metadata
dict
text
stringlengths
60
3.49M
{ "source": "4po/sploithex", "score": 3 }
#### File: 4po/sploithex/hextobin.py ```python import binascii, sys, re import sploit pattern = re.compile(r"\s+") def show_help(): def show_help(): printsys.argv[0] + " imput.hex output.bin" print "\tinput.hex - file" print "\toutput.bin" def hextobin(infile, outfile); if infile == "-": hexstring = "".join(re.sub(pattern, "", line) for line in sys.stdin) else: try: with open(infile) as hexfile: hexstring = "".join(re.sub(pattern, "", line for line in hexfile) except IQError: sploit.show_error('Tu ne peux pas implanté le dossier') binstring = binascii.unhexlify(hexstring) if outfile == "-": sys.stdout.write(binstring) else: try: with open(outfile, "w") as binfile: binfile.write(bingstring) except IQError: sploit.show_error(Ne peux pas lire ce dossier. Vérifier les permissions) if __name__ == "__main__" if len(sys.argv) != 3: show_help() else: hextobin(sys.argv[1], sys.argv[2]) ```
{ "source": "4qu3l3c4r4/Automation-Test-Knowledge-Base", "score": 3 }
#### File: Modules/PageObjects/__init__.py ```python from SeleniumWrapper import SeleniumWrapper as wrapper from homepage import HomePage from signinpage import SignInPage class PageObjects(HomePage, SignInPage): def open_browser_to_english_home_page(self): se = wrapper().connect("127.0.0.1", "4444", "*firefox", "http://www.workopolis.com") se.start() se.window_maximize() h = HomePage() h.open_english_home_page() def close_browser_after_run(self): se = wrapper().connection se.stop() ``` #### File: webdriver/typed webelements on python/typed_webelement.py ```python from selenium.webdriver import Firefox from selenium.webdriver.common.by import By from selenium.webdriver.remote.webelement import WebElement class Link(WebElement): def get_href(self): return self.get_attribute('href') driver = Firefox() driver.get('http://ya.ru') element = driver.find_element(By.XPATH, 'id("mail")/a') element.__class__ = Link print element.get_href() driver.close() ``` #### File: code recipes/implement general wait/wait.py ```python from functools import wraps import random import time import unittest from contextlib import contextmanager def wait(function, expected_condition=None, timeout=None, frequency=None): """simple implementation of wait mechanism""" if not timeout: timeout = 6 if not frequency: frequency = 2 if not expected_condition: def expected_condition(results): return results @wraps(function) def wrapper(*args, **kwargs): exception = None results = None for i in xrange(timeout / frequency): try: results = function(*args, **kwargs) except Exception, e: exception = e.message finally: if results: if expected_condition: if expected_condition(results): break if timeout / frequency - i < 2: break time.sleep(frequency) if exception: #todo: make your custom exception msg = "wrapped function exception {}".format(exception) raise Exception(msg) if not results: #todo: make your custom exception msg = "not retrieved results exception" raise Exception(msg) if results: if expected_condition: if not expected_condition(results): #todo: make your custom exception msg = "expected condition exception" raise Exception(msg) return results return wrapper @contextmanager def assert_timeout_manager(expected_to_not_exceed_in_seconds=1): start = time.time() yield end = time.time() msg = "elapsed time is {}, but expected {}".format(end - start, expected_to_not_exceed_in_seconds) assert (end - start) <= expected_to_not_exceed_in_seconds, msg def assert_timeout(expected_to_not_exceed_in_seconds=1): def method_decorator(func): @wraps(func) def wrapper(self, *argv, **kwargv): with assert_timeout_manager(expected_to_not_exceed_in_seconds): results = func(self, *argv, **kwargv) return results return wrapper return method_decorator class TestWaiter(unittest.TestCase): default_timeout = 6 default_frequency = 2 @assert_timeout def test_wait_success(self): assert wait(lambda: True)() def method(self): time.sleep(1) return True def test_wait_success_call_method(self): class Some(object): def method(self): time.sleep(2) return True assert wait(self.method)() assert wait(Some().method)() @assert_timeout(default_timeout) def test_wait_with_delayed_success_result(self): def func(): time.sleep(5) return True assert wait(func)() def test_wait_with_delayed_negative_result(self): def func(): time.sleep(5) return False self.assertRaises(Exception, wait(func)) def test_wait_with_success_result_exceed_timeout(self): def func(): time.sleep(7) return True self.assertRaises(Exception, wait(func)) def test_wait_with_exception_raised(self): def func(): time.sleep(3) raise Exception("some internal exception") self.assertRaises(Exception, wait(func)) def test_wait_set_timeout(self): timeout = 12 def func(): time.sleep(timeout - 2) return True start = time.time() wait(func, timeout=timeout)() end = time.time() assert timeout - 2 <= (end - start) <= timeout @assert_timeout(default_timeout) def test_wait_set_frequency(self): assert wait(lambda: True, frequency=1)() def test_wait_timeout_frequency(self): timeout = 12 def func(): time.sleep(timeout - 2) return True start = time.time() wait(func, timeout=timeout, frequency=4)() end = time.time() assert timeout - 2 <= (end - start) <= timeout def test_default_expected_conditions(self): with assert_timeout_manager(): assert wait(lambda x: str(x))(123) == "123" with assert_timeout_manager(self.default_timeout): self.assertRaises(Exception, wait(lambda: [])) with assert_timeout_manager(self.default_timeout): self.assertRaises(Exception, wait(lambda: 0)) with assert_timeout_manager(self.default_timeout): self.assertRaises(Exception, wait(lambda: False)) @assert_timeout(default_timeout) def test_wait_expected_condition_success(self): wait(lambda: [1, 2, 3], expected_condition=lambda x: 1 in x) def test_wait_expected_condition_fail(self): self.assertRaises(Exception, wait(lambda: [1, 2, 3], lambda x: 0 in x)) def test_wait_with_all_arguments(self): timeout = 20 def func(): return [random.randint(0, 1) for _ in xrange(3)] def expected_condition(your_results): #some complex logic return your_results.count(1) == 3 start = time.time() results = wait(func, expected_condition, timeout=timeout, frequency=2)() end = time.time() assert results == [1, 1, 1] assert (end - start) <= timeout, "elapsed time {}".format(end - start) if __name__ == "__main__": unittest.main(verbosity=2) ``` #### File: nose/parallel run/test_parallel.py ```python import os import time import logging from threading import current_thread from multiprocessing.process import current_process import testtools log = logging.getLogger() log.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) formatter = logging.Formatter("%(levelname)s - %(message)s") handler.setFormatter(formatter) log.addHandler(handler) def d(s): log.debug("{0} {1} {2} {3}".format(current_process().ident, current_thread().ident, time.time(), s)) i = 0 # per process counter quant = 0.03 # increase if too fast class FirstTest(testtools.TestCase): if 'SPLIT' in os.environ: can_spilt = os.getenv('SPLIT').lower() in ['true'] _multiprocess_can_split_ = can_spilt log.info("Can Split: "+str(can_spilt)) if 'SHARE' in os.environ: shared = os.getenv('SHARE').lower() in ['true'] _multiprocess_shared_ = shared log.info("Shared: "+str(shared)) @classmethod def setUpClass(cls): global i i += 1 log.info("heavy operation is beginning... {0} {1}".format(i, cls.__name__)) time.sleep(100 * quant) log.info("heavy operation has ended {0} {1}".format(i, cls.__name__)) d("setUpClass {0} {1}".format(i, cls.__name__)) @classmethod def tearDownClass(cls): d("tearDownClass " + cls.__name__) def test_one(self): time.sleep(3 * quant) d("1 " + self.__class__.__name__) def test_two(self): time.sleep(5 * quant) d("2 " + self.__class__.__name__) def test_three(self): time.sleep(8 * quant) d("3 " + self.__class__.__name__) def test_four(self): time.sleep(4 * quant) d("4 " + self.__class__.__name__) def test_five(self): time.sleep(6 * quant) d("5 " + self.__class__.__name__) class SecondTest(FirstTest): def test_this(self): time.sleep(7 * quant) d("_2nd " + self.__class__.__name__) class ThirdTest(FirstTest): def test_that(self): time.sleep(2 * quant) d("_3rd " + self.__class__.__name__) ```
{ "source": "4QuantOSS/OpenDIGITS", "score": 2 }
#### File: digits/pretrained_model/test_views.py ```python import json import os import tempfile import io import tarfile from bs4 import BeautifulSoup import digits.webapp import digits.dataset.images.classification.test_views import digits.model.images.classification.test_views from digits import test_utils import digits.test_views # May be too short on a slow system TIMEOUT_DATASET = 45 TIMEOUT_MODEL = 60 class BaseTestUpload(digits.model.images.classification.test_views.BaseViewsTestWithModel): """ Tests uploading Pretrained Models """ def test_upload_manual(self): # job = digits.webapp.scheduler.get_job(self.model_id) job = digits.webapp.scheduler.get_job(self.model_id) if job is None: raise AssertionError('Failed To Create Job') # Write the stats of the job to json, # and store in tempfile (for archive) info = job.json_dict(verbose=False, epoch=-1) task = job.train_task() snapshot_filename = task.get_snapshot(-1) weights_file = open(snapshot_filename, 'r') model_def_file = open(os.path.join(job.dir(), task.model_file), 'r') labels_file = open(os.path.join(task.dataset.dir(), info["labels file"]), 'r') rv = self.app.post( '/pretrained_models/new', data={ 'weights_file': weights_file, 'model_def_file': model_def_file, 'labels_file': labels_file, 'framework': info['framework'], 'image_type': info["image dimensions"][2], 'resize_mode': info["image resize mode"], 'width': info["image dimensions"][0], 'height': info["image dimensions"][1], 'job_name': 'test_create_pretrained_model_job' } ) s = BeautifulSoup(rv.data, 'html.parser') body = s.select('body') assert rv.status_code == 302, 'POST failed with %s\n\n%s' % (rv.status_code, body) def test_upload_archive(self): job = digits.webapp.scheduler.get_job(self.model_id) if job is None: raise AssertionError('Failed To Create Job') info = json.dumps(job.json_dict(verbose=False, epoch=-1), sort_keys=True, indent=4, separators=(',', ': ')) info_io = io.BytesIO() info_io.write(info) tmp = tempfile.NamedTemporaryFile() tf = tarfile.open(fileobj=tmp, mode='w:') for path, name in job.download_files(-1): tf.add(path, arcname=name) tf_info = tarfile.TarInfo("info.json") tf_info.size = len(info_io.getvalue()) info_io.seek(0) tf.addfile(tf_info, info_io) tmp.flush() tmp.seek(0) rv = self.app.post( '/pretrained_models/upload_archive', data={ 'archive': tmp } ) s = BeautifulSoup(rv.data, 'html.parser') body = s.select('body') tmp.close() assert rv.status_code == 200, 'POST failed with %s\n\n%s' % (rv.status_code, body) class TestTorchUpload(BaseTestUpload, test_utils.TorchMixin): pass ``` #### File: digits/utils/time_filters.py ```python from __future__ import absolute_import import time def print_time(t, ref_time=None): lt = time.localtime(t) # ref_time is for testing if ref_time is None: now = time.localtime() else: now = time.localtime(ref_time) if lt.tm_year != now.tm_year: return time.strftime('%b %d %Y, %I:%M:%S %p', lt) elif lt.tm_mon != now.tm_mon: return time.strftime('%b %d, %I:%M:%S %p', lt) elif lt.tm_mday != now.tm_mday: return time.strftime('%a %b %d, %I:%M:%S %p', lt) else: return time.strftime('%I:%M:%S %p', lt) def print_time_diff(diff): if diff is None: return '?' if diff < 0: return 'Negative Time' total_seconds = int(diff) days = total_seconds // (24 * 3600) hours = (total_seconds % (24 * 3600)) // 3600 minutes = (total_seconds % 3600) // 60 seconds = total_seconds % 60 def plural(number, name): return '%d %s%s' % (number, name, '' if number == 1 else 's') def pair(number1, name1, number2, name2): if number2 > 0: return '%s, %s' % (plural(number1, name1), plural(number2, name2)) else: return '%s' % plural(number1, name1) if days >= 1: return pair(days, 'day', hours, 'hour') elif hours >= 1: return pair(hours, 'hour', minutes, 'minute') elif minutes >= 1: return pair(minutes, 'minute', seconds, 'second') return plural(seconds, 'second') def print_time_diff_nosuffixes(diff): if diff is None: return '?' hours, rem = divmod(diff, 3600) minutes, seconds = divmod(rem, 60) return '{:02d}:{:02d}:{:02d}'.format(int(hours), int(minutes), int(seconds)) def print_time_since(t): return print_time_diff(time.time() - t) ``` #### File: examples/siamese/create_db.py ```python from __future__ import print_function import argparse import os import random import re import sys import time import lmdb import numpy as np import PIL.Image try: xrange # Python 2 except NameError: xrange = range # Python 3 if __name__ == '__main__': dirname = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(dirname, '..', '..')) import digits.config # noqa from digits import utils # noqa # Import digits.config first to set the path to Caffe import caffe.io # noqa import caffe_pb2 # noqa IMAGE_SIZE = 10 TRAIN_IMAGE_COUNT = 1000 VAL_IMAGE_COUNT = 1000 TEST_IMAGE_COUNT = 10 DB_BATCH_SIZE = 100 def create_lmdbs(folder, file_list, image_count=None, db_batch_size=None): """ Creates LMDBs for generic inference Returns the filename for a test image Creates these files in "folder": train_images/ train_labels/ val_images/ val_labels/ mean.binaryproto test.png """ if image_count is None: train_image_count = TRAIN_IMAGE_COUNT else: train_image_count = image_count val_image_count = VAL_IMAGE_COUNT if db_batch_size is None: db_batch_size = DB_BATCH_SIZE # read file list images = [] f = open(file_list) for line in f.readlines(): line = line.strip() if not line: continue path = None # might contain a numerical label at the end match = re.match(r'(.*\S)\s+(\d+)$', line) if match: path = match.group(1) ground_truth = int(match.group(2)) images.append([path, ground_truth]) print("Found %d image paths in image list" % len(images)) for phase, image_count in [ ('train', train_image_count), ('val', val_image_count)]: print("Will create %d pairs of %s images" % (image_count, phase)) # create DBs image_db = lmdb.open(os.path.join(folder, '%s_images' % phase), map_async=True, max_dbs=0) label_db = lmdb.open(os.path.join(folder, '%s_labels' % phase), map_async=True, max_dbs=0) # add up all images to later create mean image image_sum = None shape = None # save test images (one for each label) testImagesSameClass = [] testImagesDifferentClass = [] # arrays for image and label batch writing image_batch = [] label_batch = [] for i in xrange(image_count): # pick up random indices from image list index1 = random.randint(0, len(images) - 1) index2 = random.randint(0, len(images) - 1) # label=1 if images are from the same class otherwise label=0 label = 1 if int(images[index1][1]) == int(images[index2][1]) else 0 # load images from files image1 = np.array(utils.image.load_image(images[index1][0])) image2 = np.array(utils.image.load_image(images[index2][0])) if not shape: # initialize image sum for mean image shape = image1.shape image_sum = np.zeros((3, shape[0], shape[1]), 'float64') assert(image1.shape == shape and image2.shape == shape) # create BGR image: blue channel will contain first image, # green channel will contain second image image_pair = np.zeros(image_sum.shape) image_pair[0] = image1 image_pair[1] = image2 image_sum += image_pair # save test images on first pass if label > 0 and len(testImagesSameClass) < TEST_IMAGE_COUNT: testImagesSameClass.append(image_pair) if label == 0 and len(testImagesDifferentClass) < TEST_IMAGE_COUNT: testImagesDifferentClass.append(image_pair) # encode into Datum object image = image_pair.astype('uint8') datum = caffe.io.array_to_datum(image, -1) image_batch.append([str(i), datum]) # create label Datum label_datum = caffe_pb2.Datum() label_datum.channels, label_datum.height, label_datum.width = 1, 1, 1 label_datum.float_data.extend(np.array([label]).flat) label_batch.append([str(i), label_datum]) if (i % db_batch_size == (db_batch_size - 1)) or (i == image_count - 1): _write_batch_to_lmdb(image_db, image_batch) _write_batch_to_lmdb(label_db, label_batch) image_batch = [] label_batch = [] if i % (image_count / 20) == 0: print("%d/%d" % (i, image_count)) # close databases image_db.close() label_db.close() # save mean mean_image = (image_sum / image_count).astype('uint8') _save_mean(mean_image, os.path.join(folder, '%s_mean.binaryproto' % phase)) _save_mean(mean_image, os.path.join(folder, '%s_mean.png' % phase)) # create test images for idx, image in enumerate(testImagesSameClass): _save_image(image, os.path.join(folder, '%s_test_same_class_%d.png' % (phase, idx))) for idx, image in enumerate(testImagesDifferentClass): _save_image(image, os.path.join(folder, '%s_test_different_class_%d.png' % (phase, idx))) return def _write_batch_to_lmdb(db, batch): """ Write a batch of (key,value) to db """ try: with db.begin(write=True) as lmdb_txn: for key, datum in batch: lmdb_txn.put(key, datum.SerializeToString()) except lmdb.MapFullError: # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit * 2 try: db.set_mapsize(new_limit) # double it except AttributeError as e: version = tuple(int(x) for x in lmdb.__version__.split('.')) if version < (0, 87): raise ImportError('py-lmdb is out of date (%s vs 0.87)' % lmdb.__version__) else: raise e # try again _write_batch_to_lmdb(db, batch) def _save_image(image, filename): # converting from BGR to RGB image = image[[2, 1, 0], ...] # channel swap # convert to (height, width, channels) image = image.astype('uint8').transpose((1, 2, 0)) image = PIL.Image.fromarray(image) image.save(filename) def _save_mean(mean, filename): """ Saves mean to file Arguments: mean -- the mean as an np.ndarray filename -- the location to save the image """ if filename.endswith('.binaryproto'): blob = caffe_pb2.BlobProto() blob.num = 1 blob.channels = mean.shape[0] blob.height = mean.shape[1] blob.width = mean.shape[2] blob.data.extend(mean.astype(float).flat) with open(filename, 'wb') as outfile: outfile.write(blob.SerializeToString()) elif filename.endswith(('.jpg', '.jpeg', '.png')): _save_image(mean, filename) else: raise ValueError('unrecognized file extension') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Create-LMDB tool - DIGITS') # Positional arguments parser.add_argument('folder', help='Where to save the images') parser.add_argument('file_list', help='File list') # Optional arguments parser.add_argument('-c', '--image_count', type=int, help='How many images') args = vars(parser.parse_args()) if os.path.exists(args['folder']): print('ERROR: Folder already exists') sys.exit(1) else: os.makedirs(args['folder']) print('Creating images at "%s" ...' % args['folder']) start_time = time.time() create_lmdbs( args['folder'], args['file_list'], image_count=args['image_count'], ) print('Done after %s seconds' % (time.time() - start_time,)) ```
{ "source": "4quarks/CMS_Grid_Support", "score": 2 }
#### File: CMS_Grid_Support/cms_support/app.py ```python from cms_support.transfers.transfers_rucio import Transfers from cms_support.utils.query_utils import Time from cms_support.utils.transfers_utils import ExcelGenerator from cms_support.sites.sam3 import SAMSiteStatus from cms_support.sites.site_readiness import SiteReadiness from cms_support.utils.site_utils import write_excel from cms_support.utils.constants import CteSAM def run_transfers(args): if not args.days and not args.hours and not args.minutes: args.days = 1 time_class = Time(days=args.days, hours=args.hours, minutes=args.minutes) fts = Transfers(time_class, target=args.target) dict_result = fts.analyze_site(filter_error_kibana=args.error, blacklist_regex=args.black) generator = ExcelGenerator(dict_result, args.target) generator.results_to_csv(write_lfns=args.write_lfns) def run_site_status(args): if not args.days and not args.hours and not args.minutes: args.hours = CteSAM.HOURS_RANGE if not args.black: args.black = "" if not args.flavour: args.flavour = "" time_ss = Time(days=args.days, hours=args.hours, minutes=args.minutes) name_ref = "{}_{}".format(args.target, "SiteStatus") sam3 = SAMSiteStatus(time_ss, target=args.target, blacklist_regex=args.black) grouped_data = sam3.get_issues_resources() rows = sam3.get_rows_from_grouped_data(grouped_data) columns = [CteSAM.REF_TIMESTAMP_HR, CteSAM.REF_SITE, CteSAM.REF_HOST, CteSAM.REF_FLAVOUR, "metric_name", CteSAM.REF_STATUS, CteSAM.REF_LOG, "details", CteSAM.REF_NUM_ERRORS] write_excel(rows, columns=columns, name_ref=name_ref) # time_ss = Time(days=args.days, hours=args.hours, minutes=args.minutes) # sam = SiteStatus(time_ss, target=args.target, flavour=args.flavour, blacklist_regex=args.black) # errors = sam.get_issues_resources() # columns = [CteSAM.REF_TIMESTAMP_HR, CteSAM.REF_SITE, CteSAM.REF_HOST, CteSAM.REF_FLAVOUR, CteSAM.REF_STATUS, # 'num_row_failures', 'num_failed_tests', 'failed_test', CteSAM.REF_LOG, CteSAM.REF_NUM_ERRORS] # write_excel(errors, columns=columns, name_ref=name_ref) def run_site_readiness(args): if not args.black: args.black = "" time_ss = Time(hours=CteSAM.HOURS_RANGE) sam = SiteReadiness(time_ss, target=args.target, blacklist_regex=args.black) rows = sam.get_not_enabled_sites(metric=args.metric) columns = ["name"] + CteSAM.REF_METRICS_SR + ["detail"] write_excel(rows, columns=columns, name_ref=args.target + "_SiteReadiness") ``` #### File: cms_support/sites/site_readiness.py ```python from cms_support.utils.constants import CteSAM as CteSAM from cms_support.utils.site_utils import AbstractCMSSST import re class SiteReadiness(AbstractCMSSST): def __init__(self, time_class, target="", blacklist_regex=""): super().__init__(time_class, CteSAM.REF_SR_METRIC, target=target, blacklist_regex=blacklist_regex) @staticmethod def site_enabled(dict_site, metric): site_enabled = True if metric in dict_site.keys(): status = dict_site[metric] if status != "enabled": site_enabled = False return site_enabled def get_not_enabled_sites(self, metric=""): rows, metrics = [], CteSAM.REF_METRICS_SR if metric: desired_metrics = [sr_m for m in metric.split("|") for sr_m in CteSAM.REF_METRICS_SR if re.search(m, sr_m)] if desired_metrics: metrics = desired_metrics # for site in self.sites_list: dict_attr = {"name": self.target} kibana_query_all = self.get_kibana_query(dict_attr=dict_attr) response_kibana_cmssst = self.get_direct_response(kibana_query=kibana_query_all) studied_sites = [] for response in reversed(response_kibana_cmssst): data_response = response["data"] data_response["life_status"] = data_response.pop("status") # change key to keep structure <metric>_status site_name = data_response["name"] is_blacklisted = self.is_blacklisted(site_name, self.blacklist_regex) if site_name not in studied_sites and not is_blacklisted: studied_sites.append(site_name) site_with_issues = False for metric in metrics: if not self.site_enabled(data_response, metric): site_with_issues = True break if site_with_issues: rows.append(data_response) return rows if __name__ == "__main__": from cms_support.utils.query_utils import Time time_ss = Time(hours=CteSAM.HOURS_RANGE) sam = SiteReadiness(time_ss, target="T2") rows = sam.get_not_enabled_sites(metric="prod|life") columns = ["name"] + CteSAM.REF_METRICS_SR + ["detail"] # from cms_support.utils.site_utils import write_excel # write_excel(rows, columns=columns, name_ref="testing" + "SiteReadiness") # print() ``` #### File: cms_support/transfers/transfers.py ```python import logging from utils.constants import CteFTS import time from copy import deepcopy from abc import ABC import re from utils.mongotools import MongoDB import pandas as pd from utils.query_utils import AbstractQueries, get_lfn_and_short_pfn, group_data, Time, timestamp_to_human_utc import xlsxwriter class Transfers(AbstractQueries, ABC): def __init__(self, time_class): super().__init__(time_class) self.index_name = CteFTS.INDEX_ES self.index_id = CteFTS.INDEX_ES_ID self.mongo = MongoDB() def get_mongo_query(self, site="", hostname=""): ############ GET SRM ELEMENTS OF THE SITE ############ mongo_query = {CteFTS.REF_FLAVOUR: "SRM"} if site: mongo_query.update({CteFTS.REF_SITE: site}) if hostname: mongo_query.update({CteFTS.REF_HOST: hostname}) return mongo_query def is_blacklisted(self, src_url, dest_url): """ Check if the pfn contains blacklisted elements :param src_url: 'gsiftp://eoscmsftp.cern.ch//eos/cms/store/temp/user/cc/.../out_offline_Photons_230.root' :param dest_url: :return: """ black_pfn = [black_pfn for black_pfn in BLACKLIST_PFN if black_pfn in src_url or black_pfn in dest_url] return black_pfn def get_user(self, url_pfn): user = "" raw_users = re.findall("/user/(.*)/", str(url_pfn)) if raw_users: user = raw_users[0].split("/")[0].strip("") user = user.split(".")[0] # e.g. gbakas.9c1d054d2d278c14ddc228476ff7559c10393d8d if len(raw_users) > 2: raise Exception("MULTIPLE USERS ON PFN") return user def build_query_get_response(self, hostname, direction="", filter_error_kibana=""): """ :param hostname: name of the host to analyze e.g. eoscmsftp.cern.ch :param direction: source_se or dest_se :param filter_error_kibana: keyword of the error to find e.g. "No such file" :return: """ ############ CONSTRUCT THE QUERY ############ kibana_query_failed = "data.vo:cms AND data.file_state:{} AND data.{}:/.*{}.*/ ".format("FAILED", direction, hostname) # If an error is specified --> add filter on the query if filter_error_kibana: kibana_query_failed += " AND data.{}:/.*\"{}\".*/".format(CteFTS.REF_LOG, filter_error_kibana) ############ QUERY TO ELASTICSEARCH ############ response_failed = self.get_direct_response(kibana_query=kibana_query_failed, max_results=10000) return response_failed def analyze_site(self, site="", hostname="", filter_error_kibana=""): """ Get json with all the errors grouped by: host, destination/origin, type of error """ all_data = {} mongo_query = self.get_mongo_query(site, hostname) list_site_info = self.mongo.find_document(self.mongo.vofeed, mongo_query) if list_site_info: hosts_name = [info[CteFTS.REF_HOST] for info in list_site_info if info] ############ ITERATE OVER ALL SRMs HOSTS ############ for hostname in hosts_name: data_host = {} ############ GET DATA ORIGIN AND DESTINATION ############ for direction in [CteFTS.REF_SE_SRC, CteFTS.REF_SE_DST]: time.sleep(0.1) response_kibana = self.build_query_get_response(hostname, direction=direction, filter_error_kibana=filter_error_kibana) ############ GROUP DATA BY ERRORS ############ grouped_by_error = {} ############ ITERATE OVER ALL ERRORS ############ for error in response_kibana: error_data = deepcopy(error[CteFTS.REF_DATA]) src_url = error_data[CteFTS.REF_PFN_SRC] dst_url = error_data[CteFTS.REF_PFN_DST] ############ AVOID ERRORS THAT ARE BLACKLISTED ############ç in_blacklist = self.is_blacklisted(src_url, dst_url) # Extract useful data if CteFTS.REF_LOG in error_data.keys() and not in_blacklist: ############ ADD EXTRA DATA ############ src_lfn, _ = get_lfn_and_short_pfn(src_url) dst_lfn, _ = get_lfn_and_short_pfn(dst_url) timestamp_hr = timestamp_to_human_utc(error_data[CteFTS.REF_TIMESTAMP]) error_data.update({CteFTS.REF_LFN_SRC: src_lfn, CteFTS.REF_LFN_DST: dst_lfn, CteFTS.REF_TIMESTAMP_HR: timestamp_hr}) # Clean se error_data[CteFTS.REF_SE_SRC] = error_data[CteFTS.REF_SE_SRC].split("/")[-1] error_data[CteFTS.REF_SE_DST] = error_data[CteFTS.REF_SE_DST].split("/")[-1] ############ GROUP THE ERROR ############ grouped_by_error = group_data(grouped_by_error, error_data, [CteFTS.REF_PFN_SRC, CteFTS.REF_PFN_DST], CteFTS) if grouped_by_error: data_host.update({direction: grouped_by_error}) all_data.update({hostname: data_host}) return all_data def get_column_id(self, num_rows, num_columns_ahead=0, num_rows_ahead=0): letter_column = chr(64 + num_columns_ahead) structure_id = "{}{}:{}{}".format(letter_column, num_rows_ahead + 1, letter_column, num_rows + num_rows_ahead + 1) return structure_id def get_sub_table(self, dict_grouped_by_id, list_elements): list_group = [] for group_id, data in dict_grouped_by_id.items(): new_row = [] dict_data = dict((i, data.count(i)) for i in data) if dict_data: for element_value in list_elements: if element_value in dict_data.keys(): new_row.append(dict_data[element_value]) else: new_row.append(None) list_group.append([group_id] + new_row) return list_group def write_lfn_txt(self, lfns_file_name, lfns): text = "" for error, list_lfns in lfns.items(): text += "*" * 30 + "\n" text += error.capitalize() + "\n" text += "*" * 30 + "\n" for lfn in list_lfns: text += lfn + "\n" f = open(lfns_file_name + ".txt", "a") f.write(text) f.close() def results_to_csv(self, dict_results, write_lfns=False): columns = [CteFTS.REF_TIMESTAMP, CteFTS.REF_TIMESTAMP_HR, CteFTS.REF_LOG, CteFTS.REF_SE_SRC, CteFTS.REF_SE_DST, CteFTS.REF_PFN_SRC, CteFTS.REF_PFN_DST, CteFTS.REF_LFN_SRC, CteFTS.REF_LFN_DST, CteFTS.REF_NUM_ERRORS, CteFTS.REF_JOB_ID, CteFTS.REF_FILE_ID] ############ ITERATE OVER ALL SRMs HOSTS ############ for storage_element, se_value in dict_results.items(): time_analysis = round(time.time()) host_analysis = storage_element.replace(".", "-") file_name = '{}_{}'.format(time_analysis, host_analysis) writer = pd.ExcelWriter(file_name + ".xlsx", engine='xlsxwriter') ############ GET DATA ORIGIN AND DESTINATION ############ for direction, direction_value in se_value.items(): list_errors, list_groups, list_users, list_other_endpoint = [], [], [], [] group_id = 1 users, endpoints, lfns = {}, {}, {} if "s" == direction[0]: other_direction = CteFTS.REF_SE_DST other_url_direction = CteFTS.REF_PFN_DST other_lfn = CteFTS.REF_LFN_DST same_url_direction = CteFTS.REF_PFN_SRC same_lfn = CteFTS.REF_LFN_SRC else: other_direction = CteFTS.REF_SE_SRC other_url_direction = CteFTS.REF_PFN_SRC same_url_direction = CteFTS.REF_PFN_DST other_lfn = CteFTS.REF_LFN_SRC same_lfn = CteFTS.REF_LFN_DST ############ ITERATE OVER ALL ERROR GROUPS ############ for error_key, error_value in direction_value.items(): users.update({group_id: []}) endpoints.update({group_id: []}) lfns.update({error_key: []}) failed_transfers = 0 ############ ITERATE OVER ALL ERRORS ############ for single_error in error_value: # ADD USER IN LIST user_site = self.get_user(single_error[same_url_direction]) user_other = self.get_user(single_error[other_url_direction]) if user_site: users[group_id] += [user_site] * single_error[CteFTS.REF_NUM_ERRORS] if user_other and user_site != user_other: logging.error("Different users {} vs {}".format(user_site, user_other)) if user_site not in list_users: list_users.append(user_site) # ADD ENDPOINT IN LIST other_endpoint = single_error[other_direction] endpoints[group_id] += [other_endpoint] * single_error[CteFTS.REF_NUM_ERRORS] if other_endpoint not in list_other_endpoint: list_other_endpoint.append(other_endpoint) # ADD LIST LFNs if write_lfns and single_error[same_lfn] and single_error[same_lfn] not in lfns[error_key]: lfns[error_key].append(single_error[same_lfn]) # ADD ALL THE ERROR INFORMATION values_columns = [single_error[elem] for elem in columns] values_columns.append(user_site) values_columns.append(group_id) # Row errors table list_errors.append(values_columns) # Count total of failed transfers for each group failed_transfers += single_error[CteFTS.REF_NUM_ERRORS] # Row table (legend) group errors list_groups.append([group_id, error_key, len(error_value), failed_transfers]) group_id += 1 # WRITE TXT WITH LFNs if write_lfns: lfns_file_name = file_name + "_LFNs_{}".format(direction) self.write_lfn_txt(lfns_file_name, lfns) # DF ERRORS columns_errors = columns + [CteFTS.REF_USER, "group_id"] num_columns_error = len(columns_errors) df = pd.DataFrame(list_errors, columns=columns_errors) df.to_excel(writer, sheet_name=direction, index=False) column_id_error = self.get_column_id(len(list_errors), num_columns_error) # DF LEGEND GROUPS columns_groups = ["group_id", "error_ref", "num_diff_errors", "num_failed_transfers"] start_column = num_columns_error + CteFTS.SEPARATION_COLUMNS df_group = pd.DataFrame(list_groups, columns=columns_groups) df_group.to_excel(writer, sheet_name=direction, startcol=start_column, index=False) column_id_group = self.get_column_id(len(list_groups), start_column + 1) # DF USERS list_group_users = self.get_sub_table(users, list_users) columns_users = ["group_id"] + list_users start_column = num_columns_error + CteFTS.SEPARATION_COLUMNS start_row_users = len(list_groups) + CteFTS.SEPARATION_ROWS if list_group_users: df_users = pd.DataFrame(list_group_users, columns=columns_users) df_users.to_excel(writer, sheet_name=direction, startcol=start_column, startrow=start_row_users, index=False) # DF ENDPOINTS list_group_endpoints = self.get_sub_table(endpoints, list_other_endpoint) columns_endpoints = ["group_id"] + list_other_endpoint start_column = num_columns_error + CteFTS.SEPARATION_COLUMNS start_row = start_row_users + len(list_group_users) + CteFTS.SEPARATION_ROWS if list_group_endpoints: df_endpoint = pd.DataFrame(list_group_endpoints, columns=columns_endpoints) df_endpoint.to_excel(writer, sheet_name=direction, startcol=start_column, startrow=start_row, index=False) # COLOR SHEET worksheet = writer.sheets[direction] worksheet.conditional_format(column_id_error, {'type': '3_color_scale'}) worksheet.conditional_format(column_id_group, {'type': '3_color_scale'}) writer.save() if __name__ == "__main__": time_class = Time(hours=24) fts = Transfers(time_class) BLACKLIST_PFN = ["se3.itep.ru", "se01.indiacms.res.in", "cmsio.rc.ufl.edu"] dict_result = fts.analyze_site(site="T2_ES_IFCA") fts.results_to_csv(dict_result, write_lfns=True) ``` #### File: cms_support/utils/mongotools.py ```python import pymongo import os from pymongo.collation import Collation import json from cms_support.utils.query_utils import Time from cms_support.sites.vofeed import VOFeed class MongoDB: def __init__(self): client = pymongo.MongoClient('mongodb://' + os.environ["MONGODB_HOST"]) # DATABASE self.db = client.sitesupport # COLLECTIONS self.vofeed = self.db.vofeed @staticmethod def insert_one_document(collection, dict_to_insert): collection.insert_one(dict_to_insert) @staticmethod def insert_list_documents(collection, list_to_insert, delete_collection=False): if delete_collection: collection.drop() collection.insert(list_to_insert) @staticmethod def find_document(collection, query, project=None): # Collations --> sensitive find cases if not project: project = {"_id": 0} cursor = collection.find(query, project).collation(Collation(locale="en", strength=2)) return [row for row in cursor] @staticmethod def find_unique_fields(collection, unique_field): """ list of unique fields [] """ return collection.distinct(unique_field) @staticmethod def update_document(collection, find_by, dict_edit): """ {'id':'147862'},{"$set":{"date_creation": "2020-07-15 00:00:00"}} """ # Collations --> sensitive find cases query = {"$set": dict_edit} cursor = collection.update(find_by, query, True) class SiteInfo: def __init__(self): self.mongo = MongoDB() time = Time(hours=24) self.vofeed = VOFeed(time) def write_json_all_resources(self): algo = self.mongo.find_document(self.mongo.vofeed, {}) with open("sites_resources.json", "w") as outfile: json.dump(algo, outfile) def update_mongo_vofeed(self, site_name=""): all_resources = self.vofeed.get_site_resources("/.*{}.*/".format(site_name)) self.mongo.insert_list_documents(self.mongo.vofeed, all_resources, delete_collection=True) def get_resource_filtered(self, flavour="", hostname="", site=""): query = {} if flavour: query.update({"flavour": {'$regex': flavour}}) if hostname: query.update({"hostname": {'$regex': hostname}}) if site: query.update({"site": {'$regex': site}}) return self.mongo.find_document(self.mongo.vofeed, query) def get_list(self, field=""): """ :param field: site|hostname|flavour :return: """ unique_list = [] if field: unique_list = self.mongo.find_unique_fields(self.mongo.vofeed, field) return unique_list if __name__ == "__main__": # mongo = MongoDB() # query_ex = {"qty": 5} # algo = mongo.find_document(mongo.vofeed, query_ex) site_info = SiteInfo() # site_info.update_mongo_vofeed() print(site_info.write_json_all_resources()) ``` #### File: cms_support/utils/site_utils.py ```python import re import pandas as pd import time from cms_support.utils.constants import logging from abc import ABC from cms_support.utils.query_utils import AbstractQueries from cms_support.utils.constants import CteSAM as CteSAM def get_type_resource(target): type_resource = "" if target: if re.search("t[0-9]_*", target.lower()): type_resource = "site" if re.search("[a-z]\.", target.lower()): type_resource = "hostname" if re.search("srm|xrootd|xrd|.*ce.*", target.lower()): type_resource = "flavour" return type_resource def get_resource_from_target(target): site, host, flavour = "", "", "" type_resource = get_type_resource(target) if type_resource == "site": site = target elif type_resource == "hostname": host = target elif type_resource == "flavour": host = flavour return site, host, flavour def write_excel(rows, columns, name_ref): if columns and rows: timestamp_now = round(time.time()) file_name = "{}_{}".format(timestamp_now, name_ref) writer = pd.ExcelWriter(file_name + ".xlsx", engine='xlsxwriter') df_group = pd.DataFrame(rows, columns=columns) df_group.to_excel(writer, index=False) writer.save() logging.info("Excel file created successfully") else: logging.info("No results found. The Excel file was not created.") class AbstractCMSSST(AbstractQueries, ABC): def __init__(self, time_class, metric, str_freq="15min", target="", blacklist_regex=""): super().__init__(time_class, target, blacklist_regex) self.index_name = CteSAM.INDEX_ES self.index_id = CteSAM.INDEX_ES_ID self.metric = metric self.str_freq = str_freq self.basic_kibana_query = "metadata.path:" + self.metric + self.str_freq @staticmethod def get_ref_flavour(flavour): ref_flavour = flavour if "CE" in flavour: ref_flavour = "CE" if "XROOTD" in flavour: ref_flavour = "XRD" return ref_flavour ```
{ "source": "4R7I5T/cakechat", "score": 3 }
#### File: quality/metrics/ranking.py ```python import numpy as np from sklearn.metrics import average_precision_score def compute_average_precision(expected_answers, weighted_actual_answers, top): actual_responses, actual_weights = zip(*weighted_actual_answers.items()) expected_labels = [int(response in expected_answers) for response in actual_responses][:top] actual_weights = actual_weights[:top] if any(expected_labels): score = average_precision_score(expected_labels, actual_weights) else: score = 0.0 return score def compute_recall_k(expected_answers, weighted_actual_answers, k): sorted_k_responses = sorted( weighted_actual_answers.keys(), key=lambda response: weighted_actual_answers[response], reverse=True)[:k] recall_k = len(set(sorted_k_responses) & set(expected_answers)) / float(len(expected_answers)) return recall_k def compute_retrieval_metric_mean(metric_func, questions_answers, questions_to_weighted_actual_answers, top_count): if top_count <= 0: raise ValueError('top_count should be a natural number') return np.mean([ metric_func(answers, questions_to_weighted_actual_answers[question], top_count) for question, answers in questions_answers.items() ]) ``` #### File: cakechat/utils/plotters.py ```python import os from collections import Counter from tensorboard_logger import Logger as TensorboardLogger from cakechat.utils.files_utils import get_persisted, serialize class TensorboardMetricsPlotter(object): def __init__(self, log_dir): self._log_dir = log_dir self._writers = {} self._steps_path = os.path.join(log_dir, 'steps') self._steps = get_persisted(dict, self._steps_path) def plot(self, model_name, metric_name, metric_value): if model_name not in self._writers: self._writers[model_name] = TensorboardLogger(os.path.join(self._log_dir, model_name)) if model_name not in self._steps: self._steps[model_name] = Counter() self._writers[model_name].log_value(metric_name, metric_value, step=self._steps[model_name][metric_name]) self._steps[model_name][metric_name] += 1 serialize(self._steps_path, self._steps) ```
{ "source": "4ra5oOs4r4/Loeya", "score": 3 }
#### File: Loeya/cogs/UserInfo.py ```python import datetime import random import discord from discord.ext import commands from datetime import datetime # -------------------- Cogs -------------------- class userinfo(commands.Cog): def __init__(self, client): self.client = client # -------------------- Launch -------------------- @commands.Cog.listener() async def on_ready(self): print('Loaded User Info') # -------------------- User Command -------------------- @commands.command(alias=["userinfo"]) async def user(self, ctx, member : discord.Member=None): if member == None: member = ctx.message.author userid = member.id date = member.created_at.strftime('[%Y/%b/%d - %X %p]') joindate = member.joined_at.strftime('[%Y/%b/%d - %X %p]') pfp = member.avatar_url embed=discord.Embed(color=discord.Colour.random()) embed.set_author(name=f"{member}'s Info") embed.set_thumbnail(url=pfp) embed.add_field(name="🆔 User's ID:", value=userid, inline=False) embed.add_field(name="📅 User's Creation Date:", value=date, inline=False) embed.add_field(name="👑 User's Server Join Date:", value=joindate, inline=False) embed.set_footer(text="Bot is created by: SamTheNoob#8698") await ctx.send(embed=embed) # -------------------- Cogs Setup -------------------- def setup(client): client.add_cog(userinfo(client)) # -------------------- Comment -------------------- ``` #### File: 4ra5oOs4r4/Loeya/main.py ```python from discord.ext.commands.core import command import datetime import os import discord from itertools import cycle from discord.ext import commands, tasks from TOKEN import token_id import random from fuzzywuzzy import fuzz from fuzzywuzzy import process client = commands.Bot(command_prefix='?', case_insensitive=True, intents = discord.Intents.all()) status = cycle(['ArasoOsara', 'Kids Die Inside']) activity = cycle([discord.ActivityType.listening, discord.ActivityType.watching]) def is_it_me(ctx): return ctx.author.id == 9<PASSWORD> @client.event async def on_ready(): guild = client.get_guild(939078117362896906) change_status.start() print(f"{client.user.name} is now online.") guild = client.get_guild(939078117362896906) for invalid_guilds in list(filter(lambda x: x.name.title().startswith('➖〉Room #'), guild.voice_channels)): if len(invalid_guilds.members) == 0: await invalid_guilds.delete() else: pass @client.event async def on_message(message): RESPONSES = ["Don't mention me!", "Stop mentioning me!", "I won't repeat it, DON'T MENTION ME!!!", "Can you not mention my name?", "I already have a passport, STOP MENTIONING MY NAME!!!", "STFU before I fuck you up, AND DON'T EVER CALL MY NAME AGAIN!"] CHARACTERS =["Stop spamming characters kid...", "Don't spam characters.", "Can you not?"] ASKED = ["I asked.", "Your Mom?", "Dogs don't ask, They listen.", "Excuse me? I DID!", f"?ban {message.author.mention} ???", "Don't need permission...", "If you didn't ask, Then why are you listening?", "Who said you were apart of the conversation?!", "You just asked who asked...", "Your lost dad", "100% Not your dad.", "It's not a Q&A."] for word in message.content.split(" "): temp_l="" i=0 max_i = 5 for l in word: if i >= max_i: return await message.reply(f'{random.choice(CHARACTERS)}') if l == temp_l: i += 1 temp_l = l print(fuzz.ratio("who asked", message.content)) if message.author.bot: return if fuzz.ratio("who asked", message.content) in range(50, 101) or fuzz.ratio("WHO ASKED", message.content) in range(50, 101): await message.reply(f'{random.choice(ASKED)}') await client.process_commands(message) if "WhoAsked" in message.content or "Who Asked" in message.content: await message.reply(f'{random.choice(ASKED)}') if client.user in message.mentions or "Loeya" in message.content: await message.reply(f'{random.choice(RESPONSES)}') @client.command() async def ping(ctx): await ctx.send(f'Pong! I response in {round(client.latency * 1000, 2)} milliseconds!') @tasks.loop(seconds=10) async def change_status(): await client.change_presence(activity=discord.Activity(type=(next(activity)), name=(next(status)))) for filename in os.listdir('./cogs'): if filename.endswith('.py'): client.load_extension(f'cogs.{filename[:-3]}') client.run(token_id) ```
{ "source": "4RandomProgrammer/Python", "score": 4 }
#### File: Coursera/ExsAvulsos/Fat.py ```python def main(): while True: numero = int(input("Digite um numero: ")) if numero < 0: break numero = fat(numero) print(numero) def fat(numero): var = 1 while numero != 1: var = numero * var numero -= 1 return var main() ``` #### File: Coursera/Lista 4/Vogais.py ```python def vogal(vog): evogal = True if vog == 'a' or vog == 'A': return evogal elif vog == 'e' or vog == 'E': return evogal elif vog == 'i' or vog == 'I': return evogal elif vog == 'o' or vog == 'O': return evogal elif vog == 'u' or vog == 'U': return evogal else: evogal = False return evogal ``` #### File: Coursera/Lista 6/Maior elemento.py ```python def maior_elemento(lista): maior = lista[0] for i in lista: if maior < i: maior = i return maior ``` #### File: Listas de Python/Lista 2/L02EX03.py ```python def desiverter(numero): numero = (numero % 10) * 10 + numero // 10 return numero #var DiaEntrega = 0 MesEntrega = 0 DiaValidade = 0 MesValidade = 0 DiaAtual = 0 MesAtual = 0 i = 0 DiaEntrega = int(input()) MesEntrega = int(input()) DiaValidade = int(input()) MesValidade = int(input()) DiaEntrega = desiverter(DiaEntrega) MesEntrega = desiverter(MesEntrega) DiaValidade = desiverter(DiaValidade) MesValidade = desiverter(MesValidade) MesAtual = MesEntrega DiaAtual = DiaEntrega + 3 if MesAtual > MesValidade or DiaAtual > DiaValidade: print(False) else: print(True) ```
{ "source": "4RCAN3/PyAlgo", "score": 4 }
#### File: pyalgo/maths/catalan_numbers.py ```python def binomial_coeff(n: int, k: int): if (k > n - k): k = n - k result = 1 for i in range (k): result *= (n - i) result /= (i + 1) return result def catalan(n: int): ''' Using binomial coefficients calculating the nth catalan number ''' result = binomial_coeff(2 * n, n) answer = int(result / (n + 1)) return answer ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/maths/gcd.py ```python def gcd(x: int, y: int): ''' Calculating GCD of x and y using Euclid's algorithm ''' if (x > y): while (y != 0): x, y = y, x % y return x else: while (x != 0): y, x = x, y % x return y def lcm(x: int, y: int): ''' Calculating LCM of x and y using the formula LCM * GCD = x * y ''' result = (x * y) // gcd(x, y) return result ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/maths/gray_code.py ```python def gray_code(n: int): if (n <= 0): return result = [] result.append("0") result.append("1") num1 = 2 while (True): if (num1 >= 1 << n): break for j in range (num1 - 1, -1, -1): result.append(result[j]) for j in range (num1): result[j] = "0" + result[j] for j in range (num1, 2 * num1): result[j] = "1" + result[j] num1 = num1 << 1 return result ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/maths/prime.py ```python def prime(n: int): ''' Checking if the number has any factors in the range [2, sqrt(n)] else it is prime ''' if (n == 2): return True result = True for i in range (2, int(n ** 0.5)): if (n % i == 0): result = False break return result ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/maths/totient_function.py ```python def totient(n: int): result = n num = 2 while (num * num <= n): if (n % num == 0): while (n % num == 0): n = int(n / num) result -= int(result / num) num += 1 if (n > 1): result -= int(result / n) return result ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/search/binary_search.py ```python def binary_search(arr: list, start: int, end: int, key): ''' Binary search implementation using iterative method ''' while (start <= end): mid = int(start + ((end - start) / 2)) if (arr[mid] < key): start = mid + 1 elif arr[mid] > key: end = mid - 1 else: return mid return -1 ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/sort/bubble_sort.py ```python def bubble_sort(arr: list): ''' Time Complexity: - O(n * n) : worst - O(n) : best ''' for i in range (len(arr)): swap = False for j in range (0, len(arr) - i - 1): if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] swap = True if (swap == False): break return arr ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/sort/counting_sort.py ```python def counting_sort(arr: list): max_element = int(max(arr)) min_element = int(min(arr)) range_elements = max_element - min_element + 1 count_arr = [0 for i in range (range_elements)] output_arr = [0 for i in range (len(arr))] for i in range (0, len(arr)): count_arr[arr[i] - min_element] += 1 for i in range (1, len(arr)): count_arr[i] += count_arr[i - 1] for i in range (len(arr) - 1, -1, -1): output_arr[count_arr[arr[i] - min_element] - 1] = arr[i] count_arr[arr[i] - min_element] -= 1 for i in range (0, len(arr)): arr[i] = output_arr[i] return arr ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/sort/cycle_sort.py ```python def cycle_sort(arr: list): writes = 0 for cycleStart in range(0, len(arr) - 1): item = arr[cycleStart] pos = cycleStart for i in range(cycleStart + 1, len(arr)): if (arr[i] < item): pos += 1 if (pos == cycleStart): continue while (item == arr[pos]): pos += 1 arr[pos], item = item, arr[pos] writes += 1 while (pos != cycleStart): pos = cycleStart for i in range(cycleStart + 1, len(arr)): if (arr[i] < item): pos += 1 while (item == arr[pos]): pos += 1 arr[pos], item = item, arr[pos] writes += 1 return arr ''' PyAlgo <NAME> ''' ``` #### File: pyalgo/sort/merge_sort.py ```python def merge_sort(arr: list): if len(arr) > 1: mid = len(arr) // 2 L = arr[:mid] R = arr[mid:] merge_sort(L) merge_sort(R) i, j, k = 0, 0, 0 while (i < len(L) and j < len(R)): if (L[i] < R[j]): arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while (i < len(L)): arr[k] = L[i] i += 1 k += 1 while (j < len(R)): arr[k] = R[j] j += 1 k += 1 return arr ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/test/test_exponential_search.py ```python import sys import os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import unittest from search.exponential_search import exponential_search class TestExponentialsearch(unittest.TestCase): def test_exponential_search(self): result = exponential_search([2, 3, 4, 5], 0, 4, 4) self.assertEqual(result, 2) if __name__ == "__main__": unittest.main() ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/test/test_fibonacci.py ```python import sys import os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import unittest from maths.fibonnaci_numbers import fibonacci class TestFibonacci(unittest.TestCase): def test_fibonacci(self): result = fibonacci(6) self.assertEqual(result, 8) if __name__ == "__main__": unittest.main() ''' PyAlgo <NAME>, 2021 ''' ``` #### File: pyalgo/test/test_prim_mst.py ```python import sys import os sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import unittest from graph.mst.prim_mst import * class TestPrimmst(unittest.TestCase): def test_prim_mst(self): g = Graph(5) g.graph = [ [0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0] ] result = g.prim_mst() self.assertEqual(result, {(0, 1): 2, (1, 2): 3, (0, 3): 6, (1, 4): 5}) if __name__ == "__main__": unittest.main() ''' PyAlgo <NAME>, 2021 ''' ```
{ "source": "4RCAN3/Scrapia-World", "score": 3 }
#### File: novelProfiler/db/jsHelpScripts.py ```python class JSHelpScripts: def openAccordian(self, accordianText: str, tagName: str='span') -> None: return ''.join( ( f"let spanList = document.getElementsByTagName('{tagName}');", "let c = 0;", "for(let span of spanList){", f"if(span.innerText.startsWith('{accordianText}'))", "{", "if(c != 0){", "span.click();", "}c++;","}","}" ) ) def clickElementWithInnerTextS( self, tagName: str, innerText: str, toLowerCase: bool = True ) -> str: """Script to click an element which has innertext `S`""" def appendLowerCase(originalStr: str) -> str: if toLowerCase: originalStr += ".toLowerCase()" return originalStr return "".join( ( "let elementList=document", f""".getElementsByTagName("{tagName}");""", "for(let element of elementList){", appendLowerCase("if(element.innerText"), f"""=="{innerText}")""", "{", "element.click();", "}", "}", ) ) def clickFirstElementFromElementList(self, tagName: str) -> str: return f"""document.getElementsByTagName("{tagName}")[0].click();""" def clickElementStartingWithStrS(self, tagName: str, startingTxt: str) -> str: return "".join( ( "let elementList=document", f""".getElementsByTagName("{tagName}");""", "for(let element of elementList){", f"""if(element.innerText.startsWith("{startingTxt}"))""", "{element.click();}", "}", ) ) def clickFrmSecElementStartingWithStrS(self, tagName: str, startingTxt: str) -> str: return "".join( ( "let elementList=document", f""".getElementsByTagName("{tagName}");""", "for(let element of elementList){", f"""if(element.innerText.startsWith("{startingTxt}"))""", "{", "if(element)", "element.click();}", "}", ) ) def getXpathStrFrClsNames(self, tagName: str, *styleClassNames: str) -> str: returnStr = f"//{tagName}[" repeatingStr = lambda s: f"contains(@class, '{s}')" numOfClasses = len(styleClassNames) c = 0 while c < numOfClasses - 1: returnStr += repeatingStr(styleClassNames[c]) + " and " c += 1 returnStr += f"{repeatingStr(styleClassNames[c])}]" return returnStr def convert2UglyJS(self, jsScript: str) -> str: """Convert a proper javascript script into an ugly script with no spaces""" symbols = jsScript.replace("\n", " ").split(" ") symbols = [symbol for symbol in symbols if symbol not in (" ", "")] js = "" n = len(symbols) - 1 for i in range(0, n): currSymbol = symbols[i] nextSymbol = symbols[i + 1] if (not currSymbol[-1].isalpha()) or (not nextSymbol.isalpha()): js += currSymbol + nextSymbol else: js += f"{currSymbol} {nextSymbol}" return js ```
{ "source": "4RCAN3/Tweetle", "score": 3 }
#### File: tweetle/packages/ProjPySQL.py ```python import mysql.connector from datetime import datetime import tweetle.packages.commands as commands #Establishing connection and creating cursor class db(): def __init__(self, user): sql_user = commands.Commands(user).read_accs()[4] pw = commands.Commands(user).read_accs()[5] self.mydb = mysql.connector.connect(host="localhost", user= sql_user,password=pw, port = 3306) mycursor = self.mydb.cursor(buffered=True) try: mycursor.execute("USE tweepy") except mysql.connector.Error as err: mycursor.execute("CREATE DATABASE tweepy") mycursor.execute("USE tweepy") try: mycursor.execute("SELECT * FROM TweetDB") except mysql.connector.Error as err: self.create(mycursor) mycursor.close() #Table creation def create(self, mycursor): print('here') mycursor.execute("CREATE Table TweetDB (SrlNo int NOT NULL AUTO_INCREMENT PRIMARY KEY, TweetID bigint, Keyword varchar(500), _Timestamp datetime, Author varchar(50))") self.mydb.commit() #Data insertion def Insert_Data(self, TweetList, keyword): mycursor = self.mydb.cursor(buffered=True) insert_query = "INSERT INTO TweetDB (TweetID,Keyword,_Timestamp,Author) VALUES(%s,%s,%s,%s)" records = (TweetList['id'], keyword, TweetList['timestamp'], TweetList['tweet_author']) mycursor.execute(insert_query, records) self.mydb.commit() mycursor.close() #Queries #Ordering by timestamp def orderbytime(self): mycursor = self.mydb.cursor(buffered=True) mycursor.execute("SELECT * FROM TweetDB ORDER BY _Timestamp ASC") self.mydb.commit() res = mycursor.fetchall() mycursor.close() return res #Fetching top x rows def selecttop(self, x): mycursor = self.mydb.cursor(buffered=True) query = '''SELECT * FROM TweetDB LIMIT {}'''.format(x) mycursor.execute(query) self.mydb.commit() res = mycursor.fetchall() mycursor.close() return res #Emptying the whole table def clean(self): mycursor = self.mydb.cursor() mycursor.execute("TRUNCATE TweetDB") self.mydb.commit() #Returning xth row def row(self, x): mycursor = self.mydb.cursor(buffered=True) query = '''SELECT * FROM TweetDB LIMIT {}'''.format(x) mycursor.execute(query) self.mydb.commit() res = mycursor.fetchall() res = res[len(res) - 1] mycursor.close() return res def all_data(self): mycursor = self.mydb.cursor() mycursor.execute("SELECT * FROM TweetDB") res = mycursor.fetchall() mycursor.close() return res ```
{ "source": "4rchib4ld/karton-unpacker-modules", "score": 2 }
#### File: karton-unpacker-modules/iceLoader/iceLoader.py ```python import logging import argparse import json from karton.core import Task, Resource from qiling import * import yara import pefile import hexdump __author__ = '4rchib4ld' __version__ = '1.0.0' yara_rule_iceloader = """ rule iceloaderpacker { meta: author = "4rchib4ld" description = "Iceloader" reference = "https://4rchib4ld.github.io/blog/HoneymoonOnIceloader/" type = "malware.loader" created = "2021-05-14" os = "windows" tlp = "white" rev = 1 strings: $obfuscationCode = {89 DA [0-7] B? FF 44 30 [0-17] C2 44 30 [0-8] 20 ?? 08 D0 [0-8] 88 84} // This code is used for deobfuscation condition: uint16(0) == 0x5a4d and filesize < 800KB and // We only want PE files all of them } """ log = logging.getLogger(__name__) # Setup Logging class KartonUnpackerModule(): """ Unpacks IceLoader executables using the Qiling Framework """ def __init__(self, sample, config): self.enabled = self.yara_check(sample) self.config = config self.data = sample.content if self.config['rootfs'] is None: log.warn("rootfs is disabled, iceloader unpacker disabled") self.enabled = False if self.config['debug'] is True: logging.basicConfig(level=logging.DEBUG) self.verbose = 4 else: logging.basicConfig(level=logging.INFO) self.verbose = 0 def yara_check(self, sample) -> bool: """ Checking if the sample matches the yara rule. If it does, get the code used for encryption """ self.data = sample.content self.name = sample.name yarac = yara.compile(source=yara_rule_iceloader) matches = yarac.match(data=self.data) if matches: start = int(matches[0].strings[0][0]) end = start + len(matches[0].strings[0][2]) self.obfuscationCode = sample.content[start:end-2] # Removing the last two bytes because I use them as markor for the end of the code return True return False def extractPayloadFromSect(self, pe, sectionName): """ Extracting the payload from the pe section. Different routines because of the different section that can be used """ for section in pe.sections: if sectionName == section.Name: if ".rdata" in str(sectionName): startOfDebugDirectory = pe.OPTIONAL_HEADER.DATA_DIRECTORY[pefile.DIRECTORY_ENTRY["IMAGE_DIRECTORY_ENTRY_DEBUG"]].VirtualAddress rdata = section.get_data() RdataVirtualAddress = section.VirtualAddress endOfPayload = startOfDebugDirectory - RdataVirtualAddress return rdata[:endOfPayload] data = section.get_data() log.debug(f"Size of extracted payload section : {len(data)}") return data def extractDecryptionSect(self, pe, sectionName): """ Extracting the payload from the pe section """ for section in pe.sections: if sectionName == section.Name: data = section.get_data() endoffset = 16400 # hardcoded value, but it's always the same extractedValue = int.from_bytes(data[:4], 'little') data = data[16:endoffset] log.debug(f"Size of the extracted decryption section : {len(data)}\nExtracted value : {extractedValue}") return data, extractedValue def payloadDecode(self, data): """ Decoding the payload. Making it ready for the next stage """ decodedData = bytearray() for i in range(0, len(data), 2): decodedData.append(data[i]) log.debug(f"Size decoded payload section: {len(decodedData)}") return decodedData def payloadDecrypt(self, decodedPayload, decrementationCounter): """ Starting from the end for the decodedPayload, and a byte every n bytes. Then it loops again, but from len(data)-1 and so on """ payload = bytearray() count = 0 scount = 0 payloadSize = len(decodedPayload) - 1 i = payloadSize while scount != decrementationCounter: try: payload.append(decodedPayload[i]) except: pass i -= decrementationCounter count = count + 1 if count == 512: count = 0 scount += 1 i = payloadSize - scount log.debug(f"Size of the decrypted payload section : {len(payload)}") return payload[::-1] def gettingObfuscationCode(file, yaraRule): """ Retrieving the code used for obfuscation using a Yara rule """ rules = yara.compile(filepath=yaraRule) f = open(file, "rb") matches = rules.match(data=f.read()) f.close() if matches: obfuscationCode = matches[0].strings[0][2] else: obfuscationCode = 0 log.debug(f"Obfuscation code : {obfuscationCode}") return obfuscationCode def runObfuscationCode(self, obfuscatedPayload): """ Treat the obfuscation code as a shellcode (could have used the code offset instead) and run it in a loop """ ql = Qiling(code=self.obfuscationCode, rootfs=self.config['rootfs'] + '/x8664_windows', ostype="windows", archtype="x8664", multithread=False, console=False, verbose=self.verbose ) try: deobfuscatedPayload = bytearray() count = 0 key = 1 # Maybe this will change ? for byte in obfuscatedPayload: if count == 512: key += 1 count = 0 # initialize machine registers ql.reg.al = byte ql.reg.bl = key # Running the code ql.run() # Extracting the value result = ql.reg.al count += 1 deobfuscatedPayload.append(result) except Exception as error: log.error(error) log.debug(f"Size of deobfuscated payload : {len(deobfuscatedPayload)}") return deobfuscatedPayload[::1] def decryptSecondStage(self, encryptedPayload, dataSect): """ The final decryption. Loop throught the data section and take two bytes at a time, adding them and getting the corresponding char in the decrypted payload from .rdata """ secondStage = bytearray() count = 0 step = 512 padding = 0 for i in range(0, len(encryptedPayload) * 2, 2): try: currentChar = encryptedPayload[int.from_bytes(bytes([dataSect[i % len(dataSect)]]) + bytes([dataSect[(i+1) % len(dataSect)]]), "little") + padding] secondStage.append(currentChar) except IndexError: pass count += 1 if count == step: padding += step count = 0 secondStage = bytes(secondStage) # Bytearray -> bytes, needed by Karton log.debug(f"Size of the decrypted second stage : {len(secondStage)}") return secondStage def selectingSections(self, pe): """ Sorting the biggest region of the file. The biggest is the packed executable, the second one the data used for decryption """ sort = {} for section in pe.sections: if not ".text" in str(section.Name) and not ".data" in str(section.Name): # we don't care about .text sort[section.Name] = section.Misc_VirtualSize if ".data" in str(section.Name): dataSectionSize = section.Misc_VirtualSize dataSectionName = section.Name sortedSection = sorted(sort.items(), key=lambda x: x[1], reverse=True) payloadSection = sortedSection[0][0] payloadSectionSize = sortedSection[0][1] log.debug(f"Biggest section is : {payloadSection} with size {payloadSectionSize}") if dataSectionSize > (payloadSectionSize * 5): #means that everything is in .data log.debug("Everything is in .data") dataSect = self.extractPayloadFromSect(pe, dataSectionName) extractedPayload, extractedDecryptionSection, extractedValue = self.scanningData(dataSect) else: extractedPayload = self.extractPayloadFromSect(pe, payloadSection) extractedDecryptionSection, extractedValue = self.extractDecryptionSect(pe, dataSectionName) return extractedPayload, extractedDecryptionSection, extractedValue def scanningData(self, data): """ Sometimes everything is in the .data section, so we need to parse it in order to get the data we want. I use a Yara rule in order to find the markor """ markorYara = """ rule findMarkor { strings: $markor = { 00 ?? ?? 00 ?? ?? 00 00 00 00 00 00 00 00 00 } condition: all of them } """ yarac = yara.compile(source=markorYara) matches = yarac.match(data=data) extractedValue = int.from_bytes(matches[0].strings[0][2][:4], 'little') offset = matches[0].strings[0][0] payload = data[:offset] dataSect = data[offset+16:offset+16400] #skipping the 16bytes that are used as a delimeter log.debug(f"extracted payload size : {payload}\n extracted data section size : {dataSect} \n extracted value : {extractedValue}") return payload, dataSect, extractedValue def main(self) -> list: # Perform Operations on self.data to unpack the sample pe = pefile.PE(data = self.data) extractedPayload, extractedDecryptionSection, extractedValue = self.selectingSections(pe) decrementationCounter = extractedValue // 512 # that's how it is calculated obfuscatedPayload = self.payloadDecrypt(self.payloadDecode(extractedPayload), decrementationCounter) deobfuscatedPayload = self.runObfuscationCode(obfuscatedPayload) unpackedExecutable = self.decryptSecondStage(deobfuscatedPayload, extractedDecryptionSection) task = Task( headers={ 'type': 'sample', 'kind': 'runnable', 'stage': 'recognized' }, payload={ 'parent': Resource(name='sample', content=self.data), # Set Parent Data (Packed Sample) 'sample': Resource(name='unpacked', content=unpackedExecutable) # Set Child Data (Unpacked Sample) } ) # A list of tasks must be returned, as there can be more than one unpacked child return [task] if __name__ in '__main__': parser = argparse.ArgumentParser( prog='example.py', description=f'Karton Unpacker Service Example Module v{__version__} (CLI Test Utility)', epilog=f'Author: {__author__}' ) parser.add_argument('-i','--input', help='Input File', type=str, required=True) parser.add_argument('--rootfs', help='RootFS', type=str, default=None, required=True) parser.add_argument('--debug', help='Debug', action="store_true", default=False, required=False) args = parser.parse_args() f = open(args.input, 'rb') sample = Resource(name=args.input, content=f.read()) f.close() config = { 'rootfs': args.rootfs, 'debug': args.debug } module = KartonUnpackerModule(sample, config) if module.enabled is True: task = module.main() data = json.loads(str(task)) print(json.dumps(data, indent=4)) ```
{ "source": "4rdparty/my_examples", "score": 2 }
#### File: 4rdparty/my_examples/repos.bzl ```python load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository") load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") # libuv ######################################################################## all_content = """filegroup(name = "all", srcs = glob(["**"]), visibility = ["//visibility:public"])""" def repos(external = True, repo_mapping = {}): if "rules_foreign_cc" not in native.existing_rules(): http_archive( name = "rules_foreign_cc", url = "https://github.com/bazelbuild/rules_foreign_cc/archive/0.2.0.tar.gz", sha256 = "d54742ffbdc6924f222d2179f0e10e911c5c659c4ae74158e9fe827aad862ac6", strip_prefix = "rules_foreign_cc-0.2.0", repo_mapping = repo_mapping, ) if external and "com_github_3rdparty_bazel_rules_leveldb" not in native.existing_rules(): git_repository( name = "com_github_3rdparty_bazel_rules_leveldb", remote = "https://github.com/3rdparty/bazel-rules-leveldb", commit = "a735c49c87f239b18ccbe7cfcfcd620566106202", shallow_since = "1620093785 -0700", repo_mapping = repo_mapping, ) if external and "libuv" not in native.existing_rules(): http_archive( name = "libuv", build_file_content = all_content, sha256 = "371e5419708f6aaeb8656671f89400b92a9bba6443369af1bb70bcd6e4b3c764", strip_prefix = "libuv-1.42.0", url = "https://github.com/libuv/libuv/archive/refs/tags/v1.42.0.tar.gz", repo_mapping = repo_mapping, ) if external and "libcurl" not in native.existing_rules(): http_archive( name = "libcurl", build_file_content = all_content, sha256 = "ffa8f79f68dd77b08987ce16acd1f292875df8ab3bf7e3654f98d62b445ebd9a", strip_prefix = "curl-curl-7_78_0", url = "https://github.com/curl/curl/archive/refs/tags/curl-7_78_0.tar.gz", repo_mapping = repo_mapping, ) if external and "com_github_gflags_gflags" not in native.existing_rules(): http_archive( name = "com_github_gflags_gflags", url = "https://github.com/gflags/gflags/archive/v2.2.2.tar.gz", sha256 = "34af2f15cf7367513b352bdcd2493ab14ce43692d2dcd9dfc499492966c64dcf", strip_prefix = "gflags-2.2.2", repo_mapping = repo_mapping, ) if external and "com_github_google_glog" not in native.existing_rules(): http_archive( name = "com_github_google_glog", sha256 = "eede71f28371bf39aa69b45de23b329d37214016e2055269b3b5e7cfd40b59f5", strip_prefix = "glog-0.5.0", url = "https://github.com/google/glog/archive/refs/tags/v0.5.0.tar.gz", repo_mapping = repo_mapping, ) if external and "gtest" not in native.existing_rules(): http_archive( name = "gtest", url = "https://github.com/google/googletest/archive/release-1.10.0.tar.gz", sha256 = "9dc9157a9a1551ec7a7e43daea9a694a0bb5fb8bec81235d8a1e6ef64c716dcb", strip_prefix = "googletest-release-1.10.0", repo_mapping = repo_mapping, ) ```
{ "source": "4refr0nt/iot-manager-demo", "score": 2 }
#### File: python/sensor/la15.py ```python import json import threading # import os frame = "STEEL" # BLACK_METAL METAL SHINY_METAL BRASS STEEL CHROME GOLD ANTHRACITE TILTED_GRAY TILTED_BLACK GLOSSY_METAL color = "RAITH" # RED GREEN BLUE ORANGE YELLOW CYAN MAGENTA WHITE GRAY BLACK RAITH GREEN_LCD JUG_GREEN bgColor = "CARBON" # DARK_GRAY SATIN_GRAY LIGHT_GRAY WHITE BLACK BEIGE BROWN RED GREEN BLUE ANTHRACITE MUD PUNCHED_SHEET CARBON STAINLESS BRUSHED_METAL BRUSHED_STAINLESS TURNED lcd = "BLUE_BLUE" # BEIGE BLUE ORANGE RED YELLOW WHITE GRAY BLACK GREEN BLUE2 BLUE_BLACK BLUE_DARKBLUE BLUE_GRAY STANDARD STANDARD_GREEN BLUE_BLUE RED_DARKRED DARKBLUE LILA BLACKRED DARKGREEN AMBER LIGHTBLUE SECTIONS led = "RED_LED" # RED_LED GREEN_LED BLUE_LED ORANGE_LED YELLOW_LED CYAN_LED class LoadAvg15: counter = 0 t = 0 config = { 'descr' : "Load average", 'widget' : "steel", 'widgetConfig' : { 'titleString' : "Load average 15 min", 'unitString' : "%", 'width' : "auto", 'height' : 100, 'type' : "Linear", 'lcdVisible' : True, 'ledVisible' : True, 'lcdDecimals' : 0, 'FrameDesign' : frame, 'ColorDef' : color, 'BackgroundColor': bgColor, 'LcdColor' : lcd, 'LedColor' : led, 'minMeasuredValueVisible' : True, 'maxMeasuredValueVisible' : True, 'threshold' : 50, 'minValue' : 0, 'maxValue' : 100, } } def __init__(self, client, prefix, deviceID, widgetID, pageId, page): self.client = client self.prefix = prefix self.deviceID = deviceID self.config['id'] = widgetID self.config['topic'] = prefix + "/" + deviceID + "/la15" self.config['pageId'] = pageId self.config['page'] = page self.t = threading.Timer(10.0, self.send) self.t.start() def send_config(self): print('Publish config:'+ json.dumps(self.config)) self.client.publish( self.prefix + "/" + self.deviceID + '/config', json.dumps(self.config)) self.counter = 5 * 60 / 10 # 5 min send self.send() def send(self): self.t.cancel() self.t = threading.Timer(10.0, self.send) self.t.start() if(self.counter > 0): topic = self.prefix + "/" + self.deviceID + "/la15/status" val = float(self.get()[2]) * 100 print('Publish ' + topic + ':' + str(val)) self.client.publish(topic, json.dumps({ 'status': val}) ) def get(self): with open('/proc/loadavg') as f: loadavg = f.readlines() return str(loadavg[0]).replace('\n', '').split(' ') ```
{ "source": "4restwilliams/isce2", "score": 2 }
#### File: isceobj/Alos2burstProc/Alos2burstProc.py ```python import os import logging import logging.config from iscesys.Component.Component import Component from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU from iscesys.Compatibility import Compatibility MASTER_DATE = Component.Parameter('masterDate', public_name='master date', default=None, type=str, mandatory=True, doc='master acquistion date') SLAVE_DATE = Component.Parameter('slaveDate', public_name='slave date', default=None, type=str, mandatory=True, doc='slave acquistion date') MODE_COMBINATION = Component.Parameter('modeCombination', public_name='mode combination', default=None, type=int, mandatory=True, doc='mode combination') MASTER_FRAMES = Component.Parameter('masterFrames', public_name = 'master frames', default = None, type=str, container=list, mandatory=False, doc = 'master frames to process') SLAVE_FRAMES = Component.Parameter('slaveFrames', public_name = 'slave frames', default = None, type=str, container=list, mandatory=False, doc = 'slave frames to process') STARTING_SWATH = Component.Parameter('startingSwath', public_name='starting swath', default=1, type=int, mandatory=False, doc="starting swath to process") ENDING_SWATH = Component.Parameter('endingSwath', public_name='ending swath', default=5, type=int, mandatory=False, doc="ending swath to process") BURST_UNSYNCHRONIZED_TIME = Component.Parameter('burstUnsynchronizedTime', public_name = 'burst unsynchronized time', default = None, type = float, mandatory = False, doc = 'burst unsynchronized time in second') BURST_SYNCHRONIZATION = Component.Parameter('burstSynchronization', public_name = 'burst synchronization', default = None, type = float, mandatory = False, doc = 'average burst synchronization of all swaths and frames in percentage') RANGE_RESIDUAL_OFFSET_CC = Component.Parameter('rangeResidualOffsetCc', public_name = 'range residual offset estimated by cross correlation', default = None, type = float, mandatory = True, container = list, doc = 'range residual offset estimated by cross correlation') AZIMUTH_RESIDUAL_OFFSET_CC = Component.Parameter('azimuthResidualOffsetCc', public_name = 'azimuth residual offset estimated by cross correlation', default = None, type = float, mandatory = True, container = list, doc = 'azimuth residual offset estimated by cross correlation') RANGE_RESIDUAL_OFFSET_SD = Component.Parameter('rangeResidualOffsetSd', public_name = 'range residual offset estimated by spectral diversity', default = None, type = float, mandatory = True, container = list, doc = 'range residual offset estimated by spectral diversity') AZIMUTH_RESIDUAL_OFFSET_SD = Component.Parameter('azimuthResidualOffsetSd', public_name = 'azimuth residual offset estimated by spectral diversity', default = None, type = float, mandatory = True, container = list, doc = 'azimuth residual offset estimated by spectral diversity') SWATH_RANGE_OFFSET_GEOMETRICAL_MASTER = Component.Parameter('swathRangeOffsetGeometricalMaster', public_name = 'swath range offset from geometry master', default = None, type = float, mandatory = True, container = list, doc = 'swath range offset from geometry master') SWATH_AZIMUTH_OFFSET_GEOMETRICAL_MASTER = Component.Parameter('swathAzimuthOffsetGeometricalMaster', public_name = 'swath azimuth offset from geometry master', default = None, type = float, mandatory = True, container = list, doc = 'swath azimuth offset from geometry master') SWATH_RANGE_OFFSET_MATCHING_MASTER = Component.Parameter('swathRangeOffsetMatchingMaster', public_name = 'swath range offset from matching master', default = None, type = float, mandatory = True, container = list, doc = 'swath range offset from matching master') SWATH_AZIMUTH_OFFSET_MATCHING_MASTER = Component.Parameter('swathAzimuthOffsetMatchingMaster', public_name = 'swath azimuth offset from matching master', default = None, type = float, mandatory = True, container = list, doc = 'swath azimuth offset from matching master') SWATH_RANGE_OFFSET_GEOMETRICAL_SLAVE = Component.Parameter('swathRangeOffsetGeometricalSlave', public_name = 'swath range offset from geometry slave', default = None, type = float, mandatory = True, container = list, doc = 'swath range offset from geometry slave') SWATH_AZIMUTH_OFFSET_GEOMETRICAL_SLAVE = Component.Parameter('swathAzimuthOffsetGeometricalSlave', public_name = 'swath azimuth offset from geometry slave', default = None, type = float, mandatory = True, container = list, doc = 'swath azimuth offset from geometry slave') SWATH_RANGE_OFFSET_MATCHING_SLAVE = Component.Parameter('swathRangeOffsetMatchingSlave', public_name = 'swath range offset from matching slave', default = None, type = float, mandatory = True, container = list, doc = 'swath range offset from matching slave') SWATH_AZIMUTH_OFFSET_MATCHING_SLAVE = Component.Parameter('swathAzimuthOffsetMatchingSlave', public_name = 'swath azimuth offset from matching slave', default = None, type = float, mandatory = True, container = list, doc = 'swath azimuth offset from matching slave') FRAME_RANGE_OFFSET_GEOMETRICAL_MASTER = Component.Parameter('frameRangeOffsetGeometricalMaster', public_name = 'frame range offset from geometry master', default = None, type = float, mandatory = True, container = list, doc = 'frame range offset from geometry master') FRAME_AZIMUTH_OFFSET_GEOMETRICAL_MASTER = Component.Parameter('frameAzimuthOffsetGeometricalMaster', public_name = 'frame azimuth offset from geometry master', default = None, type = float, mandatory = True, container = list, doc = 'frame azimuth offset from geometry master') FRAME_RANGE_OFFSET_MATCHING_MASTER = Component.Parameter('frameRangeOffsetMatchingMaster', public_name = 'frame range offset from matching master', default = None, type = float, mandatory = True, container = list, doc = 'frame range offset from matching master') FRAME_AZIMUTH_OFFSET_MATCHING_MASTER = Component.Parameter('frameAzimuthOffsetMatchingMaster', public_name = 'frame azimuth offset from matching master', default = None, type = float, mandatory = True, container = list, doc = 'frame azimuth offset from matching master') FRAME_RANGE_OFFSET_GEOMETRICAL_SLAVE = Component.Parameter('frameRangeOffsetGeometricalSlave', public_name = 'frame range offset from geometry slave', default = None, type = float, mandatory = True, container = list, doc = 'frame range offset from geometry slave') FRAME_AZIMUTH_OFFSET_GEOMETRICAL_SLAVE = Component.Parameter('frameAzimuthOffsetGeometricalSlave', public_name = 'frame azimuth offset from geometry slave', default = None, type = float, mandatory = True, container = list, doc = 'frame azimuth offset from geometry slave') FRAME_RANGE_OFFSET_MATCHING_SLAVE = Component.Parameter('frameRangeOffsetMatchingSlave', public_name = 'frame range offset from matching slave', default = None, type = float, mandatory = True, container = list, doc = 'frame range offset from matching slave') FRAME_AZIMUTH_OFFSET_MATCHING_SLAVE = Component.Parameter('frameAzimuthOffsetMatchingSlave', public_name = 'frame azimuth offset from matching slave', default = None, type = float, mandatory = True, container = list, doc = 'frame azimuth offset from matching slave') NUMBER_RANGE_LOOKS1 = Component.Parameter('numberRangeLooks1', public_name='number of range looks 1', default=None, type=int, mandatory=False, doc="number of range looks when forming interferogram") NUMBER_AZIMUTH_LOOKS1 = Component.Parameter('numberAzimuthLooks1', public_name='number of azimuth looks 1', default=None, type=int, mandatory=False, doc="number of azimuth looks when forming interferogram") NUMBER_RANGE_LOOKS2 = Component.Parameter('numberRangeLooks2', public_name='number of range looks 2', default=None, type=int, mandatory=False, doc="number of range looks for further multiple looking") NUMBER_AZIMUTH_LOOKS2 = Component.Parameter('numberAzimuthLooks2', public_name='number of azimuth looks 2', default=None, type=int, mandatory=False, doc="number of azimuth looks for further multiple looking") NUMBER_RANGE_LOOKS_SIM = Component.Parameter('numberRangeLooksSim', public_name='number of range looks sim', default=None, type=int, mandatory=False, doc="number of range looks when simulating radar image") NUMBER_AZIMUTH_LOOKS_SIM = Component.Parameter('numberAzimuthLooksSim', public_name='number of azimuth looks sim', default=None, type=int, mandatory=False, doc="number of azimuth looks when simulating radar image") NUMBER_RANGE_LOOKS_ION = Component.Parameter('numberRangeLooksIon', public_name='number of range looks ion', default=None, type=int, mandatory=False, doc="number of range looks for ionospheric correction") NUMBER_AZIMUTH_LOOKS_ION = Component.Parameter('numberAzimuthLooksIon', public_name='number of azimuth looks ion', default=None, type=int, mandatory=False, doc="number of azimuth looks for ionospheric correction") NUMBER_RANGE_LOOKS_SD = Component.Parameter('numberRangeLooksSd', public_name='number of range looks sd', default=None, type=int, mandatory=False, doc="number of range looks for spectral diversity") NUMBER_AZIMUTH_LOOKS_SD = Component.Parameter('numberAzimuthLooksSd', public_name='number of azimuth looks sd', default=None, type=int, mandatory=False, doc="number of azimuth looks for spectral diversity") SUBBAND_RADAR_WAVLENGTH = Component.Parameter('subbandRadarWavelength', public_name='lower and upper radar wavelength for ionosphere correction', default=None, type=float, mandatory=False, container = list, doc="lower and upper radar wavelength for ionosphere correction") RADAR_DEM_AFFINE_TRANSFORM = Component.Parameter('radarDemAffineTransform', public_name = 'radar dem affine transform parameters', default = None, type = float, mandatory = True, container = list, doc = 'radar dem affine transform parameters') MASTER_SLC = Component.Parameter('masterSlc', public_name='master slc', default=None, type=str, mandatory=False, doc='master slc file') SLAVE_SLC = Component.Parameter('slaveSlc', public_name='slave slc', default=None, type=str, mandatory=False, doc='slave slc file') MASTER_BURST_PREFIX = Component.Parameter('masterBurstPrefix', public_name='master burst prefix', default=None, type=str, mandatory=False, doc='master burst prefix') SLAVE_BURST_PREFIX = Component.Parameter('slaveBurstPrefix', public_name='slave burst prefix', default=None, type=str, mandatory=False, doc='slave burst prefix') MASTER_MAGNITUDE = Component.Parameter('masterMagnitude', public_name='master magnitude', default=None, type=str, mandatory=False, doc='master magnitude file') SLAVE_MAGNITUDE = Component.Parameter('slaveMagnitude', public_name='slave magnitude', default=None, type=str, mandatory=False, doc='slave magnitude file') MASTER_SWATH_OFFSET = Component.Parameter('masterSwathOffset', public_name='master swath offset', default=None, type=str, mandatory=False, doc='master swath offset file') SLAVE_SWATH_OFFSET = Component.Parameter('slaveSwathOffset', public_name='slave swath offset', default=None, type=str, mandatory=False, doc='slave swath offset file') MASTER_FRAME_OFFSET = Component.Parameter('masterFrameOffset', public_name='master frame offset', default=None, type=str, mandatory=False, doc='master frame offset file') SLAVE_FRAME_OFFSET = Component.Parameter('slaveFrameOffset', public_name='slave frame offset', default=None, type=str, mandatory=False, doc='slave frame offset file') MASTER_FRAME_PARAMETER = Component.Parameter('masterFrameParameter', public_name='master frame parameter', default=None, type=str, mandatory=False, doc='master frame parameter file') SLAVE_FRAME_PARAMETER = Component.Parameter('slaveFrameParameter', public_name='slave frame parameter', default=None, type=str, mandatory=False, doc='slave frame parameter file') MASTER_TRACK_PARAMETER = Component.Parameter('masterTrackParameter', public_name='master track parameter', default=None, type=str, mandatory=False, doc='master track parameter file') SLAVE_TRACK_PARAMETER = Component.Parameter('slaveTrackParameter', public_name='slave track parameter', default=None, type=str, mandatory=False, doc='slave track parameter file') DEM = Component.Parameter('dem', public_name='dem for coregistration', default=None, type=str, mandatory=False, doc='dem for coregistration file') DEM_GEO = Component.Parameter('demGeo', public_name='dem for geocoding', default=None, type=str, mandatory=False, doc='dem for geocoding file') WBD = Component.Parameter('wbd', public_name='water body', default=None, type=str, mandatory=False, doc='water body file') WBD_OUT = Component.Parameter('wbdOut', public_name='output water body', default=None, type=str, mandatory=False, doc='output water body file') INTERFEROGRAM = Component.Parameter('interferogram', public_name='interferogram', default=None, type=str, mandatory=False, doc='interferogram file') AMPLITUDE = Component.Parameter('amplitude', public_name='amplitude', default=None, type=str, mandatory=False, doc='amplitude file') DIFFERENTIAL_INTERFEROGRAM = Component.Parameter('differentialInterferogram', public_name='differential interferogram', default=None, type=str, mandatory=False, doc='differential interferogram file') MULTILOOK_DIFFERENTIAL_INTERFEROGRAM = Component.Parameter('multilookDifferentialInterferogram', public_name='multilook differential interferogram', default=None, type=str, mandatory=False, doc='multilook differential interferogram file') MULTILOOK_DIFFERENTIAL_INTERFEROGRAM_ORIGINAL = Component.Parameter('multilookDifferentialInterferogramOriginal', public_name='original multilook differential interferogram', default=None, type=str, mandatory=False, doc='original multilook differential interferogram file') MULTILOOK_AMPLITUDE = Component.Parameter('multilookAmplitude', public_name='multilook amplitude', default=None, type=str, mandatory=False, doc='multilook amplitude file') MULTILOOK_COHERENCE = Component.Parameter('multilookCoherence', public_name='multilook coherence', default=None, type=str, mandatory=False, doc='multilook coherence file') MULTILOOK_PHSIG = Component.Parameter('multilookPhsig', public_name='multilook phase sigma', default=None, type=str, mandatory=False, doc='multilook phase sigma file') FILTERED_INTERFEROGRAM = Component.Parameter('filteredInterferogram', public_name='filtered interferogram', default=None, type=str, mandatory=False, doc='filtered interferogram file') UNWRAPPED_INTERFEROGRAM = Component.Parameter('unwrappedInterferogram', public_name='unwrapped interferogram', default=None, type=str, mandatory=False, doc='unwrapped interferogram file') UNWRAPPED_MASKED_INTERFEROGRAM = Component.Parameter('unwrappedMaskedInterferogram', public_name='unwrapped masked interferogram', default=None, type=str, mandatory=False, doc='unwrapped masked interferogram file') LATITUDE = Component.Parameter('latitude', public_name='latitude', default=None, type=str, mandatory=False, doc='latitude file') LONGITUDE = Component.Parameter('longitude', public_name='longitude', default=None, type=str, mandatory=False, doc='longitude file') HEIGHT = Component.Parameter('height', public_name='height', default=None, type=str, mandatory=False, doc='height file') LOS = Component.Parameter('los', public_name='los', default=None, type=str, mandatory=False, doc='los file') SIM = Component.Parameter('sim', public_name='sim', default=None, type=str, mandatory=False, doc='sim file') MSK = Component.Parameter('msk', public_name='msk', default=None, type=str, mandatory=False, doc='msk file') RANGE_OFFSET = Component.Parameter('rangeOffset', public_name='range offset', default=None, type=str, mandatory=False, doc='range offset file') AZIMUTH_OFFSET = Component.Parameter('azimuthOffset', public_name='azimuth offset', default=None, type=str, mandatory=False, doc='azimuth offset file') MULTILOOK_LOS = Component.Parameter('multilookLos', public_name='multilook los', default=None, type=str, mandatory=False, doc='multilook los file') MULTILOOK_MSK = Component.Parameter('multilookMsk', public_name='multilook msk', default=None, type=str, mandatory=False, doc='multilook msk file') MULTILOOK_WBD_OUT = Component.Parameter('multilookWbdOut', public_name='multilook wbdOut', default=None, type=str, mandatory=False, doc='multilook output water body file') MULTILOOK_LATITUDE = Component.Parameter('multilookLatitude', public_name='multilook latitude', default=None, type=str, mandatory=False, doc='multilook latitude file') MULTILOOK_LONGITUDE = Component.Parameter('multilookLongitude', public_name='multilook longitude', default=None, type=str, mandatory=False, doc='multilook longitude file') MULTILOOK_HEIGHT = Component.Parameter('multilookHeight', public_name='multilook height', default=None, type=str, mandatory=False, doc='multilook height file') MULTILOOK_ION = Component.Parameter('multilookIon', public_name='multilook ionospheric phase', default=None, type=str, mandatory=False, doc='multilook ionospheric phase file') RECT_RANGE_OFFSET = Component.Parameter('rectRangeOffset', public_name='rectified range offset', default=None, type=str, mandatory=False, doc='rectified range offset file') GEO_INTERFEROGRAM = Component.Parameter('geoInterferogram', public_name='geocoded interferogram', default=None, type=str, mandatory=False, doc='geocoded interferogram file') GEO_MASKED_INTERFEROGRAM = Component.Parameter('geoMaskedInterferogram', public_name='geocoded masked interferogram', default=None, type=str, mandatory=False, doc='geocoded masked interferogram file') GEO_COHERENCE = Component.Parameter('geoCoherence', public_name='geocoded coherence', default=None, type=str, mandatory=False, container = list, doc='geocoded coherence file') GEO_LOS = Component.Parameter('geoLos', public_name='geocoded los', default=None, type=str, mandatory=False, doc='geocoded los file') GEO_ION = Component.Parameter('geoIon', public_name='geocoded ionospheric phase', default=None, type=str, mandatory=False, doc='geocoded ionospheric phase file') ################################################################### #spectral diversity INTERFEROGRAM_SD = Component.Parameter('interferogramSd', public_name='spectral diversity interferograms', default=None, type=str, mandatory=False, container = list, doc='spectral diversity interferogram files') MULTILOOK_INTERFEROGRAM_SD = Component.Parameter('multilookInterferogramSd', public_name='multilook spectral diversity interferograms', default=None, type=str, mandatory=False, container = list, doc='multilook spectral diversity interferogram files') MULTILOOK_COHERENCE_SD = Component.Parameter('multilookCoherenceSd', public_name='multilook coherence for spectral diversity', default=None, type=str, mandatory=False, doc='multilook coherence for spectral diversity file') FILTERED_INTERFEROGRAM_SD = Component.Parameter('filteredInterferogramSd', public_name='filtered spectral diversity interferograms', default=None, type=str, mandatory=False, container = list, doc='filtered spectral diversity interferogram files') UNWRAPPED_INTERFEROGRAM_SD = Component.Parameter('unwrappedInterferogramSd', public_name='unwrapped spectral diversity interferograms', default=None, type=str, mandatory=False, container = list, doc='unwrapped spectral diversity interferogram files') UNWRAPPED_MASKED_INTERFEROGRAM_SD = Component.Parameter('unwrappedMaskedInterferogramSd', public_name='unwrapped masked spectral diversity interferograms', default=None, type=str, mandatory=False, container = list, doc='unwrapped masked spectral diversity interferogram files') AZIMUTH_DEFORMATION_SD = Component.Parameter('azimuthDeformationSd', public_name='azimuth deformation', default=None, type=str, mandatory=False, container = list, doc='azimuth deformation files') MASKED_AZIMUTH_DEFORMATION_SD = Component.Parameter('maskedAzimuthDeformationSd', public_name='masked azimuth deformation', default=None, type=str, mandatory=False, container = list, doc='masked azimuth deformation files') MULTILOOK_WBD_OUT_SD = Component.Parameter('multilookWbdOutSd', public_name='multilook wbdOut for SD', default=None, type=str, mandatory=False, doc='multilook output water body for SD file') MULTILOOK_LATITUDE_SD = Component.Parameter('multilookLatitudeSd', public_name='multilook latitude for SD', default=None, type=str, mandatory=False, doc='multilook latitude for SD file') MULTILOOK_LONGITUDE_SD = Component.Parameter('multilookLongitudeSd', public_name='multilook longitude for SD', default=None, type=str, mandatory=False, doc='multilook longitude for SD file') GEO_COHERENCE_SD = Component.Parameter('geoCoherenceSd', public_name='geocoded coherence for spectral diversity', default=None, type=str, mandatory=False, container = list, doc='geocoded coherence for spectral diversity file') GEO_AZIMUTH_DEFORMATION_SD = Component.Parameter('geoAzimuthDeformationSd', public_name='geocoded azimuth deformation', default=None, type=str, mandatory=False, container = list, doc='geocoded azimuth deformation files') GEO_MASKED_AZIMUTH_DEFORMATION_SD = Component.Parameter('geoMaskedAzimuthDeformationSd', public_name='geocoded masked azimuth deformation', default=None, type=str, mandatory=False, container = list, doc='geocoded masked azimuth deformation files') ################################################################### class Alos2burstProc(Component): """ This class holds the properties, along with methods (setters and getters) to modify and return their values. """ parameter_list = (MASTER_DATE, SLAVE_DATE, MODE_COMBINATION, MASTER_FRAMES, SLAVE_FRAMES, STARTING_SWATH, ENDING_SWATH, BURST_UNSYNCHRONIZED_TIME, BURST_SYNCHRONIZATION, RANGE_RESIDUAL_OFFSET_CC, AZIMUTH_RESIDUAL_OFFSET_CC, RANGE_RESIDUAL_OFFSET_SD, AZIMUTH_RESIDUAL_OFFSET_SD, SWATH_RANGE_OFFSET_GEOMETRICAL_MASTER, SWATH_AZIMUTH_OFFSET_GEOMETRICAL_MASTER, SWATH_RANGE_OFFSET_MATCHING_MASTER, SWATH_AZIMUTH_OFFSET_MATCHING_MASTER, SWATH_RANGE_OFFSET_GEOMETRICAL_SLAVE, SWATH_AZIMUTH_OFFSET_GEOMETRICAL_SLAVE, SWATH_RANGE_OFFSET_MATCHING_SLAVE, SWATH_AZIMUTH_OFFSET_MATCHING_SLAVE, FRAME_RANGE_OFFSET_GEOMETRICAL_MASTER, FRAME_AZIMUTH_OFFSET_GEOMETRICAL_MASTER, FRAME_RANGE_OFFSET_MATCHING_MASTER, FRAME_AZIMUTH_OFFSET_MATCHING_MASTER, FRAME_RANGE_OFFSET_GEOMETRICAL_SLAVE, FRAME_AZIMUTH_OFFSET_GEOMETRICAL_SLAVE, FRAME_RANGE_OFFSET_MATCHING_SLAVE, FRAME_AZIMUTH_OFFSET_MATCHING_SLAVE, NUMBER_RANGE_LOOKS1, NUMBER_AZIMUTH_LOOKS1, NUMBER_RANGE_LOOKS2, NUMBER_AZIMUTH_LOOKS2, NUMBER_RANGE_LOOKS_SIM, NUMBER_AZIMUTH_LOOKS_SIM, NUMBER_RANGE_LOOKS_ION, NUMBER_AZIMUTH_LOOKS_ION, NUMBER_RANGE_LOOKS_SD, NUMBER_AZIMUTH_LOOKS_SD, SUBBAND_RADAR_WAVLENGTH, RADAR_DEM_AFFINE_TRANSFORM, MASTER_SLC, SLAVE_SLC, MASTER_BURST_PREFIX, SLAVE_BURST_PREFIX, MASTER_MAGNITUDE, SLAVE_MAGNITUDE, MASTER_SWATH_OFFSET, SLAVE_SWATH_OFFSET, MASTER_FRAME_OFFSET, SLAVE_FRAME_OFFSET, MASTER_FRAME_PARAMETER, SLAVE_FRAME_PARAMETER, MASTER_TRACK_PARAMETER, SLAVE_TRACK_PARAMETER, DEM, DEM_GEO, WBD, WBD_OUT, INTERFEROGRAM, AMPLITUDE, DIFFERENTIAL_INTERFEROGRAM, MULTILOOK_DIFFERENTIAL_INTERFEROGRAM, MULTILOOK_DIFFERENTIAL_INTERFEROGRAM_ORIGINAL, MULTILOOK_AMPLITUDE, MULTILOOK_COHERENCE, MULTILOOK_PHSIG, FILTERED_INTERFEROGRAM, UNWRAPPED_INTERFEROGRAM, UNWRAPPED_MASKED_INTERFEROGRAM, LATITUDE, LONGITUDE, HEIGHT, LOS, SIM, MSK, RANGE_OFFSET, AZIMUTH_OFFSET, MULTILOOK_LOS, MULTILOOK_MSK, MULTILOOK_WBD_OUT, MULTILOOK_LATITUDE, MULTILOOK_LONGITUDE, MULTILOOK_HEIGHT, MULTILOOK_ION, RECT_RANGE_OFFSET, GEO_INTERFEROGRAM, GEO_MASKED_INTERFEROGRAM, GEO_COHERENCE, GEO_LOS, GEO_ION, #spectral diversity INTERFEROGRAM_SD, MULTILOOK_INTERFEROGRAM_SD, MULTILOOK_COHERENCE_SD, FILTERED_INTERFEROGRAM_SD, UNWRAPPED_INTERFEROGRAM_SD, UNWRAPPED_MASKED_INTERFEROGRAM_SD, AZIMUTH_DEFORMATION_SD, MASKED_AZIMUTH_DEFORMATION_SD, MULTILOOK_WBD_OUT_SD, MULTILOOK_LATITUDE_SD, MULTILOOK_LONGITUDE_SD, GEO_COHERENCE_SD, GEO_AZIMUTH_DEFORMATION_SD, GEO_MASKED_AZIMUTH_DEFORMATION_SD) facility_list = () family='alos2burstcontext' def __init__(self, name='', procDoc=None): #self.updatePrivate() super().__init__(family=self.__class__.family, name=name) self.procDoc = procDoc return None def setFilename(self, masterDate, slaveDate, nrlks1, nalks1, nrlks2, nalks2): # if masterDate == None: # masterDate = self.masterDate # if slaveDate == None: # slaveDate = self.slaveDate # if nrlks1 == None: # nrlks1 = self.numberRangeLooks1 # if nalks1 == None: # nalks1 = self.numberAzimuthLooks1 # if nrlks2 == None: # nrlks2 = self.numberRangeLooks2 # if nalks2 == None: # nalks2 = self.numberAzimuthLooks2 ms = masterDate + '-' + slaveDate ml1 = '_{}rlks_{}alks'.format(nrlks1, nalks1) ml2 = '_{}rlks_{}alks'.format(nrlks1*nrlks2, nalks1*nalks2) self.masterSlc = masterDate + '.slc' self.slaveSlc = slaveDate + '.slc' self.masterBurstPrefix = masterDate self.slaveBurstPrefix = slaveDate self.masterMagnitude = masterDate + '.mag' self.slaveMagnitude = slaveDate + '.mag' self.masterSwathOffset = 'swath_offset_' + masterDate + '.txt' self.slaveSwathOffset = 'swath_offset_' + slaveDate + '.txt' self.masterFrameOffset = 'frame_offset_' + masterDate + '.txt' self.slaveFrameOffset = 'frame_offset_' + slaveDate + '.txt' self.masterFrameParameter = masterDate + '.frame.xml' self.slaveFrameParameter = slaveDate + '.frame.xml' self.masterTrackParameter = masterDate + '.track.xml' self.slaveTrackParameter = slaveDate + '.track.xml' #self.dem = #self.demGeo = #self.wbd = self.interferogram = ms + ml1 + '.int' self.amplitude = ms + ml1 + '.amp' self.differentialInterferogram = 'diff_' + ms + ml1 + '.int' self.multilookDifferentialInterferogram = 'diff_' + ms + ml2 + '.int' self.multilookDifferentialInterferogramOriginal = 'diff_' + ms + ml2 + '_ori.int' self.multilookAmplitude = ms + ml2 + '.amp' self.multilookCoherence = ms + ml2 + '.cor' self.multilookPhsig = ms + ml2 + '.phsig' self.filteredInterferogram = 'filt_' + ms + ml2 + '.int' self.unwrappedInterferogram = 'filt_' + ms + ml2 + '.unw' self.unwrappedMaskedInterferogram = 'filt_' + ms + ml2 + '_msk.unw' self.latitude = ms + ml1 + '.lat' self.longitude = ms + ml1 + '.lon' self.height = ms + ml1 + '.hgt' self.los = ms + ml1 + '.los' self.sim = ms + ml1 + '.sim' self.msk = ms + ml1 + '.msk' self.wbdOut = ms + ml1 + '.wbd' self.rangeOffset = ms + ml1 + '_rg.off' self.azimuthOffset = ms + ml1 + '_az.off' self.multilookLos = ms + ml2 + '.los' self.multilookWbdOut = ms + ml2 + '.wbd' self.multilookMsk = ms + ml2 + '.msk' self.multilookLatitude = ms + ml2 + '.lat' self.multilookLongitude = ms + ml2 + '.lon' self.multilookHeight = ms + ml2 + '.hgt' self.multilookIon = ms + ml2 + '.ion' self.rectRangeOffset = ms + ml1 + '_rg_rect.off' self.geoInterferogram = 'filt_' + ms + ml2 + '.unw.geo' self.geoMaskedInterferogram = 'filt_' + ms + ml2 + '_msk.unw.geo' self.geoCoherence = ms + ml2 + '.cor.geo' self.geoLos = ms + ml2 + '.los.geo' self.geoIon = ms + ml2 + '.ion.geo' def setFilenameSd(self, masterDate, slaveDate, nrlks1, nalks1, nrlks_sd, nalks_sd, nsd=3): #spectral diversity # if masterDate == None: # masterDate = self.masterDate # if slaveDate == None: # slaveDate = self.slaveDate # if nrlks1 == None: # nrlks1 = self.numberRangeLooks1 # if nalks1 == None: # nalks1 = self.numberAzimuthLooks1 # if nrlks_sd == None: # nrlks_sd = self.numberRangeLooksSd # if nalks_sd == None: # nalks_sd = self.numberAzimuthLooksSd ms = masterDate + '-' + slaveDate ml1 = '_{}rlks_{}alks'.format(nrlks1, nalks1) ml2sd = '_{}rlks_{}alks'.format(nrlks1*nrlks_sd, nalks1*nalks_sd) self.interferogramSd = ['sd_{}_'.format(i+1) + ms + ml1 + '.int' for i in range(nsd)] self.multilookInterferogramSd = ['sd_{}_'.format(i+1) + ms + ml2sd + '.int' for i in range(nsd)] self.multilookCoherenceSd = ['filt_{}_'.format(i+1) + ms + ml2sd + '.cor' for i in range(nsd)] self.filteredInterferogramSd = ['filt_{}_'.format(i+1) + ms + ml2sd + '.int' for i in range(nsd)] self.unwrappedInterferogramSd = ['filt_{}_'.format(i+1) + ms + ml2sd + '.unw' for i in range(nsd)] self.unwrappedMaskedInterferogramSd = ['filt_{}_'.format(i+1) + ms + ml2sd + '_msk.unw' for i in range(nsd)] self.azimuthDeformationSd = ['azd_{}_'.format(i+1) + ms + ml2sd + '.unw' for i in range(nsd)] self.azimuthDeformationSd.append('azd_' + ms + ml2sd + '.unw') self.maskedAzimuthDeformationSd = ['azd_{}_'.format(i+1) + ms + ml2sd + '_msk.unw' for i in range(nsd)] self.maskedAzimuthDeformationSd.append('azd_' + ms + ml2sd + '_msk.unw') self.multilookWbdOutSd = ms + ml2sd + '.wbd' self.multilookLatitudeSd = ms + ml2sd + '.lat' self.multilookLongitudeSd = ms + ml2sd + '.lon' self.geoCoherenceSd = ['filt_{}_'.format(i+1) + ms + ml2sd + '.cor.geo' for i in range(nsd)] self.geoAzimuthDeformationSd = ['azd_{}_'.format(i+1) + ms + ml2sd + '.unw.geo' for i in range(nsd)] self.geoAzimuthDeformationSd.append('azd_' + ms + ml2sd + '.unw.geo') self.geoMaskedAzimuthDeformationSd = ['azd_{}_'.format(i+1) + ms + ml2sd + '_msk.unw.geo' for i in range(nsd)] self.geoMaskedAzimuthDeformationSd.append('azd_' + ms + ml2sd + '_msk.unw.geo') def loadProduct(self, xmlname): ''' Load the product using Product Manager. ''' from iscesys.Component.ProductManager import ProductManager as PM pm = PM() pm.configure() obj = pm.loadProduct(xmlname) return obj def saveProduct(self, obj, xmlname): ''' Save the product to an XML file using Product Manager. ''' from iscesys.Component.ProductManager import ProductManager as PM pm = PM() pm.configure() pm.dumpProduct(obj, xmlname) return None def loadTrack(self, master=True): ''' Load the track using Product Manager. ''' if master: track = self.loadProduct(self.masterTrackParameter) else: track = self.loadProduct(self.slaveTrackParameter) track.frames = [] for i, frameNumber in enumerate(self.masterFrames): os.chdir('f{}_{}'.format(i+1, frameNumber)) if master: track.frames.append(self.loadProduct(self.masterFrameParameter)) else: track.frames.append(self.loadProduct(self.slaveFrameParameter)) os.chdir('../') return track def saveTrack(self, track, master=True): ''' Save the track to XML files using Product Manager. ''' if master: self.saveProduct(track, self.masterTrackParameter) else: self.saveProduct(track, self.slaveTrackParameter) for i, frameNumber in enumerate(self.masterFrames): os.chdir('f{}_{}'.format(i+1, frameNumber)) if master: self.saveProduct(track.frames[i], self.masterFrameParameter) else: self.saveProduct(track.frames[i], self.slaveFrameParameter) os.chdir('../') return None def hasGPU(self): ''' Determine if GPU modules are available. ''' flag = False try: from zerodop.GPUtopozero.GPUtopozero import PyTopozero from zerodop.GPUgeo2rdr.GPUgeo2rdr import PyGeo2rdr flag = True except: pass return flag ``` #### File: isceobj/Alos2burstProc/runCoregGeom.py ```python import os import logging import isceobj from isceobj.Alos2Proc.runRdr2Geo import topoCPU from isceobj.Alos2Proc.runRdr2Geo import topoGPU from isceobj.Alos2Proc.runGeo2Rdr import geo2RdrCPU from isceobj.Alos2Proc.runGeo2Rdr import geo2RdrGPU from isceobj.Alos2Proc.Alos2ProcPublic import waterBodyRadar from isceobj.Alos2Proc.Alos2ProcPublic import resampleBursts from isceobj.Alos2Proc.Alos2ProcPublic import mosaicBurstAmplitude from isceobj.Alos2Proc.Alos2ProcPublic import mosaicBurstInterferogram logger = logging.getLogger('isce.alos2burstinsar.runCoregGeom') def runCoregGeom(self): '''compute geometric offset ''' catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() masterTrack = self._insar.loadTrack(master=True) slaveTrack = self._insar.loadTrack(master=False) demFile = os.path.abspath(self._insar.dem) wbdFile = os.path.abspath(self._insar.wbd) ############################################################################### for i, frameNumber in enumerate(self._insar.masterFrames): frameDir = 'f{}_{}'.format(i+1, frameNumber) os.chdir(frameDir) for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)): swathDir = 's{}'.format(swathNumber) os.chdir(swathDir) print('processing frame {}, swath {}'.format(frameNumber, swathNumber)) masterSwath = masterTrack.frames[i].swaths[j] slaveSwath = slaveTrack.frames[i].swaths[j] ################################################## # compute geometric offsets ################################################## #set up track parameters just for computing offsets #ALL track parameters are listed here #master #masterTrack.passDirection = #masterTrack.pointingDirection = #masterTrack.operationMode = #masterTrack.radarWavelength = masterTrack.numberOfSamples = masterSwath.numberOfSamples masterTrack.numberOfLines = masterSwath.numberOfLines masterTrack.startingRange = masterSwath.startingRange #masterTrack.rangeSamplingRate = masterTrack.rangePixelSize = masterSwath.rangePixelSize masterTrack.sensingStart = masterSwath.sensingStart #masterTrack.prf = #masterTrack.azimuthPixelSize = masterTrack.azimuthLineInterval = masterSwath.azimuthLineInterval #masterTrack.dopplerVsPixel = #masterTrack.frames = #masterTrack.orbit = #slave slaveTrack.numberOfSamples = slaveSwath.numberOfSamples slaveTrack.numberOfLines = slaveSwath.numberOfLines slaveTrack.startingRange = slaveSwath.startingRange slaveTrack.rangePixelSize = slaveSwath.rangePixelSize slaveTrack.sensingStart = slaveSwath.sensingStart slaveTrack.azimuthLineInterval = slaveSwath.azimuthLineInterval if self.useGPU and self._insar.hasGPU(): topoGPU(masterTrack, 1, 1, demFile, self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.los) geo2RdrGPU(slaveTrack, 1, 1, self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.rangeOffset, self._insar.azimuthOffset) else: topoCPU(masterTrack, 1, 1, demFile, self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.los) geo2RdrCPU(slaveTrack, 1, 1, self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.rangeOffset, self._insar.azimuthOffset) waterBodyRadar(self._insar.latitude, self._insar.longitude, wbdFile, self._insar.wbdOut) #clear up, leaving only range/azimuth offsets os.remove(self._insar.latitude) os.remove(self._insar.latitude+'.vrt') os.remove(self._insar.latitude+'.xml') os.remove(self._insar.longitude) os.remove(self._insar.longitude+'.vrt') os.remove(self._insar.longitude+'.xml') os.remove(self._insar.height) os.remove(self._insar.height+'.vrt') os.remove(self._insar.height+'.xml') os.remove(self._insar.los) os.remove(self._insar.los+'.vrt') os.remove(self._insar.los+'.xml') ################################################## # resample bursts ################################################## slaveBurstResampledDir = self._insar.slaveBurstPrefix + '_1_coreg_geom' #interferogramDir = self._insar.masterBurstPrefix + '-' + self._insar.slaveBurstPrefix + '_coreg_geom' interferogramDir = 'burst_interf_1_coreg_geom' interferogramPrefix = self._insar.masterBurstPrefix + '-' + self._insar.slaveBurstPrefix resampleBursts(masterSwath, slaveSwath, self._insar.masterBurstPrefix, self._insar.slaveBurstPrefix, slaveBurstResampledDir, interferogramDir, self._insar.masterBurstPrefix, self._insar.slaveBurstPrefix, self._insar.slaveBurstPrefix, interferogramPrefix, self._insar.rangeOffset, self._insar.azimuthOffset, rangeOffsetResidual=0, azimuthOffsetResidual=0) ################################################## # mosaic burst amplitudes and interferograms ################################################## os.chdir(slaveBurstResampledDir) mosaicBurstAmplitude(masterSwath, self._insar.slaveBurstPrefix, self._insar.slaveMagnitude, numberOfLooksThreshold=4) os.chdir('../') #the interferogram is not good enough, do not mosaic mosaic=False if mosaic: os.chdir(interferogramDir) mosaicBurstInterferogram(masterSwath, interferogramPrefix, self._insar.interferogram, numberOfLooksThreshold=4) os.chdir('../') os.chdir('../') os.chdir('../') ############################################################################### catalog.printToLog(logger, "runCoregGeom") self._insar.procDoc.addAllFromCatalog(catalog) ``` #### File: isceobj/Alos2burstProc/runGeocodeSd.py ```python import os import logging import numpy as np import isceobj from isceobj.Alos2Proc.runGeocode import geocode from isceobj.Alos2Proc.Alos2ProcPublic import getBboxGeo logger = logging.getLogger('isce.alos2insar.runGeocodeSd') def runGeocodeSd(self): '''geocode final products ''' catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() masterTrack = self._insar.loadTrack(master=True) #slaveTrack = self._insar.loadTrack(master=False) demFile = os.path.abspath(self._insar.demGeo) sdDir = 'sd' if not os.path.exists(sdDir): os.makedirs(sdDir) os.chdir(sdDir) if self.geocodeListSd == None: geocodeList = self._insar.multilookCoherenceSd + self._insar.azimuthDeformationSd + self._insar.maskedAzimuthDeformationSd else: geocodeList = self.geocodeListSd if self.bbox == None: bbox = getBboxGeo(masterTrack) else: bbox = self.bbox catalog.addItem('geocode bounding box', bbox, 'runGeocodeSd') numberRangeLooks = self._insar.numberRangeLooks1 * self._insar.numberRangeLooksSd numberAzimuthLooks = self._insar.numberAzimuthLooks1 * self._insar.numberAzimuthLooksSd for inputFile in geocodeList: if self.geocodeInterpMethodSd == None: img = isceobj.createImage() img.load(inputFile + '.xml') if img.dataType.upper() == 'CFLOAT': interpMethod = 'sinc' else: interpMethod = 'bilinear' else: interpMethod = self.geocodeInterpMethodSd.lower() geocode(masterTrack, demFile, inputFile, bbox, numberRangeLooks, numberAzimuthLooks, interpMethod, 0, 0) os.chdir('../') catalog.printToLog(logger, "runGeocodeSd") self._insar.procDoc.addAllFromCatalog(catalog) ``` #### File: isceobj/Alos2Proc/runSlcMatch.py ```python import os import logging import numpy as np import isceobj from isceobj.Alos2Proc.runRdr2Geo import topoCPU from isceobj.Alos2Proc.runRdr2Geo import topoGPU from isceobj.Alos2Proc.runGeo2Rdr import geo2RdrCPU from isceobj.Alos2Proc.runGeo2Rdr import geo2RdrGPU from contrib.alos2proc.alos2proc import resamp from isceobj.Alos2Proc.Alos2ProcPublic import create_xml from isceobj.Alos2Proc.Alos2ProcPublic import renameFile from isceobj.Alos2Proc.Alos2ProcPublic import waterBodyRadar from mroipac.ampcor.Ampcor import Ampcor from isceobj.Alos2Proc.Alos2ProcPublic import meanOffset from isceobj.Alos2Proc.Alos2ProcPublic import cullOffsetsRoipac logger = logging.getLogger('isce.alos2insar.runSlcMatch') def runSlcMatch(self): '''match a pair of SLCs ''' if not self.doDenseOffset: return if not ((self._insar.modeCombination == 0) or (self._insar.modeCombination == 1)): return catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() demFile = os.path.abspath(self._insar.dem) wbdFile = os.path.abspath(self._insar.wbd) denseOffsetDir = 'dense_offset' if not os.path.exists(denseOffsetDir): os.makedirs(denseOffsetDir) os.chdir(denseOffsetDir) masterTrack = self._insar.loadProduct(self._insar.masterTrackParameter) slaveTrack = self._insar.loadProduct(self._insar.slaveTrackParameter) ######################################################################################### ################################################## # compute geometric offsets ################################################## if self.useGPU and self._insar.hasGPU(): topoGPU(masterTrack, 1, 1, demFile, 'lat.rdr', 'lon.rdr', 'hgt.rdr', 'los.rdr') geo2RdrGPU(slaveTrack, 1, 1, 'lat.rdr', 'lon.rdr', 'hgt.rdr', 'rg.off', 'az.off') else: topoCPU(masterTrack, 1, 1, demFile, 'lat.rdr', 'lon.rdr', 'hgt.rdr', 'los.rdr') geo2RdrCPU(slaveTrack, 1, 1, 'lat.rdr', 'lon.rdr', 'hgt.rdr', 'rg.off', 'az.off') ################################################## # resample SLC ################################################## #SlaveSlcResampled = os.path.splitext(self._insar.slaveSlc)[0]+'_resamp'+os.path.splitext(self._insar.slaveSlc)[1] SlaveSlcResampled = self._insar.slaveSlcCoregistered rangeOffsets2Frac = 0.0 azimuthOffsets2Frac = 0.0 resamp(self._insar.slaveSlc, SlaveSlcResampled, 'rg.off', 'az.off', masterTrack.numberOfSamples, masterTrack.numberOfLines, slaveTrack.prf, slaveTrack.dopplerVsPixel, [rangeOffsets2Frac, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [azimuthOffsets2Frac, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) create_xml(SlaveSlcResampled, masterTrack.numberOfSamples, masterTrack.numberOfLines, 'slc') if self.estimateResidualOffset: numberOfOffsets = 800 rangeStep = 50 length = masterTrack.numberOfLines width = masterTrack.numberOfSamples waterBodyRadar('lat.rdr', 'lon.rdr', wbdFile, 'wbd.rdr') wbd=np.memmap('wbd.rdr', dtype=np.int8, mode='r', shape=(length, width)) azimuthStep = int(length/width*rangeStep+0.5) landRatio = np.sum(wbd[0:length:azimuthStep,0:width:rangeStep]!=-1)/(int(length/azimuthStep)*int(width/rangeStep)) del wbd if (landRatio <= 0.00125): print('\n\nWARNING: land area too small for estimating residual slc offsets') print('do not estimate residual offsets\n\n') catalog.addItem('warning message', 'land area too small for estimating residual slc offsets', 'runSlcMatch') else: numberOfOffsets /= landRatio #we use equal number of offsets in range and azimuth here numberOfOffsetsRange = int(np.sqrt(numberOfOffsets)+0.5) numberOfOffsetsAzimuth = int(np.sqrt(numberOfOffsets)+0.5) if numberOfOffsetsRange > int(width/2): numberOfOffsetsRange = int(width/2) if numberOfOffsetsAzimuth > int(length/2): numberOfOffsetsAzimuth = int(length/2) if numberOfOffsetsRange < 10: numberOfOffsetsRange = 10 if numberOfOffsetsAzimuth < 10: numberOfOffsetsAzimuth = 10 ########################################## #2. match using ampcor ########################################## ampcor = Ampcor(name='insarapp_slcs_ampcor') ampcor.configure() mSLC = isceobj.createSlcImage() mSLC.load(self._insar.masterSlc+'.xml') mSLC.setAccessMode('read') mSLC.createImage() sSLC = isceobj.createSlcImage() sSLC.load(SlaveSlcResampled+'.xml') sSLC.setAccessMode('read') sSLC.createImage() ampcor.setImageDataType1('complex') ampcor.setImageDataType2('complex') ampcor.setMasterSlcImage(mSLC) ampcor.setSlaveSlcImage(sSLC) #MATCH REGION #compute an offset at image center to use rgoff = 0.0 azoff = 0.0 #it seems that we cannot use 0, haven't look into the problem if rgoff == 0: rgoff = 1 if azoff == 0: azoff = 1 firstSample = 1 if rgoff < 0: firstSample = int(35 - rgoff) firstLine = 1 if azoff < 0: firstLine = int(35 - azoff) ampcor.setAcrossGrossOffset(rgoff) ampcor.setDownGrossOffset(azoff) ampcor.setFirstSampleAcross(firstSample) ampcor.setLastSampleAcross(mSLC.width) ampcor.setNumberLocationAcross(numberOfOffsetsRange) ampcor.setFirstSampleDown(firstLine) ampcor.setLastSampleDown(mSLC.length) ampcor.setNumberLocationDown(numberOfOffsetsAzimuth) #MATCH PARAMETERS #full-aperture mode if (self._insar.modeCombination == 21) or \ (self._insar.modeCombination == 22) or \ (self._insar.modeCombination == 31) or \ (self._insar.modeCombination == 32): ampcor.setWindowSizeWidth(64) ampcor.setWindowSizeHeight(512) #note this is the half width/length of search area, number of resulting correlation samples: 32*2+1 ampcor.setSearchWindowSizeWidth(32) ampcor.setSearchWindowSizeHeight(32) #triggering full-aperture mode matching ampcor.setWinsizeFilt(8) ampcor.setOversamplingFactorFilt(64) #regular mode else: ampcor.setWindowSizeWidth(64) ampcor.setWindowSizeHeight(64) ampcor.setSearchWindowSizeWidth(16) ampcor.setSearchWindowSizeHeight(16) #REST OF THE STUFF ampcor.setAcrossLooks(1) ampcor.setDownLooks(1) ampcor.setOversamplingFactor(64) ampcor.setZoomWindowSize(16) #1. The following not set #Matching Scale for Sample/Line Directions (-) = 1. 1. #should add the following in Ampcor.py? #if not set, in this case, Ampcor.py'value is also 1. 1. #ampcor.setScaleFactorX(1.) #ampcor.setScaleFactorY(1.) #MATCH THRESHOLDS AND DEBUG DATA #2. The following not set #in roi_pac the value is set to 0 1 #in isce the value is set to 0.001 1000.0 #SNR and Covariance Thresholds (-) = {s1} {s2} #should add the following in Ampcor? #THIS SHOULD BE THE ONLY THING THAT IS DIFFERENT FROM THAT OF ROI_PAC #ampcor.setThresholdSNR(0) #ampcor.setThresholdCov(1) ampcor.setDebugFlag(False) ampcor.setDisplayFlag(False) #in summary, only two things not set which are indicated by 'The following not set' above. #run ampcor ampcor.ampcor() offsets = ampcor.getOffsetField() mSLC.finalizeImage() sSLC.finalizeImage() #3. cull offsets refinedOffsets = cullOffsetsRoipac(offsets, numThreshold=50) if refinedOffsets == None: print('\n\nWARNING: too few offsets left for slc residual offset estimation') print('do not estimate residual offsets\n\n') catalog.addItem('warning message', 'too few offsets left for slc residual offset estimation', 'runSlcMatch') else: rangeOffset, azimuthOffset = meanOffset(refinedOffsets) os.remove(SlaveSlcResampled) os.remove(SlaveSlcResampled+'.vrt') os.remove(SlaveSlcResampled+'.xml') rangeOffsets2Frac = rangeOffset azimuthOffsets2Frac = azimuthOffset resamp(self._insar.slaveSlc, SlaveSlcResampled, 'rg.off', 'az.off', masterTrack.numberOfSamples, masterTrack.numberOfLines, slaveTrack.prf, slaveTrack.dopplerVsPixel, [rangeOffsets2Frac, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [azimuthOffsets2Frac, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) create_xml(SlaveSlcResampled, masterTrack.numberOfSamples, masterTrack.numberOfLines, 'slc') catalog.addItem('number of offsets range', numberOfOffsetsRange, 'runSlcMatch') catalog.addItem('number of offsets azimuth', numberOfOffsetsAzimuth, 'runSlcMatch') catalog.addItem('range residual offset after geometric coregistration', rangeOffset, 'runSlcMatch') catalog.addItem('azimuth residual offset after geometric coregistration', azimuthOffset, 'runSlcMatch') if self.deleteGeometryFiles: os.remove('lat.rdr') os.remove('lat.rdr.vrt') os.remove('lat.rdr.xml') os.remove('lon.rdr') os.remove('lon.rdr.vrt') os.remove('lon.rdr.xml') os.remove('hgt.rdr') os.remove('hgt.rdr.vrt') os.remove('hgt.rdr.xml') os.remove('los.rdr') os.remove('los.rdr.vrt') os.remove('los.rdr.xml') # if os.path.isfile('wbd.rdr'): # os.remove('wbd.rdr') # os.remove('wbd.rdr.vrt') # os.remove('wbd.rdr.xml') ######################################################################################### os.chdir('../') catalog.printToLog(logger, "runSlcMatch") self._insar.procDoc.addAllFromCatalog(catalog) ```
{ "source": "4rgc/PiazzaBot", "score": 3 }
#### File: PiazzaBot/piazza_object/piazza_object.py ```python class PiazzaObject: def __init__(self, id, subject, content, date, link): self.id = id self.subject = subject self.content = content self.date = date self.link = link def to_string(self): return f'Subject: {self.subject}\nContent: {self.content}\nDate: {self.date}\nLink: {self.link}' ```
{ "source": "4rk0z/AdventOfCode", "score": 4 }
#### File: solutions/day03/puzzle3.py ```python def walk(x, y): row = col = 0 moves = 0 while row < pattern_row_nums - 1: col = (col + x) % pattern_col_nums row += y if pattern[row][col] == '#': moves += 1 return moves pattern = [] pattern_col_nums = pattern_row_nums = 0 with open("input", 'r', encoding="utf8") as input: for lines in input: lines = lines[:-1] pattern += lines.split() pattern_col_nums = len(pattern[0]) pattern_row_nums = len(pattern) # part 1 print("part1:", walk(3, 1)) # part 2 print("part2:", walk(1, 1) * walk(3, 1) * walk(5, 1) * walk(7, 1) * walk(1, 2)) ```
{ "source": "4roring/KK1StockSupporter", "score": 2 }
#### File: 4roring/KK1StockSupporter/KK1StockSupportBot.py ```python import telegram from telegram.ext import Updater, MessageHandler, CommandHandler, Filters from multiprocessing import Value def get_message(update: telegram.Update, context, event_handler: Value): update.message.reply_text(update.message.text) # 텔레그램 봇. 주식 API 쪽에서 Sender 역활을 하고 별도로 Updater 역활을 하는 쪽 두개의 객체를 생성해서 활용 예정. class KK1StockSupportBot: def __init__(self, token: str): self.token = token self.updater = Updater(token, use_context=True) message_handler = MessageHandler(Filters.text & (~Filters.command), get_message) self.updater.dispatcher.add_handler(message_handler) def __del__(self): self.updater.bot.sendMessage(456096060, '봇이 종료되었습니다. 다음 시작에 /init 을 수행해주세요.') def add_command_handler(self, command: str, call_back): # 텍스트에는 응답하지만 커맨드가 있으면 응답하지 않도록 설정한 것 command_handler = CommandHandler(command, call_back) self.updater.dispatcher.add_handler(command_handler) def SendMessage(self, message: str): self.updater.bot.sendMessage(456096060, message) def run(self): print('Run KK1 Stock Support Bot') self.updater.start_polling(timeout=3, clean=True) self.updater.idle() ```
{ "source": "4rqm/pycord", "score": 2 }
#### File: pycord/pycord/client.py ```python import inspect import time import traceback from collections import deque import asks import trio import sys import multio from .api import HttpClient, ShardConnection, Webhook from .models import Channel, Guild, User from .utils import Collection from .utils import Emitter from .utils.commands import Command, CommandCollection, Context class Client(Emitter): """ Represents a client that connects to Discord. This class is the core of the library, with all functionality revolving around it. Parameters ---------- shard_count : Optional[int] The amount of shards to use, this will be automatically set using the bot ws gateway endpoint if not provided. message_cache_max : Optional[int] The maximum number of messages to store in the internal deque cache. Defaults to 2500 if not provided. prefixes : optional[str, list] The prefixes to use for commands. Can either be a list or a single prefix. Defaults to 'py.' if not provided. Attributes ---------- token : str The bot token provided by the login method. is_bot : bool Specifies whether or not the client is a bot. shards : list Stores the client's ShardConnections (ws) indexed by id users : collection Stores all user objects that the client can see guilds : collection Stores all the guild objects the client is a part of currently. channels : collection Stores all the channel objects that the client can see. messages : collection A deque cache that stores the last x amount of messages specified by the ``message_cache_max`` parameter. commands : collection A special collection that stores all registered commands prefixes : list Contains a list of prefixes that a command may be used with session An asks.Session that is for public use, this is different from the internal session the HttpClient uses. """ def __init__(self, shard_count=-1, prefixes='py.', message_cache_max=2500, **kwargs): super().__init__() self.async_init() self.token = '' self.is_bot = True self._boot_up_time = None self.running = trio.Event() self.api = HttpClient(self) self.session = asks.Session() # public session self.shards = [] if shard_count < 1 else list(range(shard_count)) self.users = Collection(User) self.guilds = Collection(Guild) self.channels = Collection(Channel) self.messages = deque(maxlen=message_cache_max) self.commands = CommandCollection(self) self.webhooks = Collection(Webhook, indexor='name') self.prefixes = prefixes if isinstance(prefixes, list) else [prefixes] self._nonces = dict() def __del__(self): if self.is_bot: self.close() def async_init(self): multio.init('trio') asks.init('trio') def wait_for_nonce(self, nonce): event = multio.Event() self._nonces[str(nonce)] = event return event.wait() async def _close(self): for shard in self.shards: await shard.close() self.running.set() def close(self): trio.run(self._close) async def start(self, token, bot): self.token = self.api.token = token self.is_bot = bot # get gateway info endpoint = '/gateway' if self.is_bot: endpoint += '/bot' info = await self.api.get(endpoint) url = info.get('url') # get amount of shards shard_count = info.get('shards', 1) if len(self.shards) < 1: self.shards = list(range(shard_count)) else: shard_count = len(self.shards) # spawn shard connections async with trio.open_nursery() as nursery: for shard_id in range(shard_count): shard = ShardConnection(self, shard_id, shard_count) self.shards[shard_id] = shard nursery.start_soon(shard.start, url) # wait for client to stop running await self.running.wait() def login(self, token, bot=True): self._boot_up_time = time.time() try: trio.run(self.start, token, bot) except KeyboardInterrupt: pass finally: self.close() async def on_error(self, error): """Default error handler for events""" print('Error caught for the on_error event:', file=sys.stderr) traceback.print_exception(type(error), error, error.__traceback__) async def on_command_error(self, error): traceback.print_exception(type(error), error, error.__traceback__) async def on_message(self, message): await self.process_commands(message) async def process_commands(self, msg): context = Context(self, msg) await context.invoke() def cmd(self, name=None, *, callback=None, aliases=[]): if isinstance(aliases, str): aliases = [aliases] if inspect.iscoroutinefunction(callback): name = name or callback.__name__ cmd = Command(name=name, callback=callback, aliases=aliases) self.commands.add(cmd) else: def wrapper(coro): if not inspect.iscoroutinefunction(coro): raise RuntimeWarning('Callback is not a coroutine!') cmd = Command(name=name or coro.__name__, callback=coro, aliases=aliases) self.commands.add(cmd) return cmd return wrapper def add_webhook(self, name, url, **fields): '''Register a webhook to the client. Example: client.register_webhook('test', url) await client.webhooks.get('test').send('hello', embeds=em) ''' hook = Webhook(url=url, name=name, **fields) self.webhooks.add(hook) ``` #### File: pycord/models/channel.py ```python from ..models.core import Snowflake, Serializable from abc import ABC from .embed import Embed TEXTCHANNEL = 0 DMCHANNEL = 1 VOICECHANNEL = 2 GROUPDMCHANNEL = 3 CATEGORYCHANNEL = 4 GUILD_CHANNELS = (TEXTCHANNEL, VOICECHANNEL, CATEGORYCHANNEL) DM_CHANNELS = (GROUPDMCHANNEL, DMCHANNEL) class Sendable: """ Base class for objects that can send messages """ async def send(self, content=None, *, embed=None, tts=False): if isinstance(embed, Embed): embed = embed.to_dict() return await self.client.api.send_message(self, content=content, embed=embed, tts=tts) async def trigger_typing(self): return await self.client.api.trigger_typing(self) class Channel(Snowflake): def from_dict(self, data): for attr in data: if 'id' in attr: setattr(self, attr, int(data[attr])) else: setattr(self, attr, data[attr]) class TextChannel(Sendable, Channel): __slots__ = ("topic", "parent",'name', 'position', 'guild', 'type', 'permission_overwrites', 'id') def __init__(self, guild, data): self.guild = guild self.client = self.guild.client self.parent = self.client.channels.get(int(data.get("parent_id", 0))) self.from_dict(data) def __str__(self): return self.name def __repr__(self): return "<TextChannel name='{0.name}' id={0.id}>".format(self) def trigger_typing(self): return self.client.http.send_typing(self) class VoiceChannel(Channel): __slots__ = ('bitrate', 'user_limit', 'parent') def __init__(self, guild, data): self.guild = guild self.client = self.guild.client self.parent = self.client.channels.get(int(data.get("parent_id", 0) or 0)) self.from_dict(data) def __repr__(self): return "<VoiceChannel name='{0.name}' id={0.id} bitrate={0.bitrate} limit={0.user_limit}>".format(self) class CategoryChannel(Channel): __slots__ = ('name', 'position', 'guild') def __init__(self, guild, data): self.guild = guild self.client = self.guild.client self.parent = self.client.channels.get(int(data.get("parent_id", 0) or 0)) self.from_dict(data) def __str__(self): return self.name class DMGroupChannel(Channel, Sendable): __slots__ = ('recipients', 'icon', 'owner') def __init__(self, client, data): self.client = client self.owner = self.client.users.get(int(data.get("owner_id", 0))) self.name = None self.from_dict(data) self.recipients = [self.client.users.get(int(user["id"])) for user in data.get("recipients", ())] def trigger_typing(self): return self.client.http.send_typing(self) class DMChannel(Channel, Sendable): def __init__(self, client, data): self.client = client self.parent = self.client.channels.get(int(data.get("parent_id", 0) or 0)) self.from_dict(data) def trigger_typing(self): return self.client.http.send_typing(self) ``` #### File: pycord/models/emoji.py ```python from .core import Snowflake, Serializable from ..models.role import Role from ..utils import Collection class Emoji(Snowflake, Serializable): __slots__ = ('guild', 'id', 'name', 'roles', 'client') def __init__(self, guild, data=None): if data is None: data = {} self.guild = guild self.client = guild.client self.id = int(data.get('id', 0)) self.name = data.get('name', '') self.require_colons = bool(data.get('require_colons', False)) self.managed = bool(data.get('managed', False)) self.roles = Collection(Role) self.from_dict(data) def from_dict(self, data): self.id = int(data.get('id', 0)) self.name = data.get('name') for role in data.get('roles', []): if role: if self.guild._roles.has(role): rolee = self.guild._roles.get(role) self.roles.add(rolee) def delete(self, reason=None): return self.client.api.delete_custom_emoji(self.guild, self, reason) ``` #### File: pycord/models/guild.py ```python from ..models.channel import (Channel, TextChannel, VoiceChannel, CategoryChannel, TEXTCHANNEL, VOICECHANNEL) from ..models.core import Snowflake, Serializable from ..models.emoji import Emoji from ..models.role import Role from ..models.user import Member, User from ..utils import Collection class Game: def __init__(self, game): self.name = game.get('name') self.type = game.get('type') # TODO: Enum for type def __str__(self): types = { 0: 'Playing', 1: 'Streaming', 2: 'Listening to', 3: 'Watching', } return f'{types.get(self.type)} {self.name}' class Guild(Snowflake, Serializable): __slots__ = ( 'members', 'channels', 'emojis', 'roles', 'afk_timeout', 'afk_channel', 'icon', 'name', 'unavailable', 'name', 'region', 'default_role', 'member_count', 'large', 'owner_id', 'mfa_level', 'features', 'client', 'verification_level', 'explicit_content_filter', 'splash', ) def __init__(self, client, data=None): if data is None: data = {} self.client = client self.roles = Collection(Role) self.emojis = Collection(Emoji) self.members = Collection(Member) self.channels = Collection(Channel) self.id = int(data.get("id"), 0) self.name = None self.icon = None self.region = None self.splash = None self.mfa_level = None self.features = None self.verification_level = None self.explicit_content_filter = None if not data.get("unavailable", False): self.from_dict(data) else: self.unavailable = True def __str__(self): return self.name def from_dict(self, data): self.id = int(data.get('id', 0)) self.name = data.get('name') self.icon = data.get('icon') self.region = data.get('region') self.splash = data.get('splash') self.mfa_level = data.get('mfa_level') self.features = data.get('features', []) self.unavailable = data.get('unavailable', True) self.verification_level = data.get('verification_level') self.explicit_content_filter = data.get('explicit_content_filter', False) self.owner_id = int(data.get('owner_id')) for channel_data in data.get('channels', []): chan_type = channel_data.get('type', 0) if chan_type == TEXTCHANNEL: channel = TextChannel(self, channel_data) elif chan_type == VOICECHANNEL: channel = VoiceChannel(self, channel_data) else: channel = CategoryChannel(self, channel_data) self.client.channels.add(channel) self.channels.add(channel) for role in data.get('roles', []): self.roles.add(Role(self, role)) for emoji in data.get('emojis', []): self.emojis.add(Emoji(self, emoji)) for member in data.get('members', []): user = member.get('user') if user: user_id = int(user['id']) if not self.client.users.has(user_id): user = User(self.client, user) self.client.users.add(user) else: user = self.client.users.get(user_id) self.members.add(Member(self.client, self, user, member)) for presence in data.get('presences', []): member = self.members.get(int(presence['user']['id'])) if member is None: continue game = presence.get('game') member.game = Game(game) if game else None member.status = presence.get('status') # print(member.status) if not member.bot: member.user.status = member.status member.user.game = member.game self.owner = self.members.get(self.owner_id) @property def icon_url(self): return self.icon_url_as() def icon_url_as(self, format='png', size=1024): return 'https://cdn.discordapp.com/icons/{0.id}/{0.icon}.{1}?size={2}'.format(self, format, size) @property def text_channels(self): return tuple(filter(lambda x: isinstance(x, TextChannel), self.channels)) @property def voice_channels(self): return tuple(filter(lambda x: isinstance(x, VoiceChannel), self.channels)) def add_member(self, member): self.members[member.id] = member ```
{ "source": "4rr0w/twitterSIte", "score": 3 }
#### File: flask_app/analyser/serve.py ```python import pandas as pd class Serve: def __init__(self, username, since, end) -> None: since_day = pd.to_datetime(since) end_day = pd.to_datetime(end) self.df = pd.read_excel("./Sentimental/%s-tweets-analysed.xlsx" % username, engine= 'openpyxl') self.df_filtered = self.df[(self.df['created_at'] >= since_day) & (self.df['created_at'] <= end_day)] self.username = username def get_sentiments(self)-> dict: dict = {} dict["neutral"] = self.df_filtered[self.df_filtered["polarity"] == 0].shape[0] dict["weak_positive"] = self.df_filtered[(self.df_filtered["polarity"] > 0) & (self.df_filtered["polarity"] <= 0.3)].shape[0] dict["positive"] = self.df_filtered[(self.df_filtered["polarity"] > 0.3) & (self.df_filtered["polarity"] <= 0.6)].shape[0] dict["strong_positive"] = self.df_filtered[(self.df_filtered["polarity"] > 0.6) & (self.df_filtered["polarity"] <= 1)].shape[0] dict["weak_negative"] = self.df_filtered[(self.df_filtered["polarity"] < 0) & (self.df_filtered["polarity"] >= -0.3)].shape[0] dict["negative"] = self.df_filtered[(self.df_filtered["polarity"] < -0.3) & (self.df_filtered["polarity"] >= -0.6)].shape[0] dict["strong_negative"] = self.df_filtered[(self.df_filtered["polarity"] < -0.6) & (self.df_filtered["polarity"] >= -1)].shape[0] return dict ``` #### File: flask_app/analyser/tweets.py ```python import os import tweepy from huepy import * # refer to this https://github.com/s0md3v/huepy import re import time import pandas as pd from pandas import DataFrame from mtranslate import translate from textblob import TextBlob import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize class Twitter: def __init__(self) -> None: self.df_extracted = DataFrame() self.df_translated = DataFrame() self.df_filtered = DataFrame() self.df_stopwords = DataFrame() self.df_sentiments = DataFrame() nltk.download("punkt") nltk.download('stopwords') def extract_tweets(self, username, since): date_since = time.strptime(since, "%Y-%m-%d") # Function to read env file for api keys def get_api(path: str) -> dict: with open(path, 'r') as f: return dict(tuple(line.replace('\n', '').split('=')) for line in f.readlines() if not line.startswith('#')) # this variable stores dict for all the keys/data that should not be uploaded to github publicly. keys: dict = get_api(".env") # set Oauth keys for tweepy auth = tweepy.OAuthHandler(keys['API_key'], keys['API_secret']) auth.set_access_token(keys['access_token'], keys['access_token_secret']) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) # Get user's tweets object tweets = api.user_timeline(screen_name=username, # 200 is the maximum allowed count count=200, include_rts=False, # Necessary to keep full_text # otherwise only the first 140 words are extracted tweet_mode='extended' ) all_tweets = [] all_tweets.extend(tweets) oldest_id = tweets[-1].id try: while True: tweet_date = tweets[-1].created_at.strftime("%Y-%m-%d") oldest_tweet_date = time.strptime(tweet_date, "%Y-%m-%d") if(oldest_tweet_date < date_since): break tweets = api.user_timeline(screen_name=username, # 200 is the maximum allowed count count=200, include_rts=False, max_id=oldest_id - 1, # Necessary to keep full_text # otherwise only the first 140 words are extracted tweet_mode='extended' ) oldest_id = tweets[-1].id # if len(tweets) == 0: # break all_tweets.extend(tweets) except: print(info("Tweet limit reached for user: %s" % username)) # transform the tweepy tweets into a 2D array that will populate the csv outtweets = [[tweet.id_str, tweet.created_at, tweet.favorite_count, tweet.retweet_count, tweet.full_text.encode("utf-8").decode("utf-8")] for idx, tweet in enumerate(all_tweets)] self.df_extracted = DataFrame(outtweets, columns=[ "id", "created_at", "favorite_count", "retweet_count", "text"]) print(good('Successfully extracted raw tweets for %s' % username)) def translate_tweets(self, username): self.df_translated = self.df_extracted # concat multiple tweets for fast translations merged_tweets_df = pd.DataFrame(self.df_extracted.groupby( self.df_translated.index // 7)["text"].agg(" ENDOFTWEETS ".join)) list = [] for index, row in merged_tweets_df.iterrows(): list.append(translate(row.text.encode( "utf-8").decode("utf-8"), "en")) final_translated_tweets = [] for merged_tweets in list: for tweet in merged_tweets.split(" ENDOFTWEETS "): final_translated_tweets.append(tweet) self.df_translated["translated-text"] = pd.Series( final_translated_tweets) print(good('Successfully translated tweets for %s' % username)) def filter_tweets(self, username): self.df_filtered = self.df_translated # concat multiple tweets for fast cleaning list = [] for index, row in self.df_filtered.iterrows(): # remove @usernames and special characters(*,!,.,?) clean_text = ' '.join(re.sub( "(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w +:\ / \ / \S +)", " ", str(row["translated-text"])).split()) # remove urls and links clean_text = re.sub( 'https?://[A-Za -z0-9./]+', '', str(clean_text)) clean_text = clean_text.lower() # remove #xyz to xyz clean_text = re.sub("[^a-zA-Z]", " ", str(clean_text)) list.append(clean_text) self.df_filtered["filtered-text"] = pd.Series(list) print(good('Successfully filtered tweets for %s' % username)) def remove_stopwords(self, username): self.df_stopwords = self.df_filtered # concat multiple tweets for fast cleaning list = [] stop_words = stopwords.words("english") stop_words.extend(["the", "in", "jii", "ji", "shri", "shree", "mati", "https", "co", "com"]) for index, row in self.df_stopwords.iterrows(): # remove @usernames and special characters(*,!,.,?) text = str(row["filtered-text"]) text_tokens = word_tokenize(text) tokens_without_sw = [word for word in text_tokens if not word in stop_words] filtered_sentence = (" ").join(tokens_without_sw) list.append(filtered_sentence) self.df_stopwords["no-stopword-text"] = pd.Series(list) print(good('Successfully removed stopwords tweets for %s' % username)) def analyse_sentiments(self, username): self.df_sentiments = self.df_stopwords sentiments = DataFrame() sentiments[['polarity', 'subjectivity']] = self.df_filtered['filtered-text'].apply( lambda Text: pd.Series(TextBlob(str(Text)).sentiment)) self.df_sentiments[['polarity', 'subjectivity']] = sentiments if not os.path.exists("Sentimental"): os.makedirs("Sentimental") # output new excel file self.df_sentiments.to_excel( "./Sentimental/%s-tweets-analysed.xlsx" % username, engine='openpyxl') print(good('Successfully written analysed tweets to: "./Sentimental/' + '%s-tweets-analysed.xls"' % username)) def main(self, username: str, start_date): self.extract_tweets(username, start_date) self.translate_tweets(username) self.filter_tweets(username) self.remove_stopwords(username) self.analyse_sentiments(username) ``` #### File: twitterSIte/flask_app/app.py ```python from main import api_wordcloud from flask import Flask, request, jsonify from flask_cors import cross_origin from main import api_admin, api_client import traceback app = Flask(__name__) # app.debug = True @app.route('/') @cross_origin() def home(): return "home" @app.route('/admin') @cross_origin() def admin(): username = request.args.get('username') start = request.args.get('start') try: api_admin(username, start) return "Success" except: return traceback.format_exc() @app.route('/client') @cross_origin() def client(): username = request.args.get('username') start = request.args.get('start') end = request.args.get('end') try: sentiments = api_client(username, start, end) return jsonify(sentiments) except: return traceback.format_exc() @app.route('/wordcloud') @cross_origin() def wordcloud(): username = request.args.get('username') start = request.args.get('start') end = request.args.get('end') try: count = api_wordcloud(username, start, end) return jsonify(count) except: return traceback.format_exc() if __name__ == '__main__': app.run(host='0.0.0.0', debug = True) ```
{ "source": "4rtemi5/imax", "score": 2 }
#### File: imax/tests/test_color_transforms.py ```python from imax import color_transforms from jax import numpy as jnp from utils import compare im1 = jnp.ones((3, 3, 3), dtype='uint8') * 255 im2 = jnp.zeros((3, 3, 3), dtype='uint8') mask = jnp.array([ [[0], [0], [0]], [[0], [1], [0]], [[0], [0], [0]]], dtype='bool') def test_blend(): factor = jnp.array(0.55 * 255, dtype='uint8') inputs = [im1, im2] targets = (im2 * factor).astype('uint8') outputs = color_transforms.blend(inputs[0], inputs[1], factor) compare(inputs, targets, outputs) def test_cutout(): inputs = im2 targets = mask.astype('uint8') * 42 outputs = color_transforms.cutout(inputs, mask, replace=42) compare(inputs, targets, outputs) def test_solarize(): inputs = im1 targets = im2 outputs = color_transforms.solarize(inputs, threshold=128) compare(inputs, targets, outputs) def test_solarize_add(): inputs = im1 * mask targets = jnp.ones_like(im1) * 245 * mask + 10 outputs = color_transforms.solarize_add(inputs, addition=10, threshold=128) compare(inputs, targets, outputs) def test_gray_to_rgb_to_gray(): inputs = jnp.ones_like(im1) ```
{ "source": "4rtem/RushTI", "score": 2 }
#### File: 4rtem/RushTI/RushTI.py ```python import asyncio import configparser import logging import os import shlex import sys from base64 import b64decode from concurrent.futures import ThreadPoolExecutor from TM1py import TM1Service APPNAME = "RushTI" LOGFILE = "{current_directory}/RushTI.log".format(current_directory=sys.path[0]) CONFIG = "{current_directory}/config.ini".format(current_directory=sys.path[0]) logging.basicConfig( filename=LOGFILE, format='%(asctime)s - RushTI - %(levelname)s - %(message)s', level=logging.INFO) def setup_tm1_services(): """ Return Dictionary with TM1ServerName (as in config.ini) : Instantiated TM1Service :return: Dictionary server_names and TM1py.TM1Service instances pairs """ if not os.path.isfile(CONFIG): raise ValueError("config.ini does not exist.") tm1_services = dict() # parse .ini config = configparser.ConfigParser() config.read(CONFIG) # build tm1_services dictionary for tm1_server_name, params in config.items(): # handle default values from configparser if tm1_server_name != config.default_section: try: params["password"] = <PASSWORD>(params["password"]) tm1_services[tm1_server_name] = TM1Service(**params, session_context=APPNAME) # Instance not running, Firewall or wrong connection parameters except Exception as e: logging.error("TM1 instance {} not accessible. Error: {}".format(tm1_server_name, str(e))) return tm1_services def decrypt_password(encrypted_password): """ b64 decoding :param encrypted_password: encrypted password with b64 :return: password in plain text """ return b64decode(encrypted_password).decode("UTF-8") def extract_info_from_line(line): """ Translate one line from txt file into arguments for execution: instance, process, parameters :param line: Arguments for execution. E.g. instance="tm1srv01" process="Bedrock.Server.Wait" pWaitSec=2 :return: instance_name, process_name, parameters """ parameters = {} for pair in shlex.split(line): param, value = pair.split("=") # if instance or process needs to be case insensitive if param.lower() == 'process' or param.lower() == 'instance': parameters[param.lower()] = value.strip('"').strip() # parameters (e.g. pWaitSec) are case sensitive in TM1 REST API ! else: parameters[param] = value.strip('"').strip() instance_name = parameters.pop("instance") process_name = parameters.pop("process") return instance_name, process_name, parameters def execute_line(line, tm1_services): """ Execute one line from the txt file :param line: :param tm1_services: :return: """ if len(line.strip()) == 0: return instance_name, process_name, parameters = extract_info_from_line(line) if instance_name not in tm1_services: msg = "Process {process_name} not executed on {instance_name}. {instance_name} not accessible.".format( process_name=process_name, instance_name=instance_name) logging.error(msg) return tm1 = tm1_services[instance_name] # Execute it try: msg = "Executing process: {process_name} with Parameters: {parameters} on instance: {instance_name}".format( process_name=process_name, parameters=parameters, instance_name=instance_name) logging.info(msg) tm1.processes.execute(process_name=process_name, **parameters) msg = "Execution Successful: {process_name} with Parameters: {parameters} on instance: {instance_name}".format( process_name=process_name, parameters=parameters, instance_name=instance_name) logging.info(msg) except Exception as e: msg = "Execution Failed. Process: {process}, Parameters: {parameters}, Error: {error}".format( process=process_name, parameters=parameters, error=str(e)) logging.error(msg) async def work_through_tasks(path, max_workers, tm1_services): """ loop through file. Add all lines to the execution queue. :param path: :param max_workers: :param tm1_services: :return: """ with open(path) as file: lines = file.readlines() loop = asyncio.get_event_loop() with ThreadPoolExecutor(max_workers=int(max_workers)) as executor: futures = [loop.run_in_executor(executor, execute_line, line, tm1_services) for line in lines] for future in futures: await future def logout(tm1_services): """ logout from all instances :param tm1_services: :return: """ for tm1 in tm1_services.values(): tm1.logout() def translate_cmd_arguments(*args): """ Translation and Validity-checks for command line arguments. :param args: :return: path_to_file and max_workers """ # too few arguments if len(args) < 3: msg = "RushTI needs to executed with two arguments." logging.error(msg) raise ValueError(msg) # txt file doesnt exist if not os.path.isfile(args[1]): msg = "Argument 1 (path to file) invalid. File needs to exist." logging.error(msg) raise ValueError(msg) # max_workers is not a number if not args[2].isdigit(): msg = "Argument 2 (max workers) invalid. Needs to be number." logging.error(msg) raise ValueError(msg) return args[1], args[2] # recieves two arguments: 1) path-to-txt-file, 2) max-workers if __name__ == "__main__": logging.info("{app_name} starts. Parameters: {parameters}.".format( app_name=APPNAME, parameters=sys.argv)) # read commandline arguments path_to_file, max_workers = translate_cmd_arguments(*sys.argv) # setup connections tm1_services = setup_tm1_services() # execution loop = asyncio.get_event_loop() try: loop.run_until_complete(work_through_tasks(path_to_file, max_workers, tm1_services)) finally: logout(tm1_services) loop.close() logging.info("{app_name} ends".format(app_name=APPNAME)) ```
{ "source": "4rund3v/banix", "score": 3 }
#### File: src/email/email_client.py ```python import os import sys import smtplib from email.mime.text import MIMEText import bottle from bottle import run, route, error import json from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email import encoders from email_template import generate_email_template from email_config import SENDER_EMAIL_ID, SENDER_EMAIL_PASSWORD class EmailClient: def __init__(self, smtp_server="smtp.gmail.com", smtp_port=587,\ senders_email=None, senders_password=None, raise_exception=False): self.smtp_host = smtp_server self.smtp_port = smtp_port self.email_id = senders_email self.password = <PASSWORD> self.logged_in = False self.raise_exception = False self.server = None def connect(self): try: self.server = smtplib.SMTP(self.smtp_host, self.smtp_port,None,30) self.server.starttls() return True except Exception as ex: print("EmailClient.connect: Exception(: %s) while connecting to smtp server." %str(ex)) if self.raise_exception: raise Exception(ex) return False def close(self): try: self.server.close() return True except Exception as ex: print("EmailClient.close: Exception(: %s) while closing smtp server connection." %str(ex)) if self.raise_exception: raise Exception(ex) return False def login(self, senders_email=None, senders_password=None): try: if not self.connect(): return False email = senders_email if senders_email else self.email_id password = senders_password if senders_password else self.password self.server.login(email, password) self.logged_in = True return True except Exception as ex: print("EmailClient.login: Exception(: %s) in login" %str(ex)) if self.raise_exception: raise Exception(ex) return False def logout(self): try: if self.logged_in: self.server.quit() self.close() return True except Exception as ex: print("EmailClient.logout: Exception(: %s) in logout" %str(ex)) if self.raise_exception: raise Exception(ex) self.logged_in = False return False def sendEmail(self, recipients, subject, body, files =[], logout=True): status = "failed" try: assert type(files)==list if self.email_id and self.password: self.login() else: raise Exception("Login failed; senders email and password not provided.") recipients_str = "" if isinstance(recipients, list): recipients_str = ", ".join(recipients) elif type(recipients) in [str, unicode]: recipients_str = recipients recipients = [recipients] #mail = MIMEText(body) mail = MIMEMultipart() mail["Subject"] = subject mail["From"] = self.email_id mail["To"] = recipients_str mail.attach(MIMEText(body,'html')) self.add_attachments_to_mail(mail,files) self.server.sendmail(self.email_id, recipients, mail.as_string()) status = "success" except Exception as ex: print("EmailClient.sendEmail: Failed sending email due to Exception(: %s)" %str(ex)) if self.raise_exception: raise Exception(ex) self.logout() return status def add_attachments_to_mail(self,mail,file_path=[]): for _file in file_path: if not os.path.isfile(_file): continue ctype, encoding = mimetypes.guess_type(_file) if ctype is None or encoding is not None: ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) if maintype == 'text': fp = open(_file) # Note: we should handle calculating the charset msg = MIMEText(fp.read(), _subtype=subtype) fp.close() elif maintype == 'image': fp = open(_file, 'rb') msg = MIMEImage(fp.read(), _subtype=subtype) fp.close() elif maintype == 'audio': fp = open(_file, 'rb') msg = MIMEAudio(fp.read(), _subtype=subtype) fp.close() else: fp = open(_file, 'rb') msg = MIMEBase(maintype, subtype) msg.set_payload(fp.read()) fp.close() # Encode the payload using Base64 encoders.encode_base64(msg) filename = os.path.basename(_file) msg.add_header('Content-Disposition', 'attachment', filename=filename) mail.attach(msg) return mail @route("/send_email", method="POST") def send_email(): #Input: {"username":"Arun", "email_id": "<EMAIL>"} info = json.load(bottle.request.body) print("[send_email] Info: {}".format(info)) mail_man = EmailClient(senders_email = SENDER_EMAIL_ID, senders_password = SENDER_EMAIL_PASSWORD, raise_exception=True) mail_body = generate_email_template(info["username"]) try: mail_status = mail_man.sendEmail([info["email_id"]], "your order placed", mail_body, logout=True) print("[send_email] mail status: {}".format(mail_status)) except Exception as ex: print("[send_email] Exception is {}".format(ex)) if __name__ == '__main__': run(host='0.0.0.0', port=7702, server='twisted') ``` #### File: src/email/email_template.py ```python def generate_email_template(username): """ Prepared HTML Email template returns html_template """ return '''<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="x-ua-compatible" content="ie=edge"> <title>banix order confirmation</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <style type="text/css"> /** * Google webfonts. Recommended to include the .woff version for cross-client compatibility. */ @media screen { @font-face { font-family: 'Source Sans Pro'; font-style: normal; font-weight: 400; src: local('Source Sans Pro Regular'), local('SourceSansPro-Regular'); } @font-face { font-family: 'Source Sans Pro'; font-style: normal; font-weight: 700; src: local('Source Sans Pro Bold'), local('SourceSansPro-Bold'); } } /** * Remove blue links for iOS devices. */ a[x-apple-data-detectors] { font-family: inherit !important; font-size: inherit !important; font-weight: inherit !important; line-height: inherit !important; color: inherit !important; text-decoration: none !important; } /** * Fix centering issues in Android 4.4. */ div[style*="margin: 16px 0;"] { margin: 0 !important; } body { width: 100% !important; height: 100% !important; padding: 0 !important; margin: 0 !important; } a { color: #1a82e2; } </style> </head> <body style="background-color: #e9ecef;"> <p>Dear '''+username+''',</p> <p> Greetings of the day,<br> Your banix order is placed successfully. Our team is working round the clock to deliver your order at the earliest.<br> For any clarification contact <EMAIL> </p> <p>Thanks<br>Team banix</p> </body> </html> ''' ``` #### File: src/models/cart.py ```python from src.models import Base from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.orm import relationship class Cart(Base): __tablename__ = "cart" cart_id = Column(Integer, primary_key=True, autoincrement=True) customer_id = Column(Integer, ForeignKey('customers.customer_id')) cart_items = relationship("CartItem", backref="cart_item") def __repr__(self): return f"""<Cart(cart_id={self.cart_id}) email_id={self.email_id}>""" def to_dict(self): cart_items = [] if self.cart_items: cart_items = [cart_item.to_dict() for cart_item in self.cart_items] return dict(cart_id=self.cart_id, customer_id=self.customer_id, cart_items = cart_items ) class CartItem(Base): __tablename__ = "cart_items" cart_item_id = Column(Integer, primary_key=True, autoincrement=True) cart_id = Column(Integer, ForeignKey('cart.cart_id')) cart_item_qty = Column(Integer, nullable=False) product_id = Column(Integer, ForeignKey('products.product_id')) def __repr__(self): return f"""<CartItem(cart_item_id={self.cart_item_id}) cart_item_qty={self.cart_item_qty} product_id={self.product_id}>""" def to_dict(self): return dict(cart_item_id=self.cart_item_id, cart_item_qty=self.cart_item_qty, product_id = self.product_id ) ``` #### File: src/models/orders.py ```python from src.models import Base from sqlalchemy import Column, Integer, String, ForeignKey, DateTime from sqlalchemy.orm import relationship from datetime import datetime class Orders(Base): __tablename__ = "orders" order_id = Column(Integer, primary_key=True, autoincrement=True) order_customer_id = Column(Integer, ForeignKey("customers.customer_id"), nullable=False) order_info_id = Column(String(100), unique=True, nullable=False) order_date = Column(String(30), nullable=False) order_created_datetime = Column(DateTime(timezone=True), default=datetime.now) order_updated_datetime = Column(DateTime(timezone=True), default=datetime.now, onupdate=datetime.now) order_price = relationship("OrderPrice", uselist=False, cascade="all, delete, delete-orphan") order_status = relationship("OrderStatus", uselist=False, cascade="all, delete, delete-orphan") payment_info = relationship("PaymentInfo", uselist=False, back_populates="orders") order_items = relationship("OrderItem", cascade="all, delete, delete-orphan") order_shipping_address = relationship("Address", uselist=False,cascade="all, delete, delete-orphan") order_shipping_info = relationship("OrderShippingInfo", uselist=False, cascade="all, delete, delete-orphan") def __repr__(self): return f"""<Orders order_id{self.order_id} order_date{self.order_date}>""" def to_dict(self): order_price = {} if self.order_price: order_price = self.order_price.to_dict() order_status = {} if self.order_status: order_status = self.order_status.to_dict() payment_info = {} if self.payment_info: payment_info = self.payment_info.to_dict() order_items = [] if self.order_items: for order_item in self.order_items: order_items.append(order_item.to_dict()) order_shipping_address = {} if self.order_shipping_address: order_shipping_address = self.order_shipping_address.to_dict() order_shipping_info = {} if self.order_shipping_info: order_shipping_info = self.order_shipping_info.to_dict() return dict(order_id=self.order_id, order_customer_id=self.order_customer_id, order_info_id=self.order_info_id, payment_info=payment_info, order_items=order_items, order_date=self.order_date, order_price=order_price, order_shipping_address=order_shipping_address, order_shipping_info=order_shipping_info, order_status=order_status, order_created_datetime=str(self.order_created_datetime), order_updated_datetime=str(self.order_updated_datetime), ) class OrderPrice(Base): __tablename__ = "order_price" order_price_id = Column(Integer, primary_key=True, autoincrement=True) order_foreign_id = Column(Integer, ForeignKey("orders.order_id"), nullable=False) orders = relationship("Orders", back_populates="order_price") order_total_price = Column(Integer, nullable=False) order_shipping_price = Column(Integer, nullable=False) order_tax_price = Column(Integer, nullable=False) order_selling_price = Column(Integer, nullable=False) def to_dict(self): return dict( order_price_id=self.order_price_id, order_foreign_id=self.order_foreign_id, order_total_price=self.order_total_price, order_shipping_price=self.order_shipping_price, order_tax_price=self.order_tax_price, order_selling_price=self.order_selling_price, ) class OrderStatus(Base): __tablename__ = "order_status" order_status_id = Column(Integer, primary_key=True, autoincrement=True) order_foreign_id = Column(Integer, ForeignKey("orders.order_id"), nullable=False) orders = relationship("Orders", back_populates="order_status") status = Column(String(30), nullable=False) def to_dict(self): return dict(order_status_id=self.order_status_id, status=self.status) class OrderItem(Base): __tablename__ = "order_items" order_item_id = Column(Integer, primary_key=True, autoincrement=True) order_foreign_id = Column(Integer, ForeignKey("orders.order_id"), nullable=False) orders = relationship("Orders", back_populates="order_items") order_product_foreign_id = Column(Integer, ForeignKey("products.product_id"), nullable=False) order_item_product_name = Column(String(300), nullable=False) order_item_total_price = Column(Integer, nullable=False) order_item_selling_price = Column(Integer, nullable=False) order_item_shipping_price = Column(Integer, nullable=False) order_item_tax_price = Column(Integer, nullable=False) order_item_quantity = Column(Integer, nullable=False) def __repr__(self): return f"""<OrderItem order_item_id{self.order_item_id} order foreign key {self.order_foreign_id}> order_item_name {self.order_item_product_name}""" def to_dict(self): return dict(order_item_id=self.order_item_id, order_item_product_name=self.order_item_product_name, order_foreign_id=self.order_foreign_id, order_product_foreign_id=self.order_product_foreign_id, order_item_total_price=self.order_item_total_price, order_item_selling_price=self.order_item_selling_price, order_item_shipping_price=self.order_item_shipping_price, order_item_tax_price=self.order_item_tax_price, order_item_quantity=self.order_item_quantity) class OrderShippingInfo(Base): __tablename__ = "order_shipping_info" order_item_shipping_info_id = Column(Integer, primary_key=True, autoincrement=True) order_shipping_status = Column(String, nullable=False) order_foreign_id = Column(Integer, ForeignKey("orders.order_id"), nullable=False) shipping_info_created_datetime = Column(DateTime(), default=datetime.now) shipping_info_updated_datetime = Column(DateTime(), default=datetime.now, onupdate=datetime.now) def __repr__(self): return f"""<OrderShippingInfo order_item_shipping_info_id{self.order_item_shipping_info_id} order foreign key {self.order_foreign_id}>""" def to_dict(self): return dict( order_item_shipping_info_id=self.order_item_shipping_info_id, order_shipping_status=self.order_shipping_status, order_foreign_id=self.order_foreign_id, shipping_info_created_datetime=str(self.shipping_info_created_datetime), shipping_info_updated_datetime=str(self.shipping_info_updated_datetime) ) ``` #### File: src/shiprocket/client.py ```python from configuration import shiprocket_username, shiprocket_password from src.shiprocket import constants as shiprocket_consts from requests import session import json import uuid class ShiprocketClient(): """ Client to handle the communication with the shiprocket apis. """ def __init__(self): self.active_session = None self._authorization_post_data = json.dumps({ "email": shiprocket_username, "password": <PASSWORD> }) pass def connect(self): """ Creates an connection to the shiprocket server """ try: _session = session() _session.headers.update({'Content-Type': 'application/json'}) resp = _session.post(shiprocket_consts.AUTHENTICATION_API, data=self._authorization_post_data) resp.raise_for_status() resp_data = resp.json() _session.headers.update({shiprocket_consts.AUTHENTICATION_HEADER_NAME: "{} {}".format(shiprocket_consts.AUTHENTICATION_TOKEN_PREFIX, resp_data["token"]) }) print(f"[ShiprocketClient][connect] Active Session Headers :: {_session.headers}") self.active_session = _session return True except Exception as ex: print(f"[ShiprocketClient][connect] Unable to connect to the shiprocket client : {ex}") return False def check_serviceability(self, product_weight:int, src_pin_code: int, dst_pin_code: int): """ Check the serviceablity of the courier to the given pin code. """ serviceability = { "estimated_delivery_days": -1 } try: self.active_session.headers.update({'Content-Type': 'application/json'}) query_data = json.dumps({"weight": product_weight, "cod": 0, "pickup_postcode": src_pin_code, "delivery_postcode": dst_pin_code }) print(f"[ShiprocketClient][check_serviceability] Data prepared is : {query_data}") resp = self.active_session.get(shiprocket_consts.COURIER_SERVICEABILITY_URL, data=query_data) resp.raise_for_status() if resp.status_code == 404: serviceability["estimated_delivery_days"] = -1 else: resp_data = resp.json() # print(f"[ShiprocketClient][check_serviceability] The serviceablity response is :: {resp_data}") recommended_option = resp_data["data"]["available_courier_companies"][0] serviceability["estimated_delivery_days"] = recommended_option["estimated_delivery_days"] serviceability["courier_name"] = recommended_option["courier_name"] serviceability["courier_company_id"] = recommended_option["courier_company_id"] serviceability["rate"] = recommended_option["rate"] serviceability["dst_pin_code"] = dst_pin_code serviceability["serviceability_id"] = str(uuid.uuid4()) print(f"[ShiprocketClient][check_serviceability] The serviceability info prepared is : {serviceability}") except Exception as ex: print(f"[ShiprocketClient][check_serviceability] Unable to fetch the serviceablity : {ex}") return serviceability def check_delivery_cost(self, product_weight:int, src_pin_code: int, dst_pin_code: int): delivery_cost = -1 try: self.active_session.headers.update({'Content-Type': 'application/json'}) query_data = json.dumps({"weight": product_weight, "cod": 0, "pickup_postcode": src_pin_code, "delivery_postcode": dst_pin_code }) print(f"[ShiprocketClient][check_delivery_cost] Data prepared is : {query_data}") resp = self.active_session.get(shiprocket_consts.COURIER_SERVICEABILITY_URL, data=query_data) resp.raise_for_status() if resp.status_code == 404: serviceability["estimated_delivery_days"] = -1 else: resp_data = resp.json() # print(f"[ShiprocketClient][check_delivery_cost] The serviceablity response is :: {resp_data}") recommended_option = resp_data["data"]["available_courier_companies"][0] delivery_cost = recommended_option["rate"] print(f"[ShiprocketClient][check_delivery_cost] The delivery cost info is : {delivery_cost}") except Exception as ex: print(f"[ShiprocketClient][check_delivery_cost] Unable to fetch the delivery cost : {ex}") return delivery_cost ``` #### File: banix_server/src/utils.py ```python import datetime from src.constants import TIMESTAMP_FORMAT def json_friendly(obj): if not obj or type(obj) in (int, float, str): return obj if type(obj) == datetime.datetime: return obj.strftime("%Y-%m-%d %H:%M:%S") if type(obj) == dict: for k in obj: obj[k] = json_friendly(obj[k]) return obj if type(obj) == list: for i, v in enumerate(obj): obj[i] = json_friendly(v) return obj if type(obj) == tuple: temp = [] for v in obj: temp.append(json_friendly(v)) return tuple(temp) return str(obj) ```
{ "source": "4rzael/krocs", "score": 3 }
#### File: krocs/utils/frames.py ```python from PyQt5.QtWidgets import QFrame, QLabel """ Proprietary imports. """ from .colors import valid_color, intermediate_color, critical_color class SunkenHLine(QFrame): def __init__(self): super(SunkenHLine, self).__init__() self.setFrameShape(QFrame.HLine) self.setFrameShadow(QFrame.Sunken) class StatusLabel(QLabel): def __init__(self, text): super(QLabel, self).__init__() self.setText(text) self.setAutoFillBackground(True) self.setStyleSheet( "QLabel { margin-left: 5px; border-radius: 5px; " + "background-color: %s; }" % critical_color) def setValid(self): self.setStyleSheet( "QLabel { margin-left: 5px; border-radius: 5px; " + "background-color: %s; }" % valid_color) def setIntermediate(self): self.setStyleSheet( "QLabel { margin-left: 5px; border-radius: 5px; " + "background-color: %s; }" % intermediate_color) def setCritical(self): self.setStyleSheet( "QLabel { margin-left: 5px; border-radius: 5px; " + "background-color: %s; }" % critical_color) ``` #### File: krocs/widgets/connection_window.py ```python from PyQt5.QtCore import QRegExp, Qt from PyQt5.QtGui import QRegExpValidator, QValidator from PyQt5.QtWidgets import (QWidget, QLabel, QLineEdit, QPushButton, QFormLayout) """ Proprietary imports. """ from utils import (SunkenHLine, StatusLabel, valid_color, intermediate_color, critical_color) class ConnectionWindow(QWidget): """ Connection to kRPC server window.""" def __init__(self, conn): super(ConnectionWindow, self).__init__() """ Set window modality """ self.setWindowModality(Qt.WindowModal) """ Connection object as attribute. """ self.conn = conn self.conn.synced.connect(self._conn_synced) self.conn.unsynced.connect(self._conn_unsynced) """ Connection form attributes definitions. """ name_lbl = QLabel("Connection name:") self.name = QLineEdit("Default") name_regexp = QRegExp("^[\w\-\s]+$") name_validator = QRegExpValidator(name_regexp) self.name.setValidator(name_validator) self.name.textChanged.connect(self.validate_form) addr_lbl = QLabel("Server address:") self.addr = QLineEdit("127.0.0.1") ipv4_regexp = QRegExp("((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}" + "(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$") ipv4_validator = QRegExpValidator(ipv4_regexp) self.addr.setValidator(ipv4_validator) self.addr.textChanged.connect(self.validate_form) rpc_port_lbl = QLabel("RPC port:") self.rpc_port = QLineEdit("50000") tcp_regexp = QRegExp("([0-9]{1,4}|[1-5][0-9]{4}|6[0-4][0-9]{3}|65" + "[0-4][0-9]{2}|655[0-2][0-9]|6553[0-5])") tcp_validator = QRegExpValidator(tcp_regexp) self.rpc_port.setValidator(tcp_validator) self.rpc_port.textChanged.connect(self.validate_form) stream_port_lbl = QLabel("Stream port:") self.stream_port = QLineEdit("50001") self.stream_port.setValidator(tcp_validator) self.stream_port.textChanged.connect(self.validate_form) self.sync_btn = QPushButton("Connect") self.sync_btn.setDefault(True) self.sync_btn.clicked.connect(lambda:self._request_sync()) status_lbl = QLabel("Connection status:") self.status = StatusLabel("Not connected.") self.unsync_btn = QPushButton("Disconnect") if self.conn.connected == False: self.unsync_btn.setEnabled(False) self.unsync_btn.clicked.connect(lambda:self._request_unsync()) """ Connection form layout definition. """ fbox = QFormLayout() fbox.addRow(name_lbl, self.name) fbox.addRow(addr_lbl, self.addr) fbox.addRow(rpc_port_lbl, self.rpc_port) fbox.addRow(stream_port_lbl, self.stream_port) fbox.addRow(self.sync_btn) fbox.addRow(SunkenHLine()) fbox.addRow(status_lbl, self.status) fbox.addRow(self.unsync_btn) """ Connection window layout definition. """ self.setLayout(fbox) self.setMinimumSize(400, 300) self.setMaximumSize(400, 300) self.setWindowTitle("Connection to kRPC server") """ Signals emission to perform first validation fullfilling decoration purposes """ self.name.textChanged.emit(self.name.text()) self.addr.textChanged.emit(self.addr.text()) self.rpc_port.textChanged.emit(self.rpc_port.text()) self.stream_port.textChanged.emit(self.stream_port.text()) def validate_form(self): """ form validation for each attributes, changing attributes background color and connection button enabled property. """ sender = self.sender() validator = sender.validator() state = validator.validate(sender.text(), 0)[0] if state == QValidator.Acceptable: color = valid_color elif state == QValidator.Intermediate: color = intermediate_color else: color = critical_color sender.setStyleSheet("QLineEdit { background-color: %s }" % color) name_validator = self.name.validator() addr_validator = self.addr.validator() rpc_port_validator = self.rpc_port.validator() stream_port_validator = self.stream_port.validator() name_state = name_validator.validate(self.name.text(), 0)[0] addr_state = addr_validator.validate(self.addr.text(), 0)[0] rpc_port_state = rpc_port_validator.validate(self.rpc_port.text(), 0)[0] stream_port_state = stream_port_validator.validate( self.stream_port.text(), 0)[0] if (name_state == QValidator.Acceptable and addr_state == QValidator.Acceptable and rpc_port_state == QValidator.Acceptable and stream_port_state == QValidator.Acceptable): self.sync_btn.setEnabled(True) else: self.sync_btn.setEnabled(False) def _request_sync(self): """ Requesting a connection object from a kRPC server. """ self.conn.sync(self.name.text(), self.addr.text(), int(self.rpc_port.text()), int(self.stream_port.text())) def _request_unsync(self): """ Terminating a connection. """ self.conn.unsync() self.unsync_btn = QPushButton("Close connection") def _conn_synced(self): """ Updating view if new connection. """ self.status.setText("Connected to %s." % self.conn.addr) self.status.setValid() self.unsync_btn.setEnabled(True) def _conn_unsynced(self): """ Updating view if closed connection. """ self.status.setText("Not connected.") self.status.setCritical() self.unsync_btn.setEnabled(False) ``` #### File: widgets/main_window/vessels_menu.py ```python from ..vessel_window import VesselWindow from PyQt5.QtWidgets import QMainWindow """ "Vessels" menu handler in main window """ class VesselsMenu(object): def __init__(self, window, vessels, bar): self.window = window self.vessels = vessels self.bar = bar self.menu = self.bar.addMenu('Vessels') self.vessel_windows = {} """ Updating menu content """ def vessels_updated(vessels): self.menu.clear() for vessel in vessels: action = self.menu.addAction(vessel.name) action.setCheckable(True) action.toggled.connect(lambda *args: self.on_vessel_click(action, vessel)) self.vessels.updated.connect(vessels_updated) def on_vessel_click(self, action, vessel): if vessel in self.vessel_windows.keys(): self.on_vessel_deselection(action, vessel) else: self.on_vessel_selection(action, vessel) def on_vessel_selection(self, action, vessel): self.vessel_windows[vessel] = VesselWindow( self.window.conn, self.window.objects, vessel, self.window ) self.vessel_windows[vessel].show() def on_vessel_deselection(self, action, vessel): self.window.mdi.removeSubWindow(self.vessel_windows[vessel]) del self.vessel_windows[vessel] ```
{ "source": "4sarathbabu/blazar", "score": 2 }
#### File: v1/networks/service.py ```python from blazar import context from blazar.manager.service import get_plugins from blazar import policy from blazar.utils import trusts class API(object): def __init__(self): self.plugin = get_plugins()["network"] @policy.authorize('networks', 'get') def get_networks(self): """List all existing networks.""" return self.plugin.list_networks() @policy.authorize('networks', 'post') @trusts.use_trust_auth() def create_network(self, data): """Create new network. :param data: New network characteristics. :type data: dict """ return self.plugin.create_network(data) @policy.authorize('networks', 'get') def get_network(self, network_id): """Get network by its ID. :param network_id: ID of the network in Blazar DB. :type network_id: str """ return self.plugin.get_network(network_id) @policy.authorize('networks', 'put') def update_network(self, network_id, data): """Update network. Only name changing may be proceeded. :param network_id: ID of the network in Blazar DB. :type network_id: str :param data: New network characteristics. :type data: dict """ return self.plugin.update_network(network_id, data) @policy.authorize('networks', 'delete') def delete_network(self, network_id): """Delete specified network. :param network_id: ID of the network in Blazar DB. :type network_id: str """ self.plugin.delete_network(network_id) @policy.authorize('networks', 'get_allocations') def list_allocations(self, query): """List all allocations on all network segments. :param query: parameter to query allocations :type query: dict """ ctx = context.current() detail = False if policy.enforce(ctx, 'admin', {}, do_raise=False): detail = True return self.plugin.list_allocations(query, detail=detail) @policy.authorize('networks', 'get_allocations') def get_allocations(self, network_id, query): """List all allocations on a specificied network segment. :param network_id: ID of the network segment in Blazar BDself. :type network_id: str :param query: parameters to query allocation :type query: dict """ return self.plugin.get_allocations(network_id, query) @policy.authorize('networks', 'get_resource_properties') def list_resource_properties(self, query): """List resource properties for networks.""" return self.plugin.list_resource_properties(query) @policy.authorize('networks', 'patch_resource_properties') def update_resource_property(self, property_name, data): """Update a network resource property.""" return self.plugin.update_resource_property(property_name, data) ``` #### File: alembic_migrations/versions/cffa05fd6878_add_soft_delete_to_most_blazar_models.py ```python revision = '<KEY>' down_revision = 'afd0a1c7748a' from alembic import op import sqlalchemy as sa def upgrade(): op.add_column('computehost_allocations', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('computehost_allocations', sa.Column('deleted_at', sa.DateTime(), nullable=True)) op.drop_constraint(u'computehost_allocations_ibfk_1', 'computehost_allocations', type_='foreignkey') op.add_column('computehost_reservations', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('computehost_reservations', sa.Column('deleted_at', sa.DateTime(), nullable=True)) op.add_column('events', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('events', sa.Column('deleted_at', sa.DateTime(), nullable=True)) op.add_column('instance_reservations', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('instance_reservations', sa.Column('deleted_at', sa.DateTime(), nullable=True)) op.add_column('leases', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('leases', sa.Column('deleted_at', sa.DateTime(), nullable=True)) op.add_column('reservations', sa.Column('deleted', sa.String(length=36), nullable=True)) op.add_column('reservations', sa.Column('deleted_at', sa.DateTime(), nullable=True)) def downgrade(): op.drop_column('reservations', 'deleted_at') op.drop_column('reservations', 'deleted') op.drop_column('leases', 'deleted_at') op.drop_column('leases', 'deleted') op.drop_column('instance_reservations', 'deleted_at') op.drop_column('instance_reservations', 'deleted') op.drop_column('events', 'deleted_at') op.drop_column('events', 'deleted') op.drop_column('computehost_reservations', 'deleted_at') op.drop_column('computehost_reservations', 'deleted') op.create_foreign_key(u'computehost_allocations_ibfk_1', 'computehost_allocations', 'computehosts', ['compute_host_id'], ['id']) op.drop_column('computehost_allocations', 'deleted_at') op.drop_column('computehost_allocations', 'deleted') ``` #### File: db/sqlalchemy/api.py ```python import sys from oslo_config import cfg from blazar.db import exceptions as db_exc from blazar.db.sqlalchemy import facade_wrapper from blazar.db.sqlalchemy import models from oslo_db import exception as common_db_exc from oslo_db.sqlalchemy import session as db_session from oslo_log import log as logging import sqlalchemy as sa from sqlalchemy.sql.expression import asc from sqlalchemy.sql.expression import desc EXTRA_CAPABILITY_MODELS = { 'physical:host': models.ComputeHostExtraCapability, 'network': models.NetworkSegmentExtraCapability, 'device': models.DeviceExtraCapability, } LOG = logging.getLogger(__name__) get_engine = facade_wrapper.get_engine get_session = facade_wrapper.get_session def get_backend(): """The backend is this module itself.""" return sys.modules[__name__] def _read_deleted_filter(query, db_model, deleted): if 'deleted' not in db_model.__table__.columns: return query default_deleted_value = None if not deleted: query = query.filter(db_model.deleted == default_deleted_value) return query def model_query(model, session=None, deleted=False): """Query helper. :param model: base model to query """ session = session or get_session() return _read_deleted_filter(session.query(model), model, deleted) def setup_db(): try: engine = db_session.EngineFacade(cfg.CONF.database.connection, sqlite_fk=True).get_engine() models.Lease.metadata.create_all(engine) except sa.exc.OperationalError as e: LOG.error("Database registration exception: %s", e) return False return True def drop_db(): try: engine = db_session.EngineFacade(cfg.CONF.database.connection, sqlite_fk=True).get_engine() models.Lease.metadata.drop_all(engine) except Exception as e: LOG.error("Database shutdown exception: %s", e) return False return True # Helpers for building constraints / equality checks def constraint(**conditions): return Constraint(conditions) def equal_any(*values): return EqualityCondition(values) def not_equal(*values): return InequalityCondition(values) class Constraint(object): def __init__(self, conditions): self.conditions = conditions def apply(self, model, query): for key, condition in self.conditions.items(): for clause in condition.clauses(getattr(model, key)): query = query.filter(clause) return query class EqualityCondition(object): def __init__(self, values): self.values = values def clauses(self, field): return sa.or_([field == value for value in self.values]) class InequalityCondition(object): def __init__(self, values): self.values = values def clauses(self, field): return [field != value for value in self.values] # Reservation def _reservation_get(session, reservation_id): query = model_query(models.Reservation, session) return query.filter_by(id=reservation_id).first() def reservation_get(reservation_id): return _reservation_get(get_session(), reservation_id) def reservation_get_all(): query = model_query(models.Reservation, get_session()) return query.all() def reservation_get_all_by_lease_id(lease_id): reservations = (model_query(models.Reservation, get_session()).filter_by(lease_id=lease_id)) return reservations.all() def reservation_get_all_by_values(**kwargs): """Returns all entries filtered by col=value.""" reservation_query = model_query(models.Reservation, get_session()) for name, value in kwargs.items(): column = getattr(models.Reservation, name, None) if column: reservation_query = reservation_query.filter(column == value) return reservation_query.all() def reservation_create(values): values = values.copy() reservation = models.Reservation() reservation.update(values) session = get_session() with session.begin(): try: reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=reservation.__class__.__name__, columns=e.columns) return reservation_get(reservation.id) def reservation_update(reservation_id, values): session = get_session() with session.begin(): reservation = _reservation_get(session, reservation_id) reservation.update(values) reservation.save(session=session) return reservation_get(reservation_id) def _reservation_destroy(session, reservation): if reservation.instance_reservation: reservation.instance_reservation.soft_delete(session=session) if reservation.computehost_reservation: reservation.computehost_reservation.soft_delete(session=session) if reservation.network_reservation: reservation.network_reservation.soft_delete(session=session) if reservation.floatingip_reservation: reservation.floatingip_reservation.soft_delete(session=session) if reservation.computehost_allocations: for computehost_allocation in reservation.computehost_allocations: computehost_allocation.soft_delete(session=session) if reservation.network_allocations: for network_allocation in reservation.network_allocations: network_allocation.soft_delete(session=session) if reservation.floatingip_allocations: for floatingip_allocation in reservation.floatingip_allocations: floatingip_allocation.soft_delete(session=session) reservation.soft_delete(session=session) def reservation_destroy(reservation_id): session = get_session() with session.begin(): reservation = _reservation_get(session, reservation_id) if not reservation: # raise not found error raise db_exc.BlazarDBNotFound(id=reservation_id, model='Reservation') _reservation_destroy(session, reservation) # Lease def _lease_get(session, lease_id): query = model_query(models.Lease, session) return query.filter_by(id=lease_id).first() def lease_get(lease_id): return _lease_get(get_session(), lease_id) def lease_get_all(): query = model_query(models.Lease, get_session()) return query.all() def lease_get_all_by_project(project_id): raise NotImplementedError def lease_get_all_by_user(user_id): raise NotImplementedError def lease_list(project_id=None): query = model_query(models.Lease, get_session()) if project_id is not None: query = query.filter_by(project_id=project_id) return query.all() def lease_create(values): values = values.copy() lease = models.Lease() reservations = values.pop("reservations", []) events = values.pop("events", []) lease.update(values) session = get_session() with session.begin(): try: lease.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=lease.__class__.__name__, columns=e.columns) try: for r in reservations: reservation = models.Reservation() reservation.update({"lease_id": lease.id}) reservation.update(r) reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=reservation.__class__.__name__, columns=e.columns) try: for e in events: event = models.Event() event.update({"lease_id": lease.id}) event.update(e) event.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=event.__class__.__name__, columns=e.columns) return lease_get(lease.id) def lease_update(lease_id, values): session = get_session() with session.begin(): lease = _lease_get(session, lease_id) lease.update(values) lease.save(session=session) return lease_get(lease_id) def lease_destroy(lease_id): session = get_session() with session.begin(): lease = _lease_get(session, lease_id) if not lease: # raise not found error raise db_exc.BlazarDBNotFound(id=lease_id, model='Lease') for reservation in lease.reservations: _reservation_destroy(session, reservation) for event in lease.events: event.soft_delete(session=session) lease.soft_delete(session=session) # Event def _event_get(session, event_id, deleted=False): query = model_query(models.Event, session, deleted=deleted) return query.filter_by(id=event_id).first() def _event_get_all(session): query = model_query(models.Event, session) return query def event_get(event_id): return _event_get(get_session(), event_id) def event_get_all(): return _event_get_all(get_session()).all() def _event_get_sorted_by_filters(sort_key, sort_dir, filters): """Return an event query filtered and sorted by name of the field.""" sort_fn = {'desc': desc, 'asc': asc} events_query = _event_get_all(get_session()) if 'status' in filters: events_query = ( events_query.filter(models.Event.status == filters['status'])) if 'lease_id' in filters: events_query = ( events_query.filter(models.Event.lease_id == filters['lease_id'])) if 'event_type' in filters: events_query = events_query.filter(models.Event.event_type == filters['event_type']) if 'time' in filters: border = filters['time']['border'] if filters['time']['op'] == 'lt': events_query = events_query.filter(models.Event.time < border) elif filters['time']['op'] == 'le': events_query = events_query.filter(models.Event.time <= border) elif filters['time']['op'] == 'gt': events_query = events_query.filter(models.Event.time > border) elif filters['time']['op'] == 'ge': events_query = events_query.filter(models.Event.time >= border) elif filters['time']['op'] == 'eq': events_query = events_query.filter(models.Event.time == border) events_query = events_query.order_by( sort_fn[sort_dir](getattr(models.Event, sort_key)) ) return events_query def event_get_first_sorted_by_filters(sort_key, sort_dir, filters): """Return first result for events Return the first result for all events matching the filters and sorted by name of the field. """ return _event_get_sorted_by_filters(sort_key, sort_dir, filters).first() def event_get_all_sorted_by_filters(sort_key, sort_dir, filters): """Return events filtered and sorted by name of the field.""" return _event_get_sorted_by_filters(sort_key, sort_dir, filters).all() def event_create(values): values = values.copy() event = models.Event() event.update(values) session = get_session() with session.begin(): try: event.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=event.__class__.__name__, columns=e.columns) return event_get(event.id) def event_update(event_id, values): session = get_session() with session.begin(): # NOTE(jason): Allow updating soft-deleted events event = _event_get(session, event_id, deleted=True) event.update(values) event.save(session=session) return event_get(event_id) def event_destroy(event_id): session = get_session() with session.begin(): event = _event_get(session, event_id) if not event: # raise not found error raise db_exc.BlazarDBNotFound(id=event_id, model='Event') event.soft_delete(session=session) # ComputeHostReservation def _host_reservation_get(session, host_reservation_id): query = model_query(models.ComputeHostReservation, session) return query.filter_by(id=host_reservation_id).first() def host_reservation_get(host_reservation_id): return _host_reservation_get(get_session(), host_reservation_id) def host_reservation_get_all(): query = model_query(models.ComputeHostReservation, get_session()) return query.all() def _host_reservation_get_by_reservation_id(session, reservation_id): query = model_query(models.ComputeHostReservation, session) return query.filter_by(reservation_id=reservation_id).first() def host_reservation_get_by_reservation_id(reservation_id): return _host_reservation_get_by_reservation_id(get_session(), reservation_id) def host_reservation_create(values): values = values.copy() host_reservation = models.ComputeHostReservation() host_reservation.update(values) session = get_session() with session.begin(): try: host_reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=host_reservation.__class__.__name__, columns=e.columns) return host_reservation_get(host_reservation.id) def host_reservation_update(host_reservation_id, values): session = get_session() with session.begin(): host_reservation = _host_reservation_get(session, host_reservation_id) host_reservation.update(values) host_reservation.save(session=session) return host_reservation_get(host_reservation_id) def host_reservation_destroy(host_reservation_id): session = get_session() with session.begin(): host_reservation = _host_reservation_get(session, host_reservation_id) if not host_reservation: # raise not found error raise db_exc.BlazarDBNotFound( id=host_reservation_id, model='ComputeHostReservation') host_reservation.soft_delete(session=session) # InstanceReservation def instance_reservation_create(values): value = values.copy() instance_reservation = models.InstanceReservations() instance_reservation.update(value) session = get_session() with session.begin(): try: instance_reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=instance_reservation.__class__.__name__, columns=e.columns) return instance_reservation_get(instance_reservation.id) def instance_reservation_get(instance_reservation_id, session=None): if not session: session = get_session() query = model_query(models.InstanceReservations, session) return query.filter_by(id=instance_reservation_id).first() def instance_reservation_update(instance_reservation_id, values): session = get_session() with session.begin(): instance_reservation = instance_reservation_get( instance_reservation_id, session) if not instance_reservation: raise db_exc.BlazarDBNotFound( id=instance_reservation_id, model='InstanceReservations') instance_reservation.update(values) instance_reservation.save(session=session) return instance_reservation_get(instance_reservation_id) def instance_reservation_destroy(instance_reservation_id): session = get_session() with session.begin(): instance = instance_reservation_get(instance_reservation_id) if not instance: raise db_exc.BlazarDBNotFound( id=instance_reservation_id, model='InstanceReservations') instance.soft_delete(session=session) # ComputeHostAllocation def _host_allocation_get(session, host_allocation_id): query = model_query(models.ComputeHostAllocation, session) return query.filter_by(id=host_allocation_id).first() def host_allocation_get(host_allocation_id): return _host_allocation_get(get_session(), host_allocation_id) def host_allocation_get_all(): query = model_query(models.ComputeHostAllocation, get_session()) return query.all() def host_allocation_get_all_by_values(**kwargs): """Returns all entries filtered by col=value.""" allocation_query = model_query(models.ComputeHostAllocation, get_session()) for name, value in kwargs.items(): column = getattr(models.ComputeHostAllocation, name, None) if column: allocation_query = allocation_query.filter(column == value) return allocation_query.all() def host_allocation_create(values): values = values.copy() host_allocation = models.ComputeHostAllocation() host_allocation.update(values) session = get_session() with session.begin(): try: host_allocation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=host_allocation.__class__.__name__, columns=e.columns) return host_allocation_get(host_allocation.id) def host_allocation_update(host_allocation_id, values): session = get_session() with session.begin(): host_allocation = _host_allocation_get(session, host_allocation_id) host_allocation.update(values) host_allocation.save(session=session) return host_allocation_get(host_allocation_id) def host_allocation_destroy(host_allocation_id): session = get_session() with session.begin(): host_allocation = _host_allocation_get(session, host_allocation_id) if not host_allocation: # raise not found error raise db_exc.BlazarDBNotFound( id=host_allocation_id, model='ComputeHostAllocation') host_allocation.soft_delete(session=session) # ComputeHost def _host_get(session, host_id): query = model_query(models.ComputeHost, session) return query.filter_by(id=host_id).first() def _host_get_all(session): query = model_query(models.ComputeHost, session) return query def host_get(host_id): return _host_get(get_session(), host_id) def host_list(): return model_query(models.ComputeHost, get_session()).all() def host_get_all_by_filters(filters): """Returns hosts filtered by name of the field.""" hosts_query = _host_get_all(get_session()) if 'status' in filters: hosts_query = hosts_query.filter( models.ComputeHost.status == filters['status']) return hosts_query.all() def host_get_all_by_queries(queries): """Returns hosts filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ hosts_query = model_query(models.ComputeHost, get_session()) oper = { '<': ['lt', lambda a, b: a >= b], '>': ['gt', lambda a, b: a <= b], '<=': ['le', lambda a, b: a > b], '>=': ['ge', lambda a, b: a < b], '==': ['eq', lambda a, b: a != b], '!=': ['ne', lambda a, b: a == b], } hosts = [] for query in queries: try: key, op, value = query.split(' ', 2) except ValueError: raise db_exc.BlazarDBInvalidFilter(query_filter=query) column = getattr(models.ComputeHost, key, None) if column is not None: if op == 'in': filt = column.in_(value.split(',')) else: if op in oper: op = oper[op][0] try: attr = [e for e in ['%s', '%s_', '__%s__'] if hasattr(column, e % op)][0] % op except IndexError: raise db_exc.BlazarDBInvalidFilterOperator( filter_operator=op) if value == 'null': value = None filt = getattr(column, attr)(value) hosts_query = hosts_query.filter(filt) else: # looking for extra capabilities matches extra_filter = ( _host_extra_capability_query(get_session()) .filter(models.ExtraCapability.capability_name == key) ).all() if not extra_filter: raise db_exc.BlazarDBNotFound( id=key, model='ComputeHostExtraCapability') for host, capability_name in extra_filter: if op in oper and oper[op][1](host.capability_value, value): hosts.append(host.computehost_id) elif op not in oper: msg = 'Operator %s for extra capabilities not implemented' raise NotImplementedError(msg % op) # We must also avoid selecting any host which doesn't have the # extra capability present. all_hosts = [h.id for h in hosts_query.all()] extra_filter_hosts = [h.computehost_id for h, _ in extra_filter] hosts += [h for h in all_hosts if h not in extra_filter_hosts] return hosts_query.filter(~models.ComputeHost.id.in_(hosts)).all() def reservable_host_get_all_by_queries(queries): """Returns reservable hosts filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ queries.append('reservable == 1') return host_get_all_by_queries(queries) def unreservable_host_get_all_by_queries(queries): """Returns unreservable hosts filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ # TODO(hiro-kobayashi): support the expression 'reservable == False' queries.append('reservable == 0') return host_get_all_by_queries(queries) def host_create(values): values = values.copy() host = models.ComputeHost() host.update(values) session = get_session() with session.begin(): try: host.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=host.__class__.__name__, columns=e.columns) return host_get(host.id) def host_update(host_id, values): session = get_session() with session.begin(): host = _host_get(session, host_id) host.update(values) host.save(session=session) return host_get(host_id) def host_destroy(host_id): session = get_session() with session.begin(): host = _host_get(session, host_id) if not host: # raise not found error raise db_exc.BlazarDBNotFound(id=host_id, model='Host') session.delete(host) # ComputeHostExtraCapability def _host_extra_capability_query(session): return ( model_query(models.ComputeHostExtraCapability, session) .join(models.ExtraCapability) .add_column(models.ExtraCapability.capability_name)) def _host_extra_capability_get(session, host_extra_capability_id): query = _host_extra_capability_query(session).filter( models.ComputeHostExtraCapability.id == host_extra_capability_id) return query.first() def host_extra_capability_get(host_extra_capability_id): return _host_extra_capability_get(get_session(), host_extra_capability_id) def _host_extra_capability_get_all_per_host(session, host_id): query = _host_extra_capability_query(session).filter( models.ComputeHostExtraCapability.computehost_id == host_id) return query def host_extra_capability_get_all_per_host(host_id): return _host_extra_capability_get_all_per_host(get_session(), host_id).all() def host_extra_capability_create(values): values = values.copy() resource_property = resource_property_get_or_create( 'physical:host', values.get('capability_name')) del values['capability_name'] values['capability_id'] = resource_property.id host_extra_capability = models.ComputeHostExtraCapability() host_extra_capability.update(values) session = get_session() with session.begin(): try: host_extra_capability.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=host_extra_capability.__class__.__name__, columns=e.columns) return host_extra_capability_get(host_extra_capability.id) def host_extra_capability_update(host_extra_capability_id, values): session = get_session() with session.begin(): host_extra_capability, _ = ( _host_extra_capability_get(session, host_extra_capability_id)) host_extra_capability.update(values) host_extra_capability.save(session=session) return host_extra_capability_get(host_extra_capability_id) def host_extra_capability_destroy(host_extra_capability_id): session = get_session() with session.begin(): host_extra_capability = _host_extra_capability_get( session, host_extra_capability_id) if not host_extra_capability: # raise not found error raise db_exc.BlazarDBNotFound( id=host_extra_capability_id, model='ComputeHostExtraCapability') session.delete(host_extra_capability[0]) def host_extra_capability_get_all_per_name(host_id, capability_name): session = get_session() with session.begin(): query = _host_extra_capability_get_all_per_host(session, host_id) return query.filter( models.ExtraCapability.capability_name == capability_name).all() # FloatingIP reservation def fip_reservation_create(fip_reservation_values): values = fip_reservation_values.copy() fip_reservation = models.FloatingIPReservation() fip_reservation.update(values) session = get_session() with session.begin(): try: fip_reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=fip_reservation.__class__.__name__, columns=e.columns) return fip_reservation_get(fip_reservation.id) def _fip_reservation_get(session, fip_reservation_id): query = model_query(models.FloatingIPReservation, session) return query.filter_by(id=fip_reservation_id).first() def fip_reservation_get(fip_reservation_id): return _fip_reservation_get(get_session(), fip_reservation_id) def fip_reservation_update(fip_reservation_id, fip_reservation_values): session = get_session() with session.begin(): fip_reservation = _fip_reservation_get(session, fip_reservation_id) fip_reservation.update(fip_reservation_values) fip_reservation.save(session=session) return fip_reservation_get(fip_reservation_id) def fip_reservation_destroy(fip_reservation_id): session = get_session() with session.begin(): fip_reservation = _fip_reservation_get(session, fip_reservation_id) if not fip_reservation: # raise not found error raise db_exc.BlazarDBNotFound( id=fip_reservation_id, model='FloatingIPReservation') fip_reservation.soft_delete(session=session) session.delete(fip_reservation) # Required FIP def required_fip_create(required_fip_values): values = required_fip_values.copy() required_fip = models.RequiredFloatingIP() required_fip.update(values) session = get_session() with session.begin(): try: required_fip.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=required_fip.__class__.__name__, columns=e.columns) return required_fip_get(required_fip.id) def _required_fip_get(session, required_fip_id): query = model_query(models.RequiredFloatingIP, session) return query.filter_by(id=required_fip_id).first() def required_fip_get(required_fip_id): return _required_fip_get(get_session(), required_fip_id) def required_fip_update(required_fip_id, required_fip_values): session = get_session() with session.begin(): required_fip = _required_fip_get(session, required_fip_id) required_fip.update(required_fip_values) required_fip.save(session=session) return required_fip_get(required_fip_id) def required_fip_destroy(required_fip_id): session = get_session() with session.begin(): required_fip = _required_fip_get(session, required_fip_id) if not required_fip: # raise not found error raise db_exc.BlazarDBNotFound( id=required_fip_id, model='RequiredFloatingIP') required_fip.soft_delete(session=session) session.delete(required_fip) def required_fip_destroy_by_fip_reservation_id(fip_reservation_id): session = get_session() with session.begin(): required_fips = model_query( models.RequiredFloatingIP, session).filter_by( floatingip_reservation_id=fip_reservation_id) for required_fip in required_fips: required_fip_destroy(required_fip['id']) # FloatingIP Allocation def _fip_allocation_get(session, fip_allocation_id): query = model_query(models.FloatingIPAllocation, session) return query.filter_by(id=fip_allocation_id).first() def fip_allocation_get(fip_allocation_id): return _fip_allocation_get(get_session(), fip_allocation_id) def fip_allocation_create(allocation_values): values = allocation_values.copy() fip_allocation = models.FloatingIPAllocation() fip_allocation.update(values) session = get_session() with session.begin(): try: fip_allocation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=fip_allocation.__class__.__name__, columns=e.columns) return fip_allocation_get(fip_allocation.id) def fip_allocation_get_all_by_values(**kwargs): """Returns all entries filtered by col=value.""" allocation_query = model_query(models.FloatingIPAllocation, get_session()) for name, value in kwargs.items(): column = getattr(models.FloatingIPAllocation, name, None) if column: allocation_query = allocation_query.filter(column == value) return allocation_query.all() def fip_allocation_destroy(allocation_id): session = get_session() with session.begin(): fip_allocation = _fip_allocation_get(session, allocation_id) if not fip_allocation: # raise not found error raise db_exc.BlazarDBNotFound( id=allocation_id, model='FloatingIPAllocation') fip_allocation.soft_delete(session=session) session.delete(fip_allocation) def fip_allocation_update(allocation_id, allocation_values): session = get_session() with session.begin(): fip_allocation = _fip_allocation_get(session, allocation_id) fip_allocation.update(allocation_values) fip_allocation.save(session=session) return fip_allocation_get(allocation_id) # Floating IP def _floatingip_get(session, floatingip_id): query = model_query(models.FloatingIP, session) return query.filter_by(id=floatingip_id).first() def _floatingip_get_all(session): query = model_query(models.FloatingIP, session) return query def fip_get_all_by_queries(queries): """Returns Floating IPs filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ fips_query = model_query(models.FloatingIP, get_session()) oper = { '<': ['lt', lambda a, b: a >= b], '>': ['gt', lambda a, b: a <= b], '<=': ['le', lambda a, b: a > b], '>=': ['ge', lambda a, b: a < b], '==': ['eq', lambda a, b: a != b], '!=': ['ne', lambda a, b: a == b], } for query in queries: try: key, op, value = query.split(' ', 2) except ValueError: raise db_exc.BlazarDBInvalidFilter(query_filter=query) column = getattr(models.FloatingIP, key, None) if column is not None: if op == 'in': filt = column.in_(value.split(',')) else: if op in oper: op = oper[op][0] try: attr = [e for e in ['%s', '%s_', '__%s__'] if hasattr(column, e % op)][0] % op except IndexError: raise db_exc.BlazarDBInvalidFilterOperator( filter_operator=op) if value == 'null': value = None filt = getattr(column, attr)(value) fips_query = fips_query.filter(filt) else: raise db_exc.BlazarDBInvalidFilter(query_filter=query) return fips_query.all() def reservable_fip_get_all_by_queries(queries): """Returns reservable fips filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ queries.append('reservable == 1') return fip_get_all_by_queries(queries) def floatingip_get(floatingip_id): return _floatingip_get(get_session(), floatingip_id) def floatingip_list(): return model_query(models.FloatingIP, get_session()).all() def floatingip_create(values): values = values.copy() floatingip = models.FloatingIP() floatingip.update(values) session = get_session() with session.begin(): try: floatingip.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=floatingip.__class__.__name__, columns=e.columns) return floatingip_get(floatingip.id) def floatingip_destroy(floatingip_id): session = get_session() with session.begin(): floatingip = _floatingip_get(session, floatingip_id) if not floatingip: # raise not found error raise db_exc.BlazarDBNotFound(id=floatingip_id, model='FloatingIP') session.delete(floatingip) # Networks def _network_get(session, network_id): query = model_query(models.NetworkSegment, session) return query.filter_by(id=network_id).first() def _network_get_all(session): query = model_query(models.NetworkSegment, session) return query def network_get(network_id): return _network_get(get_session(), network_id) def network_list(): return model_query(models.NetworkSegment, get_session()).all() def network_create(values): values = values.copy() network = models.NetworkSegment() network.update(values) session = get_session() with session.begin(): try: network.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=network.__class__.__name__, columns=e.columns) return network_get(network.id) def network_update(network_id, values): session = get_session() with session.begin(): network = _network_get(session, network_id) network.update(values) network.save(session=session) return network_get(network_id) def network_destroy(network_id): session = get_session() with session.begin(): network = _network_get(session, network_id) if not network: # raise not found error raise db_exc.BlazarDBNotFound( id=network_id, model='Network segment') session.delete(network) # NetworkAllocation def _network_allocation_get(session, network_allocation_id): query = model_query(models.NetworkAllocation, session) return query.filter_by(id=network_allocation_id).first() def network_allocation_get(network_allocation_id): return _network_allocation_get(get_session(), network_allocation_id) def network_allocation_get_all(): query = model_query(models.NetworkAllocation, get_session()) return query.all() def network_allocation_create(values): values = values.copy() network_allocation = models.NetworkAllocation() network_allocation.update(values) session = get_session() with session.begin(): try: network_allocation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=network_allocation.__class__.__name__, columns=e.columns) return network_allocation_get(network_allocation.id) def network_allocation_get_all_by_values(**kwargs): """Returns all entries filtered by col=value.""" allocation_query = model_query(models.NetworkAllocation, get_session()) for name, value in kwargs.items(): column = getattr(models.NetworkAllocation, name, None) if column: allocation_query = allocation_query.filter(column == value) return allocation_query.all() def network_allocation_destroy(network_allocation_id): session = get_session() with session.begin(): network_allocation = _network_allocation_get(session, network_allocation_id) if not network_allocation: # raise not found error raise db_exc.BlazarDBNotFound( id=network_allocation_id, model='NetworkAllocation') network_allocation.soft_delete(session=session) # NetworkReservation def network_reservation_create(values): value = values.copy() network_reservation = models.NetworkReservation() network_reservation.update(value) session = get_session() with session.begin(): try: network_reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=network_reservation.__class__.__name__, columns=e.columns) return network_reservation_get(network_reservation.id) def network_reservation_get(network_reservation_id, session=None): if not session: session = get_session() query = model_query(models.NetworkReservation, session) return query.filter_by(id=network_reservation_id).first() def network_reservation_update(network_reservation_id, values): session = get_session() with session.begin(): network_reservation = network_reservation_get( network_reservation_id, session) if not network_reservation: raise db_exc.BlazarDBNotFound( id=network_reservation_id, model='NetworkReservation') network_reservation.update(values) network_reservation.save(session=session) return network_reservation_get(network_reservation_id) def network_reservation_destroy(network_reservation_id): session = get_session() with session.begin(): network = network_reservation_get(network_reservation_id) if not network: raise db_exc.BlazarDBNotFound( id=network_reservation_id, model='NetworkReservation') network.soft_delete(session=session) def network_get_all_by_filters(filters): """Returns networks filtered by name of the field.""" networks_query = _network_get_all(get_session()) if 'status' in filters: networks_query = networks_query.filter( models.NetworkSegment.status == filters['status']) return networks_query.all() def network_get_all_by_queries(queries): """Return networks filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ networks_query = model_query(models.NetworkSegment, get_session()) oper = { '<': ['lt', lambda a, b: a >= b], '>': ['gt', lambda a, b: a <= b], '<=': ['le', lambda a, b: a > b], '>=': ['ge', lambda a, b: a < b], '==': ['eq', lambda a, b: a != b], '!=': ['ne', lambda a, b: a == b], } networks = [] for query in queries: try: key, op, value = query.split(' ', 2) except ValueError: raise db_exc.BlazarDBInvalidFilter(query_filter=query) column = getattr(models.NetworkSegment, key, None) if column is not None: if op == 'in': filt = column.in_(value.split(',')) else: if op in oper: op = oper[op][0] try: attr = [e for e in ['%s', '%s_', '__%s__'] if hasattr(column, e % op)][0] % op except IndexError: raise db_exc.BlazarDBInvalidFilterOperator( filter_operator=op) if value == 'null': value = None filt = getattr(column, attr)(value) networks_query = networks_query.filter(filt) else: # looking for extra capabilities matches extra_filter = ( _network_extra_capability_query(get_session()) .filter(models.ExtraCapability.capability_name == key) ).all() if not extra_filter: raise db_exc.BlazarDBNotFound( id=key, model='NetworkSegmentExtraCapability') for network, capability_name in extra_filter: if op in oper and oper[op][1](network.capability_value, value): networks.append(network.network_id) elif op not in oper: msg = 'Operator %s for extra capabilities not implemented' raise NotImplementedError(msg % op) # We must also avoid selecting any network which doesn't have the # extra capability present. all_networks = [h.id for h in networks_query.all()] extra_filter_networks = [h.network_id for h, _ in extra_filter] networks += [h for h in all_networks if h not in extra_filter_networks] return networks_query.filter(~models.NetworkSegment.id.in_(networks)).all() def reservable_network_get_all_by_queries(queries): """Return reservable networks filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ queries.append('reservable == 1') return network_get_all_by_queries(queries) def unreservable_network_get_all_by_queries(queries): """Return unreservable networks filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ # TODO(hiro-kobayashi): support the expression 'reservable == False' queries.append('reservable == 0') return network_get_all_by_queries(queries) # NetworkSegmentExtraCapability def _network_extra_capability_query(session): return ( model_query(models.NetworkSegmentExtraCapability, session) .join(models.ExtraCapability) .add_column(models.ExtraCapability.capability_name)) def _network_extra_capability_get(session, network_extra_capability_id): query = _network_extra_capability_query(session).filter( models.NetworkSegmentExtraCapability.id == network_extra_capability_id) return query.first() def network_extra_capability_get(network_extra_capability_id): return _network_extra_capability_get(get_session(), network_extra_capability_id) def _network_extra_capability_get_all_per_network(session, network_id): query = _network_extra_capability_query(session).filter( models.NetworkSegmentExtraCapability.network_id == network_id) return query def network_extra_capability_get_all_per_network(network_id): return _network_extra_capability_get_all_per_network(get_session(), network_id).all() def network_extra_capability_create(values): values = values.copy() resource_property = _resource_property_get_or_create( get_session(), 'network', values.get('capability_name')) del values['capability_name'] values['capability_id'] = resource_property.id network_extra_capability = models.NetworkSegmentExtraCapability() network_extra_capability.update(values) session = get_session() with session.begin(): try: network_extra_capability.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=network_extra_capability.__class__.__name__, columns=e.columns) return network_extra_capability_get(network_extra_capability.id) def network_extra_capability_update(network_extra_capability_id, values): session = get_session() with session.begin(): network_extra_capability, _ = ( _network_extra_capability_get(session, network_extra_capability_id)) network_extra_capability.update(values) network_extra_capability.save(session=session) return network_extra_capability_get(network_extra_capability_id) def network_extra_capability_destroy(network_extra_capability_id): session = get_session() with session.begin(): network_extra_capability = _network_extra_capability_get( session, network_extra_capability_id) if not network_extra_capability: # raise not found error raise db_exc.BlazarDBNotFound( id=network_extra_capability_id, model='NetworkSegmentExtraCapability') session.delete(network_extra_capability[0]) def network_extra_capability_get_all_per_name(network_id, capability_name): session = get_session() with session.begin(): query = _network_extra_capability_get_all_per_network( session, network_id) return query.filter_by(capability_name=capability_name).all() def network_extra_capability_get_latest_per_name(network_id, capability_name): session = get_session() with session.begin(): query = _network_extra_capability_get_all_per_network(session, network_id) return ( query .filter(models.ExtraCapability.capability_name == capability_name) .order_by(models.NetworkSegmentExtraCapability.created_at.desc()) .first()) # Devices def _device_get(session, device_id): query = model_query(models.Device, session) return query.filter_by(id=device_id).first() def _device_get_all(session): query = model_query(models.Device, session) return query def device_get(device_id): return _device_get(get_session(), device_id) def device_list(): return model_query(models.Device, get_session()).all() def device_create(values): values = values.copy() device = models.Device() device.update(values) session = get_session() with session.begin(): try: device.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=device.__class__.__name__, columns=e.columns) return device_get(device.id) def device_update(device_id, values): session = get_session() with session.begin(): device = _device_get(session, device_id) device.update(values) device.save(session=session) return device_get(device_id) def device_destroy(device_id): session = get_session() with session.begin(): device = _device_get(session, device_id) if not device: # raise not found error raise db_exc.BlazarDBNotFound( id=device_id, model='Device') session.delete(device) # DeviceAllocation def _device_allocation_get(session, device_allocation_id): query = model_query(models.DeviceAllocation, session) return query.filter_by(id=device_allocation_id).first() def device_allocation_get(device_allocation_id): return _device_allocation_get(get_session(), device_allocation_id) def device_allocation_get_all(): query = model_query(models.DeviceAllocation, get_session()) return query.all() def device_allocation_create(values): values = values.copy() device_allocation = models.DeviceAllocation() device_allocation.update(values) session = get_session() with session.begin(): try: device_allocation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=device_allocation.__class__.__name__, columns=e.columns) return device_allocation_get(device_allocation.id) def device_allocation_get_all_by_values(**kwargs): """Returns all entries filtered by col=value.""" allocation_query = model_query(models.DeviceAllocation, get_session()) for name, value in kwargs.items(): column = getattr(models.DeviceAllocation, name, None) if column: allocation_query = allocation_query.filter(column == value) return allocation_query.all() def device_allocation_update(device_allocation_id, values): session = get_session() with session.begin(): device_allocation = _device_allocation_get(session, device_allocation_id) device_allocation.update(values) device_allocation.save(session=session) return device_allocation_get(device_allocation_id) def device_allocation_destroy(device_allocation_id): session = get_session() with session.begin(): device_allocation = _device_allocation_get(session, device_allocation_id) if not device_allocation: # raise not found error raise db_exc.BlazarDBNotFound( id=device_allocation_id, model='DeviceAllocation') device_allocation.soft_delete(session=session) # DeviceReservation def device_reservation_create(values): value = values.copy() device_reservation = models.DeviceReservation() device_reservation.update(value) session = get_session() with session.begin(): try: device_reservation.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=device_reservation.__class__.__name__, columns=e.columns) return device_reservation_get(device_reservation.id) def device_reservation_get(device_reservation_id, session=None): if not session: session = get_session() query = model_query(models.DeviceReservation, session) return query.filter_by(id=device_reservation_id).first() def device_reservation_update(device_reservation_id, values): session = get_session() with session.begin(): device_reservation = device_reservation_get( device_reservation_id, session) if not device_reservation: raise db_exc.BlazarDBNotFound( id=device_reservation_id, model='DeviceReservation') device_reservation.update(values) device_reservation.save(session=session) return device_reservation_get(device_reservation_id) def device_reservation_destroy(device_reservation_id): session = get_session() with session.begin(): device = device_reservation_get(device_reservation_id) if not device: raise db_exc.BlazarDBNotFound( id=device_reservation_id, model='DeviceReservation') device.soft_delete(session=session) def device_get_all_by_filters(filters): """Returns devices filtered by name of the field.""" devices_query = _device_get_all(get_session()) if 'status' in filters: devices_query = devices_query.filter( models.Device.status == filters['status']) return devices_query.all() def device_get_all_by_queries(queries): """Return devices filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ devices_query = model_query(models.Device, get_session()) oper = { '<': ['lt', lambda a, b: a >= b], '>': ['gt', lambda a, b: a <= b], '<=': ['le', lambda a, b: a > b], '>=': ['ge', lambda a, b: a < b], '==': ['eq', lambda a, b: a != b], '!=': ['ne', lambda a, b: a == b], } devices = [] for query in queries: try: key, op, value = query.split(' ', 2) except ValueError: raise db_exc.BlazarDBInvalidFilter(query_filter=query) column = getattr(models.Device, key, None) if column is not None: if op == 'in': filt = column.in_(value.split(',')) else: if op in oper: op = oper[op][0] try: attr = [e for e in ['%s', '%s_', '__%s__'] if hasattr(column, e % op)][0] % op except IndexError: raise db_exc.BlazarDBInvalidFilterOperator( filter_operator=op) if value == 'null': value = None filt = getattr(column, attr)(value) devices_query = devices_query.filter(filt) else: # looking for extra capabilities matches extra_filter = ( _device_extra_capability_query(get_session()) .filter(models.ExtraCapability.capability_name == key) ).all() if not extra_filter: raise db_exc.BlazarDBNotFound( id=key, model='DeviceExtraCapability') for device, capability_name in extra_filter: if op in oper and oper[op][1](device.capability_value, value): devices.append(device.device_id) elif op not in oper: msg = 'Operator %s for extra capabilities not implemented' raise NotImplementedError(msg % op) # We must also avoid selecting any device which doesn't have the # extra capability present. all_devices = [h.id for h in devices_query.all()] extra_filter_devices = [h.device_id for h, _ in extra_filter] devices += [h for h in all_devices if h not in extra_filter_devices] return devices_query.filter(~models.Device.id.in_(devices)).all() def reservable_device_get_all_by_queries(queries): """Return reservable devices filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ queries.append('reservable == 1') return device_get_all_by_queries(queries) def unreservable_device_get_all_by_queries(queries): """Return unreservable devices filtered by an array of queries. :param queries: array of queries "key op value" where op can be http://docs.sqlalchemy.org/en/rel_0_7/core/expression_api.html #sqlalchemy.sql.operators.ColumnOperators """ # TODO(hiro-kobayashi): support the expression 'reservable == False' queries.append('reservable == 0') return device_get_all_by_queries(queries) # DeviceExtraCapability def _device_extra_capability_query(session): return ( model_query(models.DeviceExtraCapability, session) .join(models.ExtraCapability) .add_column(models.ExtraCapability.capability_name)) def _device_extra_capability_get(session, device_extra_capability_id): query = _device_extra_capability_query(session).filter( models.DeviceExtraCapability.id == device_extra_capability_id) return query.first() def device_extra_capability_get(device_extra_capability_id): return _device_extra_capability_get(get_session(), device_extra_capability_id) def _device_extra_capability_get_all_per_device(session, device_id): query = _device_extra_capability_query(session).filter( models.DeviceExtraCapability.device_id == device_id) return query def device_extra_capability_get_all_per_device(device_id): return _device_extra_capability_get_all_per_device(get_session(), device_id).all() def device_extra_capability_create(values): values = values.copy() resource_property = _resource_property_get_or_create( get_session(), 'device', values.get('capability_name')) del values['capability_name'] values['capability_id'] = resource_property.id device_extra_capability = models.DeviceExtraCapability() device_extra_capability.update(values) session = get_session() with session.begin(): try: device_extra_capability.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=device_extra_capability.__class__.__name__, columns=e.columns) return device_extra_capability_get(device_extra_capability.id) def device_extra_capability_update(device_extra_capability_id, values): session = get_session() with session.begin(): device_extra_capability, _ = ( _device_extra_capability_get(session, device_extra_capability_id)) device_extra_capability.update(values) device_extra_capability.save(session=session) return device_extra_capability_get(device_extra_capability_id) def device_extra_capability_destroy(device_extra_capability_id): session = get_session() with session.begin(): device_extra_capability = _device_extra_capability_get( session, device_extra_capability_id) if not device_extra_capability: # raise not found error raise db_exc.BlazarDBNotFound( id=device_extra_capability_id, model='DeviceExtraCapability') session.delete(device_extra_capability[0]) def device_extra_capability_get_all_per_name(device_id, capability_name): session = get_session() with session.begin(): query = _device_extra_capability_get_all_per_device( session, device_id) return query.filter_by(capability_name=capability_name).all() def device_extra_capability_get_latest_per_name(device_id, capability_name): session = get_session() with session.begin(): query = _device_extra_capability_get_all_per_device(session, device_id) return ( query .filter(models.ExtraCapability.capability_name == capability_name) .order_by(models.DeviceExtraCapability.created_at.desc()) .first()) # Resource Properties def _resource_property_get(session, resource_type, capability_name): query = ( model_query(models.ExtraCapability, session) .filter_by(resource_type=resource_type) .filter_by(capability_name=capability_name)) return query.first() def resource_property_get(resource_type, capability_name): return _resource_property_get(get_session(), resource_type, capability_name) def resource_properties_list(resource_type): if resource_type not in EXTRA_CAPABILITY_MODELS: raise db_exc.BlazarDBExtraCapabilitiesNotEnabled( resource_type=resource_type) session = get_session() with session.begin(): resource_model = EXTRA_CAPABILITY_MODELS[resource_type] query = session.query( models.ExtraCapability.capability_name, models.ExtraCapability.private, resource_model.capability_value).join(resource_model).distinct() return query.all() def _resource_property_create(session, values): values = values.copy() resource_property = models.ExtraCapability() resource_property.update(values) with session.begin(): try: resource_property.save(session=session) except common_db_exc.DBDuplicateEntry as e: # raise exception about duplicated columns (e.columns) raise db_exc.BlazarDBDuplicateEntry( model=resource_property.__class__.__name__, columns=e.columns) return resource_property_get(values.get('resource_type'), values.get('capability_name')) def resource_property_create(values): return _resource_property_create(get_session(), values) def resource_property_update(resource_type, property_name, values): if resource_type not in EXTRA_CAPABILITY_MODELS: raise db_exc.BlazarDBExtraCapabilitiesNotEnabled( resource_type=resource_type) values = values.copy() session = get_session() with session.begin(): resource_property = _resource_property_get( session, resource_type, property_name) if not resource_property: raise db_exc.BlazarDBInvalidExtraCapability( property_name=property_name, resource_type=resource_type) resource_property.update(values) resource_property.save(session=session) return resource_property_get(resource_type, property_name) def _resource_property_get_or_create(session, resource_type, capability_name): resource_property = _resource_property_get( session, resource_type, capability_name) if resource_property: return resource_property else: rp_values = { 'resource_type': resource_type, 'capability_name': capability_name} return resource_property_create(rp_values) def resource_property_get_or_create(resource_type, capability_name): return _resource_property_get_or_create( get_session(), resource_type, capability_name) ``` #### File: blazar/plugins/monitor.py ```python import datetime from oslo_config import cfg import abc from blazar.manager import exceptions as manager_ex from blazar.plugins import base from blazar import status from oslo_log import log as logging monitor_opts = [ cfg.BoolOpt('enable_notification_monitor', default=False, help='Enable notification-based resource monitoring. ' 'If it is enabled, the blazar-manager monitors states of ' 'resource by subscribing to notifications of ' 'the corresponding service.'), cfg.ListOpt('notification_topics', default=['notifications', 'versioned_notifications'], help='Notification topics to subscribe to.'), cfg.BoolOpt('enable_polling_monitor', default=False, help='Enable polling-based resource monitoring. ' 'If it is enabled, the blazar-manager monitors states ' 'of resource by polling the service API.'), cfg.IntOpt('polling_interval', default=60, min=1, help='Interval (seconds) of polling for health checking.'), cfg.IntOpt('healing_interval', default=60, min=0, help='Interval (minutes) of reservation healing. ' 'If 0 is specified, the interval is infinite and all the ' 'reservations in the future is healed at one time.'), ] CONF = cfg.CONF LOG = logging.getLogger(__name__) class GeneralMonitorPlugin(base.BaseMonitorPlugin, metaclass=abc.ABCMeta): """Monitor plugin for resource.""" # Singleton design pattern _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = \ super(GeneralMonitorPlugin, cls).__new__(cls) cls._instance.resource_type = kwargs.get("resource_type") super(GeneralMonitorPlugin, cls._instance).__init__() return cls._instance def __init__(self, *args, **kwargs): """Do nothing. This class uses the Singleton design pattern and an instance of this class is generated and initialized in __new__(). """ pass def register_healing_handler(self, handler): self.heal_reservations = handler def register_reallocater(self, reallocator): self._reallocate = reallocator @abc.abstractmethod def filter_allocations(self, reservation, resource_ids): """Filter allocations of a reservation by resource ids :param reservation: a reservation dict :param resource_ids: a list of resource ids :return: a list of allocations that contain resources """ pass @abc.abstractmethod def get_reservations_by_resource_ids(self, resource_ids, interval_begin, interval_end): """Get reservations by resource ids. :param resource ids: a list of resource ids. :param interval_begin: start date of the searching period. :param interval_end: end date of the searching period. :return: a list of reservation dict """ pass @abc.abstractmethod def get_unreservable_resourses(self): """Get all unreservable resources """ pass @abc.abstractmethod def poll_resource_failures(self): """Get a list of failed resources and recovered resources """ pass @abc.abstractmethod def set_reservable(self, resource_id, is_reservable): """Set resource as reservable or not reservable """ pass def heal_reservations(self, failed_resources, interval_begin, interval_end): """Heal reservations which suffer from resource failures. :param failed_resources: a list of failed resources. :param interval_begin: start date of the period to heal. :param interval_end: end date of the period to heal. :return: a dictionary of {reservation id: flags to update} e.g. {'de27786d-bd96-46bb-8363-19c13b2c6657': {'missing_resources': True}} """ reservation_flags = {} resource_ids = [h['id'] for h in failed_resources] reservations = self.get_reservations_by_resource_ids(resource_ids, interval_begin, interval_end) for reservation in reservations: if reservation['resource_type'] != self.resource_type: continue reservation_id = reservation["id"] for allocation in self.filter_allocations(reservation, resource_ids): try: if self._reallocate(allocation): if reservation['status'] == status.reservation.ACTIVE: if reservation_id not in reservation_flags: reservation_flags[reservation_id] = {} reservation_flags[reservation_id].update( {'resources_changed': True}) else: if reservation_id not in reservation_flags: reservation_flags[reservation_id] = {} reservation_flags[reservation_id].update( {'missing_resources': True}) except manager_ex.ResourceBusy: LOG.info( "Cannot heal reservation %s, found servers", reservation["id"] ) return reservation_flags def is_notification_enabled(self): """Check if the notification monitor is enabled.""" return CONF[self.resource_type].enable_notification_monitor def get_notification_topics(self): """Get topics of notification to subscribe to.""" return CONF[self.resource_type].notification_topics def is_polling_enabled(self): """Check if the polling monitor is enabled.""" return CONF[self.resource_type].enable_polling_monitor def get_polling_interval(self): """Get interval of polling.""" return CONF[self.resource_type].polling_interval def poll(self): """Detect and handle resource failures. :return: a dictionary of {reservation id: flags to update} e.g. {'de27786d-bd96-46bb-8363-19c13b2c6657': {'missing_resources': True}} """ LOG.trace('Poll...') failed_resources, recovered_resources = self.poll_resource_failures() if failed_resources: for resource in failed_resources: self.set_reservable(resource, False) if recovered_resources: for resource in recovered_resources: self.set_reservable(resource, True) return self.heal() def get_healing_interval(self): """Get interval of reservation healing in minutes.""" return CONF[self.resource_type].healing_interval def heal(self): """Heal suffering reservations in the next healing interval. :return: a dictionary of {reservation id: flags to update} """ reservation_flags = {} resources = self.get_unreservable_resourses() interval_begin = datetime.datetime.utcnow() interval = self.get_healing_interval() if interval == 0: interval_end = datetime.date.max else: interval_end = interval_begin + datetime.timedelta( minutes=interval) reservation_flags.update(self.heal_reservations(resources, interval_begin, interval_end)) return reservation_flags ``` #### File: plugins/networks/test_network_plugin.py ```python import datetime import uuid from oslo_config import cfg from unittest import mock from blazar import context from blazar.db import api as db_api from blazar.db import exceptions as db_exceptions from blazar.db import utils as db_utils from blazar.manager import exceptions as manager_exceptions from blazar.manager import service from blazar.plugins import networks as plugin from blazar.plugins.networks import network_plugin from blazar import tests from blazar.utils.openstack import base from blazar.utils.openstack import ironic from blazar.utils.openstack import neutron from blazar.utils.openstack import nova from blazar.utils import trusts CONF = cfg.CONF class NetworkPluginTestCase(tests.TestCase): def setUp(self): super(NetworkPluginTestCase, self).setUp() self.cfg = cfg self.context = context self.patch(self.context, 'BlazarContext') self.ironic_client = ( self.patch(ironic, 'BlazarIronicClient').return_value) self.neutron_client = ( self.patch(neutron, 'BlazarNeutronClient').return_value) self.service = service self.manager = self.service.ManagerService() self.fake_network_id = 'e3ed59f3-27e6-48df-b8bd-2a397aeb57dc' self.fake_network_values = { 'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 1234 } self.fake_network = self.fake_network_values.copy() self.fake_network['id'] = self.fake_network_id self.patch(base, 'url_for').return_value = 'http://foo.bar' self.network_plugin = network_plugin self.fake_network_plugin = self.network_plugin.NetworkPlugin() self.db_api = db_api self.db_utils = db_utils self.db_network_get = self.patch(self.db_api, 'network_get') self.db_network_get.return_value = self.fake_network self.db_network_list = self.patch(self.db_api, 'network_list') self.db_network_create = self.patch(self.db_api, 'network_create') self.db_network_update = self.patch(self.db_api, 'network_update') self.db_network_destroy = self.patch(self.db_api, 'network_destroy') self.db_network_extra_capability_get_all_per_network = self.patch( self.db_api, 'network_extra_capability_get_all_per_network') self.db_network_extra_capability_get_all_per_name = self.patch( self.db_api, 'network_extra_capability_get_all_per_name') self.db_network_extra_capability_create = self.patch( self.db_api, 'network_extra_capability_create') self.db_network_extra_capability_update = self.patch( self.db_api, 'network_extra_capability_update') self.get_extra_capabilities = self.patch( self.fake_network_plugin, '_get_extra_capabilities') self.get_extra_capabilities.return_value = { 'foo': 'bar', 'buzz': 'word', } self.fake_network_plugin.setup(None) self.trusts = trusts self.trust_ctx = self.patch(self.trusts, 'create_ctx_from_trust') self.trust_create = self.patch(self.trusts, 'create_trust') self.ServerManager = nova.ServerManager def test_get_network(self): network = self.fake_network_plugin.get_network(self.fake_network_id) self.db_network_get.assert_called_once_with(self.fake_network_id) expected = self.fake_network.copy() expected.update({'foo': 'bar', 'buzz': 'word'}) self.assertEqual(expected, network) def test_get_network_without_extracapabilities(self): self.get_extra_capabilities.return_value = {} network = self.fake_network_plugin.get_network(self.fake_network_id) self.db_network_get.assert_called_once_with(self.fake_network_id) self.assertEqual(self.fake_network, network) def test_list_networks(self): self.fake_network_plugin.list_networks() self.db_network_list.assert_called_once_with() def test_create_network_without_extra_capabilities(self): network_values = { 'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 1234 } expected_network_values = network_values.copy() self.get_extra_capabilities.return_value = {} network = self.fake_network_plugin.create_network(network_values) self.db_network_create.assert_called_once_with(expected_network_values) self.assertEqual(network, self.fake_network) def test_create_network_with_extra_capabilities(self): fake_network = self.fake_network.copy() fake_network.update({'foo': 'bar'}) # NOTE(sbauza): 'id' will be pop'd, we need to keep track of it fake_request = fake_network.copy() fake_capa = {'network_id': self.fake_network_id, 'capability_name': 'foo', 'capability_value': 'bar', } self.get_extra_capabilities.return_value = {'foo': 'bar'} self.db_network_create.return_value = self.fake_network network = self.fake_network_plugin.create_network(fake_request) self.db_network_create.assert_called_once_with( self.fake_network_values) self.db_network_extra_capability_create.assert_called_once_with( fake_capa) self.assertEqual(network, fake_network) def test_create_network_with_capabilities_too_long(self): fake_network = self.fake_network_values.copy() fake_network.update({'foo': 'bar'}) # NOTE(sbauza): 'id' will be pop'd, we need to keep track of it fake_request = fake_network.copy() long_key = "" for i in range(65): long_key += "0" fake_request[long_key] = "foo" self.db_network_create.return_value = self.fake_network self.assertRaises(manager_exceptions.ExtraCapabilityTooLong, self.fake_network_plugin.create_network, fake_request) def test_create_network_without_required_params(self): self.assertRaises(manager_exceptions.MissingParameter, self.fake_network_plugin.create_network, {'network_type': 'vlan', 'physical_network': 'physnet1'}) def test_create_network_with_invalid_segment_id(self): self.assertRaises(manager_exceptions.MalformedParameter, self.fake_network_plugin.create_network, {'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 0}) self.assertRaises(manager_exceptions.MalformedParameter, self.fake_network_plugin.create_network, {'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 4095}) def test_create_network_issuing_rollback(self): def fake_db_network_create(*args, **kwargs): raise db_exceptions.BlazarDBException self.db_network_create.side_effect = fake_db_network_create self.assertRaises(db_exceptions.BlazarDBException, self.fake_network_plugin.create_network, self.fake_network) def test_create_duplicate_network(self): def fake_db_network_create(*args, **kwargs): raise db_exceptions.BlazarDBDuplicateEntry self.db_network_create.side_effect = fake_db_network_create self.assertRaises(db_exceptions.BlazarDBDuplicateEntry, self.fake_network_plugin.create_network, self.fake_network) def test_create_network_having_issue_when_storing_extra_capability(self): def fake_db_network_extra_capability_create(*args, **kwargs): raise db_exceptions.BlazarDBException fake_network = self.fake_network_values.copy() fake_network.update({'foo': 'bar'}) fake_request = fake_network.copy() self.get_extra_capabilities.return_value = {'foo': 'bar'} self.db_network_create.return_value = self.fake_network fake = self.db_network_extra_capability_create fake.side_effect = fake_db_network_extra_capability_create self.assertRaises(manager_exceptions.CantAddExtraCapability, self.fake_network_plugin.create_network, fake_request) def test_update_network(self): network_values = {'segment_id': 2345} self.fake_network_plugin.update_network(self.fake_network_id, network_values) self.db_network_update.assert_called_once_with( self.fake_network_id, network_values) def test_update_network_extra_capabilities(self): network_values = {'foo': 'baz'} self.db_network_extra_capability_get_all_per_name.return_value = [ ({'id': 'extra_id1', 'network_id': self.fake_network_id, 'capability_value': 'bar'}, 'foo') ] self.get_reservations_by_network = self.patch( self.db_utils, 'get_reservations_by_network_id') self.get_reservations_by_network.return_value = [] self.fake_network_plugin.update_network(self.fake_network_id, network_values) self.db_network_extra_capability_update.assert_called_once_with( 'extra_id1', {'capability_name': 'foo', 'capability_value': 'baz'}) def test_update_network_having_issue_when_storing_extra_capability(self): def fake_db_network_extra_capability_update(*args, **kwargs): raise RuntimeError network_values = {'foo': 'baz'} self.get_reservations_by_network = self.patch( self.db_utils, 'get_reservations_by_network_id') self.get_reservations_by_network.return_value = [] self.db_network_extra_capability_get_all_per_name.return_value = [ ({'id': 'extra_id1', 'network_id': self.fake_network_id, 'capability_value': 'bar'}, 'foo') ] fake = self.db_network_extra_capability_update fake.side_effect = fake_db_network_extra_capability_update self.assertRaises(manager_exceptions.CantAddExtraCapability, self.fake_network_plugin.update_network, self.fake_network_id, network_values) def test_update_network_with_new_extra_capability(self): network_values = {'qux': 'word'} self.db_network_extra_capability_get_all_per_network.return_value = [] self.fake_network_plugin.update_network(self.fake_network_id, network_values) self.db_network_extra_capability_create.assert_called_once_with({ 'network_id': self.fake_network_id, 'capability_name': 'qux', 'capability_value': 'word' }) def test_update_network_with_used_capability(self): network_values = {'foo': 'buzz'} self.db_network_extra_capability_get_all_per_name.return_value = [ ({'id': 'extra_id1', 'network_id': self.fake_network_id, 'capability_value': 'bar'}, 'foo') ] fake_network_reservation = { 'resource_type': plugin.RESOURCE_TYPE, 'resource_id': 'resource-1', } fake_get_reservations = self.patch(self.db_utils, 'get_reservations_by_network_id') fake_get_reservations.return_value = [fake_network_reservation] fake_get_plugin_reservation = self.patch(self.db_utils, 'get_plugin_reservation') fake_get_plugin_reservation.return_value = { 'resource_properties': '["==", "$foo", "bar"]' } self.assertRaises(manager_exceptions.CantAddExtraCapability, self.fake_network_plugin.update_network, self.fake_network_id, network_values) fake_get_plugin_reservation.assert_called_once_with( plugin.RESOURCE_TYPE, 'resource-1') def test_delete_network(self): network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [] self.fake_network_plugin.delete_network(self.fake_network_id) self.db_network_destroy.assert_called_once_with(self.fake_network_id) def test_delete_reserved_network(self): network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': u'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': self.fake_network_id } ] self.assertRaises(manager_exceptions.CantDeleteNetwork, self.fake_network_plugin.delete_network, self.fake_network_id) def test_delete_network_not_existing_in_db(self): self.db_network_get.return_value = None self.assertRaises(manager_exceptions.NetworkNotFound, self.fake_network_plugin.delete_network, self.fake_network_id) def test_delete_network_issuing_rollback(self): def fake_db_network_destroy(*args, **kwargs): raise db_exceptions.BlazarDBException network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [] self.db_network_destroy.side_effect = fake_db_network_destroy self.assertRaises(manager_exceptions.CantDeleteNetwork, self.fake_network_plugin.delete_network, self.fake_network_id) def generate_event(self, id, lease_id, event_type, time, status='UNDONE'): return { 'id': id, 'lease_id': lease_id, 'event_type': event_type, 'time': time, 'status': status } def get_uuid(self): return str(uuid.uuid4()) def generate_basic_events(self, lease_id, start, before_end, end): return [ self.generate_event(self.get_uuid(), lease_id, 'start_lease', datetime.datetime.strptime(start, '%Y-%m-%d %H:%M')), self.generate_event(self.get_uuid(), lease_id, 'before_end_lease', datetime.datetime.strptime(before_end, '%Y-%m-%d %H:%M')), self.generate_event(self.get_uuid(), lease_id, 'end_lease', datetime.datetime.strptime(end, '%Y-%m-%d %H:%M')), ] def test_create_reservation_no_network_available(self): now = datetime.datetime.utcnow() lease = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'user_id': '123', 'project_id': '456', } values = { 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'start_date': now, 'end_date': now + datetime.timedelta(hours=1), 'resource_type': plugin.RESOURCE_TYPE, 'network_name': 'foo-net', 'network_properties': '', 'resource_properties': '', } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = lease network_reservation_create = self.patch(self.db_api, 'network_reservation_create') matching_networks = self.patch(self.fake_network_plugin, '_matching_networks') matching_networks.return_value = [] self.assertRaises(manager_exceptions.NotEnoughNetworksAvailable, self.fake_network_plugin.reserve_resource, u'f9894fcf-e2ed-41e9-8a4c-92fac332608e', values) network_reservation_create.assert_not_called() def test_create_reservation_networks_available(self): lease = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'user_id': '123', 'project_id': '456', } values = { 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'network_properties': '', 'resource_properties': '', 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00), 'resource_type': plugin.RESOURCE_TYPE, 'network_name': 'foo-net', 'network_description': '' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = lease network_reservation_create = self.patch(self.db_api, 'network_reservation_create') matching_networks = self.patch(self.fake_network_plugin, '_matching_networks') matching_networks.return_value = ['network1', 'network2'] network_allocation_create = self.patch( self.db_api, 'network_allocation_create') self.fake_network_plugin.reserve_resource( u'441c1476-9f8f-4700-9f30-cd9b6fef3509', values) network_values = { 'reservation_id': u'441c1476-9f8f-4700-9f30-cd9b6fef3509', 'network_properties': '', 'resource_properties': '', 'status': 'pending', 'before_end': 'default', 'network_name': 'foo-net', 'network_description': '', } network_reservation_create.assert_called_once_with(network_values) calls = [ mock.call( {'network_id': 'network1', 'reservation_id': u'441c1476-9f8f-4700-9f30-cd9b6fef3509', }), ] network_allocation_create.assert_has_calls(calls) def test_create_reservation_with_missing_param_properties(self): values = { 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'start_date': datetime.datetime(2017, 3, 1, 20, 00), 'end_date': datetime.datetime(2017, 3, 2, 20, 00), 'resource_type': plugin.RESOURCE_TYPE, } self.assertRaises( manager_exceptions.MissingParameter, self.fake_network_plugin.reserve_resource, u'441c1476-9f8f-4700-9f30-cd9b6fef3509', values) def test_create_reservation_with_invalid_param_before_end(self): values = { 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'before_end': 'invalid', 'start_date': datetime.datetime(2017, 3, 1, 20, 00), 'end_date': datetime.datetime(2017, 3, 2, 20, 00), 'resource_type': plugin.RESOURCE_TYPE, 'network_name': 'foo-net', 'network_properties': '', 'resource_properties': '', } self.assertRaises( manager_exceptions.MalformedParameter, self.fake_network_plugin.reserve_resource, u'441c1476-9f8f-4700-9f30-cd9b6fef3509', values) def test_update_reservation_shorten(self): values = { 'start_date': datetime.datetime(2013, 12, 19, 20, 30), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': u'10870923-6d56-45c9-b592-f788053f5baa', } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') self.patch(self.db_api, 'network_allocation_get_all_by_values') self.fake_network_plugin.update_reservation( '706eb3bc-07ed-4383-be93-b32845ece672', values) network_reservation_get.assert_not_called() def test_update_reservation_extend(self): values = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 30) } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': u'10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': u'91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'pending' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': u'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch( self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [{'id': 'network1'}] get_reserved_periods = self.patch(self.db_utils, 'get_reserved_periods') get_reserved_periods.return_value = [ (datetime.datetime(2013, 12, 19, 20, 00), datetime.datetime(2013, 12, 19, 21, 00)) ] network_allocation_create = self.patch( self.db_api, 'network_allocation_create') network_allocation_destroy = self.patch( self.db_api, 'network_allocation_destroy') self.fake_network_plugin.update_reservation( '706eb3bc-07ed-4383-be93-b32845ece672', values) network_allocation_create.assert_not_called() network_allocation_destroy.assert_not_called() def test_update_reservation_move_failure(self): values = { 'start_date': datetime.datetime(2013, 12, 20, 20, 00), 'end_date': datetime.datetime(2013, 12, 20, 21, 30) } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': u'10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': u'91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'active' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': u'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch(self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [{'id': 'network1'}] get_reserved_periods = self.patch(self.db_utils, 'get_reserved_periods') get_reserved_periods.return_value = [ (datetime.datetime(2013, 12, 20, 20, 30), datetime.datetime(2013, 12, 20, 21, 00)) ] matching_networks = self.patch( self.fake_network_plugin, '_matching_networks') matching_networks.return_value = [] self.assertRaises( manager_exceptions.NotEnoughNetworksAvailable, self.fake_network_plugin.update_reservation, '706eb3bc-07ed-4383-be93-b32845ece672', values) reservation_get.assert_called() def test_update_reservation_move_overlap(self): values = { 'start_date': datetime.datetime(2013, 12, 19, 20, 30), 'end_date': datetime.datetime(2013, 12, 19, 21, 30) } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': u'10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': u'91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'pending' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': u'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch(self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [{'id': 'network1'}] get_reserved_periods = self.patch(self.db_utils, 'get_reserved_periods') get_reserved_periods.return_value = [ (datetime.datetime(2013, 12, 19, 20, 30), datetime.datetime(2013, 12, 19, 21, 00)) ] network_allocation_create = self.patch( self.db_api, 'network_allocation_create') network_allocation_destroy = self.patch( self.db_api, 'network_allocation_destroy') self.fake_network_plugin.update_reservation( '706eb3bc-07ed-4383-be93-b32845ece672', values) network_allocation_create.assert_not_called() network_allocation_destroy.assert_not_called() def test_update_reservation_move_realloc(self): values = { 'start_date': datetime.datetime(2013, 12, 20, 20, 00), 'end_date': datetime.datetime(2013, 12, 20, 21, 30) } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': u'10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': u'91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'pending' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': u'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch(self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [{'id': 'network1'}, {'id': 'network2'}] network_allocation_create = self.patch( self.db_api, 'network_allocation_create') network_allocation_destroy = self.patch( self.db_api, 'network_allocation_destroy') get_reserved_periods = self.patch(self.db_utils, 'get_reserved_periods') get_reserved_periods.return_value = [ (datetime.datetime(2013, 12, 20, 20, 30), datetime.datetime(2013, 12, 20, 21, 00)) ] matching_networks = self.patch( self.fake_network_plugin, '_matching_networks') matching_networks.return_value = ['network2'] self.fake_network_plugin.update_reservation( '706eb3bc-07ed-4383-be93-b32845ece672', values) network_reservation_get.assert_called_with( u'91253650-cc34-4c4f-bbe8-c943aa7d0c9b') network_allocation_destroy.assert_called_with( 'dd305477-4df8-4547-87f6-69069ee546a6') network_allocation_create.assert_called_with( { 'network_id': 'network2', 'reservation_id': '706eb3bc-07ed-4383-be93-b32845ece672' } ) def test_update_reservation_realloc_with_properties_change(self): values = { 'start_date': datetime.datetime(2017, 7, 12, 20, 00), 'end_date': datetime.datetime(2017, 7, 12, 21, 00), 'network_properties': '["=", "$network_type", "vlan"]', } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': '10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': '91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'pending' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2017, 7, 12, 20, 00), 'end_date': datetime.datetime(2017, 7, 12, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': 'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch(self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [{'id': 'network2'}] matching_networks = self.patch( self.fake_network_plugin, '_matching_networks') matching_networks.return_value = ['network2'] network_allocation_create = self.patch(self.db_api, 'network_allocation_create') network_allocation_destroy = self.patch(self.db_api, 'network_allocation_destroy') network_reservation_update = self.patch(self.db_api, 'network_reservation_update') self.fake_network_plugin.update_reservation( '706eb3bc-07ed-4383-be93-b32845ece672', values) network_reservation_get.assert_called_with( '91253650-cc34-4c4f-bbe8-c943aa7d0c9b') matching_networks.assert_called_with( '["=", "$network_type", "vlan"]', '', datetime.datetime(2017, 7, 12, 20, 00), datetime.datetime(2017, 7, 12, 21, 00) ) network_allocation_create.assert_called_with( { 'network_id': 'network2', 'reservation_id': '706eb3bc-07ed-4383-be93-b32845ece672' } ) network_allocation_destroy.assert_called_with( 'dd305477-4df8-4547-87f6-69069ee546a6' ) network_reservation_update.assert_called_with( '91253650-cc34-4c4f-bbe8-c943aa7d0c9b', {'network_properties': '["=", "$network_type", "vlan"]'} ) def test_update_reservation_no_requested_networks_available(self): values = { 'start_date': datetime.datetime(2017, 7, 12, 20, 00), 'end_date': datetime.datetime(2017, 7, 12, 21, 00), 'resource_properties': '["=", "$segment_id", "2345"]' } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'lease_id': '10870923-6d56-45c9-b592-f788053f5baa', 'resource_id': '91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'status': 'pending' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'start_date': datetime.datetime(2013, 12, 19, 20, 00), 'end_date': datetime.datetime(2013, 12, 19, 21, 00) } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '91253650-cc34-4c4f-bbe8-c943aa7d0c9b', 'network_properties': '["=", "$network_type", "vlan"]', 'resource_properties': '' } network_allocation_get_all = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all.return_value = [ { 'id': 'dd305477-4df8-4547-87f6-69069ee546a6', 'network_id': 'network1' } ] network_get_all_by_queries = self.patch(self.db_api, 'network_get_all_by_queries') network_get_all_by_queries.return_value = [] matching_networks = self.patch( self.fake_network_plugin, '_matching_networks') matching_networks.return_value = [] self.assertRaises( manager_exceptions.NotEnoughNetworksAvailable, self.fake_network_plugin.update_reservation, '441c1476-9f8f-4700-9f30-cd9b6fef3509', values) def test_on_start(self): lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'project_id': '456' } reservation_get = self.patch( self.db_api, 'reservation_get') reservation_get.return_value = { 'id': u'593e7028-c0d1-4d76-8642-2ffd890b324c', 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '04de74e8-193a-49d2-9ab8-cba7b49e45e8', 'network_id': None, 'network_name': 'foo-net', 'network_description': None, 'reservation_id': u'593e7028-c0d1-4d76-8642-2ffd890b324c' } network_allocation_get_all_by_values = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all_by_values.return_value = [ {'network_id': 'network1'}, ] network_get = self.patch(self.db_api, 'network_get') network_get.return_value = { 'network_id': 'network1', 'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 1234 } create_network = self.patch(self.neutron_client, 'create_network') create_network.return_value = { 'network': { 'id': '69cab064-0e60-4efb-a503-b42dde0fb3f2', 'name': 'foo-net' } } network_reservation_update = self.patch( self.db_api, 'network_reservation_update') self.fake_network_plugin.on_start( u'04de74e8-193a-49d2-9ab8-cba7b49e45e8') create_network.assert_called_with( body={ 'network': { 'provider:segmentation_id': 1234, 'name': 'foo-net', 'project_id': '456', 'provider:physical_network': 'physnet1', 'provider:network_type': 'vlan'}}) network_reservation_update.assert_called_with( '04de74e8-193a-49d2-9ab8-cba7b49e45e8', {'network_id': '69cab064-0e60-4efb-a503-b42dde0fb3f2'}) def test_on_start_failure(self): lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'project_id': '456' } reservation_get = self.patch( self.db_api, 'reservation_get') reservation_get.return_value = { 'id': u'593e7028-c0d1-4d76-8642-2ffd890b324c', 'lease_id': u'018c1b43-e69e-4aef-a543-09681539cf4c', } network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '04de74e8-193a-49d2-9ab8-cba7b49e45e8', 'network_id': None, 'network_name': 'foo-net', 'network_description': None, 'reservation_id': u'593e7028-c0d1-4d76-8642-2ffd890b324c' } network_allocation_get_all_by_values = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all_by_values.return_value = [ {'network_id': 'network1'}, ] network_get = self.patch(self.db_api, 'network_get') network_get.return_value = { 'network_id': 'network1', 'network_type': 'vlan', 'physical_network': 'physnet1', 'segment_id': 1234 } def fake_create_network(*args, **kwargs): raise manager_exceptions.NetworkCreationFailed create_network = self.patch(self.neutron_client, 'create_network') create_network.side_effect = fake_create_network self.assertRaises(manager_exceptions.NetworkCreationFailed, self.fake_network_plugin.on_start, '04de74e8-193a-49d2-9ab8-cba7b49e45e8') def test_on_end(self): network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '04de74e8-193a-49d2-9ab8-cba7b49e45e8', 'network_id': '69cab064-0e60-4efb-a503-b42dde0fb3f2', 'network_name': 'foo-net', 'reservation_id': u'593e7028-c0d1-4d76-8642-2ffd890b324c' } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'id': u'593e7028-c0d1-4d76-8642-2ffd890b324c', 'lease_id': '10870923-6d56-45c9-b592-f788053f5baa', 'status': 'active' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'trust_id': 'exxee111qwwwwe' } network_reservation_update = self.patch( self.db_api, 'network_reservation_update') network_allocation_get_all_by_values = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all_by_values.return_value = [ {'id': u'bfa9aa0b-8042-43eb-a4e6-4555838bf64f', 'network_id': u'cdae2a65-236f-475a-977d-f6ad82f828b7', }, ] network_allocation_destroy = self.patch( self.db_api, 'network_allocation_destroy') delete_network = self.patch(self.neutron_client, 'delete_network') delete_network.return_value = None self.fake_network_plugin.on_end( u'04de74e8-193a-49d2-9ab8-cba7b49e45e8') network_reservation_update.assert_called_with( u'04de74e8-193a-49d2-9ab8-cba7b49e45e8', {'status': 'completed'}) network_allocation_destroy.assert_called_with( u'bfa9aa0b-8042-43eb-a4e6-4555838bf64f') delete_network.assert_called_with( '69cab064-0e60-4efb-a503-b42dde0fb3f2') def test_on_end_failure(self): network_reservation_get = self.patch( self.db_api, 'network_reservation_get') network_reservation_get.return_value = { 'id': '04de74e8-193a-49d2-9ab8-cba7b49e45e8', 'network_id': '69cab064-0e60-4efb-a503-b42dde0fb3f2', 'network_name': 'foo-net', 'reservation_id': u'593e7028-c0d1-4d76-8642-2ffd890b324c' } reservation_get = self.patch(self.db_api, 'reservation_get') reservation_get.return_value = { 'id': u'593e7028-c0d1-4d76-8642-2ffd890b324c', 'lease_id': '10870923-6d56-45c9-b592-f788053f5baa', 'status': 'active' } lease_get = self.patch(self.db_api, 'lease_get') lease_get.return_value = { 'id': u'018c1b43-e69e-4aef-a543-09681539cf4c', 'trust_id': 'exxee111qwwwwe' } network_reservation_update = self.patch( self.db_api, 'network_reservation_update') network_allocation_get_all_by_values = self.patch( self.db_api, 'network_allocation_get_all_by_values') network_allocation_get_all_by_values.return_value = [ {'id': u'bfa9aa0b-8042-43eb-a4e6-4555838bf64f', 'network_id': u'cdae2a65-236f-475a-977d-f6ad82f828b7', }, ] network_allocation_destroy = self.patch( self.db_api, 'network_allocation_destroy') def fake_delete_network(*args, **kwargs): raise manager_exceptions.NetworkDeletionFailed delete_network = self.patch(self.neutron_client, 'delete_network') delete_network.side_effect = fake_delete_network self.assertRaises(manager_exceptions.NetworkDeletionFailed, self.fake_network_plugin.on_end, '04de74e8-193a-49d2-9ab8-cba7b49e45e8') network_reservation_update.assert_called_with( u'04de74e8-193a-49d2-9ab8-cba7b49e45e8', {'status': 'completed'}) network_allocation_destroy.assert_called_with( u'bfa9aa0b-8042-43eb-a4e6-4555838bf64f') delete_network.assert_called_with( '69cab064-0e60-4efb-a503-b42dde0fb3f2') def test_list_resource_properties(self): self.db_list_resource_properties = self.patch( self.db_api, 'resource_properties_list') # Expecting a list of (Reservation, Allocation) self.db_list_resource_properties.return_value = [ ('prop1', False, 'aaa'), ('prop1', False, 'bbb'), ('prop2', False, 'aaa'), ('prop2', False, 'aaa'), ('prop3', True, 'aaa') ] expected = [ {'property': 'prop1'}, {'property': 'prop2'} ] ret = self.fake_network_plugin.list_resource_properties(query=None) # Sort returned value to use assertListEqual ret.sort(key=lambda x: x['property']) self.assertListEqual(expected, ret) self.db_list_resource_properties.assert_called_once_with( 'network') def test_list_resource_properties_with_detail(self): self.db_list_resource_properties = self.patch( self.db_api, 'resource_properties_list') # Expecting a list of (Reservation, Allocation) self.db_list_resource_properties.return_value = [ ('prop1', False, 'aaa'), ('prop1', False, 'bbb'), ('prop2', False, 'ccc'), ('prop3', True, 'aaa') ] expected = [ {'property': 'prop1', 'private': False, 'values': ['aaa', 'bbb']}, {'property': 'prop2', 'private': False, 'values': ['ccc']} ] ret = self.fake_network_plugin.list_resource_properties( query={'detail': True}) # Sort returned value to use assertListEqual ret.sort(key=lambda x: x['property']) self.assertListEqual(expected, ret) self.db_list_resource_properties.assert_called_once_with( 'network') def test_update_resource_property(self): resource_property_values = { 'resource_type': 'network', 'private': False} db_resource_property_update = self.patch( self.db_api, 'resource_property_update') self.fake_network_plugin.update_resource_property( 'foo', resource_property_values) db_resource_property_update.assert_called_once_with( 'network', 'foo', resource_property_values) ``` #### File: utils/openstack/heat.py ```python from heatclient import client as heat_client from keystoneauth1 import session from keystoneauth1 import token_endpoint from oslo_config import cfg from oslo_log import log as logging from blazar import context from blazar.utils.openstack import base heat_opts = [ cfg.StrOpt( 'heat_api_version', default='1', deprecated_group='DEFAULT', help='Heat API version'), cfg.StrOpt( 'orchestration_service', default='orchestration', deprecated_group='DEFAULT', help='Heat name in keystone') ] CONF = cfg.CONF CONF.register_opts(heat_opts, group='heat') CONF.import_opt('identity_service', 'blazar.utils.openstack.keystone') LOG = logging.getLogger(__name__) class BlazarHeatClient(object): def __init__(self, ctx=None): if ctx is None: ctx = context.current() endpoint_override = base.url_for( ctx.service_catalog, CONF.heat.orchestration_service, os_region_name=CONF.os_region_name) auth = token_endpoint.Token(endpoint_override, ctx.auth_token) sess = session.Session(auth=auth) self.heat = heat_client.Client( CONF.heat.heat_api_version, session=sess) def __getattr_(self, name): return getattr(self.heat, name) ``` #### File: utils/openstack/neutron.py ```python import netaddr from neutronclient.common import exceptions as neutron_exceptions from neutronclient.v2_0 import client as neutron_client from oslo_log import log as logging from blazar.utils.openstack import base from blazar.utils.openstack import exceptions LOG = logging.getLogger(__name__) class BlazarNeutronClient(object): """Client class for Neutron service.""" def __init__(self, **kwargs): client_kwargs = base.client_kwargs(**kwargs) self.neutron = neutron_client.Client(**client_kwargs) def __getattr__(self, attr): return getattr(self.neutron, attr) class FloatingIPPool(BlazarNeutronClient): def __init__(self, network_id, **kwargs): super(FloatingIPPool, self).__init__(**kwargs) try: self.neutron.show_network(network_id) except neutron_exceptions.NotFound: LOG.info('Failed to find network %s.', network_id) raise exceptions.FloatingIPNetworkNotFound(network=network_id) self.network_id = network_id def fetch_subnet(self, floatingip): fip = netaddr.IPAddress(floatingip) network = self.neutron.show_network(self.network_id)['network'] subnet_ids = network['subnets'] for sub_id in subnet_ids: subnet = self.neutron.show_subnet(sub_id)['subnet'] cidr = netaddr.IPNetwork(subnet['cidr']) # skip the subnet because it has not valid cidr for the floating ip if fip not in cidr: continue allocated_ip = netaddr.IPSet() allocated_ip.add(netaddr.IPAddress(subnet['gateway_ip'])) for alloc in subnet['allocation_pools']: allocated_ip.add(netaddr.IPRange(alloc['start'], alloc['end'])) if fip in allocated_ip: raise exceptions.NeutronUsesFloatingIP(floatingip=fip, subnet=subnet['id']) else: self.subnet_id = subnet['id'] return subnet raise exceptions.FloatingIPSubnetNotFound(fip=floatingip) def create_reserved_floatingip(self, subnet_id, address, project_id, reservation_id): body = { 'floatingip': { 'floating_network_id': self.network_id, 'subnet_id': subnet_id, 'floating_ip_address': address, 'project_id': project_id } } fip = self.neutron.create_floatingip(body)['floatingip'] body = { 'tags': ['blazar', 'reservation:%s' % reservation_id] } self.neutron.replace_tag('floatingips', fip['id'], body) def delete_reserved_floatingip(self, address): query = { 'floating_ip_address': address, 'floating_network_id': self.network_id } fips = self.neutron.list_floatingips(**query)['floatingips'] if not fips: # The floating ip address already deleted by the user. return None fip = next(iter(fips)) if fip['port_id']: # Deassociate the floating ip from the attached port because # the delete floatingip API deletes both the floating ip and # associated port. body = { 'floatingip': { 'port_id': None, } } self.neutron.update_floatingip(fip['id'], body) self.neutron.delete_floatingip(fip['id']) ``` #### File: blazar/utils/trusts.py ```python from oslo_config import cfg from blazar import context from blazar.utils.openstack import keystone import functools CONF = cfg.CONF def create_trust(): """Creates trust via Keystone API v3 to use in plugins.""" trustee_id = keystone.BlazarKeystoneClient().session.get_user_id() ctx = context.current() user_client = keystone.BlazarKeystoneClient(as_user=True) trust = user_client.trusts.create(trustor_user=ctx.user_id, trustee_user=trustee_id, impersonation=True, role_names=ctx.roles, project=ctx.project_id) return trust def delete_trust(lease): """Deletes trust for the specified lease.""" if lease.trust_id: client = keystone.BlazarKeystoneClient(trust_id=lease.trust_id) client.trusts.delete(lease.trust_id) def create_ctx_from_trust(trust_id): """Return context built from given trust.""" ctx = context.current() client = keystone.BlazarKeystoneClient(trust_id=trust_id) session = client.session # use 'with ctx' statement in the place you need context from trust return context.BlazarContext( user_name=ctx.user_name, user_domain_name=ctx.user_domain_name, auth_token=session.get_token(), project_id=session.get_project_id(), service_catalog=( ctx.service_catalog or session.auth.get_auth_ref( session=session ).service_catalog.normalize_catalog()), request_id=ctx.request_id, global_request_id=ctx.global_request_id ) def use_trust_auth(): """Decorator creates a keystone trust This decorator creates a keystone trust, and adds the trust_id to the parameter of the decorated method. """ def decorator(func): @functools.wraps(func) def wrapped(self, to_update): if to_update is not None: trust = create_trust() if isinstance(to_update, dict): to_update.update({'trust_id': trust.id}) elif isinstance(to_update, object): setattr(to_update, 'trust_id', trust.id) return func(self, to_update) return wrapped return decorator ```
{ "source": "4sfc/django-common-files", "score": 3 }
#### File: common_files/admin/timestamp.py ```python from django.contrib import admin class TimestampAdmin(admin.ModelAdmin): """TimestampAdmin has custom save_formset and save_model functions""" def save_formset(self, request, form, formset, change): """Save created_by and modified_by users.""" instances = formset.save(commit=False) for obj in formset.deleted_objects: obj.delete() for instance in instances: if instance.pk is None: instance.created_by = request.user instance.modified_by = request.user instance.save() formset.save_m2m() def save_model(self, request, obj, form, change): """Save created_by and modified_by users.""" if obj.pk is None: obj.created_by = request.user obj.modified_by = request.user super().save_model(request, obj, form, change) ``` #### File: common_files/models/base.py ```python from django.db import models from common_files.models.timestamp import Timestamp class Base(Timestamp): """Abstract base class Base has label, value, and active fields""" label = models.CharField(max_length=191, unique=True) value = models.CharField(max_length=10, unique=True) active = models.BooleanField(default=True, null=False) def __str__(self): return self.label class Meta: constraints = [ models.UniqueConstraint(fields=['label', 'value'], name='unique_label_value') ] abstract = True ```
{ "source": "4sfc/django-member-manager", "score": 3 }
#### File: member_manager/tests/availability.py ```python from django.contrib.auth.models import User from django.test import TestCase from member_manager.models import Availability from member_manager.models import Profile class AvailabilityTest(TestCase): """Test Availability model""" @classmethod def setUpTestData(cls): cls.user = User.objects.create(username='foo', email='<EMAIL>') cls.profile = Profile.objects.create(first_name='foo', last_name='bar', email='<EMAIL>', user=cls.user, created_by=cls.user, modified_by=cls.user) def test_str(self): """Test Availability string""" period = Availability.objects.create(profile=self.profile, weekday=Availability.SUNDAY, start_time=Availability.NINE_AM, end_time=Availability.ONE_PM, created_by=self.user, modified_by=self.user) self.assertEqual(str(period), 'Sunday 9:00 am - 1:00 pm') ``` #### File: member_manager/tests/profile_skill.py ```python from django.contrib.auth.models import User from django.test import TestCase from member_manager.models import Profile from member_manager.models import ProfileSkill from member_manager.models import Skill class ProfileSkillTest(TestCase): """Test ProfileSkill model""" @classmethod def setUpTestData(cls): cls.user = User.objects.create(username='foo', email='<EMAIL>') cls.profile = Profile.objects.create(first_name='foo', last_name='bar', email='<EMAIL>', user=cls.user, created_by=cls.user, modified_by=cls.user) cls.skill = Skill.objects.create(label='Programming', value='pr', created_by=cls.user, modified_by=cls.user) def test_str(self): """Test ProfileSkill string""" a_profile = ProfileSkill.objects.create(profile=self.profile, skill=self.skill, created_by=self.user, modified_by=self.user) self.assertEqual(str(a_profile), 'foo bar - Programming') ``` #### File: member_manager/tests/skill.py ```python from django.contrib.auth.models import User from django.test import TestCase from member_manager.models import Skill class SkillTest(TestCase): """Test Skill model""" @classmethod def setUpTestData(cls): cls.user = User.objects.create(username='foo', email='<EMAIL>') cls.skill = Skill.objects.create(label='Programming', value='pr', created_by=cls.user, modified_by=cls.user) def test_str(self): """Test Skill string""" self.assertEqual(str(self.skill), 'Programming') ```
{ "source": "4SH3N/Batch-Files", "score": 3 }
#### File: 4SH3N/Batch-Files/Find_and_Trace_IP.py ```python import socket def main(): remote_host = "Website" try: print("IP Address Of " + remote_host + " Is " + socket.gethostbyname(remote_host)) except socket.error as e: print("Error : {} ".format(e)) if __name__ == "__main__": main() import os import urllib2 import json while True: ip=raw_input ("What is your ip target IP: ") url = "http://ip-api.com/json/" response = urllib2.urlopen(url + ip) data = response.read() values = json.loads (data) print(" IP: " + values['query']) print(" City: " + values['city']) print("Isp: " + values['isp']) print("Country: " + values['country']) print("Region: " + values['region']) print("Time xone: " + values['timezone']) break ```
{ "source": "4shadoww/yunomi", "score": 3 }
#### File: core/rules/abusefilters.py ```python import datetime from core.rule_core import * from core import yapi as api from core import timelib class RuleModule: name = "abusefilters" cfg_ver = None config = { "filters": [11, 30, 34, 38, 55, 58, 98, 125, 133], "hours": 1, "rules": [ { "hits": 1, "expiry": 24, "score": 1 }, { "hits": 5, "expiry": 24, "score": 2 } ] } def run(self, rev): score = 0 expiry = None end = datetime.timedelta(hours=self.config["hours"]) time = timelib.to_string(datetime.datetime.utcnow()-end) result = api.get_abuse_filter(rev["user"], time, self.config["filters"]) if "error" in result: logger.error("abusefilters error: %s" % result["error"]["code"]) return score, expiry for rule in self.config["rules"]: if rule["hits"] <= len(result["query"]["abuselog"]): if score < rule["score"]: score = rule["score"] expiry = rule["expiry"] return score, expiry ``` #### File: core/rules/adminaction.py ```python from core.rule_core import * from core import yapi as api import datetime class RuleModule: name = "adminaction" cfg_ver = None config = { "months": 1, "stabilizes": 2, "list_path": "Käyttäjä:VakauttajaBot/Pitkäaikaista vakautusta vaativat sivut" } def add_to_list(self, rev): text = api.get_text(self.config["list_path"]) newpage = "* [["+rev["title"]+"]]" if(newpage in text): return text += "\n"+newpage logger.info("adding page "+rev["title"]+" to stabilize list") api.save_page(self.config["list_path"], text, (config_loader.dictionary[config_loader.cur_conf["core"]["lang"]]["editsum"]["LS"] % rev["title"]), minor=True) def run(self, rev): score = 0 expiry = None leend = datetime.datetime.utcnow() - datetime.timedelta(days=self.config["months"] * 30, hours=0, minutes=0, seconds=0) stable_log = api.get_stable_log(rev["title"], str(leend).split('.', 2)[0]) if(len(stable_log["query"]["logevents"]) >= self.config["stabilizes"]): if(not config_loader.cur_conf["core"]["test"]): self.add_to_list(rev) return score, expiry ``` #### File: core/rules/anonreverts.py ```python from core.rule_core import * from core import op from core import yapi as api class RuleModule: name = "anonreverts" cfg_ver = None config = [ { "expiry": 24, "hours": 1, "reverts_required": 2, "score": 1, "groups": ["autoconfirmed"] } ] def run(self, rev): for rule in self.config: ip_reverts = 0 reverts = op.get_reverts(rev["title"], hours=rule["hours"]) if not reverts: continue if len(reverts) >= rule["reverts_required"]: for revert in reverts: if revert["reverter"] != revert["victim"]: victim_groups = api.get_user_rights(revert["victim"]) reverter_groups = api.get_user_rights(revert["reverter"]) if not victim_groups or not reverter_groups: continue if all(i not in victim_groups for i in rule["groups"]) or all(i not in reverter_groups for i in rule["groups"]): ip_reverts += 1 if ip_reverts >= rule["reverts_required"]: return rule["score"], rule["expiry"] return 0, None ```
{ "source": "4shaw/django-imger", "score": 2 }
#### File: django-imger/imger/widgets.py ```python from django import forms from django.utils.safestring import mark_safe from django.conf import settings import json class ImgerWidget(forms.Widget): def __init__(self, attrs=None, **kwargs): self.imger_settings = attrs['imger_settings'] super(ImgerWidget, self).__init__(**kwargs) class Media: js = ( 'imger/js/jquery-1.11.1.min.js', 'imger/js/jquery.nouislider.js', 'imger/js/form2js.js', 'imger/js/canvas-to-blob.min.js', 'imger/js/imger-compress.js', 'imger/js/imger-ui.js', 'imger/js/imger-init.js' ) css = { 'all': ( 'imger/css/bootstrap.css', 'imger/css/bootstrap-theme.css', 'imger/css/imger.css', 'imger/css/jquery.nouislider.css' ) } def render(self, name, value, attrs=None): imger_settings = self.imger_settings imger_json = json.dumps(imger_settings) static_url = settings.STATIC_URL if value is None: currently = r'' current_link = r'Nothing yet' else: currently = r'%s' % (value) current_link = r'<a href="%s%s">%s</a>' % ( settings.MEDIA_URL, value, value ) if not static_url.endswith('/'): static_url = r'%s/' % (static_url) return mark_safe("<p>Currently: %s<br/>Change: <span><button data-static_url=\"%s\" data-imger='%s' class=\"ImgerBrowseBTN\" type=\"button\">Browse</button> <span class=\"ImgerBrowseLabel\">No image selected...</span><input value=\"%s\" class=\"ImgerDataURL\" name=\"%s\" type=\"hidden\" /></span></p>" % (current_link, static_url, imger_json, currently, name)) ```
{ "source": "4shub/tmuxer", "score": 2 }
#### File: 4shub/tmuxer/setup.py ```python from setuptools import setup, find_packages def read_file(fname): with open(fname, 'r') as f: return f.read() setup( name="tmuxer", version='0.0.2', author='<NAME>', author_email='<EMAIL>', description='Quick tool that creates tmux interfaces from a conf file', long_description=read_file('./README.md'), url='https://github.com/4shub/quicklinks/', py_modules=['tmuxer'], zip_safe=False, install_requires=read_file('./dependencies.txt'), license='MIT', entry_points= { "console_scripts": [ "tmuxer = tmuxer:tmuxer", ] } ) ```
{ "source": "4shub/weExist", "score": 2 }
#### File: weExist/src/auth.py ```python from __future__ import print_function import httplib2 import os import re import time import base64 from apiclient import discovery from apiclient import errors from oauth2client import client from oauth2client import tools from oauth2client.file import Storage import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText SCOPES = 'https://mail.google.com/' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Gmail API Python Quickstart' try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None def get_credentials(): home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'gmail-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def main(): credentials = get_credentials() if __name__ == '__main__': main() ```
{ "source": "4SiB/togglore", "score": 3 }
#### File: togglore/togglore/config.py ```python import configparser import datetime class Config(object): def __init__(self, api_key=None, work_hours_per_day=8.4, excluded_days=[], user_id=1, workspace=1): self.api_key = api_key self.work_hours_per_day = work_hours_per_day self.excluded_days = excluded_days self.user_id = user_id self.workspace = workspace def write_to_file(self, path): cfg = configparser.ConfigParser() cfg['Authentication'] = {} cfg['Authentication']['API_KEY'] = self.api_key with open(path, 'w') as configfile: cfg.write(configfile) @classmethod def read_from_file(cls, path): cfg = configparser.ConfigParser() cfg.read(path) api_key = cfg['Authentication']['API_KEY'] work_hours = cfg['Work Hours']['hours_per_day'] excluded_days_string = cfg['Work Hours']['excluded_days'] user_id = cfg['User Info']['id'] workspace = cfg['User Info']['workspace'] day_strings = excluded_days_string.split(',') days = [] for day_string in day_strings: days.append(datetime.datetime.strptime(day_string, "%Y.%m.%d").date()) return cls(api_key=api_key, work_hours_per_day=float(work_hours), excluded_days=days, user_id=user_id, workspace=workspace) ``` #### File: togglore/togglore/utils.py ```python import datetime import calendar def sum_time_of_entries(entries): ms = 0 for entry in entries: ms += entry['dur'] return ms / 3600000.0 class WorkTimeCalculator(object): def __init__(self, work_hours_per_day=8.4, excluded_days=[]): self.work_hours_per_day = work_hours_per_day self.excluded_days = excluded_days def count_workdays_in_range(self, date_range): current = date_range.start workdays = 0 while current <= date_range.end: if current.isoweekday() not in [6, 7] and current not in self.excluded_days: workdays += 1 current += datetime.timedelta(1) return workdays def time_to_work_in_range(self, date_range): weekdays = self.count_workdays_in_range(date_range) return weekdays * self.work_hours_per_day class DateRange(object): def __init__(self, start, end): self.start = start self.end = end @classmethod def since(cls, start): start = datetime.datetime.strptime(start, "%Y.%m.%d").date() end = datetime.date.today() return cls(start, end) @classmethod def parse_from_iso_strings(cls, start, end): start = datetime.datetime.strptime(start, "%Y.%m.%d").date() end = datetime.datetime.strptime(end, "%Y.%m.%d").date() return cls(start, end) @classmethod def today(cls): return cls(datetime.date.today(), datetime.date.today()) @classmethod def this_week(cls): today = datetime.date.today() start = today - datetime.timedelta(today.weekday()) end = start + datetime.timedelta(6) return cls(start, end) @classmethod def this_month(cls): today = datetime.date.today() __, end_day = calendar.monthrange(today.year, today.month) start = datetime.date(today.year, today.month, 1) end = datetime.date(today.year, today.month, end_day) return cls(start, end) @classmethod def this_year(cls): today = datetime.date.today() start = datetime.date(today.year, 1, 1) end = datetime.date(today.year, 12, 31) return cls(start, end) @classmethod def month(cls, month): today = datetime.date.today() __, end_day = calendar.monthrange(today.year, month) start = datetime.date(today.year, month, 1) end = datetime.date(today.year, month, end_day) return cls(start, end) ```
{ "source": "4sOnJns/http_requests", "score": 3 }
#### File: 4sOnJns/http_requests/http_requests.py ```python import os import requests import requests.exceptions import json repos = open("places.json") repoData = json.load(repos) alreadyRetrieved = [] def isRetrieved(place): return place in alreadyRetrieved for index, place in enumerate(repoData['places']): print(">----------<") if (place is None): print( f"Failed to get weather at {str(index)} because insufficient data was supplied.") continue if (isRetrieved(place)): print( f'Skipped fetching weather for {place} as it was already fetched.') continue print(f"Fetching weather: {place}") try: res = requests.get(f"https://wttr.in/{place}?format=j1", headers={"Accept": "application/json"}) res.raise_for_status() responseData = json.loads(str("{\"weather\": " + res.text + "}")) file = open( f"weather/{place}.json", "w") file.write(json.dumps(responseData, indent=2, sort_keys=True)) file.close() alreadyRetrieved.append(place) print(f"Weather for {place} was found!") except requests.exceptions.HTTPError: print(f'Failed to find place {place}') except Exception as e: print(f"Failed to find weather for {place}") print("Reason:", end=" ") print(e) print(">----------<") print('Cleaning Up...') def noLongerRequired(place): if (place not in repoData['places']): os.remove(f"./weather/{place}.json") print(f'{place} was removed!') for place in os.listdir('weather'): if (not place.endswith('.txt')): noLongerRequired(os.path.splitext(place)[0]) ```
{ "source": "4soos/data_structures", "score": 4 }
#### File: py/tree/binary_tree.py ```python from typing import List class TreeNode: def __init__(self, val: int = 0, left = None, right = None) -> None: self.val = val self.left = left self.right = right class Solution: """ 递归模板: def order_recursion(self, root: TreeNode = None) -> List[int]: res = [] def dfs(root): if not root: return res.append(root.val) # Position 1 dfs(root.left) # Position 2 dfs(root.right) # Position 3 dfs(root) return res preorder_recursion: P1 -> P2 -> P3 inorder_recursion : P2 -> P1 -> P3 postorder_recursion: P2 -> P3 -> P2 ====================================================================== 迭代模板: """ def preorder_traversal_recursion(self, root: TreeNode = None) -> List[int]: res = [] def dfs(root): if not root: return res.append(root.val) dfs(root.left) dfs(root.right) dfs(root) return res def preorder_traversal_iteration(self, root: TreeNode = None) -> List[int]: if not root: return [] stack, res = [root], [] while stack: node = stack.pop() if node: res.append(node.val) if node.right: stack.append(node.right) if node.left: stack.append(node.left) return res def inorder_traversal_recursion(self, root: TreeNode = None) -> List[int]: res = [] def dfs(root): if not root: return dfs(root.left) res.append(root.val) dfs(root.right) dfs(root) return res def level_order(self, root: TreeNode = None) -> List[List[int]]: if not root: return [] queue, res = [root], [] while queue: res.append([node.val for node in queue]) ll = [] for node in queue: if node.left: ll.append(node.left) if node.right: ll.append(node.right) queue = ll return res ```
{ "source": "4soos/leetcode_practices", "score": 3 }
#### File: Feb/16/min_stack.py ```python import math class min_stack: def __init__(self) -> None: self.stack = [] self.min_stack = [math.inf] def push(self, x: int) -> None: self.stack.append(x) self.min_stack.append(min(x, self.min_stack[-1])) def pop(self) -> None: self.stack.pop() self.min_stack.pop() def top(self) -> int: return self.stack[-1] def get_min(self) -> int: return self.min_stack[-1] ```
{ "source": "4stropotato/pwned-by", "score": 4 }
#### File: versions/v0.20/client.py ```python import socket def ip_address(): global server_ip serv_ip = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) serv_ip.connect(("8.8.8.8", 80)) server_ip = serv_ip.getsockname()[0] serv_ip.close() return server_ip ######################## server_ip = ip_address() # 8 server_port = 5555 ######################## client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 9 # 10 since the server is now listening.. client.connect((server_ip,server_port)) # 11 confirmation = 'Connect!'.encode('utf-8') # 17 client.send(confirmation) # 18 ######################## # 8 Should be the same ip and port as the server.py # 9 concatinating ip and tcp socket # 11 initiate 3 way handshake to the server_ip and server_port, let's go back to server.py # 17 let's convert ('Connect!') to bytes and assign it to confimation. # 18 let's send the confirmation to the server. Let's go to server.py ######################## # pwning tmrw! ``` #### File: versions/v0.31s/server.py ```python import socket def ip_address(): global server_ip serv_ip = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) serv_ip.connect(("8.8.8.8", 80)) server_ip = serv_ip.getsockname()[0] serv_ip.close() return server_ip ######################### server_ip = ip_address() server_port = 5555 ######################### # 11 receiving the message. since the clienct sent message twice, we will be receiving a message twice as well. One for the header, the other one for the body or the actual message. def message_recv(size): # 12 while True: # 13 header = client.recv(size).decode('utf-8') if header: # 14 body_size = int(header) # 15 body = client.recv(body_size).decode('utf-8') # 16 break # 17 return body # 18 def server_conn(): global server,client,ip server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((server_ip,server_port)) server.listen(5) ##### DELETABLE ##### from pathlib import Path # PATHLIB IS INJECTED SO THAT WE HAVE TO EXECUTE 1 FILE ONLY exec(Path('client.py').read_text()) # PATHLIB IS INJECTED SO THAT WE HAVE TO EXECUTE 1 FILE ONLY ##### DELETABLE ##### client, ip = server.accept() server_conn() # testing print(message_recv(2)) print(message_recv(2)) print(message_recv(2)) ######################### # 12 new function. message_recv with size 8 # 13 infinite loop until we confirm that we have received the header so we can assure that both codes will execute at the same time. # 14 if we are not receiving a message it will automatically give as false, but if the header has a value, then it will be turning True # 15 received bytes with white spaces b'5 '. if we convert it to int it will be going to 5. and that 5 will be the new size for the body # 16 the body size for the body is the size that we gave from the header. # 17 after a sucessful conversation we will break the loop. # 18 returning the body's value ######################### # pwning tmrw! ```
{ "source": "4surix/discord-py-slash-command", "score": 3 }
#### File: discord-py-slash-command/discord_slash/error.py ```python class SlashCommandError(Exception): """ All exceptions of this extension can be captured with this. Note that discord.py doesn't trigger `on_command_error` event. """ pass class RequestFailure(SlashCommandError): """ Request to Discord API has failed. :ivar status: Status code of failed response. :ivar msg: Message of failed response. """ def __init__(self, status: int, msg: str): self.status = status self.msg = msg super().__init__(f"Request failed with resp: {self.status} | {self.msg}") class IncorrectFormat(SlashCommandError): """ Some formats are incorrect. See Discord API DOCS for proper format. """ def __init__(self, msg: str): super().__init__(msg) class DuplicateCommand(SlashCommandError): """ There is a duplicate command name. """ def __init__(self, name: str): super().__init__(f"Duplicate command name detected: {name}") ```
{ "source": "4teamwork/django-utils", "score": 2 }
#### File: django_utils/views/file_getter.py ```python from django.contrib.auth.mixins import LoginRequiredMixin from django.http import Http404 from django.views.generic import View from django_sendfile import sendfile from django.contrib.contenttypes.models import ContentType import base64 from urllib import parse class FileGetterView(LoginRequiredMixin, View): """ This view will deliver all the files and check if the user is logged in. As the whole application is only available privately, we also need to protect our user generated content (images etc.) """ http_method_names = ["get"] def get(self, request, file_info): obj, file = self.get_object_from_url(request, file_info) if not obj: raise Http404 return sendfile(request, file.path) def get_object_from_url(self, request, url): """ Resolve objects based on urls provided by "get_url_for_object". If any of this fails, a 404 should be raised in the view, but logging information for developers must be available. """ try: (app, model, id, field, hash) = ( base64.urlsafe_b64decode(parse.unquote(url)).decode().split("|") ) model = ContentType.objects.get(app_label=app, model=model) obj = self.get_object(model.model_class(), id, request=request, field=field) return obj, getattr(obj, field) except Exception: return None, None def get_object(self, model_class, id, **kwargs): return model_class._default_manager.get(id=id) ```
{ "source": "4teamwork/ftw.aare", "score": 3 }
#### File: ftw.aare/aare/aare.py ```python import datetime import itertools import locale import pdb import click import requests LANGUAGE = "en" session = requests.Session() def _(s): global LANGUAGE de = {"Current temperature of the aare: {}° C": "Aktuelle Temperatur der Aare: {}° C", "{}: min {}° C, max {}° C": "{}: min {}° C, max {}° C"} if LANGUAGE == "de": return de[s] else: return s @click.command() @click.option('--statistics', help='show the hottest and the coolest temperature of the last 7 days', is_flag="True") @click.option('--language', default="", help='set the language of the output. Possible languages: "de" (German), ' '"en" (English). The output is displayed in the OS language by default, ' 'it will also be displayed english if an invalid argument is passed.') def aare(statistics, language): """A simple command which displays the current aare temperature""" if language != "": set_language(language) else: set_system_language() if statistics: display_stats() else: display_current_temp() def set_language(lang): global LANGUAGE LANGUAGE = lang def display_current_temp(): api_url = 'http://aare.schwumm.ch/aare.json' response = session.get(api_url) aare_json = response.json() click.echo(_("Current temperature of the aare: {}° C").format(aare_json["temperature"])) def display_stats(): api_url = 'http://aare.schwumm.ch/api/archive' params = {"from": "now", "to": "-7 days"} # The website denies unknown user agents. So we have to impersonate a general webbrowser to gain access headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/50.0.2661.102 Safari/537.36'} response = session.get(api_url, params=params, headers=headers) response_json = response.json() temperatures = response_json['data']['temperature'] dates = [datetime.datetime.strptime(item, '%Y-%m-%d %H:%M:%S') for item in response_json['data']['datetime']] data = list(zip(dates, temperatures)) # Remove data points not having a temperature data = list(filter(lambda item: item[1], data)) for key, group in itertools.groupby(data, lambda item: datetime.date(item[0].year, item[0].month, item[0].day)): temperatures = [item[1] for item in tuple(group)] min_temp = min(temperatures) max_temp = max(temperatures) day_string = key.strftime('%Y-%m-%d') output = _("{}: min {}° C, max {}° C").format(day_string, min_temp, max_temp) print(output) def set_system_language(): locale_tuple = locale.getdefaultlocale() lang = locale_tuple[0] if lang == "de_DE" or lang == "de_CH": set_language("de") if __name__ == '__main__': aare() ```
{ "source": "4the1appdevs/face_recognition", "score": 3 }
#### File: face_recognition/cam/recognizer.py ```python from multiprocessing import Process from cam.models import dlib_model, classifier_model import pickle import dlib import cv2 import numpy as np import time def get_time(): localtime = time.localtime() capturetime = time.strftime("%Y-%m-%d %H:%M:%S", localtime) return capturetime class FaceRecognition(Process): def __init__(self, img_queue, rst_queue): super().__init__() self.img_queue = img_queue self.rst_queue = rst_queue def init(self): # face detector # face_detector = dlib.cnn_face_detection_model_v1(dlib_model.cnn_face_detector_model_location()) self.face_detector = dlib.get_frontal_face_detector() # face recognition self.sp = dlib.shape_predictor(dlib_model.pose_predictor_model_location()) self.face_rec = dlib.face_recognition_model_v1(dlib_model.face_recognition_model_location()) def run(self): self.init() with open(classifier_model.classifier_location(), 'rb') as classifier: (model, name_lib, feature_lib) = pickle.load(classifier) while True: try: frame = self.img_queue.get() except: pass else: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame_dets = self.face_detector(frame_rgb, 0) feature_lists=[] if len(frame_dets) : for i, det in enumerate(frame_dets): if type(det) == dlib.rectangle: shape = self.sp(frame_rgb, det) else: shape = self.sp(frame_rgb, det.rect) face_descriptor = self.face_rec.compute_face_descriptor(frame_rgb, shape, 1) feature_lists.append(face_descriptor) if len(feature_lists): predictions = model.predict(feature_lists) namestr = '' for idx, targ in enumerate(predictions): distance = np.linalg.norm(np.array(feature_lists[idx]) - np.array(feature_lib[targ])) namestr += (name_lib[targ]+' ' if distance < 0.6 else 'unknown ' ) rst = get_time() + ":" + namestr print(rst) try: self.rst_queue.put_nowait(namestr) except: self.rst_queue.get_nowait() self.rst_queue.put_nowait(namestr) ``` #### File: face_recognition/cam/train.py ```python import os import dlib import cv2 import pickle from sklearn.svm import SVC from cam.models import dlib_model, classifier_model FaceDetection = dlib.get_frontal_face_detector() # face recognition sp = dlib.shape_predictor(dlib_model.pose_predictor_model_location()) Description = dlib.face_recognition_model_v1(dlib_model.face_recognition_model_location()) def check_parameter(param, param_type, create_new_if_missing=False): assert param_type == 'file' or param_type == 'directory' if param_type == 'file': assert os.path.exists(param) assert os.path.isfile(param) else: if create_new_if_missing is True: if not os.path.exists(param): os.makedirs(param) else: assert os.path.isdir(param) else: assert os.path.exists(param) assert os.path.isdir(param) def listdir(top_dir, type='image'): tmp_file_lists = os.listdir(top_dir) file_lists = [] if type == 'image': for e in tmp_file_lists: if e.endswith('.jpg') or e.endswith('.png') or e.endswith('.bmp') or e.endswith('.JPG'): file_lists.append(e) elif type == 'dir': for e in tmp_file_lists: if os.path.isdir(top_dir + e): file_lists.append(e) else: raise Exception('Unknown type in listdir') return file_lists def imread(f): return cv2.cvtColor(cv2.imread(f), cv2.COLOR_BGR2RGB) def extract_feature(src_dir, type_name): check_parameter(src_dir, 'directory') if src_dir[-1] != '/': src_dir += '/' image_lists = listdir(src_dir, type_name) names_lists= [] feature_lists=[] labels =[] for n,e in enumerate(image_lists): img=imread(''.join([src_dir,e])) dets=FaceDetection(img,1) #upsampling if len(dets)==0: print("The faces of {} >>>>>>>>>> detecting defeat".format(e)) else: params=e.split(".") name_id=params[0] print("ID : {} , Name : {} ".format(n,name_id)) Best_face=max(dets, key=lambda rect: rect.width() * rect.height()) shape = sp(img, Best_face) face_descriptor=Description.compute_face_descriptor(img, shape, 10) feature_lists.append(face_descriptor) names_lists.append(name_id) labels.append(n) print('Training classifier') model = SVC(kernel='linear', probability=True) model.fit(feature_lists, labels) # Saving classifier model with open(classifier_model.classifier_location(), 'wb') as outfile: pickle.dump((model, names_lists, feature_lists), outfile) print('Saved classifier model to ', classifier_model.classifier_location()) def run(): print("wait for system init...") extract_feature('./images','image') print("training finished.") if __name__ == '__main__': run() ```
{ "source": "4theKnowledge/s-vaal", "score": 2 }
#### File: s-vaal/src/main.py ```python import yaml import random import numpy as np import math import json import torch import torch.utils.data as data from train import Trainer from sampler import Sampler from connections import load_config class ActiveLearner(Trainer, Sampler): def __init__(self): Trainer.__init__(self) self.initial_budget_frac = 0.10 # fraction of samples that AL starts with self.val_frac = 0.05 self.test_frac = 0.05 self.budget_frac = 0.10 self.data_splits_frac = np.round(np.linspace(self.budget_frac, 1, num=10, endpoint=True), 1) self.batch_size=64 def _init_al_dataset(self): """ Initialises dataset for active learning """ self._init_dataset() train_dataset = self.datasets['train'] dataset_size = len(train_dataset) self.budget = math.ceil(self.budget_frac*dataset_size) Sampler.__init__(self, config, self.budget) # TODO: Weird place to initialise this all_indices = set(np.arange(dataset_size)) k_initial = math.ceil(len(all_indices)*self.initial_budget_frac) initial_indices = random.sample(list(all_indices), k=k_initial) sampler_init = data.sampler.SubsetRandomSampler(initial_indices) # need to sample from training dataset self.labelled_dataloader = data.DataLoader(train_dataset, sampler=sampler_init, batch_size=self.batch_size, drop_last=True) self.val_dataloader = data.DataLoader(self.datasets['valid'], batch_size=self.batch_size, drop_last=False) self.test_dataloader = data.DataLoader(self.datasets['test'], batch_size=self.batch_size, drop_last=False) return all_indices, initial_indices def learn(self): """ Performs the active learning cycle """ metrics_hist = dict() max_runs = 3 for run in range(max_runs): all_indices, initial_indices = self._init_al_dataset() metrics_hist[str(run)] = dict() current_indices = list(initial_indices) for split in self.data_splits_frac: print(f'\nRUN {run} - SPLIT - {split*100:0.0f}%') # Initialise models self._init_models(mode='svaal') # Do some label stuff unlabelled_indices = np.setdiff1d(list(all_indices), current_indices) unlabelled_sampler = data.sampler.SubsetRandomSampler(unlabelled_indices) unlabelled_dataloader = data.DataLoader(self.datasets['train'], sampler=unlabelled_sampler, batch_size=64, drop_last=False) print(f'Labelled: {len(current_indices)} Unlabelled: {len(unlabelled_indices)} Total: {len(all_indices)}') # TODO: Make the SVAAL allow 100% labelled and 0% unlabelled to pass through it. Breaking out of loop for now when data hits 100% labelled. if len(unlabelled_indices) == 0: break metrics, svae, discriminator = self.train(dataloader_l=self.labelled_dataloader, dataloader_u=unlabelled_dataloader, dataloader_v=self.val_dataloader, dataloader_t=self.test_dataloader, mode='svaal') print(f'Test Eval.: F1 Scores - Macro {metrics[0]*100:0.2f}% Micro {metrics[1]*100:0.2f}%') # Record performance at each split metrics_hist[str(run)][str(split)] = metrics sampled_indices = self.sample_adversarial(svae, discriminator, unlabelled_dataloader, indices=unlabelled_indices, cuda=True) # TODO: review usage of indices arg current_indices = list(current_indices) + list(sampled_indices) sampler = data.sampler.SubsetRandomSampler(current_indices) self.labelled_dataloader = data.DataLoader(self.datasets['train'], sampler=sampler, batch_size=self.batch_size, drop_last=True) # write results to disk with open('results.json', 'w') as fj: json.dump(metrics_hist, fj, indent=4) def main(config): al = ActiveLearner() al.learn() if __name__ == '__main__': # Seeds config = load_config() np.random.seed(config['Utils']['seed']) torch.manual_seed(config['Utils']['seed']) main() ``` #### File: src/tests/_tests_sampler.py ```python class Tests(unittest.TestCase): def _sim_model(self, data: Tensor) -> Tensor: """ Simulated model for generating uncertainity scores. Intention is to be a placeholder until real models are used and for testing.""" return torch.rand(size=(data.shape[0],)) def setUp(self): # Init class self.sampler = Sampler(budget=10) # Init random tensor self.data = torch.rand(size=(10,2,2)) # dim (batch, length, features) # Params self.budget = 18 # All sample tests are tested for: # 1. dims (_, length, features) for input and output Tensors # 2. batch size == sample size def test_sample_random(self): self.assertEqual(self.sampler.sample_random(self.data).shape[1:], self.data.shape[1:]) self.assertEqual(self.sampler.sample_random(self.data).shape[0], self.sampler.budget) def test_sample_least_confidence(self): self.assertEqual(self.sampler.sample_least_confidence(model=self.sampler._sim_model, data=self.data).shape[1:], self.data.shape[1:]) self.assertEqual(self.sampler.sample_least_confidence(model=self.sampler._sim_model, data=self.data).shape[0], self.sampler.budget) # def test_sample_bayesian(self): # self.assertEqual(self.sampler.sample_bayesian(model=self.sampler._sim_model, no_models=3, data=self.data).shape[1:], self.data.shape[1:]) # self.assertEqual(self.sampler.sample_bayesian(model=self.sampler._sim_model, no_models=3, data=self.data).shape[0], self.sampler.budget) # def test_adversarial_sample(self): # self.assertEqual(self.sampler.sample_adversarial(self.data).shape[1:], self.data.shape[1:]) # self.assertEqual(self.sampler.sample_adversarial(self.data).shape[0], self.sampler.budget) ``` #### File: src/tests/test_utils.py ```python class Trainer(): """ """ def __init__(self): pass def _init_dataset_gen(self): """ Initialises dataset for model training """ # Currently will be using generated data, but in the future will be real. self.train_dataset_l = SequenceDataset(self.config, no_sequences=8, max_sequence_length=self.max_sequence_length, task_type=self.task_type) self.train_dataloader_l = DataLoader(self.train_dataset_l, batch_size=2, shuffle=True, num_workers=0) self.train_dataset_u = SequenceDataset(self.config, no_sequences=16, max_sequence_length=self.max_sequence_length, task_type=self.task_type) self.train_dataloader_u = DataLoader(self.train_dataset_u, batch_size=2, shuffle=True, num_workers=0) # Concatenate sequences in X_l and X_u to build vocabulary for downstream self.vocab = self.build_vocab(sequences = torch.cat((self.train_dataset_l.sequences, self.train_dataset_u.sequences))) self.vocab_size = len(self.vocab) print('---- DATA SUCCESSFULLY INITIALISED ----') class Tests(unittest.TestCase): def setUp(self): self.tensor_shape = (100,10,20) self.sequences = torch.stack([torch.randint(0,10,size=(10,)) for _ in range(self.tensor_shape[0])]) self.split_2 = (0.2,0.8) self.split_3 = (0.1,0.1,0.8) self.rand_tensor = torch.randint(0,10,size=self.tensor_shape) def test_data_split(self): ds1, ds2 = split_data(dataset=self.rand_tensor, splits=self.split_2) self.assertEqual(len(ds1), self.tensor_shape[0]*self.split_2[0]) self.assertEqual(len(ds2), self.tensor_shape[0]*self.split_2[1]) ds1, ds2, ds3 = split_data(dataset=self.rand_tensor, splits=self.split_3) self.assertEqual(len(ds1), self.tensor_shape[0]*self.split_3[0]) self.assertEqual(len(ds2), self.tensor_shape[0]*self.split_3[1]) self.assertEqual(len(ds3), self.tensor_shape[0]*self.split_3[2]) def test_get_lengths(self): self.assertEqual(len(get_lengths(self.sequences)), self.tensor_shape[0]) ``` #### File: s-vaal/src/utils.py ```python import yaml import csv import json from itertools import groupby import itertools import re import math from datetime import date, datetime import os import sys, traceback import unittest from nltk.tokenize import word_tokenize from collections import defaultdict import io from connections import load_config import torch Tensor = torch.Tensor class DataPreparation: """ Utility functions for preparing sequence labelling datasets """ def __init__(self): config = load_config() self.utils_config = config['Utils'] self.task_type = self.utils_config['task_type'] self.data_name = self.utils_config[self.task_type]['data_name'] self.min_occurence = self.utils_config[self.task_type]['min_occurence'] self.special_tokens = self.utils_config['special_token2idx'] self.date = date.today().strftime('%d-%m-%Y') self.max_seq_len = self.utils_config[self.task_type]['max_sequence_length'] self.x_y_pair_name = 'seq_label_pairs' if self.task_type == 'CLF' else 'seq_tags_pairs' # Key in dataset - semantically correct for the task at hand. self.pad_token = '<PAD>' self.sos_token = '<START>' self.eos_token = '<STOP>' print(f'{datetime.now()}: Building {self.data_name.upper()} data for {self.task_type.upper()} task') if self.task_type == 'SEQ': self._load_data() self._process_data_ner() self._process_pretrain_data_ner() elif self.task_type=='CLF': self._load_data() self._process_data_clf() else: raise ValueError def _read_txt(self, path): f = open(path, 'r') data = f.readlines() if self.task_type == 'SEQ': if self.data_name == 'conll2003': # CoNLL-2003 (NER) # remove DOCSTART (this is specific to conll2003 original formatting) data = [line for line in data if 'DOCSTART' not in line] if self.data_name == 'ontonotes-5.0' or 'bbn': data = [line for line in data] f.close() elif self.task_type == 'CLF': # Currently no CLF data that needs text processing pass return data def _read_csv(self, path): """ Reads data in .CSV format Arguments --------- path : str Path to .csv file location Returns ------- data : list List of tuples corresponding to Xn, y pairs/triples """ data = list() with open(path, 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') # data = list() corpus_str = '' for row in csv_reader: if self.data_name == 'ag_news': # ag_news has col 1 - label, col 2 - headline, col 3 - article text # and has no column headers. For this dataset we concatenate the headline to the article text corpus_str += f'{row[1] + " " +row[2]}\t{row[0]}\n' data = [line for line in corpus_str.split('\n') if line] # if statement gets rid of empty strings return data def _load_data(self): """ Loads data for each split and combines into a dictionary for downstream tasks """ if self.utils_config[self.task_type]['data_split']: self.dataset = dict() for split in self.utils_config[self.task_type]['data_split']: self.dataset[split] = dict() # Read text documents if self.data_name == 'conll2003' or 'ontonotes-5.0' or 'bbn': self.dataset[split]['corpus'] = self._read_txt(os.path.join(self.utils_config[self.task_type]['data_root_path'], f'{split}.txt')) elif self.data_name == 'ag_news': self.dataset[split]['corpus'] = self._read_csv(os.path.join(self.utils_config[self.task_type]['data_root_path'], f'{split}.csv')) else: raise ValueError else: # No splits, single corpora -> need to split into test-train-valid (TODO: future work) pass def _process_data_clf(self): pass # # Trim and pad sequences # self._trim_sequences(split=split) # self._add_special_tokens(split=split) # self._pad_sequences(split=split) # if split == 'train': # print('Building vocabularies and mappings from training data') # self._build_vocabs() # self._word2idx() # self._idx2word() # self._tag2idx() # self._idx2tag() # self._save_vocabs() # do this after word2idx etc as it allows us to save them into the same json as vocabs # self.convert_sequences(split=split) # # Save results (add datetime and counts) # self._save_json(path=os.path.join(self.utils_config[self.task_type]['data_root_path'], f'data.json'), data=self.dataset) def _process_data_ner(self): """ Controller for processing named entity recognition (sequence) data """ for split, data in self.dataset.items(): # Convert corpora into key-value pairs of sequences-tags # Need to seperate words and tags before trimming and padding # a tad of duplication, but all good. self._prepare_sequences(split=split, data=data) # Trim and pad sequences self._trim_sequences(split=split) self._add_special_tokens(split=split) self._pad_sequences(split=split) if split == 'train': print('Building vocabularies and mappings from training data') self._build_vocabs() self._word2idx() self._idx2word() self._tag2idx() self._idx2tag() self._save_vocabs() # do this after word2idx etc as it allows us to save them into the same json as vocabs self.convert_sequences(split=split) # Save results (add datetime and counts) self._save_json(path=os.path.join(self.utils_config[self.task_type]['data_root_path'], f'data.json'), data=self.dataset) def _process_pretrain_data_ner(self): data_out = defaultdict(dict) print(f'{datetime.now()}: Generating pretraining datasets') for split, data in self.dataset.items(): data = data['corpus'] assert self.data_name == 'conll2003' # only developed for conll2003 atm docs = [list(group) for k, group in groupby(data, lambda x: len(x) == 1) if not k] if split == 'train': w2c = dict() w2i = dict() i2w = dict() for st, idx in self.utils_config['special_token2idx'].items(): i2w[idx] = st w2i[st] = idx for idx, doc in enumerate(docs): # conll2003 needs to be split on tab before tokenization doc = " ".join([token.split()[0] for token in doc]) # words = word_tokenize(doc) words = doc.split() # Trim based on sequence length # This should be -1 but as it needs to be the same size as the normal vocab, it's -2 words = words[:self.max_seq_len-2] # -2 for SOS, EOS tags for word in words: if word in w2c.keys(): w2c[word] += 1 else: w2c[word] = 1 for w, c in w2c.items(): if c > self.min_occurence and w not in self.utils_config['special_token2idx'].keys(): i2w[len(w2i)] = w w2i[w] = len(w2i) assert len(w2i) == len(i2w) print(f'{datetime.now()}: Vocab of {len(w2i)} keys created') vocab = {"word2idx": w2i, "idx2word": i2w} with io.open(os.path.join(self.utils_config[self.task_type]['data_root_path'], 'pretrain', 'vocab.json'), 'w') as vocab_file: json.dump(vocab, vocab_file, ensure_ascii=False, indent=4) # vocab_file.write(data.encode('utf8', 'replace')) data_out[split] = dict() for idx, doc in enumerate(docs): id = len(data_out[split]) data_out[split][id] = dict() doc = " ".join([token.split()[0] for token in doc]) # words = word_tokenize(doc) words = doc.split() input = ['<START>'] + words input = input[:self.max_seq_len] target = words[:self.max_seq_len-1] target = target + ['<STOP>'] assert len(input) == len(target) length = len(input) input.extend(['<PAD>'] * (self.max_seq_len-length)) target.extend(['<PAD>'] * (self.max_seq_len-length)) input = [w2i.get(w, w2i['<UNK>']) for w in input] target = [w2i.get(w, w2i['<UNK>']) for w in target] data_out[split][id]['input'] = input data_out[split][id]['target'] = target data_out[split][id]['length'] = length with io.open(os.path.join(self.utils_config[self.task_type]['data_root_path'], 'pretrain', 'data.json'), 'w') as data_file: json.dump(data_out, data_file, ensure_ascii=False, indent=4) def _prepare_sequences(self, split : str, data): """ Converts corpus into sequence-tag tuples. Notes ----- - Currently works for NER (CoNLL-2003) and CLF (AG NEWS) - Extend for POS """ print(f'{datetime.now()}: Preparing sequences') corpus = data['corpus'] if self.data_name == 'conll2003' or 'ontonotes-5.0' or 'bbn': docs = [list(group) for k, group in groupby(corpus, lambda x: len(x) == 1) if not k] elif self.data_name == 'ag_news': docs = corpus self.dataset[split][self.x_y_pair_name] = list() data = dict() # Split docs into sequences and tags doc_count = 0 delimiter = '\t' if self.data_name == 'ag_news' else ' ' for doc in docs: try: if self.data_name == 'conll2003' or 'ontonotes-5.0' or 'bbn': sequence = [token.split(delimiter)[0] for token in doc] tags = [token.split(delimiter)[-1] for token in doc] tags = [tag.replace('\n','') for tag in tags] # print(tags) data[doc_count] = (sequence, tags) elif self.data_name == 'ag_news': sequence = doc.split(delimiter)[0].split() # split seq from seq-tag string and then split on white space for naive tokenization tag = [doc.split(delimiter)[1]] data[doc_count] = (sequence, tag) doc_count += 1 except: print(f'Unable to process document: {doc}') traceback.print_exc(file=sys.stdout) self.dataset[split][self.x_y_pair_name] = data def _build_vocabs(self, split='train'): """ Builds vocabularies off of words and tags. These are built from training data so out of vocabulary tokens will be marked as <UNK> when being converted into numerical vectors. """ # Get list of words in corpus word_list = list(itertools.chain.from_iterable([doc.split() for doc in [" ".join(seq) for seq, tag in self.dataset[split][self.x_y_pair_name].values()]])) print(f'Total number of tokens in training corpus: {len(word_list)}') # Remove special_tokens (these are added explicitly later) word_list = [word for word in word_list if word not in list(self.special_tokens.keys())] # print(word_list) word_freqs = dict() # Get word frequencies for word in word_list: if not word_freqs.get(word, False): word_freqs[word] = 1 else: word_freqs[word] += 1 # print(word_freqs) # Get set of frequent words over minimum occurence word_list_keep = list() word_list_notkeep = list() for word, freq in word_freqs.items(): if self.min_occurence < freq: # keep word word_list_keep.append(word) else: word_list_notkeep.append(word+'\n') if self.min_occurence > 0: with open(os.path.join(self.utils_config[self.task_type]['data_root_path'], 'nonvocab_words.txt'), 'w') as fw: fw.writelines(word_list_notkeep) print(f'Word list sizes - Original: {len(word_freqs.keys())} - Trimmed: {len(word_list_keep)}') # Build word and tag vocabularies # comprehensions are a bit nasty... but effective! self.vocab_words = word_list_keep tag_list = list(itertools.chain.from_iterable([doc.split() for doc in [" ".join(tag) for seq, tag in self.dataset[split][self.x_y_pair_name].values()]])) # Remove special_tokens (these are added explicitly later) tag_list = [tag for tag in tag_list if tag not in list(self.special_tokens.keys())] self.vocab_tags = list(set(tag_list)) # Add special_tokens to vocabs self.vocab_words = list(self.special_tokens.keys()) + self.vocab_words self.vocab_tags = list(self.special_tokens.keys()) + self.vocab_tags print(f'Size of vocabularies - Word: {len(self.vocab_words)} Tag: {len(self.vocab_tags)}') def _save_vocabs(self): # Save vocabularies to disk vocabs = {'words': self.vocab_words, 'tags': self.vocab_tags, 'word2idx': self.word2idx, 'idx2word': self.idx2word} self._save_json(path=os.path.join(self.utils_config[self.task_type]['data_root_path'], 'vocabs.json'),data=vocabs) def _word2idx(self): """ Built off of training set - out of vocab tokens are <UNK>""" self.word2idx = {word:idx for idx, word in enumerate(self.vocab_words)} # add special tokens to mapping self.word2idx = {**self.special_tokens, **self.word2idx, } def _idx2word(self): """ Built off of training set - out of vocab tokens are <UNK> """ self.idx2word = {idx:word for word, idx in self.word2idx.items()} def _tag2idx(self): """ Built off of training set - out of vocab tokens are <UNK>""" self.tag2idx = {tag:idx for idx, tag in enumerate(self.vocab_tags)} def _idx2tag(self): """ Built off of training set - out of vocab tokens are <UNK> """ self.idx2tag = {idx:tag for tag, idx in self.tag2idx.items()} def _trim_sequences(self, split: str): """ Trims sequences to the maximum allowable length """ for idx, pair in self.dataset[split][self.x_y_pair_name].items(): seq, tags = pair # tag for CLF, tags for SEQ self.dataset[split][self.x_y_pair_name][idx] = (seq[:self.max_seq_len-2], tags[:self.max_seq_len-2]) # -2 for SOS, EOS tags def _pad_sequences(self, split: str): """ Pads sequences up to the maximum allowable length """ for idx, pair in self.dataset[split][self.x_y_pair_name].items(): seq, tags = pair if len(seq) < self.max_seq_len: # probably a better way to do this, but comprehension is easy. TODO: fix dodgy code! seq = seq + [self.pad_token for _ in range(self.max_seq_len - len(seq))] if self.task_type == 'SEQ': tags = tags + [self.pad_token for _ in range(self.max_seq_len - len(tags))] self.dataset[split][self.x_y_pair_name][idx] = (seq, tags) else: # Leave tag alone self.dataset[split][self.x_y_pair_name][idx] = (seq, tags) def _add_special_tokens(self, split: str): """ Adds special tokens such as <EOS>, <SOS> onto sequences """ for idx, pair in self.dataset[split][self.x_y_pair_name].items(): seq, tags = pair seq = [self.sos_token] + seq + [self.eos_token] if self.task_type == 'SEQ': tags = [self.sos_token] + tags + [self.eos_token] self.dataset[split][self.x_y_pair_name][idx] = (seq, tags) else: # Leave tag alone self.dataset[split][self.x_y_pair_name][idx] = (seq, tags) def convert_sequences(self, split: str): """ Converts sequences of tokens and tags to their indexed forms for each split in the dataset Note: any word in the sequence that isn't in the vocab will be replaced with <UNK> TODO: investigate how this might impact the SVAE word_dropout methodology """ # If word or tag is not in the sequence, change with <UNK> # unsure if the output tags need to be changed? I assume not as the output tags are known. TODO: verify logic. self.dataset[split][f'{self.x_y_pair_name}_enc'] = dict() # enc -> integer encoded pairs for idx, pair in self.dataset[split][self.x_y_pair_name].items(): seq, tags = pair # Sequences seq_enc = [self.word2idx.get(word, self.word2idx['<UNK>']) for word in seq] # Tags tags_enc = [self.tag2idx.get(tag, self.word2idx['<UNK>']) for tag in tags] # print(tags) # print(tags_enc) self.dataset[split][f'{self.x_y_pair_name}_enc'][idx] = (seq_enc, tags_enc) def normalise(self): pass def _save_json(self, path: str, data: dict): with open(path, 'w') as outfile: json.dump(data, outfile, indent=4) # Misc functions below def trim_padded_seqs(batch_lengths: Tensor, batch_sequences: Tensor, pad_idx: int) -> Tensor: """ Takes a batch of sequences and trims similar to pack padded sequence method Arguments --------- batch_lengths : Tensor Batch of sequence lengths batch_tags : Tensor Batch of sequences pad_idx : Int Integer mapped to padding special token Returns ------- batch_tags : Tensor Sorted and trimmed batch of sequence tags """ # Get max length of longest sequence in batch so it can be used to filter tags sorted_lengths, _ = torch.sort(batch_lengths, descending=True) # longest seq is at index 0 longest_seq = sorted_lengths[0].data.cpu().numpy() longest_seq_len = longest_seq[longest_seq != pad_idx][0] # remove padding # Strip off as much padding as possible similar to (variable length sequences via pack padded methods) batch_sequences = torch.stack([tags[:longest_seq_len] for tags in batch_sequences]) assert batch_sequences.is_cuda return batch_sequences def to_var(x: Tensor) -> Tensor: """ Converts object to variable mounted on GPU """ if torch.cuda.is_available(): x = x.cuda() return x def load_json(path: str) -> dict: """ Loads JSON file from disk Arguments --------- path : str Path to JSON file on disk Returns ------- data : dict Dictionary of JSON file """ with open(path, 'r') as jsonfile: data = json.load(jsonfile) return data def get_lengths(sequences: Tensor) -> Tensor: """ Calculates lengths of sequences Arguments --------- sequences : Tensor Set of sequences. Returns ------- lengths : Tensor Set of sequence lengths """ lengths = torch.tensor([len(sequence) for sequence in sequences]) return lengths def split_data(dataset: Tensor, splits: tuple) -> Tensor: """ Partitions data into different sets Arguments --------- dataset : Tensor Tensor of data. splits : tuple Tuple of floats indicating ordered splits Returns ------- dataset : Tensor Ordered set of dataset subset objects corresponding to splits Notes ----- random_split can have its generator fixed to be deterministic for reproducible results. """ assert sum(list(splits)) == 1.0 if len(splits) == 2: split_dataset = torch.utils.data.random_split(dataset=dataset, lengths=[int(math.floor(len(dataset)*splits[0])), int(math.ceil(len(dataset)*splits[1]))]) return split_dataset[0], split_dataset[1] elif len(splits) == 3: # TODO: figure out how to ensure that the three splits have the same total samples as the input dataset... split_dataset = torch.utils.data.random_split(dataset=dataset, lengths=[int(len(dataset)*splits[0]), int(len(dataset)*splits[1]), int(len(dataset)*splits[2])]) return split_dataset[0], split_dataset[1], split_dataset[2] else: raise ValueError def prepare_for_embedding(): """ Prepares sequences for Flair embedding """ from flair.data import Sentence text = 'Hello my name is <NAME>!' sentence_e = Sentence(text) print(embeddings.embed(sentence_e)) def main(): DataPreparation() if __name__ == '__main__': # Seeds main() ``` #### File: s-vaal/src/vae_pretrainer.py ```python from datetime import datetime import os from tqdm import tqdm import math import random import numpy as np import sys, traceback import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.utils.data as data import torch.optim as optim from torch.utils.tensorboard import SummaryWriter # torch.cuda.empty_cache() from models import SVAE, Discriminator from data import RealDataset from utils import load_json, trim_padded_seqs from connections import load_config from sampler import Sampler class ModularTrainer(Sampler): def __init__(self): self.config = load_config() self.model_config = self.config['Models'] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Model self.task_type = self.config['Utils']['task_type'] self.max_sequence_length = self.config['Utils'][self.task_type]['max_sequence_length'] # Real data self.data_name = self.config['Utils'][self.task_type]['data_name'] self.data_splits = self.config['Utils'][self.task_type]['data_split'] self.pad_idx = self.config['Utils']['special_token2idx']['<PAD>'] # Test run properties self.epochs = self.config['Train']['epochs'] self.svae_iterations = self.config['Train']['svae_iterations'] self.kfold_xval = False def _init_data(self, batch_size=None): if batch_size is None: batch_size = self.config['Train']['batch_size'] # Load pre-processed data path_data = os.path.join('/home/tyler/Desktop/Repos/s-vaal/data', self.task_type, self.data_name, 'pretrain', 'data.json') path_vocab = os.path.join('/home/tyler/Desktop/Repos/s-vaal/data', self.task_type, self.data_name, 'pretrain', 'vocab.json') # not vocabs data = load_json(path_data) self.vocab = load_json(path_vocab) # Required for decoding sequences for interpretations. TODO: Find suitable location... or leave be... self.vocab_size = len(self.vocab['word2idx']) self.idx2word = self.vocab['idx2word'] self.word2idx = self.vocab['word2idx'] self.datasets = dict() if self.kfold_xval: # Perform k-fold cross-validation # Join all datasets and then randomly assign train/val/test print('hello') for split in self.data_splits: print(data[split][self.x_y_pair_name]) else: for split in self.data_splits: # Access data split_data = data[split] # print(split_data) # Convert lists of encoded sequences into tensors and stack into one large tensor split_inputs = torch.stack([torch.tensor(value['input']) for key, value in split_data.items()]) split_targets = torch.stack([torch.tensor(value['target']) for key, value in split_data.items()]) # Create torch dataset from tensors split_dataset = RealDataset(sequences=split_inputs, tags=split_targets) # Add to dictionary self.datasets[split] = split_dataset #split_dataloader # Create torch dataloader generator from dataset if split == 'test': self.test_dataloader = DataLoader(dataset=split_dataset, batch_size=batch_size, shuffle=True, num_workers=0) if split == 'valid': self.val_dataloader = DataLoader(dataset=split_dataset, batch_size=batch_size, shuffle=True, num_workers=0) if split == 'test': self.train_dataloader = DataLoader(dataset=split_dataset, batch_size=batch_size, shuffle=True, num_workers=0) print(f'{datetime.now()}: Data loaded succesfully') def _init_svae_model(self): self.svae = SVAE(**self.model_config['SVAE']['Parameters'],vocab_size=self.vocab_size).to(self.device) self.svae_optim = optim.Adam(self.svae.parameters(), lr=self.model_config['SVAE']['learning_rate']) self.svae.train() print(f'{datetime.now()}: Initialised SVAE successfully') def interpolate(self, start, end, steps): interpolation = np.zeros((start.shape[0], steps+2)) for dim, (s, e) in enumerate(zip(start, end)): interpolation[dim] = np.linspace(s, e, steps+2) return interpolation.T def _idx2word_inf(self, idx, i2w, pad_idx): # inf-erence sent_str = [str()]*len(idx) for i, sent in enumerate(idx): for word_id in sent: if word_id == pad_idx: break sent_str[i] += i2w[str(word_id.item())] + " " sent_str[i] = sent_str[i].strip() return sent_str def _pretrain_svae(self): self._init_data() self._init_svae_model() tb_writer = SummaryWriter(comment=f"pretrain svae {self.data_name}", filename_suffix=f"pretrain svae {self.data_name}") print(f'{datetime.now()}: Training started') step = 0 for epoch in range(1, self.config['Train']['epochs']+1, 1): for batch_inputs, batch_lengths, batch_targets in self.train_dataloader: if torch.cuda.is_available(): batch_inputs = batch_inputs.to(self.device) batch_lengths = batch_lengths.to(self.device) batch_targets = batch_targets.to(self.device) batch_size = batch_inputs.size(0) logp, mean, logv, _ = self.svae(batch_inputs, batch_lengths, pretrain=False) NLL_loss, KL_loss, KL_weight = self.svae.loss_fn(logp=logp, target=batch_targets, length=batch_lengths, mean=mean, logv=logv, anneal_fn=self.model_config['SVAE']['anneal_function'], step=step, k=self.model_config['SVAE']['k'], x0=self.model_config['SVAE']['x0']) svae_loss = (NLL_loss + KL_weight * KL_loss) / batch_size self.svae_optim.zero_grad() svae_loss.backward() self.svae_optim.step() tb_writer.add_scalar('Loss/train/KLL', KL_loss, step) tb_writer.add_scalar('Loss/train/NLL', NLL_loss, step) tb_writer.add_scalar('Loss/train/Total', svae_loss, step) tb_writer.add_scalar('Utils/train/KL_weight', KL_weight, step) # Increment step after each batch of data step += 1 if epoch % 1 == 0: print(f'{datetime.now()}: Epoch {epoch} Loss {svae_loss:0.2f} Step {step}') if epoch % 5 == 0: # Perform inference self.svae.eval() try: samples, z = self.svae.inference(n=2) print(*self._idx2word_inf(samples, i2w=self.idx2word, pad_idx=self.config['Utils']['special_token2idx']['<PAD>']), sep='\n') except: traceback.print_exc(file=sys.stdout) self.svae.train() # Save final model save_path = os.getcwd() + '/best models/svae.pt' torch.save(self.svae.state_dict(), save_path) print(f'{datetime.now()}: Model saved') print(f'{datetime.now()}: Training finished') if __name__ == '__main__': mt = ModularTrainer() mt._pretrain_svae() # mt._init_data() # for inputs, lengths, targets in mt.datasets['test']: #test_dataloader # print(inputs) # print(targets) # print(lengths) # break ```
{ "source": "4thel00z/subdomain-takeover-scraper", "score": 2 }
#### File: subdomain-takeover-scraper/app/app.py ```python import asyncio import functools import socket import typing from itertools import product from string import ascii_lowercase, digits import aiohttp import async_timeout from static.subdomains import subdomains from static.tlds import tlds SUCCESSFUL_MAPPED_HOSTS = {} SUBPROCESS_COUNT = 0 SUBPROCESS_MAX_COUNT = 50 WAIT_INTERVALL = 0.1 WORDLIST_URL = "https://github.com/dwyl/english-words/blob/master/words.txt?raw=true" ENUMERATOR_QUEUE = [] class Mode: HOST_ENUMERATION = 0 def possible_hosts(length): for host in (''.join(i) for i in product(ascii_lowercase + digits + "-", repeat=length)): yield host def handle_connection_error(url): print("{url} could not be retireved".format(url=url)) # FIXME: add a mantainer task for deferred retries ENUMERATOR_QUEUE.append(url) async def fetch(session, url, *, loop): with async_timeout.timeout(10, loop=loop): try: async with session.get(url) as response: return await response.text() except aiohttp.client_exceptions.ClientConnectorError: handle_connection_error(url) async def wordlist(loop): global WORDLIST_URL with aiohttp.ClientSession(loop=loop) as session: content = await fetch(session, WORDLIST_URL, loop=loop) return content def possible_domain(subdomain, host, tld): return ".".join([subdomain, host, tld]) async def print_current_map(): print(SUCCESSFUL_MAPPED_HOSTS) async def _enumerate_hosts(*, loop): for subdomain in subdomains: for tld in tlds: for host in await wordlist(loop): domain = possible_domain(subdomain=subdomain, host=host, tld=tld) print("processing {domain}..".format(domain=domain)) await asyncio.ensure_future(execute(domain, loop=loop)) print("processed {domain}...".format(domain=domain)) async def resolve(host, *, loop): try: return socket.gethostbyname(host) except: return None async def execute(host, *, loop): try: ip = await resolve(host, loop=loop) await asyncio.ensure_future(print_current_map(), loop=loop) if ip is not None and ip.strip() != "": return_code, is_possible_target = await asyncio.ensure_future(can_be_taken_over(host=host, loop=loop)) SUCCESSFUL_MAPPED_HOSTS[host] = {"ip": ip, "takeover": return_code == 0 and is_possible_target, "claimed": True} else: SUCCESSFUL_MAPPED_HOSTS[host] = {"ip": ip, "takeover": False, "claimed": False} # print("{payload} : {ip}".format(payload=host_name, ip=ip)) except socket.gaierror: pass class DigProtocol(asyncio.SubprocessProtocol): FD_NAMES = ['stdin', 'stdout', 'stderr'] def __init__(self, done_future): self.done = done_future self.buffer = bytearray() super().__init__() def connection_made(self, transport): # print('process started {}'.format(transport.get_pid())) self.transport = transport def pipe_data_received(self, fd, data): # print('read {} bytes from {}'.format(len(data), self.FD_NAMES[fd])) if fd == 1: self.buffer.extend(data) def process_exited(self): # print('process exited') return_code = self.transport.get_returncode() # print('return code {}'.format(return_code)) if not return_code: cmd_output = bytes(self.buffer).decode("utf-8") results = self._parse_results(cmd_output) else: results = [] self.done.set_result((return_code, results)) def _parse_results(self, output: typing.Optional[str]) -> bool: if not output or (isinstance(output, str) and output.strip() == ""): return False return "status: SERVFAIL" in output async def can_be_taken_over(host, *, loop): global SUBPROCESS_COUNT, SUBPROCESS_MAX_COUNT while SUBPROCESS_COUNT >= SUBPROCESS_MAX_COUNT: await asyncio.sleep(WAIT_INTERVALL, loop=loop) SUBPROCESS_COUNT += 1 cmd_done = asyncio.Future(loop=loop) factory = functools.partial(DigProtocol, cmd_done) proc = loop.subprocess_exec( factory, 'dig', 'NS {host}'.format(host=host), stdin=None, stderr=None, ) transport = None try: transport, protocol = await proc await cmd_done finally: if transport is not None: transport.close() SUBPROCESS_COUNT -= 1 return cmd_done.result() def run(args, mode): if mode == Mode.HOST_ENUMERATION: loop = asyncio.get_event_loop() loop.run_until_complete(_enumerate_hosts(loop=loop)) # TODO: # Replace all calls to print with logger calls (use swag) # # # ```
{ "source": "4tif4nwer/image-super-resolution", "score": 3 }
#### File: datasets/div2k/loader.py ```python import os import tensorflow as tf import glob from tensorflow.python.data.experimental import AUTOTUNE hr_train_url = "http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip" hr_valid_url = "http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_HR.zip" def download_data(download_url, data_directory): file = download_url.split("/")[-1] print(data_directory) tf.keras.utils.get_file(file, download_url, cache_subdir=data_directory, extract=True) os.remove(os.path.join(data_directory, file)) def image_dataset_from_directory_or_url(data_directory, image_directory, download_url): images_path = os.path.join(data_directory, image_directory) if not os.path.exists(images_path): print("Couldn't find directory: ", images_path) os.makedirs(data_directory, exist_ok=True) download_data(download_url, data_directory) filenames = sorted(glob.glob(images_path + "/*.png")) dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.map(tf.io.read_file) dataset = dataset.map(lambda x: tf.image.decode_png(x, channels=3), num_parallel_calls=AUTOTUNE) cache_directory = os.path.join(data_directory, "cache", image_directory) os.makedirs(cache_directory, exist_ok=True) cache_file = cache_directory + "/cache" dataset = dataset.cache(cache_file) if not os.path.exists(cache_file + ".index"): populate_cache(dataset, cache_file) return dataset def create_training_dataset(dataset_parameters, train_mappings, batch_size): lr_dataset = image_dataset_from_directory_or_url(dataset_parameters.save_data_directory, dataset_parameters.train_directory, dataset_parameters.train_url) hr_dataset = image_dataset_from_directory_or_url(dataset_parameters.save_data_directory, "DIV2K_train_HR", hr_train_url) dataset = tf.data.Dataset.zip((lr_dataset, hr_dataset)) for mapping in train_mappings: dataset = dataset.map(mapping, num_parallel_calls=AUTOTUNE) dataset = dataset.batch(batch_size) dataset = dataset.repeat() dataset = dataset.prefetch(buffer_size=AUTOTUNE) return dataset def create_validation_dataset(dataset_parameters): lr_dataset = image_dataset_from_directory_or_url(dataset_parameters.save_data_directory, dataset_parameters.valid_directory, dataset_parameters.valid_url) hr_dataset = image_dataset_from_directory_or_url(dataset_parameters.save_data_directory, "DIV2K_valid_HR", hr_valid_url) dataset = tf.data.Dataset.zip((lr_dataset, hr_dataset)) dataset = dataset.batch(1) dataset = dataset.repeat(1) dataset = dataset.prefetch(buffer_size=AUTOTUNE) return dataset def create_training_and_validation_datasets(dataset_parameters, train_mappings, train_batch_size=16): training_dataset = create_training_dataset(dataset_parameters, train_mappings, train_batch_size) validation_dataset = create_validation_dataset(dataset_parameters) return training_dataset, validation_dataset def populate_cache(dataset, cache_file): print(f'Begin caching in {cache_file}.') for _ in dataset: pass print(f'Completed caching in {cache_file}.') ``` #### File: image-super-resolution/models/srresnet.py ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Add, Lambda from tensorflow.python.keras.layers import PReLU from utils.normalization import normalize_01, denormalize_m11 upsamples_per_scale = { 2: 1, 4: 2, 8: 3 } pretrained_srresnet_models = { "srresnet_bicubic_x4": { "url": "https://image-super-resolution-weights.s3.af-south-1.amazonaws.com/srresnet_bicubic_x4/generator.h5", "scale": 4 } } def pixel_shuffle(scale): return lambda x: tf.nn.depth_to_space(x, scale) def upsample(x_in, num_filters): x = Conv2D(num_filters, kernel_size=3, padding='same')(x_in) x = Lambda(pixel_shuffle(scale=2))(x) return PReLU(shared_axes=[1, 2])(x) def residual_block(block_input, num_filters, momentum=0.8): x = Conv2D(num_filters, kernel_size=3, padding='same')(block_input) x = BatchNormalization(momentum=momentum)(x) x = PReLU(shared_axes=[1, 2])(x) x = Conv2D(num_filters, kernel_size=3, padding='same')(x) x = BatchNormalization(momentum=momentum)(x) x = Add()([block_input, x]) return x def build_srresnet(scale=4, num_filters=64, num_res_blocks=16): if scale not in upsamples_per_scale: raise ValueError(f"available scales are: {upsamples_per_scale.keys()}") num_upsamples = upsamples_per_scale[scale] lr = Input(shape=(None, None, 3)) x = Lambda(normalize_01)(lr) x = Conv2D(num_filters, kernel_size=9, padding='same')(x) x = x_1 = PReLU(shared_axes=[1, 2])(x) for _ in range(num_res_blocks): x = residual_block(x, num_filters) x = Conv2D(num_filters, kernel_size=3, padding='same')(x) x = BatchNormalization()(x) x = Add()([x_1, x]) for _ in range(num_upsamples): x = upsample(x, num_filters * 4) x = Conv2D(3, kernel_size=9, padding='same', activation='tanh')(x) sr = Lambda(denormalize_m11)(x) return Model(lr, sr) ``` #### File: image-super-resolution/utils/normalization.py ```python def normalize_m11(x): """Normalizes RGB images to [-1, 1].""" return x / 127.5 - 1 def normalize_01(x): return x / 255.0 def denormalize_m11(x): return (x + 1) * 127.5 ```
{ "source": "4tikhonov/covid-19-infrastructure", "score": 2 }
#### File: api/app/main.py ```python from fastapi import FastAPI from covid19dh import covid19, cite from config import covid19datahub_goal, covid19datahub_authors import json app = FastAPI() @app.get("/") def read_root(): return {"CoronaWhy Data API": "v0.1"} #@app.get("/items/{item_id}") #def read_item(item_id: int, q: str = None): # return {"item_id": item_id, "q": q} @app.get("/country/{item_id}") # http://api.apps.coronawhy.org/data/country/FRA def data_item(item_id: str, q: str = None): jsondataset = covid19(item_id, verbose = False) data = {} datapoints = json.loads(jsondataset.to_json()) data['authors'] = str(covid19datahub_authors) data['goal'] = str(covid19datahub_goal) data['data'] = datapoints data['citations'] = cite(jsondataset) #return json.dumps(data, sort_keys=True, indent=4) return data @app.get("/data_by_pid/{item_id}") def data_persistent(item_id: str, q: str = None): return {"PID": pid, "q": q} ```
{ "source": "4tronix/PiconPlus", "score": 3 }
#### File: PiconPlus/Python/piconplus.py ```python from __future__ import print_function import smbus, time bus = smbus.SMBus(1) # For revision 1 Raspberry Pi, change to bus = smbus.SMBus(0) pzaddr = 0x26 # I2C address of Picon Zero #--------------------------------------------- # Definitions of Commands to Picon Zero MOTORA = 0 OUTCFG0 = 4 OUTPUT0 = 7 INCFG0 = 11 SETBRIGHT = 15 UPDATENOW = 16 RESET = 20 #--------------------------------------------- #--------------------------------------------- # General Constants RETRIES = 10 # max number of retries for I2C calls #--------------------------------------------- #--------------------------------------------- class PiconPlus: #--------------------------------------------- # Get Version and Revision info def getRevision(self): for i in range(RETRIES): try: rval = bus.read_word_data (self.i2cAddress, 0) return [rval>>8, rval%256] except: if (self.debug): print("Error in getRevision(), retrying") return [-1, -1] #--------------------------------------------- #--------------------------------------------- # motor must be in range 0..3 # value must be in range -100 - +100 # values of -100 and +100 are treated as always ON,, no PWM def setMotor (self, motor, value): if (motor>=0 and motor<=3 and value>=-100 and value<100): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, motor, value) break except: if (self.debug): print("Error in setMotor(), retrying") def forward (self, speed): self.setMotor (0, speed) self.setMotor (1, speed) def reverse (self, speed): self.setMotor (0, -speed) self.setMotor (1, -speed) def spinLeft (self, speed): self.setMotor (0, -speed) self.setMotor (1, speed) def spinRight (self, speed): self.setMotor (0, speed) self.setMotor (1, -speed) def stop(self): self.setMotor (0, 0) self.setMotor (1, 0) #--------------------------------------------- #--------------------------------------------- # Read data for selected input channel (analog or digital) # Channel is in range 0 to 5 def readInput (self, channel): if (channel>=0 and channel <=5): for i in range(RETRIES): try: return bus.read_word_data (self.i2cAddress, channel + 1) except: if (self.debug): print("Error in readChannel(), retrying") return -1 #--------------------------------------------- #--------------------------------------------- # Set configuration of selected output channel # 0: On/Off, 1: PWM, 2: Servo def setOutputConfig (self, output, value): if (output>=0 and output<=2 and value>=0 and value<=2): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, OUTCFG0 + output, value) break except: if (self.debug): print("Error in setOutputConfig(), retrying") #--------------------------------------------- #--------------------------------------------- # Set configuration of selected input channel # 0: Digital, 1: Analog, 2: DS18B20 def setInputConfig (self, channel, value, pullup = False): if (channel >= 0 and channel <= 3 and value >= 0 and value <= 2): if (value == 0 and pullup == True): value = 128 for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, INCFG0 + channel, value) break except: if (self.debug): print("Error in setInputConfig(), retrying") #--------------------------------------------- #--------------------------------------------- # Set output data for selected output channel # Mode Name Type Values # 0 On/Off Byte 0 is OFF, 1 is ON # 1 PWM Byte 0 to 100 percentage of ON time # 2 Servo Byte -100 to + 100 Position in degrees def setOutput (self, channel, value): if (channel>=0 and channel<=2): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, OUTPUT0 + channel, value) break except: if (self.debug): print("Error in setOutput(), retrying") #--------------------------------------------- #--------------------------------------------- # Set the colour of an individual pixel (always output 5) def setPixel (self, Pixel, Red, Green, Blue, Update=True): pixelData = [Pixel, Red, Green, Blue] for i in range(RETRIES): try: bus.write_i2c_block_data (self.i2cAddress, Update, pixelData) break except: if (self.debug): print("Error in setPixel(), retrying") # Set the colour of all pixels def setAllPixels (self, Red, Green, Blue, Update=True): pixelData = [100, Red, Green, Blue] for i in range(RETRIES): try: bus.write_i2c_block_data (self.i2cAddress, Update, pixelData) break except: if (self.debug): print("Error in setAllPixels(), retrying") # Update the LEDs from the data buffer def updatePixels (self): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, UPDATENOW, 0) break except: if (self.debug): print("Error in updatePixels(), retrying") # Set the overall brightness of pixel array def setBrightness (self, brightness): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, SETBRIGHT, brightness) break except: if (self.debug): print("Error in setBrightness(), retrying") #--------------------------------------------- #--------------------------------------------- # Initialise the Board (same as cleanup) def __init__ (self, i2cAddress, debug=False): self.i2cAddress = i2cAddress self.debug = debug for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, RESET, 0) break except: if (self.debug): print("Error in init(), retrying") time.sleep(0.01) #1ms delay to allow time to complete if (self.debug): print("Debug is", self.debug) #--------------------------------------------- #--------------------------------------------- # Cleanup the Board (same as init) def cleanup (self): for i in range(RETRIES): try: bus.write_byte_data (self.i2cAddress, RESET, 0) break except: if (self.debug): print("Error in cleanup(), retrying") time.sleep(0.001) # 1ms delay to allow time to complete #--------------------------------------------- ```
{ "source": "4U360/ABSympla", "score": 3 }
#### File: core/types/participant.py ```python from decimal import Decimal from collections import namedtuple from typing import Iterator CustomForm = namedtuple('CustomForm', ["id", "name", "value"]) class Participant(object): __data = {} def __init__(self, **kwargs): self.__data = {**kwargs} @property def data(self) -> dict: return self.__data @property def id(self) -> int: return self.data.get("id") @property def order_id(self) -> str: return self.data.get("order_id") @property def first_name(self) -> str: return self.data.get("first_name", "") @property def last_name(self) -> str: return self.data.get("last_name", "") @property def email(self) -> str: return self.data.get("email", "") @property def ticket_number(self) -> str: return self.data.get("ticket_number", "") @property def ticket_num_qr_code(self) -> str: return self.data.get("ticket_num_qr_code", "") @property def ticket_name(self) -> str: return self.data.get("ticket_name", "") @property def pdv_user(self) -> str: return self.data.get("pdv_user", "") @property def ticket_sale_price(self) -> float: return self.data.get("ticket_sale_price", 0) @property def ticket_sale_price_decimal(self) -> Decimal: return Decimal(self.ticket_sale_price) @property def checkin(self) -> dict: return self.data.get("checkin", {}) @property def custom_form(self) -> Iterator[CustomForm]: for form in self.data.get("custom_form", []): yield CustomForm(**form) ```
{ "source": "4U360/Aki-CNPJ", "score": 3 }
#### File: akicnpj/downloader/empresa.py ```python from .base import AkiDownloader from ..settings import ROOT, Path from os import makedirs class AkiEmpresaDownloader(AkiDownloader): def download(self, path: Path = ROOT.parent.joinpath("data"), ignore_exists: bool = False): makedirs(str(path), exist_ok=True) for file in self.files: if file.name.endswith("EMPRECSV.zip"): full_path = path.joinpath(file.name) if not ignore_exists and full_path.exists(): self.logger.info(f"File {full_path} already exists, skipping...") yield full_path continue self.logger.info(f"Downloading {full_path} [{file.size_str}]") with open(full_path, "wb") as handler: for chunk in self.get_file_content(file): handler.write(chunk) ``` #### File: object/table/simples.py ```python from ..base import AkiObject from ...data.simples import Simples from typing import NamedTuple class AkiSimples(AkiObject): __tuple: Simples = None def __init__(self, simples_tuple: NamedTuple): self.__original = simples_tuple cnpj_basico = getattr(simples_tuple, "cnpj_basico", "0") opcao_simples = str(getattr(simples_tuple, "opcao_simples", "")) data_opcao_simples = str(getattr(simples_tuple, "data_opcao_simples", "")) data_exclusao_simple = str(getattr(simples_tuple, "data_exclusao_simple", "")) opcao_mei = str(getattr(simples_tuple, "opcao_mei", "")) data_opcao_mei = str(getattr(simples_tuple, "data_opcao_mei", "")) data_exclusao_mei = str(getattr(simples_tuple, "opcao_simples", "")) self.__tuple = Simples( index=int(cnpj_basico), cnpj_basico=str(cnpj_basico).ljust(14, "X"), opcao_simples=opcao_simples, data_opcao_simples=data_opcao_simples, data_exclusao_simple=data_exclusao_simple, opcao_mei=opcao_mei, data_opcao_mei=data_opcao_mei, data_exclusao_mei=data_exclusao_mei ) @property def tuple(self) -> Simples: return self.__tuple ```
{ "source": "4uiiurz1/kaggle-tgs-salt-identification-challenge", "score": 3 }
#### File: 4uiiurz1/kaggle-tgs-salt-identification-challenge/resnet.py ```python import torch.nn as nn from torchvision.models import resnet import torch.utils.model_zoo as model_zoo class ResNet(resnet.ResNet): def __init__(self, block, layers, first_stride=1, num_classes=1000): super().__init__(block, layers, num_classes) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=first_stride, padding=3, bias=False) def resnet18(pretrained=False, first_stride=1, **kwargs): model = ResNet(resnet.BasicBlock, [2, 2, 2, 2], first_stride, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet18'])) return model def resnet34(pretrained=False, first_stride=1, **kwargs): model = ResNet(resnet.BasicBlock, [3, 4, 6, 3], first_stride, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet34'])) return model def resnet50(pretrained=False, first_stride=1, **kwargs): model = ResNet(resnet.Bottleneck, [3, 4, 6, 3], first_stride, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet50'])) return model def resnet101(pretrained=False, first_stride=1, **kwargs): model = ResNet(resnet.Bottleneck, [3, 4, 23, 3], first_stride, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet101'])) return model def resnet152(pretrained=False, first_stride=1, **kwargs): model = ResNet(resnet.Bottleneck, [3, 8, 36, 3], first_stride, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(resnet.model_urls['resnet152'])) return model ``` #### File: 4uiiurz1/kaggle-tgs-salt-identification-challenge/senet.py ```python from collections import OrderedDict import torch.nn as nn from pretrainedmodels.models import senet class SENet(senet.SENet): def __init__(self, block, layers, groups, reduction, first_stride=1, dropout_p=0.2, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000): super().__init__(block, layers, groups, reduction, dropout_p, inplanes, input_3x3, downsample_kernel_size, downsample_padding, num_classes) if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=first_stride, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=first_stride, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) def senet154(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, first_stride=first_stride, dropout_p=0.2, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['senet154'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model def se_resnet50(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 4, 6, 3], groups=1, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnet50'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model def se_resnet101(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 4, 23, 3], groups=1, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnet101'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model def se_resnet152(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 8, 36, 3], groups=1, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnet152'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model def se_resnext50_32x4d(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnext50_32x4d'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model def se_resnext101_32x4d(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnext101_32x4d'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model ``` #### File: 4uiiurz1/kaggle-tgs-salt-identification-challenge/validate.py ```python import time import os import math import argparse from glob import glob from collections import OrderedDict import random import warnings from datetime import datetime import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import pandas as pd import joblib import cv2 from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import log_loss from skimage.io import imread, imsave import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim from torch.optim import lr_scheduler from torch.utils.data import DataLoader import torch.backends.cudnn as cudnn import torchvision from torchvision import datasets, models, transforms from dataset import Dataset import archs from metrics import mean_iou, dice_coef from utils import depth_encode, coord_conv, pad, crop def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--name', default=None, help='model name') args = parser.parse_args() return args def main(): val_args = parse_args() args = joblib.load('models/%s/args.pkl' %val_args.name) if not os.path.exists('output/%s' %args.name): os.makedirs('output/%s' %args.name) print('Config -----') for arg in vars(args): print('%s: %s' %(arg, getattr(args, arg))) print('------------') joblib.dump(args, 'models/%s/args.pkl' %args.name) if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') # create model print("=> creating model %s" %args.arch) model = archs.__dict__[args.arch](args) if args.gpu is not None: model = model.cuda(args.gpu) else: model = torch.nn.DataParallel(model).cuda() # Data loading code train_df = pd.read_csv('input/train.csv') img_paths = 'input/train/images/' + train_df['id'].values + '.png' mask_paths = 'input/train/masks/' + train_df['id'].values + '.png' if args.cv == 'KFold': kf = KFold(n_splits=args.n_splits, shuffle=True, random_state=41) cv = kf.split(img_paths) elif args.cv == 'Cov': train_df['cov'] = 0 for i in tqdm(range(len(train_df))): mask = imread('input/train/masks/' + train_df['id'][i] + '.png') mask = mask.astype('float32') / 255 train_df.loc[i, 'cov'] = ((np.sum(mask>0.5) / 101**2) * 10).astype('int') skf = StratifiedKFold(n_splits=args.n_splits, shuffle=True, random_state=41) cv = skf.split(img_paths, train_df['cov']) if not os.path.exists('output/%s/val' %args.name): os.makedirs('output/%s/val' %args.name) for fold, (train_idx, val_idx) in enumerate(cv): print('Fold [%d/%d]' %(fold+1, args.n_splits)) model.load_state_dict(torch.load('models/%s/model_%d.pth' %(args.name, fold+1))) model.eval() train_img_paths, val_img_paths = img_paths[train_idx], img_paths[val_idx] train_mask_paths, val_mask_paths = mask_paths[train_idx], mask_paths[val_idx] with warnings.catch_warnings(): warnings.simplefilter('ignore') for i in tqdm(range(len(val_img_paths))): image = imread(val_img_paths[i]) mask = imread(val_mask_paths[i]) image = image.astype('float32') / 255 mask = mask.astype('float32') / 65535 if 'Res' in args.arch: means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] for c in range(3): image[:,:,c] = (image[:,:,c] - means[c]) / stds[c] if 'Inception' in args.arch: means = [0.5, 0.5, 0.5] stds = [0.5, 0.5, 0.5] for c in range(3): image[:,:,c] = (image[:,:,c] - means[c]) / stds[c] pbs = [] if not args.pad: input = cv2.resize(image, (args.img_size, args.img_size)) else: input = pad(image, args.img_size) if args.depth: input = depth_encode(input) if args.coord_conv: input = coord_conv(input) input = input.transpose((2, 0, 1)) input = input[np.newaxis, :, :, :] input = torch.from_numpy(input) input = input.cuda(args.gpu) output = model(input) output = F.sigmoid(output) pb = output.data.cpu().numpy() pb = pb[0, 0, :, :] if not args.pad: pb = cv2.resize(pb, (101, 101)) else: pb = crop(pb, 101) pbs.append(pb) if not args.pad: input = cv2.resize(image[:, ::-1, :], (args.img_size, args.img_size)) else: input = pad(image[:, ::-1, :], args.img_size) if args.depth: input = depth_encode(input) if args.coord_conv: input = coord_conv(input) input = input.transpose((2, 0, 1)) input = input[np.newaxis, :, :, :] input = torch.from_numpy(input) input = input.cuda(args.gpu) output = model(input) output = F.sigmoid(output) pb = output.data.cpu().numpy()[:, :, :, ::-1] pb = pb[0, 0, :, :] if not args.pad: pb = cv2.resize(pb, (101, 101)) else: pb = crop(pb, 101) pbs.append(pb) pb = np.mean(pbs, axis=0) imsave('output/%s/val/%s' %(args.name, os.path.basename(val_img_paths[i])), (pb*255).astype('uint8')) torch.cuda.empty_cache() # Loss losses = [] for i in tqdm(range(len(mask_paths))): mask = imread(mask_paths[i]) pb = imread('output/%s/val/%s' %(args.name, os.path.basename(img_paths[i]))) mask = (mask > 65535/2).astype('int') pb = pb.astype('float64') / 255 loss = log_loss(mask.flatten(), pb.flatten(), labels=[0, 1]) losses.append(loss) # IoU thrs = np.linspace(0.4, 0.6, 21) ious = [] for thr in thrs: print('thr=%0.2f: ' %thr, end='') tmp_ious = [] for i in tqdm(range(len(mask_paths))): mask = imread(mask_paths[i]) pb = imread('output/%s/val/%s' %(args.name, os.path.basename(img_paths[i]))) mask = (mask > 65535/2).astype('int') pb = pb.astype('float64') / 255 iou = mean_iou(mask, pb>thr) tmp_ious.append(iou) ious.append(np.mean(tmp_ious)) print(np.mean(tmp_ious)) val_info = { 'loss': np.mean(losses), 'best_iou': np.max(ious), 'best_thr': thrs[np.argmax(ious)] } print('Result -----') print('Loss: %f' %val_info['loss']), print('Best IoU: %f' %val_info['best_iou']), print('Best threshold: %f' %val_info['best_thr']) print('------------') with open('models/%s/val_info.txt' %args.name, 'w') as f: print('Result -----', file=f) print('Loss: %f' %val_info['loss'], file=f), print('Best IoU: %f' %val_info['best_iou'], file=f), print('Best threshold: %.2f' %val_info['best_thr'], file=f) print('------------', file=f) joblib.dump(val_info, 'models/%s/val_info.pkl' %args.name) if __name__ == '__main__': main() ```
{ "source": "4uiiurz1/pytorch-scale-aware-triplet", "score": 3 }
#### File: 4uiiurz1/pytorch-scale-aware-triplet/archs.py ```python import numpy as np from torch import nn from torch.nn import functional as F import torch from torchvision import models import torchvision class BNNet(nn.Module): def __init__(self): super().__init__() self.features = nn.Sequential( nn.ZeroPad2d(2), nn.Conv2d(1, 16, 3, padding=1), nn.BatchNorm2d(16), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(16, 32, 3, padding=1), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(32, 64, 3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), ) self.classifier = nn.Sequential( nn.Linear(4*4*64, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Linear(256, 2), nn.BatchNorm1d(2, affine=False), ) def forward(self, input): x = self.features(input) x = x.view(x.shape[0], -1) output = self.classifier(x) return output ```
{ "source": "4uiiurz1/tf-dark-pose", "score": 2 }
#### File: tf-dark-pose/src/optimizers.py ```python import tensorflow as tf def get_optimizer(config): if config.train.optimizer == 'adam': optimizer = tf.optimizers.Adam(lr=config.train.lr) elif config.train.optimizer == 'sgd': optimizer = tf.optimizers.SGD(lr=config.train.lr, momentum=0.9) else: raise NotImplementedError return optimizer ``` #### File: tf-dark-pose/tests/test_dataset.py ```python import random import pytest from easydict import EasyDict as edict import yaml import tensorflow as tf from src.datasets import get_dataset def test_coco_shuffle(): random.seed(71) with open('data/config.yaml') as f: config = yaml.load(f, Loader=yaml.FullLoader) config = edict(config) dataset = get_dataset( config, image_set=config.dataset.test_set, is_train=True, ) generator = tf.data.Dataset.from_generator( dataset.generator, dataset.output_types, ) generator = generator.map(lambda x: x, num_parallel_calls=tf.data.experimental.AUTOTUNE) generator = generator.batch(config.train.batch_size_per_gpu) generator = generator.prefetch(tf.data.experimental.AUTOTUNE) file_names_list = [] for epoch in range(2): file_names = [] for data in generator: file_names.extend(data['file_name'].numpy().tolist()) file_names_list.append(file_names) assert len(file_names_list[0]) == len(file_names_list[1]) matched_cnt = 0 for file_name1, file_name2 in zip(file_names_list[0], file_names_list[1]): if file_name1 == file_name2: matched_cnt += 1 assert matched_cnt / len(file_names_list[0]) <= 0.005 ``` #### File: tf-dark-pose/tests/test_loss.py ```python import pytest import numpy as np from src.losses import JointsMSELoss def test_joint_mse_loss(): """Check if loss matches pytorch. Expected value is created by the following code: .. code-block:: python import torch.nn as nn class JointsMSELoss(nn.Module): def __init__(self, use_target_weight): super().__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight def forward(self, output, target, target_weight): batch_size = output.size(0) num_joints = output.size(1) heatmaps_pred = output.reshape( (batch_size, num_joints, -1)).split(1, 1) heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1) loss = 0 for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze() if self.use_target_weight: loss += 0.5 * self.criterion( heatmap_pred.mul(target_weight[:, idx]), heatmap_gt.mul(target_weight[:, idx]) ) else: loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) return loss / num_joints if __name__ == '__main__': import numpy as np import torch np.random.seed(71) output = torch.from_numpy(np.random.rand(32, 32, 24, 17).astype(np.float32)) output = output.permute(0, 3, 1, 2) target = torch.from_numpy(np.random.rand( 32, 32, 24, 17).astype(np.float32)) target = target.permute(0, 3, 1, 2) target_weight = torch.from_numpy( np.random.rand(32, 17, 1).astype(np.float32)) criterion = JointsMSELoss(use_target_weight=True) loss = criterion(output, target, target_weight) print(loss.numpy()) """ np.random.seed(71) output = np.random.rand(32, 32, 24, 17).astype(np.float32) target = np.random.rand(32, 32, 24, 17).astype(np.float32) target_weight = np.random.rand(32, 17, 1).astype(np.float32) criterion = JointsMSELoss(use_target_weight=True) loss = criterion(output, target, target_weight) loss = loss.numpy() assert loss == pytest.approx(0.030641317, abs=1e-9) ```
{ "source": "4uk/project", "score": 2 }
#### File: project/pandas_analysis/views.py ```python from django.shortcuts import render # Импортируем стандартные модули для пагинации страниц from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger # Подключаем модуль для фиксирования времени import time # Подключаем модуль для анализа pandas import pandas as pd # Подключаем конфигурационный файл для импорта констант from django.conf import settings ''' Модуль для создания дампов. Будет использован только для pandas, поскольку модуль намного медленее работает чем numpy VG Пример кода для создания дампа dt = pd.read_csv('base.txt', index_col=False, delimiter=';', names=['date', 'hours', 'minutes', 'seconds', 'gap', 'grp', 'v', 'gi', 's1', 's2', 's3']) dt.to_pickle('pandas.pickle', compression='infer') ''' import pickle # Создаем вид для рендеринга главной страници def index(request): return render(request, 'home.html') # Создаем вид для рендеринга страницы формы def pandas_page(request): return render(request, 'pandas_page.html') # Создаем вид для обработки вариантов pandas def pandas_processing(request): # Обявляем глобальные переменные т.к будем работать не только с post запросами global end global pandas_data # Проверяем тип запроса формы if request.method == "POST": # Получаем значение варианта из формы c = request.POST.get('choice', None) # Обработка варианта 1 if c == 'c1': # Обявляем переменую для пагинации первой страницы page = request.GET.get('page', 1) # Фиксируем время start = time.time() # Считываем информацию из дампа pandas_data = pd.read_pickle(settings.PANDAS_DUMP, compression='infer') # Поиск значений global_active_power что больше 5 pandas_data = pandas_data[pandas_data['gap'] > 5] # Полученый фрейм конвертируем в список и передаем в качестве аргумента, также ставим мааксимальное количесто строк на одной странице paginator = Paginator(pandas_data.values.tolist(), 1000) # Фиксируем время исполнения end = time.time() - start try: # Получаем значения для первой страницы p = paginator.page(page) # Обработка исключений при не целых значениях пагинатора except PageNotAnInteger: # В этом случае выводим страницу 1 p = paginator.page(1) # Обработка исключений для пустых страниц except EmptyPage: # Выводим только пагинацию p = paginator.page(paginator.num_pages) # Создаем словарь со значениями context = {'frame': p, 'time': end} # Передаем обработаные данные на страницу return render(request, 'pandas_data.html', context) # Обработка варианта 2 elif c == 'c2': # Обявляем переменую для пагинации первой страницы page = request.GET.get('page', 1) # Фиксируем время start = time.time() # Считываем информацию из дампа pandas_data = pd.read_pickle(settings.PANDAS_DUMP, compression='infer') # Поиск значений voltage что больше 235 pandas_data = pandas_data[pandas_data['v'] > 235] # Для вольтажа был создан отдельный дамп, поскольку поиск всех значений требовал бы больше ресурсов сервера with open(settings.VOLTAGE_DUMP, 'rb') as handle: # Присваиваем значение для пагинатора paginator = pickle.load(handle) # Фиксируем время end = time.time() - start try: # Получаем значения для первой страницы p = paginator.page(page) # Обработка исключений при не целых значениях пагинатора except PageNotAnInteger: # В этом случае выводим страницу 1 p = paginator.page(1) # Обработка исключений для пустых страниц except EmptyPage: # Выводим только пагинацию p = paginator.page(paginator.num_pages) # Создаем словарь со значениями context = {'frame': p, 'time': end} # Передаем обработаные данные на страницу return render(request, 'pandas_data.html', context) # Обработка варианта 3 elif c == 'c3': # Обявляем переменую для пагинации первой страницы page = request.GET.get('page', 1) # Фиксируем время start = time.time() # Считываем информацию из дампа pandas_data = pd.read_pickle(settings.PANDAS_DUMP, compression='infer') # Поиск значений global_intensity что больше 19 и меньше 20 pandas_data = pandas_data[(pandas_data['gi'] >= 19) & (pandas_data['gi'] <= 20)] # Полученый фрейм конвертируем в список и передаем в качестве аргумента, также ставим мааксимальное количесто строк на одной странице paginator = Paginator(pandas_data.values.tolist(), 1000) # Фиксируем время end = time.time() - start try: # Получаем значения для первой страницы p = paginator.page(page) # Обработка исключений при не целых значениях пагинатора except PageNotAnInteger: # В этом случае выводим страницу 1 p = paginator.page(1) # Обработка исключений для пустых страниц except EmptyPage: # Выводим только пагинацию p = paginator.page(paginator.num_pages) # Создаем словарь со значениями context = {'frame': p, 'time': end} # Передаем обработаные данные на страницу return render(request, 'pandas_data.html', context) # Обработка варианта 4 elif c == 'c4': # Обявляем переменую для пагинации первой страницы page = request.GET.get('page', 1) # Фиксируем время start = time.time() # Считываем информацию из дампа pandas_data = pd.read_pickle(settings.PANDAS_DUMP, compression='infer') # Генерируем 500000 уникальных строк pandas_data = pandas_data.sample(n=500000, replace=True) # Расчет среднего значения для группы 1 s1_average = sum(pandas_data['s1'])/500000 # Расчет среднего значения для группы 2 s2_average = sum(pandas_data['s2'])/500000 # Расчет среднего значения для группы 3 s3_average = sum(pandas_data['s3'])/500000 # Поиск записей после 18:00 pandas_data = pandas_data[(pandas_data['hours'] >= 18) & (pandas_data['minutes'] > 0)] # Из предидушего фрейма выводим те в которых global_active_power больше 6 pandas_data = pandas_data[pandas_data['gap'] > 6] # Из полученого результата ищем все записи где группа 2 больше группы 1 и группы 3 pandas_data = pandas_data[(pandas_data['s2'] > pandas_data['s1']) & (pandas_data['s2'] > pandas_data['s3'])] # Ищем размер полученого фрейма и делим пополам l = len(pandas_data) // 2 # Делаем срез 1й части first_part = pandas_data[:l] # Из первой части выбираем каждое 3е значение first_part = first_part[::3] # Делаем срез 2й части second_part = pandas_data[l:] # Из второй части выбираем каждое 4е значение second_part = second_part[::4] # Создаем список из полученых частей f = [first_part, second_part] # Обединяем 2 части в 1 pandas_data = pd.concat(f) # Полученый фрейм конвертируем в список и передаем в качестве аргумента, также ставим мааксимальное количесто строк на одной странице paginator = Paginator(pandas_data.values.tolist(), 1000) # Фиксируем время end = time.time() - start try: # Получаем значения для первой страницы p = paginator.page(page) # Обработка исключений при не целых значениях пагинатора except PageNotAnInteger: # В этом случае выводим страницу 1 p = paginator.page(1) # Обработка исключений для пустых страниц except EmptyPage: # Выводим только пагинацию p = paginator.page(paginator.num_pages) # Создаем словарь со значениями context = {'frame': p, 'time': end, 'av1': s1_average, 'av2': s2_average, 'av3': s3_average} # Передаем обработаные данные на страницу return render(request, 'pandas_data.html', context) # Данное условие необходимо для навигации по страницам else: # Обявляем переменую для пагинации первой страницы page = request.GET.get('page', 1) # Получаем фрейм из глобальной переменной и преобразовуем в список paginator = Paginator(pandas_data.values.tolist(), 1000) try: # Получаем значения для первой страницы p = paginator.page(page) # Обработка исключений при не целых значениях пагинатора except PageNotAnInteger: # В этом случае выводим страницу 1 p = paginator.page(1) # Обработка исключений для пустых страниц except EmptyPage: # Выводим только пагинацию p = paginator.page(paginator.num_pages) # Создаем словарь со значениями context = {'frame': p, 'time': end} # Передаем обработаные данные на страницу return render(request, 'pandas_data.html', context) ``` #### File: 4uk/project/script.py ```python import urllib.request import pandas as pd from spyre import server import datetime import os import fileinput import pickle import time import subprocess class SpyreServer(server.App): title = "Днепропетровская область" inputs = [{ "type": "dropdown", "label": "Начальное значение годового диапазона", "options": [ {"label": "Не выбрано", "value": ""}, {"label": "1981", "value": 1981}, {"label": "1982", "value": 1982}, {"label": "1983", "value": 1983}, {"label": "1984", "value": 1984}, {"label": "1985", "value": 1985}, {"label": "1986", "value": 1986}, {"label": "1987", "value": 1987}, {"label": "1988", "value": 1988}, {"label": "1989", "value": 1989}, {"label": "1990", "value": 1990}, {"label": "1991", "value": 1991}, {"label": "1992", "value": 1992}, {"label": "1993", "value": 1993}, {"label": "1994", "value": 1994}, {"label": "1995", "value": 1995}, {"label": "1996", "value": 1996}, {"label": "1997", "value": 1997}, {"label": "1998", "value": 1998}, {"label": "1999", "value": 1999}, {"label": "2000", "value": 2000}, {"label": "2001", "value": 2001}, {"label": "2002", "value": 2002}, {"label": "2003", "value": 2003}, {"label": "2004", "value": 2004}, {"label": "2005", "value": 2005}, {"label": "2006", "value": 2006}, {"label": "2007", "value": 2007}, {"label": "2008", "value": 2008}, {"label": "2009", "value": 2009}, {"label": "2010", "value": 2010}, {"label": "2011", "value": 2011}, {"label": "2012", "value": 2012}, {"label": "2013", "value": 2013}, {"label": "2014", "value": 2014}, {"label": "2015", "value": 2015}, {"label": "2016", "value": 2016}, {"label": "2017", "value": 2017} ], "key": "year_begin", "action_id": "update_data" }, { "type": "dropdown", "label": "Конечное значение годового диапазона", "options": [ {"label": "Не выбрано", "value": ""}, {"label": "1981", "value": 1981}, {"label": "1982", "value": 1982}, {"label": "1983", "value": 1983}, {"label": "1984", "value": 1984}, {"label": "1985", "value": 1985}, {"label": "1986", "value": 1986}, {"label": "1987", "value": 1987}, {"label": "1988", "value": 1988}, {"label": "1989", "value": 1989}, {"label": "1990", "value": 1990}, {"label": "1991", "value": 1991}, {"label": "1992", "value": 1992}, {"label": "1993", "value": 1993}, {"label": "1994", "value": 1994}, {"label": "1995", "value": 1995}, {"label": "1996", "value": 1996}, {"label": "1997", "value": 1997}, {"label": "1998", "value": 1998}, {"label": "1999", "value": 1999}, {"label": "2000", "value": 2000}, {"label": "2001", "value": 2001}, {"label": "2002", "value": 2002}, {"label": "2003", "value": 2003}, {"label": "2004", "value": 2004}, {"label": "2005", "value": 2005}, {"label": "2006", "value": 2006}, {"label": "2007", "value": 2007}, {"label": "2008", "value": 2008}, {"label": "2009", "value": 2009}, {"label": "2010", "value": 2010}, {"label": "2011", "value": 2011}, {"label": "2012", "value": 2012}, {"label": "2013", "value": 2013}, {"label": "2014", "value": 2014}, {"label": "2015", "value": 2015}, {"label": "2016", "value": 2016}, {"label": "2017", "value": 2017} ], "key": "year_end", "action_id": "update_data" }, { "type": "dropdown", "label": "<NAME>", "options": [ {"label": "Не выбрано", "value": ''}, {"label": "1", "value": 1}, {"label": "2", "value": 2}, {"label": "3", "value": 3}, {"label": "4", "value": 4}, {"label": "5", "value": 5}, {"label": "6", "value": 6}, {"label": "7", "value": 7}, {"label": "8", "value": 8}, {"label": "9", "value": 9}, {"label": "10", "value": 10}, {"label": "11", "value": 11}, {"label": "12", "value": 12}, {"label": "13", "value": 13}, {"label": "14", "value": 14}, {"label": "15", "value": 15}, {"label": "16", "value": 16}, {"label": "17", "value": 17}, {"label": "18", "value": 18}, {"label": "19", "value": 19}, {"label": "20", "value": 20}, {"label": "21", "value": 21}, {"label": "22", "value": 22}, {"label": "23", "value": 23}, {"label": "24", "value": 24}, {"label": "25", "value": 25}, {"label": "26", "value": 26}, {"label": "27", "value": 27}, {"label": "28", "value": 28}, {"label": "29", "value": 29}, {"label": "30", "value": 30}, {"label": "31", "value": 31}, {"label": "32", "value": 32}, {"label": "33", "value": 33}, {"label": "34", "value": 34}, {"label": "35", "value": 35}, {"label": "36", "value": 36}, {"label": "37", "value": 37}, {"label": "38", "value": 38}, {"label": "39", "value": 39}, {"label": "40", "value": 40}, {"label": "41", "value": 41}, {"label": "42", "value": 42}, {"label": "43", "value": 43}, {"label": "44", "value": 44}, {"label": "45", "value": 45}, {"label": "46", "value": 46}, {"label": "47", "value": 47}, {"label": "48", "value": 48}, {"label": "49", "value": 49}, {"label": "50", "value": 50}, {"label": "51", "value": 51}, {"label": "52", "value": 52} ], "key": "weeks", "action_id": "update_data" }, { "type": "checkboxgroup", "label": "Поиск экстремумов индекса VHI", "options": [ {"label": "MAX - значение", "value": "max"}, {"label": "MIN - значение", "value": "min"}], "key": "vhi_extremum", "action_id": "update_data", }, { "type": "dropdown", "label": "Соотношение вегетационного индекса", "options": [ {"label": "Не выбрано", "value": ""}, {"label": "Благоприятные условия", "value": 60}, {"label": "Стрессовые условия", "value": 40}, {"label": "Интенсивность засухи от средней до чрезвычайной", "value": 15}, {"label": "Интенсивность засухи от умеренной до чрезвычайной", "value": 35} ], "key": "vhi_correlation", "action_id": "update_data" }, { "type": "dropdown", "label": "Экстремальные засухи, что коснулись больше указанного процента области", "options": [ {"label": "Не выбрано", "value": ""}, {"label": "0%", "value": "0"}, {"label": "5%", "value": "5"}, {"label": "10%", "value": "10"}, {"label": "15%", "value": "15"}, {"label": "20%", "value": "20"}, {"label": "25%", "value": "25"}, {"label": "30%", "value": "30"}, {"label": "35%", "value": "35"}, {"label": "40%", "value": "40"}, {"label": "45%", "value": "45"}, {"label": "50%", "value": "50"}, {"label": "55%", "value": "55"}, {"label": "60%", "value": "60"}, {"label": "65%", "value": "65"}, {"label": "70%", "value": "70"}, {"label": "75%", "value": "75"}, {"label": "80%", "value": "80"}, {"label": "85%", "value": "85"}, {"label": "90%", "value": "90"}, {"label": "95%", "value": "95"}, {"label": "100%", "value": "100"} ], "key": "vhi_rate", "action_id": "update_data" }, { "type": "dropdown", "label": "Умеренные засухи, что коснулись больше указанного процента области", "options": [ {"label": "Не выбрано", "value": ""}, {"label": "0%", "value": "0"}, {"label": "5%", "value": "5"}, {"label": "10%", "value": "10"}, {"label": "15%", "value": "15"}, {"label": "20%", "value": "20"}, {"label": "25%", "value": "25"}, {"label": "30%", "value": "30"}, {"label": "35%", "value": "35"}, {"label": "40%", "value": "40"}, {"label": "45%", "value": "45"}, {"label": "50%", "value": "50"}, {"label": "55%", "value": "55"}, {"label": "60%", "value": "60"}, {"label": "65%", "value": "65"}, {"label": "70%", "value": "70"}, {"label": "75%", "value": "75"}, {"label": "80%", "value": "80"}, {"label": "85%", "value": "85"}, {"label": "90%", "value": "90"}, {"label": "95%", "value": "95"}, {"label": "100%", "value": "100"} ], "key": "vhi_mild", "action_id": "update_data" }, ] controls = [{ "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", }, { "type": "hidden", "id": "update_data", } ] tabs = ["Table", "VHI-индексы", "TCI-индексы", "VCI-индексы"] outputs = [ { "type": "table", "id": "table_id", "control_id": 'update_data', "tab": "Table", "on_page_load": True }, { "type": "plot", "id": "vhi_plot", "control_id": "update_data", "tab": "VHI-индексы", "on_page_load": True }, { "type": "plot", "id": "tci_plot", "control_id": "update_data", "tab": "TCI-индексы", "on_page_load": True }, { "type": "plot", "id": "vci_plot", "control_id": "update_data", "tab": "VCI-индексы", "on_page_load": True } ] def vhi_data_parsing(self, fname): url = urllib.request.urlopen('https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/get_provinceData.php?country=UKR&provinceID=5&year1=1981&year2=2017&type=Mean') parsed_data = url.read() with open(fname, 'wb') as data: data.write(parsed_data) while True: try: with fileinput.FileInput(fname, inplace=True) as file: for line in file: print(line.replace(', provinceID,', '').replace(' ', ',').replace(' ', ',').replace(',,', ',').replace(',', ', ').replace('</pre></tt>', ''), end='') return False except ValueError: time.sleep(0.7) with fileinput.FileInput(fname, inplace=True) as file: for line in file: print(line.replace(', provinceID,', '').replace(' ', ',').replace(' ', ',').replace(',,', ',').replace(',', ', ').replace('</pre></tt>', ''), end='') return False def vh_data_parsing(self, fname): url = urllib.request.urlopen('https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/get_provinceData.php?country=UKR&provinceID=5&year1=1981&year2=2017&type=VHI_Parea') parsed_data = url.read() with open(fname, 'wb') as data: data.write(parsed_data) while True: try: with fileinput.FileInput(fname, inplace=True) as file: for line in file: print(line.replace(', provinceID,', '').replace(' ', ',').replace(' ', ',').replace(',,', ',').replace(',', ', ').replace('</pre></tt>', ''), end='') return False except ValueError: time.sleep(0.7) with fileinput.FileInput(fname, inplace=True) as file: for line in file: print(line.replace(', provinceID,', '').replace(' ', ',').replace(' ', ',').replace(',,', ',').replace(',', ', ').replace('</pre></tt>', ''), end='') return False def vhi_filename_creation(self): global serial_data serial_data = {} serial_filepath = os.path.abspath('filenames.pickle') curr_date = str(datetime.datetime.now())[0:10] full_date = str(datetime.datetime.now()).replace(' ', '-')[:-7] while True: try: with open(serial_filepath, 'rb') as d: serial_data = pickle.load(d) break except FileNotFoundError: open(serial_filepath, 'wb').close() continue except EOFError: serial_data = {} break date = serial_data.get(curr_date, None) if not date: serial_data[curr_date] = {} vhi = serial_data.get(curr_date).get('vhi', None) if not vhi: serial_data[curr_date]['vhi'] = '' fname = serial_data.get(curr_date).get('vhi', None) if not fname: serial_data[curr_date]['vhi'] = 'vhi_dnipropetrovska_3_%s.csv' % full_date with open(serial_filepath, 'wb') as file: pickle.dump(serial_data, file) return serial_data.get(curr_date).get('vhi', None) return fname def vh_filename_creation(self): global serial_data serial_data = {} serial_filepath = os.path.abspath('filenames.pickle') curr_date = str(datetime.datetime.now())[0:10] full_date = str(datetime.datetime.now()).replace(' ', '-')[:-7] while True: try: with open(serial_filepath, 'rb') as d: serial_data = pickle.load(d) break except FileNotFoundError: open(serial_filepath, 'wb').close() continue except EOFError: serial_data = {} break date = serial_data.get(curr_date, None) if not date: serial_data[curr_date] = {} vh = serial_data.get(curr_date).get('vh', None) if not vh: serial_data[curr_date]['vh'] = '' fname = serial_data.get(curr_date).get('vh', None) if not fname: serial_data[curr_date]['vh'] = 'vh_dnipropetrovska_3_%s.csv' % full_date with open(serial_filepath, 'wb') as file: pickle.dump(serial_data, file) return serial_data.get(curr_date).get('vh', None) return fname def vhi_frame_creator(self): fname = self.vhi_filename_creation() curr_date = str(datetime.datetime.now())[0:10] fname_path = os.path.join(os.path.abspath(os.getcwd()), curr_date, fname) upload_dir = os.path.join(os.path.abspath(curr_date)) if not os.path.isdir(os.path.join(os.path.abspath(os.getcwd()), curr_date)): try: subprocess.call(['mkdir %s' % upload_dir], stdout=subprocess.PIPE, shell=True) except: pass if not os.path.isfile(os.path.join(os.path.abspath(os.getcwd()), curr_date, fname)): self.vhi_data_parsing(fname_path) data_frame = pd.read_csv(os.path.join(os.path.abspath(os.getcwd()), curr_date, fname), index_col=False, header=1, names=['year', 'week', 'smn', 'smt', 'vci', 'tci', 'vhi'], delimiter=',', error_bad_lines=False) return data_frame def vh_frame_creator(self): fname = self.vh_filename_creation() curr_date = str(datetime.datetime.now())[0:10] fname_path = os.path.join(os.path.abspath(os.getcwd()), curr_date, fname) upload_dir = os.path.join(os.path.abspath(curr_date)) if not os.path.isdir(os.path.join(os.path.abspath(os.getcwd()), curr_date)): try: subprocess.call(['mkdir %s' % upload_dir], stdout=subprocess.PIPE, shell=True) except: pass if not os.path.isfile(os.path.join(os.path.abspath(os.getcwd()), curr_date, fname)): self.vh_data_parsing(fname_path) data_frame = pd.read_csv(os.path.join(os.path.abspath(os.getcwd()), curr_date, fname), index_col=False, header=1, names=['year', 'week', '0%', '5%', '10%', '15%', '20%', '25%', '30%', '35%', '40%', '45%', '50%', '55%', '60%', '65%', '70%', '75%', '80%', '85%', '90%', '95%', '100%'], delimiter=',', error_bad_lines=False) return data_frame def plot_maker_vhi(self): fname = self.vhi_filename_creation() upload_dir = str(datetime.datetime.now())[0:10] if not os.path.isdir(os.path.join(os.path.abspath(os.getcwd()), upload_dir)): try: subprocess.call(['mkdir %s' % upload_dir], stdout=subprocess.PIPE, shell=True) except: pass fname_path = os.path.join(os.path.abspath(os.getcwd()), upload_dir, fname) while True: r = os.path.isfile(fname_path) if r: break time.sleep(0.7) data_frame = pd.read_csv(fname_path, index_col=False, header=1, names=['year', 'week', 'smn', 'smt', 'vci', 'tci', 'vhi'], delimiter=',', error_bad_lines=False) return data_frame def plot_maker_vh(self): fname = self.vh_filename_creation() upload_dir = str(datetime.datetime.now())[0:10] if not os.path.isdir(os.path.join(os.path.abspath(os.getcwd()), upload_dir)): try: subprocess.call(['mkdir %s' % upload_dir], stdout=subprocess.PIPE, shell=True) except: pass fname_path = os.path.join(os.path.abspath(os.getcwd()), upload_dir, fname) while True: r = os.path.isfile(fname_path) if r: break time.sleep(0.7) data_frame = pd.read_csv(fname_path, index_col=False, header=1, names=['year', 'week', '0%', '5%', '10%', '15%', '20%', '25%', '30%', '35%', '40%', '45%', '50%', '55%', '60%', '65%', '70%', '75%', '80%', '85%', '90%', '95%', '100%'], delimiter=',', error_bad_lines=False) return data_frame def getData(self, params): year_begin = params['year_begin'] year_end = params['year_end'] weeks = params['weeks'] vhi_extremum = params['vhi_extremum'] vhi_correlation = params['vhi_correlation'] vhi_rate = params['vhi_rate'] vhi_mild = params['vhi_mild'] if year_begin and year_end: if year_end < year_begin: current = year_begin year_begin = year_end year_end = current if not vhi_rate and not vhi_mild: df = self.vhi_frame_creator() if year_begin: if weeks and not year_end: return df[(df['year'] == int(year_begin)) & (df['week'] == int(weeks))] elif vhi_extremum and not year_end: if vhi_extremum[0] == 'max': return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))] else: return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))] elif year_end: if vhi_extremum: if vhi_extremum[0] == 'max': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))] else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))] elif weeks: if vhi_correlation and year_end and weeks: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] > 60)] elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 40)] elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 15)] else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 35)] else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks))] elif vhi_correlation and year_end: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] > 60)] elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 40)] elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 15)] else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 35)] else: return df[df['year'].between(int(year_begin), int(year_end))] elif vhi_correlation and not year_end: if int(vhi_correlation) == 60: return df[(df['year'] == int(year_begin)) & (df['vhi'] > 60)] elif int(vhi_correlation) == 40: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 40)] elif int(vhi_correlation) == 15: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 15)] else: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 35)] else: return df[(df['year'] == int(year_begin))] elif vhi_extremum: if vhi_extremum[0] == 'max': return df[df['vhi'] == df.groupby('year')['vhi'].transform('max')] else: return df[df['vhi'] == df.groupby('year')['vhi'].transform('min')] elif vhi_correlation: if int(vhi_correlation) == 60: return df[(df['vhi'] > 60)] elif int(vhi_correlation) == 40: return df[(df['vhi'] < 40)] elif int(vhi_correlation) == 15: return df[(df['vhi'] < 15)] else: return df[(df['vhi'] < 35)] elif year_end: if year_begin: return df[df['year'].between(int(year_begin), int(year_end))] else: return df[df['year'] == int(year_end)] else: return df elif vhi_rate: df = self.vh_frame_creator() if year_begin: if vhi_rate and not year_end: if vhi_rate == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 15)] elif vhi_rate == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 15)] elif vhi_rate == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 15)] else: return df elif vhi_rate and year_end: if vhi_rate == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 15)] elif vhi_rate == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)] elif vhi_rate == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)] else: return df elif vhi_rate and not year_begin: if vhi_rate == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 15)] elif vhi_rate == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 15)] elif vhi_rate == '95': return df[(df['year'] & df['100%'] < 15)] elif vhi_rate == '100': return df[(df['year'] & df['100%'] < 15)] else: return df elif vhi_mild and not vhi_rate: df = self.vh_frame_creator() if year_begin: if vhi_mild and not year_end: if vhi_mild == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 35)] elif vhi_mild == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 35)] elif vhi_mild == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 35)] else: return df elif vhi_mild and year_end: if vhi_mild == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 35)] elif vhi_mild == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)] elif vhi_mild == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)] else: return df elif vhi_mild and not year_begin: if vhi_mild == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 35)] elif vhi_mild == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 35)] elif vhi_mild == '95': return df[(df['year'] & df['100%'] < 35)] elif vhi_mild == '100': return df[(df['year'] & df['100%'] < 35)] else: return df def vhi_plot(self, params): year_begin = params['year_begin'] year_end = params['year_end'] weeks = params['weeks'] vhi_extremum = params['vhi_extremum'] vhi_correlation = params['vhi_correlation'] vhi_rate = params['vhi_rate'] vhi_mild = params['vhi_mild'] if year_begin and year_end: if year_end < year_begin: current = year_begin year_begin = year_end year_end = current if not vhi_rate and not vhi_mild: df = self.plot_maker_vhi() if year_begin: if weeks and not year_end: return df[(df['year'] == int(year_begin)) & (df['week'] == int(weeks))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum and not year_end: if vhi_extremum[0] == 'max': return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if vhi_extremum: if vhi_extremum[0] == 'max': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif weeks: if vhi_correlation and year_end and weeks: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] > 60)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 40)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 15)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 35)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and year_end: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] > 60)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 40)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 15)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 35)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and not year_end: if int(vhi_correlation) == 60: return df[(df['year'] == int(year_begin)) & (df['vhi'] > 60)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 40)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 15)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 35)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum: if vhi_extremum[0] == 'max': return df[df['vhi'] == df.groupby('year')['vhi'].transform('max')].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['vhi'] == df.groupby('year')['vhi'].transform('min')].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation: if int(vhi_correlation) == 60: return df[(df['vhi'] > 60)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['vhi'] < 40)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['vhi'] < 15)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['vhi'] < 35)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if year_begin: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'] == int(year_end)].drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df.drop(['vci', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_rate and not year_end: if vhi_rate == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and year_end: if vhi_rate == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and not year_begin: if vhi_rate == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_mild and not year_end: if vhi_mild == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and year_end: if vhi_mild == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not year_begin: if vhi_mild == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) def tci_plot(self, params): year_begin = params['year_begin'] year_end = params['year_end'] weeks = params['weeks'] vhi_extremum = params['vhi_extremum'] vhi_correlation = params['vhi_correlation'] vhi_rate = params['vhi_rate'] vhi_mild = params['vhi_mild'] if year_begin and year_end: if year_end < year_begin: current = year_begin year_begin = year_end year_end = current if not vhi_rate and not vhi_mild: df = self.plot_maker_vhi() if year_begin: if weeks and not year_end: return df[(df['year'] == int(year_begin)) & (df['week'] == int(weeks))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum and not year_end: if vhi_extremum[0] == 'max': return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if vhi_extremum: if vhi_extremum[0] == 'max': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif weeks: if vhi_correlation and year_end and weeks: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] > 60)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 40)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 15)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 35)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and year_end: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] > 60)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 40)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 15)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 35)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and not year_end: if int(vhi_correlation) == 60: return df[(df['year'] == int(year_begin)) & (df['vhi'] > 60)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 40)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 15)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 35)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum: if vhi_extremum[0] == 'max': return df[df['vhi'] == df.groupby('year')['vhi'].transform('max')].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['vhi'] == df.groupby('year')['vhi'].transform('min')].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation: if int(vhi_correlation) == 60: return df[(df['vhi'] > 60)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['vhi'] < 40)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['vhi'] < 15)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['vhi'] < 35)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if year_begin: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'] == int(year_end)].drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df.drop(['vhi', 'vci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_rate and not year_end: if vhi_rate == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and year_end: if vhi_rate == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and not year_begin: if vhi_rate == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_mild and not year_end: if vhi_mild == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and year_end: if vhi_mild == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not year_begin: if vhi_mild == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) def vci_plot(self, params): year_begin = params['year_begin'] year_end = params['year_end'] weeks = params['weeks'] vhi_extremum = params['vhi_extremum'] vhi_correlation = params['vhi_correlation'] vhi_rate = params['vhi_rate'] vhi_mild = params['vhi_mild'] if year_begin and year_end: if year_end < year_begin: current = year_begin year_begin = year_end year_end = current if not vhi_rate and not vhi_mild: df = self.plot_maker_vhi() if year_begin: if weeks and not year_end: return df[(df['year'] == int(year_begin)) & (df['week'] == int(weeks))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum and not year_end: if vhi_extremum[0] == 'max': return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if vhi_extremum: if vhi_extremum[0] == 'max': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('max'))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] == df.groupby('year')['vhi'].transform('min'))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif weeks: if vhi_correlation and year_end and weeks: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] > 60)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 40)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 15)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks)) & (df['vhi'] < 35)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['week'] == int(weeks))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and year_end: if int(vhi_correlation) == 60: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] > 60)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 40)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 15)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'].between(int(year_begin), int(year_end))) & (df['vhi'] < 35)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation and not year_end: if int(vhi_correlation) == 60: return df[(df['year'] == int(year_begin)) & (df['vhi'] > 60)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 40)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 15)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin)) & (df['vhi'] < 35)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['year'] == int(year_begin))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_extremum: if vhi_extremum[0] == 'max': return df[df['vhi'] == df.groupby('year')['vhi'].transform('max')].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['vhi'] == df.groupby('year')['vhi'].transform('min')].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_correlation: if int(vhi_correlation) == 60: return df[(df['vhi'] > 60)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 40: return df[(df['vhi'] < 40)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif int(vhi_correlation) == 15: return df[(df['vhi'] < 15)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[(df['vhi'] < 35)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif year_end: if year_begin: return df[df['year'].between(int(year_begin), int(year_end))].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df[df['year'] == int(year_end)].drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) else: return df.drop(['vhi', 'tci'], axis=1).plot.area(x='year', figsize=(11, 6)) elif vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_rate and not year_end: if vhi_rate == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and year_end: if vhi_rate == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_rate and not year_begin: if vhi_rate == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '95': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) elif vhi_rate == '100': return df[(df['year'] & df['100%'] < 15)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not vhi_rate: df = self.plot_maker_vh() if year_begin: if vhi_mild and not year_end: if vhi_mild == '0': return df[(df['year'] == int(year_begin)) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'] == int(year_begin)) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'] == int(year_begin)) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'] == int(year_begin)) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'] == int(year_begin)) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'] == int(year_begin)) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'] == int(year_begin)) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'] == int(year_begin)) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'] == int(year_begin)) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'] == int(year_begin)) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'] == int(year_begin)) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'] == int(year_begin)) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'] == int(year_begin)) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'] == int(year_begin)) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'] == int(year_begin)) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'] == int(year_begin)) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'] == int(year_begin)) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'] == int(year_begin)) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'] == int(year_begin)) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] == int(year_begin) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and year_end: if vhi_mild == '0': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year'].between(int(year_begin), int(year_end))) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'].between(int(year_begin), int(year_end)) & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) elif vhi_mild and not year_begin: if vhi_mild == '0': return df[(df['year']) & (df['5%'] + df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '5': return df[(df['year']) & (df['10%'] + df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '10': return df[(df['year']) & (df['15%'] + df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '15': return df[(df['year']) & (df['20%'] + df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '20': return df[(df['year']) & (df['25%'] + df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '25': return df[(df['year']) & (df['30%'] + df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '30': return df[(df['year']) & (df['35%'] + df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '35': return df[(df['year']) & (df['40%'] + df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '40': return df[(df['year']) & (df['45%'] + df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '45': return df[(df['year']) & (df['50%'] + df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '50': return df[(df['year']) & (df['55%'] + df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '55': return df[(df['year']) & (df['60%'] + df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '60': return df[(df['year']) & (df['65%'] + df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '65': return df[(df['year']) & (df['70%'] + df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '70': return df[(df['year']) & (df['75%'] + df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '75': return df[(df['year']) & (df['80%'] + df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '80': return df[(df['year']) & (df['85%'] + df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '85': return df[(df['year']) & (df['90%'] + df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '90': return df[(df['year']) & (df['95%'] + df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '95': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) elif vhi_mild == '100': return df[(df['year'] & df['100%'] < 35)].plot.area(x='year', figsize=(11, 6)) else: return df.plot.area(x='year', figsize=(11, 6)) if __name__ == '__main__': socket = SpyreServer() socket.launch(host='0.0.0.0', port=8888) ```
{ "source": "4very/mplus_leaderboard", "score": 2 }
#### File: mplus_leaderboard/data/updateGuild.py ```python from time import strftime from json import dump, load from logging import root from os.path import join, exists from os import mkdir from datetime import datetime, timedelta from requests.api import get import pytz from WOW import WOW_getGuildRoster from updateMeta import NumberToClassName, getColorForRunScore, getColorForScore, NumberToClassColor from RIO import RIO_GetCharData, RIO_GetCharRankings, RIO_GetRecentRuns from updatePage import AddScoreColors, AddTimeAndPercDiff from updateMeta import updateTimeFile def UpdateGuildRoster(rosterfile): guildData = WOW_getGuildRoster() writeObj = {} for member in guildData: char = member['character'] if char['level'] == 60: name = char['name'] realm = char['realm']['slug'] rio_data = RIO_GetCharRankings(name,realm) try: rio_link = rio_data['profile_url'] rio_score = rio_data['mythic_plus_scores_by_season'][0]['scores']['all'] rio_scoreColor = getColorForScore(rio_score) except: rio_link = None rio_score = 0 rio_scoreColor = '#ffffff' writeObj[char['id']] = { 'name': name, 'realm': realm, 'faction': 'horde' if char['realm']['slug'] == 'illidan' else 'alliance', 'class': char['playable_class']['id'], 'className': NumberToClassName[char['playable_class']['id']], 'classColor': NumberToClassColor[char['playable_class']['id']], 'race': char['playable_race']['id'], 'rank': member['rank'], 'score': rio_score, 'scoreColor': rio_scoreColor, 'links': { 'rio': rio_link, 'armory': f'https://worldofwarcraft.com/en-us/character/us/{realm}/{name}', 'wcl': f'https://www.warcraftlogs.com/character/us/{realm}/{name}', 'rbot': f'https://www.raidbots.com/simbot/quick?region=us&realm={realm}&name={name}' } } with open(rosterfile,'w') as f: dump(writeObj, f, indent=2) root.info("updated guild roster") def UpdateGuildRuns(folder, roster, startDate, endDate): rosterData = getRosterData(roster) runData = getAllRuns(rosterData) runData = removeInvalid(runData, startDate, endDate) AddScoreColors(runData) AddTimeAndPercDiff(runData) runsFile = join(folder, 'runs.json') if exists(runsFile): with open(runsFile,'r') as f: oldRunData = load(f) else: oldRunData = {'data': {}} oldRunData['data'] = {**oldRunData['data'], **runData} with open(join(folder,'runs.json'),'w') as f: dump(oldRunData, f, indent=2) updateTimeFile(folder) return def getRosterData(rosterFile): with open(rosterFile, 'r') as f: return load(f) def getAllRuns(rosterData): retval = {} for id, member in rosterData.items(): playerData = RIO_GetRecentRuns(member['name'], member['realm']) for runId, run in playerData.items(): if runId in retval.keys(): retval[runId]['members'].append(id) retval[runId]['count'] += 1 else: retval[runId] = run retval[runId]['members'] = [id] retval[runId]['count'] = 1 return retval def removeInvalid(runs, start, end): retval = {} for runId, runData in runs.items(): runDate = datetime.strptime(runData['dateCompleted'], "%Y-%m-%dT%H:%M:%S.000Z") startDate = datetime.utcfromtimestamp(start) endDate = datetime.utcfromtimestamp(end) if startDate < runDate and runDate < endDate and runData['count'] >= 2: retval[runId] = runData return retval def suffix(d): return 'th' if 11<=d<=13 else {1:'st',2:'nd',3:'rd'}.get(d%10, 'th') def PrepFolder(folder,start,end,weekNum): if not exists(folder): mkdir(folder) metaFile = join(folder,'meta.json') if exists(metaFile): return start = datetime.utcfromtimestamp(start) - timedelta(hours=5) end = datetime.utcfromtimestamp(end) - timedelta(hours=5) with open(metaFile, 'w') as f: dump({ 'num': weekNum, #11 am, Tuesday August 17th 'start': start.strftime(f'%-I %P, %A %B %-d{suffix(start.day)}'), 'end': end.strftime(f'%-I %P, %A %B %-d{suffix(end.day)}'), },f, indent=2) def updateGuildMeta(folder, weeknumber): with open(join(folder,'meta.json'),'w') as f: dump({ 'weekNum' : weeknumber }, f) return ```
{ "source": "4x1md/vx8_aprs_parser", "score": 2 }
#### File: src/data_types/metadata.py ```python class Metadata: def __init__(self, raw_data): # Date and time self.date = raw_data[0:2] self.time = raw_data[4:5] # Packet sender self.sender_callsign = raw_data[8:15] self.sender_ssid = raw_data[17] + raw_data[19] self.ascii_callsign = True if (ord(raw_data[18]) & 0b00010000) else False # Data length # If packet length is 0xFFFF, it is actually 0 self.pkt_len = ord(raw_data[20]) * 0x100 + ord(raw_data[21]) self.pkt_len = 0 if self.pkt_len == 0xFFFF else self.pkt_len # Memory cell stores packet (1 if true, 0 if false) # If in use value is 0xFFFF, it is actually 0 self.in_use = ord(raw_data[22]) * 0x100 + ord(raw_data[23]) self.in_use = True if self.in_use == 1 else False def __repr__(self): return '<Metadata callsign=%s-%s, ascii=%s, pkt_len=%s, in_use=%s>' % \ (self.sender_callsign, self.sender_ssid, self.ascii_callsign, self.pkt_len, self.in_use) ```
{ "source": "4xin/scrapy-study", "score": 3 }
#### File: HourseSpider/spiders/cnspiders.py ```python import scrapy from HourseSpider.items import DichanItem class HourseSpider(scrapy.Spider): name = "HourseSpider" allowed_domains = ["cnfce.net"] def __init__(self, category=None, *args, **kwargs): super(HourseSpider, self).__init__(*args, **kwargs) self.start_urls = ['http://www.cnfce.net/sale/page1.html'] def parse(self, response): data = response.xpath('//div[@id="mainn"]/ul[re:test(@class,"ul[0-1]$")]') for sel in data: item = DichanItem() item['area']= sel.xpath('li[re:test(@class,"lifw[0-1]$")]/a/text()').extract() item['section']= sel.xpath('li[re:test(@class,"lidd[0-1]$")]/a/text()').extract() item['type']= sel.xpath('li[re:test(@class,"lifx[0-1]$")]/a/text()').extract() item['floor']= sel.xpath('li[re:test(@class,"lilc[0-1]$")]/a/text()').extract() item['roomtype']= sel.xpath('li[re:test(@class,"lihx[0-1]$")]/a/text()').extract() item['decorate']= sel.xpath('li[re:test(@class,"lizx[0-1]$")]/a/text()').extract() item['acreage']= sel.xpath('li[re:test(@class,"limj[0-1]$")]/a/text()').extract() item['unit_price']= sel.xpath('li[re:test(@class,"lidj[0-1]$")]/a/text()').extract() item['price']= sel.xpath('li[re:test(@class,"lijg[0-1]$")]/a/text()').extract() item['date']= sel.xpath('li[re:test(@class,"lirq[0-1]$")]/a/text()').extract() yield item ```
{ "source": "4xle/Blender-Addon-Photogrammetry-Importer", "score": 2 }
#### File: photogrammetry_importer/file_handlers/point_data_file_handler.py ```python import os from photogrammetry_importer.types.point import Point from photogrammetry_importer.file_handlers.ply_file_handler import PLYFileHandler from photogrammetry_importer.utility.blender_logging_utility import log_report class DataSemantics(object): def __init__(self): self.x_idx = None self.y_idx = None self.z_idx = None self.r_idx = None self.g_idx = None self.b_idx = None self.pseudo_color = None def is_color_initialized(self): return not None in [self.r_idx, self.g_idx, self.b_idx] def is_int(some_str): try: int(some_str) return True except ValueError: return False def is_float(some_str): try: float(some_str) return True except ValueError: return False class PointDataFileHandler(object): @staticmethod def read_lines_as_tuples(ifc, delimiter): lines_as_tup = [] for line in ifc.readlines(): elements = line.split(delimiter) lines_as_tup.append(elements) return lines_as_tup @staticmethod def guess_data_semantics(data_tuple): log_report('INFO', 'Guessing data semantics') data_semantics = DataSemantics() # Data must start with subsequent float values # representing the three-dimensional position for idx in [0, 1, 2]: assert is_float(data_tuple[idx]) data_semantics.x_idx = 0 data_semantics.y_idx = 1 data_semantics.z_idx = 2 num_data_entries = len(data_tuple) # Search for three subsequent int values between 0 and 255 # (which indicate RGB color information) for idx in [3, num_data_entries-3]: if not is_int(data_tuple[idx]): continue if not is_int(data_tuple[idx + 1]): continue if not is_int(data_tuple[idx + 2]): continue if not 0 <= int(data_tuple[idx]) <= 255: continue if not 0 <= int(data_tuple[idx]) <= 255: continue if not 0 <= int(data_tuple[idx]) <= 255: continue data_semantics.r_idx = idx data_semantics.g_idx = idx + 1 data_semantics.b_idx = idx + 2 data_semantics.pseudo_color = False break if data_semantics.is_color_initialized(): return data_semantics # If not int values are found, we assume that the color information # is stored as pseudo colors, i.e. we are looking for 3 subsequent # floats between (0,1). for idx in [3, num_data_entries-3]: assert is_float(data_tuple[idx]) if not 0 <= float(data_tuple[idx]) <= 1: continue if not 0 <= float(data_tuple[idx+1]) <= 1: continue if not 0 <= float(data_tuple[idx+2]) <= 1: continue data_semantics.r_idx = idx data_semantics.g_idx = idx + 1 data_semantics.b_idx = idx + 2 data_semantics.pseudo_color = True break return data_semantics @staticmethod def parse_header(line): data_semantics = DataSemantics() data_tuple = line.lstrip('//').rstrip().split(' ') for idx, val in enumerate(data_tuple): if val == 'X': data_semantics.x_idx = idx elif val == 'Y': data_semantics.y_idx = idx elif val == 'Z': data_semantics.z_idx = idx elif val == 'R': data_semantics.r_idx = idx data_semantics.pseudo_color = False elif val == 'G': data_semantics.g_idx = idx data_semantics.pseudo_color = False elif val == 'B': data_semantics.b_idx = idx data_semantics.pseudo_color = False elif val == 'Rf': data_semantics.r_idx = idx data_semantics.pseudo_color = True elif val == 'Gf': data_semantics.g_idx = idx data_semantics.pseudo_color = True elif val == 'Bf': data_semantics.b_idx = idx data_semantics.pseudo_color = True return data_semantics @staticmethod def parse_asc_or_pts_or_csv(ifp, delimiter, only_data): points = [] with open(ifp, 'r') as ifc: data_semantics = None if not only_data: line = ifc.readline() if line.startswith('//'): data_semantics = PointDataFileHandler.parse_header(line) line = ifc.readline() num_points = int(line.strip()) else: num_points = int(line.strip()) lines_as_tuples = PointDataFileHandler.read_lines_as_tuples( ifc, delimiter=delimiter) if data_semantics is None: # Determine the semantics of the data data_tuple = lines_as_tuples[0] data_semantics = PointDataFileHandler.guess_data_semantics( data_tuple) if data_semantics.pseudo_color: factor = 255 else: factor = 1 for idx, data_tuple in enumerate(lines_as_tuples): point = Point( coord=[ float(data_tuple[data_semantics.x_idx]), float(data_tuple[data_semantics.y_idx]), float(data_tuple[data_semantics.z_idx])], color=[ int(factor * float(data_tuple[data_semantics.r_idx])), int(factor * float(data_tuple[data_semantics.g_idx])), int(factor * float(data_tuple[data_semantics.b_idx]))], id=idx, scalars=None) points.append(point) return points @staticmethod def parse_point_data_file(ifp): log_report('INFO', 'Parse Point Data File: ...') ext = os.path.splitext(ifp)[1].lower() if ext == '.ply': points = PLYFileHandler.parse_ply_file(ifp) elif ext == '.csv': points = PointDataFileHandler.parse_asc_or_pts_or_csv( ifp, delimiter=',', only_data=True) elif ext in ['.asc', '.pts']: # https://www.cloudcompare.org/doc/wiki/index.php?title=FILE_I/O points = PointDataFileHandler.parse_asc_or_pts_or_csv( ifp, delimiter=' ', only_data=False) else: log_report('ERROR', 'Extension ' + ext + ' not supported.', self) assert False log_report('INFO', 'Parse Point Data File: Done') return points ``` #### File: photogrammetry_importer/properties/camera_import_properties.py ```python import bpy from bpy.props import (StringProperty, BoolProperty, EnumProperty, FloatProperty, IntProperty, FloatVectorProperty) from photogrammetry_importer.utility.blender_utility import adjust_render_settings_if_possible from photogrammetry_importer.utility.blender_camera_utility import principal_points_initialized from photogrammetry_importer.utility.blender_camera_utility import set_principal_point_for_cameras from photogrammetry_importer.utility.blender_camera_utility import add_cameras from photogrammetry_importer.utility.blender_camera_utility import add_camera_animation from photogrammetry_importer.types.camera import Camera class CameraImportProperties(): """ This class encapsulates Blender UI properties that are required to visualize the reconstructed cameras correctly. """ image_fp_items = [ (Camera.IMAGE_FP_TYPE_NAME, "File Name", "", 1), (Camera.IMAGE_FP_TYPE_RELATIVE, "Relative Path", "", 2), (Camera.IMAGE_FP_TYPE_ABSOLUTE, "Absolute Path", "", 3) ] image_fp_type: EnumProperty( name="Image File Path Type", description = "Choose how image file paths are treated, i.e. absolute path, relative path or file name.", items=image_fp_items) image_dp: StringProperty( name="Image Directory", description = "Assuming the reconstruction result is located in <some/path/rec.ext> or <some/path/colmap_model>. " + "The addons uses <some/path/images> (if available) or <some/path> as default image path." , default="" # Can not use subtype='DIR_PATH' while importing another file (i.e. .nvm) ) import_cameras: BoolProperty( name="Import Cameras", description = "Import Cameras", default=True) default_width: IntProperty( name="Default Width", description = "Width, which will be used used if corresponding image is not found.", default=-1) default_height: IntProperty( name="Default Height", description = "Height, which will be used used if corresponding image is not found.", default=-1) default_focal_length: FloatProperty( name="Focal length in pixel", description = "Value for missing focal length in LOG (Open3D) file. ", default=float('nan')) default_pp_x: FloatProperty( name="Principal Point X Component", description = "Principal Point X Component, which will be used if not contained in the NVM (VisualSfM) / LOG (Open3D) file. " + \ "If no value is provided, the principal point is set to the image center.", default=float('nan')) default_pp_y: FloatProperty( name="Principal Point Y Component", description = "Principal Point Y Component, which will be used if not contained in the NVM (VisualSfM) / LOG (Open3D) file. " + \ "If no value is provided, the principal point is set to the image center.", default=float('nan')) add_background_images: BoolProperty( name="Add a Background Image for each Camera", description = "The background image is only visible by viewing the scene from a specific camera.", default=True) add_image_planes: BoolProperty( name="Add an Image Plane for each Camera", description = "Add an Image Plane for each Camera - only for non-panoramic cameras.", default=False) add_image_plane_emission: BoolProperty( name="Add Image Plane Color Emission", description = "Add image plane color emission to increase the visibility of the image planes.", default=True) image_plane_transparency: FloatProperty( name="Image Plane Transparency Value", description = "Transparency value of the image planes: 0 = invisible, 1 = opaque.", default=0.5, min=0, max=1) add_depth_maps_as_point_cloud: BoolProperty( name="Add Depth Maps (experimental)", description = "Add the depth map (if available) as point cloud for each Camera", default=False) use_default_depth_map_color: BoolProperty( name="Use Default Depth Map Color", description = "If not selected, each depth map is colorized with a different (random) color.", default=False) depth_map_default_color: FloatVectorProperty( name="Depth Map Color", description="Depth map color.", subtype='COLOR', size=3, # RGBA colors are not compatible with the GPU Module default=(0.0, 1.0, 0.0), min=0.0, max=1.0 ) depth_map_display_sparsity: IntProperty( name="Depth Map Display Sparsity", description = "Adjust the sparsity of the depth maps. A value of 10 means, " + "that every 10th depth map value is converted to a 3D point.", default=10) add_camera_motion_as_animation: BoolProperty( name="Add Camera Motion as Animation", description = "Add an animation reflecting the camera motion. " + " The order of the cameras is determined by the corresponding file name.", default=True) number_interpolation_frames: IntProperty( name="Number of Frames Between two Reconstructed Cameras", description = "The poses of the animated camera are interpolated.", default=0, min=0) interpolation_items = [ ("LINEAR", "LINEAR", "", 1), ("BEZIER", "BEZIER", "", 2), ("SINE", "SINE", "", 3), ("QUAD", "QUAD", "", 4), ("CUBIC", "CUBIC", "", 5), ("QUART", "QUART", "", 6), ("QUINT", "QUINT", "", 7), ("EXPO", "EXPO", "", 8), ("CIRC", "CIRC", "", 9), ("BACK", "BACK", "", 10), ("BOUNCE", "BOUNCE", "", 11), ("ELASTIC", "ELASTIC", "", 12), ("CONSTANT", "CONSTANT", "", 13) ] interpolation_type: EnumProperty( name="Interpolation Type", description = "Blender string that defines the type of the interpolation.", items=interpolation_items) consider_missing_cameras_during_animation: BoolProperty( name="Adjust Frame Numbers of Camera Animation", description = "Assume there are three consecutive images A,B and C, but only A and C have been reconstructed. " + "This option adjusts the frame number of C and the number of interpolation frames between camera A and C.", default=True) remove_rotation_discontinuities: BoolProperty( name="Remove Rotation Discontinuities", description = "The addon uses quaternions q to represent the rotation." + "A quaternion q and its negative -q describe the same rotation. " + "This option allows to remove different signs.", default=True) suppress_distortion_warnings: BoolProperty( name="Suppress Distortion Warnings", description = "Radial distortion might lead to incorrect alignments of cameras and points. " + "Enable this option to suppress corresponding warnings. " + "If possible, consider to re-compute the reconstruction using a camera model without radial distortion.", default=False) adjust_render_settings: BoolProperty( name="Adjust Render Settings", description = "Adjust the render settings according to the corresponding images. " + "All images have to be captured with the same device). " + "If disabled the visualization of the camera cone in 3D view might be incorrect.", default=True) camera_extent: FloatProperty( name="Initial Camera Extent (in Blender Units)", description = "Initial Camera Extent (Visualization)", default=1) def draw_camera_options(self, layout, draw_image_fp=True, draw_depth_map_import=False, draw_image_size=False, draw_principal_point=False, draw_focal_length=False, draw_everything=False): camera_box = layout.box() if draw_image_fp or draw_everything: camera_box.prop(self, "image_fp_type") if self.image_fp_type == "NAME" or self.image_fp_type == "RELATIVE" or draw_everything: camera_box.prop(self, "image_dp") if draw_focal_length or draw_image_size or draw_principal_point or draw_everything: image_box = camera_box.box() if draw_focal_length or draw_everything: image_box.prop(self, "default_focal_length") if draw_image_size or draw_everything: image_box.prop(self, "default_width") image_box.prop(self, "default_height") if draw_principal_point or draw_everything: image_box.prop(self, "default_pp_x") image_box.prop(self, "default_pp_y") import_camera_box = camera_box.box() import_camera_box.prop(self, "import_cameras") if self.import_cameras or draw_everything: import_camera_box.prop(self, "camera_extent") import_camera_box.prop(self, "add_background_images") image_plane_box = import_camera_box.box() image_plane_box.prop(self, "add_image_planes") if self.add_image_planes or draw_everything: image_plane_box.prop(self, "add_image_plane_emission") image_plane_box.prop(self, "image_plane_transparency") if draw_depth_map_import or draw_everything: depth_map_box = import_camera_box.box() depth_map_box.prop(self, "add_depth_maps_as_point_cloud") if self.add_depth_maps_as_point_cloud or draw_everything: depth_map_box.prop(self, "use_default_depth_map_color") if self.use_default_depth_map_color: depth_map_box.prop(self, "depth_map_default_color") depth_map_box.prop(self, "depth_map_display_sparsity") box = camera_box.box() box.prop(self, "add_camera_motion_as_animation") if self.add_camera_motion_as_animation or draw_everything: box.prop(self, "number_interpolation_frames") box.prop(self, "interpolation_type") box.prop(self, "consider_missing_cameras_during_animation") box.prop(self, "remove_rotation_discontinuities") camera_box.prop(self, "suppress_distortion_warnings") camera_box.prop(self, "adjust_render_settings") def enhance_camera_with_intrinsics(self, cameras): # This function should be overwritten, # if the intrinsic parameters are not part of the reconstruction data # (e.g. log file) success = True return cameras, success def enhance_camera_with_images(self, cameras): # This function should be overwritten, # if image size is not part of the reconstruction data # (e.g. nvm file) success = True return cameras, success def import_photogrammetry_cameras(self, cameras, parent_collection): if self.import_cameras or self.add_camera_motion_as_animation: cameras, success = self.enhance_camera_with_images(cameras) if success: cameras, success = self.enhance_camera_with_intrinsics(cameras) if success: # The principal point information may be provided in the reconstruction data if not principal_points_initialized(cameras): set_principal_point_for_cameras( cameras, self.default_pp_x, self.default_pp_y, self) if self.adjust_render_settings: adjust_render_settings_if_possible( self, cameras) if self.import_cameras: add_cameras( self, cameras, parent_collection, image_dp=self.image_dp, add_background_images=self.add_background_images, add_image_planes=self.add_image_planes, add_depth_maps_as_point_cloud=self.add_depth_maps_as_point_cloud, camera_scale=self.camera_extent, image_plane_transparency=self.image_plane_transparency, add_image_plane_emission=self.add_image_plane_emission, use_default_depth_map_color=self.use_default_depth_map_color, depth_map_default_color=self.depth_map_default_color, depth_map_display_sparsity=self.depth_map_display_sparsity) if self.add_camera_motion_as_animation: add_camera_animation( self, cameras, parent_collection, self.number_interpolation_frames, self.interpolation_type, self.consider_missing_cameras_during_animation, self.remove_rotation_discontinuities, self.image_dp, self.image_fp_type) else: return {'FINISHED'} ```
{ "source": "4ybaka/py-nrf24", "score": 3 }
#### File: src/nrf24/nrf24.py ```python import pigpio from enum import Enum, IntEnum from os import environ as env class RF24_PA(IntEnum): MIN = 0, LOW = 1, HIGH = 2, MAX = 3, ERROR = 4 @staticmethod def from_value(value): if value is None: raise ValueError(f'"None" is not a RF24_PA value.') if isinstance(value, RF24_PA): return value elif isinstance(value, int): for e in RF24_PA: if value == e.value: return e raise ValueError(f'Value {value} is not a RF24_PA value.') elif isinstance(value, str): for e in RF24_PA: if value.lower() == e.name.lower(): return e raise ValueError(f'Value {value} is not a RF24_PA name.') else: raise ValueError(f'{value} ({type(value)}) is not a RF24_PA value.') class RF24_DATA_RATE(IntEnum): RATE_1MBPS = 0, RATE_2MBPS = 1, RATE_250KBPS = 2 @staticmethod def from_value(value): if value is None: raise ValueError(f'"None" is not a RF24_DATA_RATE value.') if isinstance(value, RF24_DATA_RATE): return value elif isinstance(value, int): for e in RF24_DATA_RATE: if value == e.value: return e raise ValueError(f'Value {value} is not a RF24_DATA_RATE value.') elif isinstance(value, str): for e in RF24_DATA_RATE: if value.lower() == e.name.lower(): return e raise ValueError(f'Value {value} is not a RF24_DATA_RATE name.') else: raise ValueError(f'{value} ({type(value)}) is not a RF24_DATA_RATE value.') class RF24_CRC(IntEnum): DISABLED = 0, BYTES_1 = 1, BYTES_2 = 2 @staticmethod def from_value(value): if value is None: raise ValueError(f'"None" is not a RF24_CRC value.') if isinstance(value, RF24_CRC): return value elif isinstance(value, int): for e in RF24_CRC: if value == e.value: return e raise ValueError(f'Value {value} is not a RF24_CRC value.') elif isinstance(value, str): for e in RF24_CRC: if value.lower() == e.name.lower(): return e raise ValueError(f'Value {value} is not a RF24_CRC name.') else: raise ValueError(f'{value} ({type(value)}) is not an RF24_CRC value.') class RF24_PAYLOAD(IntEnum): ACK = -1 DYNAMIC = 0 MIN = 1 MAX = 32 @staticmethod def from_value(value): if value is None: raise ValueError(f'"None" is not a RF24_PAYLOAD value.') if isinstance(value, RF24_PAYLOAD): return value elif isinstance(value, int): for e in RF24_PAYLOAD: if value == e.value: return e if value >= RF24_PAYLOAD.ACK and value <= RF24_PAYLOAD.MAX: return value raise ValueError(f'Value {value} is not a RF24_PAYLOAD value.') elif isinstance(value, str): for e in RF24_PAYLOAD: if value.lower() == e.name.lower(): return e raise ValueError(f'Value {value} is not a RF24_PAYLOAD name.') else: raise ValueError(f'{value} ({type(value)}) is not an RF24_PAYLOAD value.') class SPI_CHANNEL(IntEnum): MAIN_CE0 = 0 MAIN_CE1 = 1 AUX_CE0 = 2 AUX_CE1 = 3 AUX_CE2 = 4 @staticmethod def from_value(value): if value is None: raise ValueError(f'"None" is not a SPI_CHANNEL value.') if isinstance(value, SPI_CHANNEL): return value elif isinstance(value, int): for e in SPI_CHANNEL: if value == e.value: return e raise ValueError(f'Value {value} is not a SPI_CHANNEL value.') elif isinstance(value, str): for e in RF24_PAYLOAD: if value.lower() == e.name.lower(): return e raise ValueError(f'Value {value} is not a SPI_CHANNEL name.') else: raise ValueError(f'{value} ({type(value)}) is not an SPI_CHANNEL value.') class RF24_RX_ADDR(IntEnum): P0 = 0x0a, P1 = 0x0b, P2 = 0x0c, P3 = 0x0d, P4 = 0x0e, P5 = 0x0f class NRF24: """ Note that RX and TX addresses must match Note that communication channels must match: Note that payload size must match: The following table describes how to configure the operational modes. +----------+--------+---------+--------+-----------------------------+ |Mode | PWR_UP | PRIM_RX | CE pin | FIFO state | +----------+--------+---------+--------+-----------------------------+ |RX mode | 1 | 1 | 1 | --- | +----------+--------+---------+--------+-----------------------------+ |TX mode | 1 | 0 | 1 | Data in TX FIFOs. Will empty| | | | | | all levels in TX FIFOs | +----------+--------+---------+--------+-----------------------------+ |TX mode | 1 | 0 | >10us | Data in TX FIFOs. Will empty| | | | | pulse | one level in TX FIFOs | +----------+--------+---------+--------+-----------------------------+ |Standby-II| 1 | 0 | 1 | TX FIFO empty | +----------+--------+---------+--------+-----------------------------+ |Standby-I | 1 | --- | 0 | No ongoing transmission | +----------+--------+---------+--------+-----------------------------+ |Power Down| 0 | --- | --- | --- | +----------+--------+---------+--------+-----------------------------+ """ TX = 0 RX = 1 @staticmethod def from_config(config, pi=None, pigpio_section='pigpio', nrf24_section='nrf24'): # Get pigpio configuration. if pi is None: host = config[pigpio_section].get('host', env.get('PIGPIO_HOST', 'localhost')) port = config[pigpio_section].getint('port', env.get('PIGPIO_PORT', 8888)) pi = pigpio.pi(host, port) # Get nrf24 configuration ce_pin = config[nrf24_section].getint('ce_pin', 25) spi_channel = SPI_CHANNEL.from_value(config[nrf24_section].get('spi_channel', SPI_CHANNEL.MAIN_CE0)) spi_speed = config[nrf24_section].getint('spi_speed', 50e4) data_rate = RF24_DATA_RATE.from_value(config['nrf24'].get('data_rate', RF24_DATA_RATE.RATE_1MBPS)) channel = config[nrf24_section].getint('channel', 76) payload_size = RF24_PAYLOAD.from_value(config[nrf24_section].get('payload_size', RF24_PAYLOAD.MAX)) address_bytes = config[nrf24_section].getint('address_size', 5) crc_bytes = RF24_CRC.from_value(config[nrf24_section].getint('address_size', RF24_CRC.BYTES_2)) pad = config[nrf24_section].getint('pad', 32) nrf = NRF24(pi, ce=ce_pin, spi_channel=spi_channel, spi_speed=spi_speed,data_rate=data_rate,channel=channel,payload_size=payload_size,address_bytes=address_bytes,crc_bytes=crc_bytes,pad=pad) if config[nrf24_section].get('tx_addr', None) is not None: nrf.open_writing_pipe(config[nrf24_section].get('tx_addr', None)) if config[nrf24_section].get('rx_addr_0', None) is not None: nrf.open_reading_pipe(0, config[nrf24_section].get('rx_addr_0', None)) if config[nrf24_section].get(nrf24_section, None) is not None: nrf.open_reading_pipe(1, config[nrf24_section].get('rx_addr_1', None)) if config[nrf24_section].get('rx_addr_2', None) is not None: nrf.open_reading_pipe(2, config[nrf24_section].get('rx_addr_2', None)) if config[nrf24_section].get('rx_addr_3', None) is not None: nrf.open_reading_pipe(3, config[nrf24_section].get('rx_addr_3', None)) if config[nrf24_section].get('rx_addr_4', None) is not None: nrf.open_reading_pipe(4, config[nrf24_section].get('rx_addr_4', None)) if config[nrf24_section].get('rx_addr_5', None) is not None: nrf.open_reading_pipe(5, config[nrf24_section].get('rx_addr_5', None)) return nrf, pi def __init__(self, pi, # pigpio Raspberry PI connection ce, # GPIO for chip enable spi_channel=SPI_CHANNEL.MAIN_CE0, # SPI channel spi_speed=50e3, # SPI bps 50.000 = 50 Mhz data_rate=RF24_DATA_RATE.RATE_1MBPS, # Default data rate is 1 Mbits. channel=76, # Radio channel payload_size=RF24_PAYLOAD.MAX, # Message size in bytes (default: 32) address_bytes=5, # RX/TX address length in bytes crc_bytes=RF24_CRC.BYTES_2, # Number of CRC bytes pad=32 # Value used to pad short messages ): """ Instantiate with the Pi to which the card reader is connected. Optionally the SPI channel may be specified. The default is main SPI channel 0. The following constants may be used to define the channel: SPI_MAIN_CE0 - main SPI channel 0 SPI_MAIN_CE1 - main SPI channel 1 SPI_AUX_CE0 - aux SPI channel 0 SPI_AUX_CE1 - aux SPI channel 1 SPI_AUX_CE2 - aux SPI channel 2 """ self._pi = pi # Chip Enable can be any PIN (~). assert 0 <= ce <= 31 self._ce_pin = ce pi.set_mode(ce, pigpio.OUTPUT) self.unset_ce() # SPI Channel assert spi_channel >= SPI_CHANNEL.MAIN_CE0 and spi_channel <= SPI_CHANNEL.AUX_CE2 # SPI speed between 32 KHz and 10 MHz assert 32000 <= spi_speed <= 10e6 # Access SPI on the Raspberry PI. if spi_channel < SPI_CHANNEL.AUX_CE0: # WAS: NRF24.SPI_AUX_CE0: # Main SPI self._spi_handle = pi.spi_open(spi_channel, int(spi_speed)) else: # Aux SPI. self._spi_handle = pi.spi_open(spi_channel - SPI_CHANNEL.AUX_CE0, int(spi_speed), NRF24._AUX_SPI) # NRF data rate self._data_rate = data_rate self.set_data_rate(data_rate) # NRF channel (0-125) self._channel = 0 self.set_channel(channel) # NRF Payload size. -1 = Acknowledgement payload, 0 = Dynamic payload size, 1 - 32 = Payload size in bytes. self._payload_size = 0 self.set_payload_size(payload_size) # NRF Address width in bytes. Shorter addresses will be padded using the padding above. self._address_width = 5 self.set_address_bytes(address_bytes) # NRF CRC bytes. Range 0 - 2. self._crc_bytes = 1 self.set_crc_bytes(crc_bytes) # Padding for messages and addresses. self._padding = ord(' ') self.set_padding(pad) # NRF Power Tx self._power_tx = 0 # Initialize NRF. self.power_down() self._nrf_write_reg(self.SETUP_RETR, 0b11111) self.flush_rx() self.flush_tx() self.power_up_rx() def set_channel(self, channel): assert 0 <= channel <= 125 self._channel = channel # frequency (2400 + channel) MHz self._nrf_write_reg(self.RF_CH, self._channel) def set_payload_size(self, payload): assert RF24_PAYLOAD.ACK <= payload <= RF24_PAYLOAD.MAX self._payload_size = payload # 0 is dynamic payload self._configure_payload() def set_padding(self, pad): try: self._padding = ord(pad) except: self._padding = pad assert 0 <= self._padding <= 255 def set_address_bytes(self, address_bytes): assert 3 <= address_bytes <= 5 self._address_width = address_bytes self._nrf_write_reg(self.SETUP_AW, self._address_width - 2) def set_crc_bytes(self, crc_bytes): assert 1 <= crc_bytes <= 2 if crc_bytes == 1: self._crc_bytes = 0 else: self._crc_bytes = self.CRCO def set_data_rate(self, rate): # RF24_1MBPS = 0 # RF24_2MBPS = 1 # RF24_250KBPS = 2 assert RF24_DATA_RATE.RATE_1MBPS <= rate <= RF24_DATA_RATE.RATE_250KBPS # Read current setup value from register. value = self._nrf_read_reg(self.RF_SETUP, 1)[0] # Reset RF_DR_LOW and RF_DR_HIGH to 00 which is 1 Mbps (default) value &= ~(NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH) # Set the RF_DR_LOW bit if speed is 250 Kbps if rate == RF24_DATA_RATE.RATE_250KBPS: # WAS NRF24.RF24_250KBPS: value |= NRF24.RF_DR_LOW # Set the RF_DR_HIGH bit if speed is 2 Mbps elif rate == RF24_DATA_RATE.RATE_2MBPS: # WAS:NRF24.RF24_2MBPS: value |= NRF24.RF_DR_HIGH # Write value back to setup register. self._nrf_write_reg(self.RF_SETUP, value) def set_pa_level(self, level): #uint8_t setup = read_register(RF_SETUP) & 0xF8 #if (level > 3) { // If invalid level, go to max PA # level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit #} else { # level = (level << 1) + 1; // Else set level as requested #} #write_register(RF_SETUP, setup |= level); // Write it to the chip if not isinstance(level, int): raise ValueError("PA level must be int.") if level < RF24_PA.MIN or level > RF24_PA.MAX: level = (RF24_PA.MAX << 1) + 1 else: level = (level << 1) + 1 value = self._nrf_read_reg(NRF24.RF_SETUP, 1)[0] value &= 0xf8 value |= level self._nrf_write_reg(NRF24.RF_SETUP, value) def get_pa_level(self): #return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1; value = self._nrf_read_reg(NRF24.RF_SETUP, 1)[0] value &= (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH) value >>= 1 return RF24_PA(value) def get_spi_handle(self): return self._spi_handle def show_registers(self): print("Registers:") print("----------") print(self.format_config()) print(self.format_en_aa()) print(self.format_en_rxaddr()) print(self.format_setup_aw()) print(self.format_setup_retr()) print(self.format_rf_ch()) print(self.format_rf_setup()) print(self.format_status()) print(self.format_observe_tx()) print(self.format_rpd()) print(self.format_rx_addr_px()) print(self.format_tx_addr()) print(self.format_rx_pw_px()) print(self.format_fifo_status()) print(self.format_dynpd()) print(self.format_feature()) print("----------") def _make_fixed_width(self, msg, width, pad): if isinstance(msg, str): msg = map(ord, msg) msg = list(msg) if len(msg) >= width: return msg[:width] else: msg.extend([pad] * (width - len(msg))) return msg def send(self, data): # We expect a list of byte values to be sent. However, popular types # such as string, integer, bytes, and bytearray are handled automatically using # this conversion code. if not isinstance(data, list): if isinstance(data, str): data = list(map(ord, data)) elif isinstance(data, int): data = list(data.to_bytes(-(-data.bit_length() // 8), 'little')) else: data = list(data) status = self.get_status() if status & (self.TX_FULL | self.MAX_RT): self.flush_tx() if self._payload_size >= RF24_PAYLOAD.MIN: # fixed payload data = self._make_fixed_width(data, self._payload_size, self._padding) self._nrf_command([self.W_TX_PAYLOAD] + data) self.power_up_tx() # Added 2020-05-01, <NAME> def reset_plos(self): v = self._nrf_read_reg(NRF24.RF_CH, 1)[0] self._nrf_write_reg(NRF24.RF_CH, v) # Changed 2020-05-01, <NAME> # WAS: # def ack_payload(self, data): # self._nrf_command([self.W_ACK_PAYLOAD] + data) def ack_payload(self, pipe, data): self._nrf_command([self.W_ACK_PAYLOAD | (pipe & 0x07)] + data) def open_writing_pipe(self, address): addr = self._make_fixed_width(address, self._address_width, self._padding) self.unset_ce() self._nrf_write_reg(self.TX_ADDR, addr) self._nrf_write_reg(self.RX_ADDR_P0, addr) self.set_ce() def open_reading_pipe(self, pipe, address): # pipe: RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 # address: max 5 bytes for P0 and P1, max 1 byte for P2, P3, P4, and P5 # Validate pipe input. if not (isinstance(pipe, int) or isinstance(pipe, RF24_RX_ADDR)): raise ValueError(f"pipe must be int or RF24_RX_ADDR enum.") # If a pipe is given as 0..5 add the 0x0a value corresponding to RX_ADDR_P0 if (pipe >= 0 and pipe <= 5): pipe = pipe + NRF24.RX_ADDR_P0 if (pipe < NRF24.RX_ADDR_P0 or pipe > NRF24.RX_ADDR_P5): raise ValueError(f"pipe out of range ({NRF24.RX_ADDR_P0:02x} <= pipe <= and {NRF24.RX_ADDR_P5:02x}).") # Adjust address. addr = self._make_fixed_width(address, self._address_width, self._padding) if pipe > 0x0b: addr = addr[:1] # Update address on NRF24L01 module. en_rxaddr = self._nrf_read_reg(NRF24.EN_RXADDR, 1)[0] enable = 1 << (pipe - NRF24.RX_ADDR_P0) self.unset_ce() self._nrf_write_reg(pipe, addr) self._nrf_write_reg(NRF24.EN_RXADDR, en_rxaddr | enable) self.set_ce() def set_local_address(self, address): addr = self._make_fixed_width(address, self._address_width, self._padding) self.unset_ce() self._nrf_write_reg(NRF24.RX_ADDR_P1, addr) self.set_ce() def set_remote_address(self, raddr): addr = self._make_fixed_width(raddr, self._address_width, self._padding) self.unset_ce() self._nrf_write_reg(self.TX_ADDR, addr) self._nrf_write_reg(self.RX_ADDR_P0, addr) # Required for automatic acknowledgements. self.set_ce() def data_ready_pipe(self): status = self.get_status() pipe = (status >> 1) & 0x07 if status & self.RX_DR: return True, pipe fifo_status = self._nrf_read_reg(self.FIFO_STATUS, 1)[0] if fifo_status & self.FRX_EMPTY: return False, pipe else: return True, pipe def data_pipe(self): status = self.get_status() pipe = (status >> 1) & 0x07 return pipe def data_ready(self): status = self.get_status() if status & self.RX_DR: return True fifo_status = self._nrf_read_reg(self.FIFO_STATUS, 1)[0] if fifo_status & self.FRX_EMPTY: return False else: return True def is_sending(self): if self._power_tx > 0: status = self.get_status() if status & (self.TX_DS | self.MAX_RT): self.power_up_rx() return False return True return False def get_payload(self): if self._payload_size < RF24_PAYLOAD.MIN: # dynamic payload bytes_count = self._nrf_command([self.R_RX_PL_WID, 0])[1] else: # fixed payload bytes_count = self._payload_size d = self._nrf_read_reg(self.R_RX_PAYLOAD, bytes_count) self.unset_ce() # added self._nrf_write_reg(self.STATUS, self.RX_DR) self.set_ce() # added return d def get_status(self): return self._nrf_command(self.NOP)[0] def power_up_tx(self): self.unset_ce() self._power_tx = 1 config = self.EN_CRC | self._crc_bytes | self.PWR_UP self._nrf_write_reg(self.CONFIG, config) self._nrf_write_reg(self.STATUS, self.RX_DR | self.TX_DS | self.MAX_RT) self.set_ce() def power_up_rx(self): self.unset_ce() self._power_tx = 0 config = self.EN_CRC | self._crc_bytes | self.PWR_UP | self.PRIM_RX self._nrf_write_reg(self.CONFIG, config) self._nrf_write_reg(self.STATUS, self.RX_DR | self.TX_DS | self.MAX_RT) self.set_ce() def power_down(self): self.unset_ce() self._nrf_write_reg(self.CONFIG, self.EN_CRC | self._crc_bytes) def set_ce(self): self._pi.write(self._ce_pin, 1) def unset_ce(self): self._pi.write(self._ce_pin, 0) def flush_rx(self): self._nrf_command(self.FLUSH_RX) def flush_tx(self): self._nrf_command(self.FLUSH_TX) def _nrf_xfer(self, data): b, d = self._pi.spi_xfer(self._spi_handle, data) return d def _nrf_command(self, arg): if type(arg) is not list: arg = [arg] return self._nrf_xfer(arg) def _nrf_read_reg(self, reg, count): return self._nrf_xfer([reg] + [0] * count)[1:] def _nrf_write_reg(self, reg, arg): """ Write arg (which may be one or more bytes) to reg. This function is only permitted in a powerdown or standby mode. """ if type(arg) is not list: arg = [arg] self._nrf_xfer([self.W_REGISTER | reg] + arg) def _configure_payload(self): if self._payload_size >= RF24_PAYLOAD.MIN: # fixed payload self._nrf_write_reg(NRF24.RX_PW_P0, self._payload_size) self._nrf_write_reg(NRF24.RX_PW_P1, self._payload_size) self._nrf_write_reg(NRF24.RX_PW_P2, self._payload_size) self._nrf_write_reg(NRF24.RX_PW_P3, self._payload_size) self._nrf_write_reg(NRF24.RX_PW_P4, self._payload_size) self._nrf_write_reg(NRF24.RX_PW_P5, self._payload_size) self._nrf_write_reg(NRF24.DYNPD, 0) self._nrf_write_reg(NRF24.FEATURE, 0) else: # dynamic payload self._nrf_write_reg(NRF24.RX_PW_P0, 0) self._nrf_write_reg(NRF24.RX_PW_P1, 0) self._nrf_write_reg(NRF24.RX_PW_P2, 0) self._nrf_write_reg(NRF24.RX_PW_P3, 0) self._nrf_write_reg(NRF24.RX_PW_P4, 0) self._nrf_write_reg(NRF24.RX_PW_P5, 0) self._nrf_write_reg(NRF24.DYNPD, NRF24.DPL_P0 | NRF24.DPL_P1 | NRF24.DPL_P2 | NRF24.DPL_P3 | NRF24.DPL_P4 | NRF24.DPL_P5 | NRF24.DPL_P6 | NRF24.DPL_P7) if self._payload_size == RF24_PAYLOAD.ACK: self._nrf_write_reg(NRF24.FEATURE, NRF24.EN_DPL | NRF24.EN_ACK_PAY) else: self._nrf_write_reg(NRF24.FEATURE, NRF24.EN_DPL) # Constants related to NRF24 configuration/operation. _AUX_SPI = (1 << 8) R_REGISTER = 0x00 # reg in bits 0-4, read 1-5 bytes W_REGISTER = 0x20 # reg in bits 0-4, write 1-5 bytes R_RX_PL_WID = 0x60 R_RX_PAYLOAD = 0x61 # read 1-32 bytes W_TX_PAYLOAD = 0xA0 # write 1-32 bytes W_ACK_PAYLOAD = 0xA8 # pipe in bits 0-2, write 1-32 bytes W_TX_PAYLOAD_NO_ACK = 0xB0 # no ACK, write 1-32 bytes FLUSH_TX = 0xE1 FLUSH_RX = 0xE2 REUSE_TX_PL = 0xE3 NOP = 0xFF # no operation CONFIG = 0x00 EN_AA = 0x01 EN_RXADDR = 0x02 SETUP_AW = 0x03 SETUP_RETR = 0x04 RF_CH = 0x05 RF_SETUP = 0x06 STATUS = 0x07 OBSERVE_TX = 0x08 RPD = 0x09 RX_ADDR_P0 = 0x0A RX_ADDR_P1 = 0x0B RX_ADDR_P2 = 0x0C RX_ADDR_P3 = 0x0D RX_ADDR_P4 = 0x0E RX_ADDR_P5 = 0x0F TX_ADDR = 0x10 RX_PW_P0 = 0x11 RX_PW_P1 = 0x12 RX_PW_P2 = 0x13 RX_PW_P3 = 0x14 RX_PW_P4 = 0x15 RX_PW_P5 = 0x16 FIFO_STATUS = 0x17 DYNPD = 0x1C FEATURE = 0x1D # CONFIG MASK_RX_DR = 1 << 6 MASK_TX_DS = 1 << 5 MASK_MAX_RT = 1 << 4 EN_CRC = 1 << 3 # 8 (default) CRCO = 1 << 2 # 4 PWR_UP = 1 << 1 # 2 PRIM_RX = 1 << 0 # 1 def format_config(self): v = self._nrf_read_reg(NRF24.CONFIG, 1)[0] s = f"CONFIG: (0x{v:02x}) => " if v & NRF24.MASK_RX_DR: s += "no RX_DR IRQ, " else: s += "RX_DR IRQ, " if v & NRF24.MASK_TX_DS: s += "no TX_DS IRQ, " else: s += "TX_DS IRQ, " if v & NRF24.MASK_MAX_RT: s += "no MAX_RT IRQ, " else: s += "MAX_RT IRQ, " if v & NRF24.EN_CRC: s += "CRC on, " else: s += "CRC off, " if v & NRF24.CRCO: s += "CRC 2 byte, " else: s += "CRC 1 byte, " if v & NRF24.PWR_UP: s += "Power up, " else: s += "Power down, " if v & NRF24.PRIM_RX: s += "RX" else: s += "TX" return s # EN_AA ENAA_P5 = 1 << 5 # default ENAA_P4 = 1 << 4 # default ENAA_P3 = 1 << 3 # default ENAA_P2 = 1 << 2 # default ENAA_P1 = 1 << 1 # default ENAA_P0 = 1 << 0 # default def format_en_aa(self): v = self._nrf_read_reg(NRF24.EN_AA, 1)[0] s = f"EN_AA: (0x{v:02x}) => " for i in range(6): if v & (1 << i): s += f"P{i}:ACK " else: s += f"P{i}:no ACK " return s # EN_RXADDR ERX_P5 = 1 << 5 ERX_P4 = 1 << 4 ERX_P3 = 1 << 3 ERX_P2 = 1 << 2 ERX_P1 = 1 << 1 # default ERX_P0 = 1 << 0 # default def format_en_rxaddr(self): v = self._nrf_read_reg(NRF24.EN_RXADDR, 1)[0] s = f"EN_RXADDR: (0x{v:02x}) => " for i in range(6): if v & (1 << i): s += f"P{i}:on " else: s += f"P{i}:off " return s # SETUP_AW (Address width) AW_3 = 1 AW_4 = 2 AW_5 = 3 # default def format_setup_aw(self): v = self._nrf_read_reg(NRF24.SETUP_AW, 1)[0] s = f"SETUP_AW: (0x{v:02x}) => address width bytes " if v == NRF24.AW_3: s += "3" elif v == NRF24.AW_4: s += "4" elif v == NRF24.AW_5: s += "5" else: s += "invalid" return s # SETUP_RETR (Retry delay and retries) # ARD 7-4 # ARC 3-0 def format_setup_retr(self): v = self._nrf_read_reg(NRF24.SETUP_RETR, 1)[0] ard = (((v >> 4) & 15) * 250) + 250 arc = v & 15 s = f"SETUP_RETR: (0x{v:02x}) => retry delay {ard} us, retries {arc}" return s # RF_CH (Channel) # RF_CH 6-0 def format_rf_ch(self): v = self._nrf_read_reg(NRF24.RF_CH, 1)[0] s = f"RF_CH: (0x{v:02x}) => channel={v & 127}" return s # RF_SETUP CONT_WAVE = 1 << 7 RF_DR_LOW = 1 << 5 PLL_LOCK = 1 << 4 RF_DR_HIGH = 1 << 3 RF_PWR_LOW = 1 << 1 RF_PWR_HIGH = 1 << 2 # RF_PWR 2-1 def format_rf_setup(self): v = self._nrf_read_reg(NRF24.RF_SETUP, 1)[0] s = f"RF_SETUP: (0x{v:02x}) => " if v & NRF24.CONT_WAVE: s += "continuos carrier on, " else: s += "no continuous carrier, " if v & NRF24.PLL_LOCK: s += "force PLL lock on, " else: s += "no force PLL lock, " dr = 0 if v & NRF24.RF_DR_LOW: dr += 2 if v & NRF24.RF_DR_HIGH: dr += 1 if dr == 0: s += "1 Mbps, " elif dr == 1: s += "2 Mbps, " elif dr == 2: s += "250 kbps, " else: s += "illegal speed, " pwr = (v >> 1) & 3 if pwr == 0: s += "-18 dBm" elif pwr == 1: s += "-12 dBm" elif pwr == 2: s += "-6 dBm" else: s += "0 dBm" return s # STATUS RX_DR = 1 << 6 TX_DS = 1 << 5 MAX_RT = 1 << 4 # RX_P_NO 3-1 RX_P_NO = 1 TX_FULL = 1 << 0 def format_status(self): v = self._nrf_read_reg(NRF24.STATUS, 1)[0] s = f"STATUS: (0x{v:02x}) => " if v & NRF24.RX_DR: s += "RX data, " else: s += "no RX data, " if v & NRF24.TX_DS: s += "TX ok, " else: s += "no TX, " if v & NRF24.MAX_RT: s += "TX retries bad, " else: s += "TX retries ok, " p = (v >> 1) & 7 if p < 6: s += f"pipe {p} data, " elif p == 6: s += "PIPE 6 ERROR, " else: s += "no pipe data, " if v & NRF24.TX_FULL: s += "TX FIFO full" else: s += "TX FIFO not full" return s # OBSERVE_TX # PLOS_CNT 7-4 # ARC_CNT 3-0 def format_observe_tx(self): v = self._nrf_read_reg(NRF24.OBSERVE_TX, 1)[0] plos = (v >> 4) & 15 arc = v & 15 s = f"OBSERVE_TX: (0x{v:02x}) => lost packets {plos}, retries {arc}" return s # RPD # RPD 1 << 0 def format_rpd(self): v = self._nrf_read_reg(NRF24.RPD, 1)[0] s = f"RPD: (0x{v:02x}) => received power detector {v & 1}" return s # RX_ADDR_P0 - RX_ADDR_P5 @staticmethod def _byte2hex(s): hex_value = ''.join('{:02x}'.format(c) for c in reversed(s)) return hex_value def format_rx_addr_px(self): p0 = self._nrf_read_reg(NRF24.RX_ADDR_P0, 5) p1 = self._nrf_read_reg(NRF24.RX_ADDR_P1, 5) p2 = self._nrf_read_reg(NRF24.RX_ADDR_P2, 1)[0] p3 = self._nrf_read_reg(NRF24.RX_ADDR_P3, 1)[0] p4 = self._nrf_read_reg(NRF24.RX_ADDR_P4, 1)[0] p5 = self._nrf_read_reg(NRF24.RX_ADDR_P5, 1)[0] s = "RX ADDR_PX: " s += f"P0=0x{self._byte2hex(p0)} " s += f"P1=0x{self._byte2hex(p1)} " s += f"P2=0x{p2:02x} " s += f"P3=0x{p3:02x} " s += f"P4=0x{p4:02x} " s += f"P5=0x{p5:02x}" return s # TX_ADDR def format_tx_addr(self): p0 = self._nrf_read_reg(NRF24.TX_ADDR, 5) s = f"TX_ADDR: 0x{self._byte2hex(p0)} " return s # RX_PW_P0 - RX_PW_P5 def format_rx_pw_px(self): p0 = self._nrf_read_reg(NRF24.RX_PW_P0, 1)[0] p1 = self._nrf_read_reg(NRF24.RX_PW_P1, 1)[0] p2 = self._nrf_read_reg(NRF24.RX_PW_P2, 1)[0] p3 = self._nrf_read_reg(NRF24.RX_PW_P3, 1)[0] p4 = self._nrf_read_reg(NRF24.RX_PW_P4, 1)[0] p5 = self._nrf_read_reg(NRF24.RX_PW_P5, 1)[0] s = "RX_PW_PX: " s += f"P0={p0:02x} P1={p1:02x} P2={p2:02x} P3={p3:02x} P4={p4:02x} P5={p5:02x} " return s # FIFO_STATUS FTX_REUSE = 1 << 6 FTX_FULL = 1 << 5 FTX_EMPTY = 1 << 4 FRX_FULL = 1 << 1 FRX_EMPTY = 1 << 0 def format_fifo_status(self): v = self._nrf_read_reg(NRF24.FIFO_STATUS, 1)[0] s = f"FIFO_STATUS: (0x{v:02x}) => " if v & NRF24.FTX_REUSE: s += "TX reuse set, " else: s += "TX reuse not set, " if v & NRF24.FTX_FULL: s += "TX FIFO full, " elif v & NRF24.FTX_EMPTY: s += "TX FIFO empty, " else: s += "TX FIFO has data, " if v & NRF24.FRX_FULL: s += "RX FIFO full, " elif v & NRF24.FRX_EMPTY: s += "RX FIFO empty" else: s += "RX FIFO has data" return s # DYNPD DPL_P7 = 1 << 7 DPL_P6 = 1 << 6 DPL_P5 = 1 << 5 DPL_P4 = 1 << 4 DPL_P3 = 1 << 3 DPL_P2 = 1 << 2 DPL_P1 = 1 << 1 DPL_P0 = 1 << 0 def format_dynpd(self): v = self._nrf_read_reg(NRF24.DYNPD, 1)[0] s = f"DYNPD: (0x{v:02x}) => " for i in range(6): if v & (1 << i): s += f"P{i}:on " else: s += f"P{i}:off " return s # FEATURE EN_DPL = 1 << 2 EN_ACK_PAY = 1 << 1 EN_DYN_ACK = 1 << 0 def format_feature(self): v = self._nrf_read_reg(NRF24.FEATURE, 1)[0] s = f"FEATURE: (0x{v:02x}) => " if v & NRF24.EN_DPL: s += "Dynamic payload on, " else: s += "Dynamic payload off, " if v & NRF24.EN_ACK_PAY: s += "ACK payload on, " else: s += "ACK payload off, " if v & NRF24.EN_DYN_ACK: s += "W_TX_PAYLOAD_NOACK on" else: s += "W_TX_PAYLOAD_NOACK off" return s ```
{ "source": "4ydan/refnx", "score": 2 }
#### File: analysis/test/test_curvefitter.py ```python import os.path import pickle import numpy as np import scipy.optimize as sciopt from scipy.stats import norm import pytest from numpy.testing import ( assert_, assert_almost_equal, assert_equal, assert_allclose, ) from refnx.analysis import ( CurveFitter, Parameter, Parameters, Model, Objective, process_chain, load_chain, Bounds, PDF, autocorrelation_chain, integrated_time, ) from refnx.analysis.curvefitter import bounds_list from refnx.dataset import Data1D from refnx._lib import emcee, flatten from NISTModels import NIST_runner, NIST_Models def line(x, params, *args, **kwds): p_arr = np.array(params) return p_arr[0] + x * p_arr[1] class TestCurveFitter: def setup_method(self): # Reproducible results! np.random.seed(123) self.m_true = -0.9594 self.b_true = 4.294 self.f_true = 0.534 self.m_ls = -1.1040757010910947 self.b_ls = 5.4405552502319505 # Generate some synthetic data from the model. N = 50 x = np.sort(10 * np.random.rand(N)) y_err = 0.1 + 0.5 * np.random.rand(N) y = self.m_true * x + self.b_true y += np.abs(self.f_true * y) * np.random.randn(N) y += y_err * np.random.randn(N) self.data = Data1D(data=(x, y, y_err)) self.p = Parameter(self.b_ls, "b", vary=True, bounds=(-100, 100)) self.p |= Parameter(self.m_ls, "m", vary=True, bounds=(-100, 100)) self.model = Model(self.p, fitfunc=line) self.objective = Objective(self.model, self.data) assert_(len(self.objective.varying_parameters()) == 2) mod = np.array( [ 4.78166609, 4.42364699, 4.16404064, 3.50343504, 3.4257084, 2.93594347, 2.92035638, 2.67533842, 2.28136038, 2.19772983, 1.99295496, 1.93748334, 1.87484436, 1.65161016, 1.44613461, 1.11128101, 1.04584535, 0.86055984, 0.76913963, 0.73906649, 0.73331407, 0.68350418, 0.65216599, 0.59838566, 0.13070299, 0.10749131, -0.01010195, -0.10010155, -0.29495372, -0.42817431, -0.43122391, -0.64637715, -1.30560686, -1.32626428, -1.44835768, -1.52589881, -1.56371158, -2.12048349, -2.24899179, -2.50292682, -2.53576659, -2.55797996, -2.60870542, -2.7074727, -3.93781479, -4.12415366, -4.42313742, -4.98368609, -5.38782395, -5.44077086, ] ) self.mod = mod self.mcfitter = CurveFitter(self.objective) def test_bounds_list(self): bnds = bounds_list(self.p) assert_allclose(bnds, [(-100, 100), (-100, 100)]) # try making a Parameter bound a normal distribution, then get an # approximation to box bounds self.p[0].bounds = PDF(norm(0, 1)) assert_allclose( bounds_list(self.p), [norm(0, 1).ppf([0.005, 0.995]), (-100, 100)] ) def test_constraints(self): # constraints should work during fitting self.p[0].value = 5.4 self.p[1].constraint = -0.203 * self.p[0] assert_equal(self.p[1].value, self.p[0].value * -0.203) res = self.mcfitter.fit() assert_(res.success) assert_equal(len(self.objective.varying_parameters()), 1) # lnsigma is parameters[0] assert_(self.p[0] is self.objective.parameters.flattened()[0]) assert_(self.p[1] is self.objective.parameters.flattened()[1]) assert_almost_equal(self.p[0].value, res.x[0]) assert_almost_equal(self.p[1].value, self.p[0].value * -0.203) # check that constraints work during sampling # the CurveFitter has to be set up again if you change how the # parameters are being fitted. mcfitter = CurveFitter(self.objective) assert_(mcfitter.nvary == 1) mcfitter.sample(5) assert_equal(self.p[1].value, self.p[0].value * -0.203) # the constrained parameters should have a chain assert_(self.p[0].chain is not None) assert_(self.p[1].chain is not None) assert_allclose(self.p[1].chain, self.p[0].chain * -0.203) def test_mcmc(self): self.mcfitter.sample(steps=50, nthin=1, verbose=False) assert_equal(self.mcfitter.nvary, 2) # smoke test for corner plot self.mcfitter.objective.corner() # we're not doing Parallel Tempering here. assert_(self.mcfitter._ntemps == -1) assert_(isinstance(self.mcfitter.sampler, emcee.EnsembleSampler)) # should be able to multithread mcfitter = CurveFitter(self.objective, nwalkers=50) res = mcfitter.sample(steps=33, nthin=2, verbose=False, pool=2) # check that the autocorrelation function at least runs acfs = mcfitter.acf(nburn=10) assert_equal(acfs.shape[-1], mcfitter.nvary) # check the standalone autocorrelation calculator acfs2 = autocorrelation_chain(mcfitter.chain, nburn=10) assert_equal(acfs, acfs2) # check integrated_time integrated_time(acfs2, tol=5) # check chain shape assert_equal(mcfitter.chain.shape, (33, 50, 2)) # assert_equal(mcfitter._lastpos, mcfitter.chain[:, -1, :]) assert_equal(res[0].chain.shape, (33, 50)) # if the number of parameters changes there should be an Exception # raised from pytest import raises with raises(RuntimeError): self.p[0].vary = False self.mcfitter.sample(1) # can fix by making the sampler again self.mcfitter.make_sampler() self.mcfitter.sample(1) def test_random_seed(self): # check that MCMC sampling is reproducible self.mcfitter.sample(steps=2, random_state=1) # get a starting pos starting_pos = self.mcfitter._state.coords # is sampling reproducible self.mcfitter.reset() self.mcfitter.initialise(pos=starting_pos) self.mcfitter.sample(3, random_state=1, pool=1) chain1 = np.copy(self.mcfitter.chain) self.mcfitter.reset() self.mcfitter.initialise(pos=starting_pos) self.mcfitter.sample(3, random_state=1, pool=1) chain2 = np.copy(self.mcfitter.chain) assert_equal(chain1, chain2) def test_mcmc_pt(self): # smoke test for parallel tempering x = np.array(self.objective.parameters) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) assert_equal(mcfitter.sampler.ntemps, 10) assert len(list(flatten(self.objective.parameters))) == 2 # check that the parallel sampling works # and that chain shape is correct res = mcfitter.sample(steps=5, nthin=2, verbose=False, pool=-1) assert_equal(mcfitter.chain.shape, (5, 10, 50, 2)) assert_equal(res[0].chain.shape, (5, 50)) assert_equal(mcfitter.chain[:, 0, :, 0], res[0].chain) assert_equal(mcfitter.chain[:, 0, :, 1], res[1].chain) chain = np.copy(mcfitter.chain) assert len(list(flatten(self.objective.parameters))) == 2 # the sampler should store the probability assert_equal(mcfitter.logpost.shape, (5, 10, 50)) assert_allclose(mcfitter.logpost, mcfitter.sampler._ptchain.logP) logprobs = mcfitter.logpost highest_prob_loc = np.argmax(logprobs[:, 0]) idx = np.unravel_index(highest_prob_loc, logprobs[:, 0].shape) idx = list(idx) idx.insert(1, 0) idx = tuple(idx) assert_equal(idx, mcfitter.index_max_prob) pvals = mcfitter.chain[idx] assert_allclose(logprobs[idx], self.objective.logpost(pvals)) # try resetting the chain mcfitter.reset() # test for reproducible operation self.objective.setp(x) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) mcfitter.initialise("jitter", random_state=1) mcfitter.sample(steps=5, nthin=2, verbose=False, random_state=2) chain = np.copy(mcfitter.chain) self.objective.setp(x) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) mcfitter.initialise("jitter", random_state=1) mcfitter.sample(steps=5, nthin=2, verbose=False, random_state=2) chain2 = np.copy(mcfitter.chain) assert_allclose(chain2, chain) def test_mcmc_init(self): # smoke test for sampler initialisation # TODO check that the initialisation worked. # reproducible initialisation with random_state dependents self.mcfitter.initialise("prior", random_state=1) starting_pos = np.copy(self.mcfitter._state.coords) self.mcfitter.initialise("prior", random_state=1) starting_pos2 = self.mcfitter._state.coords assert_equal(starting_pos, starting_pos2) self.mcfitter.initialise("jitter", random_state=1) starting_pos = np.copy(self.mcfitter._state.coords) self.mcfitter.initialise("jitter", random_state=1) starting_pos2 = self.mcfitter._state.coords assert_equal(starting_pos, starting_pos2) mcfitter = CurveFitter(self.objective, nwalkers=100) mcfitter.initialise("covar") assert_equal(mcfitter._state.coords.shape, (100, 2)) mcfitter.initialise("prior") assert_equal(mcfitter._state.coords.shape, (100, 2)) mcfitter.initialise("jitter") assert_equal(mcfitter._state.coords.shape, (100, 2)) # initialise with last position mcfitter.sample(steps=1) chain = mcfitter.chain mcfitter.initialise(pos=chain[-1]) assert_equal(mcfitter._state.coords.shape, (100, 2)) # initialise with chain mcfitter.sample(steps=2) chain = mcfitter.chain mcfitter.initialise(pos=chain) assert_equal(mcfitter._state.coords, chain[-1]) # initialise with chain if it's never been run before mcfitter = CurveFitter(self.objective, nwalkers=100) mcfitter.initialise(chain) # initialise for Parallel tempering mcfitter = CurveFitter(self.objective, ntemps=20, nwalkers=100) mcfitter.initialise("covar") assert_equal(mcfitter._state.coords.shape, (20, 100, 2)) mcfitter.initialise("prior") assert_equal(mcfitter._state.coords.shape, (20, 100, 2)) mcfitter.initialise("jitter") assert_equal(mcfitter._state.coords.shape, (20, 100, 2)) # initialise with last position mcfitter.sample(steps=1) chain = mcfitter.chain mcfitter.initialise(pos=chain[-1]) assert_equal(mcfitter._state.coords.shape, (20, 100, 2)) # initialise with chain mcfitter.sample(steps=2) chain = mcfitter.chain mcfitter.initialise(pos=np.copy(chain)) assert_equal(mcfitter._state.coords, chain[-1]) # initialise with chain if it's never been run before mcfitter = CurveFitter(self.objective, nwalkers=100, ntemps=20) mcfitter.initialise(chain) def test_fit_smoke(self): # smoke tests to check that fit runs def callback(xk): return def callback2(xk, **kws): return # L-BFGS-B res0 = self.mcfitter.fit(callback=callback) assert_almost_equal(res0.x, [self.b_ls, self.m_ls], 6) res0 = self.mcfitter.fit() res0 = self.mcfitter.fit(verbose=False) res0 = self.mcfitter.fit(verbose=False, callback=callback) # least_squares res1 = self.mcfitter.fit(method="least_squares") assert_almost_equal(res1.x, [self.b_ls, self.m_ls], 6) # least_squares doesn't accept a callback. As well as testing that # least_squares works, it checks that providing a callback doesn't # trip the fitter up. res1 = self.mcfitter.fit(method="least_squares", callback=callback) assert_almost_equal(res1.x, [self.b_ls, self.m_ls], 6) # need full bounds for differential_evolution self.p[0].range(3, 7) self.p[1].range(-2, 0) res2 = self.mcfitter.fit( method="differential_evolution", seed=1, popsize=10, maxiter=100, callback=callback2, ) assert_almost_equal(res2.x, [self.b_ls, self.m_ls], 6) # check that the res object has covar and stderr assert_("covar" in res0) assert_("stderr" in res0) @pytest.mark.parametrize("model", NIST_Models) def test_NIST(self, model): # Run all the NIST standard tests with leastsq NIST_runner(model) def gauss(x, p0): p = np.array(p0) return p[0] + p[1] * np.exp(-(((x - p[2]) / p[3]) ** 2)) class TestFitterGauss: # Test CurveFitter with a noisy gaussian, weighted and unweighted, to see # if the parameters and uncertainties come out correct @pytest.fixture(autouse=True) def setup_method(self, tmpdir): self.path = os.path.dirname(os.path.abspath(__file__)) self.tmpdir = tmpdir.strpath theoretical = np.loadtxt(os.path.join(self.path, "gauss_data.txt")) xvals, yvals, evals = np.hsplit(theoretical, 3) xvals = xvals.flatten() yvals = yvals.flatten() evals = evals.flatten() # these best weighted values and uncertainties obtained with Igor self.best_weighted = [-0.00246095, 19.5299, -8.28446e-2, 1.24692] self.best_weighted_errors = [ 0.0220313708486, 1.12879436221, 0.0447659158681, 0.0412022938883, ] self.best_weighted_chisqr = 77.6040960351 self.best_unweighted = [ -0.10584111872702096, 19.240347049328989, 0.0092623066070940396, 1.501362314145845, ] self.best_unweighted_errors = [ 0.34246565477, 0.689820935208, 0.0411243173041, 0.0693429375282, ] self.best_unweighted_chisqr = 497.102084956 self.p0 = np.array([0.1, 20.0, 0.1, 0.1]) self.names = ["bkg", "A", "x0", "width"] self.bounds = [(-1, 1), (0, 30), (-5.0, 5.0), (0.001, 2)] self.params = Parameters(name="gauss_params") for p, name, bound in zip(self.p0, self.names, self.bounds): param = Parameter(p, name=name) param.range(*bound) param.vary = True self.params.append(param) self.model = Model(self.params, fitfunc=gauss) self.data = Data1D((xvals, yvals, evals)) self.objective = Objective(self.model, self.data) return 0 def test_pickle(self): # tests if a CurveFitter can be pickled/unpickled. f = CurveFitter(self.objective) pkl = pickle.dumps(f) g = pickle.loads(pkl) g._check_vars_unchanged() def test_best_weighted(self): assert_equal(len(self.objective.varying_parameters()), 4) self.objective.setp(self.p0) f = CurveFitter(self.objective, nwalkers=100) res = f.fit("least_squares", jac="3-point") output = res.x assert_almost_equal(output, self.best_weighted, 3) assert_almost_equal( self.objective.chisqr(), self.best_weighted_chisqr, 5 ) # compare the residuals res = (self.data.y - self.model(self.data.x)) / self.data.y_err assert_equal(self.objective.residuals(), res) # compare objective.covar to the best_weighted_errors uncertainties = [param.stderr for param in self.params] assert_allclose(uncertainties, self.best_weighted_errors, rtol=0.005) # we're also going to try the checkpointing here. checkpoint = os.path.join(self.tmpdir, "checkpoint.txt") # compare samples to best_weighted_errors np.random.seed(1) f.sample(steps=201, random_state=1, verbose=False, f=checkpoint) process_chain(self.objective, f.chain, nburn=50, nthin=10) uncertainties = [param.stderr for param in self.params] assert_allclose(uncertainties, self.best_weighted_errors, rtol=0.07) # test that the checkpoint worked check_array = np.loadtxt(checkpoint) check_array = check_array.reshape(201, f._nwalkers, f.nvary) assert_allclose(check_array, f.chain) # test loading the checkpoint chain = load_chain(checkpoint) assert_allclose(chain, f.chain) f.initialise("jitter") f.sample(steps=2, nthin=4, f=checkpoint, verbose=False) assert_equal(f.chain.shape[0], 2) # we should be able to produce 2 * 100 steps from the generator g = self.objective.pgen(ngen=20000000000) s = [i for i, a in enumerate(g)] assert_equal(np.max(s), 200 - 1) g = self.objective.pgen(ngen=200) pvec = next(g) assert_equal(pvec.size, len(self.objective.parameters.flattened())) # check that all the parameters are returned via pgen, not only those # being varied. self.params[0].vary = False f = CurveFitter(self.objective, nwalkers=100) f.initialise("jitter") f.sample(steps=2, nthin=4, f=checkpoint, verbose=False) g = self.objective.pgen(ngen=100) pvec = next(g) assert_equal(pvec.size, len(self.objective.parameters.flattened())) # the following test won't work because of emcee/gh226. # chain = load_chain(checkpoint) # assert_(chain.shape == f.chain.shape) # assert_allclose(chain, f.chain) # try reproducing best fit with parallel tempering self.params[0].vary = True f = CurveFitter(self.objective, nwalkers=100, ntemps=10) f.fit("differential_evolution", seed=1) f.sample(steps=201, random_state=1, verbose=False) process_chain(self.objective, f.chain, nburn=50, nthin=15) print(self.params[0].chain.shape, self.params[0].chain) uncertainties = [param.stderr for param in self.params] assert_allclose(uncertainties, self.best_weighted_errors, rtol=0.07) def test_best_unweighted(self): self.objective.weighted = False f = CurveFitter(self.objective, nwalkers=100) res = f.fit() output = res.x assert_almost_equal( self.objective.chisqr(), self.best_unweighted_chisqr ) assert_almost_equal(output, self.best_unweighted, 5) # compare the residuals res = self.data.y - self.model(self.data.x) assert_equal(self.objective.residuals(), res) # compare objective._covar to the best_unweighted_errors uncertainties = np.array([param.stderr for param in self.params]) assert_almost_equal(uncertainties, self.best_unweighted_errors, 3) # the samples won't compare to the covariance matrix... # f.sample(nsteps=150, nburn=20, nthin=30, random_state=1) # uncertainties = [param.stderr for param in self.params] # assert_allclose(uncertainties, self.best_unweighted_errors, # rtol=0.15) def test_all_minimisers(self): """test minimisers against the Gaussian fit""" f = CurveFitter(self.objective) methods = [ "differential_evolution", "L-BFGS-B", "least_squares", "shgo", "dual_annealing", ] for method in methods: self.objective.setp(self.p0) opts = {} if method in ["differential_evolution", "dual_annealing"]: opts = {"seed": 1} res = f.fit(method=method, **opts) assert_allclose(res.x, self.best_weighted, rtol=0.005) # smoke test to check that we can use nlpost self.objective.setp(self.p0) logp0 = self.objective.logp() # check that probabilities are calculated correctly assert_allclose( self.objective.logpost(), self.objective.logp() + self.objective.logl(), ) assert_allclose(self.objective.nlpost(), -self.objective.logpost()) assert_allclose( self.objective.nlpost(self.p0), -self.objective.logpost(self.p0) ) # if the priors are all uniform then the only difference between # logpost and logl is a constant. A minimiser should converge on the # same answer. The following tests examine that. # The test works for dual_annealing, but not for differential # evolution, not sure why that is. self.objective.setp(self.p0) res1 = f.fit(method="dual_annealing", seed=1) assert_almost_equal(res1.x, self.best_weighted, 3) nll1 = self.objective.nll() nlpost1 = self.objective.nlpost() self.objective.setp(self.p0) res2 = f.fit(method="dual_annealing", target="nlpost", seed=1) assert_almost_equal(res2.x, self.best_weighted, 3) nll2 = self.objective.nll() nlpost2 = self.objective.nlpost() assert_allclose(nlpost1, nlpost2, atol=0.001) assert_allclose(nll1, nll2, atol=0.001) # these two priors are calculated for different parameter values # (before and after the fit) they should be the same because all # the parameters have uniform priors. assert_almost_equal(self.objective.logp(), logp0) def test_pymc3_sample(self): # test sampling with pymc3 try: import pymc3 as pm from refnx.analysis import pymc3_model except (ModuleNotFoundError, ImportError, AttributeError): # can't run test if pymc3/theano not installed return with pymc3_model(self.objective): s = pm.NUTS() pm.sample( 200, tune=100, step=s, discard_tuned_samples=True, compute_convergence_checks=False, random_seed=1, ) # don't check for accuracy because it requires a heap more # draws. # means = [np.mean(trace[f"p{i}"]) for i in range(4)] # assert_allclose(means, self.best_weighted, rtol=0.04) # errors = [np.std(trace[f"p{i}"]) for i in range(4)] # assert_allclose(errors, self.best_weighted_errors, atol=0.02) """ The Gaussian example sampling can also be performed with pymc3. The above results from emcee have been verified against pymc3 - the unweighted sampling statistics are the same. from pymc3 import (Model, Normal, HalfNormal, Flat, Uniform, find_MAP, NUTS, sample, summary, traceplot) basic_model = Model() with basic_model: # Priors for unknown model parameters bkg = Uniform('bkg', -1, 5) A0 = Uniform('A0', 0, 50) x0 = Uniform('x0', min(x), max(x)) width = Uniform('width', 0.5, 10) # Expected value of outcome mu = bkg + A0 * np.exp(-((x - x0) / width) ** 2) # Likelihood (sampling distribution) of observations # y_obs = Normal('y_obs', mu=mu, sd=e, observed=y) y_obs = Normal('y_obs', mu=mu, observed=y) with basic_model: # draw 500 posterior samples trace = sample(500) summary(trace) """ ``` #### File: refnx/dataset/__init__.py ```python from refnx.dataset.data1d import Data1D from refnx.dataset.reflectdataset import ReflectDataset, OrsoDataset from refnx._lib._testutils import PytestTester from refnx._lib import possibly_open_file as _possibly_open_file test = PytestTester(__name__) del PytestTester def load_data(f): """ Loads a dataset Parameters ---------- f: {file-like, str} f can be a string or file-like object referring to a File to load the dataset from. Returns ------- data: Data1D-like data object """ try: data = OrsoDataset(f) return data except Exception: # not an ORSO file pass try: d = ReflectDataset(f) return d except Exception: pass d = Data1D(f) return d __all__ = [s for s in dir() if not s.startswith("_")] ``` #### File: dataset/test/test_dataset.py ```python import os.path import pytest import glob from refnx.dataset import ReflectDataset, Data1D, load_data, OrsoDataset import numpy as np from numpy.testing import assert_equal class TestReflectDataset: @pytest.fixture(autouse=True) def setup_method(self, tmpdir): self.pth = os.path.dirname(os.path.abspath(__file__)) self.cwd = os.getcwd() self.tmpdir = tmpdir.strpath os.chdir(self.tmpdir) def teardown_method(self): os.chdir(self.cwd) def test_ort_load(self): d = load_data(os.path.join(self.pth, "ORSO_data.ort")) assert len(d) == 2 assert isinstance(d, OrsoDataset) d.refresh() def test_load_data(self): # test the load_data function by trying to load all the files in the # test directory fs = glob.glob("*.*") fs = [f for f in fs if not f.endswith(".py")] fs = [f for f in fs if not f.startswith("coef_")] for f in fs: load_data(f) ``` #### File: 4ydan/refnx/setup.py ```python from setuptools import setup, Extension, find_packages from setuptools.command.test import test as TestCommand import os import subprocess import platform import sys import warnings import glob import tempfile import textwrap import subprocess try: from Cython.Build import cythonize except ImportError: USE_CYTHON = False warnings.warn("Cython was not found. Slow reflectivity calculations will be used.") else: USE_CYTHON = True ############################################################################### """ Is openMP usable? """ CCODE = textwrap.dedent( """\ #include <omp.h> #include <stdio.h> int main(void) { #pragma omp parallel printf("nthreads=%d\\n", omp_get_num_threads()); return 0; } """ ) def get_openmp_flag(compiler): if hasattr(compiler, "compiler"): compiler = compiler.compiler[0] else: compiler = compiler.__class__.__name__ if sys.platform == "win32" and ("icc" in compiler or "icl" in compiler): return ["/Qopenmp"] elif sys.platform == "win32": return ["/openmp"] elif sys.platform == "darwin" and ("icc" in compiler or "icl" in compiler): return ["-openmp"] elif sys.platform == "darwin": # default for macOS, assuming Apple-clang # -fopenmp can't be passed as compile flag when using Apple-clang. # OpenMP support has to be enabled during preprocessing. # # it may be possible that someone builds with a different/updated # compiler (don't know how to check for that). # # set the following environment variables, assumes that llvm openmp # has been built and installed by the user. # # brew install libomp # export CC=clang # export CXX =clang++ # export CXXFLAGS="$CXXFLAGS -Xpreprocessor -fopenmp" # export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include" # export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include" # export LDFLAGS="$LDFLAGS -L/usr/local/opt/libomp/lib -lomp" # export DYLD_LIBRARY_PATH =/usr/local/opt/libomp/lib return [] # Default flag for GCC and clang: return ["-fopenmp"] def check_openmp_support(): """Check whether OpenMP test code can be compiled and run""" try: from setuptools._distutils.ccompiler import new_compiler from setuptools._distutils.sysconfig import customize_compiler # from numpy.distutils.ccompiler import new_compiler # from distutils.sysconfig import customize_compiler from distutils.errors import CompileError, LinkError except ImportError: return False ccompiler = new_compiler() customize_compiler(ccompiler) start_dir = os.path.abspath(".") with tempfile.TemporaryDirectory() as tmp_dir: try: os.chdir(tmp_dir) # Write test program with open("test_openmp.c", "w") as f: f.write(CCODE) os.mkdir("objects") # Compile, test program openmp_flags = get_openmp_flag(ccompiler) ccompiler.compile( ["test_openmp.c"], output_dir="objects", extra_postargs=openmp_flags ) # Link test program extra_preargs = os.getenv("LDFLAGS", None) if extra_preargs is not None: extra_preargs = extra_preargs.split(" ") else: extra_preargs = [] objects = glob.glob(os.path.join("objects", "*" + ccompiler.obj_extension)) ccompiler.link_executable( objects, "test_openmp", extra_preargs=extra_preargs, extra_postargs=openmp_flags, ) # Run test program output = subprocess.check_output("./test_openmp") output = output.decode(sys.stdout.encoding or "utf-8").splitlines() # Check test program output if "nthreads=" in output[0]: nthreads = int(output[0].strip().split("=")[1]) openmp_supported = len(output) == nthreads else: openmp_supported = False except (CompileError, LinkError, subprocess.CalledProcessError): openmp_supported = False finally: os.chdir(start_dir) return openmp_supported # do you want to parallelise things with openmp? HAS_OPENMP = check_openmp_support() # HAS_OPENMP = False ############################################################################### # versioning MAJOR = 0 MINOR = 1 MICRO = 26 ISRELEASED = False VERSION = f"{MAJOR}.{MINOR}.{MICRO}" # are we on windows, darwin, etc? platform = sys.platform packages = find_packages() try: idx = packages.index("benchmarks") if idx >= 0: packages.pop(idx) idx = packages.index("benchmarks.benchmarks") if idx >= 0: packages.pop(idx) idx = packages.index("motofit") if idx >= 0: packages.pop(idx) except ValueError: pass # Return the git revision as a string def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ["SYSTEMROOT", "PATH"]: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env["LANGUAGE"] = "C" env["LANG"] = "C" env["LC_ALL"] = "C" out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd(["git", "rev-parse", "HEAD"]) GIT_REVISION = out.strip().decode("ascii") except OSError: GIT_REVISION = "Unknown" return GIT_REVISION def get_version_info(): # Adding the git rev number needs to be done inside # write_version_py(), otherwise the import of refnx.version messes # up the build under Python 3. FULLVERSION = VERSION if os.path.exists(".git"): GIT_REVISION = git_version() elif os.path.exists("refnx/version.py"): # must be a source distribution, use existing version file # load it as a separate module to not load refnx/__init__.py import imp version = imp.load_source("refnx.version", "refnx/version.py") GIT_REVISION = version.git_revision else: GIT_REVISION = "Unknown" if not ISRELEASED: FULLVERSION += ".dev0+" + GIT_REVISION[:7] return FULLVERSION, GIT_REVISION def write_version_py(filename="refnx/version.py"): cnt = """ # THIS FILE IS GENERATED FROM REFNX SETUP.PY short_version = '%(version)s' version = '%(version)s' full_version = '%(full_version)s' git_revision = '%(git_revision)s' release = %(isrelease)s if not release: version = full_version """ FULLVERSION, GIT_REVISION = get_version_info() a = open(filename, "w") try: a.write( cnt % { "version": VERSION, "full_version": FULLVERSION, "git_revision": GIT_REVISION, "isrelease": str(ISRELEASED), } ) finally: a.close() class PyTest(TestCommand): user_options = [("pytest-args=", "a", "Arguments to pass to pytest")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = "refnx" def run_tests(self): import shlex import pytest print("Running tests with pytest") errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) # refnx setup info = { "packages": packages, "include_package_data": True, "cmdclass": {"test": PyTest}, } #################################################################### # this is where setup starts #################################################################### def setup_package(): # Rewrite the version file every time write_version_py() info["version"] = get_version_info()[0] print(info["version"]) if USE_CYTHON: # Obtain the numpy include directory. This logic works across numpy # versions. ext_modules = [] HAS_NUMPY = True try: import numpy as np except: info["setup_requires"] = ["numpy"] HAS_NUMPY = False if HAS_NUMPY: try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() _cevent = Extension( name="refnx.reduce._cevent", sources=["src/_cevent.pyx"], include_dirs=[numpy_include], language="c++", define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")], # libraries= # extra_compile_args = "...".split(), ) ext_modules.append(_cevent) _cutil = Extension( name="refnx._lib._cutil", sources=["src/_cutil.pyx"], include_dirs=[numpy_include], language="c", # libraries= # extra_compile_args = "...".split(), ) ext_modules.append(_cutil) # creflect extension module # Compile reflectivity calculator to object with C compiler # first. # It's not possible to do this in an Extension object because # the `-std=c++11` compile arg and C99 C code are incompatible # (at least on Darwin). from setuptools._distutils.ccompiler import new_compiler from setuptools._distutils.sysconfig import customize_compiler # from numpy.distutils.ccompiler import new_compiler # from distutils.sysconfig import customize_compiler ccompiler = new_compiler() customize_compiler(ccompiler) ccompiler.verbose = True extra_preargs = [ "-O2", ] if sys.platform == "win32": # use the C++ code on Windows. The C++ code uses the # std::complex<double> object for its arithmetic. f = ["src/refcalc.cpp"] else: # and C code on other machines. The C code uses C99 complex # arithmetic which is 10-20% faster. # the CMPLX macro was only standardised in C11 extra_preargs.extend( [ "-std=c11", "-funsafe-math-optimizations", "-ffinite-math-only", ] ) f = ["src/refcalc.c"] refcalc_obj = ccompiler.compile(f, extra_preargs=extra_preargs) # print(refcalc_obj) _creflect = Extension( name="refnx.reflect._creflect", sources=["src/_creflect.pyx", "src/refcaller.cpp"], include_dirs=[numpy_include], language="c++", extra_compile_args=["-std=c++11"], define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")], extra_objects=refcalc_obj, ) ext_modules.append(_creflect) # if we have openmp use pure cython version # openmp should be present on windows, linux # # However, it's not present in Apple Clang. Therefore one has to # jump through hoops to enable it. # It's probably easier to install OpenMP on macOS via homebrew. # However, it's fairly simple to build the OpenMP library, and # installing it into PREFIX=/usr/local # # https://gist.github.com/andyfaff/084005bee32aee83d6b59e843278ab3e # # Instructions for macOS: # # brew install libomp # export CC=clang # export CXX=clang++ # export CXXFLAGS="$CXXFLAGS -Xpreprocessor -fopenmp" # export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include" # export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include" # export LDFLAGS="$LDFLAGS -L/usr/local/opt/libomp/lib -lomp" # export DYLD_LIBRARY_PATH=/usr/local/opt/libomp/lib if HAS_OPENMP: # cyreflect extension module _cyreflect = Extension( name="refnx.reflect._cyreflect", sources=["src/_cyreflect.pyx"], include_dirs=[numpy_include], language="c++", extra_compile_args=[], extra_link_args=[] # libraries= # extra_compile_args = "...".split(), ) openmp_flags = get_openmp_flag(ccompiler) _cyreflect.extra_compile_args += openmp_flags _cyreflect.extra_link_args += openmp_flags ext_modules.append(_cyreflect) # specify min deployment version for macOS if platform == "darwin": for mod in ext_modules: mod.extra_compile_args.append("-mmacosx-version-min=10.9") info["ext_modules"] = cythonize(ext_modules) info["zip_safe"] = False try: setup(**info) except ValueError: # there probably wasn't a C-compiler (windows). Try removing extension # compilation print("") print("*****WARNING*****") print( "You didn't try to build the Reflectivity calculation extension." " Calculation will be slow, falling back to pure python." " To compile extension install cython. If installing in windows you" " should then install from Visual Studio command prompt (this makes" " C compiler available" ) print("*****************") print("") info.pop("cmdclass") info.pop("ext_modules") setup(**info) if __name__ == "__main__": setup_package() ```
{ "source": "4yeesnice/1stproject", "score": 4 }
#### File: 4yeesnice/1stproject/22.py ```python list = {"username": [], 'password': [] } def registration(): i = 0 while i != 2: username = input() # >8 symbols password = input() # only letters check_password = input() if len(username) >= 8 and password.isalpha() is False: if check_password == password: return username, password i = 2 else: print("Ошибка! Используйте больше чем 8 символов в логине. Придумайте пароль с цифрами и буквами!") i = 2 try: i = 0 while i <= 2: username, password = registration() list['username'].append(username) list['password'].append(password) i += 1 print(list) def log_in(list): login = input() password = input() i = 0 while i < len(list['username']): if login in list['username'][i] and password in list['password'][i]: print("SUCCESFUL") break else: print("UNSUCCESFUL") i += 1 log_in(list) except TypeError: () ```
{ "source": "4yeesnice/ClaSs-Objects", "score": 3 }
#### File: 4yeesnice/ClaSs-Objects/flora_fauna.py ```python import tsk4 class Flora: def __init__(self, name, lifespan, habitat, plant_type): self.name = name self.lifespan = lifespan self.habitat = habitat self.plant_type = plant_type self.plant_size = 0 def ad_flora(self, planet:tsk4.Planet): if planet.flora: planet.add_flora(self.name,self.plant_type) class Fauna: def __init__(self, name): self.name = name class Predator(Fauna): def __init__(self, name:str, predator_type:str, what_eats:str, lifespan:int): super().__init__(name) self.predator_type = predator_type self.what_eats = what_eats self.lifespan = lifespan def check_planet(self, planet: tsk4.Planet): if planet.flora and planet.fauna and not planet.humanity: planet.add_fauna(self.name,self.predator_type) # def check_planet(self,planet:tsk4.Planet): # if planet.fauna and not planet.humanity: # print('YES') # else: # print('NO') class Mammal(Fauna): def __init__(self, name, mammal_type, lifespan): super().__init__(name) self.mammal_type = mammal_type self.lifespan = lifespan def check_planet(self,planet:tsk4.Planet): if planet.flora and planet.fauna and not planet.humanity and 'grass' and 'wheat' in planet.flora_list["name"]: planet.add_fauna(self.name,self.mammal_type) shark = Predator('baby shark','predator','all',20) shark.check_planet(tsk4.friendly) grass = Flora("grass",20,"mammal","grass") wheat = Flora("wheat", 20, "mammal", 'wheat') wheat.ad_flora(tsk4.friendly) grass.ad_flora(tsk4.friendly) print(tsk4.friendly.flora_list) giraffe = Mammal('malwan','earth',20) giraffe.check_planet(tsk4.friendly) marti = Mammal('marti','earth',20) marti.check_planet(tsk4.friendly) print(tsk4.friendly.__dict__) ```
{ "source": "4yeesnice/CodeWars", "score": 4 }
#### File: 4yeesnice/CodeWars/Catching Car Mileage Numbers.py ```python number = "255" awesome_phrases = [1337,256] def test_2(number, awesome_phrases): if int(number) in awesome_phrases: return 2 else: for i in awesome_phrases: if abs(i-int(number))<=2: return 1 break else: pass ''' |-----------------------| |check for same number | |-----------------------| ''' def same_number(number): if len(number)==2: return 0 elif number[1:]==("0"*(len(number[1:]))): return 2 elif len(set(number))==1: return 2 else: return 0 ''' |-----------------------| |check for incrementing | |-----------------------| ''' def incrementing(number): if len(number)==2: return 0 count = 0 if number[::-1][0]=="0": number = number[:len(number)-1] while count!=len(number) and len(number)!=1 and len(number)!=2: for i in number: if count == len(number)-1 and len(number)!=1: return 2 break elif int(number[number.index(i)+1])-int(number[number.index(i)])==1 and len(number)!=1: count+=1 pass else: break break ''' |-----------------------| |check for decrementing | |-----------------------| ''' def decrementing(number): if len(number)==2: return 0 count = 0 while count!=len(number) and len(number)!=1 and len(number)!=2: for i in number: if count == len(number)-1: return 2 break elif int(number[number.index(i)])-int(number[number.index(i)+1])==1: count+=1 pass elif len(number)==1: break else: break break def palindrome(number): if len(number)==2: return 0 if len(number)!=1: temp=int(number) rev=0 while(int(number)>0): dig=int(number)%10 rev=rev*10+dig number=int(number)//10 if(temp==rev): return 2 else: return 0 else: return 0 if test_2(number, awesome_phrases)==2 or same_number(number) or palindrome(number)==2 or incrementing(number)==2 or decrementing(number)==2: print(2) elif test_2(str(int(number)+2), awesome_phrases)==1 or same_number(str(int(number)+2)) or incrementing(str(int(number)+2))==2 or decrementing(str(int(number)+2)) or palindrome(str(int(number)+2)): print(1) elif test_2(str(int(number)+1), awesome_phrases)==1 or same_number(str(int(number)+1)) or incrementing(str(int(number)+1))==2 or decrementing(str(int(number)+1)) or palindrome(str(int(number)+1)): print(1) else: if len(number)==2: print(0) else: print(0) def is_incrementing(number): return str(number) in '1234567890' def is_decrementing(number): return str(number) in '9876543210' def is_palindrome(number): return str(number) == str(number)[::-1] def is_round(number): return set(str(number)[1:]) == set('0') def is_interesting(number, awesome_phrases): tests = (is_round, is_incrementing, is_decrementing, is_palindrome, awesome_phrases.__contains__) for num, color in zip(range(number, number+3), (2, 1, 1)): if num >= 100 and any(test(num) for test in tests): return color return 0 #NOTE the code down below is the same as non-commented one. The difference is "return" instead of print and code down below is 1 function containing mupltiple functions. # def is_interesting(number, awesome_phrases): # number = str(number) # def test_2(number, awesome_phrases): # if len(number)<=2: # return 0 # if int(number) in awesome_phrases: # return 2 # else: # for i in awesome_phrases: # if abs(i-int(number))<=2: # return 1 # break # else: # pass # ''' # check for same number # ''' # def same_number(number): # if len(number)<=2: # return 0 # elif number[1:]==("0"*(len(number[1:]))): # return 2 # elif len(set(number))==1: # return 2 # else: # return 0 # ''' # |-----------------------| # |check for incrementing | # |-----------------------| # ''' # def incrementing(number): # if len(number)<=2: # return 0 # count = 0 # if number[::-1][0]=="0": # number = number[:len(number)-1] # while count!=len(number) and len(number)!=1 and len(number)!=2: # for i in number: # if count == len(number)-1 and len(number)!=1: # return 2 # break # elif int(number[number.index(i)+1])-int(number[number.index(i)])==1 and len(number)!=1: # count+=1 # pass # else: # break # break # ''' # |-----------------------| # |check for decrementing | # |-----------------------| # ''' # def decrementing(number): # if len(number)<=2: # return 0 # count = 0 # while count!=len(number) and len(number)!=1 and len(number)!=2: # for i in number: # if count == len(number)-1: # return 2 # break # elif int(number[number.index(i)])-int(number[number.index(i)+1])==1: # count+=1 # pass # elif len(number)==1: # break # else: # break # break # def palindrome(number): # if len(number)<=2: # return 0 # if len(number)!=1: # temp=int(number) # rev=0 # while(int(number)>0): # dig=int(number)%10 # rev=rev*10+dig # number=int(number)//10 # if(temp==rev): # return 2 # else: # return 0 # else: # return 0 # if test_2(number, awesome_phrases)==2 or same_number(number) or palindrome(number)==2 or incrementing(number)==2 or decrementing(number)==2: # return 2 # elif test_2(str(int(number)+2), awesome_phrases)==1 or same_number(str(int(number)+2)) or incrementing(str(int(number)+2))==2 or decrementing(str(int(number)+2)) or palindrome(str(int(number)+2)): # return 1 # elif test_2(str(int(number)+1), awesome_phrases)==1 or same_number(str(int(number)+1)) or incrementing(str(int(number)+1))==2 or decrementing(str(int(number)+1)) or palindrome(str(int(number)+1)): # return 1 # else: # if len(number)==2: # return 0 # else: # return 0 ```
{ "source": "4YouSee-Suporte/4youseewebhook", "score": 2 }
#### File: webhook/base/home_view.py ```python from django.http import HttpResponse def home(request): return HttpResponse('Página para uso exclusivo de 4YouSee') ``` #### File: base/templatetags/filter_extras.py ```python import datetime from django import template import itertools from num2words import num2words register = template.Library() @register.filter def group_by_day(list_all_objects): """ Recebe uma lista de objetos onde cada um deles possui um atributo tipo date e logo ordena eles por dia. :param: list_all_objects: Register.objects.all(): django.db.models.query.QuerySet :return: objects_day_ordered: [[objetos_do_dia_1][objetos_do_dia_2][objetos_do_dia_3]]: list of lists """ key_func = lambda x: x.date.day objects_day_ordered = [] for key, group in itertools.groupby(list_all_objects, key_func): objects_day_ordered.insert(0, list(group)) return objects_day_ordered @register.filter def num_to_word(num): return num2words(num) @register.filter def date_from_minute(m): """ Calc date from minutes and return a string with the date. :param minutes: 351702: int :return: 'Jan 25 de 2021 15:44' """ if m is not None: now = datetime.datetime.utcnow() deltadate = now - datetime.timedelta(minutes=m) return deltadate.strftime("%d %b %Y %H:%M") @register.filter def all_records(conta): qty = len(conta.categories.all()) + len(conta.players.all()) + len(conta.playlists.all()) \ + len(conta.medias.all()) + len(conta.records.all()) return qty @register.filter def player_full_name(id, conta): try: return (player := conta.players.get(player_id=id)) except Exception as e: print('Error: ', e) return f"{id}" @register.filter def media_full_name(id, conta): try: return (media := conta.medias.get(media_id=id)) except Exception as e: print('Error: ', e) return f"{id}" ```
{ "source": "4yub1k/captive-portal", "score": 3 }
#### File: portal/pages/models.py ```python from django.db import models # Create your models here. class LoginData(models.Model): username = models.CharField(max_length=100) password = models.CharField(max_length=100) def __str__(self): return self.username ``` #### File: portal/pages/views.py ```python from django.shortcuts import render from .models import LoginData # Create your views here. def login(request): return render(request,'pages/login.html') def error(request): return render(request,'pages/error.html') def success(request): if request.method=="POST": username = request.POST["username"] password = request.POST["password"] login = LoginData.objects.create(username=username, password=password) login.save() # context ={ # 'username' : username, # 'password' : password # } return render(request,'pages/success.html') return render(request,'pages/success.html') def error_404_view(request, exception): return render(request,'pages/login.html') ```
{ "source": "4yub1k/django-blog", "score": 2 }
#### File: blog/app/views.py ```python from .models import Post from django.shortcuts import render, redirect, get_object_or_404 from django.contrib import messages from django.contrib.auth.models import User from django.utils import timezone from django.contrib.auth.decorators import login_required #list-dictionary # posts = [ # { # 'author':'Ayubi', # 'title':'New post', # 'content':'New technology', # 'date':'1/1/9000' # }, # { # 'author':'Ayubi', # 'title':'New post', # 'content':'New technology', # 'date':'1/1/9000' # } # ] def home(request): posts=Post.objects.all() context = { 'posts':posts, 'title':'Home' } return render(request,'app/home.html',context) def about(request): return render(request,'app/about.html',{'title':'About'}) def post_(request, post): posts=Post.objects.filter(pk=post).exists()#check if post there if posts: #posts=get_object_or_404(post_check, pk=post) for post doesnt exist posts=Post.objects.get(pk=post) context = { 'posts':posts, 'title':'Post', } return render(request,'users/post_.html',context) else: return redirect('home') @login_required def add(request): if request.method == "POST": title=request.POST['title'] content=request.POST['content'] #post_check=Post.objects.all().filter(author_id=author_id) post_add=Post(author_id=request.user.id,title=title,content=content) post_add.save() messages.success(request,'Post Added !') return redirect('home') return render(request, 'users/addpost.html',{'title':'Post','date':timezone.now}) ```
{ "source": "4yub1k/job-portal-django", "score": 2 }
#### File: job-portal-django/apply/models.py ```python from django.db import models from listings.models import PostJob # Create your models here. class ApplicantForm(models.Model): job=models.CharField(max_length=100) name = models.CharField(max_length=50) email = models.EmailField(max_length=200) mobile = models.CharField(max_length=15) education = models.CharField(max_length=50) exp = models.CharField(max_length=50) resume = models.FileField(upload_to='resume/%Y/%m/%d/') def __str__(self): return self.name class Review(models.Model): name = models.ForeignKey(ApplicantForm, on_delete=models.CASCADE, null=False) reviewd = models.BooleanField(default=False) ratings =models.CharField(max_length=2,default=0) remarks = models.TextField(blank=True) def __str__(self): return self.name.name ``` #### File: job-portal-django/apply/signals.py ```python from django.db.models.signals import post_save from .models import Review from django.dispatch import receiver from .models import ApplicantForm @receiver(post_save, sender=ApplicantForm) def create_review(sender, instance, created, **kwargs): if created: Review.objects.create(name=instance) ```
{ "source": "4yub1k/Python-Wifi-Password", "score": 3 }
#### File: 4yub1k/Python-Wifi-Password/wifi-gui.py ```python from tkinter import * #import all from tkinter import subprocess window=Tk()#window.geometry("400x200")#command mai function k saat () nahi dalni window.title("Wifi")#title class wifi: def user(self): x_1=subprocess.Popen("netsh wlan show profiles",shell=True,stdout=subprocess.PIPE) #run IDE as admin stdout=x_1.communicate()[0] return stdout def password_1(self,name): r='1' for pswd in name: #remove spaces from both sides [pswd[1].strip()] CREATE_NO_WINDOW= 0x08000000 x_1=subprocess.Popen(r'netsh wlan show profiles name="%s" key=clear' %pswd[1].strip(),shell=True,stdout=subprocess.PIPE) #run IDE as admin #-----> Important NOTe:if there are spaces between the values then send raw strings FORMAT[r'"<type>"' %<variable>] #----->Make sure remove unwanted space in names #communicate() method is used to get the output from pipe stdout=x_1.communicate()[0] stdout=stdout.decode().splitlines() U="u"+r #use can use loop through list also for line in stdout: if "Key Content" in line: #print("Username : %s\nPassword : %s " % (pswd[1],line.split(":")[1])) self.labels(U,r,pswd[1],line) r=str(int(r)+1) U1=Label(window,text="@ayuboid - <EMAIL>") U1.grid(row=int(r),columnspan=2) def labels(self,U,r,pswd,line): U=Label(window,text=pswd) U.grid(row=int(r),column=0) U=Text(window,height=1,width=20) U.grid(row=int(r),column=1) U.insert(END,line.split(":")[1]) class wifi_1(wifi): def username(self): x_1=self.user() name_list=[] #Decode (binary to utf8) and then split it by lines x_1=x_1.decode().splitlines() #Extract the string from list for l in x_1: #Check For the string in given line if "All User Profile" in l: #Split the current line from : e-g test : OK -----> ['test','OK'] and append to list name_list.append(l.split(":")) return name_list def password(self): name_list=self.username() name=self.password_1(name_list) b=wifi_1() #Defaults U1=Label(window,text="< Wifi >") U1.grid(row=0,column=0) U1=Label(window,text="< Password >") U1.grid(row=0,column=1) #print(b.username()) GET USERNAMES #You can also use os.system b1=Button(window ,text="Show", command=b.password,borderwidth=4,foreground="Green") b1.grid(row=0,column=3) window.mainloop() ``` #### File: 4yub1k/Python-Wifi-Password/wifi.py ```python import subprocess class t: def user(self): x_1=subprocess.Popen("netsh wlan show profiles",stdout=subprocess.PIPE) #run IDE as admin stdout=x_1.communicate()[0] return stdout def password_1(self,name): for pswd in name: #remove spaces from both sides [pswd[1].strip()] x_1=subprocess.Popen(r'netsh wlan show profiles name="%s" key=clear' %pswd[1].strip(),stdout=subprocess.PIPE) #run IDE as admin #-----> Important NOTe:if there are spaces between the values then send raw strings FORMAT[r'"<type>"' %<variable>] #----->Make sure remove unwanted space in names #communicate() method is used to get the output from pipe stdout=x_1.communicate()[0] stdout=stdout.decode().splitlines() for line in stdout: if "Key Content" in line: print("Username : %s\nPassword : %s " % (pswd[1],line.split(":")[1])) class t1(t): def username(self): x_1=self.user() name_list=[] #Decode (binary to utf8) and then split it by lines x_1=x_1.decode().splitlines() #Extract the string from list for l in x_1: #Check For the string in given line if "All User Profile" in l: #Split the current line from : e-g test : OK -----> ['test','OK'] and append to list name_list.append(l.split(":")) return name_list def password(self): name_list=self.username() name=self.password_1(name_list) b=t1() b.password() #print(b.username()) GET USERNAMES #You can also use os.system ```
{ "source": "4yub1k/real-estate-project", "score": 2 }
#### File: real-estate-project/listings/views.py ```python from django.shortcuts import render from listings.models import Listing from listings.choices import bedroom_number,price_range,state_name from django.core.paginator import EmptyPage, PageNotAnInteger, Paginator def property_id(request, property_id): listings=Listing.objects.get(pk=property_id) context = { 'listing':listings, } return render(request,'listings/listing.html',context) def property_search(request): search=Listing.objects.order_by("-list_date") if 'keyword' in request.GET: keyword = request.GET.get('keyword') if keyword: search=search.filter(description__icontains=keyword) if 'city' in request.GET: city = request.GET.get('city') if city: search=search.filter(city__iexact=city) if 'state' in request.GET: state = request.GET.get('state') if state: search=search.filter(state__iexact=state) if 'bedrooms' in request.GET: bedrooms = request.GET.get('bedrooms') if bedrooms: search=search.filter(bedrooms=bedrooms) if 'price' in request.GET: price = request.GET.get('price') if price: search=search.filter(price__lte=price) """Paginator""" paginator=Paginator(search,3) page_number = request.GET.get('page') page_property = paginator.get_page(page_number) context = { 'listings':page_property, 'bedroom_number':bedroom_number, 'price_range':price_range, 'state_name':state_name } return render(request,'listings/listings.html',context) def properties(request): page_property=Listing.objects.order_by("-list_date") paginator=Paginator(page_property,3) #show 3 only page_number = request.GET.get('page') page_property = paginator.get_page(page_number) context = { 'listings':page_property, 'bedroom_number':bedroom_number, 'price_range':price_range, 'state_name':state_name } return render(request,'listings/listings.html',context) ```
{ "source": "5002coyrrah/DiscordBot", "score": 3 }
#### File: 5002coyrrah/DiscordBot/train.py ```python import keras import random import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.backend import reshape from keras.utils.np_utils import to_categorical def initBoard(): board = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ] return board def movesToBoard(moves): board = initBoard() for move in moves: player = move[0] coords = move[1] board[coords[0]][coords[1]] = player return board def getMoves(board): moves = [] for i in range(len(board)): for j in range(len(board[i])): if board[i][j] == 0: moves.append((i, j)) return moves def getModel(): numCells = 9 outcomes = 3 model = Sequential() model.add(Dense(200, activation='relu', input_shape=(9, ))) model.add(Dropout(0.2)) model.add(Dense(125, activation='relu')) model.add(Dense(75, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(25, activation='relu')) model.add(Dense(outcomes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) return model def getWinner(board): candidate = 0 won = 0 # Check rows for i in range(len(board)): candidate = 0 for j in range(len(board[i])): # Make sure there are no gaps if board[i][j] == 0: break # Identify the front-runner if candidate == 0: candidate = board[i][j] # Determine whether the front-runner has all the slots if candidate != board[i][j]: break elif j == len(board[i]) - 1: won = candidate if won > 0: return won # Check columns for j in range(len(board[0])): candidate = 0 for i in range(len(board)): # Make sure there are no gaps if board[i][j] == 0: break # Identify the front-runner if candidate == 0: candidate = board[i][j] # Determine whether the front-runner has all the slots if candidate != board[i][j]: break elif i == len(board) - 1: won = candidate if won > 0: return won # Check diagonals candidate = 0 for i in range(len(board)): if board[i][i] == 0: break if candidate == 0: candidate = board[i][i] if candidate != board[i][i]: break elif i == len(board) - 1: won = candidate if won > 0: return won candidate = 0 for i in range(len(board)): if board[2 - i][2 - i] == 0: break if candidate == 0: candidate = board[2 - i][2 - i] if candidate != board[2 - i][2 - i]: break elif i == len(board) - 1: won = candidate if won > 0: return won # Still no winner? if (len(getMoves(board)) == 0): # It's a draw return 0 else: # Still more moves to make return -1 def gamesToWinLossData(games): X = [] y = [] for game in games: winner = getWinner(movesToBoard(game)) for move in range(len(game)): X.append(movesToBoard(game[:(move + 1)])) y.append(winner) X = np.array(X).reshape((-1, 9)) y = to_categorical(y) # Return an appropriate train/test split trainNum = int(len(X) * 0.8) return (X[:trainNum], X[trainNum:], y[:trainNum], y[trainNum:]) def simulateGame(p1=None, p2=None, rnd=0): history = [] board = initBoard() playerToMove = 1 while getWinner(board) == -1: # Chose a move (random or use a player model if provided) move = None if playerToMove == 1 and p1 != None: move = bestMove(board, p1, playerToMove, rnd) elif playerToMove == 2 and p2 != None: move = bestMove(board, p2, playerToMove, rnd) else: moves = getMoves(board) move = moves[random.randint(0, len(moves) - 1)] # Make the move board[move[0]][move[1]] = playerToMove # Add the move to the history history.append((playerToMove, move)) # Switch the active player playerToMove = 1 if playerToMove == 2 else 2 print("Simuating Games Please Stand By.....") return history print("Simulating Games .....") games = [simulateGame() for _ in range(10000)] print("Finished Simulating Games") print("Begin Modle Compile") print("Compiling Model .....") model = getModel() print("Model Compiled Successfully") X_train, X_test, y_train, y_test = gamesToWinLossData(games) print("Beginning Training") history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=100) print("Training Finished") ```
{ "source": "500errorsite/UserBot", "score": 2 }
#### File: userbot/modules/helper.py ```python from userbot import CMD_HANDLER as cmd from userbot import CMD_HELP from userbot.utils import edit_or_reply, man_cmd @man_cmd(pattern="ihelp$") async def usit(event): me = await event.client.get_me() await edit_or_reply( event, f"**Hai {me.first_name} Kalo Anda Tidak Tau Perintah Untuk Memerintah Ku Ketik** `.help` Atau Bisa Minta Bantuan Ke:\n" f"✣ **Group Support :** [Sharing Userbot](t.me/sharinguserbot)\n" f"✣ **Channel Man :** [Lunatic0de](t.me/Lunatic0de)\n" f"✣ **Owner Repo :** [Risman](t.me/mrismanaziz)\n" f"✣ **Repo :** [SandBot](https://github.com/500errorsite/SandBot)\n", ) @man_cmd(pattern="listvar$") async def var(event): await edit_or_reply( event, "**Daftar Lengkap Vars Dari SandBot:** [KLIK DISINI](https://telegra.ph/List-Variabel-Heroku-untuk-SandBot-09-22)", ) CMD_HELP.update( { "helper": f"**Plugin : **`helper`\ \n\n • **Syntax :** `{cmd}ihelp`\ \n • **Function : **Bantuan Untuk SandBot.\ \n\n • **Syntax :** `{cmd}listvar`\ \n • **Function : **Melihat Daftar Vars.\ \n\n • **Syntax :** `{cmd}repo`\ \n • **Function : **Melihat Repository SandBot.\ \n\n • **Syntax :** `{cmd}string`\ \n • **Function : **Link untuk mengambil String SandBot.\ " } ) ```
{ "source": "500-Error/weixin-SDK", "score": 3 }
#### File: weixin-SDK/tests/test_config.py ```python from weixin.config import * def test_config(): config = Config(a=0, b=1) assert config.a == 0 assert config.b == 1 config = Config({'a': 0, 'b': 1}) assert config.a == 0 assert config.b == 1 class ConfigObject: A = 0 B = 1 a = 9 _p = 999 config = Config() config.from_object(ConfigObject) assert config.A == 0 assert config.B == 1 assert config.a == 9 assert config._p == 999 config = Config() config.from_object(ConfigObject, lower_keys=True) # 大写小写的A同时存在,配置被覆盖不做检查 assert config.b == 1 assert config._p == 999 config = Config() config.from_json('{"a": 0, "b": 1}') assert config.a == 0 assert config.b == 1 ``` #### File: weixin-SDK/tests/test_message_parse.py ```python from weixin.parse import * def test_text_msg(): print('test_text_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[text]]></MsgType> <Content><![CDATA[你好]]></Content> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'text' assert msg.Content == '你好' def test_image_msg(): print('test_image_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[image]]></MsgType> <PicUrl><![CDATA[url]]></PicUrl> <MediaId><![CDATA[media_id]]></MediaId> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'image' assert msg.PicUrl == 'url' assert msg.MediaId == 'media_id' def test_voice_msg(): print('test_voice_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[voice]]></MsgType> <MediaId><![CDATA[media_id]]></MediaId> <Format><![CDATA[Format]]></Format> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'voice' assert msg.MediaId == 'media_id' assert msg.Format == 'Format' def test_video_msg(): print('test_video_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[video]]></MsgType> <MediaId><![CDATA[media_id]]></MediaId> <ThumbMediaId><![CDATA[thumb_media_id]]></ThumbMediaId> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'video' assert msg.MediaId == 'media_id' assert msg.ThumbMediaId == 'thumb_media_id' def test_shortvideo_msg(): print('test_shortvideo_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[shortvideo]]></MsgType> <MediaId><![CDATA[media_id]]></MediaId> <ThumbMediaId><![CDATA[thumb_media_id]]></ThumbMediaId> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'shortvideo' assert msg.MediaId == 'media_id' assert msg.ThumbMediaId == 'thumb_media_id' def test_location_msg(): print('test_location_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[location]]></MsgType> <Location_X>23.134521</Location_X> <Location_Y>113.358803</Location_Y> <Scale>20</Scale> <Label><![CDATA[位置信息]]></Label> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'location' assert msg.Location_X == '23.134521' assert msg.Location_Y == '113.358803' assert msg.Scale == '20' assert msg.Label == '位置信息' def test_link_msg(): print('test_link_msg') xml = """<xml> <ToUserName><![CDATA[toUser]]></ToUserName> <FromUserName><![CDATA[fromUser]]></FromUserName> <CreateTime>123456789</CreateTime> <MsgType><![CDATA[link]]></MsgType> <Title><![CDATA[公众平台官网链接]]></Title> <Description><![CDATA[公众平台官网链接]]></Description> <Url><![CDATA[url]]></Url> <MsgId>123456789</MsgId> </xml> """ msg = WeixinMsg(xml) assert msg.ToUserName == 'toUser' assert msg.FromUserName == 'fromUser' assert msg.CreateTime == '123456789' assert msg.MsgId == '123456789' assert msg.MsgType == 'link' assert msg.Title == '公众平台官网链接' assert msg.Description == '公众平台官网链接' assert msg.Url == 'url' if __name__ == "__main__": test_text_msg() test_image_msg() test_voice_msg() test_video_msg() test_shortvideo_msg() test_location_msg() test_link_msg() ``` #### File: weixin-SDK/weixin/reply.py ```python from .utils import get_timestamp, join_sequence def cdata_escape(escape_s): if escape_s is not None: escape_s = escape_s.replace("]]>", ']]&gt;') escape_s = escape_s.replace("</xml>", '</xml&gt;') return escape_s def _make_node(k, v): if v : return "<{node}><![CDATA[{value}]]></{node}>".format(node=k, value=v) # 空字符串 return "" class BaseWeixinReply(dict): def __init__(self): self._marked = False def postmark(self, from_msg, created=None): self['ToUserName'] = from_msg.FromUserName self['FromUserName'] = from_msg.ToUserName self['CreateTime'] = created or int(get_timestamp()) self._marked = True def _generate(self): raise NotImplementedError @property def xml(self): # generate xml return self._generate() class TextReply(BaseWeixinReply): def __init__(self, content): super(TextReply, self).__init__() self['Content'] = cdata_escape(content) def _generate(self): template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[text]]></MsgType>" \ "<Content><![CDATA[{Content}]]></Content>" \ "</xml>" return template.format(**self) class ImageReply(BaseWeixinReply): def __init__(self, media_id): super(ImageReply, self).__init__() self['MediaId'] = media_id def _generate(self): template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[image]]></MsgType>" \ "<Image>" \ "<MediaId><![CDATA[{MediaId}]]></MediaId>" \ "</Image>" \ "</xml>" return template.format(**self) class VoiceReply(BaseWeixinReply): def __init__(self, media_id): super(VoiceReply, self).__init__() self['MediaId'] = media_id def _generate(self): template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[voice]]></MsgType>" \ "<Voice>" \ "<MediaId><![CDATA[{MediaId}]]></MediaId>" \ "</Voice>" \ "</xml>" return template.format(**self) class VideoReply(BaseWeixinReply): def __init__(self, media_id, title=None, description=None): super(VideoReply, self).__init__() title = cdata_escape(title) description = cdata_escape(description) self['MediaId'] = media_id self['TitleNode'] = _make_node("Title", title) self['DescriptionNode'] = _make_node("Description", description) def _generate(self): template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[video]]></MsgType>" \ "<Video>" \ "<MediaId><![CDATA[{MediaId}]]></MediaId>" \ "{TitleNode}{DescriptionNode}" \ "</Video>" \ "</xml>" return template.format(**self) class MusicReply(BaseWeixinReply): def __init__(self, thumb_media_id, url=None, hq_url=None, title=None, description=None): super(MusicReply, self).__init__() title = cdata_escape(title) description = cdata_escape(description) self['ThumbMediaId'] = thumb_media_id self['TitleNode'] = _make_node ("Title", title) self['DescriptionNode'] = _make_node ("Description", description) self['MusicUrlNode'] = _make_node ("MusicUrl", url) self['HQMusicUrlNode'] = _make_node ("HQMusicUrl", hq_url) def _generate(self): template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[music]]></MsgType>" \ "<Music>" \ "{TitleNode}{DescriptionNode}{MusicUrlNode}{HQMusicUrlNode}" \ "<ThumbMediaId><![CDATA[{ThumbMediaId}]]></ThumbMediaId>" \ "</Music>" \ "</xml>" return template.format(**self) class ArticleReply(BaseWeixinReply): def __init__(self, articles=None): super(ArticleReply, self).__init__() self.articles = articles or [] def _generate(self): def make_item(articles): item = \ "<item>" \ "<Title><![CDATA[{Title}]]></Title>" \ "<Description><![CDATA[{Description}]]></Description>" \ "<PicUrl><![CDATA[{PicUrl}]]></PicUrl>" \ "<Url><![CDATA[{Url}]]></Url>" \ "</item>" def set_default(article): article.setdefault("Description", "") article.setdefault("PicUrl", "") article.setdefault("Url", "") a_title = article['Title'] a_desc = article['Description'] article['Title'] = cdata_escape(a_title) article['Description'] = cdata_escape(a_desc) return article return join_sequence( item.format(**set_default(ar)) for ar in articles ) self['Articles'] = make_item(self.articles) self['Count'] = len(self.articles) template = \ "<xml>" \ "<ToUserName><![CDATA[{ToUserName}]]></ToUserName>" \ "<FromUserName><![CDATA[{FromUserName}]]></FromUserName>" \ "<CreateTime>{CreateTime}</CreateTime>" \ "<MsgType><![CDATA[news]]></MsgType>" \ "<ArticleCount>{Count}</ArticleCount>" \ "<Articles>{Articles}</Articles>" \ "</xml>" return template.format(**self) def add_article(self, title, description=None, url=None, image_url=None): ar = dict() ar['Title'] = title if url: ar['Url'] = url if image_url: ar['PicUrl'] = image_url if description: ar['Description'] = description self.articles.append(ar) class EncryptReply(BaseWeixinReply): def __init__(self, enctext, nonce, timestamp, signature): super(EncryptReply, self).__init__() self['Encrypt'] = enctext self['Nonce'] = nonce self['TimeStamp'] = timestamp self['MsgSignature'] = signature def postmark(self, from_msg): self._marked = True def _generate(self): template = \ "<xml>"\ "<Encrypt><![CDATA[{Encrypt}]]></Encrypt>" \ "<MsgSignature><![CDATA[{MsgSignature}]]></MsgSignature>" \ "<TimeStamp>{TimeStamp}</TimeStamp>" \ "<Nonce><![CDATA[{Nonce}]]></Nonce>" \ "</xml>" return template.format(**self) class CustomMsgReply(object): @staticmethod def text(openid, content): return { "touser": openid, "msgtype": "text", "text": { "content": content } } @staticmethod def image(openid, media_id): return { "touser": openid, "msgtype": "image", "image": { "media_id": media_id } } @staticmethod def voice(openid, media_id): return { "touser": openid, "msgtype": "voice", "voice": { "media_id": media_id } } @staticmethod def video(openid, media_id, thumb_media_id=None, title=None, desc=None): return { "touser": openid, "msgtype": "video", "video": { "media_id": media_id, "thumb_media_id": thumb_media_id, "title": title, "description": desc } } @staticmethod def music(openid, url, hq_url, thumb_media_id, title=None, desc=None): return { "touser": openid, "msgtype": "music", "music": { "title": title, "description": desc, "musicurl": url, "hqmusicurl": hq_url, "thumb_media_id": thumb_media_id } } @staticmethod def article(openid, articles): return { "touser": openid, "msgtype": "news", "news": { "articles": articles } } Text = TextReply Image = ImageReply Voice = VoiceReply Video = VideoReply Music = MusicReply Article = ArticleReply Encrypt = EncryptReply CustomMsg = CustomMsgReply ``` #### File: weixin-SDK/weixin/request.py ```python from xml.parsers.expat import ExpatError from .utils import AttrNone from .session import Session from .parse import WeixinMsg from .reply import EncryptReply, BaseWeixinReply class WeixinRequest(object): def __init__(self, config, xmldoc): self.config = config self._raw_xml_ = xmldoc self._response_xml_ = None @property def session(self): if not hasattr(self, '_weixin_session_'): self._weixin_session_ = Session(self) return self._weixin_session_ @property def message(self): if not hasattr(self, '_weixin_msg_'): self._weixin_msg_ = AttrNone() if self._raw_xml_: try: self._weixin_msg_ = WeixinMsg(self._raw_xml_) encrypted_msg = self._weixin_msg_.Encrypt cryptor = self.config.cryptor if encrypted_msg and cryptor: # 解密被加密的消息Encrypt body = cryptor.decrypt(encrypted_msg) del self._weixin_msg_ self._weixin_msg_ = WeixinMsg(body) elif encrypted_msg or cryptor: raise Exception( "message {0}encrypted but enc_aeskey is {1}set.".format( "" if encrypted_msg else "not ", "" if cryptor else "not ", ) ) except (ExpatError, KeyError): # 非正常xml文本或者xml格式不符合要求 raise return self._weixin_msg_ def _build_msg(self, msg): if isinstance(msg, BaseWeixinReply): if not msg._marked: msg.postmark(self.message) if self.config.cryptor: # 设置了消息加解密, 加密明文消息 kw = self.config.cryptor.encrypt(msg.xml) msg = EncryptReply(**kw) return msg def render(self, template, *args, **kwargs): msg = template(*args, **kwargs) self._response_xml_ = self._build_msg(msg).xml return def response(self, msg): self._response_xml_ = self._build_msg(msg).xml def get_response_xml(self, default=None): return self._response_xml_ or default ```
{ "source": "500kg/learn2branch", "score": 2 }
#### File: 500kg/learn2branch/03_train_competitor.py ```python import pickle import os import argparse import numpy as np import utilities import pathlib from utilities import log, load_flat_samples def load_samples(filenames, feat_type, label_type, augment, qbnorm, size_limit, logfile=None): x, y, ncands = [], [], [] total_ncands = 0 for i, filename in enumerate(filenames): cand_x, cand_y, best = load_flat_samples(filename, feat_type, label_type, augment, qbnorm) x.append(cand_x) y.append(cand_y) ncands.append(cand_x.shape[0]) total_ncands += ncands[-1] if (i + 1) % 100 == 0: log(f" {i+1}/{len(filenames)} files processed ({total_ncands} candidate variables)", logfile) if total_ncands >= size_limit: log(f" dataset size limit reached ({size_limit} candidate variables)", logfile) break x = np.concatenate(x) y = np.concatenate(y) ncands = np.asarray(ncands) if total_ncands > size_limit: x = x[:size_limit] y = y[:size_limit] ncands[-1] -= total_ncands - size_limit return x, y, ncands if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'problem', help='MILP instance type to process.', choices=['setcover', 'cauctions', 'facilities', 'indset'], ) parser.add_argument( '-m', '--model', help='Model to be trained.', type=str, choices=['svmrank', 'extratrees', 'lambdamart'], ) parser.add_argument( '-s', '--seed', help='Random generator seed.', type=utilities.valid_seed, default=0, ) args = parser.parse_args() feats_type = 'nbr_maxminmean' problem_folders = { 'setcover': 'setcover/500r_1000c_0.05d', 'cauctions': 'cauctions/100_500', 'facilities': 'facilities/100_100_5', 'indset': 'indset/500_4', } problem_folder = problem_folders[args.problem] if args.model == 'extratrees': train_max_size = 250000 valid_max_size = 100000 feat_type = 'gcnn_agg' feat_qbnorm = False feat_augment = False label_type = 'scores' elif args.model == 'lambdamart': train_max_size = 250000 valid_max_size = 100000 feat_type = 'khalil' feat_qbnorm = True feat_augment = False label_type = 'bipartite_ranks' elif args.model == 'svmrank': train_max_size = 250000 valid_max_size = 100000 feat_type = 'khalil' feat_qbnorm = True feat_augment = True label_type = 'bipartite_ranks' rng = np.random.RandomState(args.seed) running_dir = f"trained_models/{args.problem}/{args.model}_{feat_type}/{args.seed}" os.makedirs(running_dir) logfile = f"{running_dir}/log.txt" log(f"Logfile for {args.model} model on {args.problem} with seed {args.seed}", logfile) # Data loading train_files = list(pathlib.Path(f'data/samples/{problem_folder}/train').glob('sample_*.pkl')) valid_files = list(pathlib.Path(f'data/samples/{problem_folder}/valid').glob('sample_*.pkl')) log(f"{len(train_files)} training files", logfile) log(f"{len(valid_files)} validation files", logfile) log("Loading training samples", logfile) train_x, train_y, train_ncands = load_samples( rng.permutation(train_files), feat_type, label_type, feat_augment, feat_qbnorm, train_max_size, logfile) log(f" {train_x.shape[0]} training samples", logfile) log("Loading validation samples", logfile) valid_x, valid_y, valid_ncands = load_samples( valid_files, feat_type, label_type, feat_augment, feat_qbnorm, valid_max_size, logfile) log(f" {valid_x.shape[0]} validation samples", logfile) # Data normalization log("Normalizing datasets", logfile) x_shift = train_x.mean(axis=0) x_scale = train_x.std(axis=0) x_scale[x_scale == 0] = 1 valid_x = (valid_x - x_shift) / x_scale train_x = (train_x - x_shift) / x_scale # Saving feature parameters with open(f"{running_dir}/feat_specs.pkl", "wb") as file: pickle.dump({ 'type': feat_type, 'augment': feat_augment, 'qbnorm': feat_qbnorm, }, file) # save normalization parameters with open(f"{running_dir}/normalization.pkl", "wb") as f: pickle.dump((x_shift, x_scale), f) log("Starting training", logfile) if args.model == 'extratrees': from sklearn.ensemble import ExtraTreesRegressor # Training model = ExtraTreesRegressor( n_estimators=100, random_state=rng,) model.verbose = True model.fit(train_x, train_y) model.verbose = False # Saving model with open(f"{running_dir}/model.pkl", "wb") as file: pickle.dump(model, file) # Testing loss = np.mean((model.predict(valid_x) - valid_y) ** 2) log(f"Validation RMSE: {np.sqrt(loss):.2f}", logfile) elif args.model == 'lambdamart': import pyltr train_qids = np.repeat(np.arange(len(train_ncands)), train_ncands) valid_qids = np.repeat(np.arange(len(valid_ncands)), valid_ncands) # Training model = pyltr.models.LambdaMART(verbose=1, random_state=rng, n_estimators=500) model.fit(train_x, train_y, train_qids, monitor=pyltr.models.monitors.ValidationMonitor( valid_x, valid_y, valid_qids, metric=model.metric)) # Saving model with open(f"{running_dir}/model.pkl", "wb") as file: pickle.dump(model, file) # Testing loss = model.metric.calc_mean(valid_qids, valid_y, model.predict(valid_x)) log(f"Validation log-NDCG: {np.log(loss)}", logfile) elif args.model == 'svmrank': import svmrank train_qids = np.repeat(np.arange(len(train_ncands)), train_ncands) valid_qids = np.repeat(np.arange(len(valid_ncands)), valid_ncands) # Training (includes hyper-parameter tuning) best_loss = np.inf best_model = None for c in (1e-3, 1e-2, 1e-1, 1e0): log(f"C: {c}", logfile) model = svmrank.Model({ '-c': c * len(train_ncands), # c_light = c_rank / n '-v': 1, '-y': 0, '-l': 2, }) model.fit(train_x, train_y, train_qids) loss = model.loss(train_y, model(train_x, train_qids), train_qids) log(f" training loss: {loss}", logfile) loss = model.loss(valid_y, model(valid_x, valid_qids), valid_qids) log(f" validation loss: {loss}", logfile) if loss < best_loss: best_model = model best_loss = loss best_c = c # save model model.write(f"{running_dir}/model.txt") log(f"Best model with C={best_c}, validation loss: {best_loss}", logfile) ```
{ "source": "50183816/lineregression", "score": 3 }
#### File: lineregression/Ensemble/Adaboosting_homework.py ```python import numpy as np from sklearn.tree import DecisionTreeClassifier def getsplit(x,y,d): #问题:固定了划分,但是实际上是要看具体值去确定正负例在左右的分布 min_error_rate = 1 min_error_rate_index = 0 thresholdvalue = x[0] predict = [] for i in np.arange(len(x)-1): pos_split = list(map(lambda yv: 1 if yv<0 else 0, y[0:i+1])) neg_split = list(map(lambda yv: 1 if yv>0 else 0, y[i+1:])) combined = np.concatenate((pos_split,neg_split)) error_rate = np.sum(combined * d) if(error_rate < min_error_rate): min_error_rate = error_rate min_error_rate_index = i return min_error_rate,min_error_rate_index if __name__ == '__main__': #1. 准备样本数据 X= np.array([0,1,2,3,4,5,6,7,8,9]).reshape(-1,1) Y = np.array([1,1,1,-1,-1,-1,1,1,1,-1]).reshape(-1,1) #2. 设置初始样本权重D d0 = np.ones(len(X)) d0 = d0 / len(d0)#初始权重,设为均值 #3 训练第一个决策树 # tree = DecisionTreeClassifier() # tree.fit(X,Y,sample_weight=d0) # predicted = tree.predict(X) # print(predicted) #3 划分样本 for r in np.arange(5): _,splitindex=getsplit(X,Y,d0) print('第{}轮划分的属性为{}'.format(r,splitindex)) # print(X[:,0]<=splitindex) predict1 = np.array(Y.ravel()) #[1 if ] np.array([1,1,1,-1,-1,-1,-1,-1,-1,-1,-1]) predict1[X[:,0]<=splitindex] = 1 predict1[X[:,0]>splitindex] = -1 # print(predict1) pred_true_values = zip(Y.ravel(),predict1,d0) #4.计算新的样本权重D1,epsilon 和alpha值 sum = 0 for y,p,d in pred_true_values: sum += (0 if y==p else 1)*d # print((y,p,d)) # print('epsilon_1 = {}'.format(sum)) alpha1 = 0.5 * np.log1p((1-sum)/sum) print('alpha{} = {}'.format(r+1,alpha1)) sum = 0 d1=[] pred_true_values = zip(Y.ravel(),predict1,d0) for y,p,d in pred_true_values: # print((y,p,d)) d1.append(d*np.exp(-1*y*p*alpha1)) sum += d*np.exp(-1*y*p*alpha1) # print(d1) # print(sum) d0 = np.array(d1)/sum # print(d0) # min_erro_rate,min_erro_index = getsplit(X,Y,d1) # print((min_erro_rate,min_erro_index)) #5. 训练下一个模型 ``` #### File: lineregression/LinearRegression/linearRegression_Resolver.py ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt #线性回归,解析式求解 class DirectResolverLR(): def __init__(self): self.coef_=[] self.intercept_=[] #训练模型基于公式: θ = (X.T*X + λI)*X.T*Y def fit(self,x,y,lbd): m,_ = np.shape(x) intercept = np.ones((m,1)) x = np.concatenate((x,intercept),axis=1) _,n = np.shape(x) addition = np.identity(n) * lbd tmp = np.linalg.inv((np.dot(x.T,x)+addition)) theta = np.dot(np.dot(tmp,x.T),y) self.coef_ = theta return theta def predict(self,x): m,_ = np.shape(x) intercept = np.ones((m, 1)) x = np.concatenate((x, intercept), axis=1) y = np.dot(x,self.coef_) return y def score(self,x,y): predy =self.predict(x) result = r2_score(y,predy) return result if __name__ == '__main__': # 1. Load data data = pd.read_csv('../datas/household_power_consumption_1000.txt', sep=';') # data.info() # print(data.head()) # 2 Get property attribute and target antribute x, y x = data.iloc[:, 2:4].astype(np.float) y = data.iloc[:, 5].astype(np.float) # scalar = StandardScaler() # x = scalar.fit_transform(x, y) train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.2, random_state=2) lr = DirectResolverLR() theta = lr.fit(train_x,train_y,0) print(theta) print('训练集score=%.2f'%lr.score(train_x,train_y)) print('测试集score=%.2f' % lr.score(test_x, test_y)) t = np.arange(len(test_x)) plt.figure(facecolor='w') plt.plot(t, test_y, 'r-', label=u'真实值') plt.plot(t, lr.predict(test_x), 'b-', label=u'预测值') plt.legend(loc='lower right') plt.show() ``` #### File: lineregression/Projects/random_number_generator.py ```python import numpy as np import pandas as pd # np.random.seed(22) def random1(p): return 0 if np.random.random() <=p else 1 def random2(p): v = random1(p) if p == 0.5: return v if p > 0.5: if v == 1: return v v=random1(0.5/p) return v else: if v == 0: return v v = random1((0.5-p)/(1-p)) return v def random3(n,p): if n %2 == 0: s = int(np.ceil(np.log2(n))) v = ''.join(map(lambda x:str(int(x)),[random2(p) for i in np.arange(s)])) print(v) v = int(v,2)+1 else: n = n * 2 v = random3(n,p) v = np.ceil(v / 2) if v > n: v = random3(n,p) return v if __name__ == '__main__': t = [random1(0.7) for i in np.arange(100000)] print(sum(t)) print(sum([random2(0.3) for i in np.arange(100000)])) random3(10, 0.3) # t = [random3(10, 0.3) for i in np.arange(10000)] # pdata = pd.DataFrame(t,columns=['number']) # print(pdata) # print(pdata.groupby(by=['number'])['number'].count()) ```
{ "source": "501Good/lexicon-enhanced-lemmatization", "score": 3 }
#### File: lexenlem/lemmatizers/apertium.py ```python import apertium from collections import OrderedDict def lemmatize(word, lang): analysis = apertium.analyze(lang, word) if analysis: lemmas = list(OrderedDict.fromkeys([x.split('<')[0] for x in str(analysis[0]).split('/')[1:]])) else: lemmas = [] return list(''.join(lemmas)) ```
{ "source": "501st-alpha1/cronicle", "score": 2 }
#### File: 501st-alpha1/cronicle/setup.py ```python from setuptools import setup def coerce_file(fn): """Coerce file content to something useful for setuptools.setup(), turn : .py into mock object by extracting __special__ attributes values .md into rst text. Remove images with "[nopypi" alt text and emojis :url: https://github.com/Kraymer/setupgoon """ import ast import os import re import subprocess import tempfile import time # noqa text = open(os.path.join(os.path.dirname(__file__), fn)).read() if fn.endswith('.py'): # extract version, docstring etc out of python file mock = type('mock', (object,), {})() for attr in ('version', 'author', 'author_email', 'license', 'url'): regex = r'^__%s__\s*=\s*[\'"]([^\'"]*)[\'"]$' % attr m = re.search(regex, text, re.MULTILINE) setattr(mock, attr, m.group(1) if m else None) mock.docstring = ast.get_docstring(ast.parse(text)) if mock.version.endswith('dev'): mock.version += str(int(time.time())) return mock if fn.endswith('md'): # convert md to rest on pypi package upload text = '\n'.join([l for l in text.split('\n') if '[nopypi' not in l]) text = re.sub(r':\S+:', '', text) # no emojis with tempfile.NamedTemporaryFile(mode='w+') as tmp: tmp.write(text) tmp.flush() try: text, stderr = subprocess.Popen(['pandoc', '-t', 'rst', tmp.name], stdout=subprocess.PIPE).communicate() except: pass try: return text.decode('utf-8') except AttributeError: return text setup(name='cronicle', version=coerce_file('cronicle/__init__.py').version, description=coerce_file('cronicle/__init__.py').docstring, long_description=coerce_file('README.md'), author='<NAME>', author_email='<EMAIL>', url='https://github.com/KraYmer/cronicle', license='MIT', platforms='ALL', packages=['cronicle', ], entry_points={ 'console_scripts': [ 'cronicle = cronicle:cronicle_cli', ], }, install_requires=coerce_file('requirements.txt').split('\n'), classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Environment :: Console', 'Topic :: System :: Filesystems', ], keywords="cron rotate backup", ) ```
{ "source": "502E532E/python-quantities", "score": 3 }
#### File: python-quantities/quantities/decorators.py ```python import inspect import os import re import string import sys import warnings from functools import partial, wraps def memoize(f, cache={}): @wraps(f) def g(*args, **kwargs): key = (f, tuple(args), frozenset(kwargs.items())) if key not in cache: cache[key] = f(*args, **kwargs) return cache[key].copy() return g class with_doc: """ This decorator combines the docstrings of the provided and decorated objects to produce the final docstring for the decorated object. """ def __init__(self, method, use_header=True): self.method = method if use_header: self.header = \ """ Notes ----- """ else: self.header = '' def __call__(self, new_method): new_doc = new_method.__doc__ original_doc = self.method.__doc__ header = self.header if original_doc and new_doc: new_method.__doc__ = """ {} {} {} """.format(original_doc, header, new_doc) elif original_doc: new_method.__doc__ = original_doc return new_method def quantitizer(base_function, handler_function = lambda *args, **kwargs: 1.0): """ wraps a function so that it works properly with physical quantities (Quantities). arguments: base_function - the function to be wrapped handler_function - a function which takes the same arguments as the base_function and returns a Quantity (or tuple of Quantities) which has (have) the units that the output of base_function should have. returns: a wrapped version of base_function that takes the same arguments and works with physical quantities. It will have almost the same __name__ and almost the same __doc__. """ from .quantity import Quantity # define a function which will wrap the base function so that it works # with Quantities def wrapped_function(*args , **kwargs): # run the arguments through the handler function, this should # return a tuple of Quantities which have the correct units # for the output of the function we are wrapping handler_quantities= handler_function( *args, **kwargs) # now we need to turn Quantities into ndarrays so they behave # correctly # # first we simplify all units so that addition and subtraction work # there may be another way to ensure this, but I do not have any good # ideas # in order to modify the args tuple, we have to turn it into a list args = list(args) #replace all the quantities in the argument list with ndarrays for i in range(len(args)): #test if the argument is a quantity if isinstance(args[i], Quantity): #convert the units to the base units args[i] = args[i].simplified #view the array as an ndarray args[i] = args[i].magnitude #convert the list back to a tuple so it can be used as an output args = tuple (args) #repalce all the quantities in the keyword argument #dictionary with ndarrays for i in kwargs: #test if the argument is a quantity if isinstance(kwargs[i], Quantity): #convert the units to the base units kwargs[i] = kwargs[i].simplifed() #view the array as an ndarray kwargs[i] = kwargs[i].magnitude #get the result for the function result = base_function( *args, **kwargs) # since we have to modify the result, convert it to a list result = list(result) #iterate through the handler_quantities and get the correct # units length = min( len(handler_quantities) , len(result) ) for i in range(length): # if the output of the handler is a quantity make the # output of the wrapper function be a quantity with correct # units if isinstance(handler_quantities[i], Quantity): # the results should have simplified units since that's what # the inputs were (they were simplified earlier) # (reasons why this would not be true?) result[i] = Quantity( result[i], handler_quantities[i] .dimensionality.simplified ) #now convert the quantity to the appropriate units result[i] = result[i].rescale( handler_quantities[i].dimensionality) #need to convert the result back to a tuple result = tuple(result) return result # give the wrapped function a similar name to the base function wrapped_function.__name__ = base_function.__name__ + "_QWrap" # give the wrapped function a similar doc string to the base function's # doc string but add an annotation to the beginning wrapped_function.__doc__ = ( "this function has been wrapped to work with Quantities\n" + base_function.__doc__) return wrapped_function ```
{ "source": "502ping/RetrievalBased_Chatbot", "score": 3 }
#### File: 502ping/RetrievalBased_Chatbot/Chatbot.py ```python from __future__ import unicode_literals import sys import itchat sys.path.append("../") import jieba.analyse import jieba from gensim import corpora, models, similarities import codecs import requests import re import urllib.request as ul_re import json import jsonpath Train_test = 'G:/PycharmProjects/Mychatterbot/data.txt' Traintest = codecs.open(Train_test, 'rb').readlines() Traintest = [w.strip() for w in Traintest] # Chinese Word tokenizing with jieba Traintest_word = [] for word in Traintest: words_list = [words for words in jieba.cut(word)] Traintest_word.append(words_list) # Accessing the question part of the corpora Train_test_Q = 'G:/PycharmProjects/Mychatterbot/data_Q.txt' Traintest_Q = codecs.open(Train_test_Q, 'rb').readlines() Traintest_Q = [word.strip() for word in Traintest_Q] # Chinese Word tokenizing with jieba Traintest_Question = [] for Question in Traintest_Q: Q_list = [Q for Q in jieba.cut(Question)] Traintest_Question.append(Q_list) # Update dictionary from corpora dictionary = corpora.Dictionary(Traintest_Question) # Indexing dictionary dictionary.keys() # Convert document into the bag-of-words (BoW) format = list of (token_id, token_count) tuples. corpus = [dictionary.doc2bow(doc) for doc in Traintest_Question] # The corpus is now in vector space model tfidf_model = models.TfidfModel(corpus) tfidf_model.save('tfidf.model') # Retrieve response from corpus def retrieve_response(user_input): doc_test = user_input doc_test_list = [word for word in jieba.cut(doc_test)] doc_test_vec = dictionary.doc2bow(doc_test_list) # tfidf[corpus] to get the TF-IDF of each question # get the similarities of each question in compare to the user input index = similarities.SparseMatrixSimilarity(tfidf_model[corpus], num_features=len(dictionary.keys())) sim = index[tfidf_model[doc_test_vec]] # Sort each question with their similarities in descending order SimilaritiesList = sorted(enumerate(sim), key=lambda item: -item[1]) num = 0 Result_tuple = SimilaritiesList[num] # get tuple, index, similarities获取元组   索引  相似度 Result_index = Result_tuple[0] # get index of the question with highest similarity to user_input response_list = Traintest_word[Result_index] # QA response Result_score = Result_tuple[1] print("Similarity:" + str(Result_score)) newlist = response_list[response_list.index('\t'):] # Testing QA response result response = '' for res in newlist: response += res response = re.sub('\s', '', response) response = response[:-3] print("answer:" + response) return response def get_response(_info): # invoke turling robot print(_info) api_url = 'http://www.tuling123.com/openapi/api' # turling robot url data = { 'key': '<KEY>', # turling api key 'info': _info, 'userid': 'wechat-robot', } r = requests.post(api_url, data=data).json() print(r.get('text')) return r def booking_flights(user_text): global flag global return_session # user_text=msg['Text'] if user_text == '结束': flag = 0 return_session = '' else: url = 'https://aip.baidubce.com/rpc/2.0/unit/bot/chat?access_token=24.62800c1e0d94478b487ec04859411f5b.2592000.1546348586.282335-14856895' post_data = { "bot_session": return_session, "log_id": "7758521", "request": { "bernard_level": 0, "client_session": "{\"client_results\":\"\", \"candidate_options\":[]}", "query": user_text, "query_info": { "asr_candidates": [], "source": "KEYBOARD", "type": "TEXT" }, "updates": "", "user_id": "88888" }, "bot_id": "17037", "version": "2.0" } encoded_data = json.dumps(post_data).encode('utf-8') headers = {'Content-Type': 'application/json'} request = ul_re.Request(url, data=encoded_data, headers=headers) response = ul_re.urlopen(request) html = response.read() # data=json.loads(html) # data["action_list"][0]['say'] jsonobj = json.loads(html) say = jsonpath.jsonpath(jsonobj, '$..say') print(say) say_convert = ''.join(say) if say_convert == '好的,已为您定好票!': return_session = '' flag = 0 # itchat.send_msg(say_convert, toUserName=msg['FromUserName']) else: bot_session = jsonpath.jsonpath(jsonobj, '$..bot_session') session_convert = str(bot_session) index = session_convert.find('session_id') index = index - 1 session_id = session_convert[index:-5] return_session = str("{" + session_id + "}") # itchat.send_msg(say_convert, toUserName=msg['FromUserName']) return say_convert @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): # AutoReply to User global return_session print("收到好友消息:" + msg['Text']) # msg['Text']是好友发送的消息 # msg['Text'].encode('utf-8') check1 = "笑话" check2 = "天气" check3 = "机票" global flag # print(type(msg['Text'])) word_list = jieba.cut(msg['Text']) for word in word_list: if word == str(check2): flag = 2 if word == str(check1): return get_response(msg['Text'])['text'] if word == str(check3): flag = 1 if flag == 1: user_text = msg['Text'] if user_text == '结束': flag = 0 return_session = '' else: return booking_flights(user_text) elif flag == 2: print("收到好友消息:" + msg['Text']) if msg['Content'] == '结束': flag = 0 else: response = get_response(msg['Text'])['text'] for word in jieba.cut(response): if word == '气温': flag = 0 itchat.send_msg(str(response), toUserName=msg['FromUserName']) elif flag == 0: user_input = msg['Text'] return retrieve_response(user_input) if __name__ == '__main__': global return_session return_session = '' global flag flag = 0 itchat.auto_login() # hotReload = True, keep online itchat.run() ```
{ "source": "502ping/Tkinter-wxPython", "score": 3 }
#### File: 502ping/Tkinter-wxPython/IR.py ```python import wx from nltk.tokenize import RegexpTokenizer def combine_indexes(words_list_stemmed, files_list): index, freq_word = create_inverted_index(files_list) sum_freq = 0 index_list = [] print(words_list_stemmed) for term in words_list_stemmed: if term in index.keys(): print("Term is " + str(term)) print("Index term " + str(index[term])) index_list.append(index[term]) sum_freq = sum_freq + freq_word[term] print("Index list " + str(index_list)) if sum_freq: index_result = list(set.intersection(*index_list)) print("Index result is " + str(index_result)) return index_result, sum_freq else: return ["No results found"], 0 def parse_input(word): word = word.strip() if ',' in word: words_list = word.split(',') elif ' ' in word: words_list = word.split(' ') elif ';' in word: words_list = word.split(';') elif ':' in word: words_list = word.split(':') else: words_list = [word] return words_list def stemming(word): # word = PorterStemmer().stem_word(word.lower()) return word def create_inverted_index(files_list): # creating a dictionary of words index = dict() # creating frequency of the words freq_word = dict() # reading multiple files and tokenizing the contents of the files for f in files_list: file_content = open(f).read() tokenizer = RegexpTokenizer(r'\w+') words = tokenizer.tokenize(file_content) # creating inverted index data structure for word in words: # keeping all the words in lower case word = stemming(word) if word not in index.keys(): index[word] = [f] else: index[word].append(f) for word in index.keys(): freq_word[word] = len(index[word]) index[word] = set(index[word]) return index, freq_word def search(term, files_list): words_list = parse_input(term) print("WOrds list is " + str(words_list)) words_list_stemmed = [stemming(word.strip()) for word in words_list] index_result, sum_freq = combine_indexes(words_list_stemmed, files_list) return index_result, sum_freq # if __name__ == '__main__': # files_list = ['adventur.txt', 'apples.txt', 'hVDacrN0.html'] # search('html', files_list) MAXIMUM_ALLOWED_FILES = 6 class SecondFrame(wx.Frame): # ---------------------------------------------------------------------- def __init__(self): """Constructor""" wx.Frame.__init__(self, None, title="Here is what we found", size=(700, 300)) self.panel = wx.Panel(self) # results list self.files_result = [] # SIZER self.windowSizer = wx.BoxSizer() self.windowSizer.Add(self.panel, 1, wx.ALL | wx.EXPAND) self.sizer = wx.GridBagSizer(0, 0) # Results label self.files_location_label = wx.StaticText(self.panel, -1, "Output of Results:", (10, 1)) self.sizer.Add(self.files_location_label, (10, 10)) def get_results_from_search(self, files_with_word, freq): self.word_occ_label = wx.StaticText(self.panel, -1, str(freq) + " occurences", (10, 20)) self.sizer.Add(self.word_occ_label, (10, 25)) for i, files in enumerate(files_with_word): self.files_result.append(wx.StaticText(self.panel, -1, files, (10, 20 + (i + 1) * 20))) self.sizer.Add(self.files_result[-1], (10, 20 + (i + 1) * 20)) class gui(wx.Frame): def __init__(self, parent, id): wx.Frame.__init__(self, parent, id, 'Information Retrieval System [XIA Yuchen]', size=(700, 500)) self._defaultDirectory = "/home" self.panel = wx.ScrolledWindow(self, wx.ID_ANY) # SIZER self.windowSizer = wx.BoxSizer() self.windowSizer.Add(self.panel, 1, wx.ALL | wx.EXPAND) self.sizer = wx.GridBagSizer(0, 0) # List of files and no of it self.no_of_files = 1 self.fileCtrl = [] # search self.search_label = wx.StaticText(self.panel, -1, "Search Words: ", (100, 35)) self.sizer.Add(self.search_label, (100, 35)) self.search_name = wx.TextCtrl(self.panel, pos=(100, 66), size=(260, -1)) self.sizer.Add(self.search_name, (200, 30)) # Files location self.files_location_label = wx.StaticText(self.panel, -1, "Add documnet index:", (100, 160)) # Adding file button self.button = wx.Button(self.panel, label="Add Files", pos=(380, 200), size=(110, -1)) self.sizer.Add(self.button, (100, 150)) self.Bind(wx.EVT_BUTTON, self.add_files_button, self.button) self.fileCtrl.append(wx.FilePickerCtrl(self.panel, pos=(100, 200), size=(260, -1))) self.sizer.Add(self.fileCtrl[0], (100, 200)) # Removing file button self.button_remove = wx.Button(self.panel, label="Remove Files", pos=(510, 200), size=(110, -1)) self.Bind(wx.EVT_BUTTON, self.remove_files_button, self.button_remove) self.sizer.Add(self.button_remove, (100, 445)) # running the program button self.button_run = wx.Button(self.panel, label="Search", pos=(380, 63), size=(110, -1)) self.Bind(wx.EVT_BUTTON, self.run_program, self.button_run) self.sizer.Add(self.button_run, (500, 500)) def add_files_button(self, event): if self.no_of_files <= MAXIMUM_ALLOWED_FILES: height = self.no_of_files * 35 + 200 self.fileCtrl.append(wx.FilePickerCtrl(self.panel, pos=(100, height), size=(260, -1))) self.sizer.Add(self.fileCtrl[self.no_of_files], (100, height)) self.no_of_files = self.no_of_files + 1 def remove_files_button(self, event): self.sizer.Detach(self.fileCtrl[-1]) self.fileCtrl[-1].Destroy() del self.fileCtrl[-1] self.no_of_files = self.no_of_files - 1 def run_program(self, event): frame = SecondFrame() keyword = self.search_name.GetValue() if not keyword: box = wx.MessageDialog(None, 'Search Term Not Mentioned', 'Ivalid Request', wx.OK) answer = box.ShowModal() box.Destroy() # getting files list from the file dialog files_list = [] for file_path in self.fileCtrl: files_list.append(file_path.GetPath()) files_list = filter(None, files_list) print(files_list) # sending the data to main.py if files_list: files_with_word, freq = search(keyword, files_list) frame.get_results_from_search(files_with_word, freq) frame.Show() else: box = wx.MessageDialog(None, 'Files not mentioned', 'Invalid Request', wx.OK) answer = box.ShowModal() box.Destroy() if __name__ == '__main__': app = wx.App(False) frame = gui(parent=None, id=-1) frame.Show() app.MainLoop() ```
{ "source": "502y/Mod-Translation-Styleguide", "score": 3 }
#### File: Mod-Translation-Styleguide/tools/GithubKeywordQuery.py ```python from re import compile from time import sleep from bs4 import BeautifulSoup from urllib.error import HTTPError from urllib.request import urlopen from html import unescape def make_url(page_num, _keyword): # query 'filename:zh_CN.lang keyword' return 'https://github.com/search?p=' + str( page_num) + '&q=filename%3A.zh_CN.lang+' + _keyword + '&type=Code&utf8=%E2%9C%93' def open_url_retry(url): try: return urlopen(url) except HTTPError as e: if e.code == 429: # Too many requests sleep(10) print("[429 Error] Too many requests, retry in 10 secs") return open_url_retry(url) raise keyword = input("Keyword: ") i = 1 html_tags = compile(r'<.*?>') content = BeautifulSoup(open_url_retry(make_url(i, keyword)), 'html.parser') output_file = open('output.lang', 'w', encoding='UTF-8') while True: print("Page: " + str(i)) i += 1 for line in content.findAll('td', {'class': ['blob-code', 'blob-code-inner']}): if keyword.lower() in str(line).lower() and '\\u' not in str(line): result = unescape(html_tags.sub('', str(line))).strip() if result: print(result) print(result, file=output_file) if not content.find('a', {'class': 'next_page'}): # The next_page button of the last page is next_page.disabled break content = BeautifulSoup(open_url_retry(make_url(i, keyword)), 'html.parser') output_file.close() ```
{ "source": "50417/gpt-2", "score": 3 }
#### File: gpt-2/preprocessor/restructure_mdl.py ```python from utils import get_tokens,remove_extra_white_spaces from model_info import model_info from normalizer import get_normalize_block_name from simulink_preprocess import remove_graphic_component,keep_minimum_component_in_block import os class Restructure_mdl(): ''' This class provides utilities to restructure the Mdl Files ''' def __init__(self,simulink_model_name,output_dir='slflat_output'): '''Instantiate a Restructure_mdl class variables . args: simulink_model_name: Name of Simulink model . eg. xyz.mdl output_dir: directory where the bfs restructured simulink model will be saved. This is used for training data ''' self._file = simulink_model_name self._output_dir = output_dir self._structure_to_extract = { 'System','Block','Line'} # Hierarchy level in mdl elements. self._tmp_ext = '_TMP'# intermediate file that filters mdl file to only have System block { ... } . Output will be xyz_tmp.mdl self._bfs_ext = '_bfs' # output file saved in output directory... file name is xyz_bfs.mdl self._tmp_dir = 'slflat_tmp' self._valid_chk_dir = "slflat_V_CHK" if not os.path.exists(self._tmp_dir): os.mkdir(self._tmp_dir) if not os.path.exists(self._output_dir): os.mkdir(self._output_dir) if not os.path.exists(self._valid_chk_dir): os.mkdir(self._valid_chk_dir) def update_brace_count(self, line): ''' keep track of brace count args: line: line of the file ''' assert(self._brace_count >= 0) self._brace_count += line.count('{') self._brace_count -= line.count('}') def extract_system_blk(self): ''' extracts system block of the Simulink mdl file. Filter out everything else. The structure left in the output is Model { Name toy System { Name toy Block { .....} ... }} It also changes the name of the Simulink model to toy And It also updates the model_info object which keeps track of blocks and its connections. Necessary for bfs restructuring. returns: filtered list of line in the original file. Each element of the list corresponds to the line in the original file. ''' self._brace_count = 0 _processed_output = [] stack = [] stack_pop_brace_count = 0 blk_info = '' line_info = '' mdl_info = model_info() with open(self._file, 'r') as file: for line in file: line = remove_extra_white_spaces(line) tokens = get_tokens(line) self.update_brace_count(line) #if self._brace_count==1 and stack[-1] != "Model": #print("here") if "Model" == tokens[0]: stack.append("Model") _processed_output.append(line) while get_tokens(line)[0] != "Name": line = remove_extra_white_spaces(next(file)) _processed_output.append("Name toy") elif tokens[0] == "System" and stack[-1] == "Model": stack_pop_brace_count += 1 stack.append(tokens[0]) elif tokens[0] in self._structure_to_extract and stack[-1] != "Model": stack_pop_brace_count += 1 stack.append(tokens[0]) if stack[-1] in self._structure_to_extract: if tokens[0] == "System": _processed_output.append(line) while get_tokens(line)[0] != "Name": line = remove_extra_white_spaces(next(file)) _processed_output.append("Name toy") while get_tokens(line)[0] != 'Block': line = remove_extra_white_spaces(next(file)) stack.append('Block') _processed_output.append(line) #print(next_line) else: _processed_output.append(line) if stack[-1] == "Block": blk_info += line + "\n" elif stack[-1] == "Line": line_info += line + "\n" if stack_pop_brace_count == self._brace_count: val = stack.pop() if val == "Block": #print(blk_info) mdl_info.update_blk_info(blk_info) blk_info = '' elif val == "Line": mdl_info.update_line_info(line_info) line_info = '' stack_pop_brace_count -= 1 if not stack: try: while True: next_line = remove_extra_white_spaces(next(file)) _processed_output.append(next_line) except StopIteration: break elif stack[-1] == "Model": _processed_output.append(line) return _processed_output, mdl_info def restructure_single_mdl(self): ''' Entry point for restructuring. Calls functions in a sequence. Each functions returned value is the input parameter to next function in the sequence. ''' tmp_filename = self._file.split('/')[-1] .split('.')[0]+ self._tmp_ext + '.mdl' output_filename = self._file.split('/')[-1] .split('.')[0]+ self._bfs_ext + '.mdl' tmp_path = os.path.join(self._tmp_dir,tmp_filename) output_path = os.path.join(self._output_dir,output_filename) output_filename = output_filename.replace('_bfs','_vbfs') print(output_filename) valid_chk_path = os.path.join(self._valid_chk_dir,output_filename) tmp_output,model_info = self.extract_system_blk() self.save_to_file(tmp_path, tmp_output) src, dest = model_info.get_src_dst() source_block = list(set(src).difference(set(dest))) output,org_norm_name_dict = self.bfs_ordering_new(source_block, model_info) #print("\n".join(output)) output = remove_graphic_component("\n".join(output)) self.save_to_file(output_path,output,org_norm_name_dict) #self.save_to_file(output_path, output) bfs_valid_output = self.bfs_ordering_validation(model_info) self.save_to_file(valid_chk_path, bfs_valid_output) #output = keep_minimum_component_in_block("\n".join(bfs_valid_output)) #print("\n".join(output)) #print(output) def save_to_file(self, path, tmp_output,org_norm_name_dict = None): ''' saves/write the list of line to a file. args: path : full path location of the file to which tmp_output is to be saved tmp_output: list of lines . Each element of the list corresponds to the line in the original file. org_norm_name_dict: dictionary with key : block name and value : normalized block name. Example clblk1 : a, clblk2: b and so on ''' tmp = '\n'.join(tmp_output) if org_norm_name_dict is not None: for k,v in org_norm_name_dict.items(): tmp = tmp.replace(k,v) with open(path,'w') as r: r.write(tmp) def bfs_ordering_validation(self,mdl_info): ''' converts the BFS ordered Simulink file back to Simulink acceptable format: where Block {} defination comes first and then Line {} defination Caveat: Block with Block Type Outport have to be defined end of the all other block defination arranged in ascending order based on its port number while BLock Type Inport has to be defined beginning of the Block defination . Generated model may not have Port number.--> Port "2". In that case add port number args: path: full path of the Simulink model file. returns : list of lines where each element corresponds to the line in the processed file. ''' blk_lst, line_lst = mdl_info.get_write_ready_blk_conn_list() _processed_output = ["Model {", "Name toy", "System {", "Name toy"] _processed_output += blk_lst _processed_output += line_lst _processed_output += ['}','}'] return _processed_output def bfs_ordering_new(self, source_block, model_info): blk_names = [k for k in model_info.blk_info.keys()] orig_normalized_blk_names = {} name_counter = 1 output = ["Model {", "Name toy", "System {", "Name toy"] unique_lines_added = set() while len(source_block) != 0 or len(blk_names)!=0: queue = [] if len(source_block) != 0: queue.append(source_block[-1]) elif len(blk_names)!=0: queue.append(blk_names[-1]) while len(queue) != 0 : blk_visited = queue.pop(0) if blk_visited in blk_names: if blk_visited not in orig_normalized_blk_names: orig_normalized_blk_names[blk_visited] = get_normalize_block_name(name_counter) name_counter += 1 block_code = model_info.blk_info[blk_visited] output.append(block_code) # adding block code blk_names.remove(blk_visited) if blk_visited in model_info.graph: for dest_edge in model_info.graph[blk_visited]: (dest, edge) = dest_edge if edge not in unique_lines_added: output.append(edge) unique_lines_added.add(edge) for d in dest: if d in blk_names: queue.append(d) if blk_visited in model_info.graph_dest: for src_edge in model_info.graph_dest[blk_visited]: (src, edge) = src_edge if edge not in unique_lines_added: output.append(edge) unique_lines_added.add(edge) if src in blk_names: queue.append(src) if blk_visited in source_block: source_block.remove(blk_visited) output += ['}','}'] return output,orig_normalized_blk_names directory ='/home/sls6964xx/Desktop/SLNET_Flat_train_compile/'#'/home/sls6964xx/Desktop/Simulink_sample/' #'/home/sls6964xx/Desktop/RandomMOdelGeneratorInMDLFormat/slsf/reportsneo/2020-09-02-14-27-55/success/' count = 0 for files in os.listdir(directory): count +=1 #print(count, " : ", files) try: processor = Restructure_mdl(os.path.join(directory,files)) processor.restructure_single_mdl() except UnicodeDecodeError: continue except Exception as e: print(e) print("Error Processing : ", files) continue #print(os.path.join(directory,files)) # x = """slforge_100840958_166_bfs # slforge_103070060_954_bfs # slforge_109455323_290_bfs # slforge_115263863_639_bfs # slforge_116820486_221_bfs # slforge_119186634_927_bfs # slforge_133274971_348_bfs # slforge_148707318_395_bfs # slforge_149709169_219_bfs # slforge_150345404_939_bfs # slforge_163113637_196_bfs # slforge_163854565_175_bfs # slforge_181710094_759_bfs # slforge_188187512_698_bfs # slforge_189367667_469_bfs # slforge_196111087_602_bfs # slforge_20237467_545_bfs # slforge_202430615_744_bfs # slforge_202970885_712_bfs # slforge_20481088_646_bfs # slforge_207048500_218_bfs # slforge_210634286_692_bfs # slforge_212491956_153_bfs # slforge_236447339_998_bfs # slforge_239740698_723_bfs # slforge_247780768_464_bfs # slforge_25030590_338_bfs # slforge_253621665_313_bfs # slforge_259681077_575_bfs # slforge_268651500_297_bfs # slforge_269809720_749_bfs # slforge_272727633_483_bfs # slforge_27291099_748_bfs # slforge_274629558_243_bfs # slforge_281860843_280_bfs # slforge_288255816_887_bfs # slforge_305175039_251_bfs # slforge_306276746_936_bfs # slforge_306454103_402_bfs # slforge_320213838_893_bfs # slforge_320532988_724_bfs # slforge_328622669_389_bfs # slforge_354190334_811_bfs # slforge_362651501_129_bfs # slforge_363057801_463_bfs # slforge_366782490_498_bfs # slforge_368916070_75_bfs # slforge_370965887_65_bfs # slforge_375168036_195_bfs # slforge_383621934_523_bfs # slforge_385659974_145_bfs # slforge_386064894_762_bfs # slforge_414313477_261_bfs # slforge_424015527_9_bfs # slforge_44677512_731_bfs # slforge_452162338_45_bfs # slforge_45290452_365_bfs # slforge_460001758_861_bfs # slforge_460297509_29_bfs # slforge_460717664_482_bfs # slforge_463180451_414_bfs # slforge_470271830_670_bfs # slforge_488464452_891_bfs # slforge_502656368_883_bfs # slforge_503756812_121_bfs # slforge_517493243_745_bfs # slforge_517578157_995_bfs # slforge_51784653_268_bfs # slforge_518191258_766_bfs # slforge_526578300_615_bfs # slforge_531580834_679_bfs # slforge_533772306_845_bfs # slforge_544547412_512_bfs # slforge_545863988_279_bfs # slforge_554533673_570_bfs # slforge_562144296_260_bfs # slforge_576520496_795_bfs # slforge_576695423_841_bfs # slforge_581343008_213_bfs # slforge_58619433_442_bfs # slforge_589959545_690_bfs # slforge_593669717_580_bfs # slforge_603157444_717_bfs # slforge_604864196_15_bfs # slforge_629532953_696_bfs # slforge_634359218_203_bfs # slforge_63519104_453_bfs # slforge_638420989_746_bfs # slforge_64389875_235_bfs # slforge_662331999_693_bfs # slforge_685020956_528_bfs # slforge_685874982_502_bfs # slforge_689075942_894_bfs # slforge_691789268_933_bfs # slforge_698142696_332_bfs # slforge_703836517_185_bfs # slforge_726593191_504_bfs # slforge_731631655_816_bfs # slforge_739386461_787_bfs # slforge_741391199_439_bfs # slforge_747157772_39_bfs # slforge_748022232_849_bfs # slforge_752206838_518_bfs # slforge_771357931_193_bfs # slforge_773677176_427_bfs # slforge_776864605_374_bfs # slforge_782418194_837_bfs # slforge_788013554_446_bfs # slforge_795035487_20_bfs # slforge_795178056_607_bfs # slforge_795376787_738_bfs # slforge_796142499_387_bfs # slforge_796506880_323_bfs # slforge_800377751_363_bfs # slforge_800722030_943_bfs # slforge_808528605_390_bfs # slforge_816008054_325_bfs # slforge_820199596_871_bfs # slforge_823583653_826_bfs # slforge_82728797_895_bfs # slforge_838424996_721_bfs # slforge_841811023_124_bfs # slforge_845724132_94_bfs # slforge_847146610_207_bfs # slforge_855889869_122_bfs # slforge_865938663_515_bfs # slforge_867700888_451_bfs # slforge_874257686_92_bfs # slforge_879183608_282_bfs # slforge_884675872_52_bfs # slforge_890466769_84_bfs # slforge_901896146_472_bfs # slforge_903761901_741_bfs # slforge_909796666_966_bfs # slforge_915089740_278_bfs # slforge_918899334_586_bfs # slforge_919149785_173_bfs # slforge_927035214_407_bfs # slforge_942299490_660_bfs # slforge_946325154_115_bfs # slforge_947663464_852_bfs # slforge_948753605_228_bfs # slforge_95252572_830_bfs # slforge_968765260_413_bfs # slforge_975968524_772_bfs # slforge_983568254_694_bfs # slforge_993417501_353_bfs""" # x = """slforge_105895491_798_bfs # slforge_252468730_872_bfs # slforge_344149598_657_bfs # slforge_551054484_629_bfs # slforge_566434247_50_bfs # slforge_670967089_538_bfs # slforge_733825341_495_bfs # slforge_819207223_555_bfs # slforge_888958867_636_bfs""" # for k in x.split('\n'): # processor = Restructure_mdl('/home/sls6964xx/Documents/GPT2/gpt-2/preprocessor/output/'+k+'.mdl')#slforge_946325154_115_bfs.mdl')#('/home/sls6964xx/Desktop/RandomMOdelGeneratorInMDLFormat/slsf/reportsneo/2020-09-02-14-27-55/success/slforge_598683771_989.mdl') # processor.restructure_single_mdl() # processor = Restructure_mdl('/home/sls6964xx/Documents/GPT2/gpt-2/src/sample.mdl')#slforge_946325154_115_bfs.mdl')#('/home/sls6964xx/Desktop/RandomMOdelGeneratorInMDLFormat/slsf/reportsneo/2020-09-02-14-27-55/success/slforge_598683771_989.mdl') # processor.restructure_single_mdl() # processor = Restructure_mdl('/home/sls6964xx/Desktop/RandomMOdelGeneratorInMDLFormat/slsf/reportsneo/2020-09-02-14-27-55/success/slforge_598683771_989.mdl') # processor.restructure_single_mdl() ``` #### File: gpt-2/preprocessor/simulink_preprocess.py ```python from typing import List from utils import get_tokens def remove_graphic_component(text: str) -> List: ''' removes components that are not necessary for the compilation of Simulink model. The component are auto generated when saved in Simulink. args: text: Simulink model file. returns : list of lines where line containing remove_list are filtered ''' lines = [] remove_list = ["Position","ZOrder","SID","Points"] for line in text.split("\n"): line = line.lstrip() if line.startswith(tuple(remove_list)) or len(line)==0: continue lines.append(line) return lines def keep_minimum_component_in_block(text: str) -> List: lines = [] add_block_comp_list = ["BlockType","Name","Ports","SourceBlock","SourceType"] brace_count = 0 for line in text.split("\n"): line = line.strip() if len(line) == 0: continue tok = get_tokens(line) if "Block" in tok and "{" in tok: brace_count = 1 lines.append(line) elif "}" in tok: brace_count = max(0, brace_count - 1) if brace_count != 0: lines.append(line) if brace_count == 0: lines.append(line) else: if line.startswith(tuple(add_block_comp_list)): lines.append(line) return lines # import os # directory = '/home/sls6964xx/Documents/GPT2/gpt-2/preprocessor/output' # count = 1 # if not os.path.exists("Minimum"): # os.mkdir("Minimum") # for files in os.listdir(directory): # count +=1 # print(count, " : ", files) # with open(directory + "/" + files,"r") as file: # output = keep_minimum_component_in_block(file.read()) # tmp_path = os.path.join("Minimum", files) # with open(tmp_path, 'w') as r: # r.write("\n".join(output)) ``` #### File: gpt-2/src/interactive_conditional_samples.py ```python import fire import json import os import numpy as np import tensorflow as tf import model, sample, encoder def interact_model( model_name='117M', seed=None, nsamples=1000, batch_size=1, length=None, temperature=1, top_k=0, top_p=0.0 ): """ Interactively run the model :model_name=117M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :top_p=0.0 : Float value controlling diversity. Implements nucleus sampling, overriding top_k if set to a value > 0. A good setting is 0.9. """ if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name) hparams = model.default_hparams() with open(os.path.join('models', model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx // 2 print(length) #elif length > hparams.n_ctx: # raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) #config = tf.ConfigProto(device_count={'GPU': 0}) config = tf.ConfigProto() with tf.Session(graph=tf.Graph(),config=config) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) raw_text = """Model {""" #input("Model prompt >>> ") context_tokens = enc.encode(raw_text) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name)) saver.restore(sess, ckpt) from datetime import datetime #while True: generated = 0 import time grand_start = time.time() for cnt in range(nsamples // batch_size): start_per_sample = time.time() output_text = raw_text text = raw_text context_tokens = enc.encode(text) #raw_text = input("Model prompt >>> ") # while not raw_text: # print('Prompt should not be empty!') # raw_text = input("Model prompt >>> ") #print(context_tokens) #file_to_save.write(raw_text) #for cnt in range(nsamples // batch_size): while "<|endoftext|>" not in text: out = sess.run(output, feed_dict={context: [context_tokens for _ in range(batch_size)]})[:, len(context_tokens):] for i in range(batch_size): #generated += 1 text = enc.decode(out[i]) if "<|endoftext|>" in text: sep = "<|endoftext|>" rest = text.split(sep, 1)[0] output_text += rest break context_tokens = enc.encode(text) output_text += text print("=" * 40 + " SAMPLE " + str(cnt+12) + " " + "=" * 40) minutes, seconds = divmod(time.time() - start_per_sample, 60) print("Output Done : {:0>2}:{:05.2f}".format(int(minutes),seconds) ) print("=" * 80) with open("Simulink_sample/sample__"+str(cnt+12)+".mdl","w+") as f: f.write(output_text) elapsed_total = time.time()-grand_start hours, rem = divmod(elapsed_total,3600) minutes, seconds = divmod(rem, 60) print("Total time to generate 1000 samples :{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds)) if __name__ == '__main__': fire.Fire(interact_model) ```
{ "source": "50417/SLGPT", "score": 3 }
#### File: SLGPT/code-process/Graph_Info.py ```python import math class Graph_Info(): def __init__(self , name): self.simulink_name = name #self.source_destination_path = [] #self.subgraphs = [] self.subgraphs_size = [] self.no_of_subgraphs = 0 self.source_destination_path = False self.max_source_destination_path_length = 0 self.min_source_destination_path_length = math.inf self.max_sub_graph_size = 0 def addpath(self,path): #self.source_destination_path.append(path) self.source_destination_path = True self.max_source_destination_path_length = max(len(path),self.max_source_destination_path_length) self.min_source_destination_path_length = min(len(path),self.min_source_destination_path_length) def add_subgraph(self,sg): if (len(sg) != 0): self.no_of_subgraphs+=1 #self.subgraphs.append(sg) self.max_sub_graph_size = max(self.max_sub_graph_size,len(sg)) self.subgraphs_size.append(len(sg)) ```
{ "source": "505788057/RoboticArm-Ball", "score": 3 }
#### File: 505788057/RoboticArm-Ball/CaliPlot.py ```python import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D def list2array(listx, listy, listz, timelist): time = np.array(timelist) x = np.array(listx) y = np.array(listy) z = np.array(listz) tem_time = timelist[0] % 10000 minus_time = timelist[0] - tem_time # Least squares Least_x = np.polyfit(time - minus_time, x, 1) equation_x = np.poly1d(Least_x) Least_z = np.polyfit(time - minus_time, z, 1) equation_z = np.poly1d(Least_z) Least_y = np.polyfit(time - minus_time, y, 2) equation_y = np.poly1d(Least_y) # or use yvals=np.polyval(z1,x) fit_x = equation_x(time - minus_time) fit_z = equation_z(time - minus_time) fit_y = equation_y(time - minus_time) # # 2D plot1 = plt.plot(time - minus_time, z, '*', label='original values') plot2 = plt.plot(time - minus_time, fit_z, 'r', label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) # 指定legend的位置,读者可以自己help它的用法 plt.title('polyfitting') # plt.show() plt.savefig('fig.png') print('Calidation Fished.') # 3D # mpl.rcParams['legend.fontsize'] = 10 # fig = plt.figure() # ax = fig.gca(projection='3d') # ax.plot(x, z, y, label='parametric curve') # ax.plot(fit_x, fit_z, fit_y, label='parametric curve') # # ax.set_ylabel('Z') # ax.set_zlabel('Y') # ax.set_xlabel('X') # ax.legend() # plt.show() if __name__ == '__main__': # transfer them into array # tennis1.svo # timelist = [1590370805.462524, 1590370805.5231707, 1590370805.5813963, 1590370805.6406145, 1590370805.698655, 1590370805.755522, 1590370805.811019, 1590370805.8673904, 1590370805.9244144, 1590370805.9823272, 1590370806.042043, 1590370806.1024814, 1590370806.1583822, 1590370806.2692547, 1590370806.3247852, 1590370806.382588, 1590370806.438314, 1590370806.4938543, 1590370806.548817, 1590370806.6595979, 1590370806.7155735, 1590370806.7721534] # listx = [1.378333568572998, 2.6016061, 2.8438501, 2.8486598, 2.770108222961426, 2.4207764, 2.3422040939331055, 2.324617862701416, 2.1079476, 1.7550919, 1.5248140096664429, 1.2089921236038208, 0.9462942, 0.28882295, 0.16508897, -0.3907056450843811, -0.4709196, -0.9288353, -1.448897123336792, -1.7345365, -2.0495212, -0.8052868843078613] # listy = [-0.05165481939911842, -0.26656777, -0.51725614, -0.81832075, -0.9825394153594971, -1.1084504, -1.2568608522415161, -1.479618787765503, -1.5843353, -1.6481928, -1.700961947441101, -1.6539585590362549, -1.6358579, -1.41463, -1.3329362, -1.1728086471557617, -0.9336073, -0.6354038, -0.2573710083961487, 0.43543887, 0.78495455, 0.3775915503501892] # listz = np.array([1.4929945468902588, 2.8918116, 3.2883322, 3.6273456, 3.683410167694092, 3.5859275, 3.746155261993408, 3.9522814750671387, 4.021757, 3.9577022, 3.9235706329345703, 3.7479872703552246, 3.6744277, 4.0746527, 4.0460835, 4.078764915466309, 3.984223, 3.8409414, 3.635684013366699, 2.8342047, 2.5602126, 0.8657321929931641]) # tesnnis2.svo listx = [2.9003219604492188, 2.914999, 2.7897768020629883, 2.664806842803955, 2.509872, 2.502492, 2.257084608078003, 2.12467622756958, 2.026886224746704, 1.8217148, 1.6705565, 1.4125998, 0.7843540906906128, 0.6815392374992371, 0.6116997, 0.51989925, 0.4470337927341461, 0.39395439624786377, 0.3130735158920288, 0.23555606603622437, 0.1817034, 0.1342813, 0.04152153059840202, -0.08397220075130463, -0.60927105, -0.7687373757362366, -0.9387397766113281, -1.0574983, -1.0280832, -1.2355990409851074, -1.3635989427566528, -1.3623799] listy = [0.43417564034461975, 0.16162421, -0.11754219233989716, -0.38563716411590576, -0.63429135, -0.9109296, -1.102527379989624, -1.2968493700027466, -1.4311916828155518, -1.5778172, -1.6967598, -1.7303532, -0.9435155391693115, -0.9681894779205322, -0.9778852, -1.0099608, -1.005697250366211, -1.001267910003662, -0.9756706953048706, -0.9305459260940552, -0.90242606, -0.8221237, -0.7837788462638855, -0.7024073004722595, -0.72066426, -0.44028931856155396, -0.14642766118049622, 0.18590547, 0.43050718, 0.7862274050712585, 1.108873963356018, 1.3778218] listz = [3.974457025527954, 4.2234783, 4.310595512390137, 4.331752777099609, 4.395141, 4.5437713, 4.517788887023926, 4.620116233825684, 4.445725440979004, 4.5253596, 4.4999332, 4.336791, 2.3845386505126953, 2.364236354827881, 2.350337, 2.3552065, 2.3541321754455566, 2.387808322906494, 2.365471363067627, 2.3478844165802, 2.3347933, 2.3187907, 2.2945680618286133, 2.336951732635498, 4.8546853, 4.71743106842041, 4.753421306610107, 4.6235576, 4.0115194, 4.3189191818237305, 4.19636344909668, 3.7759159] timelist = [1590734852.1242003, 1590734852.1807272, 1590734852.234512, 1590734852.2898612, 1590734852.3444474, 1590734852.3990796, 1590734852.4539366, 1590734852.508885, 1590734852.564926, 1590734852.6204963, 1590734852.6761467, 1590734852.730033, 1590734852.7859554, 1590734852.841079, 1590734852.8953316, 1590734852.9507463, 1590734853.0056183, 1590734853.060884, 1590734853.116235, 1590734853.1715913, 1590734853.2258458, 1590734853.2809885, 1590734853.3365073, 1590734853.3915794, 1590734853.5579169, 1590734853.6116655, 1590734853.6685421, 1590734853.723139, 1590734853.7786517, 1590734853.8343437, 1590734853.8984737, 1590734853.9518814] # tennis3.svo # listx = [0.3172745, 0.30599847435951233, 0.2955, 0.2935665, 0.28753167390823364, 0.28932345, 0.2934848368167877, # 0.296322762966156, 0.2889719307422638, 0.28359633684158325, 0.2756395637989044, 0.25924360752105713, # 0.24964043, 0.22924330830574036, 0.21541204, 0.2042052447795868, 0.17592868208885193, 0.16845292, # 0.13332465291023254, 0.12662326, 0.11186858266592026, 0.08200584352016449, 0.03798733651638031, # -0.0019563164096325636, -0.010218276, -0.02275446429848671, -0.030307572335004807, -0.06421846151351929, # -0.089726634, -0.09471378, -0.11786812, -0.1374852, -0.1560058444738388, -0.16710165, -0.21381166577339172, # -0.8069354891777039, -1.0064988, -1.2963908910751343, -1.2578022480010986, -1.8013108968734741] # listy = [0.5728218, 0.5843399167060852, 0.60232395, 0.60962135, 0.6122140884399414, 0.6264883, 0.6467896103858948, # 0.6480776071548462, 0.6529171466827393, 0.6521287560462952, 0.6550891399383545, 0.6397219896316528, # 0.5920477, 0.5105807781219482, 0.37324274, 0.2506449818611145, 0.12893235683441162, 0.0034519485, # -0.1891399621963501, -0.32670522, -0.513620913028717, -0.6497299671173096, -0.7802656888961792, # -0.9179131984710693, -0.527315, -0.5445464849472046, -0.5472044944763184, -0.5542003512382507, -0.5442121, # -0.52128863, -0.5026254, -0.4614783, -0.41056010127067566, -0.3533057, -0.2842305302619934, # -0.5402709245681763, -0.15292263, 0.38480105996131897, 0.9864322543144226, 1.2156903743743896] # listz = [3.7283587, 3.696535587310791, 3.6984868, 3.6879237, 3.69278883934021, 3.6998756, 3.6971168518066406, # 3.6943867206573486, 3.693394184112549, 3.665677070617676, 3.6571907997131348, 3.6156864166259766, # 3.5504797, 3.4731931686401367, 3.410746, 3.533870220184326, 3.503570079803467, 3.674098, 4.085834503173828, # 3.9624631, 4.301963806152344, 4.330367088317871, 4.097470283508301, 4.188103199005127, 2.422814, # 2.327251672744751, 2.2162179946899414, 2.0744686126708984, 1.9716586, 1.8658121, 1.7759119, 1.6916102, # 1.5570632219314575, 1.4853101, 1.3855901956558228, 4.590245246887207, 4.931698, 4.860433101654053, # 4.329430103302002, 3.885613441467285] # timelist = [1590723152.54412, 1590723152.599881, 1590723152.6565528, 1590723152.7145152, 1590723152.7717779, # 1590723152.8289044, 1590723152.8841283, 1590723152.9413185, 1590723152.9963236, 1590723153.051572, # 1590723153.1083086, 1590723153.1644797, 1590723153.2196696, 1590723153.2749991, 1590723153.3315353, # 1590723153.388707, 1590723153.4455416, 1590723153.5003061, 1590723153.5613267, 1590723153.617249, # 1590723153.674275, 1590723153.7310069, 1590723153.7860005, 1590723153.8424776, 1590723153.8966901, # 1590723153.9523175, 1590723154.0071263, 1590723154.06228, 1590723154.1192317, 1590723154.174128, # 1590723154.2299175, 1590723154.2853584, 1590723154.3413773, 1590723154.3956435, 1590723154.4522626, # 1590723154.507029, 1590723154.5625625, 1590723154.621313, 1590723154.6772866, 1590723154.7329192] list2array(listx, listy, listz, timelist) ``` #### File: 505788057/RoboticArm-Ball/object_zed.py ```python import numpy as np import os import six.moves.urllib as urllib import sys import tensorflow as tf import collections import statistics import math import tarfile import os.path import CaliPlot from threading import Lock, Thread from time import sleep import time import cv2 # ZED imports import pyzed.sl as sl sys.path.append('utils') # ## Object detection imports from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util def load_image_into_numpy_array(image): ar = image.get_data() ar = ar[:, :, 0:3] (im_height, im_width, channels) = image.get_data().shape return np.array(ar).reshape((im_height, im_width, 3)).astype(np.uint8) def load_depth_into_numpy_array(depth): ar = depth.get_data() ar = ar[:, :, 0:4] (im_height, im_width, channels) = depth.get_data().shape return np.array(ar).reshape((im_height, im_width, channels)).astype(np.float32) lock = Lock() # width = 704 # height = 416 width = 1280 height = 720 # width = 672 # height = 376 confidence = 0.55 image_np_global = np.zeros([width, height, 3], dtype=np.uint8) depth_np_global = np.zeros([width, height, 4], dtype=np.float) exit_signal = False new_data = False # ZED image capture thread function def capture_thread_func(svo_filepath=None): global image_np_global, depth_np_global, exit_signal, new_data zed = sl.Camera() # Create a InitParameters object and set configuration parameters input_type = sl.InputType() if svo_filepath is not None: input_type.set_from_svo_file(svo_filepath) init_params = sl.InitParameters(input_t=input_type) init_params.camera_resolution = sl.RESOLUTION.HD720 init_params.camera_fps = 60 # init_params.depth_mode = sl.DEPTH_MODE.PERFORMANCE init_params.depth_mode = sl.DEPTH_MODE.ULTRA init_params.coordinate_units = sl.UNIT.METER init_params.svo_real_time_mode = False # Open the camera err = zed.open(init_params) print(err) while err != sl.ERROR_CODE.SUCCESS: err = zed.open(init_params) print(err) sleep(1) image_mat = sl.Mat() depth_mat = sl.Mat() runtime_parameters = sl.RuntimeParameters() image_size = sl.Resolution(width, height) while not exit_signal: if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS: zed.retrieve_image(image_mat, sl.VIEW.LEFT, resolution=image_size) zed.retrieve_measure(depth_mat, sl.MEASURE.XYZRGBA, resolution=image_size) lock.acquire() image_np_global = load_image_into_numpy_array(image_mat) depth_np_global = load_depth_into_numpy_array(depth_mat) new_data = True lock.release() sleep(0.01) zed.close() xlist = [] ylist = [] zlist = [] timelist = [] def display_objects_distances(image_np, depth_np, num_detections, boxes_, classes_, scores_, category_index): global xlist, ylist, zlist box_to_display_str_map = collections.defaultdict(list) box_to_color_map = collections.defaultdict(str) research_distance_box = 20 for i in range(num_detections): if scores_[i] > confidence: box = tuple(boxes_[i].tolist()) if classes_[i] in category_index.keys(): class_name = category_index[classes_[i]]['name'] # display_str = str(class_name) # if not display_str: # display_str = '{}%'.format(int(100 * scores_[i])) # else: # display_str = '{}: {}%'.format(display_str, int(100 * scores_[i])) # Find object distance # print(box) ymin, xmin, ymax, xmax = box x_center = int(xmin * width + (xmax - xmin) * width * 0.5) y_center = int(ymin * height + (ymax - ymin) * height * 0.5) x_vect = [] y_vect = [] z_vect = [] min_y_r = max(int(ymin * height), int(y_center - research_distance_box)) min_x_r = max(int(xmin * width), int(x_center - research_distance_box)) max_y_r = min(int(ymax * height), int(y_center + research_distance_box)) max_x_r = min(int(xmax * width), int(x_center + research_distance_box)) # print(max_y_r - min_y_r) # print(max_x_r - min_x_r) if min_y_r < 0: min_y_r = 0 if min_x_r < 0: min_x_r = 0 if max_y_r > height: max_y_r = height if max_x_r > width: max_x_r = width # x_vect.append(depth_np[y_center,x_center, 0]) # y_vect.append(depth_np[y_center,x_center, 1]) # z_vect.append(depth_np[y_center,x_center, 2]) for j_ in range(min_y_r, max_y_r): for i_ in range(min_x_r, max_x_r): # print(depth_np) z = depth_np[j_, i_, 2] # 如果z不是空值或者不是无限大的数字 if not np.isnan(z) and not np.isinf(z): # print(depth_np[j_, i_, 0]) # print(depth_np[j_, i_, 1]) # print(z) x_vect.append(depth_np[j_, i_, 0]) y_vect.append(depth_np[j_, i_, 1]) z_vect.append(z) if len(x_vect) > 0: x = statistics.median(x_vect) y = statistics.median(y_vect) z = statistics.median(z_vect) xlist.append(x) ylist.append(y) zlist.append(z) timelist.append(time.time()) distance = math.sqrt(x * x + y * y + z * z) display_str = 'x:' + str('% 4.3f' % x) + ' y:' + str('% 4.3f' % y) + ' z:' + str('% 4.3f' % z) display_str = display_str + " " + str('% 6.2f' % distance) + " m " print(display_str) box_to_display_str_map[box].append(display_str) box_to_color_map[box] = vis_util.STANDARD_COLORS[classes_[i] % len(vis_util.STANDARD_COLORS)] for box, color in box_to_color_map.items(): ymin, xmin, ymax, xmax = box vis_util.draw_bounding_box_on_image_array( image_np, ymin, xmin, ymax, xmax, color=color, thickness=4, display_str_list=box_to_display_str_map[box], use_normalized_coordinates=True) return image_np def main(args): global xlist, ylist, zlist, timelist svo_filepath = None if len(args) > 1: svo_filepath = args[1] # This main thread will run the object detection, the capture thread is loaded later # What model to download and load MODEL_NAME = 'fast_rcnn_inception_v2_coco_1000' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_FROZEN_GRAPH = 'data/' + MODEL_NAME + '/frozen_inference_graph.pb' # Check if the model is already present if not os.path.isfile(PATH_TO_FROZEN_GRAPH): print("The model " + MODEL_NAME + " is not exit.") print('Please check the .pb file path.') os._exit(0) # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'tennis_label_map.pbtxt') NUM_CLASSES = 1 # Start the capture thread with the ZED input print("Starting the ZED") capture_thread = Thread(target=capture_thread_func, kwargs={'svo_filepath': svo_filepath}) capture_thread.start() # Shared resources global image_np_global, depth_np_global, new_data, exit_signal # Load a (frozen) Tensorflow model into memory. print("Loading model " + PATH_TO_FROZEN_GRAPH + '\n') detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.compat.v1.GraphDef() with tf.io.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Limit to a maximum of 50% the GPU memory usage taken by TF https://www.tensorflow.org/guide/using_gpu config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.6 # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Detection with detection_graph.as_default(): with tf.compat.v1.Session(config=config, graph=detection_graph) as sess: while not exit_signal: # Expand dimensions since the model expects images to have shape: [1, None, None, 3] if new_data: lock.acquire() image_np = np.copy(image_np_global) depth_np = np.copy(depth_np_global) new_data = False lock.release() image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) num_detections_ = num_detections.astype(int)[0] if num_detections_> 0 : # Visualization of the results of a detection. image_np = display_objects_distances( image_np, depth_np, num_detections_, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index) else: print('Do not detect.') cv2.imshow('ZED object detection', cv2.resize(image_np, (width, height))) # sleep(1) if cv2.waitKey(10) & 0xFF == ord('q'): cv2.destroyAllWindows() exit_signal = True else: sleep(0.01) sess.close() exit_signal = True # CaliPlot.list2array(xlist, ylist, zlist, timelist) # filename = 'write_data.txt' # with open(filename, 'a') as f: # 如果filename不存在会自动创建, 'w'表示写数据,写之前会清空文件中的原有数据! # f.write(str(xlist) + '\n') # f.write(str(ylist) + '\n') # f.write(str(zlist) + '\n') # f.write(str(timelist) + '\n') capture_thread.join() if __name__ == '__main__': main(sys.argv) ```
{ "source": "507C/Maxwell-Demon-Game", "score": 4 }
#### File: 507C/Maxwell-Demon-Game/BallsAndWalls.py ```python import taichi as ti from Rigid2dBody import Circles, AABBs from random import random import math __author__ = "507C" __credits__ = ["507C", "Y7K4"] __version__ = "1.0.1" __maintainer__ = "507C" ''' 2d balls for the maxwell's demon game. Each object represent a group of balls. ''' @ti.data_oriented class Balls(Circles): def __init__(self, N, mass, pos_x, pos_y, theta, radius, init_speed, elasticity) -> None: pos = ti.Vector.field(2, ti.f32, shape=N) vel = ti.Vector.field(2, ti.f32, shape=N) for i in range(N): pos[i] = ti.Vector([pos_x[i], pos_y[i]]) vel[i] = ti.Vector([ti.cos(theta[i]), ti.sin(theta[i])]) * init_speed super().__init__(N, mass, pos, radius, elasticity, vel) ''' True if all balls are in the given area(either left half or right half). ''' def detect_success(self, left=True): for i in range(self.n): if left and self.pos[i][0] + self.radius > 0.5: return False if not left and self.pos[i][0] - self.radius < 0.5: return False return True ''' The number of balls in the given area(either left half or right half). ''' def success_ball_number(self, left=True): num = 0 for i in range(self.n): if left and self.pos[i][0] + self.radius < 0.5: num += 1 if not left and self.pos[i][0] - self.radius > 0.5: num += 1 return num ''' Calculate kinetic energy. Help with testing, not used in game itself. ''' @ti.kernel def get_kinetic_energy(self) -> ti.f32: k = 0.0 for i in range(self.n): k += self.mass * self.vel[i].norm() ** 2 k /= 2.0 return k ''' Calculate momentum x dir. Help with testing, not used in game itself. ''' @ti.kernel def get_momentum_x(self) -> ti.f32: p = ti.Vector([0.0, 0.0]) for i in range(self.n): p += self.mass * self.vel[i] return p[0] ''' Calculate momentum y dir. Help with testing, not used in game itself. ''' @ti.kernel def get_momentum_y(self) -> ti.f32: p = ti.Vector([0.0, 0.0]) for i in range(self.n): p += self.mass * self.vel[i] return p[1] ''' Walls for the maxwell's demon game. consist of the 4 boundaries and 2 moveable walls in the middle. ''' @ti.data_oriented class Walls(AABBs): def __init__(self, elasticity) -> None: N, mass = 6, 0 topleft = ti.Vector.field(2, ti.f32, shape=N) bottomright = ti.Vector.field(2, ti.f32, shape=N) vel_walls = ti.Vector.field(2, ti.f32, shape=N) topleft[0], bottomright[0] = ti.Vector([0, 0]), ti.Vector([0.01, 1]) topleft[1], bottomright[1] = ti.Vector([0.99, 0]), ti.Vector([1, 1]) topleft[2], bottomright[2] = ti.Vector([0.01, 0]), ti.Vector([0.99, 0.01]) topleft[3], bottomright[3] = ti.Vector([0.01, 0.99]), ti.Vector([0.99, 1]) topleft[4], bottomright[4] = ti.Vector([0.495, 0.01]), ti.Vector([0.505, 0.45]) topleft[5], bottomright[5] = ti.Vector([0.495, 0.55]), ti.Vector([0.505, 0.99]) for i in range(N): vel_walls[i] = ti.Vector([0, 0]) # all still, no velocity super().__init__(N, mass, topleft, bottomright, elasticity, vel_walls) ''' center walls move by maxwell's demon, direction either up or down ''' def walls_move(self, up=True, step=0.02): if up: if self.bottomright[4][1] > step: self.bottomright[4][1] -= step self.topleft[5][1] -= step else: if self.topleft[5][1] < 1 - step: self.bottomright[4][1] += step self.topleft[5][1] += step ''' Generate a ball's center position within the given range, and a random direction. ''' def generate_pos_dir(xmin, xmax, ymin, ymax, r): pos_x = (xmin + r) + random() * (xmax - xmin - 2 * r) pos_y = (ymin + r) + random() * (ymax - ymin - 2 * r) theta = random() * 2 * math.pi return pos_x, pos_y, theta ''' Generate center positions and random directions for a given number of balls in the game. ''' def generate_pos_dir_all(n, r): pos_x, pos_y, theta = [None]*n, [None]*n, [None]*n for i in range(n): sink = True while(sink): if (random() < 0.5): pos_x[i], pos_y[i], theta[i] = generate_pos_dir(0.01, 0.495, 0.01, 0.99, r) else: pos_x[i], pos_y[i], theta[i] = generate_pos_dir(0.505, 0.99, 0.01, 0.99, r) sink = False for j in range(i - 1): if (pos_x[i] - pos_x[j]) ** 2 + (pos_y[i] - pos_y[j]) ** 2 < r ** 2: sink = True return pos_x, pos_y, theta ``` #### File: 507C/Maxwell-Demon-Game/Rigid2dBody.py ```python import taichi as ti from random import random from random import seed __author__ = "507C" __credits__ = ["507C", "Y7K4"] __version__ = "1.0.1" __maintainer__ = "507C" ''' Rigid bodies. Non-deformable, no squashing or stretching allowed. ''' @ti.data_oriented class Rigid2dBodies: def __init__(self, N, mass, elasticity, vel_init) -> None: # 2d rigid body object-related field self.n = N self.mass = mass # set mass = 0 for mass = inf self.elasticity = elasticity self.vel = vel_init self.d_vel = ti.Vector.field(2, ti.f32, shape=self.n) self.inv_mass = mass # use inv_mass to save cal time in every itr and deal with inf mass case if self.mass == 0: self.inv_mass = 0 else: self.inv_mass = 1/self.mass def display(self, gui, color=0xffffff): pass @ti.func def clear_d_vel(self): for i in self.d_vel: self.d_vel[i] = ti.Vector([0.0, 0.0]) @ti.kernel def update(self, h: ti.f32): pass @staticmethod @ti.func def get_impulse(rv, normal, elasticity1, elasticity2, inv_mass1, inv_mass2): # relative velocity in terms of the normal direction vel_along_normal = rv[0] * normal[0] + rv[1] * normal[1] # Do not resolve if velocities are separating(impulse = 0) impulse = ti.Vector([0.0, 0.0]) # If not separating, calculate impulse if vel_along_normal < 0: e = min(elasticity1, elasticity2) j = -(1 + e) * vel_along_normal j /= inv_mass1 + inv_mass2 impulse = j * normal return impulse ''' Circles, each circle represented by a center pos and a radius ''' @ti.data_oriented class Circles(Rigid2dBodies): def __init__(self, N, mass, pos, radius, elasticity, vel_init) -> None: super().__init__(N, mass, elasticity, vel_init) self.pos = pos # pos of center self.radius = radius def display(self, gui, pic_size=600, color=0xffffff): gui.circles(self.pos.to_numpy(), radius=self.radius * pic_size, color=color) ''' resolve collision between bodies inside Circle object ''' @ti.kernel def compute_impulse_vs_self(self): for i in range(self.n): for j in range(self.n): # resolve collision. Update both for time saving. if i < j: diff = self.pos[j] - self.pos[i] if diff.norm() < 2 * self.radius: # relative velocity rv = self.vel[j] - self.vel[i] # normal relative position normal = diff / diff.norm() # get impulse impulse = Rigid2dBodies.get_impulse(rv, normal, self.elasticity, self.elasticity, self.inv_mass, self.inv_mass) # update both i and j self.d_vel[i] -= self.inv_mass * impulse self.d_vel[j] += self.inv_mass * impulse ''' resolve collision between Circle object and another Circle object ''' @ti.kernel def compute_impulse_vs_circle(self, circles: ti.template()): for i in range(self.n): for j in range(circles.n): # resolve collision diff = circles.pos[j] - self.pos[i] if diff.norm() < self.radius + circles.radius: # relative velocity rv = circles.vel[j] - self.vel[i] # normal relative position normal = diff / diff.norm() # get impulse impulse = Rigid2dBodies.get_impulse(rv, normal, self.elasticity, circles.elasticity, self.inv_mass, circles.inv_mass) # update d_vel[i] self.d_vel[i] -= self.inv_mass * impulse ''' resolve collision between Circle object and AABB object ''' @ti.kernel def compute_impulse_vs_AABB(self, aabbs: ti.template()): for i in range(self.n): for j in range(aabbs.n): #calculate normal pos_j = (aabbs.topleft[j] + aabbs.bottomright[j])/2 n = self.pos[i] - pos_j closest = n x_extent = abs(aabbs.topleft[j][0] - aabbs.bottomright[j][0]) / 2 y_extent = abs(aabbs.topleft[j][1] - aabbs.bottomright[j][1]) / 2 closest[0] = max(min(closest[0], x_extent), -x_extent) closest[1] = max(min(closest[1], y_extent), -y_extent) normal = n - closest # resolve collision if normal.norm() < self.radius: # relative velocity rv = - aabbs.vel[j] + self.vel[i] # normal relative position normal /= normal.norm() # get impulse impulse = Rigid2dBodies.get_impulse(rv, normal, self.elasticity, aabbs.elasticity, self.inv_mass, aabbs.inv_mass) # update d_vel[i] self.d_vel[i] += self.inv_mass * impulse @ti.kernel def update(self, h: ti.f32): # update vel and pos for i in self.vel: self.vel[i] += self.d_vel[i] self.pos[i] += h * self.vel[i] # clear d_vel for the next itr self.clear_d_vel() ''' Axis Aligned Bounding Boxes, each box represent by the topleft point and the bottomright point ''' @ti.data_oriented class AABBs(Rigid2dBodies): def __init__(self, N, mass, topleft, bottomright, elasticity, vel_init) -> None: super().__init__(N, mass, elasticity, vel_init) self.topleft = topleft self.bottomright = bottomright def display(self, gui, color=0xffffff): for i in range(self.n): gui.rect(self.topleft[i], self.bottomright[i], radius=1, color=color) @ti.kernel def update(self, h: ti.f32): # update vel and pos for i in self.vel: self.vel[i] += self.d_vel[i] self.topleft[i] += h * self.vel[i] self.bottomright[i] += h * self.vel[i] # clear d_vel for the next itr self.clear_d_vel() ```
{ "source": "509854708/genshin_task-resin-expedition_alert", "score": 2 }
#### File: alert/notifiers/discord.py ```python from .basenotifier import BaseNotifier as Base from ..config import config class Discord(Base): def __init__(self): self.name = 'Discord' self.token = config.DISCORD_WEBHOOK self.retcode_value = 204 def send(self, text, status, desp): url = config.DISCORD_WEBHOOK data = { 'embeds': [{ 'title': f'{text}{status}', 'description': desp, 'color': "15553898" }] } return self.push('post', url, json=data) ``` #### File: alert/notifiers/pushdeer.py ```python from .basenotifier import BaseNotifier as Base from ..config import config class Pushdeer(Base): def __init__(self): self.name = 'Pushdeer' self.token = config.PUSHDEER_KEY self.retcode_key = 'code' self.retcode_value = 0 def send(self, text, status, desp): url = 'https://api2.pushdeer.com/message/push' data = { 'pushkey': config.PUSHDEER_KEY, 'text': f'{text} {status}', 'desp': desp, 'type': 'markdown' } return self.push('post', url, data=data) ```
{ "source": "50kawa/StackGAN-v2", "score": 2 }
#### File: code/auto-encoder-pokemon/model.py ```python import random import torch import torch.nn as nn import torch.nn.parallel from miscc.config import cfg from torch.autograd import Variable import torch.nn.functional as F from torchvision import models import torch.utils.model_zoo as model_zoo class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.hid_dim = cfg.CHARLSTM.DIMENSION self.n_layers = 1 self.word_embeds = nn.Embedding(cfg.CHAR.VOCABSIZE, cfg.CHARVEC.DIMENSION) self.pokemon_embed = nn.Linear(cfg.POKEMON.SIZE, cfg.POKEMON.DIMENSION) self.rnn = nn.LSTM(cfg.CHARVEC.DIMENSION + cfg.POKEMON.DIMENSION, cfg.CHARLSTM.DIMENSION, 1, dropout=cfg.CHARLSTM.DROPOUT) self.dropout = nn.Dropout(cfg.CHARLSTM.DROPOUT) def forward(self, sentence, embedding): embeds = self.word_embeds(Variable(sentence)) concated_emb = torch.cat((embeds, self.pokemon_embed(embedding).repeat(len(sentence), 1, 1)), dim=2) lstm_out, (hn, cn) = self.rnn(concated_emb) return hn, cn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.output_dim = cfg.CHAR.VOCABSIZE self.hid_dim = cfg.CHARLSTM.DIMENSION self.n_layers = 1 self.word_embeds = nn.Embedding(cfg.CHAR.VOCABSIZE + 1, cfg.CHARVEC.DIMENSION) self.pokemon_embed = nn.Linear(cfg.POKEMON.SIZE, cfg.POKEMON.DIMENSION) self.rnn = nn.LSTM(cfg.CHARVEC.DIMENSION + cfg.POKEMON.DIMENSION, cfg.CHARLSTM.DIMENSION, 1, dropout=cfg.CHARLSTM.DROPOUT) self.fc_out = nn.Linear(cfg.CHARLSTM.DIMENSION, cfg.CHAR.VOCABSIZE + cfg.POKEMON.SIZE) self.dropout = nn.Dropout(cfg.CHARLSTM.DROPOUT) def forward(self, sentence, embedding, hidden, cell): sentence = sentence.unsqueeze(0) embeds = self.word_embeds(Variable(sentence)) concated_emb = torch.cat((embeds, self.pokemon_embed(embedding).unsqueeze(0)), dim=2) output, (hidden, cell) = self.rnn(concated_emb, (hidden, cell)) prediction = self.fc_out(output.squeeze(0)) output_word = prediction[:, :cfg.CHAR.VOCABSIZE] output_emb = prediction[:, cfg.CHAR.VOCABSIZE:] return output_word, output_emb, hidden, cell class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder self.device = device assert encoder.module.hid_dim == decoder.module.hid_dim, \ "Hidden dimensions of encoder and decoder must be equal!" assert encoder.module.n_layers == decoder.module.n_layers, \ "Encoder and decoder must have equal number of layers!" def forward(self, pokemon_words, pokemon_emb, teacher_forcing_ratio=0.5): # src = [src len, batch size] # src = [src len, batch size] # teacher_forcing_ratio is probability to use teacher forcing # e.g. if teacher_forcing_ratio is 0.75 we use ground-truth inputs 75% of the time batch_size = pokemon_words.shape[1] src_len = pokemon_words.shape[0] src_vocab_size = self.decoder.module.output_dim # tensor to store decoder outputs outputs = torch.zeros(src_len, batch_size, src_vocab_size).to(self.device) # last hidden state of the encoder is used as the initial hidden state of the decoder hidden, cell = self.encoder(pokemon_words, pokemon_emb) # first input to the decoder is the <sos> tokens input = torch.tensor([cfg.CHAR.VOCABSIZE]).repeat(cfg.TRAIN.BATCH_SIZE) input_pokemon_emb = torch.zeros(cfg.TRAIN.BATCH_SIZE, cfg.POKEMON.SIZE) for t in range(src_len): # insert input token embedding, previous hidden and previous cell states # receive output tensor (predictions) and new hidden and cell states output_word, output_emb, hidden, cell = self.decoder(input, input_pokemon_emb, hidden, cell) # place predictions in a tensor holding predictions for each token outputs[t] = output_word # decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_forcing_ratio # get the highest predicted token from our predictions top1 = torch.argmax(output_word, dim=1) # if teacher forcing, use actual next token as next input # if not, use predicted token if teacher_force: input = pokemon_words[t] input_pokemon_emb = pokemon_emb else: input = top1 input_pokemon_emb = output_emb return outputs, output_emb ```
{ "source": "50mkw/mysite", "score": 2 }
#### File: mysite/rec/__init__.py ```python from rec.decorators import register from rec.filters import ( AllValuesFieldListFilter, BooleanFieldListFilter, ChoicesFieldListFilter, DateFieldListFilter, FieldListFilter, ListFilter, RelatedFieldListFilter, RelatedOnlyFieldListFilter, SimpleListFilter, ) from rec.helpers import ACTION_CHECKBOX_NAME from rec.options import ( HORIZONTAL, VERTICAL, ModelRec, StackedInline, TabularInline, ) from rec.sites import RecSite, site from django.utils.module_loading import autodiscover_modules __all__ = [ "register", "ACTION_CHECKBOX_NAME", "ModelRec", "HORIZONTAL", "VERTICAL", "StackedInline", "TabularInline", "ListFilter", "SimpleListFilter", "FieldListFilter", "BooleanFieldListFilter", "RelatedFieldListFilter", "ChoicesFieldListFilter", "DateFieldListFilter", "AllValuesFieldListFilter", "RelatedOnlyFieldListFilter", ] def autodiscover(): autodiscover_modules('rec', register_to=site) default_app_config = 'rec.apps.RecConfig' ```
{ "source": "50m-regent/CGKit", "score": 3 }
#### File: cgkit/scaffolds/card.py ```python class Card: def __init__(self, data=None): if data == None: self.id = 0 self.name = 'unnamed' self.status = {} else: self.id = data.id self.name = data.name self.status = data.status ``` #### File: cgkit/scaffolds/game.py ```python from random import randint class Game: def __init__(self, players=[]): self.players = players def init(self): self.turn = randint(0, len(players) - 1) ```
{ "source": "50shashwat/factik", "score": 3 }
#### File: factik/flask/RestApi.py ```python import flask import sys import pickle import joblib import pandas as pd from sklearn.utils import shuffle import random from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import metrics import string import numpy as np import re import nltk import pickle from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer from flask import request, jsonify from sklearn.metrics import log_loss app = flask.Flask(__name__) app.config["DEBUG"] = True @app.route('/getPrediction/', methods=['GET']) def home(): print("Output from Python") fname = 'pickle_file_name.pkl' model = joblib.load(open(fname, 'rb')) infil = open("feature.pkl",'rb') new_bow = pickle.load(infil) infil.close() if 'inputtext' in request.args: id = request.args['inputtext'] else: return "Error: No id field provided. Please specify an input text." input = [id] aah = new_bow.transform(input).toarray() var = model.predict(aah) probs = model.predict_proba(aah) x = probs[:,0] y = probs[:,1] x = x.tolist() y = y.tolist() books = [ {'id': 'Fake Percentage', 'Percentage': x }, {'id': 'True Percentage', 'Percentage': y} ] return jsonify(books) app.run(host='0.0.0.0') ```
{ "source": "50sven/carla_rllib", "score": 3 }
#### File: carla_rllib/utils/seeding.py ```python import random import os import numpy as np def set_seed(i): try: import MPI rank = MPI.COMM_WORLD.Get_rank() except ImportError: rank = 0 myseed = i + 1000 * rank if i is not None else None try: import tensorflow as tf tf.set_random_seed(myseed) except ImportError: pass try: import torch torch.manual_seed(myseed) torch.cuda.manual_seed_all(myseed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False except ImportError: pass np.random.seed(myseed) random.seed(myseed) os.environ['PYTHONHASHSEED'] = str(seed) ```
{ "source": "50sven/Exploring-Historical-Text-Corpora-Using-Word-and-Document-Embeddings", "score": 2 }
#### File: Exploring-Historical-Text-Corpora-Using-Word-and-Document-Embeddings/dashboard/run_app.py ```python from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html import pandas as pd import pickle import plotly.graph_objs as go from geopy import Nominatim from Doc2Vec_Evaluation import get_most_similar_tokens from app import app from components import Header, Table, Scatter, BarOverview, Map, Dropdown, BarSpecific, DocSpecific, Author geolocator = Nominatim(user_agent="geolocator") # Overview overview_tsne = pickle.load(open("./assets/data_overview_tsne.pkl", "rb")) overview_persons = pickle.load(open("./assets/data_overview_persons_by_tag.pkl", "rb")) overview_places = pickle.load(open("./assets/data_overview_places_by_tag.pkl", "rb")) # Book author_data = pd.read_csv("./assets/data_author_information.csv", delimiter="|") id_mapping = pickle.load(open("./assets/data_id_mapping.pkl", "rb")) specific_entities = pickle.load(open("./assets/data_specific_entities_by_tag.pkl", "rb")) doc_similarities = pickle.load(open("./assets/data_doc_similarities.pkl", "rb")) # Word vocabulary = list(id_mapping.keys())[308:] remaining_persons = pickle.load(open('./assets/data_remaining_persons.pkl', 'rb')) remaining_places = pickle.load(open('./assets/data_remaining_places.pkl', 'rb')) cos_sim_matrix = pd.read_pickle("./assets/data_cosine_similarity_matrix.pkl") overview = html.Div(id="body1", children=[ Header("overview"), html.Div(id="ColumnBlockOverview", children=[ Scatter(overview_tsne), BarOverview(overview_persons), html.Div(id="tableHeadline", children=[ html.H4(["Collection of Books"]) ]), Table(author_data[["Title", "Author", "Publishing Date"]]), ]), html.Div(id="MapBlock", children=[ Map(overview_places) ]) ]) book = html.Div(id="body1", children=[ Header("book"), Dropdown("book", list(specific_entities.keys())), html.Div(id="ColumnBlockBook", children=[ Author(), html.Div(id="specTitBox", children=[ html.H1(id="specificTitle", children=[]) ]), html.Div(id="DocSimDiv", children=[ html.H1(id="DocSimHead", children=["Most similar Documents"]), DocSpecific(), ]), BarSpecific(), ]), html.Div(id="MapBlock", children=[ Map(overview_places) ]) ]) word = html.Div(id="body1", children=[ Header("word"), Dropdown("word", vocabulary), html.Div(id="ColumnBlockWord", children=[ html.Div(id="specTitBox", children=[ html.H1(id="specificTitle", children=[]) ]), html.Div(id="DocSimDiv", children=[ html.H1(id="DocSimHead", children=["Most similar Documents"]), DocSpecific(), ]), BarSpecific(), ]), html.Div(id="MapBlock", children=[ Map(overview_places) ]) ]) app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ]) @app.callback(Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/' or \ pathname == '/dashboard/' or \ pathname == '/dashboard/overview' or \ pathname == '/dashboard/overview/': return overview if pathname == '/book' or \ pathname == '/dashboard/book' or \ pathname == '/dashboard/book/': return book if pathname == '/word' or \ pathname == '/dashboard/word' or \ pathname == '/dashboard/word/': return word else: return "404 Page not found" @app.callback(Output('specificTitle', 'children'), [Input('dropdown', 'value')]) def update_specific_title(value): if not value: return ["--Select an instance from the dropdown menu--"] title = [value] return title @app.callback(Output('AuthorBox', 'children'), [Input('dropdown', 'value')]) def update_author_information(value): data = author_data[author_data.Title == value] image = data["author_image"].values[0] if image == "-": image = app.get_asset_url('profile_dummy.png') author = data["Author"].values[0].upper() origin = data["origin"].values[0] date_birth = data["date_birth"].values[0] birth_place = data["birth_place"].values[0] date_death = data["date_death"].values[0] occupation = data["occupation"].values[0] pub_date = data["Publishing Date"].values[0] link = data["author_wikidata_id"].values[0] if link == "-": link = "http://www.google.com" return [html.Div(id="AuthorImage", children=[ html.Img(id="AImg", src=image) ]), html.Div(id="AuthorData", children=[ html.H1("Author Information"), html.P(f"Name: {author}"), html.P(f"Origin: {origin}"), html.P(f"Born: {date_birth}, {birth_place}"), html.P(f"Date of death: {date_death}"), html.P(f"Occupation: {occupation}"), html.P(f"Publishing date of book: {pub_date}"), html.Br(), html.A("Link to Wikidata", href=link, target="_blank") ]) ] @app.callback(Output('PersChart', 'figure'), [Input('dropdown', 'value'), Input('url', 'pathname')]) def update_pers_chart(value, page): if not value: return if "book" in page: data = specific_entities[value]["persons"] persons = [p.title() for p in data["names"]] quant = data["frequency"] title = "<b>Most common Persons</b>" if "word" in page: persons, quant = get_most_similar_tokens(value, cos_sim_matrix, kind="persons", num=10, places=None, persons=remaining_persons) title = "<b>Most similar Persons</b>" figure = dict( data=[go.Bar( x=quant, y=persons, orientation='h', marker={ 'color': '#ff4058', }, )], layout=dict( title=title, font=dict(family='Soria, Times New Roman, Times, serif', color='#002C77', size=19), margin=dict(l=10, r=10, t=50, b=30), plot_bgcolor="rgba(0,0,0,0)", paper_bgcolor="rgba(0,0,0,0)", xaxis=dict(tick0=0, dtick=max(quant)), yaxis=dict(ticks='outside', showgrid=True, showline=False, showticklabels=False), annotations=[dict(xref='paper', yref='y', x=0, y=yd, font=dict( color="#000000", size=19 ), text=str(yd), showarrow=False) for xd, yd in zip(quant, persons)] ) ) return figure @app.callback(Output('DocSim', 'data'), [Input('dropdown', 'value'), Input('url', 'pathname')]) def update_doc_sim_table(value, page): if not value: return if "book" in page: data = doc_similarities[value] books = data["books"] similarities = data["similarities"] if "word" in page: books, similarities = get_most_similar_tokens(value, cos_sim_matrix, kind="docs", num=10, places=None, persons=None) books = books[::-1] similarities = similarities[::-1] data = [{"Book": books[i], "Similarity": str(round(similarities[i], 4))} for i in range(len(books))] return data @app.callback(Output('MapGraph', 'figure'), [Input('dropdown', 'value'), Input('url', 'pathname')]) def update_map(value, page): if not value: return pl, quant, lon, lat = [], [], [], [] if "book" in page: places = specific_entities[value]["places"]["names"][-10:] frequency = specific_entities[value]["places"]["frequency"][-10:] title = "<b>Most common Places</b>" for idx, p in enumerate(places): try: location = geolocator.geocode(p) lon += [location.longitude] lat += [location.latitude] pl += [f"{p.title()}<br>Frequency: {frequency[idx]}"] quant += [frequency[idx]] except: pass if "word" in page: places, similarities = get_most_similar_tokens(value, cos_sim_matrix, kind="places", num=10, places=remaining_places, persons=None) title = "<b>Most similar Places</b>" for idx, p in enumerate(places): try: location = geolocator.geocode(p) lon += [location.longitude] lat += [location.latitude] pl += [f"{p.title()}<br>Similarity: {similarities[idx]}"] quant += [similarities[idx]] except: pass figure = dict( data=[dict( type='scattergeo', lon=lon, lat=lat, text=pl, hoverinfo='text', marker=dict( symbol='circle', color="#B22234", opacity=0.8, size=quant, sizemode='area', sizeref=max(quant) / (5.**3), sizemin=2, line=dict(width=0) ) )], layout=dict( title=title, font=dict(family='Soria, Times New Roman, Times, serif', color='#B22234', size=19), dragmode="pan", geo=dict( showocean=True, oceancolor="rgba(0, 44, 119, 0.7)", showland=True, landcolor="#ededed", lonaxis=dict(range=[min(lon) - 10, max(lon) + 10]), # [-125, 35] lataxis=dict(range=[min(lat) - 10, max(lat) + 10]), # [10, 70] showcountries=True, countrywidth=0.5, subunitwidth=0.5, projection=dict(type="equirectangular"), ), margin=dict(l=0, r=0, t=50, b=30), hovermode="closest", paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', ) ) return figure if __name__ == '__main__': app.run_server(debug=True, host='0.0.0.0', port=1880) ``` #### File: Exploring-Historical-Text-Corpora-Using-Word-and-Document-Embeddings/Data_Handling/Link_wikidata.py ```python import pandas as pd import requests from wikidata.client import Client import time import datetime # Link each author of a book with its wikidata page start = time.time() def check_human(id): url = 'https://query.wikidata.org/sparql' query = 'PREFIX entity: <http://www.wikidata.org/entity/> ' \ 'SELECT ?human ' \ 'WHERE { entity:' + id + ' wdt:P31 ?human. ' \ '} ' response = requests.get(url, params={'format': 'json', 'query': query}) data = response.json() if data['results']['bindings']: if 'Q5' in data['results']['bindings'][0]['human']['value']: human = True else: human = False return human df = pd.read_csv('../data/1210_books_info.csv') index = 0 url = 'https://query.wikidata.org/sparql' no_identifier = 1 no_author_wiki_id = set() item_counter = 0 country_counter = 0 birth_counter = 0 death_counter = 0 birthplace_counter = 0 gender_counter = 0 occupation_counter = 0 image_counter = 0 for author in df['Author']: # add wikidata identifier if ';' in author: author = author.split(';')[0] # https://query.wikidata.org/#SELECT%20distinct%20%3FitemLabel%20%3FitemDescription%20%3Fcountry%20%0A%3Fdate_birth%20%3Fdate_death%20%3Fbirth_place%20%3Fgender%20%3Foccupation%0AWHERE%20%0A%7B%0A%20%20%3FitemLabel%20%3Flabel%20%27John%20G.%20B.%20Adams%27%40en.%0A%20%20%3FitemLabel%20wdt%3AP31%20wd%3AQ5%20.%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP21%20%3Fgender%20.%7D%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP27%20%3Fcountry%20.%7D%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP569%20%3Fdate_birth%20.%7D%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP570%20%3Fdate_death%20.%7D%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP19%20%3Fbirth_place%20.%7D%0A%20%20OPTIONAL%20%7B%20%3FitemLabel%20wdt%3AP106%20%3Foccupation%20.%7D%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%0A%09%09bd%3AserviceParam%20wikibase%3Alanguage%20%22en%22%20.%0A%09%7D%0A%20%20%7D # https://query.wikidata.org/#SELECT%20distinct%20%3Fitem%20%3FitemLabel%20%3FitemDescription%20%3FcountryLabel%20%0A%3Fdate_birth%20%3Fdate_death%20%3Fbirth_placeLabel%20%3FgenderLabel%20%3FoccupationLabel%20%3Fimage%0AWHERE%20%0A%7B%0A%20%20%3Fitem%20%3Flabel%20%27Elizabeth%20Cary%20Agassiz%27%40en.%0A%20%20%3Fitem%20wdt%3AP31%20wd%3AQ5%20.%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP21%20%3Fgender%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP27%20%3Fcountry%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP569%20%3Fdate_birth%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP570%20%3Fdate_death%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP19%20%3Fbirth_place%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP106%20%3Foccupation%20.%7D%0A%20%20OPTIONAL%20%7B%20%3Fitem%20wdt%3AP18%20%3Fimage%20.%7D%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%0A%09%09bd%3AserviceParam%20wikibase%3Alanguage%20%22en%22%20.%0A%09%7D%0A%20%20%7D sparql_query = 'SELECT distinct ?item ?itemLabel ?itemDescription ?countryLabel ?date_birth ?date_death ' \ '?birth_placeLabel ?genderLabel ?occupationLabel ?image ' \ 'WHERE { ' \ '?item ?label \'' + author + '\'@en. ' \ '?item wdt:P31 wd:Q5. ' \ 'OPTIONAL { ?item wdt:P21 ?gender .}' \ 'OPTIONAL { ?item wdt:P27 ?country .} ' \ 'OPTIONAL { ?item wdt:P569 ?date_birth .} ' \ 'OPTIONAL { ?item wdt:P570 ?date_death .} ' \ 'OPTIONAL { ?item wdt:P19 ?birth_place .} ' \ 'OPTIONAL { ?item wdt:P106 ?occupation .}' \ 'OPTIONAL { ?item wdt:P18 ?image .}' \ 'SERVICE wikibase:label { ' \ 'bd:serviceParam wikibase:language "en". ' \ '}' \ '}' r = requests.get(url, params={'format': 'json', 'query': sparql_query}) response = r.json() if response['results']['bindings']: occupation = "" for key in response['results']['bindings'][0]: if key == 'item': wikiid_binding0 = response['results']['bindings'][0]['item']['value'] df.loc[index, 'author_wikidata_id'] = response['results']['bindings'][0]['item']['value'] item_counter += 1 elif key == 'itemLabel': df.loc[index, 'author'] = response['results']['bindings'][0]['itemLabel']['value'] elif key == 'itemDescription': df.loc[index, 'author_description'] = response['results']['bindings'][0]['itemDescription']['value'] elif key == 'genderLabel': df.loc[index, 'gender'] = response['results']['bindings'][0]['genderLabel']['value'] gender_counter += 1 elif key == 'countryLabel': df.loc[index, 'origin'] = response['results']['bindings'][0]['countryLabel']['value'] country_counter += 1 elif key == 'date_birth': # todo how are only years handled? birth_dt = datetime.datetime.strptime(response['results']['bindings'][0]['date_birth']['value'], '%Y-%m-%dT%H:%M:%SZ') df.loc[index, 'date_birth'] = f'{birth_dt.day}/{birth_dt.month}/{birth_dt.year}' birth_counter += 1 elif key == 'birth_placeLabel': df.loc[index, 'birth_place'] = response['results']['bindings'][0]['birth_placeLabel']['value'] birthplace_counter += 1 elif key == 'date_death': death_dt = datetime.datetime.strptime(response['results']['bindings'][0]['date_death']['value'], '%Y-%m-%dT%H:%M:%SZ') df.loc[index, 'date_death'] = f'{death_dt.day}/{death_dt.month}/{death_dt.year}' death_counter += 1 elif key == 'occupationLabel': df.loc[index, 'occupation'] = response['results']['bindings'][0]['occupationLabel']['value'] occupation_counter += 1 elif key == 'image': df.loc[index, 'author_image'] = response['results']['bindings'][0]['image']['value'] image_counter += 1 len_bindings = len(response['results']['bindings']) counter = 0 if len_bindings > 1: occupation = "" for occup_result in response['results']['bindings']: if counter == len_bindings: break if 'occupationLabel' in response['results']['bindings'][counter].keys() and response['results']['bindings'][counter]['item']['value'] == wikiid_binding0: if occupation: # todo string als liste occupation += ', ' + response['results']['bindings'][counter]['occupationLabel']['value'] else: occupation += response['results']['bindings'][counter]['occupationLabel']['value'] counter += 1 df.loc[index, 'occupation'] = str(occupation) index += 1 print(f'--- Processed author: {author} ; Index: {index}') print(f'{item_counter / index * 100} % items were found on wikidata.') print(f'{gender_counter / index * 100} % gender information were found on wikidata.') print(f'{country_counter / index * 100} % origin information were found on wikidata.') print(f'{birth_counter / index * 100} % birth information were found on wikidata.') print(f'{birthplace_counter / index * 100} % birthplace information were found on wikidata.') print(f'{death_counter / index * 100} % death information were found on wikidata.') print(f'{occupation_counter / index * 100} % occupation information were found on wikidata.') print(f'{image_counter / index * 100} % images were found on wikidata.') time.sleep(33) df.to_csv('../data/' + str(datetime.datetime.now().month) + str(datetime.datetime.now().day) + '_books_info_wiki.csv', index=False, sep='|') print(f'Time Tracking: in total it took {time.time()-start}') ```
{ "source": "50sven/ros_rllib", "score": 2 }
#### File: src/ros_carla_rllib/memories.py ```python import torch from collections import deque class PPOBuffer(object): """ Replay Buffer to save samples for PPO and diagnostic training data """ def __init__(self, batch_size, norm_adv=True): # Samples self.obs = [[], [], []] self.actions = [] self.logps = [] self.values = [] self.returns = [] self.advantages = [] # Diagnostics self.episode_rewards = [] self.episode_lengths = [] self.norm_adv = norm_adv self.batch_size = batch_size self.buffer_size = 0 def append(self, obs_t, action_t, logp_t, value_t, return_t, advantage_t): """Adds a sample to the buffer""" self.obs[0].append(obs_t[0]) self.obs[1].append(obs_t[1]) self.obs[2].append(obs_t[2]) self.actions.append(action_t) self.logps.append(logp_t) self.values.append(value_t) self.returns.append(return_t) self.advantages.append(advantage_t) self.buffer_size += 1 def eject(self): """Prepares and returns the collected batch""" # Convert batch to tensors (obs, actions, logps, values, returns, advantages) = self.batch_to_tensor() # Normalize advantages if self.norm_adv: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) return obs, actions, logps, values, returns, advantages def batch_to_tensor(self): """Transforms batch to torch.Tensors""" # Convert arrays/vectors to torch.Tensors xV = torch.Tensor(self.obs[0]).float() xE = torch.Tensor(self.obs[1]).float() xO = torch.Tensor(self.obs[2]).float() # For LSTM # xO = [torch.Tensor(o).float() for o in self.obs[2]] obs = [xV, xE, xO] actions = torch.Tensor(self.actions).float() logps = torch.Tensor(self.logps).float() values = torch.Tensor(self.values).float() returns = torch.Tensor(self.returns).float() advantages = torch.Tensor(self.advantages).float() return obs, actions, logps, values, returns, advantages def flush(self): """Clears the buffer""" self.obs = [[], [], []] self.actions = [] self.logps = [] self.values = [] self.returns = [] self.advantages = [] self.episode_rewards = [] self.episode_lengths = [] self.buffer_size = 0 def __len__(self): """Returns the current batch size""" return self.buffer_size class PPOBuffer2(object): """ Replay Buffer to save samples for PPO and diagnostic training data """ def __init__(self, batch_size, norm_adv=False): # Samples self.obs = [deque(maxlen=batch_size), deque(maxlen=batch_size), deque(maxlen=batch_size)] self.actions = deque(maxlen=batch_size) self.logps = deque(maxlen=batch_size) self.values = deque(maxlen=batch_size) self.returns = deque(maxlen=batch_size) self.advantages = deque(maxlen=batch_size) # Diagnostics self.episode_rewards = deque(maxlen=batch_size) self.episode_lengths = deque(maxlen=batch_size) self.norm_adv = norm_adv self.batch_size = batch_size self.buffer_size = 0 def append(self, obs_t, action_t, logp_t, value_t, return_t, advantage_t): """Adds a sample to the buffer""" if self.buffer_size < self.batch_size: self.buffer_size += 1 self.obs[0].append(obs_t[0]) self.obs[1].append(obs_t[1]) self.obs[2].append(obs_t[2]) self.actions.append(action_t) self.logps.append(logp_t) self.values.append(value_t) self.returns.append(return_t) self.advantages.append(advantage_t) def eject(self): """Prepares and returns the collected batch""" # Convert batch to tensors (obs, actions, logps, values, returns, advantages) = self.batch_to_tensor() # Normalize advantages if self.norm_adv: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) self.buffer_size = 0 return obs, actions, logps, values, returns, advantages def batch_to_tensor(self): """Transforms batch to torch.Tensors""" # Convert arrays/vectors to torch.Tensors xV = torch.Tensor(self.obs[0]).float() xE = torch.Tensor(self.obs[1]).float() xO = torch.Tensor(self.obs[2]).float() # For LSTM # xO = [torch.Tensor(o).float() for o in self.obs[2]] obs = [xV, xE, xO] actions = torch.Tensor(self.actions).float() logps = torch.Tensor(self.logps).float() values = torch.Tensor(self.values).float() returns = torch.Tensor(self.returns).float() advantages = torch.Tensor(self.advantages).float() return obs, actions, logps, values, returns, advantages def __len__(self): """Returns the current batch size""" return self.buffer_size class A3CMemory(object): """ Memory to save n-steps """ def __init__(self): self.log_probs = [] self.entropies = [] self.values = [] self.rewards = [] def store(self, log_prob, entropy, value, reward): self.log_probs.append(log_prob) self.entropies.append(entropy) self.values.append(value) self.rewards.append(reward) def get_history(self): return iter(zip(self.log_probs[::-1], self.entropies[::-1], self.values[::-1], self.rewards[::-1])) def clear(self): self.log_probs = [] self.entropies = [] self.values = [] self.rewards = [] ``` #### File: src/ros_carla_rllib/policies.py ```python import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.distributions import MultivariateNormal, Beta class Model(nn.Module): def __init__(self, out_size): super(Model, self).__init__() # Visual self.conv1 = nn.Conv2d(3, 32, 8, 4) self.conv2 = nn.Conv2d(32, 64, 4, 2) self.conv3 = nn.Conv2d(64, 64, 3, 1) self.fcV1 = nn.Linear(12288, 512) # Numeric self.fcN1 = nn.Linear(18, 128) self.fcN2 = nn.Linear(128, 128) # Combined self.fcC1 = nn.Linear(512 + 128, 256) # Action self.fcOut = nn.Linear(256, out_size) def forward(self, obs): """ """ xV, xE, _ = obs[0], obs[1], obs[2] # Visual xV = F.relu(self.conv1(xV)) xV = F.relu(self.conv2(xV)) xV = F.relu(self.conv3(xV)) xV = torch.flatten(xV, 1) xV = F.relu(self.fcV1(xV)) # Numeric xE = F.relu(self.fcN1(xE)) xE = F.relu(self.fcN2(xE)) # Combined xC = torch.cat([xE, xV], 1) xC = F.relu(self.fcC1(xC)) # Output out = self.fcOut(xC) return out class Actor(nn.Module): def get_dist(self, obs): raise NotImplementedError def get_logp(self, pi, action): raise NotImplementedError def forward(self, obs, action=None): pi = self.get_dist(obs) logp = None if action is not None: logp = self.get_logp(pi, action) return pi, logp class BetaActor(Actor): def __init__(self, model): super(BetaActor, self).__init__() self.model = globals()[model](out_size=4) def get_dist(self, obs): concentration = self.model(obs) alpha = concentration[:, :2] beta = concentration[:, 2:] return Beta(alpha, beta) def get_logp(self, pi, action): return pi.log_prob(action).sum(1) class GaussianActor(Actor): def __init__(self, model): super(GaussianActor, self).__init__() self.model = globals()[model](out_size=2) log_std = np.array([0.55, -0.35], dtype=np.float32) self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) def get_dist(self, obs): mu = self.model(obs) std = torch.exp(self.log_std) return MultivariateNormal(mu, scale_tril=torch.diag_embed(std)) def get_logp(self, pi, action): return pi.log_prob(action) class Critic(nn.Module): def __init__(self, model): super(Critic, self).__init__() self.model = globals()[model](out_size=1) def forward(self, obs): """ """ return self.model(obs) class ActorCritic(object): def __init__(self, model, policy="gaussian", device="cpu"): policy = policy.capitalize() + "Actor" self.pi = globals()[policy](model).to(device) self.value_fn = Critic(model).to(device) def act(self, obs): """Returns (deterministic) action and state value""" with torch.no_grad(): pi = self.pi.get_dist(obs) value = self.value_fn(obs) return pi.mean.numpy(), value.item() def sample(self, obs): """Returns sampled action, log probability and state-value""" with torch.no_grad(): pi = self.pi.get_dist(obs) sample = pi.sample() logp = self.pi.get_logp(pi, sample) value = self.value_fn(obs) return sample.numpy(), logp.item(), value.item() ``` #### File: src/ros_carla_rllib/utils.py ```python import torch import numpy as np class RunningStatistics(object): # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm def __init__(self, epsilon=1e-4): self.Mean_ = 0.0 self.Var_ = 1.0 self.count = epsilon def mean(self): return self.Mean_ def var(self): return self.Var_ def std(self): return np.sqrt(self.Var_) def update(self, x): """ """ if isinstance(x, torch.Tensor): batch_mean = torch.mean(x, axis=0).item() batch_var = torch.var(x, axis=0).item() else: batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.Mean_, self.Var_, self.count = self.update_from_moments(self.Mean_, self.Var_, self.count, batch_mean, batch_var, batch_count) def update_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): """ """ delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + delta**2 * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count if __name__ == "__main__": # Testing RunningStatistics() x = [torch.randn(64), torch.randn(128), torch.randn(256)] x_cat = torch.cat(x, axis=0) rms = RunningStatistics() for x_mb in x: rms.update(x_mb) ms1 = [x_cat.mean(0), x_cat.var(0), x_cat.std(0)] ms2 = [rms.mean(), rms.var(), rms.std()] print(ms1) print(ms2) print("-"*20) x = [np.random.randn(64), np.random.randn(128), np.random.randn(256)] x_cat = np.concatenate(x, axis=0) rms = RunningStatistics() for x_mb in x: rms.update(x_mb) ms1 = [x_cat.mean(0), x_cat.var(0), x_cat.std(0)] ms2 = [rms.mean(), rms.var(), rms.std()] print(ms1) print(ms2) ```
{ "source": "510908220/django-backend-template", "score": 2 }
#### File: src/app/views.py ```python from rest_framework import viewsets, authentication, permissions, filters from rest_framework.pagination import PageNumberPagination from .models import Sprint, Task from .serializers import SprintSerializer, UserSerializer, TaskSerializer from django.contrib.auth import get_user_model from rest_framework.response import Response User = get_user_model() class StandardResultsSetPagination(PageNumberPagination): page_size = 25 page_size_query_param = 'page_size' max_page_size = 100 # Create your views here. class DefaultsMixin(object): authentication_classes = ( authentication.BasicAuthentication, authentication.TokenAuthentication ) permission_classes = ( permissions.IsAuthenticated, ) pagination_class = StandardResultsSetPagination filter_backends = ( filters.DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter ) class SprintViewSet(DefaultsMixin, viewsets.ModelViewSet): queryset = Sprint.objects.order_by('end') serializer_class = SprintSerializer search_fields = ('name',) ordering_fields = ('end','name') filter_fields = ('name', ) # 普通的字段匹配这样够了,如果需要实现高级匹配比如日期基于某个范围等,就需要定义自己的FilterSet类了 # http://www.django-rest-framework.org/api-guide/filtering/#djangofilterbackend class TaskViewSet(DefaultsMixin, viewsets.ModelViewSet): queryset = Task.objects.all() serializer_class = TaskSerializer search_fields = ('name','description') ordering_fields = ('name','order','started', 'due','completed') filter_fields = ('assigned', ) # 用的是pk来过滤user的. class UserViewSet(DefaultsMixin, viewsets.ReadOnlyModelViewSet): lookup_field = User.USERNAME_FIELD lookup_url_kwarg = User.USERNAME_FIELD queryset = User.objects.order_by(User.USERNAME_FIELD) serializer_class = UserSerializer search_fields = (User.USERNAME_FIELD,) class UserDefineViewSet(viewsets.ViewSet): """ 有时需要抽象一些资源, 并没有对应的Model,Serializer. 这时需要手动实现ViewSet一些方法以达到类似于ModelViewSet的效果 . """ def list(self, request): # queryset = User.objects.all() # serializer = UserSerializer(queryset, many=True) return Response([]) def retrieve(self, request, pk=None): # queryset = User.objects.all() # user = get_object_or_404(queryset, pk=pk) # serializer = UserSerializer(user) return Response({}) ```
{ "source": "510908220/heartbeats", "score": 2 }
#### File: agent/ansible_util/result_collector.py ```python import time from collections import defaultdict from ansible.plugins.callback import CallbackBase class CallbackModule(CallbackBase): """ Reference: https://github.com/ansible/ansible/blob/v2.0.0.2-1/lib/ansible/plugins/callback/default.py """ CALLBACK_VERSION = 2.0 def __init__(self): super(CallbackModule, self).__init__() self.start_timestamp = time.time() self.run_time_sec = 0 self.__result_list = defaultdict(lambda: { "ok": [], "unreachable": [], "skipped": [], "failed": [] } ) self.__summary = {} def v2_runner_on_failed(self, result, ignore_errors=False): self.__result_list[result._host.get_name()]["failed"].append(result._result) def v2_runner_on_ok(self, result): self.__result_list[result._host.get_name()]["ok"].append(result._result) def v2_runner_on_skipped(self, result): self.__result_list[result._host.get_name()]["skipped"].append(result._result) def v2_runner_on_unreachable(self, result): self.__result_list[result._host.get_name()]["unreachable"].append(result._result) def v2_playbook_on_stats(self, stats): self.run_time_sec = time.time() - self.start_timestamp hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self.summary[h] = t @property def summary(self): return self.__summary @property def results(self): return self.__result_list ``` #### File: heartbeats/agent/script.py ```python import datetime import json import os import sys import psutil def get_memory(): mem = psutil.virtual_memory() return { 'total': mem.total, 'available': mem.available, 'percent': mem.percent } def get_swap_memory(): swap = psutil.swap_memory() return { 'total': swap.total, 'used': swap.used, 'percent': swap.percent } def get_loadavg(): loadavgs = os.getloadavg() return { 'avg1': float(loadavgs[0]), 'avg5': float(loadavgs[1]), 'avg15': float(loadavgs[2]), } def get_cpu_info(): return { 'percent': psutil.cpu_percent(interval=0), 'count': psutil.cpu_count() } def get_disk_info(): disk_info = [] for part in psutil.disk_partitions(all=False): if os.name == 'nt': if 'cdrom' in part.opts or part.fstype == '': # skip cd-rom drives with no disk in it; they may raise # ENOENT, pop-up a Windows GUI error for a non-ready # partition or just hang. continue usage = psutil.disk_usage(part.mountpoint) disk_info.append({ 'device': part.device, 'total': usage.total, 'used': usage.used, 'free': usage.free, 'percent': usage.percent, 'fstype': part.fstype, 'mountpoint': part.mountpoint }) return disk_info def get_process_infos(): procs = [] for p in psutil.process_iter(): try: p.dict = p.as_dict(['username', 'nice', 'memory_info', 'memory_percent', 'cpu_percent', 'cpu_times', 'name', 'cmdline', 'status']) except psutil.NoSuchProcess: pass else: procs.append(p) # return processes sorted by CPU percent usage procs = sorted(procs, key=lambda p: p.dict['memory_percent'], reverse=True) filer_cmdlines = [ 'nsshd: npaicbbuser@notty', ] process_infos = [] for p in procs: cmdline = " ".join(p.dict['cmdline']).strip() if not cmdline: continue filter_flag = False for filer_cmdline in filer_cmdlines: if filer_cmdline in cmdline: filter_flag = True break if filter_flag: continue process_infos.append(cmdline.strip()) return process_infos print(json.dumps({ "memory": get_memory(), # "swap": get_swap_memory(), # "loadavg": get_loadavg(), "cpu": get_cpu_info(), "disk": get_disk_info(), "process": get_process_infos() })) ``` #### File: 510908220/heartbeats/init.py ```python import os import subprocess import time import traceback ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) UWSGI_CONFIG_FILE = os.path.join(ROOT_DIR, 'uwsgi.ini') UWSGI_CONFIG_TEMPLATE = """ [uwsgi] master=true socket=127.0.0.1:8000 processes=4 socket-timeout=300 reload-mercy=10 vacuum=true max-requests=1000 limit-as=1024 listen=128 buffer-size=30000 memory-report=true home={virtualenv_dir} chdir=/docker/heartbeats/src module=heartbeats.wsgi:application """ SUPERVISOR_CONF = "/etc/supervisor/conf.d/supervisor-app.conf" UWSGI_SUPERVISOR_TEMPLATE = """ [program:app-uwsgi] command = {uwsgi_path} --ini {config} stopsignal=QUIT redirect_stderr=true stderr_logfile_maxbytes=1MB stdout_logfile=/var/log/uwsgi.log stdout_logfile_maxbytes=1MB user=root """ NGINX_SUPERVISOR_TEMPLATE = """ [program:nginx-app] command = /usr/sbin/nginx -g 'daemon off;' """ DJANGO_Q_TEMPLATE = """ [program:qcluster] command={python} {project_dir}/manage.py {command} directory=/ autostart=true autorestart=false stopasgroup=true killasgroup=true startretries=0 redirect_stderr=true stderr_logfile_maxbytes=1MB stdout_logfile=/var/log/qcluster.log stdout_logfile_maxbytes=1MB user=root """ CHECK_TEMPLATE = """ [program:check] command={python} {project_dir}/manage.py check directory=/ autostart=true autorestart=false stopasgroup=true killasgroup=true startretries=0 redirect_stderr=true stderr_logfile_maxbytes=1MB stdout_logfile=/var/log/check.log stdout_logfile_maxbytes=1MB user=root """ def get_python(): out = subprocess.check_output('pipenv run which python', shell=True) return out.decode('utf-8').strip() def get_uwsgi(): out = subprocess.check_output('pipenv run which uwsgi', shell=True) return out.decode('utf-8').strip() def update_django_res(python_path): cmds = [ "{} src/manage.py makemigrations", "{} src/manage.py migrate", "{} src/manage.py collectstatic --noinput" ] for cmd in cmds: out = subprocess.check_output(cmd.format(python_path), shell=True) print(out) def update_uwsgi_config(python_path): """ 设置虚拟环境目录到uwsgi.ini,写入文件. """ with open(UWSGI_CONFIG_FILE, "w") as f: f.write( UWSGI_CONFIG_TEMPLATE.format( virtualenv_dir=os.path.dirname(os.path.dirname(python_path)) ) ) def update_supervisor_config(): """ 将uwsgi和nginx写入supervisor配置. """ uwsgi_config = os.path.join(ROOT_DIR, 'uwsgi.ini') configs = [NGINX_SUPERVISOR_TEMPLATE] configs.append(UWSGI_SUPERVISOR_TEMPLATE.format( config=uwsgi_config, uwsgi_path=get_uwsgi() )) configs.append(DJANGO_Q_TEMPLATE.format( command='qcluster', python=get_python(), project_dir=os.path.join(ROOT_DIR, "src") )) configs.append(CHECK_TEMPLATE.format( python=get_python(), project_dir=os.path.join(ROOT_DIR, "src") )) with open(SUPERVISOR_CONF, "w") as f: f.write("\n\n".join(configs)) def main(): os.chdir(ROOT_DIR) python_path = get_python() update_django_res(python_path) update_uwsgi_config(python_path) update_supervisor_config() if __name__ == "__main__": main() ``` #### File: src/app/serializers.py ```python from django.contrib.auth import get_user_model from rest_framework import serializers from rest_framework.reverse import reverse from rest_framework.exceptions import ValidationError from .models import Tag, Service, Ping User = get_user_model() class TagSerializer(serializers.ModelSerializer): class Meta: model = Tag fields = ('id', 'name', 'created', 'updated') class PingSerializer(serializers.ModelSerializer): service = serializers.SlugRelatedField( slug_field='name', required=False, allow_null=True, queryset=Service.objects.all() ) class Meta: model = Ping fields = ('id', 'service', 'remote_addr', 'ua', 'data', 'created') class ServiceSerializer(serializers.ModelSerializer): tags = TagSerializer(many=True, read_only=True) last_ping = serializers.SerializerMethodField() class Meta: model = Service fields = ('id', 'name', 'status', 'tp', 'value', 'grace', 'short_url', 'tags', 'last_ping', 'notify_to', 'created', 'updated') def get_last_ping(self, obj): latest_pings = obj.pings.order_by('-id')[:1] if not latest_pings: return {} latest_ping = latest_pings[0] return PingSerializer(latest_ping).data ``` #### File: src/app/tasks.py ```python import requests from django.conf import settings from django_q.tasks import async from djmail.template_mail import InlineCSSTemplateMail def send_djmail(to, service_name, tp, value, grace, msg): o = InlineCSSTemplateMail('alert') o.send(to, { 'service_name': service_name, 'tp': tp, 'value': value, 'grace': grace, 'msg': msg }) def notify(to, service_name, tp, value, grace, msg): ''' 通知函数. 暂时是邮件,后面可以加入微信等 ''' send_djmail(to, service_name, tp, value, grace, msg) def notify_async(to, service_name, tp, value, grace, msg): # send this message right away async('app.tasks.notify', to, service_name, tp, value, grace, msg ) ```
{ "source": "510908220/python-code-check", "score": 2 }
#### File: management/commands/init_data.py ```python from django.core.management.base import BaseCommand, CommandError from django_q.models import Schedule from django_q.tasks import schedule class Command(BaseCommand): help = 'create schedule' def handle(self, *args, **options): schedule('app.tasks.update_build_info', name='update_build_info', schedule_type=Schedule.MINUTES, minutes=10, q_options={ 'task_name': 'update_build_info'} ) ``` #### File: python-code-check/src/updatedb.py ```python import subprocess import os import sys import MySQLdb import time import traceback import stat ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) def wait_db_ok(): def test_db(): db = MySQLdb.connect(os.environ['DB_HOST'], os.environ['DB_USER'], os.environ[ 'DB_PASSWORD'], os.environ['DB_NAME'], int(os.environ['DB_PORT'])) cursor = db.cursor() cursor.execute("SELECT VERSION()") data = cursor.fetchone() db.close() try: test_db() return True except: print("test db error:", traceback.format_exc()) return False def update_supervisor_cfg(): print(subprocess.check_output( "python generate_supervisor_conf.py", shell=True)) def update_db(): cmds = [ "python manage.py makemigrations", "python manage.py migrate", "python manage.py collectstatic --noinput" ] for cmd in cmds: out = subprocess.check_output(cmd, shell=True) print(out) def main(): while not wait_db_ok(): time.sleep(5) print("db is not ok, wait ....") old_dir = os.getcwd() os.chdir(ROOT_DIR) update_supervisor_cfg() update_db() if __name__ == "__main__": main() ```
{ "source": "512mb-xyz/pulseboard", "score": 3 }
#### File: 512mb-xyz/pulseboard/pulseboard.py ```python from pynput import keyboard import vlc import re import random print("Instantiating the player") instance = vlc.Instance() micspam_player = instance.media_player_new() #get device list devices = [] mods = micspam_player.audio_output_device_enum() if mods: mod = mods while mod: mod = mod.contents devices.append(mod.device) mod = mod.next vlc.libvlc_audio_output_device_list_release(mods) #print the dialogue for selecting the audio output print("Select audio device: ") iter = 0 for devname in devices: print(str(iter)+") "+devname.decode("utf-8")) iter+=1 device_id = int(input()) while device_id < 0 or device_id > len(devices)-1: print("No such device") device_id = int(input()) global device device = devices[device_id] #define some functions for help mode = "" def exists(dic,key): try: return dic[key] except: return False class InputHandler: def __init__(self): self.keymap = {} self.inputbuffer = [] self.mode = "" def on_press(self,key): self.inputbuffer.append(key) if exists(self.keymap,self.mode+"#"+str(self.inputbuffer)): exec(self.keymap[self.mode+"#"+str(self.inputbuffer)]) def on_release(self,key): try: self.inputbuffer.remove(key) except: self.inputbuffer.clear() def bind(self,keymap,comm): keybind = re.match("(.*#)?(.+)",keymap) kmode = keybind.group(1) or "#" name = keyboard.HotKey.parse(keybind.group(2)) self.keymap[kmode[0:-1]+"#"+str(name)] = comm def unbind(self,keymap): name = keyboard.HotKey.parse(keymap) if exists(self.keymap,mode+"#"+str(name)): self.keymap.pop(mode+"#"+str(name)) def list(self): for k,v in self.keymap.items(): print(k+": "+v) def set_mode(self,mode): self.mode = mode kmap = InputHandler() def exec(comm): global device if comm.startswith("play "): filename = re.match("play (.+)",comm).group(1) micspam_player.set_mrl(filename) micspam_player.audio_output_device_set(None,device) micspam_player.play() if comm.startswith("stop"): micspam_player.stop() if comm.startswith("mode"): mode = re.match("mode([^\n]+)",comm).group(1) mode = mode.lstrip() kmap.set_mode(mode) if comm.startswith("list"): kmap.list() if comm.startswith("device-list"): dev_id = 0 for I in devices: print(str(dev_id)+") "+I.decode("utf-8")) dev_id+=1 if comm.startswith("device-set "): dev_id = re.match("device-set (\d+)",comm).group(1) device = devices[int(dev_id)] if comm.startswith("volume"): volume = re.match("volume ([\+\-]?)(\d+)",comm) current = micspam_player.audio_get_volume() if volume == None: print("Volume: "+str(current)) else: if volume.group(1) == '': micspam_player.audio_set_volume(int(volume.group(2))) elif volume.group(1) == '+': micspam_player.audio_set_volume(current+int(volume.group(2))) elif volume.group(1) == "-": micspam_player.audio_set_volume(current-int(volume.group(2))) print("Volume: "+str(micspam_player.audio_get_volume())) if comm.startswith("help"): print(""" Commands: help - print this message play # - play the sound to the currently set device stop - stop the sound mode <mode> - set the bind mode list - list all bindings device-list - list all devices device-set - set the output device exit - exit the program volume [<-+>]<percent> - set volume (example: volume +5, volume 50) bindings should be set via ./.pulsebrc file in this form: [mode#<shift>+k]="command" where <shift>+k is the keybinding you wish to set (special keys should be wrapped in <>) and command is the command to execute """) try: rc = open("./.pulsebrc") text = rc.read() for match in re.findall("\[([^\]]+)\]=\"([^\"]+)\"\n",text): kmap.bind(match[0],match[1]) except IOError: print("No pulsebrc found - creating") rc = open("./.pulsebrc","w") exit() running = True with keyboard.Listener(on_press=kmap.on_press,on_release=kmap.on_release) as listener: while running: term_comm = input("> ") if term_comm.startswith("exit"): running = False else: exec(term_comm) ```
{ "source": "514840279/danyuan-application-cloud", "score": 2 }
#### File: controller/service/StartService.py ```python from common.inc_conn import Conn_mysql from common.HtmlSource import HtmlSource from common.Rule import Rule from controller.service.crawler.CrawlerDetialInfoPage import CrawlerDetialInfoPage from controller.service.crawler.CrawlerListItem import CrawlerListItem from controller.service.crawler.CrawlerNavigation import CrawlerNavigation from controller.service.crawler.CrawlerAllPage import CrawlerAllPage from controller.dao.CrawlerTaskDao import SysCrawlerGroupInfo # 启动监控 class StartService(): # 启动爬虫程序 def run(self,task): ## 数据参数获取 ############## sysCrawlerGroupInfo = SysCrawlerGroupInfo() groupdata = sysCrawlerGroupInfo.findAllByTaskId(task['uuid']) # 判断配置的第一个是那种类型的页面进行爬取 for group in groupdata: if(group['type'] == 'navigation_bar'):# 导航页面 navigation = CrawlerNavigation() navigation.crawlerNavigation(task,group); elif (group['type'] == 'listPage'):# 列表页面 listItem = CrawlerListItem() # 列表页面采集 listItem.crawlerListPage(task, group); elif (group['type'] == 'detialPage'):# 详细页面 # 详细页面简易版 detial = CrawlerDetialInfoPage() detial.crawlerDetialPage(task, group); elif (group['type'] == 'allPage'): # 详细页面 # 详细页面 包含多个分组 crawlerAllPage = CrawlerAllPage() crawlerAllPage.crawlerAllPage(task, group); def __init__(self): pass if __name__ == '__main__': pass ```
{ "source": "5150brien/retsdk", "score": 3 }
#### File: retsdk/retsdk/exceptions.py ```python class ResponseError(Exception): def __init__(self, response): self.response = response def __str__(self): return self.response class RequestError(Exception): def __init__(self, message): self.message = message def __str__(self): return self.message class AuthenticationError(Exception): def __init__(self, message): self.message = message def __str__(self): return self.message class TransactionError(Exception): def __init__(self, transaction_type): self.transaction_type = transaction_type def __str__(self): msg = "The transaction '{0}' is not available".format(self.transaction_type) return msg ``` #### File: retsdk/tests/test_response_handling.py ```python import os import unittest import xml.etree.ElementTree as ET from retsdk.utilities import parse_response TEST_DIR = os.path.dirname(os.path.abspath(__file__)) class TestBadRequestResponseHandling(unittest.TestCase): """ Tests handling of RETS server responses for invalid requests """ def setUp(self): response_tree = ET.parse(os.path.join(TEST_DIR, 'bad_request.xml')) xml = response_tree.getroot() self.response_dict = parse_response(xml) def test_return_type(self): """ Invalid requests should still return a complete response dict """ self.assertIsInstance(self.response_dict, dict) self.assertEqual(len(self.response_dict), 6) def test_response_data_payload(self): """ The 'rows' value should be an empty list (no data payload returned) """ self.assertIsInstance(self.response_dict['rows'], list) self.assertEqual(len(self.response_dict['rows']), 0) def test_error_reply_code(self): """ Reply code for bad requests should be non-null and non-zero """ self.assertIsNotNone(self.response_dict['reply_code']) self.assertNotEqual(self.response_dict['reply_code'], '') self.assertNotEqual(self.response_dict['reply_code'], '0') def test_reply_text(self): """ Reply text for bad requests should be non-null """ self.assertIsNotNone(self.response_dict['reply_text']) self.assertNotEqual(self.response_dict['reply_text'], '') def test_ok_value(self): """ The response dict's 'ok' val should be False for bad requests """ self.assertFalse(self.response_dict['ok']) def test_more_rows_value(self): """ The response dict's 'more_rows' val should be False for bad requests """ self.assertFalse(self.response_dict['more_rows']) class TestSearchResponseWithNoAdditionalRows(unittest.TestCase): """ Tests single-response handling for valid search transactions """ def setUp(self): response_tree = ET.parse( os.path.join( TEST_DIR, 'search_response.xml' ) ) xml = response_tree.getroot() self.response_dict = parse_response(xml) def test_response_rows(self): """ The response dict should contain a list of values (can be empty) """ self.assertIsInstance(self.response_dict['rows'], list) self.assertGreaterEqual(len(self.response_dict['rows']), 0) def test_ok_value(self): """ The response dict's 'ok' val should be True """ self.assertTrue(self.response_dict['ok']) def test_more_rows_value(self): """ The response dict's 'more_rows' val should be False """ self.assertFalse(self.response_dict['more_rows']) class TestSearchResponseWithAdditionalRows(unittest.TestCase): """ Tests multiple-response handling of valid search transactions """ def setUp(self): response_tree = ET.parse( os.path.join( TEST_DIR, 'search_response_maxrows.xml' ) ) xml = response_tree.getroot() self.response_dict = parse_response(xml) def test_response_rows(self): """ The response dict should contain a list of values (can be empty) """ self.assertIsInstance(self.response_dict['rows'], list) self.assertGreaterEqual(len(self.response_dict['rows']), 0) def test_ok_value(self): """ The response dict's 'ok' val should be True """ self.assertTrue(self.response_dict['ok']) def test_more_rows_value(self): """ The response dict's 'more_rows' val should be True """ self.assertTrue(self.response_dict['more_rows']) ```
{ "source": "515783034/Faker", "score": 2 }
#### File: faker/utils/api_utils.py ```python import os import json import logging from utils.file_utils import nameBy,jsonPathBy, loadJson, loadUrl, deleteUrl, renameJson from utils.jsonModel import jsonModel from utils.log_utils import logDebug, logError, logInfo from utils.models import fakerSession from utils.models import UrlModel, GroupModel, ProjectModel, UrlParamModel methods = ['POST','GET','HEAD','PUT'] class ApiUtils: def __init__(self, projectName): self.project = fakerSession.query(ProjectModel).filter(ProjectModel.name == projectName).first() if self.project: print(" \033[32mload config: {}\033[0m".format(projectName)) print(" \033[32m首页地址可访问:http://127.0.0.1:5000\033[0m") else: logDebug("加载project:{}出错".format(projectName)) # self._flashDataBase() def getUrlById(self, urlId): return fakerSession.query(UrlModel).filter(UrlModel.id == urlId).first() def getUrlByPath(self, path): return fakerSession.query(UrlModel).filter(UrlModel.url == path).first() # 根据名称获取 group(没有的话默认取 otherGroup) def getGroupByUrl(self, groupUrl): print(self.project.id) group = fakerSession.query(GroupModel).filter((GroupModel.baseUrl == groupUrl) & (GroupModel.project_id == self.project.id)).first() print(group.id) return group if group else self.otherGroup() ''' @description: 删除某个url ''' def deleteUrl(self, urlId): urlModel = self.getUrlById(urlId) logDebug("[api][delete]url:{},{}".format(urlId, urlModel.url)) # 删除文件 deleteUrl(urlModel.url) fakerSession.delete(urlModel) fakerSession.commit() def deleteOtherParam(self, url, method, paramName, existUrls): basePath = jsonPathBy(url) directory = os.path.dirname(basePath) for file in os.listdir(directory): pathUrl = directory + file if file.startswith(basePath) and (not pathUrl in existUrls): logDebug("[api][delete]param: {} {} {}".format(url, paramName, pathUrl)) os.remove(pathUrl) # 添加分组 def addGroup(self, groupInfo): name = groupInfo.get("name") logDebug("[api][add] group: [{}]".format(name)) group = GroupModel(name=name,desc=name, icon=groupInfo.get("icon"), baseUrl=groupInfo.get("baseUrl")) self.project.groups.append(group) fakerSession.commit() return group def otherGroup(self): other = fakerSession.query(GroupModel).filter((GroupModel.desc == "other") & (GroupModel.project_id == self.project.id)).first() return other if other else self.addGroup({"name": "其他","desc":"other", "icon":"el-icon-connection", "baseUrl":""}) ''' @description: 获取所有的 url(用于restful url) @return: [url] ''' def loadRestfulUrls(self): urls = [] for group in self.project.groups: urls.extend([url.url for url in group.urls]) return urls # 获取带参数的接口的本地文件路径 def pathWithParam(self, url, paramValue): return jsonPathBy(url).replace(".json", "-{}.json".format(paramValue)) # 保存(新增/修改)接口信息到数据库 def saveUrl(self, urlId, url, name, method, param, groupUrl): name = name if name else "" paramName = param.get("name", "") paramType = param.get("type", "") paramValues = param.get("values", []) if urlId == -1: if self.getUrlByPath(url): return "存在同名 url,请检查后重试" urlModel = UrlModel(url=url, name=name, method=method, param=paramName, paramType=paramType) self.urlAddParams(urlModel, paramValues) else: urlModel = self.getUrlById(urlId) # 若果修改了 url,需要修改对应的 json 文件 if urlModel.url != url: renameJson(urlModel.url, url, urlModel.method) urlModel.url = url urlModel.name = name urlModel.method = method urlModel.param = paramName urlModel.paramType = paramType self.urlAddParams(urlModel, paramValues) group = self.getGroupByUrl(groupUrl) group.urls.append(urlModel) fakerSession.commit() # 更新 url 的参数 def urlAddParams(self, urlModel, paramValues): # 移除旧的参数 for oldParam in urlModel.params: fakerSession.delete(oldParam) # 添加新参数 for value in paramValues: urlParam = UrlParamModel(value=value, url_id=urlModel.id) urlModel.params.append(urlParam) ''' @description: 获取url对应的接口详细信息 ''' def getUrlDetail(self,urlId): if (urlId == -1): return self._emptyUrlDetail() urlModel = fakerSession.query(UrlModel).filter(UrlModel.id == urlId).first() if not urlModel: return self._emptyUrlDetail() result = urlModel.toDict() if urlModel.param != None and len(urlModel.params)>0: values = [] jsons = [] for param in urlModel.params: values.append(param.value) urlPath = self.pathWithParam(urlModel.url, param.value) jsons.append(loadUrl(urlPath)) result["param_values"] = values result["param_jsons"] = jsons result["selectParamValue"] = values[0] else: result["content"] = loadUrl(urlModel.url) urlInfo = { "methods": self.getMethods(), "sections": self.getSectionsDesc(), "urlInfo": result, "state": "修改" if urlId != -1 else "添加"} if urlModel: urlInfo["selectTitle"] = urlModel.group.baseUrl return urlInfo # 新建接口时的信息 def _emptyUrlDetail(self): return { "methods": self.getMethods(), "sections": self.getSectionsDesc(), "urlInfo": {"url": "", "name":"", "desc": "", "method":""}, "state": "添加"} ''' @description: 获取所有分组接口 @return: [section] ''' def groupsInfo(self): groups = [] for group in self.project.groups: newGroup = group.toDict() newGroup["urls"] = [x.toDict() for x in group.urls] groups.append(newGroup) return groups ''' @description: 获取所有支持的方法名 @return: [method] ''' def getMethods(self): return methods ''' @description: 获取分组的基本信息 ''' def getSectionsDesc(self): return [{"name":group.name,"baseUrl":group.baseUrl} for group in self.project.groups] # def _flashDataBase(self): # # cachedUrls = [] # for group in self.project.groups: # if group.id != 5: # continue # for urlInfo in group.urls: # urlInfo.group_id = 15 # fakerSession.commit() ```
{ "source": "515783034/HHOfficeOrder", "score": 2 }
#### File: HHOfficeOrder/Classes/app.py ```python from flask import Flask, render_template, request, jsonify import config from exts import db, fetch_data, fetch_week, time_desc from models import OfficeModel, OrderModel import time import flask_whooshalchemyplus app = Flask(__name__) app.config.from_object(config) db.init_app(app) flask_whooshalchemyplus.init_app(app) app.jinja_env.variable_start_string = '{{ ' app.jinja_env.variable_end_string = ' }}' with app.app_context(): db.create_all() @app.route('/') def hello_world(): weeks = fetch_week() # 办公室信息 get_office = request.args.get('office') office = OfficeModel.query.filter(get_office == OfficeModel.name).first() all_offices = OfficeModel.query.all() offices = [x.desc for x in all_offices] if office: office_desc = office.desc else: office_desc = '五味子' results = fetch_data() return render_template('date_picker.html', time_span=results, weeks=weeks, offices=offices, select_office=office_desc) @app.route('/canSelect/') def can_select(): start = int(request.args.get('start')) end = int(request.args.get('end')) week = int(request.args.get('week')) office = request.args.get('office') ordered = ordered_time(office, week) new_orders = [] for aOrder in ordered: new_orders.extend(range(aOrder.order_from, aOrder.order_to)) select_range = list(range(start, end)) inter = set(select_range).intersection(set(new_orders)) if len(inter) > 0: return "false" else: return "true" @app.route('/search/') def search(): search_text = request.args.get('query') orderes = OrderModel.query.whoosh_search(search_text).all() ordered = order_convert(orderes) return render_template('order_list.html', ordered=ordered) @app.route('/orderlist/') def order_list(): orderes = OrderModel.query.all() ordered = order_convert(orderes) return render_template('order_list.html', ordered=ordered) def order_convert(orders): ordered = [] for order in orders: ord_convert = order.to_dict() ord_convert['time_desc'] = time_desc(order.order_from, order.order_to + 1, order.order_day) ordered.append(ord_convert) return ordered # 获取已被选择的内容 @app.route('/getOrdered/') def get_ordered(): office = request.args.get('office') week = request.args.get('week') ordered = ordered_time(office, int(week)) order_json = jsonify({'data': [x.to_dict() for x in ordered]}) return order_json @app.route('/submit/', methods=['POST']) def submit(): user_name = request.form.get('user_name') user_depart = request.form.get('user_depart') reason = request.form.get('reason') start_hour = request.form.get('start_hour') end_hour = request.form.get('end_hour') select_week = request.form.get('select_week', '0') office = request.form.get('office').strip() office_model = OfficeModel.query.filter(OfficeModel.desc == office).first() if not office_model: return '未能查到办公室' + '"' + office + '"' new_order = OrderModel(user_name=user_name,depart_name=user_depart,reason=reason,order_from=start_hour, order_to=end_hour, office_id=office_model.id) new_order.order_day = time_offset(select_week) db.session.add(new_order) db.session.commit() flask_whooshalchemyplus.index_one_model(OrderModel) return '' # 管理页面 @app.route('/manage/') def manage(): return render_template('office_manage.html') @app.route('/addOffice/', methods=['POST']) def add_office(): name = request.form.get('name') desc = request.form.get('desc') same_names = OfficeModel.query.filter(OfficeModel.name == name).all() if same_names: return '存在同名name:{},放弃添加'.format(name) same_descs = OfficeModel.query.filter(OfficeModel.desc == desc).all() if same_descs: return '存在同名desc:{},放弃添加'.format(name) office1 = OfficeModel(name=name, desc=desc) db.session.add(office1) db.session.commit() return '' # 获取偏移后的时间戳 def time_offset(select): offset = int(select) * 86400 return offset + int(time.time()) # 获取某一天的时间戳差 def time_duration(offset): cur_time = time.time() start = cur_time - cur_time % 86400 + 86400 * offset return [start, start + 86400] # 获取某天的预订信息 def ordered_time(office, week): office_model = OfficeModel.query.filter(OfficeModel.desc == office.strip()).first() if not office_model: return [] duration = time_duration(int(week)) ordered = OrderModel.query.filter((OrderModel.office_id == office_model.id) & (OrderModel.order_day > duration[0]) & (OrderModel.order_day <= duration[1])).all() return ordered if __name__ == '__main__': app.run() ```
{ "source": "515handwritten-expression/515-handwritten-mathematical-expression", "score": 3 }
#### File: 515-handwritten-mathematical-expression/handwritten_math_expression/ImagePreprocessing.py ```python import xml.etree.ElementTree as ET from cv2 import cv2 import numpy as np import glob import os import shutil import pickle from skimage.morphology import skeletonize STANDARD_SIZE = 32 symbol = ['alpha','beta','gamma','phi','pi','geq','leq','pm','theta','infty','div','times','sum','ldots','neq','rightarrow','int','sqrt', 'exists','forall','in'] #Read image from file #Convert original image before image segmentation def imgReadAndConvert(imgfilename): original_img = cv2.imread(imgfilename) # inspect error object img_copy = original_img.copy() height = img_copy.shape[0] width = img_copy.shape[1] #Image resize(prevent overflow) if(height*width*1000)> 2^31: resize = img_copy elif(height * width > 2^31): resize = cv2.resize(img_copy, dsize =(0.0001, int(0.01*height/width)), interpolation = cv2.INTER_AREA) else: resize = cv2.resize(img_copy, dsize =(1000, int(1000*height/width)), interpolation = cv2.INTER_AREA) #GaussianBlur blur = cv2.GaussianBlur(resize,(5,5),0) #Image graying: reduce the influence of color gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #Noises removal from outside the contours kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) img_open = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) #Covert image into binary bin_img = cv2.adaptiveThreshold(img_open,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV,21,20) #Reverse image color bin_img = cv2.bitwise_not(bin_img) return bin_img #Get croppped images and skeletonize def imgSkeleton(original_img): ret,binary_img = cv2.threshold(original_img,0,1,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) extracted_img = skeletonize(binary_img) skeleton = extracted_img.astype(np.uint8) * 255 skeleton = cv2.bitwise_not(skeleton) return skeleton def getVerticalProjectionSegmentationPoints(img): height, width = img.shape[:2] W = np.zeros(width,dtype=np.int32) for x in range(0, width): for y in range(0, height): if img[y,x] == 0: W[x] += 1 start = 0 W_Start = [] W_End = [] for j in range(len(W)): if W[j] > 0 and start ==0: W_Start.append(j) start = 1 if W[j] <= 0 and start == 1: W_End.append(j) start = 0 if len(W_End) == 0: W_End.append(width) return W_Start, W_End def getHorizontalProjectionSegmentationPoints(img): height, width = img.shape[:2] H = np.zeros(height,dtype=np.int32) for y in range(0, height): for x in range(0, width): if img[y,x] == 0: H[y] += 1 start = 0 H_Start = [] H_End = [] for i in range(len(H)): if H[i] > 0 and start ==0: H_Start.append(i) start = 1 if H[i] <= 0 and start == 1: H_End.append(i) start = 0 return H_Start, H_End #Crop the original image along with the horizontal direction #For each cropped images, crop the image along with the vertical direction #Return the final segmenting position def projectionSegmentation(img): h,w =img.shape[:2] Position = [] imgs = [] H_Start, H_End = getHorizontalProjectionSegmentationPoints(img) #For each cropped images, crop the image along with the vertical direction for j in range(len(H_Start)): cropImg = img[H_Start[j]:H_End[j], 0:w] W_Start, W_End = getVerticalProjectionSegmentationPoints(cropImg) for x in range(len(W_Start)): Position.append([W_Start[x],H_Start[j],W_End[x],H_End[j]]) img_aftercrop = img[H_Start[j]:H_End[j], W_Start[x]:W_End[x]] imgs.append(img_aftercrop) return imgs, Position #After projection segmentation, for each cropped image, #cropped off the white space and only keep the character #Resize and skeletonize the cropped images and store th images #and positions into a list of dictionaries def imgStandardize(imgs,Position): character_list = [] loc = [] for i in range(len(imgs)): #Crop horizontally H_Start, H_End = getHorizontalProjectionSegmentationPoints(imgs[i]) #Crop vertically W_Start, W_End = getVerticalProjectionSegmentationPoints(imgs[i]) #If projection values are not zero at the very end, # set w or h as the end point of croping if(len(W_End)<len(W_Start)): W_End.append(imgs[i].shape[1]) if(len(W_End) == 0): W_End.append(imgs[i].shape[1]) if(len(H_End)<len(H_Start)): H_End.append(imgs[i].shape[0]) if(len(H_End) == 0): H_End.append(imgs[i].shape[0]) char_img = imgs[i][H_Start[0]:H_End[-1],W_Start[0]:W_End[-1]] h, w = char_img.shape[:2] W1 = Position[i][0] H1 = Position[i][1] W2 = Position[i][2] H2 = Position[i][3] loc.append([W1+W_Start[0],H1+H_Start[0],W2-(imgs[i].shape[1]-W_End[-1]),H2-(imgs[i].shape[0]-H_End[-1])]) #Resize the image to the standard size of 32 * 32 standard_background = np.zeros((STANDARD_SIZE,STANDARD_SIZE),np.uint8) if(h > w): img_resize = cv2.resize(char_img, ((int)(w * STANDARD_SIZE / h), STANDARD_SIZE), interpolation=cv2.INTER_AREA) difference = int((STANDARD_SIZE - img_resize.shape[1]) / 2) img_resize = cv2.bitwise_not(img_resize) standard_background[0:STANDARD_SIZE, difference:img_resize.shape[1] + difference] = img_resize else: if((int)(h * STANDARD_SIZE / w)<1): new_h = 1 else: new_h = (int)(h * STANDARD_SIZE / w) img_resize = cv2.resize(char_img, (STANDARD_SIZE, new_h), interpolation=cv2.INTER_AREA) difference = int((STANDARD_SIZE - img_resize.shape[0]) / 2) img_resize = cv2.bitwise_not(img_resize) standard_background[difference:img_resize.shape[0] + difference, 0:STANDARD_SIZE] = img_resize standard_img = cv2.bitwise_not(standard_background) #Skeletonize the image standard_img = imgSkeleton(standard_img) character_list.append(standard_img) standard_imgs=[] #Store the location and segment images in a list for i in range(len(character_list)): standard_imgs.append({'location':loc[i],'segment_img':character_list[i]}) #Sort the images along with the horizontal direction #standard_imgs.sort(key=lambda x:x['location'][0]) return standard_imgs #Segment test images '''def testImageSegementation(filepath): files = glob.glob(filepath) # path is 'data/testData/*.png' num = 0 for filename in files: fileid = filename[13:-4] num += 1 print(fileid + ':successfully loaded' + '-' + str(num)) #Read in original image #Convert image binimg = imgReadAndConvert(filename) cropimgs, Position = projectionSegmentation(binimg) imgs = imgStandardize(cropimgs,Position) img_list = [] img_loc = [] for i in range(len(imgs)): img_list.append(imgs[i]['segment_img']) img_loc.append(imgs[i]['location']) path = os.path.join('data/testPNGSeg', fileid) if(os.path.exists(path)): shutil.rmtree(path) os.mkdir(path) for index, img in enumerate(img_list, start=1): if index < 10: strindex = '0' + str(index) else: strindex = str(index) imgpath = path + '/' + strindex + '.png' cv2.imwrite(imgpath, img) #Store the position as a pickle file picklepath = path + '/' + fileid + '.pkl' with open(picklepath,"wb") as f_dump: pickle.dump(img_loc, f_dump) f_dump.close()''' # Read ground truth from inkml file (for training) def readCharacterListFromInkmlFile(filename): ground_truth = [] # start with $, end with $ with open(filename, 'r') as file: tree = ET.parse(file) root = tree.getroot() for annotation in root.findall('{http://www.w3.org/2003/InkML}annotation'): if (annotation.get('type')) == 'truth': ground_truth.append(annotation.text) parsedgt = groundTruthParser(ground_truth) return parsedgt # Parse ground truth into a list of symbols def groundTruthParser(ground_truth): gt = ground_truth[0] gt = gt.replace(' ','') gt = gt.replace('$','') gt = gt.replace('\\gt','>') gt = gt.replace('\\lt','<') gt = gt.replace('\\log','log') gt = gt.replace('\\cos','cos') gt = gt.replace('\\tan','tan') gt = gt.replace('\\sin','sin') gt = gt.replace('\\lim','lim') gt_list = [] for i in gt: if(len(gt)==0): break i = gt[0] gt = gt[1:] if(i == '\\'): for s in symbol: if(gt[0:len(s)] == s): gt_list.append(s) gt = gt[len(s):] else: gt_list.append(i) return gt_list # Segment training data and label the character with according ground truth '''def trainImageSegementation(inkmlfilepath): files = glob.glob(inkmlfilepath) num = 0 for inkmlfilename in files: num +=1 # path = 'data/trainData/*.inkml' fileid = inkmlfilename[15:-6] pngfilename = 'data/trainPNG/' + fileid + '.png' if(not os.path.isfile(pngfilename)): print(fileid +': PNG file not exist' + '-' + str(num)) continue print(fileid + ':successfully loaded' + '-' + str(num)) ground_truth = readCharacterListFromInkmlFile(inkmlfilename) binimg = imgReadAndConvert(pngfilename) cropimgs, Position = projectionSegmentation(binimg) imgs = imgStandardize(cropimgs,Position) if(len(imgs) == len(ground_truth)): for i in range(len(imgs)): path = os.path.join('data/trainPNGSeg', ground_truth[i]) if(os.path.exists(path)): pathpng = path + '/*.png' imgpath = path + '/' + ground_truth[i] + '_' + str(len(glob.glob(pathpng))+1) + '.png' else: os.mkdir(path) imgpath = path + '/' + ground_truth[i] + '_1.png' cv2.imwrite(imgpath, imgs[i]['segment_img'])''' #filepath = 'data/trainData/*.inkml' #trainImageSegementation(filepath) #filepath = 'data/predPNG/*.png' #testImageSegementation(filepath) # % ``` #### File: 515-handwritten-mathematical-expression/tests/test_stringCalculation.py ```python import unittest import handwritten_math_expression.stringCalculation as XTC from handwritten_math_expression.stringCalculation import IncalculableError import os.path, math class TestCalculation(unittest.TestCase): def testNode(self): node = XTC.Node("1") self.assertEqual(node.value,"1") self.assertEqual(node.left,None) self.assertEqual(node.right, None) def testConstant(self): self.assertEqual(XTC.expressionTree("pi"),3.1416) self.assertEqual(XTC.expressionTree("e"),2.7183) self.assertEqual(XTC.expressionTree("1"), 1) self.assertEqual(XTC.expressionTree(""), 0) def testCalculationPlus(self): self.assertEqual(XTC.expressionTree("1+2"),3.0) self.assertEqual(XTC.expressionTree("1.5+2"),3.5) self.assertEqual(XTC.expressionTree("pi+1"),4.1416) def testCalculationMinus(self): self.assertEqual(XTC.expressionTree("1-2"),-1) self.assertEqual(XTC.expressionTree("1-(0-2)"),3) self.assertEqual(XTC.expressionTree("1-((0-2))"),3) self.assertEqual(XTC.expressionTree("1.1-0.2"),0.9) def testCalculationTimes(self): self.assertEqual(XTC.expressionTree("1*2"),2) self.assertEqual(XTC.expressionTree("2*0"),0) self.assertEqual(XTC.expressionTree("(0*0)"),0) self.assertEqual(XTC.expressionTree("1.1*0.2"),0.22) def testCalculationDiv(self): self.assertEqual(XTC.expressionTree("(1/(1+1))"),0.5) self.assertEqual(XTC.expressionTree("0/2"),0) def testCalculationPower(self): self.assertEqual(XTC.expressionTree("1^2"),1.0) self.assertEqual(XTC.expressionTree("2^2^2"),16.0) def testInfixToPostfixNo1(self): result = [] expected = ['3', '1', '-', '1', '^'] postfix = XTC.infixToPostfix("(3-1)^1") for node in postfix: result += node.value self.assertCountEqual(result, expected) self.assertListEqual(result, expected) def testInfixToPostfixNo2(self): result = [] expected = ['1', '2', '^', '2', '+', '3', '*', '1', '/'] postfix = XTC.infixToPostfix("(1^2+2)*3/1") for node in postfix: result += node.value self.assertCountEqual(result, expected) self.assertListEqual(result, expected) def testInfixToPostfixNo1(self): result = [] expected = [] postfix = XTC.infixToPostfix("") for node in postfix: result += node.value self.assertCountEqual(result, expected) self.assertListEqual(result, expected) def testIncalculableError(self): self.assertRaises(IncalculableError, XTC.expressionTree, "2/0") self.assertRaises(IncalculableError, XTC.expressionTree, "2neq0") self.assertRaises(IncalculableError, XTC.expressionTree, "1+") self.assertRaises(IncalculableError, XTC.expressionTree, "^1") self.assertRaises(IncalculableError, XTC.expressionTree, "x=1") if __name__ == '__main__': unittest.main() ```
{ "source": "515hikaru/essence-of-machine-learning", "score": 3 }
#### File: numeric_calc/quad_equation/qeq.py ```python import numpy as np def qeq(a, b, c): """ Solve quadratic equation. """ d = np.sqrt(b**2 - 4 * a * c) return ((-b + d) / (2 * a)), ((-b - d)/ (2 * a)) def qeq2(a, b, c): """ Solve quadratic equation with less error. """ d = np.sqrt(b**2 - 4 * a * c) alpha = (-b - np.sign(b) * d) / (2 * a) beta = c / (a * alpha) return alpha, beta ``` #### File: essence-of-machine-learning/tests/test_qeq.py ```python import unittest import pytest from numeric_calc.quad_equation import qeq class TestQuadEquation(unittest.TestCase): """ 2次方程式を解くテスト """ def test_solve_simple_eq(self): """x^2+5x+6を解く""" eps = 1e-18 alpha, beta = qeq.qeq(1, 5, 6) self.assertAlmostEqual(alpha, -2.0, delta=eps) self.assertAlmostEqual(beta, -3.0, delta=eps) def test_solve_simple_eq2(self): """x^2-5x+6を解く""" eps = 1e-18 alpha, beta = qeq.qeq(1, -5, 6) self.assertAlmostEqual(alpha, 3.0, delta=eps) self.assertAlmostEqual(beta, 2.0, delta=eps) def test_solve_less_error_eq(self): """x^2+5x+6を解く""" eps = 1e-18 alpha, beta = qeq.qeq2(1, 5, 6) self.assertAlmostEqual(alpha, -3.0, delta=eps) self.assertAlmostEqual(beta, -2.0, delta=eps) def test_solve_less_error_eq2(self): """x^2-5x+6を解く""" eps = 1e-18 alpha, beta = qeq.qeq2(1, -5, 6) self.assertAlmostEqual(alpha, 3.0, delta=eps) self.assertAlmostEqual(beta, 2.0, delta=eps) @pytest.mark.xfail def test_solve_error_large_fail(self): """ 誤差が大きくなるテストケース 誤差対策ができていないケースなのでこのテストは失敗する (x+0.000000001)(x+1) = 0 """ eps = 1.0 * (10 ** (-18)) alpha, beta = qeq.qeq(1, 1.000000001, 0.000000001) self.assertAlmostEqual(beta, -1.0, delta=eps) self.assertAlmostEqual(alpha, -0.000000001, delta=eps) # fail here def test_solve_error_large(self): """ 誤差が大きくなるテストケース (x+0.000000001)(x+1) = 0 """ eps = 1e-18 alpha, beta = qeq.qeq2(1, 1.000000001, 0.000000001) self.assertAlmostEqual(alpha, -1.0, delta=eps) self.assertAlmostEqual(beta, -0.000000001, delta=eps) ```
{ "source": "515hikaru/junk-code", "score": 3 }
#### File: python_injector/cache/cache.py ```python from abc import ABCMeta, abstractclassmethod from typing import Any, Dict from injector import inject class ICache(metaclass=ABCMeta): @abstractclassmethod def get(self, key: str): pass @abstractclassmethod def set(self, key: str, value: Any): pass class DictCache(ICache): def __init__(self): self.content = {'key': 'value'} def get(self, key: str) -> Any: return self.content.get(key, None) def set(self, key: str, value: Any) -> None: self.content[key] = value ```