` are then used to iteratively describe a sequence of actions from the previous state to current state, breaking up state transitions with multiple actions if the states are not adjacent (only actions are right, left, up, down, and none). This interpolation assumes a deterministic system. Example: For example, if ``prev_state = 5``, ``cur_state = 7``, and ``num_cols = 4``, then our state grid is populated as follows:: 8 9 10 11 4 p 6 c 0 1 2 3 Output snippet:: pd.DataFrame({}) Where p represents the location of the previous state, and c represents the location of the current state. Then the current state's position relative to the previous state is ``rel_row = 0``, ``rel_col = 2``. Our action spiral then looks like this:: 2 2 3 0 1 -> 3 p 1 c 4 4 Output snippet:: output: pd.DataFrame({ 'ID': [traj_num, ], 'PREV': [prev_state, ], 'ACT': [1, ], 'CUR': [prev_state + 1, ] }) Because the current state is not adjacent, we interpolate by taking the action that brings us closest to the current state: action ``1``, resulting in a new action spiral and a new previous state:: 2 1 3 0 1 -> 2 p c 4 4 Final output:: pd.DataFrame({ 'ID': [traj_num] * 2, 'PREV': [prev_state, prev_state + 1], 'ACT': [1, 1], 'CUR': [prev_state + 1, cur_state] }) Now, our new previous state is adjacent to the current state, so we can take action ``1``, which updates our previous state to exactly match the current state, so the algorithm terminates and returns the list of state-action-state transitions. Args: row (pandas.Series): One row of the DataFrame the function is applied to, containing the trajectory number, previous state, current state, longitude, and latitude. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: dict: State-action-state triplets that interpolate between ``prev_state`` and ``cur_state``. """ # retrieves transition data traj_num = row["ID"].astype(int) prev_state = row["PREV"].astype(int) cur_state = row["CUR"].astype(int) num_cols = grid_params["num_cols"] # instantiate lists to hold column values for final DataFrame output prevs = [] acts = [] curs = [] lons = [] lats = [] # gets row, column decomposition for previous and current states prev_row = prev_state // num_cols prev_col = prev_state % num_cols cur_row = cur_state // num_cols cur_col = cur_state % num_cols # calculates current state's position relative to previous state rel_row = cur_row - prev_row rel_col = cur_col - prev_col # write output rows until rel_row and rel_col are both zero while not (rel_row == 0 and rel_col == 0): # selects action to reduce the largest of rel_row and rel_col action = -1 if rel_row > 0 and rel_col > 0: action = 2 if rel_row > rel_col else 1 elif rel_row > 0 and rel_col == 0: action = 2 elif rel_row > 0 and rel_col < 0: action = 2 if rel_row > -rel_col else 3 elif rel_row == 0 and rel_col > 0: action = 1 elif rel_row == 0 and rel_col < 0: action = 3 elif rel_row < 0 and rel_col > 0: action = 4 if -rel_row > rel_col else 1 elif rel_row < 0 and rel_col == 0: action = 4 elif rel_row < 0 and rel_col < 0: action = 4 if -rel_row > -rel_col else 3 # moves rel_row and rel_col in the opposite directions of their signs row_diff = -np.sign(rel_row) if (action == 2 or action == 4) else 0 col_diff = -np.sign(rel_col) if (action == 1 or action == 3) else 0 # updates states and relative row, column based on action selected rel_row += row_diff rel_col += col_diff temp_row = prev_row - row_diff temp_col = prev_col - col_diff temp_state = temp_row * num_cols + temp_col prev_state = prev_row * num_cols + prev_col # records an interpolated state-action-state transition prevs.append(prev_state) acts.append(action) curs.append(temp_state) # gets the coordinates of the interpolated state - will be the coordinates of the middle of the state if options["append_coords"]: lon, lat = state_to_coord(prev_state, options, grid_params) lons.append(lon) lats.append(lat) prev_row = temp_row prev_col = temp_col # prepares final data dictionary to build DataFrame out_data = { "ID": [traj_num] * len(acts), "PREV": prevs, "ACT": acts, "CUR": curs, } # overwrites the coordinates of the first state in interpolated transitions to be original raw values if options["append_coords"]: lons[0] = row["LON"] lats[0] = row["LAT"] out_data["LON"] = lons out_data["LAT"] = lats return out_data def state_to_coord(state, options, grid_params): """Inverse function for ``get_state``. Calculates the coordinates of the middle of the passed in state in the specified grid passed in. Args: state (int): The discretized grid square returned by ``get_state``. options (dict): The script options specified in the ``config_file``. grid_params (dict): The grid parameters specified in the ``config_file``. Returns: tuple: The longitude and latitude representing the middle of the state passed in. """ # calculates the integer state's row and column representation in the grid state_col = state % grid_params["num_cols"] state_row = state // grid_params["num_cols"] # calculates the latitude and longitude corresponding to the middle of the grid square state_lon = round( grid_params["min_lon"] + grid_params["grid_len"] * (state_col + 0.5), options["prec_coords"], ) state_lat = round( grid_params["min_lat"] + grid_params["grid_len"] * (state_row + 0.5), options["prec_coords"], ) return state_lon, state_lat if __name__ == "__main__": main() ```
{ "source": "jpalat/psiTurk", "score": 3 }
#### File: psiTurk/psiturk/utils.py ```python import os import urllib2 import json def get_my_ip(): """ Asks and external server what your ip appears to be (useful is running from behind a NAT/wifi router). Of course, incoming port to the router must be forwarded correctly. """ if 'OPENSHIFT_SECRET_TOKEN' in os.environ: my_ip = os.environ['OPENSHIFT_APP_DNS'] else: my_ip = json.load(urllib2.urlopen( 'http://httpbin.org/ip' ))['origin'] return my_ip def colorize(target, color, use_escape=True): ''' Colorize target string. Set use_escape to false when text will not be interpreted by readline, such as in intro message.''' def escape(code): ''' Escape character ''' return '\001%s\002' % code if color == 'purple': color_code = '\033[95m' elif color == 'cyan': color_code = '\033[96m' elif color == 'darkcyan': color_code = '\033[36m' elif color == 'blue': color_code = '\033[93m' elif color == 'green': color_code = '\033[92m' elif color == 'yellow': color_code = '\033[93m' elif color == 'red': color_code = '\033[91m' elif color == 'white': color_code = '\033[37m' elif color == 'bold': color_code = '\033[1m' elif color == 'underline': color_code = '\033[4m' else: color_code = '' if use_escape: return escape(color_code) + target + escape('\033[0m') else: return color_code + target + '\033[m' ```
{ "source": "jpalczewski/pills", "score": 3 }
#### File: hardware/dht/__init__.py ```python from .DHT22 import sensor import time import pigpio async def poll_once(): pi = pigpio.pi() s = sensor(pi, 24, LED=None, power=None,DHT11=False) s.trigger() time.sleep(0.2) humidity = s.humidity() temperature = s.temperature() s.cancel() pi.stop() return (humidity, temperature) ```
{ "source": "jpalczewski/probable-broccoli", "score": 2 }
#### File: jpalczewski/probable-broccoli/test.py ```python from dotenv import load_dotenv from IPython import embed import os from fbchat.models import * load_dotenv() from fbchat import Client,log class EchoBot(Client): def onMessage(self, author_id, message_object, thread_id, thread_type, **kwargs): self.markAsDelivered(thread_id, message_object.uid) self.markAsRead(thread_id) log.info("{} from {} in {}".format(message_object, thread_id, thread_type.name)) if message_object.text == "polska": reply = Message(text="Husaria") self.send(reply, thread_id=thread_id, thread_type=thread_type) self.changeThreadEmoji("🥵", thread_id=thread_id) if message_object.text == "raczej": self.changeThreadColor(thread_id=thread_id, color= ThreadColor.VIKING) if message_object.text == "debug": embed() # If you're not the author, echo if author_id != self.uid: self.send(message_object, thread_id=thread_id, thread_type=thread_type) client = EchoBot(os.getenv("FB_LOGIN"), os.getenv("FB_PASS")) client.listen() ```
{ "source": "jpallister/Sublime-Text-AutoCorrect-Plugin", "score": 3 }
#### File: jpallister/Sublime-Text-AutoCorrect-Plugin/AutoCorrect.py ```python import sublime_plugin import SubList import sublime import functools # Eventually this should be end user updatable corrections = {"bitwdith": "bit-width", "wdith": "width"} class AutoCorrectCommand(sublime_plugin.TextCommand): def run(self, edit): self.view.run_command("insert", {"characters": " "}) sublime.set_timeout(self.do_correction, 10) def do_correction(self): edit = self.view.begin_edit() rs = self.view.sel() regions_to_correct = [] for r in rs: if r.b - r.a == 0: word = self.view.word(r.begin() - 1) sword = self.view.substr(word) can_local_correct = sword in corrections # locally set should take priority correct = SubList.match(sword) if word.end() <= r.begin() - 1 and (can_local_correct or correct != ""): if can_local_correct: correct = corrections[sword] regions_to_correct.append((correct, word)) sublime.status_message("AutoCorrect: \"" + sword + "\" corrected to \"" + correct + "\"") self.view.end_edit(edit) edit = self.view.begin_edit() for i, (correct, word) in enumerate(regions_to_correct[::-1]): reg = self.view.word(word) self.view.replace(edit, reg, correct) self.view.add_regions("correction_outline" + str(i), [self.view.word(reg.begin())], "mark", sublime.DRAW_EMPTY) sublime.set_timeout(functools.partial(self.remove_regions, len(regions_to_correct)), 500) self.view.end_edit(edit) def remove_regions(self, n): for i in range(n): self.view.erase_regions("correction_outline" + str(i)) ```
{ "source": "JPalmaUCT/2FasesCompilador", "score": 3 }
#### File: JPalmaUCT/2FasesCompilador/analizador_lexico.py ```python import json #La clave es el lexema (lo que lee del programa) y el valor es el token #ejemplo lexema: = ; toquen: operador asignacion #aqui en el token en vez de que se repita lo mismo a parte podria ir una descripcion #ejemplo 'ari': 'ari / condicional if' #Faltan varias fijense en la tablita y agregenlas porfaa reservadas = { 'ari':'if', #if 'chayri':'else', #else 'kawsachiy':'while', #while 'jaykaxpax':'for', #for 'imbabura':'function', #function 'harkay':'break', #break 'apachimuy' : 'import', #import 'kutichipuy' : 'return', #return 'pachan': 'tipo_entero', #int 'killaywaska' : 'tipo_string', #string 'pasaqlla': 'tipo_flotante', #float 'huknin':'tipo_booleano', #boolean 'chiqap':'valor_booleano', #true 'llulla':'valor_booleano', #false 'chitiripuy' : 'tipo_alerta', #alerta. Nuevo tipo de dato para nuestro contexto 'chaa' : 'alerta', #verde 'karwa':'alerta', #amarillo 'antipuka':'alerta', #rojo 'anchuna' : 'sen_evacuar', #evacuar 'kakuy':'sen_no_evacuar', #no evacuar #'apachimuy': 'apachimuy / decision', #decision 'rikhuchiy':'imprimir', #print 'puncu': 'input', #input 'tapuyAriq':'funcion_medir_volcan', #medirVolcan 'apu':'operador_or', 'alqa':'operador_and' } operadores = {'=': 'operador_asignacion', '+': 'operador_suma', '-' : 'operador_resta', '/' : 'operador_division', '*': 'operador_multiplicacion', '++' : 'operador_incremento', '--' : 'operador_decremento'} comparadores = {'<':'comparador', '<=':'comparador', '>':'comparador', '>=':'comparador', '==':'comparador', '!=':'comparador'} delimitadores = {'(':'parentesis_apertura', ')':'parentesis_cierre', '{':'delimitador_apertura', '}':'delimitador_cierre', ';':'fin_sentencia'} #obtengo los lexemas posibles de cada bloque (un arreglo) #por ejmplo para delimitadores_lexema seria : ['(',')','{','}'] operadores_lexema = operadores.keys() comparadores_lexema = comparadores.keys() reservadas_lexema = reservadas.keys() delimitadores_lexema = delimitadores.keys() """#jaja for i in reservadas: print (i) for i in operadores: print (i) for i in comparadores: print (i) for i in delimitadores: print (i)""" #Letras del quechua que estan permitidas permitidos = ['a','c','h','i','j','k','l','m','n','ntilde','p','q', 'r', 's', 't', 'u','w','y', 'A','C','H','I','J','K','L','M','N','NTILDE','P','Q', 'R', 'S', 'T', 'U','W','Y','_'] numeros = ['0','1','2','3','4','5','6','7','8','9'] #comprueba si el lexema que lee desde el archivo es un identificador (letra seguidad de letras o numeros) def es_identificador(lexema): esIdentificador = True inicial = lexema[0] #primera palabra si es una letra if not inicial in permitidos: esIdentificador = False if len(lexema) > 1: for i in range(1,len(lexema)): if not lexema[i] in permitidos and not lexema[i] in numeros: esIdentificador = False return esIdentificador #comprueba si el lexema que lee desde el archivo es un numero flotante (que lleva . si o si) def es_flotante(lexema): comprobacion = False for dig in lexema: if dig == ".": comprobacion = True if comprobacion: try: float(lexema) except: comprobacion = False return comprobacion #comprueba si el lexema que lee desde el archivo es un entero def es_entero(lexema): return lexema.isdigit() """def es_cadena(lexema): return type(lexema).__name__ == "str""" #tabla contendra todos los tokens que detecte en el archivo estructura = {} tabla = [] #a tabla se le agregara cada token (un elemento que retorn crearToken) def crearToken(token,lexema,linea): myToken = {} myToken["token"] = token myToken["lexema"] = lexema myToken["linea"] = linea return myToken def eliminarEspaciosyComentarios(codigo): for i in range(len(codigo)): codigo[i] = codigo[i].strip() cod_sin_espacio = [] for lex in codigo: if lex != "": cod_sin_espacio.append(lex) indice = len(codigo) for i in range(len(cod_sin_espacio)): if len(cod_sin_espacio[i]) >= 2: if cod_sin_espacio[i][0] =='/' and cod_sin_espacio[i][1] =='/': print(indice) indice = i print("new") print(indice) cod_sin_espacio = cod_sin_espacio[:indice] return cod_sin_espacio #Se abre el archivo en modo lectura f=open("programa", "r") i =f.read() linea = 0 program = i.split('\n') #separados por salto de linea y metidos a un array['todo','el','programa','asi'] identificado = False for line in program: #los separa por espacio codigo = line.split(' ') #Elimina espacios en blanco en el codigo codigo = eliminarEspaciosyComentarios(codigo) #Se eliminan los espacios en blanco #for i in range(len(codigo)): #codigo[i] = codigo[i].strip() linea += 1 for lexema in codigo: if lexema in operadores_lexema: myToken = crearToken(operadores[lexema],lexema,linea) identificado = True if lexema in reservadas_lexema: myToken = crearToken(reservadas[lexema],lexema,linea) identificado = True if lexema in comparadores_lexema: myToken = crearToken(comparadores[lexema],lexema,linea) identificado = True if lexema in delimitadores_lexema: myToken = crearToken(delimitadores[lexema],lexema,linea) identificado = True if es_entero(lexema): myToken = crearToken("numero_entero",lexema,linea) identificado = True if es_flotante(lexema): myToken = crearToken("numero_flotante",lexema,linea) identificado = True #Si no se identifico el lexema if not identificado: #Ve si se trata de un identificador if es_identificador(lexema): myToken = crearToken("identificador",lexema,linea) tabla.append(myToken) #Si difinitivamente no lo identifica else: print ("error, no se que es:", lexema, "en la linea", linea) #Si se identifico el lexema else: #se agrega a la tabla de tokens tabla.append(myToken) identificado = False estructura["Tokens"] = tabla #Muestra tabla de tokens #for token in tabla: # print (token) with open('tokens.json', 'w') as json_file: json.dump(estructura, json_file) #detalles: #por ahora cada token debe estar separado por un espacio en el archivo ejmplo: #estara bien: a = 20 / 3.8 (porque estan separados) #estara mal: a = 20/ 3.8 (porque el 20 lo lee como 20/ y no sabe lo que es eso) #igual se puede arreglar eso #en el ejemplo no sabe lo que es x porque no esta en el alfabero (asi debe ser) ```
{ "source": "jpalvesl/doom-fire-algorithm", "score": 3 }
#### File: pythonic-doom-fire/pythonic-doom-fire/doom_fire.py ```python from abc import ABC, abstractmethod from color_palette import ColorPalette from functools import reduce from random import randint class DoomFire(ABC): def __init__(self, width, height, pixel_size = 4, decay_rate = 2, \ windforce = 1, fire_source_inc = (4, 6), \ fire_source_enabled = True, color_palette = ColorPalette()): self.width = width self.height = height self.pixel_size = pixel_size self.decay_rate = decay_rate self.windforce = windforce self.fire_source_inc = fire_source_inc self.color_palette = color_palette self.max_intensity = len(self.color_palette.get_colors()) - 1 self.pixels_array = [0] * self.width * self.height self.fire_source_enabled = fire_source_enabled if self.fire_source_enabled: self.create_fire_source() def create_fire_source(self): self.pixels_array[-self.width:] = [self.max_intensity] * self.width self.fire_source_enabled = True def destroy_fire_source(self): self.pixels_array[-self.width:] = [0] * self.width self.fire_source_enabled = False def has_fire_source(self): return self.fire_source_enabled def increase_fire_source(self): fire_source_row = self.pixels_array[-self.width:] for i, f in enumerate(fire_source_row): if f == self.max_intensity: continue inc = randint(self.fire_source_inc[0], self.fire_source_inc[1]) fire_source_row[i] += inc if f + inc <= self.max_intensity else \ self.max_intensity - f self.pixels_array[-self.width:] = fire_source_row fire_source_row_sum = reduce(lambda x, y: x + y, fire_source_row) if fire_source_row_sum > 0 and not self.fire_source_enabled: self.fire_source_enabled = True def decrease_fire_source(self): fire_source_row = self.pixels_array[-self.width:] for i, f in enumerate(fire_source_row): if f == 0: continue dec = randint(self.fire_source_inc[0], self.fire_source_inc[1]) fire_source_row[i] -= dec if f - dec >= 0 else f self.pixels_array[-self.width:] = fire_source_row fire_source_row_sum = reduce(lambda x, y: x + y, fire_source_row) if fire_source_row_sum == 0 and self.fire_source_enabled: self.fire_source_enabled = False def update(self): for j in range(self.width): for i in range(self.height - 1): current_pixel_index = i * self.width + j below_pixel_index = current_pixel_index + self.width below_pixel_intensity = self.pixels_array[below_pixel_index] decay = randint(0, self.decay_rate) new_pixel_intensity = 0 if below_pixel_intensity - decay > 0: new_pixel_intensity = below_pixel_intensity - decay wind_direction = randint(-self.windforce, self.windforce) # Checking if the wind direction exceeds the boundaries of # pixels array and if it does, reverse it if current_pixel_index + wind_direction >= \ len(self.pixels_array) or current_pixel_index + \ wind_direction < 0: wind_direction = -wind_direction pixel_neighbor_index = current_pixel_index + wind_direction self.pixels_array[pixel_neighbor_index] = new_pixel_intensity @abstractmethod def render(self): pass ```
{ "source": "jpambrun/neural-structured-learning", "score": 2 }
#### File: neural_structured_learning/tools/build_graph_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from neural_structured_learning.tools import build_graph as build_graph_lib from neural_structured_learning.tools import graph_utils import tensorflow as tf from google.protobuf import text_format class BuildGraphTest(absltest.TestCase): def _create_embedding_file(self): return self.create_tempfile('embeddings.tfr').full_path def _create_graph_file(self): return self.create_tempfile('graph.tsv').full_path def _write_embeddings(self, embedding_output_path): example1 = """ features { feature { key: "id" value: { bytes_list { value: [ "A" ] } } } feature { key: "embedding" value: { float_list { value: [ 1, 1, 0 ] } } } } """ example2 = """ features { feature { key: "id" value: { bytes_list { value: [ "B" ] } } } feature { key: "embedding" value: { float_list { value: [ 1, 0, 1] } } } } """ example3 = """ features { feature { key: "id" value: { bytes_list { value: [ "C" ] } } } feature { key: "embedding" value: { float_list { value: [ 0, 1, 1] } } } } """ # The embedding vectors above are chosen so that the cosine of the angle # between each pair of them is 0.5. with tf.io.TFRecordWriter(embedding_output_path) as writer: for example_str in [example1, example2, example3]: example = text_format.Parse(example_str, tf.train.Example()) writer.write(example.SerializeToString()) def testGraphBuildingNoThresholding(self): """All edges whose weight is greater than 0 are retained.""" embedding_path = self._create_embedding_file() self._write_embeddings(embedding_path) graph_path = self._create_graph_file() build_graph_lib.build_graph([embedding_path], graph_path, similarity_threshold=0) g_actual = graph_utils.read_tsv_graph(graph_path) self.assertDictEqual( g_actual, { 'A': { 'B': 0.5, 'C': 0.5 }, 'B': { 'A': 0.5, 'C': 0.5 }, 'C': { 'A': 0.5, 'B': 0.5 } }) def testGraphBuildingWithThresholding(self): """Edges below the similarity threshold are not part of the graph.""" embedding_path = self._create_embedding_file() self._write_embeddings(embedding_path) graph_path = self._create_graph_file() build_graph_lib.build_graph([embedding_path], graph_path, similarity_threshold=0.51) g_actual = graph_utils.read_tsv_graph(graph_path) self.assertDictEqual(g_actual, {}) if __name__ == '__main__': # Ensure TF 2.0 behavior even if TF 1.X is installed. tf.compat.v1.enable_v2_behavior() absltest.main() ```
{ "source": "jpambrun/pynndescent", "score": 2 }
#### File: pynndescent/pynndescent/sparse_threaded.py ```python import joblib import math import numba import numpy as np import pynndescent.sparse as sparse from pynndescent.utils import heap_push, make_heap, seed, tau_rand_int from pynndescent.threaded import ( new_rng_state, per_thread_rng_state, parallel_calls, effective_n_jobs_with_context, chunk_rows, shuffle_jit, init_rp_tree_reduce_jit, new_build_candidates, nn_decent_reduce_jit, deheap_sort_map_jit, ) # NNDescent algorithm INT32_MIN = np.iinfo(np.int32).min + 1 INT32_MAX = np.iinfo(np.int32).max - 1 # Map Reduce functions to be jitted @numba.njit(nogil=True) def sparse_current_graph_map_jit( heap, rows, n_neighbors, inds, indptr, data, rng_state, seed_per_row, sparse_dist, ): rng_state_local = rng_state.copy() for i in rows: if seed_per_row: seed(rng_state_local, i) if heap[0][i, 0] < 0.0: for j in range(n_neighbors - np.sum(heap[0][i] >= 0.0)): idx = np.abs(tau_rand_int(rng_state_local)) % data.shape[0] from_inds = inds[indptr[i] : indptr[i + 1]] from_data = data[indptr[i] : indptr[i + 1]] to_inds = inds[indptr[idx] : indptr[idx + 1]] to_data = data[indptr[idx] : indptr[idx + 1]] d = sparse_dist(from_inds, from_data, to_inds, to_data) heap_push(heap, i, d, idx, 1) return True def sparse_init_random( current_graph, inds, indptr, data, dist, n_neighbors, chunk_size, rng_state, parallel, seed_per_row=False, ): n_vertices = data.shape[0] n_tasks = int(math.ceil(float(n_vertices) / chunk_size)) # store the updates in an array max_heap_update_count = chunk_size * n_neighbors * 2 heap_updates = np.zeros((n_tasks, max_heap_update_count, 4), dtype=np.float32) heap_update_counts = np.zeros((n_tasks,), dtype=np.int64) rng_state_threads = per_thread_rng_state(n_tasks, rng_state) def current_graph_map(index): rows = chunk_rows(chunk_size, index, n_vertices) return ( index, sparse_current_graph_map_jit( current_graph, rows, n_neighbors, inds, indptr, data, rng_state_threads[index], seed_per_row=seed_per_row, sparse_dist=dist, ), ) # run map functions for index, status in parallel(parallel_calls(current_graph_map, n_tasks)): if status is False: raise ValueError("Failed in random initialization") return @numba.njit(nogil=True, fastmath=True) def sparse_init_rp_tree_map_jit( rows, leaf_array, inds, indptr, data, heap_updates, sparse_dist ): count = 0 for n in rows: if n >= leaf_array.shape[0]: break tried = set([(-1, -1)]) for i in range(leaf_array.shape[1]): la_n_i = leaf_array[n, i] if la_n_i < 0: break for j in range(i + 1, leaf_array.shape[1]): la_n_j = leaf_array[n, j] if la_n_j < 0: break if (la_n_i, la_n_j) in tried: continue from_inds = inds[indptr[la_n_i] : indptr[la_n_i + 1]] from_data = data[indptr[la_n_i] : indptr[la_n_i + 1]] to_inds = inds[indptr[la_n_j] : indptr[la_n_j + 1]] to_data = data[indptr[la_n_j] : indptr[la_n_j + 1]] d = sparse_dist(from_inds, from_data, to_inds, to_data) hu = heap_updates[count] hu[0] = la_n_i hu[1] = d hu[2] = la_n_j hu[3] = 1 count += 1 hu = heap_updates[count] hu[0] = la_n_j hu[1] = d hu[2] = la_n_i hu[3] = 1 count += 1 tried.add((la_n_i, la_n_j)) tried.add((la_n_j, la_n_i)) return count def sparse_init_rp_tree( inds, indptr, data, dist, current_graph, leaf_array, chunk_size, parallel ): n_vertices = data.shape[0] n_tasks = int(math.ceil(float(n_vertices) / chunk_size)) # store the updates in an array max_heap_update_count = chunk_size * leaf_array.shape[1] * leaf_array.shape[1] * 2 heap_updates = np.zeros((n_tasks, max_heap_update_count, 4), dtype=np.float32) heap_update_counts = np.zeros((n_tasks,), dtype=np.int64) def init_rp_tree_map(index): rows = chunk_rows(chunk_size, index, n_vertices) return ( index, sparse_init_rp_tree_map_jit( rows, leaf_array, inds, indptr, data, heap_updates[index], dist, ), ) def init_rp_tree_reduce(index): return init_rp_tree_reduce_jit( n_tasks, current_graph, heap_updates, offsets, index ) # run map functions for index, count in parallel(parallel_calls(init_rp_tree_map, n_tasks)): heap_update_counts[index] = count # sort and chunk heap updates so they can be applied in the reduce max_count = heap_update_counts.max() offsets = np.zeros((n_tasks, max_count), dtype=np.int64) def shuffle(index): return shuffle_jit( heap_updates, heap_update_counts, offsets, chunk_size, n_vertices, index ) parallel(parallel_calls(shuffle, n_tasks)) # then run reduce functions parallel(parallel_calls(init_rp_tree_reduce, n_tasks)) @numba.njit(nogil=True, fastmath=True) def sparse_nn_descent_map_jit( rows, max_candidates, inds, indptr, data, new_candidate_neighbors, old_candidate_neighbors, heap_updates, offset, sparse_dist, ): count = 0 for i in rows: i -= offset for j in range(max_candidates): p = int(new_candidate_neighbors[0][i, j]) if p < 0: continue for k in range(j, max_candidates): q = int(new_candidate_neighbors[0][i, k]) if q < 0: continue from_inds = inds[indptr[p] : indptr[p + 1]] from_data = data[indptr[p] : indptr[p + 1]] to_inds = inds[indptr[q] : indptr[q + 1]] to_data = data[indptr[q] : indptr[q + 1]] d = sparse_dist(from_inds, from_data, to_inds, to_data) hu = heap_updates[count] hu[0] = p hu[1] = d hu[2] = q hu[3] = 1 count += 1 hu = heap_updates[count] hu[0] = q hu[1] = d hu[2] = p hu[3] = 1 count += 1 for k in range(max_candidates): q = int(old_candidate_neighbors[0][i, k]) if q < 0: continue from_inds = inds[indptr[p] : indptr[p + 1]] from_data = data[indptr[p] : indptr[p + 1]] to_inds = inds[indptr[q] : indptr[q + 1]] to_data = data[indptr[q] : indptr[q + 1]] d = sparse_dist(from_inds, from_data, to_inds, to_data) hu = heap_updates[count] hu[0] = p hu[1] = d hu[2] = q hu[3] = 1 count += 1 hu = heap_updates[count] hu[0] = q hu[1] = d hu[2] = p hu[3] = 1 count += 1 return count def sparse_nn_descent( inds, indptr, data, n_vertices, n_neighbors, rng_state, max_candidates=50, dist=sparse.sparse_euclidean, n_iters=10, delta=0.001, rp_tree_init=False, leaf_array=None, verbose=False, n_jobs=None, seed_per_row=False, ): if rng_state is None: rng_state = new_rng_state() with joblib.Parallel(prefer="threads", n_jobs=n_jobs) as parallel: n_tasks = effective_n_jobs_with_context(n_jobs) chunk_size = int(math.ceil(n_vertices / n_tasks)) current_graph = make_heap(n_vertices, n_neighbors) if rp_tree_init: sparse_init_rp_tree( inds, indptr, data, dist, current_graph, leaf_array, chunk_size, parallel, ) sparse_init_random( current_graph, inds, indptr, data, dist, n_neighbors, chunk_size, rng_state, parallel, seed_per_row=seed_per_row, ) # store the updates in an array # note that the factor here is `n_neighbors * n_neighbors`, not `max_candidates * max_candidates` # since no more than `n_neighbors` candidates are added for each row max_heap_update_count = chunk_size * n_neighbors * n_neighbors * 4 heap_updates = np.zeros((n_tasks, max_heap_update_count, 4), dtype=np.float32) heap_update_counts = np.zeros((n_tasks,), dtype=np.int64) for n in range(n_iters): if verbose: print("\t", n, " / ", n_iters) (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates( current_graph, n_vertices, n_neighbors, max_candidates, chunk_size, rng_state, parallel, seed_per_row=seed_per_row, ) def nn_descent_map(index): rows = chunk_rows(chunk_size, index, n_vertices) return ( index, sparse_nn_descent_map_jit( rows, max_candidates, inds, indptr, data, new_candidate_neighbors, old_candidate_neighbors, heap_updates[index], offset=0, sparse_dist=dist, ), ) def nn_decent_reduce(index): return nn_decent_reduce_jit( n_tasks, current_graph, heap_updates, offsets, index ) # run map functions for index, count in parallel(parallel_calls(nn_descent_map, n_tasks)): heap_update_counts[index] = count # sort and chunk heap updates so they can be applied in the reduce max_count = heap_update_counts.max() offsets = np.zeros((n_tasks, max_count), dtype=np.int64) def shuffle(index): return shuffle_jit( heap_updates, heap_update_counts, offsets, chunk_size, n_vertices, index, ) parallel(parallel_calls(shuffle, n_tasks)) # then run reduce functions c = 0 for c_part in parallel(parallel_calls(nn_decent_reduce, n_tasks)): c += c_part if c <= delta * n_neighbors * data.shape[0]: break def deheap_sort_map(index): rows = chunk_rows(chunk_size, index, n_vertices) return index, deheap_sort_map_jit(rows, current_graph) parallel(parallel_calls(deheap_sort_map, n_tasks)) return current_graph[0].astype(np.int64), current_graph[1] ```
{ "source": "jpan127/RJD-MP3", "score": 3 }
#### File: jp/python/server.py ```python import socket # Sockets import sys # Flush import logging # Print debug import json # Writing data import os.path # Checking file path exists import datetime # Get current date + time import pprint # Pretty print import time import http.server import socketserver import threading # Default address PORT = 11111 IP = "0.0.0.0" # Set logging level logging.basicConfig(level=logging.DEBUG, format='(%(threadName)s) %(message)s',) """ Opens a UDP socket in server mode """ class UdpServer(): def __init__(self, port=PORT, ip=IP): self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(1) self.port = port self.ip = ip self.sock.bind((self.ip, self.port)) # logging.debug("UDP Socket initialized.") # logging.debug("Listening on port: %i", self.port) # sys.stdout.flush() def listen(self): try: while True: data, addr = self.sock.recvfrom(4096) if data: logging.debug("Packet: %s" % data) sys.stdout.flush() else: break except socket.timeout as e: pass except Exception as e: raise def close(self): logging.debug("Closing socket: %i", self.port) sys.stdout.flush() self.sock.close() class UdpClient(): def __init__(self, ip, port): self.ip = ip self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.setblocking(0) # self.sock.bind(("192.168.1.250", 11111)) def send(self, message): print(self.sock.sendto(message, (self.ip, self.port))) def close(self): self.sock.close() # Thread 1 def host_http_server(): logging.debug("Creating HTTP Server...") handler = http.server.SimpleHTTPRequestHandler httpd = socketserver.TCPServer(("", PORT), handler) # Start running logging.debug("Serving on port: %i", PORT) sys.stdout.flush() httpd.serve_forever() # Thread 2 def diagnostic_port(): logging.debug("Creating UDP port...") udp_server = UdpServer(6666, "192.168.1.250") while True: udp_server.listen() # Thread 3 def command_port(): udp_client = UdpClient("192.168.1.250", 5555) logging.debug("Created client") while True: logging.debug("Sending...") udp_client.send(str.encode("pingpong")) time.sleep(0.5) def main(): threads = [ threading.Thread(target=host_http_server), threading.Thread(target=diagnostic_port), threading.Thread(target=command_port) ] for thread in threads: thread.dameon = True thread.start() # Keep main thread alive try: while threading.active_count() > 0: time.sleep(0.001) except KeyboardInterrupt: logging.debug("Received KeyboardInterrupt...") logging.debug("Closing all threads.") sys.exit() if __name__ == "__main__": main() ``` #### File: mp3/server/views.py ```python from django.shortcuts import render, redirect from django.conf.urls import url from django.views.generic import ListView, TemplateView import socket, time, os, random, ctypes, sys from django.views import View import threading class AboutView(TemplateView): template_name = "index.html" class Server(): # 192.168.43.194 -- phone IP server = '192.168.43.194' port = 11000 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) con = s.connect((server,port)) def send(self,action): if action is 'play': self.send_data(0x04040000) elif action is 'pause': self.send_data(0x07040000) elif action is 'previous': self.send_data(0x06040000) elif action is 'next': self.send_data(0x05040000) elif action is 'fastforward': self.send_data(0x08040000) elif action is 'shuffle': self.send_data(0x0B040000) elif action is 'volumeUp': self.send_data(0x12040000) elif action is 'volumeDown': self.send_data(0x13040000) return def send_data(self,hex_value): msg_value = (hex_value).to_bytes(4, byteorder='big') self.s.sendto(msg_value, (self.server,self.port)) def close(self): self.s.close() class Play(View): def get(self,request): s = Server() s.send('play') return redirect('home') class Pause(View): def get(self,request): s = Server() s.send('pause') return redirect('home') class Previous(View): def get(self,request): s = Server() s.send('previous') return redirect('home') class Next(View): def get(self,request): s = Server() s.send('next') return redirect('home') class Shuffle(View): def get(self,request): s = Server() s.send('shuffle') return redirect('home') class Fastforward(View): def get(self,request): s = Server() s.send('fastforward') return redirect('home') class volumeUp(View): def get(self,request): s = Server() s.send('volumeUp') return redirect('home') class volumeDown(View): def get(self,request): s = Server() s.send('volumeDown') return redirect('home') ```
{ "source": "jpanchal/gildedrose-api", "score": 3 }
#### File: gildedrose-api/rest_api/permissions.py ```python from rest_framework.permissions import BasePermission from .models import Itemlist class IsOwner(BasePermission): """Custom permission class to allow itemlist owners to edit them.""" def has_object_permission(self, request, view, obj): """Return True if permission is granted to the itemlist owner.""" if isinstance(obj, Itemlist): return obj.owner == request.user return obj.owner == request.user ``` #### File: gildedrose-api/rest_api/views.py ```python from rest_framework import generics, permissions from .permissions import IsOwner from .serializers import ItemlistSerializer, UserSerializer, CartSerializer from .models import Itemlist, Cart from django.contrib.auth.models import User from rest_framework.response import Response from rest_framework.views import status class CreateView(generics.ListCreateAPIView): """ GET itemlists/ POST itemlists/ """ queryset = Itemlist.objects.all() serializer_class = ItemlistSerializer permission_classes = ( permissions.IsAuthenticatedOrReadOnly, IsOwner) def perform_create(self, serializer): serializer.save(owner=self.request.user) class DetailsView(generics.RetrieveUpdateDestroyAPIView): """ GET itemlists/:id/ PUT itemlists/:id/ DELETE itemlists/:id/ """ queryset = Itemlist.objects.all() serializer_class = ItemlistSerializer permission_classes = ( permissions.IsAuthenticated, IsOwner) class CartCreateView(generics.ListCreateAPIView): """ GET buyitem/ POST buyitem/ """ queryset = Cart.objects.all() serializer_class = CartSerializer permission_classes = ( permissions.IsAuthenticated, IsOwner) def perform_create(self, serializer): serializer.save(owner=self.request.user) class CartDetailsView(generics.RetrieveUpdateDestroyAPIView): """ GET buyitem/:id/ PUT buyitem/:id/ DELETE buyitem/:id/ """ queryset = Cart.objects.all() serializer_class = CartSerializer permission_classes = ( permissions.IsAuthenticated, IsOwner) class UserView(generics.ListAPIView): """ GET users/ """ queryset = User.objects.all() serializer_class = UserSerializer class UserDetailsView(generics.RetrieveAPIView): """ GET users/:id/ """ queryset = User.objects.all() serializer_class = UserSerializer class RegisterUsers(generics.CreateAPIView): """ POST auth/register/ """ permission_classes = (permissions.AllowAny,) def post(self, request, *args, **kwargs): username = request.data.get("username", "") password = request.data.get("password", "") if not username and not password: return Response( data={ "message": "username and password is required to register a user" }, status=status.HTTP_400_BAD_REQUEST ) new_user = User.objects.create_user( username=username, password=password ) return Response( data=UserSerializer(new_user).data, status=status.HTTP_201_CREATED ) ```
{ "source": "jpanda1230/OCRReaderPython", "score": 3 }
#### File: jpanda1230/OCRReaderPython/ocrspace_example.py ```python import requests import json def ocr_space_file(filename, overlay=False, api_key='helloworld', language='eng'): """ OCR.space API request with local file. Python3.5 - not tested on 2.7 :param filename: Your file path & name. :param overlay: Is OCR.space overlay required in your response. Defaults to False. :param api_key: OCR.space API key. Defaults to 'helloworld'. :param language: Language code to be used in OCR. List of available language codes can be found on https://ocr.space/OCRAPI Defaults to 'en'. :return: Result in JSON format. """ payload = {'isOverlayRequired': overlay, 'apikey': api_key, 'language': language, } with open(filename, 'rb') as f: r = requests.post('https://api.ocr.space/parse/image', files={filename: f}, data=payload, ) return r.content.decode() def ocr_space_url(url, overlay=False, api_key='helloworld', language='eng'): """ OCR.space API request with remote file. Python3.5 - not tested on 2.7 :param url: Image url. :param overlay: Is OCR.space overlay required in your response. Defaults to False. :param api_key: OCR.space API key. Defaults to 'helloworld'. :param language: Language code to be used in OCR. List of available language codes can be found on https://ocr.space/OCRAPI Defaults to 'en'. :return: Result in JSON format. """ payload = {'url': url, 'isOverlayRequired': overlay, 'apikey': api_key, 'language': language, } r = requests.post('https://api.ocr.space/parse/image', data=payload, ) return r.content.decode() # Use examples: test_file = ocr_space_file(filename='example_image.png', overlay=False ,api_key ='<KEY>', language='eng') test_url = ocr_space_url(url='http://i.imgur.com/31d5L5y.jpg',overlay=False ,api_key ='<KEY>', language='eng') # some JSON: #x = '{ "name":"John", "age":30, "city":"New York"}' # parse x: y = json.loads(test_file) z= json.loads(test_url) # the result is a Python dictionary: print(y.get('ParsedResults')[0].get('ParsedText')) print(z.get('ParsedResults')[0].get('ParsedText')) ```
{ "source": "jpanetta/Inflatables", "score": 2 }
#### File: Inflatables/python/fd_validation.py ```python import numpy as np from numpy.linalg import norm from MeshFEM import sparse_matrices def preamble(obj, xeval, perturb, etype, fixedVars = []): if (xeval is None): xeval = obj.getVars() if (perturb is None): perturb = np.random.uniform(low=-1,high=1, size=obj.numVars()) if (etype is None): etype = obj.__class__.EnergyType.Full xold = obj.getVars() perturb = np.copy(perturb) perturb[fixedVars] = 0.0 return (xold, xeval, perturb, etype) def fdGrad(obj, fd_eps, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) def evalAt(x): obj.setVars(x) val = obj.energy(etype) return val fd_delta_E = (evalAt(xeval + perturb * fd_eps) - evalAt(xeval - perturb * fd_eps)) / (2 * fd_eps) obj.setVars(xold) return fd_delta_E def validateGrad(obj, fd_eps = 1e-6, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) obj.setVars(xeval) g = obj.gradient(etype) analytic_delta_E = g.dot(perturb) fd_delta_E = fdGrad(obj, fd_eps, xeval, perturb, etype, fixedVars) return (fd_delta_E, analytic_delta_E) def validateHessian(obj, fd_eps = 1e-6, xeval = None, perturb = None, etype = None, fixedVars = []): xold, xeval, perturb, etype = preamble(obj, xeval, perturb, etype, fixedVars) def gradAt(x): obj.setVars(x) val = obj.gradient(etype) return val obj.setVars(xeval) h = obj.hessian(etype) fd_delta_grad = (gradAt(xeval + perturb * fd_eps) - gradAt(xeval - perturb * fd_eps)) / (2 * fd_eps) analytic_delta_grad = h.apply(perturb) obj.setVars(xold) return (norm(analytic_delta_grad - fd_delta_grad) / norm(fd_delta_grad), fd_delta_grad, analytic_delta_grad) def gradConvergence(obj, perturb=None, energyType=None, fixedVars = []): epsilons = np.logspace(-9, -3, 100) errors = [] if (energyType is None): energyType = obj.EnergyType.Full if (perturb is None): perturb = np.random.uniform(-1, 1, size=obj.numVars()) for eps in epsilons: fd, an = validateGrad(obj, etype=energyType, perturb=perturb, fd_eps=eps, fixedVars = fixedVars) err = np.abs(an - fd) / np.abs(an) errors.append(err) return (epsilons, errors, an) def gradConvergencePlot(obj, perturb=None, energyType=None, fixedVars = []): from matplotlib import pyplot as plt eps, errors, ignore = gradConvergence(obj, perturb, energyType, fixedVars) plt.title('Directional derivative fd test for gradient') plt.ylabel('Relative error') plt.xlabel('Step size') plt.loglog(eps, errors) plt.grid() def hessConvergence(obj, perturb=None, energyType=None, fixedVars = []): epsilons = np.logspace(-9, -3, 100) errors = [] if (energyType is None): energyType = obj.EnergyType.Full if (perturb is None): perturb = np.random.uniform(-1, 1, size=obj.numVars()) for eps in epsilons: err, fd, an = validateHessian(obj, etype=energyType, perturb=perturb, fd_eps=eps, fixedVars = fixedVars) errors.append(err) return (epsilons, errors, an) def hessConvergencePlot(obj, perturb=None, energyType=None, fixedVars = []): from matplotlib import pyplot as plt eps, errors, ignore = hessConvergence(obj, perturb, energyType, fixedVars) plt.title('Directional derivative fd test for Hessian') plt.ylabel('Relative error') plt.xlabel('Step size') plt.loglog(eps, errors) plt.grid() ``` #### File: Inflatables/python/utils.py ```python import numpy as np import MeshFEM, mesh import registration import os import pickle, gzip def load(path): """ load a pickled gzip object """ return pickle.load(gzip.open(path, 'rb')) def save(obj, path): """ save an object to a pickled gzip """ pickle.dump(obj, gzip.open(path, 'wb')) def sheetTrisForVar(sheet, varIdx): """ Get indices of triangles influencing a particular equilibrium variable of the sheet. (indices < sheet.mesh().numTrix() refer to triangles in the top sheet, the rest to triangles in the bottom sheet.) """ v = sheet.vtxForVar(varIdx) result = [] m = sheet.mesh() if v.sheet & 1: result.extend(np.where(m.triangles() == v.vi)[0]) if v.sheet & 2: result.extend(np.where(m.triangles() == v.vi)[0] + m.numTris()) return result def maskForIndexList(indices, size): mask = np.zeros(size, dtype=np.bool) mask[indices] = True return mask def freshPath(path, suffix='', excludeSuffix = False): if path is None: return if not os.path.exists(path + suffix): return path if excludeSuffix else path + suffix i = 0 candidatePath = lambda i: f'{path}.{i}{suffix}' while os.path.exists(candidatePath(i)): i += 1 print(f'Requested path exists; using fresh path {candidatePath(i)}') return f'{path}.{i}' if excludeSuffix else candidatePath(i) def allEnergies(obj): return {name: obj.energy(etype) for name, etype in obj.EnergyType.__members__.items()} def allGradientNorms(obj, freeVariables = None): if freeVariables is None: freeVariables = np.arange(obj.numVars(), dtype=np.int) return {name: np.linalg.norm(obj.gradient(etype)[freeVariables]) for name, etype in obj.EnergyType.__members__.items()} def loadObj(path): V, F = [], [] for l in open(path, 'r'): comps = l.strip().split(' ') specifier = comps[0].lower() if (specifier == 'v'): V.append([float(c) for c in comps[1:]]) if (specifier == 'l' or specifier == 'f'): F.append([int(i) - 1 for i in comps[1:]]) return np.array(V), np.array(F) def normalizedParamEnergies(obj): ET = obj.EnergyType return [obj.energy(et) / reg if reg != 0 else obj.energy(et) for (et, reg) in [(ET.Fitting, 1.0), (ET.AlphaRegularization, obj.alphaRegW), (ET.PhiRegularization, obj.phiRegW), (ET.BendingRegularization, obj.bendRegW)]] def bbox(P): return np.min(P, axis=0), np.max(P, axis=0) def bbox_dims(P): bb = bbox(P) return bb[1] - bb[0] def getClosestPointDistances(P): """ Gets the distance of each point in a point collection P to its closest other point in P. """ closestDist = [] for p in P: closestDist.append(np.partition(np.linalg.norm(p - P, axis=1), 1)[1]) return closestDist def prototypeScaleNormalization(P, placeAtopFloor = False, objectScale = 750, reorient = False): if reorient: P = registration.align_points_with_axes(P) bb = bbox(P) c = (bb[0] + bb[1]) / 2 # use center of bounding box rather than center of mass t = -c if (placeAtopFloor): t[2] = -bb[0][2] return (P + t) * (objectScale / np.max(bb[1] - bb[0])) def renderingNormalization(P, placeAtopFloor = False): """ Return the transformation function that maps the points `P` in a standard configuration for rendering. """ c = np.mean(P, axis=0) bb = bbox(P) t = -c if placeAtopFloor: t[2] = -bb[0][2] s = 1.0 / np.max(bb[1] - bb[0]) return lambda x: s * (x + t) def isWallTri(sheet_mesh, is_wall_vtx): """ Determine which triangles are part of a wall (triangles made of three wall vertices). """ return is_wall_vtx[sheet_mesh.triangles()].all(axis=1) def pad2DTo3D(P): if P.shape[1] == 3: return P return np.pad(P, [(0, 0), (0, 1)], mode='constant') import itertools def nth_choice(n, *args): return next(itertools.islice(itertools.product(*args), n, None)) def writeFields(path, m, name1, field1, *args): mfw = mesh.MSHFieldWriter(path, m.vertices(), m.triangles()) data = [name1, field1] + list(args) for name, field in zip(data[0::2], data[1::2]): mfw.addField(name, field) del mfw import mesh_utilities def getLiftedSheetPositions(origSheetMesh, uv, target_surf): paramSampler = mesh_utilities.SurfaceSampler(pad2DTo3D(uv), target_surf.triangles()) return paramSampler.sample(origSheetMesh.vertices(), target_surf.vertices()) import parametrization def getSquashedLiftedPositionsFromLiftedPos(optSheetMesh, liftedPos, liftFrac = 0.2, freeBoundary = False): flatPos = None if freeBoundary: # Note: we assume the design sheet has already been registered with the target boundary... flatPos = optSheetMesh.vertices() else: # If we're fixing the boundary, the flattened state must perfectly match the target surface's boundary. # Do this by mapping the design sheet to the interior of the target surface's boundary harmonically. bv = optSheetMesh.boundaryVertices() flatPos = parametrization.harmonic(optSheetMesh, liftedPos[bv]) return flatPos + liftFrac * (liftedPos - flatPos) def getSquashedLiftedPositions(optSheetMesh, origSheetMesh, uv, target_surf, liftFrac = 0.2): liftedPos = getLiftedSheetPositions(origSheetMesh, uv, target_surf) return getSquashedLiftedPositionsFromLiftedPos(optSheetMesh, liftedPos, liftFrac) import mesh, glob def getBoundingBox(framesDir): minCorner = [ np.inf, np.inf, np.inf] maxCorner = [-np.inf, -np.inf, -np.inf] for i in glob.glob(f'{framesDir}/step_*.msh'): V = mesh.Mesh(i, embeddingDimension=3).vertices() minCorner = np.min([minCorner, V.min(axis=0)], axis=0) maxCorner = np.max([maxCorner, V.max(axis=0)], axis=0) return np.array([minCorner, maxCorner]) def printBoundingBox(framesDir): print('{', ', '.join(map(str, getBoundingBox(framesDir).ravel(order='F'))), '}') def getTargetSurf(tas): tsf = tas.targetSurfaceFitter() return mesh.Mesh(tsf.targetSurfaceV, tsf.targetSurfaceF) ################################################################################ # Strain analysis ################################################################################ def getStrains(isheet): getStrain = lambda ted: ted.principalBiotStrains() if hasattr(ted, 'principalBiotStrains') else (np.sqrt(ted.eigSensitivities().Lambda()) - 1) return np.array([getStrain(ted) for ted in isheet.triEnergyDensities()]) def tensionStates(isheet): return [ted.tensionState() for ted in isheet.triEnergyDensities()] # Get the amount by which each element is compressed. This is # zero for elements in complete tension or the increase in # strain needed to put the element in tension. def compressionMagnitudes(isheet): def cm(ted): l = ted.eigSensitivities().Lambda() if (l[0] < 1): return 1 - np.sqrt(l[0]) # full compression case return np.max([np.sqrt(1 / np.sqrt(l[0])) - np.sqrt(l[1]), 0]) # partial compression or full tension case. return np.array([cm(ted) for ted in isheet.triEnergyDensities()]) # Get the amount by which each element is "fully compressed" (nonzero # only for elements in full compression rather than partial tension). def fullCompressionMagnitudes(isheet): return np.clip(1.0 - np.sqrt(np.array([ted.eigSensitivities().Lambda()[0] for ted in isheet.triEnergyDensities()])), 0.0, None) def writeStrainFields(path, isheet): vm = isheet.visualizationMesh() strains = getStrains(isheet) mfw = mesh.MSHFieldWriter(path, vm.vertices(), vm.elements()) mfw.addField("tensionState", tensionStates(isheet)) mfw.addField("compressionMagnitude", compressionMagnitudes(isheet)) mfw.addField("lambda_0", strains[:, 0]) mfw.addField("lambda_1", strains[:, 1]) def strainHistogram(isheet): from matplotlib import pyplot as plt strains = getStrains(isheet) plt.hist(strains[:, 0], bins=500, range=(-0.4,0.1), label='$\lambda_0$'); plt.hist(strains[:, 1], bins=500, range=(-0.4,0.1), label='$\lambda_1$'); plt.legend() plt.grid() plt.title('Principal strains'); def cumulativeArcLen(loopPts): numPts, numComp = loopPts.shape arcLen = np.empty(numPts) arcLen[0] = 0.0 for i in range(1, numPts): arcLen[i] = arcLen[i - 1] + np.linalg.norm(loopPts[i] - loopPts[i - 1]) return arcLen ################################################################################ # Curve operations ################################################################################ def samplePointsOnLoop(loopPts, numSamples, offset): """ Sample `numSamples` evenly spaced along the arlength of a closed polyline "loopPts" This closed loop is represented by a list of points, with the first and last point coinciding. The first sample point is placed at `offset`, a relative arclength position along the curve in [0, 1]. If `offset` is a list of `n` floats (instead of just a float), then we generate n * numSamples points at the specified offsets (with the sampled points for each offset value interleaved). """ assert(np.linalg.norm(loopPts[-1] - loopPts[0]) == 0) numPts, numComp = loopPts.shape arcLen = cumulativeArcLen(loopPts) arcLen /= arcLen[-1] # normalize arc lengths to [0, 1] # Arc length position of the sample points if (not isinstance(offset, list)): offset = [offset] s = np.vstack([np.fmod(np.linspace(0, 1, numSamples, endpoint=False) + o, 1.0) for o in offset]).ravel(order='F') samples = np.empty((len(s), numComp)) for c in range(numComp): samples[:, c] = np.interp(s, arcLen, loopPts[:, c]) return samples import shapely import shapely.ops import shapely.geometry as shp def normalOffset(polygon, dist): """ Offset points on the planar curve or shp.Polygon "polygon" in the normal direction by "dist". This curve should lie in a "z = const" plane or the result will be distorted. Returns a **list** of the resulting polygon(s) (shp.Polygon instances), as an inward offset can divide the input polygon into multiple pieces. """ if not isinstance(polygon, shp.Polygon): polygon = shp.Polygon(polygon[:, 0:2]) offsetResult = polygon.buffer(dist) # Note: the result could be a Polygon or a MultiPolygon... if (isinstance(offsetResult, shp.Polygon)): return [offsetResult] elif (isinstance(offsetResult, shp.MultiPolygon)): return list(offsetResult) else: raise Exception('Unexpected polygon offset result type') def getBoundary(polygon, getAll = False): """ Get the boundary of a shapely polygon. If `getAll` is true, we return a list with all boundary polylines sorted by descending length; if false, we return the largest one and print a warning. """ result = polygon.boundary if result.geom_type == 'LineString': if getAll: return [np.array(result)] return np.array(result) if result.geom_type == 'MultiLineString': allBoundaries = sorted([np.array(r) for r in result], key=lambda a: -len(a)) if getAll: return allBoundaries print('WARNING: union boundary has multiple components; returning the largest one') return allBoundaries[0] raise Exception('Unexpected boundary result type') def unionPolygons(polygons): """ Union two or more polygons [ptsA, ptsB, ...] described by point lists `ptsA` and `ptsB`. (For each of these lists, the first and last points must agree) """ return shapely.ops.unary_union([shp.Polygon(p) for p in polygons]) import os def get_nonexistant_path(fname_path): """ Get the path to a filename which does not exist by incrementing path. From https://stackoverflow.com/a/43167607/122710 """ if not os.path.exists(fname_path): return fname_path filename, file_extension = os.path.splitext(fname_path) i = 1 new_fname = "{}-{}{}".format(filename, i, file_extension) while os.path.exists(new_fname): i += 1 new_fname = "{}-{}{}".format(filename, i, file_extension) return new_fname import scipy import scipy.sparse def reconnectPolygons(polygons, originatingPolygon, minGap = 0): """ Add the line segments of the minimal length necessary to connect the entries of polygon list `polygons`, only allowing line segments that lie within the originating polygon (using a minimum spanning tree). This is meant to address the problem where eroding a polygon can separate it into a bunch of small polygons that we want to connect at the seam width. Unfortunately, we can have two polygons whose ground-truth connection line (indicated by * below) exceeds the distance of their nearest points (a and b) a--- * --------+ | b----------------+ (here the "--" lines represent thin polygons). This will result in a reconnection failure. It could be mitigated by splitting up large polygons with some threshold, but we instead opt for the reconnectPolygons2 algorithm below. """ #pickle.dump(polygons, open(get_nonexistant_path('polygons.pkl'), 'wb')) #pickle.dump(originatingPolygon, open(get_nonexistant_path('originatingPolygon.pkl'), 'wb')) inputPolygons = polygons polygons = [shp.Polygon(p) for p in polygons] originatingPolygon = shp.Polygon(originatingPolygon) n = len(polygons) dists = np.full((n, n), np.inf) closestPoints = np.empty((n, n), dtype='O') for i, pi in enumerate(polygons): for j, pj in enumerate(polygons): if (i >= j): continue; # only compute upper triangle cp = np.vstack([np.array(o.coords) for o in shapely.ops.nearest_points(pi, pj)]) connectionDist = np.linalg.norm(np.subtract(*cp)) distToOrig = shp.Point(cp.mean(axis=0)).distance(originatingPolygon) if (distToOrig > 0.25 * connectionDist): continue # If the candidate connecting line strays too far outside the originating polygon, it is probably invalid dists [i, j] = connectionDist closestPoints[i, j] = cp outputPolylines = inputPolygons.copy() for mst_edge in zip(*scipy.sparse.csgraph.minimum_spanning_tree(dists).nonzero()): i, j = sorted(mst_edge) if (dists[i, j] < minGap): continue # no connection needed outputPolylines.append(closestPoints[i, j]) return outputPolylines import scipy.spatial def reconnectPolygons2(inputPolygons, originatingPolygon, fuseWidth, includeExtensions=False): """ Hopefully superior algorithm for inserting line segments to reconnect the distinct polygons that arose from an erosion operation on originatingPolygon. This one works by detecting "bridges"--regions of `originatingPolygon \ inputPolygons` that connect two distinct polygons of inputPolygons--and then joining the closest points of these input polygons (after intersecting with a neighborhood of the bridge). """ eps = 1e-6 polygons = [shp.Polygon(p).buffer(fuseWidth / 2 + eps) for p in inputPolygons] originatingPolygon = shp.Polygon(originatingPolygon) bridges = [p for p in originatingPolygon.difference(shapely.ops.unary_union(polygons)) if p.boundary.length > 3 * fuseWidth] outputPolylines = inputPolygons.copy() for b in bridges: distances = np.array([b.distance(p) for p in polygons]) # If "b" actually bridges between two polygons, connect these # polygons' closest points (restricted to a neighborhood of the bridge) closest = np.argsort(distances) if (distances[closest[1]] < fuseWidth / 2): bridgeRegion = b.buffer(2 * fuseWidth) p0, p1 = shapely.ops.nearest_points(bridgeRegion.intersection(polygons[closest[0]]), bridgeRegion.intersection(polygons[closest[1]])) outputPolylines.append(np.array([np.asarray(p0), np.asarray(p1)])) elif includeExtensions: if (b.boundary.length > 4 * fuseWidth): bdryPts = np.array(b.boundary) _, p0 = shapely.ops.nearest_points(b, polygons[closest[0]]) b_to_p0 = scipy.spatial.distance.cdist([np.asarray(p0)], bdryPts[:, 0:2])[0] farthest = np.argmax(b_to_p0) if (b_to_p0[farthest] > 4 * fuseWidth): p1, _ = shapely.ops.nearest_points(polygons[closest[0]], shp.Point(bdryPts[farthest, 0:2])) outputPolylines.append(np.array([np.asarray(p1), bdryPts[farthest, 0:2]])) return outputPolylines ``` #### File: Inflatables/python/wall_width_formulas.py ```python import numpy as np def wallWidthForCanonicalWidth(canonicalWidth, channelSpacing): return canonicalWidth * channelSpacing / (2 * np.pi) def canonicalWallWidthForGeometry(wallWidth, channelSpacing): return wallWidth * 2 * np.pi / channelSpacing def spacingForCanonicalAndPhysicalWallWidths(canonicalWidth, physicalWidths): return physicalWidths * 2 * np.pi / canonicalWidth # Largest singular value of the mapping from 3D to the plane. def stretchFactorForCanonicalWallWidth(w): # stretched width / unstretched width return 2 * np.pi / (w + (2 / np.pi) * (2 * np.pi - w)) # Inverse of stretchFactorForCanonicalWallWidth def canonicalWallWidthForStretchFactor(s): return ((2 * np.pi / s) - 4) / (1 - 2 / np.pi) ```
{ "source": "jpanganiban/simplestruct", "score": 3 }
#### File: jpanganiban/simplestruct/simplestruct.py ```python __version__ = "0.1.0" class StructMeta(type): def __new__(meta, name, bases, dct): """Override struct class instantiation so we can store the class definition.""" dct['__struct_meta__'] = dct return super(StructMeta, meta).__new__(meta, name, bases, dct) class Struct(object): __metaclass__ = StructMeta def __init__(self, **kwargs): """Override object constructor to validate the values being set first.""" for attr, val in kwargs.items(): self._validate_attr(attr, val) setattr(self, attr, val) def __setattr__(self, attr, val): """Override object setter to validate the value being set first.""" self._validate_attr(attr, val) super(Struct, self).__setattr__(attr, val) def _validate_attr(self, attr, val): """Validates the value being set.""" if attr not in self.__struct_meta__: raise AttributeError( "Attribute '%s' is not defined in '%s'" % (attr, self.__class__) ) attr_type = self.__struct_meta__[attr] # If the passed value is None, Just let it be. if val is None: return # If the defined attribute is a list, validate each item to match the # defined specified attribute type. # # ie. # # class Person(Struct): # siblings = [str] # # Each instance of the attribute `sibling` must be of type `str`. # if isinstance(attr_type, list): if len(attr_type) > 0: attr_type = attr_type[0] for v in val: if not isinstance(v, attr_type): raise TypeError("") return # If the defined attribute is a tuple, validate each item in the tuple # to match the defined attribute type. # # ie. # # class Person(Struct): # age_and_gender = (int, str) # # The first value of the attribute `age_and_gender` must be of type # `int` and the second value must be of type `str`. # if isinstance(attr_type, tuple): for i, v in enumerate(val): if v is not None and not isinstance(v, attr_type[i]): raise TypeError("") return # If the defined attribute is just a type, just validate it. # # ie. # # class Person(Struct): # age = int # # The value of the attribute `age` must be of type `int`. if not isinstance(val, attr_type): raise TypeError("") ```
{ "source": "jpaniagualaconich/django-sslserver", "score": 2 }
#### File: django-sslserver/sslserver/testcases.py ```python import os from django.contrib.staticfiles.testing import StaticLiveServerTestCase from django.test.testcases import LiveServerTestCase, LiveServerThread, QuietWSGIRequestHandler from sslserver.management.commands.runsslserver import ( SecureHTTPServer, WSGIRequestHandler, default_ssl_files_dir, ) class SecureQuietWSGIRequestHandler(WSGIRequestHandler, QuietWSGIRequestHandler): pass class SecureLiveServerThread(LiveServerThread): def _create_server(self): cert_file = os.path.join(default_ssl_files_dir(), "development.crt") key_file = os.path.join(default_ssl_files_dir(), "development.key") return SecureHTTPServer( (self.host, self.port), SecureQuietWSGIRequestHandler, cert_file, key_file, ) class SecureLiveServerTestCase(LiveServerTestCase): server_thread_class = SecureLiveServerThread class SecureStaticLiveServerTestCase(StaticLiveServerTestCase): server_thread_class = SecureLiveServerThread ```
{ "source": "jpanikulam/amanuensis", "score": 3 }
#### File: jpanikulam/amanuensis/analyze.py ```python import numpy as np from scipy.io import wavfile from scipy import signal from matplotlib import pyplot as plt import notes def load(): pass def compare_note(f): best_note = None best_error = np.inf best_freq = None for note_name, freq in notes.notes.items(): error = np.abs(f - freq) if error < best_error: best_error = error best_note = note_name best_freq = notes.notes[best_note] return (best_note, best_freq) def comparogram(note_name, audio_signal, fs): note_freq = notes.notes[note_name] T = 1.0 / fs signal_seconds = audio_signal.shape[0] * T t = np.arange(0.0, T * 5.0, T) note_signal = np.sin(t * (2.0 * np.pi * note_freq)) correlation = signal.fftconvolve(audio_signal / np.std(audio_signal), note_signal / np.std(note_signal), 'same') times = np.arange(0.0, signal_seconds, T) plt.plot(times, correlation, label=' '.join(note_name)) def compare(freq, audio_signal, fs): T = 1.0 / fs t = np.arange(0.0, 0.25, T) note_signal = np.sin(t * (2.0 * np.pi * freq)) correlation = signal.fftconvolve(audio_signal / np.std(audio_signal), note_signal / np.std(note_signal), 'same') return correlation def detect_harmonics(note_name, audio_signal, fs): # MIN_POWER = 1.2e10 T = 1.0 / fs signal_seconds = audio_signal.shape[0] * T times = np.arange(0.0, signal_seconds, T) fundamental_frequency = notes.notes[note_name] # harmonics = range(1, 4 + 1) harmonics = [(1.0 / 4.0), (1.0 / 3.0), (1.0 / 2.0), 1.0, 2.0, 3.0] present_harmonics = np.zeros((audio_signal.shape[0], len(harmonics))) for i in range(len(harmonics)): harmonic_freq = fundamental_frequency * harmonics[i] print harmonic_freq likely_note = compare_note(harmonic_freq)[0] correlation = compare(harmonic_freq, audio_signal, fs) box_filter = np.ones(fs * 0.1) correlation_power = np.sqrt(signal.fftconvolve(np.abs(correlation) ** 2.0, box_filter, 'same')) # plt.plot(times, correlation, label='{} [Hz]'.format(harmonic_freq)) # plt.plot(times[::100], correlation_power[::100], label='${}$ : {} [Hz]'.format(likely_note, harmonic_freq)) present_harmonics[:, i] = correlation_power f, axes = plt.subplots(len(harmonics), 1, sharex=True) plt.title(note_name) for i in range(len(harmonics)): axes[i].plot(times, present_harmonics[:, i], label="{}".format(harmonics[i])) axes[i].set_ylim([0.0, 400e3]) # min_power = 0.7 * np.max(present_harmonics[:, i - 1]) # min_power = np.percentile(present_harmonics[:, i - 1], 70.0) # axes[i - 1].plot(times, present_harmonics[:, i - 1] > min_power, label="{}".format(i)) def correlate(harmonic_freq, audio_signal, fs): correlation = compare(harmonic_freq, audio_signal, fs) box_filter = np.ones(fs * 0.1) correlation_power = np.sqrt(np.abs(signal.fftconvolve(np.abs(correlation) ** 2.0, box_filter, 'same'))) return correlation_power # def find_integer_contributors(freq): # for f in def generate_harmonic_image(audio_signal, fs): powers = [] note_freqs = sorted(notes.notes.values()) applied_freqs = [] # int(0.1 * fs) for freq in note_freqs: # print "f: {} Hz".format(freq) correlation = correlate(freq, audio_signal, fs) powers.append(correlation[::1000]) applied_freqs.append(freq) np_powers = np.array(powers) maxes = np.max(np_powers, axis=0) + 1e-3 plt.imshow(np.log(np_powers / maxes)) x_indices = np.arange(0, np_powers.shape[1], 100) y_indices = np.arange(0, np_powers.shape[0], 20) plt.xticks(x_indices, x_indices * 1000 * (1.0 / fs), fontsize=9) plt.yticks(y_indices, np.array(applied_freqs)[y_indices], fontsize=9) plt.show() if __name__ == '__main__': # fn = "/home/jacob/repos/amanuensis/data/rocky_mtn_high.wav" # fn = "/home/jacob/repos/amanuensis/data/country_roads.wav" # fn = "/home/jacob/repos/amanuensis/data/reference_guitar.wav" fn = "/home/jacob/repos/amanuensis/data/tuning_reference.wav" fs, data = wavfile.read(fn) # start_seconds = 0.6 # end_seconds = 1.5 # start_seconds = 1.00 # end_seconds = 1.5 start_seconds = 1.0 end_seconds = 2.5 start_samples = fs * start_seconds end_samples = fs * end_seconds segment_seconds = 0.1 segment_size = fs * segment_seconds # first_chunk_chan0 = data[5000:50000, 0] # first_chunk_chan0 = data[start_samples:end_samples] first_chunk_chan0 = data[start_samples:end_samples, 0] generate_harmonic_image(first_chunk_chan0, fs) # wavfile.write('test_chunk.wav', fs, first_chunk_chan0) ``` #### File: jpanikulam/amanuensis/notes.py ```python def clean_split(text, delim=','): text = text.strip() return map(lambda o: o.strip(), text.split(delim)) def read_notes(file): notes = {} for line in file: split = clean_split(line, ',')[:-1] if split[-1] == '': continue notes[(split[0], int(split[1]))] = float(split[2]) return notes # Map notes to frequencies notes = read_notes(open('notes.txt')) # Map frequencies to note tuples inv_notes = {v: k for k, v in notes.items()} if __name__ == '__main__': path = 'notes.txt' with open(path) as f: read_notes(f) ```
{ "source": "jpanikulam/cvxbind", "score": 3 }
#### File: cvxbind/cvxbind/main.py ```python import os import argparse from utils import Log from parse_cvxgen import ParseCVX from gen_cpp import GenCPP def main(): parser = argparse.ArgumentParser(description='CVXGEN Python Binding Generator') parser.add_argument('path', metavar='path', default='./images', help='Give the target path') parser.add_argument('-v', '--verbose', action='store_true', default=False, help='Decide verbosity') args = parser.parse_args() Log.set_verbose(args.verbose) path = os.path.realpath(args.path) parsed_cvx = ParseCVX.read_file(path) write_text = GenCPP.make_cvx_binding(parsed_cvx) print write_text if __name__ == '__main__': main() ``` #### File: cvxbind/cvxbind/parse_cvxgen.py ```python from utils import Log, Utils import re import string import os class ParseCVX(object): @classmethod def read_file(self, file_path): '''Compute a list of stripped text''' f = file(file_path) data = list(f) data_stripped = map(string.strip, data) return self.read(data_stripped) @classmethod def read(self, data): '''Parse a list of stripped lines TODO: - Also include constraints ''' section = None sections = ['dimensions', 'parameters', 'variables', 'minimize', 'end'] content = { 'dimensions': [], 'parameters': [], 'variables': [], } section_dict = { 'dimensions': self.parse_dimension, 'parameters': self.parse_parameter, 'variables': self.parse_parameter, } for l_num, dirty_line in enumerate(data): Log.log("On line {}".format(l_num)) line = dirty_line.strip() if '#' in line: line = line.split('#', 1)[0] if line == '': pass elif line.startswith('#'): continue elif (line in sections) or (section is None): if line == 'end': section = None else: section = line elif section == 'dimensions': content[section].append(self.parse_dimension(line)) elif section in ['parameters', 'variables']: content[section].append(self.parse_parameter(line)) else: Log.warn("Unknown line {}: {}".format(l_num, line)) return content @classmethod def parse_parameter(self, line): ''' dimension_expr: string expression for reflecting dimension TODO: - Should have used regex! - Don't do blind text-replacement for special structure flags ''' split = Utils.clean_split(line, None, maxsplit=1) if len(split) == 1: name = split[0] _type = 'scalar' return { 'name': name, 'dimensions': None, 'special': None, 'array_bounds': None, 'type': _type } name, second_half = split[:2] Log.log("{}: Found parameter or variable".format(name)) # Handle special structure flags special_features = ['psd', 'nsd', 'diagonal', 'nonnegative'] special = set() for special_feature in special_features: if special_feature in second_half: special.add(special_feature) Log.log("{}: Registering special behavior: {}".format(name, special)) second_half = second_half.replace(special_feature, '') # Handle arrays is_array = self.is_array(line) if is_array: array_var, name = is_array array_expr = second_half.split(', ')[-1] second_half = second_half.split(', ' + array_expr)[0] array_expr = array_expr.split('=')[-1] lower_bound, upper_bound = array_expr.split('..') array_bounds = (lower_bound, upper_bound) # Strings Log.log("{}: Registering array bounds expression: [{}...{}]".format(name, lower_bound, upper_bound)) else: array_bounds = None # Dimensions dimensions = self.get_dimensions(line) if dimensions is None: _type = 'scalar' elif len(dimensions) == 2: _type = 'matrix' elif len(dimensions) == 1: _type = 'vector' Log.log("{}: Registering vector dimension: {}".format(name, dimensions)) parameter = { 'name': name, 'dimensions': dimensions, 'special': special, 'array_bounds': array_bounds, 'type': _type } return parameter @classmethod def consume_parameter(self, line): # -- Array handling # Is it an array? is_array = self.is_array(line) if is_array is not None: index_var, name = is_array # - Check if we have an initializer, like x[0] or something # Required to be 't', for now if index_var.isdigit() or (index_var != 't'): is_array_initializer = True array_bounds = index_var else: is_array_initializer = False array_bounds = self.get_array_bounds(line) Log.log("Registering array {} with indexing variable, {}".format(name, index_var)) if is_array_initializer: Log.log("{}: Is an initializer".format(name)) # -- Not an array else: array_bounds = None is_array_initializer = False name = Utils.clean_split(line, None, maxsplit=1)[0] Log.log("Registering non-array {}".format(name)) # -- Get dimensions dimensions = self.get_dimensions(line) if dimensions is None: _type = 'scalar' elif dimensions['cols'] != '1': _type = 'matrix' else: _type = 'vector' if dimensions is not None: Log.log("{}: Registering dimensions as {}x{}".format(name, dimensions['rows'], dimensions['cols'])) else: Log.log("{}: Registering as sclar".format(name)) special = self.get_special(line) parameter = { 'name': name, 'dimensions': dimensions, 'array_bounds': array_bounds, 'type': _type, 'special': special, 'initializer': is_array_initializer } return parameter @classmethod def get_special(self, line): special_features = ['psd', 'nsd', 'diagonal', 'nonnegative'] special = set() for special_feature in special_features: if special_feature in line: special.add(special_feature) Log.log("{}: Registering special behavior: {}".format(special_feature, special)) return special @classmethod def get_array_bounds(self, line): if '=' not in line: return None _, after_eq = Utils.clean_split(line, '=') upper, lower = Utils.clean_split(after_eq, '..') return (upper, lower) @classmethod def is_array(self, line): m = re.search(r"\[([A-Za-z0-9_]+)\]", line) if m is not None: return Utils.remove_chars(m.group(), '[', ']'), line[:m.start()].strip() else: return None @classmethod def get_dimensions(self, line): stripped = line.strip() if '(' not in stripped: return None else: dimensions = stripped[stripped.find("(") + 1:stripped.find(")")] if ',' in dimensions: rows, cols = Utils.clean_split(dimensions, ',') dimension_data = { 'rows': rows, 'cols': cols } else: dimension_data = { 'rows': dimensions.strip(), 'cols': '1' } return dimension_data @classmethod def parse_dimension(self, line): """Currently don't support arithmetic expressions""" dim_name, dim_value = Utils.clean_split(line, '=') dim_value = int(dim_value) # Explicitly convert to int Log.log("{}: Registering dimension: {}".format(dim_name, dim_value)) dimension = { 'name': dim_name, 'value': dim_value } return dimension if __name__ == '__main__': Log.set_verbose() fpath = os.path.dirname(os.path.realpath(__file__)) test_path = os.path.join(fpath, '..', 'test', 'description.cvxgen') print ParseCVX.read_file(test_path) ```
{ "source": "jpanikulam/experiments", "score": 2 }
#### File: gpgpu/generators/render_volume_defs.py ```python import generate_opencl_structs def main(): cfg_defd = [ { 'type': 'int', 'length': 1, 'name': 'method', }, { 'type': 'float', 'length': 1, 'name': 'step_size', 'default': '0.01' }, { 'type': 'float', 'length': 1, 'name': 'max_dist', 'default': "25.0" }, { 'type': 'int', 'length': 1, 'name': 'render_mode', }, { 'type': 'int', 'length': 1, 'name': 'max_iteration', } ] definitions = [ ("RenderVolumeConfig", cfg_defd), ] destination = "/home/jacob/repos/experiments/gpgpu/kernels/render_volume" generate_opencl_structs.write_files(definitions, destination) if __name__ == '__main__': main() ``` #### File: rendering/codegen/generate_drifter_ui.py ```python from generate_imgui import MenuGenerator def main(): full_menu = MenuGenerator("PlannerConfiguration") # Debug debug = full_menu.add_submenu("Debug") debug.add_toggle("visualize_last_state", "Visualize Last State Cost", default="false") debug.add_toggle("visualize_last_state", "Visualize Last State Cost", default="false") debug.add_toggle("show_cost", "Show Cost", default="true") debug.add_toggle("enable_look_target", "Enable Look Target", default="false") debug.add_toggle("show_trajectory", "Show Trajectory", default="true") debug.add_toggle("convenience_flag", "Set Convenient Flag", default="true") # Optimization optimization = full_menu.add_submenu("Optimization") optimization.add_int_scalar("max_iterations", "Max Iterations", (0, 100), default="15") optimization.add_scalar('min_state_damping', 'Minimum State Damping', (1e-5, 10.0), "1.0") optimization.add_scalar('min_ctrl_damping', 'Minimum Control Damping', (1e-5, 10.0), "1.0") optimization.add_scalar('qxx_min_eigenvalue', 'State Minimum Eigenvalue', (1e-5, 1.0), "1.0") optimization.add_scalar('quu_min_eigenvalue', 'Control Minimum Eigenvalue', (1e-5, 1.0), "1.0") # Bounds bounds = full_menu.add_submenu("Bounds") bounds.add_scalar('v_max_weight', 'Speed Bound Weight', (10.0, 500.0), 250.0) bounds.add_scalar('max_speed', 'Maximum Speed (m/s)', (0.0, 15.0), 15.0) bounds.add_scalar('min_speed', 'Minimum Speed (m/s)', (-10.0, 0.0), -10.0) bounds.add_scalar('max_accel', 'Maximum Acceleration (m/s^2)', (0.0, 1.0), 0.5) bounds.add_scalar('phi_weight', 'double', (0.0, 25.0), 0.1) bounds.add_scalar('phi_max', 'double', (0.0, 5.0), 3.0) bounds.add_scalar('phi_max_bound_weight', 'double', (0.0, 250.0), 75.0) # Goal goals = full_menu.add_submenu("Goal") goals.add_scalar('goal_weight', 'Goal Weight', (0.0, 10.0), 1.0) goals.add_scalar('terminal_vel_weight', 'Terminal Velocity Weight', (0.0, 20.0), 10.0) goals.add_scalar('pointing_weight', 'Pointing Target Weight', (0.0, 20.0), 4.0) goals.add_scalar('path_weight', 'Path Weight', (0.0, 20.0), 1.0) goals.add_scalar('path_margin', 'Path Margin (m)', (0.0, 1.0), 0.2) goals.add_toggle('enable_path', 'Enable Path', "false") # Obstacles obstacles = full_menu.add_submenu("Obstacles") obstacles.add_scalar('avoid_weight', 'Avoid Area Weight', (0.0, 10.0), 3.0) # Control control = full_menu.add_submenu("Control") control.add_scalar('acceleration_weight', 'Acceleration Weight', (0.0, 2.0), 0.) control.add_scalar('phidot_weight', 'Steering Angle Rate Weight', (0.0, 10.0), 1.0) control.add_scalar('phi_dot_max', 'Maximum Value of dPhi/dt', (0.0, 3.0), 1.5) control.add_scalar('phi_dot_max_bound_weight', 'Weight for Enforcing Maximum Value of dPhi/dt', (0.0, 250.0), 75.0) full_menu.generate( namespace=("planning", "drifter"), cfg_loc="planning/drifter/drifter_configuration", ui_loc="planning/drifter/drifter_ui_elements" ) if __name__ == '__main__': main() ``` #### File: rendering/shaders/generate_type_map_gl.py ```python mapping = { "GL_FLOAT": (1, "GLfloat", "float", "glUniform1f"), "GL_FLOAT_VEC2": (2, "GLfloat", "VecNf<2>", "glUniform2fv"), "GL_FLOAT_VEC3": (3, "GLfloat", "VecNf<3>", "glUniform3fv"), "GL_FLOAT_VEC4": (4, "GLfloat", "VecNf<4>", "glUniform4fv"), "GL_INT": (1, "GLint"), "GL_INT_VEC2": (2, "GLint"), "GL_INT_VEC3": (3, "GLint"), "GL_INT_VEC4": (4, "GLint"), "GL_UNSIGNED_INT": (1, "GLuint"), "GL_UNSIGNED_INT_VEC2": (2, "GLuint"), "GL_UNSIGNED_INT_VEC3": (3, "GLuint"), "GL_UNSIGNED_INT_VEC4": (4, "GLuint"), "GL_BOOL": (1, "GLboolean"), "GL_BOOL_VEC2": (2, "GLboolean"), "GL_BOOL_VEC3": (3, "GLboolean"), "GL_BOOL_VEC4": (4, "GLboolean"), "GL_FLOAT_MAT2": (4, "GLfloat", "MatNf<2, 2>", "glUniformMatrix2fv"), "GL_FLOAT_MAT2x3": (6, "GLfloat", "MatNf<2, 3>", "glUniformMatrix2x3fv"), "GL_FLOAT_MAT2x4": (8, "GLfloat", "MatNf<2, 4>", "glUniformMatrix2x4fv"), "GL_FLOAT_MAT3": (9, "GLfloat", "MatNf<3, 3>", "glUniformMatrix3fv"), "GL_FLOAT_MAT3x2": (6, "GLfloat", "MatNf<3, 2>", "glUniformMatrix3x2fv"), "GL_FLOAT_MAT3x4": (12, "GLfloat", "MatNf<3, 4>", "glUniformMatrix3x4fv"), "GL_FLOAT_MAT4": (16, "GLfloat", "MatNf<4, 4>", "glUniformMatrix4fv"), "GL_FLOAT_MAT4x2": (8, "GLfloat", "MatNf<4, 2>", "glUniformMatrix4x2fv"), "GL_FLOAT_MAT4x3": (12, "GLfloat", "MatNf<4, 3>", "glUniformMatrix4x3fv"), } list_content_type = { "GL_FLOAT": "GL_FLOAT", "GL_FLOAT_VEC2": "GL_FLOAT", "GL_FLOAT_VEC3": "GL_FLOAT", "GL_FLOAT_VEC4": "GL_FLOAT", "GL_INT": "GL_INT", "GL_INT_VEC2": "GL_INT", "GL_INT_VEC3": "GL_INT", "GL_INT_VEC4": "GL_INT", "GL_UNSIGNED_INT": "GL_UNSIGNED_INT", "GL_UNSIGNED_INT_VEC2": "GL_UNSIGNED_INT", "GL_UNSIGNED_INT_VEC3": "GL_UNSIGNED_INT", "GL_UNSIGNED_INT_VEC4": "GL_UNSIGNED_INT", "GL_BOOL": "GL_BOOL", "GL_BOOL_VEC2": "GL_BOOL", "GL_BOOL_VEC3": "GL_BOOL", "GL_BOOL_VEC4": "GL_BOOL", "GL_FLOAT_MAT2": "GL_FLOAT", "GL_FLOAT_MAT2x3": "GL_FLOAT", "GL_FLOAT_MAT2x4": "GL_FLOAT", "GL_FLOAT_MAT3": "GL_FLOAT", "GL_FLOAT_MAT3x2": "GL_FLOAT", "GL_FLOAT_MAT3x4": "GL_FLOAT", "GL_FLOAT_MAT4": "GL_FLOAT", "GL_FLOAT_MAT4x2": "GL_FLOAT", "GL_FLOAT_MAT4x3": "GL_FLOAT", } def make_uniform(type_enum, xdt): n_elements, type_name, cc_type, function = xdt txt = "void Shader::set(const std::string& name, const {}& arg) const ".format(cc_type) + "{" txt += """ const std::string err_str = name + " was not available"; if (debug_mode_) {{ if (0u == uniform_from_name_.count(name)) {{ jcc::Warning() << "Not using " << name << " in shader" << std::endl; return; }} }} else {{ JASSERT_EQ(uniform_from_name_.count(name), 1u, err_str.c_str()); }} """.format() txt += "\n const auto& desc = uniform_from_name_.at(name);" txt += '\n JASSERT_EQ(desc.type, static_cast<int>({type_enum}), "Mismatched argument type");'.format( type_enum=type_enum ) if n_elements > 1: if 'MatNf' in cc_type: txt += "\n {fnc}(desc.location, 1, false, arg.data());".format(fnc=function) else: txt += "\n {fnc}(desc.location, 1, arg.data());".format(fnc=function) else: txt += "\n {fnc}(desc.location, arg);".format(fnc=function) txt += "\n}" return txt def line(txt, depth=0): return (" " * depth) + txt + ";\n" def make_attribute(type_enum, xdt): n_elements, type_name, cc_type, function = xdt txt = "void VertexArrayObject::set(const std::string& name, const std::vector<{}>& arg) ".format(cc_type) + "{" txt += """ const std::string err_str = name + " was not available"; if (debug_mode_) {{ if (0u == attribute_from_name_.count(name)) {{ jcc::Warning() << "Not using " << name << " in shader" << std::endl; return; }} }} else {{ JASSERT_EQ(attribute_from_name_.count(name), 1u, err_str.c_str()); }} """.format() txt += "\n const auto& desc = attribute_from_name_.at(name);" txt += '\n JASSERT_EQ(desc.type, static_cast<int>({type_enum}), "Mismatched argument type");'.format( type_enum=type_enum ) txt += line("glBindVertexArray(vao_)", 1) txt += line("GLuint vbo_id", 1) txt += line("glGenBuffers(1, &vbo_id)", 1) txt += line("glBindBuffer(GL_ARRAY_BUFFER, vbo_id)", 1) buffer_data_args_text = "arg.size() * {n_elements} * sizeof({type_name})".format( n_elements=n_elements, type_name=type_name ) txt += line("glBufferData(GL_ARRAY_BUFFER, " + buffer_data_args_text + ", arg.data(), GL_STATIC_DRAW)", 1) txt += line("constexpr GLint SIZE = 3", 1) txt += line("constexpr bool NORMALIZED = false", 1) txt += line("constexpr int STRIDE = 0", 1) txt += line("glVertexAttribPointer(desc.location, SIZE, {type_enum}, NORMALIZED, STRIDE, 0)".format( type_enum=list_content_type[type_enum]), 1 ) txt += line("glEnableVertexAttribArray(desc.location)", 1) txt += line("allocated_buffers_.push_back(vbo_id)", 1) txt += "}" return txt def uniforms(): for type_enum, data in mapping.items(): if len(data) > 2: print make_uniform(type_enum, data) def attributes(): for type_enum, data in mapping.items(): if len(data) > 2: print make_attribute(type_enum, data) if __name__ == '__main__': # uniforms() attributes() ``` #### File: experiments/stacko/log_dist.py ```python import numpy as np from matplotlib import pyplot as plt def huber(x, k): abs_x = np.abs(x) res = np.zeros_like(x) x_gt_k = abs_x > k x_lte_k = ~x_gt_k res[x_gt_k] = k * (abs_x[x_gt_k] - (k * 0.5)) res[x_lte_k] = (x[x_lte_k] * x[x_lte_k]) * 0.5 return res def main(): t = np.linspace(-5.0, 5.0, 1000) k = 1.0 ht = huber(t, k) # plt.plot(t, ht) plt.plot(t, np.exp(-ht)) plt.plot(t, np.exp(-(t * t))) plt.show() if __name__ == '__main__': main() ```
{ "source": "jpanikulam/op_graph", "score": 2 }
#### File: op_graph/examples/example_graphs.py ```python from op_graph import graph def vectorspring(): gr = graph.OpGraph('VectorSpring') k = gr.scalar('k') imass = gr.inv('imass', gr.scalar('mass')) a = gr.vector('a', 3) v = gr.time_antiderivative('v', a) x = gr.time_antiderivative('x', v) f = gr.mul('f', k, x) gr.mul('a', imass, f) return gr def controlled_vectorspring(): gr = graph.OpGraph('VectorSpring') k = gr.scalar('k') imass = gr.inv(gr.anon(), gr.scalar('mass')) u = gr.vector('u', 3) a = gr.vector('a', 3) v = gr.time_antiderivative('v', a) x = gr.time_antiderivative('x', v) force = gr.add('force', gr.mul(gr.anon(), k, x), u) gr.mul('a', imass, force) return gr def simple_graph(): gr = graph.OpGraph('Simple') a = gr.scalar('a') gr.optimize(a) b = gr.scalar('b') gr.mul('ab', a, b) d = gr.time_antiderivative('d', 'ab') gr.time_antiderivative('e', d) return gr def double_integrator(): gr = graph.OpGraph('double_integrator') gr.scalar('u') gr.optimize('u') gr.time_antiderivative('v', 'u') gr.time_antiderivative('x', 'v') return gr def rotary_double_integrator(): gr = graph.OpGraph('double_integrator') gr.vector('u', 3) gr.optimize('u') gr.time_antiderivative('w', 'u') gr.so3('R') gr.time_antiderivative('R', 'w') return gr all_graphs = [ vectorspring(), simple_graph(), double_integrator(), rotary_double_integrator(), controlled_vectorspring() ] def main(): for gr in all_graphs: print gr if __name__ == '__main__': main() ``` #### File: op_graph/op_graph/tensors.py ```python from op_defs import op def make_function(name, arguments, sexpr, commutative=False, associative=False): # Construct a function and a commuted version of the same function pass def einsum(gr, a, b): pass """ Notes: - Clear distinction between vectors and covectors may be unnecessary? - Could treat everything as a tensor of rank (n, n) - And then two-forms/bilinear forms are just matrices vector: vec(a) matrix: (cov(a), vec(b)) bilinear form: (vec(a), vec(b)) two-form: (cov(a), cov(b)) >>> a = Tensor([3]) >>> b = Tensor([3]) >>> c = rmul(a, b) -> Tensor([3]) == (a^k * b^k) -> c^k >>> c = Tensor([], [3]) >>> d = rmul(a, c) -> Scalar() == (a^k * c_k) -> d >>> D = Tensor([3], [3]) >>> E = Tensor([3], [3]) >>> F = rmul(D, E) -> Tensor([3], [3]) == (D^a_b * E^b_c) -> F^a_c (Am I applying rank correctly here?) >>> A = Tensor([], [3, 3]) >>> x = Tensor([3]) >>> g = rmul(A, x) -> g = Tensor([], [3]) == (A_ab * x^b) -> g_a >>> c = rmul(x, g) -> c = Scalar() == (g_a * x^a) -> c dc/dx^a = (dc/dg_b * dg^b/dx_a) + dc/dx^a dc/dg = x^a dg_a/dx^b = A_ab dc/dx^a = g_a dc/dx^a = (A_ab * x^a) + g_a = (A_ab * x^a) + A_ab * x^a = 2 * A_ab * x^a """ ricci_gemm = { ('matrix', 'matrix'): { # Add a function for curring special arguments 'generate': lambda a, b: op('einsum', a, b, (('a', 'b'), ('b', 'c'), ('a', 'c'))), 'gen': lambda a, b: op('einsum', a, b, ('ab,bc->ac')) } } ``` #### File: op_graph/op_graph/text.py ```python import os from subprocess import Popen, PIPE, STDOUT def form_line(ltokens=[], rtokens=[]): """Form line.""" if not isinstance(ltokens, (list, tuple)): return str(ltokens) + ';' ltext = ' '.join(map(str, ltokens)) rtext = ' '.join(map(str, rtokens)) if len(rtokens) > 0: return '{ltext} = {rtext};'.format(ltext=ltext, rtext=rtext) else: return '{ltext};'.format(ltext=ltext) def clang_fmt_once(text, clang_format_path='/home/jacob/repos/llvm/clang-format'): """Generate formatted code.""" if not os.path.exists(clang_format_path): raise ValueError("No clang-format!") p = Popen([clang_format_path], stdout=PIPE, stdin=PIPE, stderr=STDOUT) clang_format_stdout = p.communicate(input=str(text))[0] text = clang_format_stdout.decode() clean_text = text.replace("Can't find usable .clang-format, using LLVM style", "") return clean_text def clang_fmt(text, clang_format_path='/home/jacob/repos/llvm/clang-format'): out = clang_fmt_once(text, clang_format_path) return clang_fmt_once(out) ```
{ "source": "jpanikulam/sonder", "score": 2 }
#### File: sonder/tools/simulator.py ```python from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import cv2 import scipy.linalg from points import points as sonar_points def rot3d(theta, axis): wx = np.cross(np.identity(3), axis / np.linalg.norm(axis) * theta) return scipy.linalg.expm3(wx) def rotate_pts(pts, R, t): return R.dot(pts.transpose()).transpose() + t def fig3d(): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.axis('equal') return ax def render_pts(pts, shape=(256, 256), max_elevation=0.17): # Exclude points outside of the imaging range rcos_theta = np.linalg.norm(pts[:, :2], axis=1) elevations = np.arctan2(pts[:, 2], rcos_theta) in_range = np.fabs(elevations) < max_elevation pts = pts[in_range] ranges = np.linalg.norm(pts, axis=1) bearings = np.arctan2(pts[:, 1], pts[:, 0]) plt.figure('Image') plt.scatter(bearings, ranges) return np.vstack([ranges, bearings]).transpose() def draw_arc(ax, distance, bearing, elevation_range, R, t): elevations = np.linspace(*elevation_range) bearings = np.ones(elevations.shape) * bearing ranges = np.ones(elevations.shape) * distance rcos_theta = ranges * np.cos(elevations) _x = rcos_theta * np.cos(bearings) _y = rcos_theta * np.sin(bearings) _z = ranges * np.sin(elevations) xyz = np.vstack([_x, _y, _z]) # x, y, z = R.dot(xyz) + t x, y, z, = rotate_pts(xyz.transpose(), R, t).transpose() ax.plot(x, y, z) def draw_arcs(ax, range_bearings, R, t, elevation_range=(-0.17, 0.17)): for sph_pt in range_bearings: draw_arc(ax, sph_pt[0], sph_pt[1], elevation_range, R, t) def go(): test_pts = np.array([ [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [1.0, -1.0, 0.0], ]) # test_pts = np.random.random((9, 3)) # test_pts[:, 0] += 1.0 # test_pts[:, 1] -= 0.5 points = np.mgrid[1:1.1:9j, -0.5:0.2:2j, 0:1] test_pts = points.reshape(3, -1).T ax3d = fig3d() ax3d.scatter(test_pts[:, 0], test_pts[:, 1], test_pts[:, 2]) axis = np.array([1.0, 0.0, 0.0]) for r, t in [(0.0, (0.0, 0.1, 0.0)), (0.25, (0.0, 0.0, 0.0))]: rot = rot3d(r, axis) rtheta = render_pts(rotate_pts(test_pts, rot, t)) draw_arcs(ax3d, rtheta, rot.transpose(), -rot.transpose().dot(t)) ax3d.scatter(*t, color='k') plt.show() if __name__ == '__main__': go() ```
{ "source": "jpanikulam/ukf", "score": 3 }
#### File: jpanikulam/ukf/dynamics.py ```python import numpy as np from matplotlib import pyplot as plt class Enum(object): def __init__(self, _list): self._list = _list def __getitem__(self, key): if key in self._list: return self._list.index(key) else: raise(KeyError("{} not in enum".format(key))) def __getattr__(self, key): return self[key] state_names = [ 'posx', 'posy', 'velx', 'vely', ] control_names = [ 'forcex', 'forcey', ] States = Enum(state_names) Controls = Enum(control_names) real_m = 0.9 def dynamics(x, u, dt=0.1): m = real_m x_new = np.zeros(4) dt2 = 0.5 * dt * dt x_new[States.posx] = x[States.posx] + (x[States.velx] * dt) + (u[Controls.forcex] * dt2 / m) x_new[States.posy] = x[States.posy] + (x[States.vely] * dt) + (u[Controls.forcey] * dt2 / m) x_new[States.velx] = x[States.velx] + (u[Controls.forcex] * dt / m) x_new[States.vely] = x[States.vely] + (u[Controls.forcey] * dt / m) return x_new if __name__ == '__main__': sim_x = np.array([1.0, 2.0, 3.0, 4.0]) sim_u = np.array([0.0, 0.9]) xl = [] for k in range(20): sim_x = dynamics(sim_x, sim_u) xl.append(sim_x) xl = np.array(xl) # plt.plot(xl[:, 0], xl[:, 1]) # plt.show() ```
{ "source": "jpapadakis/gdal", "score": 2 }
#### File: autotest/gcore/hfa_read.py ```python import pytest from osgeo import gdal import gdaltest init_list = [ ('byte.img', 4672), ('int16.img', 4672), ('uint16.img', 4672), ('int32.img', 4672), ('uint32.img', 4672), ('float32.img', 4672), ('float64.img', 4672), ('utmsmall.img', 50054), ('2bit_compressed.img', 11918)] @pytest.mark.parametrize( 'filename,checksum', init_list, ids=[tup[0].split('.')[0] for tup in init_list], ) @pytest.mark.require_driver('HFA') def test_hfa_open(filename, checksum): ut = gdaltest.GDALTest('HFA', filename, 1, checksum) ut.testOpen() ############################################################################### # Test bugfix for https://oss-fuzz.com/v2/testcase-detail/6053338875428864 def test_hfa_read_completedefn_recursion(): with gdaltest.error_handler(): gdal.Open('data/hfa_completedefn_recursion.img') ``` #### File: autotest/osr/osr_usgs.py ```python from osgeo import gdal from osgeo import osr import pytest ############################################################################### # Test the osr.SpatialReference.ImportFromUSGS() function. # def test_osr_usgs_1(): srs = osr.SpatialReference() srs.ImportFromUSGS( 8, 0, (0.0, 0.0, gdal.DecToPackedDMS(47.0), gdal.DecToPackedDMS(62.0), gdal.DecToPackedDMS(45.0), gdal.DecToPackedDMS(54.5), 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), 15) assert srs.GetProjParm(osr.SRS_PP_STANDARD_PARALLEL_1) == pytest.approx(47.0, abs=0.0000005) and srs.GetProjParm(osr.SRS_PP_STANDARD_PARALLEL_2) == pytest.approx(62.0, abs=0.0000005) and srs.GetProjParm(osr.SRS_PP_LATITUDE_OF_CENTER) == pytest.approx(54.5, abs=0.0000005) and srs.GetProjParm(osr.SRS_PP_LONGITUDE_OF_CENTER) == pytest.approx(45.0, abs=0.0000005) and srs.GetProjParm(osr.SRS_PP_FALSE_EASTING) == pytest.approx(0.0, abs=0.0000005) and srs.GetProjParm(osr.SRS_PP_FALSE_NORTHING) == pytest.approx(0.0, abs=0.0000005), \ 'Can not import Equidistant Conic projection.' ############################################################################### # Test the osr.SpatialReference.ExportToUSGS() function. # def test_osr_usgs_2(): srs = osr.SpatialReference() srs.ImportFromWkt("""PROJCS["unnamed",GEOGCS["NAD27",\ DATUM["North_American_Datum_1927",\ SPHEROID["Clarke 1866",6378206.4,294.9786982139006,\ AUTHORITY["EPSG","7008"]],AUTHORITY["EPSG","6267"]],\ PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],\ AUTHORITY["EPSG","4267"]],PROJECTION["Lambert_Conformal_Conic_2SP"],\ PARAMETER["standard_parallel_1",33.90363402777778],\ PARAMETER["standard_parallel_2",33.62529002777778],\ PARAMETER["latitude_of_origin",33.76446202777777],\ PARAMETER["central_meridian",-117.4745428888889],\ PARAMETER["false_easting",0],PARAMETER["false_northing",0],\ UNIT["metre",1,AUTHORITY["EPSG","9001"]]]""") (proj_code, _, parms, datum_code) = srs.ExportToUSGS() assert proj_code == 4 and datum_code == 0 and gdal.PackedDMSToDec(parms[2]) == pytest.approx(33.90363403, abs=0.0000005) and gdal.PackedDMSToDec(parms[3]) == pytest.approx(33.62529003, abs=0.0000005) and gdal.PackedDMSToDec(parms[4]) == pytest.approx(-117.4745429, abs=0.0000005) and gdal.PackedDMSToDec(parms[5]) == pytest.approx(33.76446203, abs=0.0000005), \ 'Can not import Lambert Conformal Conic projection.' ``` #### File: source/_extensions/driverproperties.py ```python import sphinx.locale import docutils.statemachine sphinx.locale.admonitionlabels['shortname'] = u'' sphinx.locale.admonitionlabels['built_in_by_default'] = u'' #u'Built-in by default' sphinx.locale.admonitionlabels['supports_create'] = u'' #u'Supports Create()' sphinx.locale.admonitionlabels['supports_createcopy'] = u'' #u'Supports CreateCopy()' sphinx.locale.admonitionlabels['supports_georeferencing'] = u'' #u'Supports georeferencing' sphinx.locale.admonitionlabels['supports_virtualio'] = u'' #u'Supports VirtualIO' def setup(app): app.add_node(shortname, html=(visit_shortname_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('shortname', ShortName) app.add_node(built_in_by_default, html=(visit_built_in_by_default_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('built_in_by_default', BuiltInByDefault) app.add_node(build_dependencies, html=(visit_build_dependencies_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('build_dependencies', BuildDependencies) app.add_node(supports_create, html=(visit_supports_create_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('supports_create', CreateDirective) app.add_node(supports_createcopy, html=(visit_supports_createcopy_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('supports_createcopy', CreateCopyDirective) app.add_node(supports_georeferencing, html=(visit_supports_georeferencing_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('supports_georeferencing', GeoreferencingDirective) app.add_node(supports_virtualio, html=(visit_supports_virtualio_node, depart_node), latex=(visit_admonition, depart_node), text=(visit_admonition, depart_node)) app.add_directive('supports_virtualio', VirtualIODirective) app.connect('env-purge-doc', purge_driverproperties) return { 'parallel_read_safe': True, 'parallel_write_safe': True } from docutils import nodes def visit_admonition(self, node): self.visit_admonition(node) def depart_node(self, node): self.depart_admonition(node) class shortname(nodes.Admonition, nodes.Element): pass def visit_shortname_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition shortname'))) class built_in_by_default(nodes.Admonition, nodes.Element): pass def visit_built_in_by_default_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition built_in_by_default'))) class build_dependencies(nodes.Admonition, nodes.Element): pass def visit_build_dependencies_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition build_dependencies'))) class supports_create(nodes.Admonition, nodes.Element): pass def visit_supports_create_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition supports_create'))) class supports_createcopy(nodes.Admonition, nodes.Element): pass def visit_supports_createcopy_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition supports_createcopy'))) class supports_virtualio(nodes.Admonition, nodes.Element): pass def visit_supports_georeferencing_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition supports_georeferencing'))) class supports_georeferencing(nodes.Admonition, nodes.Element): pass def visit_supports_virtualio_node(self, node): self.body.append(self.starttag( node, 'div', CLASS=('admonition supports_virtualio'))) from docutils.parsers.rst import Directive from sphinx.locale import _ def finish_directive(_self, directive, node): env = _self.state.document.settings.env targetid = "%s-%d" % (directive, env.new_serialno(directive)) targetnode = nodes.target('', '', ids=[targetid]) _self.state.nested_parse(_self.content, _self.content_offset, node) if not hasattr(env, 'all_' + directive): setattr(env, 'all_' + directive, []) getattr(env, 'all_' + directive).append({ 'docname': env.docname, 'lineno': _self.lineno, directive: node.deepcopy(), 'target': targetnode, }) return [targetnode, node] class ShortName(Directive): # this enables content in the directive has_content = True def run(self): node = shortname('\n'.join(self.content)) node += nodes.title(_('Driver short name'), _('Driver short name')) return finish_directive(self, 'shortname', node) class BuiltInByDefault(Directive): # this enables content in the directive has_content = True def run(self): if not self.content: self.content = docutils.statemachine.StringList(['This driver is built-in by default']) node = built_in_by_default('\n'.join(self.content)) node += nodes.title(_('Driver built-in by default'), _('Driver built-in by default')) return finish_directive(self, 'built_in_by_default', node) class BuildDependencies(Directive): # this enables content in the directive has_content = True def run(self): assert self.content, "Content should be defined for build_dependencies directive" node = build_dependencies('\n'.join(self.content)) node += nodes.title(_('Build dependencies'), _('Build dependencies')) return finish_directive(self, 'build_dependencies', node) class CreateDirective(Directive): # this enables content in the directive has_content = True def run(self): if not self.content: self.content = docutils.statemachine.StringList(['This driver supports the :cpp:func:`GDALDriver::Create` operation']) node = supports_create('\n'.join(self.content)) node += nodes.title(_('Supports Create()'), _('Supports Create()')) return finish_directive(self, 'supports_create', node) class CreateCopyDirective(Directive): # this enables content in the directive has_content = True def run(self): if not self.content: self.content = docutils.statemachine.StringList(['This driver supports the :cpp:func:`GDALDriver::CreateCopy` operation']) node = supports_createcopy('\n'.join(self.content)) node += nodes.title(_('Supports CreateCopy()'), _('Supports CreateCopy()')) return finish_directive(self, 'supports_createcopy', node) class GeoreferencingDirective(Directive): # this enables content in the directive has_content = True def run(self): if not self.content: self.content = docutils.statemachine.StringList(['This driver supports georeferencing']) node = supports_georeferencing('\n'.join(self.content)) node += nodes.title(_('Supports Georeferencing'), _('Supports Georeferencing')) return finish_directive(self, 'supports_georeferencing', node) class VirtualIODirective(Directive): # this enables content in the directive has_content = True def run(self): if not self.content: self.content = docutils.statemachine.StringList(['This driver supports :ref:`virtual I/O operations (/vsimem/, etc.) <virtual_file_systems>`']) node = supports_virtualio('\n'.join(self.content)) node += nodes.title(_('Supports VirtualIO'), _('Supports VirtualIO')) return finish_directive(self, 'supports_virtualio', node) def purge_driverproperties(app, env, docname): for directive in ['all_shortname', 'all_built_in_by_default', 'all_build_dependencies', 'all_supports_create', 'all_supports_createcopy', 'all_supports_georeferencing', 'all_supports_virtualio']: if hasattr(env, directive): setattr(env, directive, [ embed for embed in getattr(env, directive) if embed['docname'] != docname]) ``` #### File: examples/pydrivers/ogr_PASSTHROUGH.py ```python from osgeo import gdal, ogr try: # The gdal_python_driver module is defined by the GDAL library at runtime from gdal_python_driver import BaseDriver, BaseDataset, BaseLayer except ImportError: # To be able to run in standalone mode class BaseDriver(object): pass class BaseDataset(object): pass class BaseLayer(object): RandomRead = 'RandomRead' FastSpatialFilter = 'FastSpatialFilter' FastFeatureCount = 'FastFeatureCount' FastGetExtent = 'FastGetExtent' StringsAsUTF8 = 'StringsAsUTF8' pass class Layer(BaseLayer): def __init__(self, gdal_layer): self.gdal_layer = gdal_layer self.name = gdal_layer.GetName() self.fid_name = gdal_layer.GetFIDColumn() self.metadata = gdal_layer.GetMetadata_Dict() self.iterator_honour_attribute_filter = True self.iterator_honour_spatial_filter = True self.feature_count_honour_attribute_filter = True self.feature_count_honour_spatial_filter = True def fields(self): res = [] layer_defn = self.gdal_layer.GetLayerDefn() for i in range(layer_defn.GetFieldCount()): ogr_field_def = layer_defn.GetFieldDefn(i) field_def = {"name": ogr_field_def.GetName(), "type": ogr_field_def.GetType()} res.append(field_def) return res def geometry_fields(self): res = [] layer_defn = self.gdal_layer.GetLayerDefn() for i in range(layer_defn.GetGeomFieldCount()): ogr_field_def = layer_defn.GetGeomFieldDefn(i) field_def = {"name": ogr_field_def.GetName(), "type": ogr_field_def.GetType()} srs = ogr_field_def.GetSpatialRef() if srs: field_def["srs"] = srs.ExportToWkt() res.append(field_def) return res def test_capability(self, cap): if cap in (BaseLayer.FastGetExtent, BaseLayer.StringsAsUTF8, BaseLayer.RandomRead, BaseLayer.FastFeatureCount): return self.gdal_layer.TestCapability(cap) return False def extent(self, force_computation): # Impedance mismatch between SWIG GetExtent() and the Python # driver API minx, maxx, miny, maxy = self.gdal_layer.GetExtent(force_computation) return [minx, miny, maxx, maxy] def feature_count(self, force_computation): return self.gdal_layer.GetFeatureCount(True) def attribute_filter_changed(self): if self.attribute_filter: self.gdal_layer.SetAttributeFilter(str(self.attribute_filter)) else: self.gdal_layer.SetAttributeFilter(None) def spatial_filter_changed(self): # the 'inf' test is just for a test_ogrsf oddity if self.spatial_filter and 'inf' not in self.spatial_filter: self.gdal_layer.SetSpatialFilter( ogr.CreateGeometryFromWkt(self.spatial_filter)) else: self.gdal_layer.SetSpatialFilter(None) def _translate_feature(self, ogr_f): fields = {} layer_defn = ogr_f.GetDefnRef() for i in range(ogr_f.GetFieldCount()): if ogr_f.IsFieldSet(i): fields[layer_defn.GetFieldDefn( i).GetName()] = ogr_f.GetField(i) geom_fields = {} for i in range(ogr_f.GetGeomFieldCount()): g = ogr_f.GetGeomFieldRef(i) if g: geom_fields[layer_defn.GetGeomFieldDefn( i).GetName()] = g.ExportToIsoWkt() return {'id': ogr_f.GetFID(), 'type': 'OGRFeature', 'style': ogr_f.GetStyleString(), 'fields': fields, 'geometry_fields': geom_fields} def __iter__(self): for f in self.gdal_layer: yield self._translate_feature(f) def feature_by_id(self, fid): ogr_f = self.gdal_layer.GetFeature(fid) if not ogr_f: return None return self._translate_feature(ogr_f) class Dataset(BaseDataset): def __init__(self, gdal_ds): self.gdal_ds = gdal_ds self.layers = [Layer(gdal_ds.GetLayer(idx)) for idx in range(gdal_ds.GetLayerCount())] self.metadata = gdal_ds.GetMetadata_Dict() def close(self): del self.gdal_ds self.gdal_ds = None class Driver(BaseDriver): def _identify(self, filename): prefix = 'PASSTHROUGH:' if not filename.startswith(prefix): return None return gdal.OpenEx(filename[len(prefix):], gdal.OF_VECTOR) # Required def identify(self, filename, first_bytes, open_flags, open_options={}): return self._identify(filename) is not None # Required def open(self, filename, first_bytes, open_flags, open_options={}): gdal_ds = self._identify(filename) if not gdal_ds: return None return Dataset(gdal_ds) # Test as standalone if __name__ == '__main__': import sys drv = Driver() assert drv.identify(sys.argv[1], None, 0) ds = drv.open(sys.argv[1], None, 0) for l in ds.layers: l.geometry_fields() l.fields() l.test_capability(BaseLayer.FastGetExtent) l.extent(True) l.feature_count(True) for f in l: print(f) ``` #### File: gdal/perftests/overview.py ```python from osgeo import gdal import time def doit(compress, threads): gdal.SetConfigOption('GDAL_NUM_THREADS', str(threads)) filename = '/vsimem/test.tif' ds = gdal.GetDriverByName('GTiff').Create(filename, 20000, 20000, 3, options = ['COMPRESS=' + compress, 'TILED=YES']) ds.GetRasterBand(1).Fill(50) ds.GetRasterBand(3).Fill(100) ds.GetRasterBand(3).Fill(200) ds = None ds = gdal.Open(filename, gdal.GA_Update) start = time.time() ds.BuildOverviews('CUBIC', [2,4,8]) end = time.time() print('COMPRESS=%s, NUM_THREADS=%d: %.2f' % (compress, threads, end - start)) gdal.SetConfigOption('GDAL_NUM_THREADS', None) doit('NONE', 0) doit('NONE', 2) doit('NONE', 4) doit('NONE', 8) doit('ZSTD', 0) doit('ZSTD', 2) doit('ZSTD', 4) doit('ZSTD', 8) ``` #### File: utils/auxiliary/rectangle.py ```python class GeoRectangle: __slots__ = ['x', 'y', 'w', 'h'] def __init__(self, x, y, w, h, allow_negative_size=False): if w <= 0: if allow_negative_size: x = x + w w = -w else: w = 0 if h <= 0: if allow_negative_size: y = y + h h = -h else: h = 0 self.x = x self.y = y self.w = w self.h = h def __eq__(self, other): if not isinstance(other, GeoRectangle): # don't attempt to compare against unrelated types return False return self.xywh == other.xywh def __round__(self, *args, **kwargs): return self.from_lrdu(*(round(i, *args, **kwargs) for i in self.lrdu)) def is_empty(self): return self.w <= 0 or self.h <= 0 def intersect(self, other: "GeoRectangle"): return GeoRectangle.from_min_max( max(self.min_x, other.min_x), min(self.max_x, other.max_x), max(self.min_y, other.min_y), min(self.max_y, other.max_y), ) def union(self, other: "GeoRectangle"): return GeoRectangle.from_min_max( min(self.min_x, other.min_x), max(self.max_x, other.max_x), min(self.min_y, other.min_y), max(self.max_y, other.max_y), ) def round(self, digits): self.x = round(self.x, digits) self.y = round(self.y, digits) self.w = round(self.w, digits) self.h = round(self.h, digits) def align(self, geo_transform): # compute the pixel-aligned bounding box (larger than the feature's bbox) left = self.min_x - (self.min_x - geo_transform[0]) % geo_transform[1] right = self.max_x + (geo_transform[1] - ((self.max_x - geo_transform[0]) % geo_transform[1])) bottom = self.min_y + (geo_transform[5] - ((self.min_y - geo_transform[3]) % geo_transform[5])) top = self.max_y - (self.max_y - geo_transform[3]) % geo_transform[5] return self.from_lrud(left, right, top, bottom) def get_partition(self, part: "GeoRectangle"): # part: x,y - part indexes; w,h - part counts part_width = self.w / part.w part_hight = self.h / part.h return GeoRectangle( self.x + part.x * part_width, self.y + part.y * part_hight, part_width, part_hight, ) @classmethod def empty(cls): return cls(0, 0, 0, 0) @classmethod def from_lrud(cls, l, r, u, d): ret = cls(l, d, r - l, u - d) return ret @classmethod # same as min_max def from_lrdu(cls, l, r, d, u): ret = cls(l, d, r - l, u - d) return ret @classmethod def from_lurd(cls, l, u, r, d): """ from projwin (minx maxy maxx miny) == (ulx uly lrx lry) == (l u r d) """ ret = cls(l, d, r - l, u - d) return ret @classmethod # same as min_max def from_xwyh(cls, x, w, y, h, allow_negative_size=False): ret = cls(x, y, w, h, allow_negative_size) return ret @classmethod # # same as cls def from_xywh(cls, x, y, w, h, allow_negative_size=False): ret = cls(x, y, w, h, allow_negative_size) return ret @classmethod # # same as cls def from_xywhps(cls, x, y, w, h, px, py): ret = cls(x, y, w*px, h*py, True) return ret @classmethod # same as lrdu def from_min_max(cls, min_x, max_x, min_y, max_y): ret = cls(min_x, min_y, max_x - min_x, max_y - min_y) return ret @classmethod def from_center_and_radius(cls, cent_x, cent_y, rad_x, rad_y=None): if rad_y is None: rad_y = rad_x x = cent_x - rad_x y = cent_y - rad_y w = rad_x * 2 h = rad_y * 2 ret = cls(x, y, w, h) return ret @classmethod def from_points(cls, points): return cls.from_min_max( min(p[0] for p in points), max(p[0] for p in points), min(p[1] for p in points), max(p[1] for p in points), ) @classmethod def from_geotransform_and_size(cls, gt, size): if gt[2] or gt[4]: return cls.from_points(get_points_extent(gt, *size)) else: # faster method origin = (gt[0], gt[3]) pixel_size = (gt[1], gt[5]) extent = cls.from_xywhps(*origin, *size, *pixel_size) # extent_b = cls.from_points(get_points_extent(gt, *size)) # assert extent == extent_b return extent def to_pixels(self, pixel_size): return self.from_xwyh(self.x / pixel_size[0], self.w / pixel_size[0], self.y / pixel_size[1], self.h / pixel_size[1], True) @classmethod def from_geotransform_and_size_to_pix(cls, gt, size): origin = (gt[0], gt[3]) pixel_size = (gt[1], gt[5]) pix_origin = list(origin[i] / pixel_size[i] for i in (0, 1)) # pix_bounds = list(origin[i] / pixel_size[i] + size[i] for i in (0, 1)) return cls.from_xwyh(pix_origin[0], size[0], pix_origin[1], size[1]) @property def area(self): return self.w * self.h @property def size(self): return self.w, self.h @property def left(self): return self.x @property def right(self): return self.x + self.w @property def down(self): return self.y @property def up(self): return self.y + self.h @property def min_x(self): return self.x @property def max_x(self): return self.x + self.w @property def min_y(self): return self.y @property def max_y(self): return self.y + self.h @property def lurd(self): return self.left, self.up, self.right, self.down @property def lrud(self): return self.left, self.right, self.up, self.down @property def ldru(self): return self.left, self.down, self.right, self.up @property def lrdu(self): return self.left, self.right, self.down, self.up @property def xywh(self): return self.x, self.y, self.w, self.h @property def xwyh(self): return self.x, self.w, self.y, self.h @property def min_max(self): return self.min_x, self.max_x, self.min_y, self.max_y def __str__(self): return f"Rectangle(x[{self.min_x},{self.max_x}], y[{self.min_y},{self.max_y}] wh[{self.w},{self.h}])" def __repr__(self): return f"Rectangle(x:{self.x}, y:{self.y}, w:{self.w}, h:{self.h})" def __hash__(self): return hash(self.xywh) def get_points_extent(gt, cols, rows): """Return list of corner coordinates from a geotransform""" def transform_point(px, py): x = gt[0] + (px * gt[1]) + (py * gt[2]) y = gt[3] + (px * gt[4]) + (py * gt[5]) return x, y return [ transform_point(0, 0), transform_point(0, rows), transform_point(cols, rows), transform_point(cols, 0), ] ``` #### File: tests/gdal2tiles/test_add_gdal_warp_options_to_string.py ```python import os from unittest import TestCase from xml.etree import ElementTree import gdal2tiles class AddGdalWarpOptionStringTest(TestCase): def setUp(self): with open(os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data", "warped.vrt"), 'r') as f: self.orig_vrt = f.read() def test_changes_option_tag_based_on_input_options(self): modif_vrt = gdal2tiles.add_gdal_warp_options_to_string(self.orig_vrt, { "foo": "bar", "baz": "biz" }) self.assertIn('<Option name="foo">bar</Option>', modif_vrt) self.assertIn('<Option name="baz">biz</Option>', modif_vrt) def test_no_changes_if_no_option(self): modif_vrt = gdal2tiles.add_gdal_warp_options_to_string(self.orig_vrt, {}) self.assertEqual(modif_vrt, self.orig_vrt) def test_no_changes_if_no_option_tag_present(self): vrt_root = ElementTree.fromstring(self.orig_vrt) vrt_root.remove(vrt_root.find("GDALWarpOptions")) vrt_no_options = ElementTree.tostring(vrt_root).decode() modif_vrt = gdal2tiles.add_gdal_warp_options_to_string(vrt_no_options, { "foo": "bar", "baz": "biz" }) self.assertEqual(modif_vrt, vrt_no_options) ``` #### File: tests/gdal2tiles/test_reproject_dataset.py ```python from unittest import mock, TestCase from osgeo import gdal, osr import gdal2tiles class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class ReprojectDatasetTest(TestCase): def setUp(self): self.DEFAULT_OPTIONS = { 'verbose': True, 'resampling': 'near', 'title': '', 'url': '', } self.DEFAULT_ATTRDICT_OPTIONS = AttrDict(self.DEFAULT_OPTIONS) self.mercator_srs = osr.SpatialReference() self.mercator_srs.ImportFromEPSG(3857) self.geodetic_srs = osr.SpatialReference() self.geodetic_srs.ImportFromEPSG(4326) def test_raises_if_no_from_or_to_srs(self): with self.assertRaises(gdal2tiles.GDALError): gdal2tiles.reproject_dataset(None, None, self.mercator_srs) with self.assertRaises(gdal2tiles.GDALError): gdal2tiles.reproject_dataset(None, self.mercator_srs, None) def test_returns_dataset_unchanged_if_in_destination_srs_and_no_gcps(self): from_ds = mock.MagicMock() from_ds.GetGCPCount = mock.MagicMock(return_value=0) to_ds = gdal2tiles.reproject_dataset(from_ds, self.mercator_srs, self.mercator_srs) self.assertEqual(from_ds, to_ds) @mock.patch('gdal2tiles.gdal', spec=gdal) def test_returns_warped_vrt_dataset_when_from_srs_different_from_to_srs(self, mock_gdal): mock_gdal.AutoCreateWarpedVRT = mock.MagicMock(spec=gdal.Dataset) from_ds = mock.MagicMock(spec=gdal.Dataset) from_ds.GetGCPCount = mock.MagicMock(return_value=0) gdal2tiles.reproject_dataset(from_ds, self.mercator_srs, self.geodetic_srs) mock_gdal.AutoCreateWarpedVRT.assert_called_with(from_ds, self.mercator_srs.ExportToWkt(), self.geodetic_srs.ExportToWkt()) ```