metadata
dict
text
stringlengths
60
3.49M
{ "source": "565353780/chart-plot", "score": 2 }
#### File: chart-plot/BarMethod/bar_manager.py ```python from BarMethod.bar import Bar class BarManager(object): def __init__(self): self.bar_list = [] return def reset(self): self.bar_list.clear() return True ``` #### File: chart-plot/LineMethod/line_manager.py ```python from LineMethod.line import Line class LineManager(object): def __init__(self): self.title = "Title" self.x_label = "X Label" self.y_label = "Y Label" self.axis_font_size = 30 self.label_font_size = 20 self.tick_font_size = 20 # position can be : upper lower left right center auto self.label_position = "lower right" self.marker = "" self.fill_alpha = 0.2 self.fig_size = [20, 15] self.dpi = 80 self.show_line_label = True self.show_confidence_interval_label = False self.line_list = [] return def reset(self): self.line_list.clear() return True def addLine(self, line_type, line_width, label, fit_polyline, show_confidence_interval, confidence_diff_min, confidence_diff_max): new_line = Line(len(self.line_list)) new_line.line_type = line_type new_line.line_width = line_width new_line.label = label new_line.fit_polyline = fit_polyline new_line.show_confidence_interval = show_confidence_interval new_line.confidence_diff_min = confidence_diff_min new_line.confidence_diff_max = confidence_diff_max self.line_list.append(new_line) return True def getBBoxXYXY(self): x_min = None y_min = None x_max = None y_max = None if len(self.line_list) == 0: return x_min, y_min, x_max, y_max for line in self.line_list: line_x_min , line_y_min, line_x_max, line_y_max = line.getBBoxXYXY() if line_x_min is None: continue if x_min is None: x_min = line_x_min y_min = line_y_min x_max = line_x_max y_max = line_y_max continue x_min = min(x_min, line_x_min) y_min = min(y_min, line_y_min) x_max = max(x_max, line_x_max) y_max = max(y_max, line_y_max) return x_min, y_min, x_max, y_max def getXYRange(self): x_min, y_min, x_max, y_max = self.getBBoxXYXY() if x_min is None: return 0, 0 return x_max - x_min, y_max - y_min def moveUp(self, move_dist): if move_dist == 0: return True for line in self.line_list: line.moveUp(move_dist) return True def moveDown(self, move_dist): if move_dist == 0: return True for line in self.line_list: line.moveDown(move_dist) return True def moveLeft(self, move_dist): if move_dist == 0: return True for line in self.line_list: line.moveLeft(move_dist) return True def moveRight(self, move_dist): if move_dist == 0: return True for line in self.line_list: line.moveRight(move_dist) return True def scaleX(self, scale): x_min, _, _, _ = self.getBBoxXYXY() if x_min is None: return True for line in self.line_list: line.scaleX(x_min, scale) return True def scaleY(self, scale): _, y_min, _, _ = self.getBBoxXYXY() if y_min is None: return True for line in self.line_list: line.scaleY(y_min, scale) return True def getDataJson(self): data_json = {} data_json["title"] = self.title data_json["x_label"] = self.x_label data_json["y_label"] = self.y_label data_json["axis_font_size"] = self.axis_font_size data_json["label_font_size"] = self.label_font_size data_json["tick_font_size"] = self.tick_font_size data_json["label_position"] = self.label_position data_json["marker"] = self.marker data_json["fill_alpha"] = self.fill_alpha data_json["fig_size"] = self.fig_size data_json["dpi"] = self.dpi data_json["show_line_label"] = self.show_line_label data_json["show_confidence_interval_label"] = self.show_confidence_interval_label data_json["Lines"] = {} for line in self.line_list: line_json = {} line_json["line_type"] = line.line_type line_json["line_color"] = line.line_color line_json["line_width"] = line.line_width line_json["label"] = line.label line_json["point_list"] = line.getPointData() line_json["fit_polyline"] = line.fit_polyline line_json["show_confidence_interval"] = line.show_confidence_interval line_json["confidence_diff_min"] = line.confidence_diff_min line_json["confidence_diff_max"] = line.confidence_diff_max line_json["confidence_interval_list"] = line.confidence_interval_list data_json["Lines"][str(line.line_idx)] = line_json return data_json def loadDataJson(self, data_json): self.reset() self.title = data_json["title"] self.x_label = data_json["x_label"] self.y_label = data_json["y_label"] self.axis_font_size = data_json["axis_font_size"] self.label_font_size = data_json["label_font_size"] self.tick_font_size = data_json["tick_font_size"] self.label_position = data_json["label_position"] self.marker = data_json["marker"] self.fill_alpha = data_json["fill_alpha"] self.fig_size = data_json["fig_size"] self.dpi = data_json["dpi"] self.show_line_label = data_json["show_line_label"] self.show_confidence_interval_label = data_json["show_confidence_interval_label"] data_json["Lines"].keys() for line_key in data_json["Lines"].keys(): new_line = Line(len(self.line_list)) line_json = data_json["Lines"][line_key] new_line.line_type = line_json["line_type"] new_line.line_color = line_json["line_color"] new_line.line_width = line_json["line_width"] new_line.label = line_json["label"] new_line.loadPointData(line_json["point_list"]) new_line.fit_polyline = line_json["fit_polyline"] new_line.show_confidence_interval = line_json["show_confidence_interval"] new_line.confidence_diff_min = line_json["confidence_diff_min"] new_line.confidence_diff_max = line_json["confidence_diff_max"] new_line.confidence_interval_list = line_json["confidence_interval_list"] self.line_list.append(new_line) return True ``` #### File: 565353780/chart-plot/plot_markdown.py ```python import json from LineMethod.line_creater import LineCreater def getData(): ''' chart_data_dict = [robot_num][metric_name][x or scene_level] -> value_list ''' data_file_path = "/home/chli/chLi/coscan_data/different_robot_num.txt" metric_name_list = ["TC", "DC", "D-LB", "T-LB"] metric_col_idx_list = [5, 6, 11, 12] data_list = [] with open(data_file_path, "r") as f: for line in f.readlines(): line_split_list = line.replace(" ", "").split("\n")[0].split("|")[1:-1] valid_line_data = \ [float(line_split_list[col_idx]) for col_idx in metric_col_idx_list] data_list.append(valid_line_data) chart_data_dict = {} for metric_name in metric_name_list: chart_data_dict[metric_name] = {} chart_data_dict[metric_name]["x"] = [1.0 * i for i in range(3, 11)] scene_level_list = ["Small", "Middle", "Large"] for metric_idx in range(len(metric_name_list)): for scene_level in range(3): chart_y_list = [] for data_idx in range(8): chart_y_list.append( data_list[3 * data_idx + scene_level][metric_idx]) chart_data_dict[ metric_name_list[metric_idx]][ scene_level_list[scene_level]] = \ chart_y_list return chart_data_dict if __name__ == "__main__": chart_data_dict = getData() line_color_list = ["tomato", "teal", "orange"] json_save_folder_path = "/home/chli/chLi/coscan_data/different_robot_num/" fit_polyline = False show_confidence_interval = True confidence_diff_min = 10 confidence_diff_max = 20 show_line_label = True show_confidence_interval_label = False line_type = "-" line_width = 2 for chart_name in chart_data_dict.keys(): if chart_name == "TC": confidence_diff_min = 1 confidence_diff_max = 2 elif chart_name == "DC": confidence_diff_min = 50 confidence_diff_max = 100 elif chart_name == "D-LB": confidence_diff_min = 0.01 confidence_diff_max = 0.02 elif chart_name == "T-LB": confidence_diff_min = 0.005 confidence_diff_max = 0.01 line_creater = LineCreater() line_creater.setParam(fit_polyline, show_confidence_interval, confidence_diff_min, confidence_diff_max) line_creater.x_label = "#Robot" line_creater.y_label = chart_name line_creater.title = "" line_creater.line_list = [] chart_data = chart_data_dict[chart_name] chart_x_list = chart_data["x"] line_color_idx = 0 for chart_y_name in chart_data.keys(): if chart_y_name == "x": continue chart_y_list = chart_data[chart_y_name] new_line_idx = len(line_creater.line_list) line_creater.addLine(line_type, line_width, chart_y_name, fit_polyline, show_confidence_interval, confidence_diff_min, confidence_diff_max) line_creater.line_list[new_line_idx].line_color = \ line_color_list[line_color_idx] line_color_idx += 1 for i in range(len(chart_x_list)): line_creater.line_list[new_line_idx].addPoint( chart_x_list[i], chart_y_list[i]) line_creater.line_list[new_line_idx].updateConfidenceInterval() chart_save_path = json_save_folder_path + chart_name + "_data.json" data_json = line_creater.getDataJson() data_json_dump = json.dumps(data_json, indent=4) with open(chart_save_path, "w") as f: f.write(data_json_dump) ```
{ "source": "565353780/express-parcel-split", "score": 3 }
#### File: q3d/bin/t.py ```python import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtWebEngineWidgets import * class MainWindow(QMainWindow): def __init__(self): super(MainWindow, self).__init__() self.setWindowTitle('加载外部网页的例子') self.setGeometry(5,30,1355,730) self.browser=QWebEngineView() #加载外部的web界面 self.browser.load(QUrl('https://blog.csdn.net/jia666666')) self.setCentralWidget(self.browser) if __name__ == '__main__': app=QApplication(sys.argv) win=MainWindow() win.show() app.exit(app.exec_()) ```
{ "source": "565353780/filter-socket", "score": 3 }
#### File: src/Python/datachange.py ```python import os.path as osp import os import json as js import numpy as np from shutil import copyfile from PIL import Image import shutil import xml.etree.ElementTree as ET from os import getcwd dataset_path = os.getcwd() + '/../Server_DataBase/train_dataset/darknet_dataset' # my_labels = ['person', 'rock', 'broom'] # my_labels = ["Sprite", "Coca-Cola", "Fanta_Orange", "Fanta_Apple", "Gatorade_Orange", "Gatorade_Huang", "Gatorade_Blue", # "Qin lemon water", "Beauty Juice Orange", "Honey Citron Tea", "Sour plum soup", "Unified Green Tea", # "Unified Ice Black Tea", "Oolong Tea", "Lemon U grid", "Jasmine Honey Tea", "Jasmine Tea", # "Master Green Tea", "Master Kong Ice Black Tea", "Ome Green Tea", "Osmanthus Sour Plum Soup Drink", # "Unification of fresh oranges"] sets = [('2012', 'train')] class DataChange: def __init__(self, rootpath, source_json_path, source_img_path, my_labels=['0'], use_my_labels=False, need_to_change_image_size=False, image_width=300, image_height=300): self.rootpath = rootpath self.source_json_path = source_json_path self.source_img_path = source_img_path self.use_my_labels = use_my_labels self.need_to_change_image_size = need_to_change_image_size self.image_width = image_width self.image_height = image_height self.my_labels = my_labels self.classes = my_labels.copy() def convert(self, size, box): dw = 1. / (size[0]) dh = 1. / (size[1]) x = (box[0] + box[1]) / 2.0 - 1 y = (box[2] + box[3]) / 2.0 - 1 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(self, year, image_id): in_file = open(dataset_path + '/Annotations_/%s.xml' % (image_id)) out_file = open(dataset_path + '/labels/val2014/%s.txt' % (image_id), 'w') tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in self.classes or int(difficult) == 1: continue cls_id = self.classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = self.convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') def readxml(self, dataset, xml, count, file_name): tree = ET.parse(xml) root = tree.getroot() for child in root: if child.tag == "size": for s_ch in child: if s_ch.tag == "width": w = s_ch.text else: h = s_ch.text elif child.tag == "object": for s_ch in child: if s_ch.tag == "bndbox": for ss_ch in s_ch: if ss_ch.tag == "xmin": xmin = ss_ch.text elif ss_ch.tag == "ymin": ymin = ss_ch.text elif ss_ch.tag == "xmax": xmax = ss_ch.text elif ss_ch.tag == "ymax": ymax = ss_ch.text else: ca_name = s_ch.text try: dataset.setdefault("images", []).append({ 'file_name': file_name, 'id': int(count), 'width': int(w), 'height': int(h) }) dataset.setdefault("annotations", []).append({ 'image_id': int(count), 'bbox': [int(xmin), int(ymin), int(xmax) - int(xmin), int(ymax) - int(ymin)], 'category_id': 6, 'area': int(w) * int(h), 'iscrowd': 0, 'id': int(count), 'segmentation': [] }) except: pass def produceImage(self, file_in, file_out): image = Image.open(file_in) resized_image = image.resize((self.image_width, self.image_height), Image.ANTIALIAS) resized_image.save(file_out) def data_change(self): xmlpath = self.rootpath + '/Annotations_' imgpath = self.rootpath + '/JPEGImages' imgsetpath = self.rootpath + '/ImageSets' txtpath = imgsetpath + '/Main' if not osp.exists(xmlpath): os.makedirs(xmlpath) if not osp.exists(imgpath): os.makedirs(imgpath) if not osp.exists(imgsetpath): os.makedirs(imgsetpath) if not osp.exists(txtpath): os.makedirs(txtpath) json_file_arr = os.listdir(self.source_json_path) img_file_arr = os.listdir(self.source_img_path) json_arr = [] img_arr = [] for name in json_file_arr: if '.json' in name: json_arr.append(name) for name in img_file_arr: if '.jpg' in name or '.png' in name: img_arr.append(name) fixed_file_arr = [] fixed_file_type = [] json_arr = sorted(json_arr) img_arr = sorted(img_arr) for i in range(len(json_arr)): json = json_arr[i] img = img_arr[i] index_last_points_json = json.rfind(".") index_last_points_img = img.rfind(".") if json[:index_last_points_json] == img[:index_last_points_img]: fixed_file_arr.append(json[0:index_last_points_json]) fixed_file_type.append('.' + img[index_last_points_img + 1:]) annotation_arr = np.array([]) for i in range(len(fixed_file_arr)): if self.need_to_change_image_size: self.produceImage(self.source_img_path + '/' + fixed_file_arr[i] + fixed_file_type[i], imgpath + '/' + str(i) + fixed_file_type[i]) else: copyfile(self.source_img_path + '/' + fixed_file_arr[i] + fixed_file_type[i], imgpath + '/' + str(i) + fixed_file_type[i]) f = open(self.source_json_path + '/' + fixed_file_arr[i] + '.json', 'r', encoding='utf-8') my_dic = js.load(f) annotation_arr = np.append(annotation_arr, (fixed_file_arr[i], my_dic)) f.close() print('\rRead dataset : ' + str(i + 1) + ' / ' + str(len(fixed_file_arr)), end='') print('') annotation_arr = annotation_arr.reshape(-1, 2) f1 = open(txtpath + '/test.txt', 'w') f2 = open(txtpath + '/trainval.txt', 'w') f3 = open(txtpath + '/person_trainval.txt', 'w') f4 = open(txtpath + '/train.txt', 'w') f5 = open(txtpath + '/val.txt', 'w') f6 = open(self.rootpath + '/ground_truth.txt', 'w') if not os.path.exists(dataset_path + '/Main/'): os.makedirs(dataset_path + '/Main/') f7 = open(dataset_path + '/Main/' + 'train.txt', 'w') for i in range(annotation_arr.shape[0]): f1.write(annotation_arr[i][0] + '\n') f2.write(annotation_arr[i][0] + '\n') f3.write(annotation_arr[i][0] + ' 1\n') f4.write(str(i) + '\n') f5.write(annotation_arr[i][0] + '\n') f6.write('\nGROUND TRUTH FOR: ' + annotation_arr[i][0] + '\n') f7.write(str(i) + '.jpg\n') f = open(xmlpath + '/' + str(i) + '.xml', 'w') f.write('<annotation>\n') f.write('\t<folder>VOC2007</folder>\n') f.write('\t#' + annotation_arr[i][0] + '</filename>\n') f.write('\t<size>\n') if self.need_to_change_image_size: f.write('\t\t<width>%s</width>\n' % self.image_width) f.write('\t\t<height>%s</height>\n' % self.image_height) else: f.write('\t\t<width>%s</width>\n' % annotation_arr[i][1]['Area']['shape'][0]) f.write('\t\t<height>%s</height>\n' % annotation_arr[i][1]['Area']['shape'][1]) f.write('\t\t<depth>3</depth>\n') f.write('\t</size>\n') f.write('\t<segmented>0</segmented>\n') if len(annotation_arr[i][1]['Area']['labels']) > 0: for j in range(len(annotation_arr[i][1]['Area']['labels'])): f6.write('label: ') f.write('\t<object>\n') if self.use_my_labels: f.write('\t\t<name>%s</name>\n' % self.my_labels[int(annotation_arr[i][1]['Area']['labels'][j][0])]) else: f.write('\t\t<name>person</name>\n') f.write('\t\t<pose>Unspecified</pose>\n') f.write('\t\t<truncated>0</truncated>\n') f.write('\t\t<difficult>0</difficult>\n') f.write('\t\t<bndbox>\n') if self.need_to_change_image_size: f6.write('%d' % int(annotation_arr[i][1]['Area']['polygons'][j][0][0] * self.image_width / annotation_arr[i][1]['Area']['shape'][0])) f6.write(' || ') f6.write('%d' % int(annotation_arr[i][1]['Area']['polygons'][j][0][1] * self.image_width / annotation_arr[i][1]['Area']['shape'][1])) f6.write(' || ') f6.write('%d' % int(annotation_arr[i][1]['Area']['polygons'][j][2][0] * self.image_width / annotation_arr[i][1]['Area']['shape'][0])) f6.write(' || ') f6.write('%d' % int(annotation_arr[i][1]['Area']['polygons'][j][2][1] * self.image_width / annotation_arr[i][1]['Area']['shape'][1])) f6.write(' || ') f6.write(self.my_labels[int(annotation_arr[i][1]['Area']['labels'][j][0])]) f6.write('\n') f.write('\t\t\t<xmin>%s</xmin>\n' % int( annotation_arr[i][1]['Area']['polygons'][j][0][0] * self.image_width / annotation_arr[i][1]['Area']['shape'][0])) f.write('\t\t\t<ymin>%s</ymin>\n' % int( annotation_arr[i][1]['Area']['polygons'][j][0][1] * self.image_height / annotation_arr[i][1]['Area']['shape'][1])) f.write('\t\t\t<xmax>%s</xmax>\n' % int( annotation_arr[i][1]['Area']['polygons'][j][2][0] * self.image_width / annotation_arr[i][1]['Area']['shape'][0])) f.write('\t\t\t<ymax>%s</ymax>\n' % int( annotation_arr[i][1]['Area']['polygons'][j][2][1] * self.image_height / annotation_arr[i][1]['Area']['shape'][1])) else: f6.write('%d' % annotation_arr[i][1]['Area']['polygons'][j][0][0]) f6.write(' || ') f6.write('%d' % annotation_arr[i][1]['Area']['polygons'][j][0][1]) f6.write(' || ') f6.write('%d' % annotation_arr[i][1]['Area']['polygons'][j][2][0]) f6.write(' || ') f6.write('%d' % annotation_arr[i][1]['Area']['polygons'][j][2][1]) f6.write(' || ') f6.write('person\n') f.write('\t\t\t<xmin>%s</xmin>\n' % annotation_arr[i][1]['Area']['polygons'][j][0][0]) f.write('\t\t\t<ymin>%s</ymin>\n' % annotation_arr[i][1]['Area']['polygons'][j][0][1]) f.write('\t\t\t<xmax>%s</xmax>\n' % annotation_arr[i][1]['Area']['polygons'][j][2][0]) f.write('\t\t\t<ymax>%s</ymax>\n' % annotation_arr[i][1]['Area']['polygons'][j][2][1]) f.write('\t\t</bndbox>\n') f.write('\t</object>\n') f.write('</annotation>') f.close() print('\rWrite dataset : ' + str(i + 1) + ' / ' + str(annotation_arr.shape[0]), end='') print('') f1.close() f2.close() f3.close() f4.close() f5.close() f6.close() f7.close() def produce_darknet_cfg(self): currentPath = os.getcwd() with open('../Server_DataBase/train_dataset/darknet_dataset/coco.data', 'a+') as f: pass with open('../Server_DataBase/train_dataset/darknet_dataset/coco.data', 'w') as f: f.write("classes= " + str(len(self.my_labels)) + "\n") f.write("train = " + currentPath + "/../Server_DataBase/train_dataset/darknet_dataset/Main/train.txt\n") f.write("valid = coco_testdev\n") f.write("names = " + currentPath + "/../Server_DataBase/train_dataset/darknet_dataset/coco.names\n") f.write("backup = " + currentPath + "/../darknet-master/backup\n") f.write("eval=coco\n") with open('../Server_DataBase/train_dataset/darknet_dataset/coco.names', 'a+') as f: pass with open('../Server_DataBase/train_dataset/darknet_dataset/coco.names', 'w') as f: for label in self.my_labels: f.write(label) with open('../Server_DataBase/train_dataset/darknet_dataset/yolov3.cfg', 'a+') as f: pass with open('../Server_DataBase/train_dataset/darknet_dataset/yolov3.cfg', 'w') as f: with open('../src/Python/backup/yolov3_backup.cfg', 'r') as f_backup: meet_tag = False for line in f_backup.readlines(): if meet_tag: msg = line.split('=')[0] if msg == 'filters': f.write('filters=' + str(3 * (len(self.my_labels) + 5)) + '\n') elif msg == 'classes': f.write('classes=' + str(len(self.my_labels)) + '\n') else: f.write(line) meet_tag = False else: f.write(line) if line == '#change!\n': meet_tag = True def Main_DataChange(): if os.path.exists(dataset_path + '/annotations/'): shutil.rmtree(dataset_path + '/annotations') if os.path.exists(dataset_path + '/images/'): shutil.rmtree(dataset_path + '/images') if os.path.exists(dataset_path + '/labels/'): shutil.rmtree(dataset_path + '/labels') if os.path.exists(dataset_path + '/Main/'): shutil.rmtree(dataset_path + '/Main') dataset = {} my_labels = [] with open('../Server_DataBase/train_dataset/darknet_dataset/my_labels.txt', 'r') as f: for line in f.readlines(): my_labels.append(line) datachange = DataChange(dataset_path, dataset_path + '/enhance_dataset/', dataset_path + '/enhance_dataset/', my_labels, True) datachange.produce_darknet_cfg() datachange.data_change() print('Change to VOC dataset succeed!') wd = getcwd() for year, image_set in sets: if not os.path.exists(dataset_path + '/labels/val2014/'): os.makedirs(dataset_path + '/labels/val2014/') image_ids = open(dataset_path + '/ImageSets/Main/%s.txt' % (image_set)).read().strip().split() # list_file = open(dataset_path + '/%s.txt' % (image_set), 'w') img_num = len(image_ids) converted_img_num = 0 for image_id in image_ids: converted_img_num += 1 # list_file.write(dataset_path + '/JPEGImages/%s.jpg\n' % (image_id)) datachange.convert_annotation(year, image_id) print('\rConvert dataset : ' + str(converted_img_num) + ' / ' + str(img_num), end='') print('') # list_file.close() print('Create json dataset succeed!') im_path = dataset_path + "/imgs/" trainimg = dataset_path + "/images/val2014/" if not os.path.exists(im_path): os.makedirs(im_path) if not os.path.exists(trainimg): os.makedirs(trainimg) if not os.path.exists(im_path + 'img0/'): os.makedirs(im_path + 'img0/') imgs_list = os.listdir(dataset_path + '/JPEGImages/') copy_img_num = len(imgs_list) copyed_num = 0 for file in imgs_list: copyfile(dataset_path + '/JPEGImages/' + file, dataset_path + '/imgs/img0/' + file) copyed_num += 1 print('\rCopy images : ' + str(copyed_num) + ' / ' + str(copy_img_num), end='') print('') xmls_list = os.listdir(dataset_path + '/Annotations_/') copy_xml_num = len(xmls_list) copyed_num = 0 for file in xmls_list: copyfile(dataset_path + '/Annotations_/' + file, dataset_path + '/imgs/img0/' + file) copyed_num += 1 print('\rCopy xmls : ' + str(copyed_num) + ' / ' + str(copy_xml_num), end='') print('') print('Prepare changing to COCO dataset succeed!') cmax = 0 dirpath = os.listdir(im_path) for imgdir in dirpath: f1 = os.listdir(trainimg) for file in f1: cmax = max(cmax, int(file.split(".")[0])) count = 1 total_img_num = 0 file_list = os.listdir(im_path + imgdir) for file in os.listdir(im_path + imgdir): if file[-3:] == 'jpg': total_img_num += 1 for file in file_list: if file.split(".")[1] == "jpg": oldname = os.path.join(im_path + imgdir, file) jpgname = os.path.join(trainimg, file) shutil.copyfile(oldname, jpgname) datachange.readxml(dataset, os.path.join(im_path + imgdir, file.split(".")[0] + ".xml"), count + cmax, file) print('\rChange to COCO dataset : ' + str(count) + ' / ' + str(total_img_num), end='') count += 1 print('') print('Change to COCO dataset succeed!') for i in range(1, 81): dataset.setdefault("categories", []).append({ 'id': i, 'name': 1, 'supercategory': 'No' }) folder = os.path.join(dataset_path + '/annotations/') if not os.path.exists(folder): os.makedirs(folder) json_name = os.path.join(folder + 'instances_minival2014.json') with open(json_name, 'w') as f: js.dump(dataset, f) shutil.rmtree(dataset_path + '/Annotations_') shutil.rmtree(dataset_path + '/ImageSets') shutil.rmtree(dataset_path + '/JPEGImages') shutil.rmtree(dataset_path + '/imgs') os.remove(dataset_path + '/ground_truth.txt') path_pictures = dataset_path + '/images/val2014/' file_name = os.listdir(path_pictures) txt_path = dataset_path + '/Main/train.txt' with open(txt_path, 'w') as f: for i in file_name: f.write(path_pictures + i + '\n') return if __name__ == "__main__": Main_DataChange() ``` #### File: Python/LapNet/test.py ```python import torch import numpy as np import time import os # import argparse import cv2 from LapNet import LAPNet from loss import DiscriminativeLoss from create_dataset import createDataset from logger import Logger from torch.nn import DataParallel from collections import OrderedDict from torch.nn.parameter import Parameter import json # from flask import Flask, request, Response # app = Flask(__name__) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' test_mode = True class LapNet_Test: def __init__(self): # torch.cuda.set_device(args.gpu_idx) torch.cuda.set_device(0) # self.INPUT_CHANNELS = 3 # self.OUTPUT_CHANNELS = 2 # self.LEARNING_RATE = args.lr #1e-5 # self.BATCH_SIZE = args.batch_size #20 # self.NUM_EPOCHS = args.epoch #100 # self.LOG_INTERVAL = 20 # self.INS_CH = 32 # self.SIZE = [args.img_size[0], args.img_size[1]] #[224, 224] # self.NUM_WORKERS = args.num_workers #20 self.INPUT_CHANNELS = 3 self.OUTPUT_CHANNELS = 2 self.LEARNING_RATE = 3e-4 self.BATCH_SIZE = 32 self.NUM_EPOCHS = 10000000000000 self.LOG_INTERVAL = 20 self.INS_CH = 32 self.SIZE = [1024,512] self.NUM_WORKERS = 32 self.root_path = os.getcwd() + '/../src/Python/LapNet' # dataset_path = args.dataset_path self.model = LAPNet(input_ch=self.INPUT_CHANNELS, output_ch=self.OUTPUT_CHANNELS,internal_ch = 8).cuda() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.LEARNING_RATE, betas=(0.9, 0.99), amsgrad=True) self.start_epoch = -1 # chkpt_filename = "LapNet_chkpt_default"+"_GPU"+str(args.gpu_idx)+".pth" current_file_list = os.listdir(self.root_path + '/trained_model') current_epoch_num = -1 for file_name in current_file_list: print("filename:",file_name) self.output(["filename:",file_name]) if 'LapNet_chkpt_better_epoch' in file_name and "_GPU" + str(0) + ".pth" in file_name: temp_epoch_num = int(file_name.split('_')[3].split('h')[1]) if temp_epoch_num > current_epoch_num: current_epoch_num = temp_epoch_num # chkpt_filename = self.root_path + '/trained_model/'+"LapNet_chkpt_better_epoch" + str(current_epoch_num) + "_GPU" + str(args.gpu_idx) + ".pth" chkpt_filename = self.root_path + '/trained_model/'+"LapNet_chkpt_better_epoch" + str(current_epoch_num) + "_GPU" + str(0) + ".pth" if not os.path.exists(self.root_path + '/trained_model'): os.mkdir(self.root_path + '/trained_model') if os.path.isfile(chkpt_filename): checkpoint = torch.load(chkpt_filename) self.start_epoch = checkpoint['epoch'] print("Found Checkpoint file",chkpt_filename,".") self.output(["Found Checkpoint file",chkpt_filename,"."]) print("The checkpoint was saved at epoch",checkpoint['epoch'],".") self.output(["The checkpoint was saved at epoch",str(checkpoint['epoch']),"."]) print("Training stats is reset form epoch",self.start_epoch) self.output(["Training stats is reset form epoch",str(self.start_epoch)]) # if(args.optimizer_reset != 1): if(100 != 1): self.optimizer.load_state_dict(checkpoint['optimizer']) else: print("Optimizer State Reset.") self.output(["Optimizer State Reset."]) self.model.load_state_dict(checkpoint['net']) self.load_state_dict(self.model, self.state_dict(self.model)) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20,30,400,1000,6000,7000,8000], gamma=0.9) def output(self, string): with open(self.root_path + '/temp_output.txt', 'a+') as f: for str_ in string: f.write(str_) f.write('\n') return def state_dict(self, model, destination=None, prefix='', keep_vars=False): own_state = model.module if isinstance(model, torch.nn.DataParallel) \ else model if destination is None: destination = OrderedDict() for name, param in own_state._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.data for name, buf in own_state._buffers.items(): if buf is not None: destination[prefix + name] = buf for name, module in own_state._modules.items(): if module is not None: self.state_dict(module, destination, prefix + name + '.', keep_vars=keep_vars) return destination def load_state_dict(self, model, state_dict, strict=True): own_state = model.module.state_dict() if isinstance(model, torch.nn.DataParallel) \ else model.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, Parameter): # backwards compatibility for serialized parameters param = param.data try: own_state[name].copy_(param) except Exception: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: raise KeyError('unexpected key "{}" in state_dict' .format(name)) if strict: missing = set(own_state.keys()) - set(state_dict.keys()) if len(missing) > 0: raise KeyError('missing keys in state_dict: "{}"'.format(missing)) def test(self): self.model.eval() img_in_path = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval.jpg" img_out_path = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval_out.jpg" img_send_finished = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval_finish.txt" test_stopped = os.getcwd() + "/../Server_DataBase/message_set/lapnet_test_stopped.txt" if test_mode: img_list = os.listdir("Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/train_dataset/") for img_name in img_list: img_idx = int(img_name.split(".")[0]) if img_idx < 61: continue if ".jpg" in img_name: img_in_path = "Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/train_dataset/" + img_name img_in = cv2.imread(img_in_path) img_resized = cv2.resize(img_in, (1024, 512)) train_dataset = createDataset(img_in_path, size=self.SIZE) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, shuffle=False, num_workers=0) img = list(enumerate(train_dataloader))[0][1] img_tensor = torch.tensor(img).cuda() # Predictions sem_pred = self.model(img_tensor) # sem_pred=torch.floor(sem_pred) seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() seg_show = seg_map[1] (h,w)=seg_show.shape # result_img1 = np.zeros((h, w, 3)) # for i in range(result_img1.shape[0]): # for j in range(result_img1.shape[1]): # if seg_show[i][j] > -2: # result_img1[i][j] = [255, 255, 255] _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) # cv2.imshow(img_name, img_resized) # cv2.imshow("result_img1", result_img1) # cv2.imshow("result_img", result_img) # cv2.waitKey(0) if not os.path.exists("Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/output/"): os.makedirs("Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/output/") cv2.imwrite("Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/output/" + img_name, result_img) return while True: if os.path.exists(test_stopped): os.remove(test_stopped) return if not os.path.exists(img_send_finished): continue os.remove(img_send_finished) train_dataset = createDataset(img_in_path, size=self.SIZE) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, shuffle=False, num_workers=0) img = list(enumerate(train_dataloader))[0][1] img_tensor = torch.tensor(img).cuda() # Predictions sem_pred = self.model(img_tensor) # sem_pred=torch.floor(sem_pred) seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() seg_show = seg_map[1] # (h,w)=seg_show.shape # result_img1 = np.zeros((h, w)) # for i in range(result_img1.shape[0]): # for j in range(result_img1.shape[1]): # if seg_show[i][j] > -4: # result_img1[i][j] = 255 # cv2.imshow("source output to 2value-map", result_img1) # cv2.waitKey(0) _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) cv2.imwrite(img_out_path, result_img) os.remove(img_in_path) def predict(self, image_path_input): image_path_json = json.loads(image_path_input) image_path = image_path_json["ImagePath"] if ".jpg" not in image_path: return image_path self.model.eval() img_out_path = image_path.split(".jpg")[0] + "_out.jpg" train_dataset = createDataset(image_path, size=self.SIZE) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, shuffle=False, num_workers=0) img = list(enumerate(train_dataloader))[0][1] img_tensor = torch.tensor(img).cuda() sem_pred = self.model(img_tensor) seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() seg_show = seg_map[1] _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) cv2.imwrite(img_out_path, result_img) image_path_output = {} image_path_output["OutputImagePath"] = img_out_path return image_path_output # if test_mode: # os.chdir("D:/chLi/Project/ABACI/FilterSocket/bin_win/") # with open(os.getcwd() + '/../src/Python/LapNet/temp_train_mode.txt', 'w') as f: # f.write('True') # print('in ok') # lapnet_test = LapNet_Test() # lapnet_test.model.eval() # print('init ok') # @app.route("/predict", methods=["POST"]) # def predict(): # data= request.get_data() # data_json = json.loads(data) # image_path = data_json["ImagePath"] # if ".jpg" not in image_path: # return image_path # img_out_path = image_path.split(".jpg")[0] + "_out.jpg" # train_dataset = createDataset(image_path, size=lapnet_test.SIZE) # train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, # shuffle=False, num_workers=0) # img = list(enumerate(train_dataloader))[0][1] # img_tensor = torch.tensor(img).cuda() # sem_pred = lapnet_test.model(img_tensor) # seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() # seg_show = seg_map[1] # _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) # seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) # seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) # result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) # cv2.imwrite(img_out_path, result_img) # image_path_output = {} # image_path_output["OutputImagePath"] = img_out_path # return image_path_output def Main_LapNet_Test(): # logger = Logger('./logslite'+str(args.gpu_idx)) # parser = argparse.ArgumentParser(description="Train model") # parser.add_argument('--dataset-path', default='Dataset/train_dataset') # parser.add_argument('--lr', type=float, default=3e-4, help='learning rate') # parser.add_argument('--batch-size', type=int, default=32, help='batch size') # parser.add_argument('--img-size', type=int, nargs='+', default=[1024,512], help='image resolution: [width height]') # parser.add_argument('--epoch', type=int, default=10000000000000) # parser.add_argument('--gpu-idx',type = int,default= 0, help='using gpu(idx)') # parser.add_argument('--optimizer-reset', type=int, default=100) # parser.add_argument('--num-workers', type=int, default=1) # args = parser.parse_args() # if os.getcwd()[-6:] != "LapNet": # os.chdir(os.getcwd() + '/../src/Python/LapNet') if test_mode: os.chdir("D:/chLi/Project/ABACI/FilterSocket/bin_win/") with open(os.getcwd() + '/../src/Python/LapNet/temp_train_mode.txt', 'w') as f: f.write('True') print('in ok') lapnet_test = LapNet_Test() print('init ok') # lapnet_test.predict("Z:/public/MaskStation/2c_allImage/MaskSpace/LapNet/train_line/135.jpg") # return lapnet_test.test() print('test ok') return if __name__ == "__main__": Main_LapNet_Test() # app.run(host="0.0.0.0", port="9527",debug=True) ``` #### File: ResNet/resnet-test/model.py ```python import torch.nn as nn import torch.nn.functional as F class ResNet34(nn.Module): def __init__(self,model,num_classes): super(ResNet34,self).__init__() self.conv1= model.conv1 self.bn1 = model.bn1 self.relu = model.relu self.maxpool= model.maxpool self.layer1 = model.layer1 self.layer2 = model.layer2 self.layer3 = model.layer3 self.layer4 = model.layer4 self.fc = nn.Linear(512,num_classes) def forward(self,x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = F.avg_pool2d(x, kernel_size=x.shape[2]) x = x.view(x.size(0),-1) x = self.fc(x) return x ``` #### File: ResNet/resnet-test/run_training.py ```python import requests import json from trainmodel import Learning import configparser import datetime def update_config(param, model_name): config = configparser.ConfigParser() config.read('./configs/default.ini') configs = config["default"] new_configs = configparser.ConfigParser() new_configs["default"] = configs new_configs["appointed"] = param with open('./configs/{}.ini'.format(model_name), 'w') as f: new_configs.write(f) for key, value in param.items(): #print("key,value",key,value) configs[key] = value return configs def training(configs, model_name, annotation_file): aoi = Learning(configs, model_name, annotation_file) num_epochs = int(configs["num_epochs"]) best_val_acc = 0.0 for epoch in range(num_epochs): train_loss, train_acc = aoi.train() valid_loss, valid_acc, valid_conf_maxtrix, conf_maxtrix_detail, set_info = aoi.valid() # response result_json={ "time":datetime.datetime.now().strftime('%Y/%m/%d-%H:%M:%S'), "train_loss":{"epoch":epoch, "loss":train_loss}, "train_accuracy":{"epoch":epoch, "accuracy":train_acc}, "validation_loss":{"epoch":epoch, "loss":valid_loss}, "validation_accuracy":{"epoch":epoch, "accuracy":valid_acc} } print(result_json) if valid_acc >= best_val_acc: best_val_acc = valid_acc best_valid_loss, best_valid_acc, best_valid_conf_maxtrix, best_valid_conf_maxtrix_detail, valid_set_info = valid_loss, valid_acc, valid_conf_maxtrix, conf_maxtrix_detail, set_info best_test_loss, best_test_acc, best_test_conf_maxtrix, best_test_conf_maxtrix_detail, test_set_info= aoi.test() # response result={ "time":datetime.datetime.now().strftime('%Y/%m/%d-%H:%M:%S'), "success":True, "confusion_matrix_validation":best_valid_conf_maxtrix.tolist(), "confusion_matrix_test":best_test_conf_maxtrix.tolist(), "confusion_matrix_validation_detail":best_valid_conf_maxtrix_detail, "confusion_matrix_yesy_detail":best_test_conf_maxtrix_detail, "validation_set_info":valid_set_info, "test_set_info":test_set_info } print(result) #result_json=json.dumps(result) class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstabce(obj,'int64'): return str(obj) else: return super(NpEncoder, self).default(obj) if __name__ == "__main__": model_name="SandResNet" param={} # param["num_epochs"]=100 f=open("./train.json",'r') annotation_file = json.loads(f.read()) print(annotation_file) # configs = update_config(param,model_name) # training(configs, model_name, annotation_file) ``` #### File: Python/ResNet/resnet_train_2.py ```python import os import torch.utils.data as data import torch import torch.optim as optim import torch.nn as nn from torch.optim import lr_scheduler from torchvision import datasets, models, transforms from PIL import Image import time import copy import pandas as pd import matplotlib.pyplot as plt import numpy as np def default_loader(path): with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') class CustomImageLoader(data.Dataset): # 定义自己的数据类 ##自定义类型数据输入 def __init__(self, RootImageFolderPath, dataset = '', data_transforms=None, loader = default_loader): im_list = [] im_labels = [] if RootImageFolderPath[-1] != "/": RootImageFolderPath += "/" ImageFolderPath_list = os.listdir(RootImageFolderPath) for ImageFolderPath in ImageFolderPath_list: currentImageFolderPath = RootImageFolderPath + ImageFolderPath if os.path.isdir(currentImageFolderPath): ImagePath_list = os.listdir(currentImageFolderPath) for ImagePath in ImagePath_list: if "train" in ImagePath: continue if ImagePath.split(".")[1] == "jpg": currentImagePath = currentImageFolderPath + "/" + ImagePath im_list.append(currentImagePath) im_labels.append(int(ImageFolderPath)) self.imgs = im_list self.labels = im_labels self.data_tranforms = data_transforms self.loader = loader self.dataset = dataset def __len__(self): return len(self.imgs) def __getitem__(self, item): img_name = self.imgs[item] label = self.labels[item] img = self.loader(img_name) if self.data_tranforms is not None: try: img = self.data_tranforms[self.dataset](img) except: print("Cannot transform image: {}".format(img_name)) return img, label data_tranforms={ 'Train':transforms.Compose([ # transforms.RandomResizedCrop(224), # 随机裁剪为不同的大小和宽高比,缩放所为制定的大小 transforms.RandomHorizontalFlip(0.5), transforms.RandomVerticalFlip(0.5), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) # 各通道颜色的均值和方差,用于归一化 ]), 'Test':transforms.Compose([ # transforms.Resize(256), # 变换大小 # transforms.CenterCrop(224), # 中心裁剪 transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) } def train_model(model, crtiation, optimizer, schedular, num_epochs, batch_size, device): image_datasets = {x : CustomImageLoader(os.getcwd() + "/resnet-test/sand-pic/", # 默认目录为根目录,配搭文件中使用全路径 data_transforms=data_tranforms, dataset=x) for x in ['Train', 'Test'] } dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['Train', 'Test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['Train', 'Test']} # 数据大小 begin_time = time.time() best_weights = copy.deepcopy(model.state_dict())#copy the weights from the model best_acc = 0.0 arr_acc = [] # 用于作图 for epoch in range(num_epochs): print("-*-" * 20) item_acc = [] for phase in ['Train', 'Test']: if phase=='Train': schedular.step() model.train() else: model.eval() running_loss = 0.0 running_acc = 0.0 for images, labels in dataloders[phase]: images.to(device) labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase=='Train'): opt = model(images.cuda()) # opt = model(images) _,pred = torch.max(opt,1) labels = labels.cuda() loss = crtiation(opt, labels) if phase=='Train': loss.backward() optimizer.step() running_loss += loss.item()*images.size(0) running_acc += torch.sum(pred==labels) epoch_loss = running_loss/dataset_sizes[phase] epoch_acc = running_acc.double()/dataset_sizes[phase] print('epoch={}, Phase={}, Loss={:.4f}, ACC:{:.4f}'.format(epoch, phase, epoch_loss, epoch_acc)) item_acc.append(epoch_acc) if phase == 'Test' and epoch_acc>best_acc: # Upgrade the weights best_acc=epoch_acc best_weights = copy.deepcopy(model.state_dict()) torch.save(model.state_dict(), os.getcwd() + "/resnet-test/models/chLi-ResNet-best-model.pkl") arr_acc.append(item_acc) time_elapes = time.time() - begin_time time_elapes // 60, time_elapes % 60 print('Best Val ACC: {:}'.format(best_acc)) model.load_state_dict(best_weights) # 保存最好的参数 return model,arr_acc if __name__ == '__main__': device = torch.device('cuda:0') # 默认使用 GPU NUMCLASS = 7 # 类别数 model_ft = models.resnet50(pretrained=False) num_fits = model_ft.fc.in_features model_ft.fc = nn.Linear(num_fits, NUMCLASS) # 替换最后一个全连接层 model_ft = model_ft.to(device) model_ft.cuda() # try: # model_ft.load_state_dict(torch.load(os.getcwd() + "/resnet-test/models/chLi-ResNet-best-model.pkl")) # except: # print("load model failed.") criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1) model_ft,arr_acc = train_model(model=model_ft, \ crtiation=criterion, \ optimizer=optimizer_ft, \ schedular=exp_lr_scheduler, \ num_epochs=1000, \ batch_size=1, \ device=device) # ll = np.array(arr_acc) # plt.plot(ll[:,0]) # plt.plot(ll[:,1]) # plt.show() ```
{ "source": "565353780/gr-net", "score": 2 }
#### File: GRNetDetector/core/train.py ```python import logging import os import torch import GRNetDetector.utils.data_loaders import GRNetDetector.utils.helpers from datetime import datetime from time import time from tensorboardX import SummaryWriter from GRNetDetector.core.test import test_net from GRNetDetector.extensions.chamfer_dist import ChamferDistance from GRNetDetector.extensions.gridding_loss import GriddingLoss from GRNetDetector.models.grnet import GRNet from GRNetDetector.utils.average_meter import AverageMeter from GRNetDetector.utils.metrics import Metrics def train_net(cfg): # Enable the inbuilt cudnn auto-tuner to find the best algorithm to use torch.backends.cudnn.benchmark = True # Set up data loader train_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[cfg.DATASET.TRAIN_DATASET](cfg) test_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[cfg.DATASET.TEST_DATASET](cfg) train_data_loader = torch.utils.data.DataLoader(dataset=train_dataset_loader.get_dataset( utils.data_loaders.DatasetSubset.TRAIN), batch_size=cfg.TRAIN.BATCH_SIZE, num_workers=cfg.CONST.NUM_WORKERS, collate_fn=utils.data_loaders.collate_fn, pin_memory=True, shuffle=True, drop_last=True) val_data_loader = torch.utils.data.DataLoader(dataset=test_dataset_loader.get_dataset( utils.data_loaders.DatasetSubset.VAL), batch_size=1, num_workers=cfg.CONST.NUM_WORKERS, collate_fn=utils.data_loaders.collate_fn, pin_memory=True, shuffle=False) # Set up folders for logs and checkpoints output_dir = os.path.join(cfg.DIR.OUT_PATH, '%s', datetime.now().isoformat()) cfg.DIR.CHECKPOINTS = output_dir % 'checkpoints' cfg.DIR.LOGS = output_dir % 'logs' if not os.path.exists(cfg.DIR.CHECKPOINTS): os.makedirs(cfg.DIR.CHECKPOINTS) # Create tensorboard writers train_writer = SummaryWriter(os.path.join(cfg.DIR.LOGS, 'train')) val_writer = SummaryWriter(os.path.join(cfg.DIR.LOGS, 'test')) # Create the networks grnet = GRNet(cfg) grnet.apply(utils.helpers.init_weights) logging.debug('Parameters in GRNet: %d.' % utils.helpers.count_parameters(grnet)) # Move the network to GPU if possible if torch.cuda.is_available(): grnet = torch.nn.DataParallel(grnet).cuda() # Create the optimizers grnet_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, grnet.parameters()), lr=cfg.TRAIN.LEARNING_RATE, weight_decay=cfg.TRAIN.WEIGHT_DECAY, betas=cfg.TRAIN.BETAS) grnet_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(grnet_optimizer, milestones=cfg.TRAIN.LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) # Set up loss functions chamfer_dist = ChamferDistance() gridding_loss = GriddingLoss( # lgtm [py/unused-local-variable] scales=cfg.NETWORK.GRIDDING_LOSS_SCALES, alphas=cfg.NETWORK.GRIDDING_LOSS_ALPHAS) # Load pretrained model if exists init_epoch = 0 best_metrics = None if 'WEIGHTS' in cfg.CONST: logging.info('Recovering from %s ...' % (cfg.CONST.WEIGHTS)) checkpoint = torch.load(cfg.CONST.WEIGHTS) best_metrics = Metrics(cfg.TEST.METRIC_NAME, checkpoint['best_metrics']) grnet.load_state_dict(checkpoint['grnet']) logging.info('Recover complete. Current epoch = #%d; best metrics = %s.' % (init_epoch, best_metrics)) # Training/Testing the network for epoch_idx in range(init_epoch + 1, cfg.TRAIN.N_EPOCHS + 1): epoch_start_time = time() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter(['SparseLoss', 'DenseLoss']) grnet.train() batch_end_time = time() n_batches = len(train_data_loader) for batch_idx, (taxonomy_ids, model_ids, data) in enumerate(train_data_loader): data_time.update(time() - batch_end_time) for k, v in data.items(): data[k] = utils.helpers.var_or_cuda(v) sparse_ptcloud, dense_ptcloud = grnet(data) sparse_loss = chamfer_dist(sparse_ptcloud, data['gtcloud']) dense_loss = chamfer_dist(dense_ptcloud, data['gtcloud']) _loss = sparse_loss + dense_loss losses.update([sparse_loss.item() * 1000, dense_loss.item() * 1000]) grnet.zero_grad() _loss.backward() grnet_optimizer.step() n_itr = (epoch_idx - 1) * n_batches + batch_idx train_writer.add_scalar('Loss/Batch/Sparse', sparse_loss.item() * 1000, n_itr) train_writer.add_scalar('Loss/Batch/Dense', dense_loss.item() * 1000, n_itr) batch_time.update(time() - batch_end_time) batch_end_time = time() logging.info('[Epoch %d/%d][Batch %d/%d] BatchTime = %.3f (s) DataTime = %.3f (s) Losses = %s' % (epoch_idx, cfg.TRAIN.N_EPOCHS, batch_idx + 1, n_batches, batch_time.val(), data_time.val(), ['%.4f' % l for l in losses.val()])) grnet_lr_scheduler.step() epoch_end_time = time() train_writer.add_scalar('Loss/Epoch/Sparse', losses.avg(0), epoch_idx) train_writer.add_scalar('Loss/Epoch/Dense', losses.avg(1), epoch_idx) logging.info( '[Epoch %d/%d] EpochTime = %.3f (s) Losses = %s' % (epoch_idx, cfg.TRAIN.N_EPOCHS, epoch_end_time - epoch_start_time, ['%.4f' % l for l in losses.avg()])) # Validate the current model metrics = test_net(cfg, epoch_idx, val_data_loader, val_writer, grnet) # Save ckeckpoints if epoch_idx % cfg.TRAIN.SAVE_FREQ == 0 or metrics.better_than(best_metrics): file_name = 'ckpt-best.pth' if metrics.better_than(best_metrics) else 'ckpt-epoch-%03d.pth' % epoch_idx output_path = os.path.join(cfg.DIR.CHECKPOINTS, file_name) torch.save({ 'epoch_index': epoch_idx, 'best_metrics': metrics.state_dict(), 'grnet': grnet.state_dict() }, output_path) # yapf: disable logging.info('Saved checkpoint to %s ...' % output_path) if metrics.better_than(best_metrics): best_metrics = metrics train_writer.close() val_writer.close() ```
{ "source": "565353780/jittor-subdivnet", "score": 3 }
#### File: jittor-subdivnet/maps/geometry.py ```python from typing import List import numpy as np import triangle as tr def to_barycentric(points, triangle): """ compute barycentric coordinates (u, v, w) for points w.r.t. triangle """ points = np.array(points) triangle = np.array(triangle) if triangle.shape[1] == 3: a, b, c = np.linalg.solve(triangle.T, points) elif triangle.shape[1] == 2: A = np.vstack([triangle[1] - triangle[0], triangle[2] - triangle[0]]) b, c = np.linalg.solve(A.T, points - triangle[0]) a = 1 - b - c else: raise Exception("Invalid") eps = 1e-5 return np.array([a, b, c]) def from_barycenteric(attr, bary): """ attr: [3, N] or [3,] bary: [3] """ attr = np.array(attr) bary = np.array(bary) if len(attr.shape) == 1: return (attr * bary).sum() elif len(attr.shape) == 2: return (attr * bary[:, None]).sum(axis=0) else: raise Exception("Invalid") def CDT(vids, vertices): V = vertices.shape[0] ring = [(i, (i + 1) % V) for i in range(V)] data = {"vertices": vertices, "segments": ring} result = tr.triangulate(data, "pe") new_edges = [ (k, v) for k, v in result["edges"] if not (k, v) in ring and not (v, k) in ring ] new_faces = np.vectorize(lambda x: vids[x], otypes=[int])(result["triangles"]) new_edges = np.vectorize(lambda x: vids[x], otypes=[int])(new_edges) return new_faces, new_edges def MVT(v, neighbors): edges = set() for i in range(len(neighbors)): j = i + 1 if i + 1 < len(neighbors) else 0 edges.add((neighbors[i], neighbors[j])) edges.add((neighbors[j], neighbors[i])) new_faces = [] new_edges = set() for i, u in enumerate(neighbors): j = i + 1 if i + 1 < len(neighbors) else 0 w = neighbors[j] if u == v or w == v: continue new_faces.append([v, u, w]) if not (v, u) in edges: new_edges.add((v, u)) if not (v, w) in edges: new_edges.add((v, w)) new_faces = np.array(new_faces) new_edges = np.array(list(new_edges)) return new_faces, new_edges def one_ring_neighbor_uv( neighbors: List[int], vertices: np.ndarray, i: int, return_angle=False, return_alpha=False, ): neighbors_p = neighbors neighbors_s = np.roll(neighbors_p, -1) vertices_p = vertices[neighbors_p] vertices_s = vertices[neighbors_s] direct_p = vertices_p - vertices[i] direct_s = vertices_s - vertices[i] length_p = np.sqrt((direct_p ** 2).sum(axis=1)) length_s = np.sqrt((direct_s ** 2).sum(axis=1)) direct_p = direct_p / length_p[:, np.newaxis] direct_s = direct_s / length_s[:, np.newaxis] angle_v = np.arccos((direct_p * direct_s).sum(axis=1)) alpha = angle_v.sum() A = 2 * np.pi / alpha angle_v[1:] = np.cumsum(angle_v)[:-1] angle_v[0] = 0 angle_v = angle_v * A u = np.power(length_p, A) * np.cos(angle_v) v = np.power(length_p, A) * np.sin(angle_v) uv = np.vstack([u, v]).transpose() if np.isnan(uv).any(): raise Exception('Found NAN') ret = (uv,) if return_angle: ret += (angle_v,) if return_alpha: ret += (alpha,) if len(ret) == 1: ret = ret[0] return ret def plane_from_points(points): v1 = points[1] - points[0] v2 = points[2] - points[0] cp = np.cross(v1, v2) d = -np.dot(cp, points[2]) l = np.linalg.norm(cp) cp /= l d /= l a, b, c = cp return np.array([a, b, c, d]) def vector_angle(A, B): return np.arccos(np.dot(A, B) / np.linalg.norm(A) / np.linalg.norm(B)) def triangle_angles(triangle): ''' triangle: (3, 3) ''' a = vector_angle(triangle[1] - triangle[0], triangle[2] - triangle[0]) b = vector_angle(triangle[2] - triangle[1], triangle[0] - triangle[1]) c = np.pi - a - b return np.array([a, b, c]) def min_triangle_angles(triangle): return triangle_angles(triangle).min() def face_areas(verts, faces): areas = [] for face in faces: t = np.cross(verts[face[1]] - verts[face[0]], verts[face[2]] - verts[face[0]]) areas.append(np.linalg.norm(t) / 2) return np.array(areas) ```
{ "source": "565353780/lapnet-detect", "score": 2 }
#### File: lapnet-detect/src/detect.py ```python import torch from torch.nn.parameter import Parameter import numpy as np import os import cv2 from collections import OrderedDict from time import time from LapNet import LAPNet from create_dataset import createDataset class LapNet_Test: def __init__(self, model_name): # torch.cuda.set_device(args.gpu_idx) torch.cuda.set_device(0) # self.INPUT_CHANNELS = 3 # self.OUTPUT_CHANNELS = 2 # self.LEARNING_RATE = args.lr #1e-5 # self.BATCH_SIZE = args.batch_size #20 # self.NUM_EPOCHS = args.epoch #100 # self.LOG_INTERVAL = 20 # self.INS_CH = 32 # self.SIZE = [args.img_size[0], args.img_size[1]] #[224, 224] # self.NUM_WORKERS = args.num_workers #20 self.INPUT_CHANNELS = 3 self.OUTPUT_CHANNELS = 2 self.LEARNING_RATE = 3e-4 self.BATCH_SIZE = 32 self.NUM_EPOCHS = 10000000000000 self.LOG_INTERVAL = 20 self.INS_CH = 32 self.SIZE = [1024,512] self.NUM_WORKERS = 32 self.model_name = model_name self.root_path = '../' self.model = LAPNet(input_ch=self.INPUT_CHANNELS, output_ch=self.OUTPUT_CHANNELS,internal_ch = 8).cuda() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.LEARNING_RATE, betas=(0.9, 0.99), amsgrad=True) chkpt_filename = self.root_path + 'model/' + self.model_name if not os.path.exists(self.root_path + 'model/'): os.mkdir(self.root_path + 'model/') if os.path.isfile(chkpt_filename): checkpoint = torch.load(chkpt_filename) self.start_epoch = checkpoint['epoch'] self.optimizer.load_state_dict(checkpoint['optimizer']) self.model.load_state_dict(checkpoint['net']) self.load_state_dict(self.model, self.state_dict(self.model)) def state_dict(self, model, destination=None, prefix='', keep_vars=False): own_state = model.module if isinstance(model, torch.nn.DataParallel) \ else model if destination is None: destination = OrderedDict() for name, param in own_state._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.data for name, buf in own_state._buffers.items(): if buf is not None: destination[prefix + name] = buf for name, module in own_state._modules.items(): if module is not None: self.state_dict(module, destination, prefix + name + '.', keep_vars=keep_vars) return destination def load_state_dict(self, model, state_dict, strict=True): own_state = model.module.state_dict() if isinstance(model, torch.nn.DataParallel) \ else model.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, Parameter): # backwards compatibility for serialized parameters param = param.data try: own_state[name].copy_(param) except Exception: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: raise KeyError('unexpected key "{}" in state_dict' .format(name)) if strict: missing = set(own_state.keys()) - set(state_dict.keys()) if len(missing) > 0: raise KeyError('missing keys in state_dict: "{}"'.format(missing)) def predict(self, image): train_dataset = createDataset("", size=lapnet_test.SIZE, image=image) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, shuffle=False, num_workers=0) img = list(enumerate(train_dataloader))[0][1] img_tensor = torch.tensor(img).cuda() sem_pred = lapnet_test.model(img_tensor) seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() seg_show = seg_map[1] _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) return result_img def predict_with_path(self, image_path): image = cv2.imread(image_path) return self.predict(image) def predict_video(self, video_path, show_video, save_video): cap = cv2.VideoCapture(video_path) video_appendix = video_path.split(".")[-1] video_base_name = video_path.split("." + video_appendix)[0] if save_video: fourcc = cv2.VideoWriter_fourcc(*"XVID") out = cv2.VideoWriter(video_base_name + "_output." + video_appendix, fourcc, cap.get(5), (1024, 1024)) frame_num = int(cap.get(7)) solved_num = 0 start_time = time() while cap.isOpened(): ret, frame = cap.read() if not ret: break source = cv2.resize(frame, (1024, 512)) edge = lapnet_test.predict(source) merge = np.vstack([source, edge]) if save_video: out.write(merge) solved_num += 1 if show_video: cv2.imshow("merge", merge) k = cv2.waitKey(20) if k & 0xff == ord("q"): break fps = 1.0 * solved_num / (time() - start_time) time_needed = int(1.0 * (frame_num - solved_num) / fps) minite_needed = int(time_needed / 60) second_needed = time_needed % 60 print("\rProcess :", solved_num, "/", frame_num, "\tFPS =", int(fps), "\tTime needed :", minite_needed, "min", second_needed, "s ", end="") print() cap.release() if save_video: out.release() cv2.destroyAllWindows() def save_full_model(self, save_name): example = torch.rand(1, 3, self.SIZE[1], self.SIZE[0]).cuda() traced_script_moodule = torch.jit.trace(self.model, example) traced_script_moodule.save(self.root_path + 'model/' + save_name) if __name__ == "__main__": model_name = "LapNet_chkpt_better_epoch6767_GPU0_HED_detect.pth" video_path = "NVR_ch2_main_20201111164000_20201111170000.avi" save_name = "LapNet_Edge_Detect.pt" show_video = False save_video = False save_full_model = False lapnet_test = LapNet_Test(model_name) lapnet_test.model.eval() if save_full_model: lapnet_test.save_full_model(save_name) else: lapnet_test.predict_video(video_path, show_video, save_video) ```
{ "source": "565353780/mmsegmentation-segformer", "score": 2 }
#### File: 565353780/mmsegmentation-segformer/MMSegmentationTrainer.py ```python import copy import os import os.path as osp import time import mmcv import torch from mmcv.runner import init_dist from mmcv.utils import Config, DictAction, get_git_hash from mmseg import __version__ from mmseg.apis import set_random_seed, train_segmentor from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.utils import collect_env, get_root_logger import torch.distributed as dist class MMSegmentationTrainer: def __init__(self): self.reset() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(self.local_rank) if 'MASTER_ADDR' not in os.environ: os.environ['MASTER_ADDR'] = "192.168.1.15" if 'MASTER_PORT' not in os.environ: os.environ['MASTER_PORT'] = "5678" dist.init_process_group('gloo', init_method='env://', rank=0, world_size=1) def reset(self): self.config = None self.checkpoint = None self.work_dir = None self.model = None self.model_ready = False self.time_start = None self.total_time_sum = 0 self.detected_num = 0 self.local_rank = 0 self.gpu_ids = range(1) self.distributed = False self.launcher = False self.cfg = None self.seed = None self.meta = None self.deterministic = False self.timestamp = None self.logger = None self.env_info = None self.datasets = None self.no_validate = False def resetTimer(self): self.time_start = None self.total_time_sum = 0 self.detected_num = 0 def startTimer(self): self.time_start = time.time() def endTimer(self, save_time=True): time_end = time.time() if not save_time: return if self.time_start is None: print("startTimer must run first!") return if time_end > self.time_start: self.total_time_sum += time_end - self.time_start self.detected_num += 1 else: print("Time end must > time start!") def getAverageTime(self): if self.detected_num == 0: return -1 return 1.0 * self.total_time_sum / self.detected_num def getAverageFPS(self): if self.detected_num == 0: return -1 return int(1.0 * self.detected_num / self.total_time_sum) def setConfig(self, config): self.config = config self.cfg = Config.fromfile(self.config) if self.cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True return def setCheckPoint(self, checkpoint): self.checkpoint = checkpoint if self.checkpoint is not None: self.cfg.resume_from = self.checkpoint return def setWorkDir(self, work_dir): if work_dir is not None: self.work_dir = work_dir else: self.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(self.config))[0]) self.cfg.work_dir = self.work_dir return def setSeed(self, seed): self.seed = seed if self.seed is not None: logger.info(f'Set random seed to {self.seed}, deterministic: ' f'{self.deterministic}') set_random_seed(self.seed, deterministic=self.deterministic) self.cfg.seed = self.seed return def setEnv(self): self.cfg.gpu_ids = self.gpu_ids mmcv.mkdir_or_exist(osp.abspath(self.work_dir)) self.cfg.dump(osp.join(self.work_dir, osp.basename(self.config))) self.timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(self.work_dir, f'{self.timestamp}.log') self.logger = get_root_logger(log_file=log_file, log_level=self.cfg.log_level) env_info_dict = collect_env() self.env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' self.logger.info('Environment info:\n' + dash_line + self.env_info + '\n' + dash_line) return def setMeta(self): self.meta = dict() self.meta['env_info'] = self.env_info self.meta['seed'] = self.seed self.meta['exp_name'] = osp.basename(self.config) return def initEnv(self, work_dir=None, seed=None): self.setWorkDir(work_dir) self.setSeed(seed) self.setEnv() self.setMeta() self.logger.info(f'Distributed training: {self.distributed}') self.logger.info(f'Config:\n{self.cfg.pretty_text}') def loadModel(self, config, checkpoint): self.setConfig(config) self.setCheckPoint(checkpoint) self.initEnv() self.model = build_segmentor( self.cfg.model, train_cfg=self.cfg.get('train_cfg'), test_cfg=self.cfg.get('test_cfg')) self.logger.info(self.model) return def loadDatasets(self): self.datasets = [build_dataset(self.cfg.data.train)] if len(self.cfg.workflow) == 2: val_dataset = copy.deepcopy(self.cfg.data.val) val_dataset.pipeline = self.cfg.data.train.pipeline self.datasets.append(build_dataset(val_dataset)) if self.cfg.checkpoint_config is not None: self.cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=self.cfg.pretty_text, CLASSES=self.datasets[0].CLASSES, PALETTE=self.datasets[0].PALETTE) self.model.CLASSES = self.datasets[0].CLASSES return def train(self): train_segmentor( self.model, self.datasets, self.cfg, distributed=self.distributed, validate=(not self.no_validate), timestamp=self.timestamp, meta=self.meta) return if __name__ == "__main__": config = "../SegFormer/local_configs/segformer/B5/segformer.b5.640x640.ade.160k.py" checkpoint = None mm_segmentation_trainer = MMSegmentationTrainer() mm_segmentation_trainer.loadModel(config, checkpoint) mm_segmentation_trainer.loadDatasets() # for spending less GPU memory mm_segmentation_trainer.cfg.data['samples_per_gpu'] = 1 mm_segmentation_trainer.train() ```
{ "source": "565353780/pointcloud-manage", "score": 2 }
#### File: pointcloud-manage/PointCloudClass/channel_pointcloud.py ```python import os from scipy.spatial.kdtree import KDTree from tqdm import tqdm from PointCloudClass.channel_point import ChannelPoint class ChannelPointCloud(object): def __init__(self): self.point_list = [] self.kd_tree = None self.xyz_changed = True self.save_ignore_channel_name_list = ["r", "g", "b"] return def reset(self): self.point_list.clear() self.kd_tree = None self.xyz_changed = True return True def getChannelValueList(self, channel_name): channel_value_list = [] for point in self.point_list: channel_value_list.append(point.getChannelValue(channel_name)) return channel_value_list def getChannelListValueList(self, channel_name_list): channel_list_value_list = [] for point in self.point_list: channel_value_list = [] for channel_name in channel_name_list: channel_value_list.append(point.getChannelValue(channel_name)) channel_list_value_list.append(channel_value_list) return channel_list_value_list def updateKDTree(self): if not self.xyz_changed: return True self.kd_tree = None xyz_list = self.getChannelListValueList(["x", "y", "z"]) if len(xyz_list) == 0: return False if None in xyz_list[0]: return False self.kd_tree = KDTree(xyz_list) self.xyz_changed = False return True def loadData(self, pointcloud_file_path): if not os.path.exists(pointcloud_file_path): print("[ERROR][ChannelPointCloud::loadData]") print("\t file not exist!") return False self.reset() print("[INFO][ChannelPointCloud::loadData]") print("\t start load pointcloud :") print("\t pointcloud_file_path = " + pointcloud_file_path) channel_name_list = [] lines = [] with open(pointcloud_file_path, "r") as f: lines = f.readlines() point_num = -1 loaded_point_num = 0 find_start_line = False for line in tqdm(lines): # load fields if "property" in line: channel_name = line.split("\n")[0].split(" ")[2] channel_name_list.append(channel_name) continue if "FIELDS" in line: channel_name_list = line.split("\n")[0].split("FIELDS ")[1].split(" ") continue # load point_num if "element vertex" in line: point_num = int(line.split("\n")[0].split(" ")[2]) continue if "POINTS" in line: point_num = int(line.split("\n")[0].split(" ")[1]) continue if not find_start_line and "DATA ascii" in line or "end_header" in line: find_start_line = True continue if not find_start_line: continue line_data = line.split("\n")[0].split(" ") channel_value_list = [] for i in range(len(channel_name_list)): channel_value_list.append(float(line_data[i])) new_point = ChannelPoint() new_point.setChannelValueList(channel_name_list, channel_value_list) self.point_list.append(new_point) loaded_point_num += 1 if loaded_point_num == point_num: break print("[INFO][ChannelPointCloud::loadData]") print("\t loaded", loaded_point_num, "points from poitncloud!") self.updateKDTree() return True def getNearestPointInfo(self, x, y, z): self.updateKDTree() if self.kd_tree is None: return None, None if len(self.point_list) == 0: return None, None nearest_dist, nearest_point_idx = self.kd_tree.query([x, y, z]) return nearest_dist, nearest_point_idx def getNearestDist(self, x, y, z): self.updateKDTree() if self.kd_tree is None: return None if len(self.point_list) == 0: return None nearest_dist, _ = self.kd_tree.query([x, y, z]) return nearest_dist def getSelfNearestDist(self, point_idx): self.updateKDTree() if self.kd_tree is None: return None if len(self.point_list) == 0: return None if point_idx >= len(self.point_list): return None xyz = self.point_list[point_idx].getChannelValueList(["x", "y", "z"]) if None in xyz: return None nearest_dist_list, _ = self.kd_tree.query([xyz[0], xyz[1], xyz[2]], 2) return nearest_dist_list[1] def getNearestPoint(self, x, y, z): _, nearest_point_idx = self.getNearestPointInfo(x, y, z) if nearest_point_idx is None: return None return self.point_list[nearest_point_idx] def getNearestChannelValueListValue(self, x, y, z, channel_name_list): nearest_channel_value_list = [] if len(channel_name_list) == 0: return nearest_channel_value_list nearest_point = self.getNearestPoint(x, y, z) if nearest_point is None: return None for channel_name in channel_name_list: nearest_channel_value_list.append( nearest_point.getChannelValue(channel_name)) return nearest_channel_value_list def copyChannelValue(self, target_pointcloud, channel_name_list): pointcloud_size = len(self.point_list) target_pointcloud_size = len(target_pointcloud.point_list) if target_pointcloud_size == 0: print("[ERROR][ChannelPointCloud::copyChannelValue]") print("\t target pointcloud is empty!") return False if pointcloud_size > 0 and pointcloud_size != target_pointcloud_size: print("[ERROR][ChannelPointCloud::copyChannelValue]") print("\t pointcloud size not matched!") return False first_point_channel_value_list = \ target_pointcloud.point_list[0].getChannelValueList(channel_name_list) if None in first_point_channel_value_list: print("[ERROR][ChannelPointCloud::copyChannelValue]") print("\t target_pointcloud doesn't have all channels needed!") return False print("[INFO][ChannelPointCloud::copyChannelValue]") print("\t start copy channel value :") print("\t channel_name_list = [", end="") for channel_name in channel_name_list: print(" " + channel_name, end="") print(" ]...") channel_list_value_list = \ target_pointcloud.getChannelListValueList(channel_name_list) if pointcloud_size == 0: for channel_value_list in tqdm(channel_list_value_list): new_point = ChannelPoint() new_point.setChannelValueList(channel_name_list, channel_value_list) self.point_list.append(new_point) self.updateKDTree() return True for i in tqdm(pointcloud_size): channel_value_list = channel_list_value_list[i] self.point_list[i].setChannelValueList(channel_name_list, channel_value_list) self.updateKDTree() return True def setChannelValueByKDTree(self, target_pointcloud, channel_name_list): self.updateKDTree() if len(self.point_list) == 0: return True if len(target_pointcloud.point_list) == 0: print("[ERROR][ChannelPointCloud::setChannelValueByKDTree]") print("\t target pointcloud is empty!") return False first_point_xyz = self.point_list[0].getChannelValueList(["x", "y", "z"]) if None in first_point_xyz: print("[ERROR][ChannelPointCloud::setChannelValueByKDTree]") print("\t pointcloud xyz not found!") return False first_point_channel_value_list = \ target_pointcloud.getNearestChannelValueListValue( first_point_xyz[0], first_point_xyz[1], first_point_xyz[2], channel_name_list) if None in first_point_channel_value_list: print("[ERROR][ChannelPointCloud::setChannelValueByKDTree]") print("\t target_pointcloud doesn't have all channels needed!") return False print("[INFO][ChannelPointCloud::setChannelValueByKDTree]") print("\t start set channel value by KDTree :") print("\t channel_name_list = [", end="") for channel_name in channel_name_list: print(" " + channel_name, end="") print(" ]...") for point in tqdm(self.point_list): xyz = point.getChannelValueList(["x", "y", "z"]) channel_value_list = \ target_pointcloud.getNearestChannelValueListValue(xyz[0], xyz[1], xyz[2], channel_name_list) point.setChannelValueList(channel_name_list, channel_value_list) return True def removeOutlierPoints(self, outlier_dist_max): self.updateKDTree() if self.kd_tree is None: print("[ERROR][ChannelPointCloud::removeOutlierPoints]") print("\t kd_tree is None!") return False if outlier_dist_max == 0: print("[ERROR][ChannelPointCloud::removeOutlierPoints]") print("\t outlier_dist_max is 0!") return False print("[INFO][ChannelPointCloud::removeOutlierPoints]") print("\t start remove outerlier points with outlier_dist_max = " + str(outlier_dist_max) + "...") remove_point_idx_list = [] for i in tqdm(range(len(self.point_list))): current_nearest_dist = self.getSelfNearestDist(i) if current_nearest_dist > outlier_dist_max: remove_point_idx_list.append(i) if len(remove_point_idx_list) == 0: return True for i in range(len(remove_point_idx_list)): self.point_list.pop(remove_point_idx_list[i] - i) print("[INFO][ChannelPointCloud::removeOutlierPoints]") print("\t removed " + str(len(remove_point_idx_list)) + " points...") return True def paintByLabel(self, label_channel_name, color_map): if len(self.point_list) == 0: return True first_point_label_value = self.point_list[0].getChannelValue(label_channel_name) if first_point_label_value is None: print("[ERROR][ChannelPointCloud::paintByLabel]") print("\t label_channel not found!") return False color_map_size = len(color_map) if color_map_size == 0: print("[ERROR][ChannelPointCloud::paintByLabel]") print("\t color_map is empty!") return False print("[INFO][ChannelPointCloud::paintByLabel]") print("\t start paint by label...") for point in tqdm(self.point_list): label_value = point.getChannelValue(label_channel_name) rgb = color_map[label_value % color_map_size] point.setChannelValueList(["r", "g", "b"], rgb) return True def getPCDHeader(self): channel_list = [] point_num = len(self.point_list) if point_num > 0: channel_list = self.point_list[0].channel_list pcd_header = "# .PCD v0.7 - Point Cloud Data file format\n" pcd_header += "VERSION 0.7\n" pcd_header += "FIELDS" for channel in channel_list: if channel.name in self.save_ignore_channel_name_list: continue pcd_header += " " + channel.name pcd_header += "\n" pcd_header += "SIZE" for channel in channel_list: if channel.name in self.save_ignore_channel_name_list: continue pcd_header += " " + str(channel.size) pcd_header += "\n" pcd_header += "TYPE" for channel in channel_list: if channel.name in self.save_ignore_channel_name_list: continue pcd_header += " " + channel.type pcd_header += "\n" pcd_header += "COUNT" for channel in channel_list: if channel.name in self.save_ignore_channel_name_list: continue pcd_header += " " + str(channel.count) pcd_header += "\n" pcd_header += "WIDTH " + str(point_num) + "\n" pcd_header += "HEIGHT 1\n" pcd_header += "VIEWPOINT 0 0 0 1 0 0 0\n" pcd_header += "POINTS " + str(point_num) + "\n" pcd_header += "DATA ascii\n" return pcd_header def savePointCloud(self, save_pointcloud_file_path): print("[INFO][ChannelPointCloud::savePointCloud]") print("\t start save pointcloud to" + save_pointcloud_file_path + "...") with open(save_pointcloud_file_path, "w") as f: pcd_header = self.getPCDHeader() f.write(pcd_header) for point in tqdm(self.point_list): last_channel_idx = len(point.channel_list) - 1 for i in range(last_channel_idx + 1): if point.channel_list[i].name in self.save_ignore_channel_name_list: if i == last_channel_idx: f.write("\n") continue f.write(str(point.channel_list[i].value)) if i < last_channel_idx: f.write(" ") else: f.write("\n") return True def outputInfo(self, info_level=0): line_start = "\t" * info_level print(line_start + "[ChannelPointCloud]") for point in self.point_list: point.outputInfo(info_level + 1) return True ``` #### File: pointcloud-manage/PointCloudClass/down_sample.py ```python import open3d as o3d def downSample(pointcloud_file_path, down_sample_cluster_num, save_pointcloud_file_path): print("[INFO][downSample]") print("\t start down sampling pointcloud :") print("\t down_sample_cluster_num = " + str(down_sample_cluster_num) + "...") pointcloud = o3d.io.read_point_cloud(pointcloud_file_path, print_progress=True) down_sampled_pointcloud = o3d.geometry.PointCloud.uniform_down_sample( pointcloud, down_sample_cluster_num) o3d.io.write_point_cloud( save_pointcloud_file_path, down_sampled_pointcloud, write_ascii=True, print_progress=True) print("SUCCESS!") return True ``` #### File: pointcloud-manage/PointCloudClass/renderer.py ```python import cv2 import numpy as np from math import cos, sin, pi from tqdm import tqdm import open3d as o3d def render(pointcloud_file_path, estimate_normals_radius, estimate_normals_max_nn): pointcloud = o3d.io.read_point_cloud(pointcloud_file_path, print_progress=True) pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid( radius=estimate_normals_radius, max_nn=estimate_normals_max_nn)) o3d.visualization.draw_geometries([pointcloud]) return True class Renderer(object): def __init__(self): self.vis = o3d.visualization.Visualizer() self.render_center = None self.euler_angle = [0, 0, 0] return def getRotationMatrixFromEulerAngle(self, euler_angle): R_x = np.array([ [1, 0, 0], [0, cos(euler_angle[0]), -sin(euler_angle[0])], [0, sin(euler_angle[0]), cos(euler_angle[0])] ]) R_y = np.array([ [cos(euler_angle[1]), 0, sin(euler_angle[1])], [0, 1, 0], [-sin(euler_angle[1]), 0, cos(euler_angle[1])] ]) R_z = np.array([ [cos(euler_angle[2]), -sin(euler_angle[2]), 0], [sin(euler_angle[2]), cos(euler_angle[2]), 0], [0, 0, 1] ]) rotation_matrix = np.dot(R_z, np.dot(R_y, R_x)) return rotation_matrix def getRotateDirection(self, direction_vector, euler_angle): np_direction_vector = np.array(direction_vector) direction_vector_norm = np.linalg.norm(np_direction_vector) if direction_vector_norm == 0: print("[ERROR][Renderer::getRotateDirection]") print("\t direction_vector_norm is 0!") return None np_unit_direction_vector = np_direction_vector / direction_vector_norm rotation_matrix = self.getRotationMatrixFromEulerAngle(euler_angle) rotate_direction = np.dot(rotation_matrix, np_unit_direction_vector) return rotate_direction.tolist() def rotateVis(self, delta_rotate_angle): self.euler_angle[0] = 0 self.euler_angle[1] = -10 * pi / 180.0 self.euler_angle[2] += delta_rotate_angle * pi / 180.0 ctr = self.vis.get_view_control() front_direction = self.getRotateDirection( [1, 0, 0], self.euler_angle) ctr.set_front(front_direction) up_direction = self.getRotateDirection( [0, 0, 1], self.euler_angle) ctr.set_up(up_direction) ctr.set_lookat(self.render_center) # ctr.set_zoom(0.5) return True def render(self, show_labels, scene_pointcloud_file_path=None): delta_rotate_angle = 0.5 if scene_pointcloud_file_path is not None: print("start reading floor and wall...") self.splitLabeledPoints(scene_pointcloud_file_path) rendered_pointcloud = o3d.geometry.PointCloud() render_points = [] render_colors = [] print("start create rendered pointcloud...") for i in tqdm(range(len(self.pointcloud_list))): points = np.asarray(self.pointcloud_list[i].points).tolist() if len(points) == 0: continue for point in points: render_points.append(point) render_colors.append(self.d3_40_colors_rgb[i % len(self.d3_40_colors_rgb)] / 255.0) if scene_pointcloud_file_path is not None: print("start create rendered floor...") for wall_point in tqdm(self.labeled_point_cluster_list[0]): if abs(wall_point[2]) > 0.01: continue render_points.append(wall_point) render_colors.append(np.array([132, 133, 135], dtype=np.uint8) / 255.0) rendered_pointcloud.points = o3d.utility.Vector3dVector(np.array(render_points)) rendered_pointcloud.colors = o3d.utility.Vector3dVector(np.array(render_colors)) rendered_pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30)) self.render_center = rendered_pointcloud.get_axis_aligned_bounding_box().get_center() self.vis.create_window(window_name="Open3D RenderObject") render_option = self.vis.get_render_option() render_option.background_color = np.array([1, 1, 1]) render_option.point_size = 1 self.vis.add_geometry(rendered_pointcloud) while True: self.rotateVis(delta_rotate_angle) # self.vis.update_geometry() self.vis.poll_events() self.vis.update_renderer() if ord('q') == cv2.waitKey(1): break self.vis.destroy_window() return True def saveRender(self, output_video_file_path): fps = 30 video_width = 1920 video_height = 1080 delta_rotate_angle = 0.5 if scene_pointcloud_file_path is not None: print("start reading floor and wall...") self.splitLabeledPoints(scene_pointcloud_file_path) rendered_pointcloud = o3d.geometry.PointCloud() render_points = [] render_colors = [] print("start create rendered pointcloud...") for i in tqdm(range(len(self.pointcloud_list))): points = np.asarray(self.pointcloud_list[i].points).tolist() if len(points) == 0: continue for point in points: render_points.append(point) render_colors.append(self.d3_40_colors_rgb[i % len(self.d3_40_colors_rgb)] / 255.0) if scene_pointcloud_file_path is not None: print("start create rendered floor...") for wall_point in tqdm(self.labeled_point_cluster_list[0]): if abs(wall_point[2]) > 0.01: continue render_points.append(wall_point) render_colors.append(np.array([132, 133, 135], dtype=np.uint8) / 255.0) rendered_pointcloud.points = o3d.utility.Vector3dVector(np.array(render_points)) rendered_pointcloud.colors = o3d.utility.Vector3dVector(np.array(render_colors)) self.render_center = rendered_pointcloud.get_axis_aligned_bounding_box().get_center() self.vis.create_window(window_name="Open3D RenderObject") render_option = self.vis.get_render_option() render_option.background_color = np.array([1, 1, 1]) render_option.point_size = 1 self.vis.add_geometry(rendered_pointcloud) fourcc = cv2.VideoWriter_fourcc(*'MP4V') out = cv2.VideoWriter(output_video_file_path, fourcc, fps, (video_width, video_height)) for i in range(int(360 / delta_rotate_angle)): self.rotateVis(0.5) # self.vis.update_geometry() self.vis.poll_events() self.vis.update_renderer() open3d_image = np.asarray(self.vis.capture_screen_float_buffer()) * 255.0 cv_image = cv2.cvtColor(open3d_image, cv2.COLOR_RGB2BGR).astype(np.uint8) out.write(cv_image) self.vis.destroy_window() out.release() return True ```
{ "source": "565353780/poly-yolo", "score": 2 }
#### File: poly-yolo/poly_yolo/poly_yolo_without_polygon.py ```python from datetime import datetime import colorsys import os import sys from functools import reduce from functools import wraps import math import random as rd import cv2 as cv import keras.backend as K import numpy as np import tensorflow as tf from PIL import Image from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, Callback from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate from keras.layers import Input, GlobalAveragePooling2D, Reshape, Dense, Permute, multiply, Activation, add, Lambda, concatenate, MaxPooling2D from keras.layers import Input, Lambda from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.models import load_model from keras.optimizers import Adadelta, Adagrad from keras.regularizers import l2 from keras.utils import multi_gpu_model from matplotlib.colors import rgb_to_hsv, hsv_to_rgb np.set_printoptions(precision=3, suppress=True) MAX_VERTICES = 1000 #that allows the labels to have 1000 vertices per polygon at max. They are reduced for training ANGLE_STEP = 15 #that means Poly-YOLO will detect 360/15=24 vertices per polygon at max NUM_ANGLES3 = 0 NUM_ANGLES = 0 grid_size_multiplier = 4 #that is resolution of the output scale compared with input. So it is 1/4 anchor_mask = [[0,1,2,3,4,5,6,7,8], [0,1,2,3,4,5,6,7,8], [0,1,2,3,4,5,6,7,8]] #that should be optimized anchors_per_level = 9 #single scale and nine anchors def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') def letterbox_image(image, size): '''resize image with unchanged aspect ratio using padding''' iw = image.shape[1] ih = image.shape[0] w, h = size scale = min(w / iw, h / ih) nw = int(iw * scale) nh = int(ih * scale) cvi = cv.cvtColor(image, cv.COLOR_BGR2RGB) cvi = cv.resize(cvi, (nw, nh), interpolation=cv.INTER_CUBIC) dx = int((w - nw) // 2) dy = int((h - nh) // 2) new_image = np.zeros((h, w, 3), dtype='uint8') new_image[...] = 128 if nw <= w and nh <= h: new_image[dy:dy + nh, dx:dx + nw, :] = cvi else: new_image = cvi[-dy:-dy + h, -dx:-dx + w, :] return new_image.astype('float32') / 255.0 def rand(a=0, b=1): return np.random.rand() * (b - a) + a def get_random_data(line, input_shape, random=True, max_boxes=80, hue_alter=20, sat_alter=30, val_alter=30, proc_img=True): # load data # the color conversion is later. it is not necessary to realize bgr->rgb->hsv->rgb image = cv.imread(line[0]) iw = image.shape[1] ih = image.shape[0] h, w = input_shape box = np.array([np.array(list(map(float, box.split(',')[:5]))) for box in line[1:]]) if not random: # resize image scale = min(w / iw, h / ih) nw = int(iw * scale) nh = int(ih * scale) dx = (w - nw) // 2 dy = (h - nh) // 2 image_data = 0 if proc_img: # image = image.resize((nw, nh), Image.BICUBIC) image = cv.cvtColor( cv.resize(image, (nw, nh), interpolation=cv.INTER_CUBIC), cv.COLOR_BGR2RGB) image = Image.fromarray(image) new_image = Image.new('RGB', (w, h), (128, 128, 128)) new_image.paste(image, (dx, dy)) image_data = np.array(new_image) / 255. # correct boxes box_data = np.zeros((max_boxes, 5)) if len(box) > 0: np.random.shuffle(box) if len(box) > max_boxes: box = box[:max_boxes] box[:, [0, 2]] = box[:, [0, 2]] * scale + dx box[:, [1, 3]] = box[:, [1, 3]] * scale + dy box_data[:len(box), 0:5] = box[:, 0:5] return image_data, box_data # resize image random_scale = rd.uniform(.6, 1.4) scale = min(w / iw, h / ih) nw = int(iw * scale * random_scale) nh = int(ih * scale * random_scale) # force nw a nh to be an even if (nw % 2) == 1: nw = nw + 1 if (nh % 2) == 1: nh = nh + 1 # jitter for slight distort of aspect ratio if np.random.rand() < 0.3: if np.random.rand() < 0.5: nw = int(nw*rd.uniform(.8, 1.0)) else: nh = int(nh*rd.uniform(.8, 1.0)) image = cv.resize(image, (nw, nh), interpolation=cv.INTER_CUBIC) nwiw = nw/iw nhih = nh/ih # clahe. applied on resized image to save time. but before placing to avoid # the influence of homogenous background if np.random.rand() < 0.05: clahe = cv.createCLAHE(clipLimit=2, tileGridSize=(8, 8)) lab = cv.cvtColor(image, cv.COLOR_BGR2LAB) l, a, b = cv.split(lab) cl = clahe.apply(l) limg = cv.merge((cl, a, b)) image = cv.cvtColor(limg, cv.COLOR_LAB2BGR) # place image dx = rd.randint(0, max(w - nw, 0)) dy = rd.randint(0, max(h - nh, 0)) new_image = np.full((h, w, 3), 128, dtype='uint8') new_image, crop_coords, new_img_coords = random_crop( image, new_image) # flip image or not flip = rd.random() < .5 if flip: new_image = cv.flip(new_image, 1) # distort image hsv = np.int32(cv.cvtColor(new_image, cv.COLOR_BGR2HSV)) # linear hsv distortion hsv[..., 0] += rd.randint(-hue_alter, hue_alter) hsv[..., 1] += rd.randint(-sat_alter, sat_alter) hsv[..., 2] += rd.randint(-val_alter, val_alter) # additional non-linear distortion of saturation and value if np.random.rand() < 0.5: hsv[..., 1] = hsv[..., 1]*rd.uniform(.7, 1.3) hsv[..., 2] = hsv[..., 2]*rd.uniform(.7, 1.3) hsv[..., 0][hsv[..., 0] > 179] = 179 hsv[..., 0][hsv[..., 0] < 0] = 0 hsv[..., 1][hsv[..., 1] > 255] = 255 hsv[..., 1][hsv[..., 1] < 0] = 0 hsv[..., 2][hsv[..., 2] > 255] = 255 hsv[..., 2][hsv[..., 2] < 0] = 0 image_data = cv.cvtColor( np.uint8(hsv), cv.COLOR_HSV2RGB).astype('float32') / 255.0 # add noise if np.random.rand() < 0.15: image_data = np.clip(image_data + np.random.rand() * image_data.std() * np.random.random(image_data.shape), 0, 1) # correct boxes box_data = np.zeros((max_boxes, 5)) if len(box) > 0: np.random.shuffle(box) # rescaling separately because 5-th element is class box[:, [0, 2]] = box[:, [0, 2]] * nwiw box[:, [1, 3]] = box[:, [1, 3]] * nhih # mask out boxes that lies outside of croping window mask = (box[:, 1] >= crop_coords[0]) & (box[:, 3] < crop_coords[1]) & ( box[:, 0] >= crop_coords[2]) & (box[:, 2] < crop_coords[3]) box = box[mask] # transform boxes to new coordinate system w.r.t new_image box[:, :2] = box[:, :2] - [crop_coords[2], crop_coords[0]] + [new_img_coords[2], new_img_coords[0]] box[:, 2:4] = box[:, 2:4] - [crop_coords[2], crop_coords[0]] + [new_img_coords[2], new_img_coords[0]] if flip: box[:, [0, 2]] = (w-1) - box[:, [2, 0]] box[:, 0:2][box[:, 0:2] < 0] = 0 box[:, 2][box[:, 2] >= w] = w-1 box[:, 3][box[:, 3] >= h] = h-1 box_w = box[:, 2] - box[:, 0] box_h = box[:, 3] - box[:, 1] box = box[np.logical_and(box_w > 1, box_h > 1)] # discard invalid box if len(box) > max_boxes: box = box[:max_boxes] box_data[:len(box), 0:5] = box[:, 0:5] return image_data, box_data def random_crop(img, new_img): """Creates random crop from img and insert it into new_img Args: img (numpy array): Image to be cropped new_img (numpy array): Image to which the crop will be inserted into. Returns: tuple: Tuple of image containing the crop, list of coordinates used to crop img and list of coordinates where the crop has been inserted into in new_img """ h, w = img.shape[:2] crop_shape = new_img.shape[:2] crop_coords = [0, 0, 0, 0] new_pos = [0, 0, 0, 0] # if image height is smaller than cropping window if h < crop_shape[0]: # cropping whole image [0,h] crop_coords[1] = h # randomly position whole img along height dimension val = rd.randint(0, crop_shape[0]-h) new_pos[0:2] = [val, val + h] else: # if image height is bigger than cropping window # randomly position cropping window on image crop_h_shift = rd.randint(crop_shape[0], h) crop_coords[0:2] = [crop_h_shift - crop_shape[0], crop_h_shift] new_pos[0:2] = [0, crop_shape[0]] # same as above for image width if w < crop_shape[1]: crop_coords[3] = w val = rd.randint(0, crop_shape[1] - w) new_pos[2:4] = [val, val + w] else: crop_w_shift = rd.randint(crop_shape[1], w) crop_coords[2:4] = [crop_w_shift - crop_shape[1], crop_w_shift] new_pos[2:4] = [0, crop_shape[1]] # slice, insert and return image including crop and coordinates used for cropping and inserting # coordinates are later used for boxes adjustments. new_img[new_pos[0]:new_pos[1], new_pos[2]:new_pos[3], :] = img[crop_coords[0]:crop_coords[1], crop_coords[2]:crop_coords[3], :] return new_img, crop_coords, new_pos """Poly-YOLO Model Defined in Keras.""" @wraps(Conv2D) def DarknetConv2D(*args, **kwargs): """Wrapper to set Darknet parameters for Convolution2D.""" darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)} darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides') == (2, 2) else 'same' darknet_conv_kwargs.update(kwargs) return Conv2D(*args, **darknet_conv_kwargs) def DarknetConv2D_BN_Leaky(*args, **kwargs): """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {'use_bias': False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(), LeakyReLU(alpha=0.1)) def resblock_body(x, num_filters, num_blocks): '''A series of resblocks starting with a downsampling Convolution2D''' # Darknet uses left and top padding instead of 'same' mode x = ZeroPadding2D(((1, 0), (1, 0)))(x) x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x) for i in range(num_blocks): y = compose( DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)), DarknetConv2D_BN_Leaky(num_filters, (3, 3)))(x) y = squeeze_excite_block(y) x = Add()([x, y]) return x # https://github.com/titu1994/keras-squeeze-excite-network/blob/master/keras_squeeze_excite_network/se_resnet.py def squeeze_excite_block(tensor, ratio=16): init = tensor channel_axis = 1 if K.image_data_format() == "channels_first" else -1 filters = init._keras_shape[channel_axis] se_shape = (1, 1, filters) se = GlobalAveragePooling2D()(init) se = Reshape(se_shape)(se) se = Dense(filters // ratio, kernel_initializer='he_normal', use_bias=False)(se) se = LeakyReLU(alpha=0.1)(se) se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se) if K.image_data_format() == 'channels_first': se = Permute((3, 1, 2))(se) x = multiply([init, se]) return x def _tensor_shape(tensor): return getattr(tensor, '_keras_shape') def darknet_body(x): '''Darknent body having 52 Convolution2D layers''' base = 6 # orig YOLOv3 has base = 8 x = DarknetConv2D_BN_Leaky(base * 4, (3, 3))(x) x = resblock_body(x, base * 8, 1) x = resblock_body(x, base * 16, 2) tiny = x x = resblock_body(x, base * 32, 8) small = x x = resblock_body(x, base * 64, 8) medium = x x = resblock_body(x, base * 128, 8) big = x return tiny, small, medium, big def make_last_layers(x, num_filters, out_filters): x = compose( DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(x) y = compose( DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D(out_filters, (1, 1)))(x) return x, y def yolo_body(inputs, num_anchors, num_classes): """Create Poly-YOLO model CNN body in Keras.""" tiny, small, medium, big = darknet_body(inputs) base = 6 tiny = DarknetConv2D_BN_Leaky(base*32, (1, 1))(tiny) small = DarknetConv2D_BN_Leaky(base*32, (1, 1))(small) medium = DarknetConv2D_BN_Leaky(base*32, (1, 1))(medium) big = DarknetConv2D_BN_Leaky(base*32, (1, 1))(big) all = Add()([medium, UpSampling2D(2,interpolation='bilinear')(big)]) all = Add()([small, UpSampling2D(2,interpolation='bilinear')(all)]) all = Add()([tiny, UpSampling2D(2,interpolation='bilinear')(all)]) num_filters = base*32 x = compose( DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(all) all = compose( DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5 + NUM_ANGLES3), (1, 1)))(x) return Model(inputs, all) def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): """Convert final layer features to bounding box parameters.""" num_anchors = anchors_per_level # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile(tf.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1], name='yolo_head/tile/reshape/grid_y'), [1, grid_shape[1], 1, 1]) grid_x = K.tile(tf.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1], name='yolo_head/tile/reshape/grid_x'), [grid_shape[0], 1, 1, 1]) grid = tf.concat([grid_x, grid_y], axis=-1, name='yolo_head/concatenate/grid') grid = K.cast(grid, K.dtype(feats)) feats = tf.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5 + NUM_ANGLES3], name='yolo_head/reshape/feats') # Adjust predictions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[...,::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[...,::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:5 + num_classes]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape): '''Get corrected boxes''' box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] input_shape = K.cast(input_shape, K.dtype(box_yx)) image_shape = K.cast(image_shape, K.dtype(box_yx)) new_shape = K.round(image_shape * K.min(input_shape / image_shape)) offset = (input_shape - new_shape) / 2. / input_shape scale = input_shape / new_shape box_yx = (box_yx - offset) * scale box_hw *= scale box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = K.concatenate([ box_mins[..., 0:1], # y_min box_mins[..., 1:2], # x_min box_maxes[..., 0:1], # y_max box_maxes[..., 1:2] # x_max ]) # Scale boxes back to original image shape. boxes *= K.concatenate([image_shape, image_shape]) return boxes def yolo_correct_polygons(polygons_x, polygons_y, polygons_confidence, boxes, input_shape, image_shape): polygons = K.concatenate([polygons_x, polygons_y, polygons_confidence]) return polygons def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape): '''Process Conv layer output''' box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats, anchors, num_classes, input_shape) boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape) boxes = K.reshape(boxes, [-1, 4]) box_scores = box_confidence * box_class_probs box_scores = K.reshape(box_scores, [-1, num_classes]) return boxes, box_scores def yolo_eval(yolo_outputs, anchors, num_classes, image_shape, max_boxes=80, score_threshold=.5, iou_threshold=.5): """Evaluate YOLO model on given input and return filtered boxes.""" input_shape = K.shape(yolo_outputs)[1:3] * grid_size_multiplier boxes = [] box_scores = [] for l in range(1): _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs, anchors[anchor_mask[l]], num_classes, input_shape, image_shape) boxes.append(_boxes) box_scores.append(_box_scores) boxes = K.concatenate(boxes, axis=0) box_scores = K.concatenate(box_scores, axis=0) mask = box_scores >= score_threshold box_scores >= score_threshold max_boxes_tensor = K.constant(max_boxes, dtype='int32') boxes_ = [] scores_ = [] classes_ = [] for c in range(num_classes): # TODO: use keras backend instead of tf. class_boxes = tf.boolean_mask(boxes, mask[:, c]) class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c]) nms_index = tf.image.non_max_suppression( class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold) class_boxes = K.gather(class_boxes, nms_index) class_box_scores = K.gather(class_box_scores, nms_index) classes = K.ones_like(class_box_scores, 'int32') * c boxes_.append(class_boxes) scores_.append(class_box_scores) classes_.append(classes) boxes_ = K.concatenate(boxes_, axis=0) scores_ = K.concatenate(scores_, axis=0) classes_ = K.concatenate(classes_, axis=0) return boxes_, scores_, classes_ def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes): '''Preprocess true boxes to training input format Parameters ---------- true_boxes: array, shape=(m, T, 5+69) Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape vstup je to nase kratke input_shape: array-like, hw, multiples of 32 anchors: array, shape=(N, 2), wh num_classes: integer Returns ------- y_true: list of array, shape like yolo_outputs, xywh are reletive value ''' assert (true_boxes[..., 4] < num_classes).all(), 'class id must be less than num_classes' true_boxes = np.array(true_boxes, dtype='float32') input_shape = np.array(input_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2 boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] true_boxes[:,:, 5:NUM_ANGLES3 + 5:3] /= np.clip(np.expand_dims(np.sqrt(np.power(boxes_wh[:, :, 0], 2) + np.power(boxes_wh[:, :, 1], 2)), -1), 0.0001, 9999999) true_boxes[..., 0:2] = boxes_xy / input_shape[::-1] true_boxes[..., 2:4] = boxes_wh / input_shape[::-1] m = true_boxes.shape[0] grid_shapes = [input_shape // {0: grid_size_multiplier}[l] for l in range(1)] y_true = [np.zeros((m, grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), 5 + num_classes + NUM_ANGLES3), dtype='float32') for l in range(1)] # Expand dim to apply broadcasting. anchors = np.expand_dims(anchors, 0) anchor_maxes = anchors / 2. anchor_mins = -anchor_maxes valid_mask = boxes_wh[..., 0] > 0 for b in range(m): # Discard zero rows. wh = boxes_wh[b, valid_mask[b]] if len(wh) == 0: continue # Expand dim to apply broadcasting. wh = np.expand_dims(wh, -2) box_maxes = wh / 2. box_mins = -box_maxes intersect_mins = np.maximum(box_mins, anchor_mins) intersect_maxes = np.minimum(box_maxes, anchor_maxes) intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] box_area = wh[..., 0] * wh[..., 1] anchor_area = anchors[..., 0] * anchors[..., 1] iou = intersect_area / (box_area + anchor_area - intersect_area) # Find best anchor for each true box best_anchor = np.argmax(iou, axis=-1) for t, n in enumerate(best_anchor): l = 0 if n in anchor_mask[l]: i = np.floor(true_boxes[b, t, 0] * grid_shapes[l][1]).astype('int32') j = np.floor(true_boxes[b, t, 1] * grid_shapes[l][0]).astype('int32') k = anchor_mask[l].index(n) c = true_boxes[b, t, 4].astype('int32') y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4] y_true[l][b, j, i, k, 4] = 1 y_true[l][b, j, i, k, 5 + c] = 1 y_true[l][b, j, i, k, 5 + num_classes:5 + num_classes + NUM_ANGLES3] = true_boxes[b, t, 5: 5 + NUM_ANGLES3] return y_true def box_iou(b1, b2): """Return iou tensor Parameters ---------- b1: tensor, shape=(i1,...,iN, 4), xywh b2: tensor, shape=(j, 4), xywh Returns ------- iou: tensor, shape=(i1,...,iN, j) """ # Expand dim to apply broadcasting. b1 = K.expand_dims(b1, -2) b1_xy = b1[..., :2] b1_wh = b1[..., 2:4] b1_wh_half = b1_wh / 2. b1_mins = b1_xy - b1_wh_half b1_maxes = b1_xy + b1_wh_half # Expand dim to apply broadcasting. b2 = K.expand_dims(b2, 0) b2_xy = b2[..., :2] b2_wh = b2[..., 2:4] b2_wh_half = b2_wh / 2. b2_mins = b2_xy - b2_wh_half b2_maxes = b2_xy + b2_wh_half intersect_mins = K.maximum(b1_mins, b2_mins) intersect_maxes = K.minimum(b1_maxes, b2_maxes) intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] b1_area = b1_wh[..., 0] * b1_wh[..., 1] b2_area = b2_wh[..., 0] * b2_wh[..., 1] iou = intersect_area / (b1_area + b2_area - intersect_area) return iou def yolo_loss(args, anchors, num_classes, ignore_thresh=.5): """Return yolo_loss tensor Parameters ---------- yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body y_true: list of array, the output of preprocess_true_boxes anchors: array, shape=(N, 2), wh num_classes: integer ignore_thresh: float, the iou threshold whether to ignore object confidence loss Returns ------- loss: tensor, shape=(1,) """ num_layers = 1 yolo_outputs = args[:num_layers] y_true = args[num_layers:] input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * grid_size_multiplier, K.dtype(y_true[0])) grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)] loss = 0 m = K.shape(yolo_outputs[0])[0] # batch size, tensor mf = K.cast(m, K.dtype(yolo_outputs[0])) for layer in range(num_layers): object_mask = y_true[layer][..., 4:5] true_class_probs = y_true[layer][..., 5:5 + num_classes] grid, raw_pred, pred_xy, pred_wh= yolo_head(yolo_outputs[layer], anchors[anchor_mask[layer]], num_classes, input_shape, calc_loss=True) pred_box = K.concatenate([pred_xy, pred_wh]) raw_true_xy = y_true[layer][..., :2] * grid_shapes[layer][::-1] - grid raw_true_wh = K.log(y_true[layer][..., 2:4] / anchors[anchor_mask[layer]] * input_shape[::-1]) raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf box_loss_scale = 2 - y_true[layer][..., 2:3] * y_true[layer][..., 3:4] # Find ignore mask, iterate over each of batch. ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True) object_mask_bool = K.cast(object_mask, 'bool') def loop_body(b, ignore_mask): true_box = tf.boolean_mask(y_true[layer][b, ..., 0:4], object_mask_bool[b, ..., 0]) iou = box_iou(pred_box[b], true_box) best_iou = K.max(iou, axis=-1) ignore_mask = ignore_mask.write(b, K.cast(best_iou < ignore_thresh, K.dtype(true_box))) return b + 1, ignore_mask _, ignore_mask = tf.while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask]) ignore_mask = ignore_mask.stack() ignore_mask = K.expand_dims(ignore_mask, -1) # K.binary_crossentropy is helpful to avoid exp overflow. xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[..., 0:2], from_logits=True) wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh - raw_pred[..., 2:4]) confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) * ignore_mask class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[..., 5:5 + num_classes], from_logits=True) xy_loss = K.sum(xy_loss) / mf wh_loss = K.sum(wh_loss) / mf class_loss = K.sum(class_loss) / mf confidence_loss = K.sum(confidence_loss) / mf loss += (xy_loss + wh_loss + confidence_loss + class_loss)/ (K.sum(object_mask) + 1)*mf return loss class YOLO(object): _defaults = { "model_path": 'model_data/yolo.h5', "anchors_path": 'yolo_anchors.txt', "classes_path": 'yolo_classes.txt', "score": 0.2, "iou": 0.5, "model_image_size": (416,832), "gpu_num": 1, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = yolo_body(Input(shape=(None, None, 3)), anchors_per_level, num_classes) self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors / len(self.yolo_model.output) * (num_classes + 5 + NUM_ANGLES3), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2,)) if self.gpu_num >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image): # start = timer() if self.model_image_size != (None, None): assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required' assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: print('THE functionality is not implemented!') image_data = np.expand_dims(boxed_image, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.shape[0], image.shape[1]], K.learning_phase(): 0 }) return out_boxes, out_scores, out_classes def close_session(self): self.sess.close() if __name__ == "__main__": """ Retrain the YOLO model for your own dataset. """ def _main(): phase = 1 annotation_path = 'citytrain.txt' validation_path = 'val.txt' log_dir = 'models/' classes_path = 'yolo_classes.txt' anchors_path = 'yolo_anchors.txt' class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) input_shape = (416,832) # multiple of 32, hw if phase == 1: model = create_model(input_shape, anchors, num_classes, load_pretrained=False) else: model = create_model(input_shape, anchors, num_classes, load_pretrained=True, weights_path=log_dir+'model.h5') print(model.summary()) checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, period=1, verbose=1) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1, delta=0.03) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1) with open(annotation_path) as f: lines = f.readlines() with open(validation_path) as f: lines_val = f.readlines() for i in range (0, len(lines)): lines[i] = lines[i].split() for i in range(0, len(lines_val)): lines_val[i] = lines_val[i].split() np.random.seed(1) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines_val)) num_train = len(lines) batch_size = 3 # decrease/increase batch size according to your memory of your GPU print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) from numpy.random import seed from tensorflow import set_random_seed np.random.seed(1) seed(1) set_random_seed(1) model.compile(optimizer=Adadelta(), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) epochs = 100 history = model.fit_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, True), steps_per_epoch=max(1, num_train // batch_size), validation_data=data_generator_wrapper(lines_val, batch_size, input_shape, anchors, num_classes, False), validation_steps=max(1, num_val // batch_size), epochs=epochs, initial_epoch=0, callbacks=[reduce_lr, early_stopping, checkpoint]) def get_classes(classes_path): """loads the classes""" with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): """loads the anchors from a file""" with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/yolo_weights.h5'): """create the training model""" K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = Input(shape=(h // grid_size_multiplier, w // grid_size_multiplier, anchors_per_level, num_classes + 5 + NUM_ANGLES3)) model_body = yolo_body(image_input, anchors_per_level, num_classes) print('Create Poly-YOLO model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( [model_body.output, y_true]) model = Model([model_body.input, y_true], model_loss) # print(model.summary()) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, is_random): """data generator for fit_generator""" n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i == 0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=is_random) image_data.append(image) box_data.append(box) i = (i + 1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true], np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random): n = len(annotation_lines) if n == 0 or batch_size <= 0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random) if __name__ == '__main__': _main() ```
{ "source": "565353780/py-curling-reconstruct", "score": 3 }
#### File: py-curling-reconstruct/track_Reconstruct/trackReconstruct.py ```python import cv2 import numpy as np from matplotlib import pyplot as plt import os track_width = 4.75 track_height = 44.5 back_height = 1.22 circle_height = 4.88 hog_height = 11.28 track_num = 6 def project(point, H): # print("H",H) actual_p = np.insert(np.array(point, np.float), len(point), 1).reshape(3, 1) # print("actual_p:",actual_p) projected_p = ((np.mat(H) * actual_p).flatten()).tolist()[0] if (projected_p[2] != 0): for i in range(3): projected_p[i] = projected_p[i] / projected_p[2] return projected_p[:-1] def findPerspectiveMatrix(origin_quad, target_quad): src_pts = np.array(origin_quad, np.float32).reshape(-1, 1, 2) dst_pts = np.array(target_quad, np.float32).reshape(-1, 1, 2) H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) return np.mat(H) # generate 2*num+1 rect def generateTracks(center, width, height, interval, num, track_polygon_list): for i in range(-num, num): polygon = [] x = center[0] + i * (width + interval) y = center[1] addRect(x, y, width, height, polygon) track_polygon_list.append(polygon) pass def addRect(x, y, w, h, out): out.append([x - w / 2, y - h / 2]) out.append([x + w / 2, y - h / 2]) out.append([x + w / 2, y + h / 2]) out.append([x - w / 2, y + h / 2]) def projectTracks(H, track_polygon_list): projected_polygon_list = [] for polygon in track_polygon_list: tmp_list = [] for point in polygon: projected_point = project(point, H) tmp_list.append(projected_point) projected_polygon_list.append(tmp_list) return projected_polygon_list def drawProjectedPolygon(): global projected_polygon_list global image for polygon in projected_polygon_list: print("polygon", polygon) cv2.polylines(image, [np.array(polygon, np.int)], True, (0, 0, 255)) plt.imshow(image[:, :, ::-1]) plt.draw() def load_points(filename): global image global target_quad target_quad = [] in_filename = filename + ".txt" with open(in_filename, "r") as f: lines = f.readlines() for line in lines: line = line.strip() if not len(line): # continue # data_list = line.split(",") print(data_list[0] + "," + data_list[1]) point = [float(data_list[0]), float(data_list[1])] target_quad.append(point) cv2.circle(image, (int(point[0]), int(point[1])), 5, (0, 255, 255), -1) # cv2.polylines(image,[np.array(target_quad,np.int)],True,(0,255,255)) plt.imshow(image[:, :, ::-1]) plt.draw() f.close() def save_points(filename): global target_quad out_filename = filename + ".txt" with open(out_filename, "w") as f: for point in target_quad: print(str(point[0]) + "," + str(point[1]), file=f) f.close() def on_key_press(event): global target_quad global track_polygon_list global image global tempfilename global H if event.key == "enter": plt.draw() elif event.key == "c": print(track_polygon_list[0]) H = findPerspectiveMatrix(track_polygon_list[3], target_quad) projectTracks() drawProjectedPolygon() elif event.key == "i": load_points(tempfilename) elif event.key == "o": save_points(tempfilename) def on_press(event): print("pressed:") global target_quad global image global origin_img if event.button == 1: # if event.xdata == None: return target_quad.append([event.xdata, event.ydata]) cv2.circle(image, (int(event.xdata), int(event.ydata)), 10, (0, 255, 255), -1) plt.imshow(image[:, :, ::-1]) plt.draw() print("add position:", event.button, event.xdata, event.ydata) elif event.button == 3: # target_quad = [] image = origin_img plt.imshow(img[:, :, ::-1]) plt.draw() print("clear positions") def drawTrack(image_container, h, rock_point_list): blue = (171, 130, 57) white = (255, 255, 255) red = (60, 20, 220) yellow = (14, 183, 235) scale = h / track_height actual_h, actual_w = int(scale * track_height), int(track_num * scale * track_width) tmp_image = np.zeros((actual_h, actual_w, 3), np.uint8) tmp_image[:, :, 0] = 255 tmp_image[:, :, 1] = 255 tmp_image[:, :, 2] = 255 # draw vertical for i in range(1, track_num): x = int(scale * track_width * i) cv2.line(tmp_image, (x, 0), (x, actual_h), blue, 1) # draw horizonal height_list = [int(scale * hog_height), int(scale * (track_height - hog_height)), int(scale * back_height), int(scale * (track_height - back_height))] color_list = [red, red, blue, blue] for i in range(2): cv2.line(tmp_image, (0, height_list[i]), (actual_w, height_list[i]), color_list[i], 1) pass circle_height_list = [int(scale * circle_height), int(scale * (track_height - circle_height))] for i in range(track_num): x = int(scale * track_width * (i + 0.5)) for height_j in circle_height_list: drawTrackCircles(tmp_image, x, height_j, scale, blue, red, white) for point in rock_point_list: cv2.circle(tmp_image, (int(point[0] * actual_w), actual_h - int(point[1] * actual_h)), 3, red, 2, cv2.LINE_AA) image_container.append(tmp_image) def drawTrackCircles(image, x, y, scale, blue, red, white): circle_r_list = [1.83, 1.22, 0.61, 0.15] circle_color_list = [blue, white, red, white] for i in range(4): cv2.circle(image, (int(x), int(y)), int(circle_r_list[i] * scale), circle_color_list[i], -1, cv2.LINE_AA) pass ## test sample # H=np.mat(np.zeros((3,3))) #project matrix # #polygon point order are conter clock wise # track_polygon_list=[] # projected_polygon_list=[] # #4 point to be align # target_quad=[] # center=[0.,0.] # generateTracks(center,4.75,44.5,0,3) # filename="curling_4.jpg" # image=cv2.imread(filename) # (tempfilename,extension) = os.path.splitext(filename) # (h,w,_)=image.shape # scale=min(512/w,512/h) # w1=int(w*scale) # h1=int(h*scale) # image=cv2.resize(image,(w1,h1)) # origin_img=image # tmp_image=[] # drawTrack(tmp_image) # fig = plt.figure() # fig.canvas.mpl_connect('button_press_event', on_press) # fig.canvas.mpl_connect('key_press_event', on_key_press) # plt.imshow(tmp_image[0][:,:,::-1]) # plt.ioff() # plt.show() ```
{ "source": "565353780/pytorch-ssd", "score": 3 }
#### File: 565353780/pytorch-ssd/detect.py ```python from torchvision import transforms from utils import * from PIL import Image, ImageDraw, ImageFont import time device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model checkpoint checkpoint = 'checkpoint_ssd300.pth.tar' checkpoint = torch.load(checkpoint) start_epoch = checkpoint['epoch'] + 1 print('\nLoaded checkpoint from epoch %d.\n' % start_epoch) model = checkpoint['model'] model = model.to(device) model.eval() # Transforms resize = transforms.Resize((300, 300)) to_tensor = transforms.ToTensor() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def detect(original_image, min_score, max_overlap, top_k, suppress=None): """ Detect objects in an image with a trained SSD300, and visualize the results. :param original_image: image, a PIL Image :param min_score: minimum threshold for a detected box to be considered a match for a certain class :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via Non-Maximum Suppression (NMS) :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k' :param suppress: classes that you know for sure cannot be in the image or you do not want in the image, a list :return: annotated image, a PIL Image """ # Transform image = normalize(to_tensor(resize(original_image))) # Move to default device image = image.to(device) # Forward prop. predicted_locs, predicted_scores = model(image.unsqueeze(0)) # Detect objects in SSD output det_boxes, det_labels, det_scores = model.detect_objects(predicted_locs, predicted_scores, min_score=min_score, max_overlap=max_overlap, top_k=top_k) # Move detections to the CPU det_boxes = det_boxes[0].to('cpu') # Transform to original image dimensions original_dims = torch.FloatTensor( [original_image.width, original_image.height, original_image.width, original_image.height]).unsqueeze(0) det_boxes = det_boxes * original_dims # Decode class integer labels det_labels = [rev_label_map[l] for l in det_labels[0].to('cpu').tolist()] # If no objects found, the detected labels will be set to ['0.'], i.e. ['background'] in SSD300.detect_objects() in model.py if det_labels == ['background']: # Just return original image return original_image # Annotate annotated_image = original_image draw = ImageDraw.Draw(annotated_image) # font = ImageFont.truetype("./calibril.ttf", 15) font = ImageFont.load_default() # Suppress specific classes, if needed for i in range(det_boxes.size(0)): if suppress is not None: if det_labels[i] in suppress: continue # Boxes box_location = det_boxes[i].tolist() draw.rectangle(xy=box_location, outline=label_color_map[det_labels[i]]) draw.rectangle(xy=[l + 1. for l in box_location], outline=label_color_map[ det_labels[i]]) # a second rectangle at an offset of 1 pixel to increase line thickness # draw.rectangle(xy=[l + 2. for l in box_location], outline=label_color_map[ # det_labels[i]]) # a third rectangle at an offset of 1 pixel to increase line thickness # draw.rectangle(xy=[l + 3. for l in box_location], outline=label_color_map[ # det_labels[i]]) # a fourth rectangle at an offset of 1 pixel to increase line thickness # Text text_size = font.getsize(det_labels[i].upper()) text_location = [box_location[0] + 2., box_location[1] - text_size[1]] textbox_location = [box_location[0], box_location[1] - text_size[1], box_location[0] + text_size[0] + 4., box_location[1]] draw.rectangle(xy=textbox_location, fill=label_color_map[det_labels[i]]) draw.text(xy=text_location, text=det_labels[i].upper(), fill='white', font=font) del draw return annotated_image if __name__ == '__main__': img_path_list = os.listdir("sample_images") try: os.makedirs('result/') except: print('Destination dir exists') pass time_list = [] for i in range(10): for img_path in img_path_list: original_image = Image.open('sample_images/' + img_path, mode='r') original_image = original_image.convert('RGB') sta = time.time() ret = detect(original_image, min_score=0.6, max_overlap=0.3, top_k=20)#.show() time_spend = time.time() - sta print("Once detect cost time:", time_spend) time_list.append(time_spend) ret.save(os.path.join('result', img_path)) avg_time = 0 for time in time_list: avg_time += time avg_time /= len(time_list) print("average time spend = ", avg_time) ```
{ "source": "565353780/pytorch-voxblox-plus-plus", "score": 2 }
#### File: catkin_boost_python_buildtool_test/test/test.py ```python import unittest import catkin_boost_python_test as cbpt from nose import SkipTest class TestTest(unittest.TestCase): def test_test(self): self.assertEqual(cbpt.test(), 42) if __name__ == '__main__': unittest.main() ``` #### File: mask_rcnn_ros/scripts/Detectron2Detector.py ```python import cv2 from detectron2.config import get_cfg from detectron2.engine.defaults import DefaultPredictor class Detectron2Detector(object): def __init__(self): self.model_path = None self.config_file = None self.confidence_threshold = 0.5 self.cfg = None self.predictor = None return def loadModel(self, model_path, config_file): self.model_path = model_path self.config_file = config_file print("start loading model...", end="") self.cfg = get_cfg() self.cfg.merge_from_file(config_file) self.cfg.MODEL.WEIGHTS = model_path self.cfg.MODEL.RETINANET.SCORE_THRESH_TEST = self.confidence_threshold self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.confidence_threshold self.cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = self.confidence_threshold self.cfg.freeze() self.predictor = DefaultPredictor(self.cfg) print("SUCCESS!") return True def detect_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. """ result = self.predictor(image) pred_boxes = result["instances"].pred_boxes.tensor.cpu().numpy() scores = result["instances"].scores.cpu().numpy() pred_classes = result["instances"].pred_classes.cpu().numpy() pred_masks = result["instances"].pred_masks.cpu().numpy() result_dict = {} result_dict["pred_boxes"] = pred_boxes result_dict["scores"] = scores result_dict["pred_classes"] = pred_classes result_dict["pred_masks"] = pred_masks return result_dict if __name__ == "__main__": model_path = "/home/chli/.ros/model_final_a3ec72.pkl" config_file = "/home/chli/.ros/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml" detectron2_detector = Detectron2Detector() detectron2_detector.loadModel(model_path, config_file) image_path = "/home/chli/vpp_ws/test.jpg" image = cv2.imread(image_path) result_dict = detectron2_detector.detect_image(image) print(result_dict) for box in result_dict["pred_boxes"].astype(int): cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 3) cv2.imshow("result", image) cv2.waitKey(5000) ``` #### File: pointcloud_diff/scripts/PointCloudDiff.py ```python import os import numpy as np import open3d as o3d from time import time, sleep import rospy from sensor_msgs.point_cloud2 import read_points from vpp_msgs.srv import GetMap from tensorboard_logger_ros.msg import Scalar from tensorboard_logger_ros.srv import ScalarToBool point_move_dict = { "01": [-9.2, 0.1, 0], "02": [0.9, -1.6, 0], "03": [-8.3, -0.5, 0], "04": [7.35, -4.2, 0], "05": [0, -0.4, 0], "06": [-4.1, -3.32, 0] } DEBUG = False class PointCloudDiff(object): def __init__(self): self.scene_pointcloud_folder_path = None # dataset data self.scene_pointcloud = None self.scene_point_num = None self.object_pointcloud_list = None self.merge_object_pointcloud = None self.valid_object_pointcloud_list = None self.merge_valid_object_pointcloud_list = None # recon data self.object_pointcloud_save_path = None self.object_last_create_time = None self.object_last_modify_time = None self.log_start_time = None self.last_log_time = None if not DEBUG: sleep(10) self.get_map_proxy = rospy.ServiceProxy("/gsm_node/get_map", GetMap) self.tf_logger_proxy = rospy.ServiceProxy('/tensorboard_logger/log_scalar', ScalarToBool) return def loadScenePointCloud(self, scene_pointcloud_folder_path): self.scene_pointcloud_folder_path = scene_pointcloud_folder_path if self.scene_pointcloud_folder_path[-1] != "/": self.scene_pointcloud_folder_path += "/" scene_idx = self.scene_pointcloud_folder_path.split("/")[-2] scene_point_move_list = point_move_dict[scene_idx] if not os.path.exists(self.scene_pointcloud_folder_path): print("[ERROR][PointCloudDiff::loadScenePointCloud]") print("\t scene_pointcloud_folder not exist!") return False scene_pointcloud_folder_filename_list = \ os.listdir(self.scene_pointcloud_folder_path) scene_pointcloud_filename = None for scene_pointcloud_folder_filename in scene_pointcloud_folder_filename_list: if ".ply" not in scene_pointcloud_folder_filename: continue scene_pointcloud_filename = scene_pointcloud_folder_filename break scene_pointcloud_file_path = \ self.scene_pointcloud_folder_path + scene_pointcloud_filename pointcloud_file_path_split_list = scene_pointcloud_file_path.split(".") if pointcloud_file_path_split_list[-1] == "obj": mesh = o3d.io.read_triangle_mesh(scene_pointcloud_file_path) self.scene_pointcloud = o3d.geometry.PointCloud() scene_pointcloud_points = np.array(mesh.vertices) scene_pointcloud_points[:, :] += scene_point_move_list self.scene_pointcloud.points = \ o3d.utility.Vector3dVector(scene_pointcloud_points) self.scene_point_num = scene_pointcloud_points.shape[0] return True self.scene_pointcloud = o3d.io.read_point_cloud(scene_pointcloud_file_path) scene_pointcloud_points = np.array(self.scene_pointcloud.points) scene_pointcloud_points[:, :] += scene_point_move_list self.scene_pointcloud.points = \ o3d.utility.Vector3dVector(scene_pointcloud_points) self.scene_point_num = scene_pointcloud_points.shape[0] self.scene_pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid( radius=0.1, max_nn=30)) return True def updateObjectPointCloudSavePath(self): object_pointcloud_save_basepath = os.path.expanduser('~') + \ "/.ros/RUN_LOG/PointCloud2ToObjectVecConverterServer/" pointcloud_save_folder_list = os.listdir(object_pointcloud_save_basepath) if len(pointcloud_save_folder_list) == 0: print("[ERROR][PointCloudDiff::getObjectPointCloudSavePath]") print("\t pointcloud_save_folder not exist!") return False max_idx_list = None max_idx_folder_name = None for pointcloud_save_folder in pointcloud_save_folder_list: date_split_list = pointcloud_save_folder.split("_") if len(date_split_list) < 4: continue if "-" not in date_split_list[3]: continue time_split_list = date_split_list[3].split("-") if(len(time_split_list) != 3): continue current_idx_list = [ int(date_split_list[0]), int(date_split_list[1]), int(date_split_list[2]), int(time_split_list[0]), int(time_split_list[1]), int(time_split_list[2]) ] if max_idx_list is None: max_idx_list = current_idx_list max_idx_folder_name = pointcloud_save_folder continue for i in range(len(max_idx_list)): if current_idx_list[i] > max_idx_list[i]: max_idx_list = current_idx_list max_idx_folder_name = pointcloud_save_folder break if current_idx_list[i] < max_idx_list[i]: break if max_idx_folder_name is None: print("[ERROR][PointCloudDiff::getObjectPointCloudSavePath]") print("\t find latest folder failed!") return False self.object_pointcloud_save_path = object_pointcloud_save_basepath + \ max_idx_folder_name + "/" return True def getMergePointCloud(self, pointcloud_list): merge_pointcloud = o3d.geometry.PointCloud() points_list = [] colors_list = [] for pointcloud in pointcloud_list: points_list.append(np.array(pointcloud.points)) colors_list.append(np.array(pointcloud.colors)) merge_points = np.concatenate(points_list, axis=0) merge_colors = np.concatenate(colors_list, axis=0) merge_pointcloud.points = o3d.utility.Vector3dVector(merge_points) merge_pointcloud.colors = o3d.utility.Vector3dVector(merge_colors) return merge_pointcloud def loadObjectPointCloud(self): self.object_pointcloud_list = [] scene_idx = self.scene_pointcloud_folder_path.split("/")[-2] object_point_move_list = point_move_dict[scene_idx] object_pointcloud_folder_path = self.scene_pointcloud_folder_path + \ "region_objects/" object_pointcloud_filename_list = os.listdir(object_pointcloud_folder_path) for object_pointcloud_filename in object_pointcloud_filename_list: object_pointcloud_filepath = object_pointcloud_folder_path + \ object_pointcloud_filename object_pointcloud = o3d.io.read_point_cloud(object_pointcloud_filepath) object_points = np.array(object_pointcloud.points) object_points[:, :] += object_point_move_list object_pointcloud.points = \ o3d.utility.Vector3dVector(object_points) self.object_pointcloud_list.append(object_pointcloud) self.merge_object_pointcloud = \ self.getMergePointCloud(self.object_pointcloud_list) self.merge_object_pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid( radius=0.1, max_nn=30)) return True def loadValidObjectPointCloud(self): self.valid_object_pointcloud_list = [] scene_idx = self.scene_pointcloud_folder_path.split("/")[-2] object_point_move_list = point_move_dict[scene_idx] object_pointcloud_folder_path = \ self.scene_pointcloud_folder_path + "valid_region_objects/" object_pointcloud_filename_list = \ os.listdir(object_pointcloud_folder_path) for object_pointcloud_filename in object_pointcloud_filename_list: object_pointcloud_filepath = object_pointcloud_folder_path + \ object_pointcloud_filename object_pointcloud = o3d.io.read_point_cloud(object_pointcloud_filepath) object_points = np.array(object_pointcloud.points) object_points[:, :] += object_point_move_list object_pointcloud.points = \ o3d.utility.Vector3dVector(object_points) self.valid_object_pointcloud_list.append(object_pointcloud) self.merge_valid_object_pointcloud = \ self.getMergePointCloud(self.valid_object_pointcloud_list) self.merge_valid_object_pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid( radius=0.1, max_nn=30)) return True def loadAllPointCloud(self, scene_pointcloud_folder_path): if not self.updateObjectPointCloudSavePath(): print("[ERROR][PointCloudDiff::loadAllPointCloud]") print("\t updateObjectPointCloudSavePath failed!") return False if not self.loadScenePointCloud(scene_pointcloud_folder_path): print("[ERROR][PointCloudDiff::loadAllPointCloud]") print("\t loadScenePointCloud failed!") return False if not self.loadObjectPointCloud(): print("[ERROR][PointCloudDiff::loadAllPointCloud]") print("\t loadObjectPointCloud failed!") return False if not self.loadValidObjectPointCloud(): print("[ERROR][PointCloudDiff::loadAllPointCloud]") print("\t loadValidObjectPointCloud failed!") return False return True def logScalar(self, name, step, value): scalar = Scalar() scalar.name = str(name) scalar.step = int(step) scalar.value = float(value) log_success = self.tf_logger_proxy(scalar) return log_success def loadPointCloud2Msg(self, pointcloud2_msg): point_list = \ read_points(pointcloud2_msg, skip_nans=True, field_names=("x", "y", "z")) point_array = [] for point in point_list: point_array.append(point[0:3]) pointcloud = o3d.geometry.PointCloud() pointcloud.points = o3d.utility.Vector3dVector(np.array(point_array)) return pointcloud def logSceneData(self): pointcloud2_msg = self.get_map_proxy() current_pcd = self.loadPointCloud2Msg(pointcloud2_msg.map_cloud) dist_to_scene = current_pcd.compute_point_cloud_distance(self.scene_pointcloud) dist_to_scene = np.asarray(dist_to_scene) avg_dist2_error = 0 for dist in dist_to_scene: avg_dist2_error += dist * dist avg_dist2_error /= dist_to_scene.shape[0] dist_to_recon = \ self.scene_pointcloud.compute_point_cloud_distance(current_pcd) dist_to_recon = np.asarray(dist_to_recon) recon_point_num = len(np.where(dist_to_recon < 0.2)[0]) recon_percent = 1.0 * recon_point_num / self.scene_point_num if not self.logScalar("PointCloudDiff/scene_error", self.last_log_time - self.log_start_time, avg_dist2_error): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for point_distance_mean failed!") return False if not self.logScalar("PointCloudDiff/scene_completeness", self.last_log_time - self.log_start_time, recon_percent): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for recon_percent failed!") return False return True def logObjectData(self): pointcloud_save_filename_list = \ os.listdir(self.object_pointcloud_save_path) if len(pointcloud_save_filename_list) == 0: return True object_filename_list = [] for pointcloud_save_filename in pointcloud_save_filename_list: if pointcloud_save_filename[:7] != "object_": continue object_filename_list.append(pointcloud_save_filename) if len(object_filename_list) == 0: return True object_current_create_time = os.path.getctime( self.object_pointcloud_save_path + "object_0.pcd") object_current_modify_time = os.path.getmtime( self.object_pointcloud_save_path + "object_0.pcd") if object_current_create_time == self.object_last_create_time and \ object_current_modify_time == self.object_last_modify_time: return True self.object_last_create_time = object_current_create_time self.object_last_modify_time = object_current_modify_time recon_object_pointcloud_list = [] for object_filename in object_filename_list: recon_object_pointcloud = o3d.io.read_point_cloud( self.object_pointcloud_save_path + object_filename) if np.array(recon_object_pointcloud.points).shape[0] == 0: self.object_last_create_time = None self.object_last_modify_time = None print("[WARN][PointCloudDiff::logObjectData]") print("\t object pointcloud files are updating, skip this logging!") return True recon_object_pointcloud_list.append(recon_object_pointcloud) recon_merge_object_pointcloud = self.getMergePointCloud( recon_object_pointcloud_list) recon_merge_object_pointcloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid( radius=0.1, max_nn=30)) if DEBUG: o3d.visualization.draw_geometries([ self.merge_object_pointcloud, recon_merge_object_pointcloud]) exit() dist_to_scene = \ recon_merge_object_pointcloud.compute_point_cloud_distance( self.merge_object_pointcloud) dist_to_scene = np.asarray(dist_to_scene) avg_dist2_error = 0 for dist in dist_to_scene: avg_dist2_error += dist * dist avg_dist2_error /= dist_to_scene.shape[0] dist_to_recon = \ self.merge_object_pointcloud.compute_point_cloud_distance( recon_merge_object_pointcloud) dist_to_recon = np.asarray(dist_to_recon) recon_point_num = len(np.where(dist_to_recon < 0.2)[0]) recon_percent = 1.0 * recon_point_num / self.scene_point_num if not self.logScalar("PointCloudDiff/object_error", self.last_log_time - self.log_start_time, avg_dist2_error): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for point_distance_mean failed!") return False if not self.logScalar("PointCloudDiff/object_completeness", self.last_log_time - self.log_start_time, recon_percent): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for recon_percent failed!") return False dist_to_scene = \ recon_merge_object_pointcloud.compute_point_cloud_distance( self.merge_valid_object_pointcloud) dist_to_scene = np.asarray(dist_to_scene) avg_dist2_error = 0 for dist in dist_to_scene: avg_dist2_error += dist * dist avg_dist2_error /= dist_to_scene.shape[0] dist_to_recon = \ self.merge_valid_object_pointcloud.compute_point_cloud_distance( recon_merge_object_pointcloud) dist_to_recon = np.asarray(dist_to_recon) recon_point_num = len(np.where(dist_to_recon < 0.2)[0]) recon_percent = 1.0 * recon_point_num / self.scene_point_num if not self.logScalar("PointCloudDiff/valid_object_error", self.last_log_time - self.log_start_time, avg_dist2_error): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for point_distance_mean failed!") return False if not self.logScalar("PointCloudDiff/valid_object_completeness", self.last_log_time - self.log_start_time, recon_percent): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logScalar for recon_percent failed!") return False return True def startComparePointCloud(self): self.log_start_time = time() self.last_log_time = self.log_start_time while True: if not DEBUG: sleep(10) new_log_time = time() if new_log_time == self.last_log_time: return True self.last_log_time = new_log_time if not DEBUG: if not self.logSceneData(): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logSceneData failed!") break if not self.logObjectData(): print("[ERROR][PointCloudDiff::startComparePointCloud]") print("\t logObjectData failed!") break return True if __name__ == "__main__": rospy.init_node("PointCloudDiff") scene_pointcloud_folder_path = \ os.path.expanduser('~') + "/" + \ rospy.get_param("/scene_pointcloud_folder_path") pointcloud_diff = PointCloudDiff() pointcloud_diff.loadAllPointCloud(scene_pointcloud_folder_path) pointcloud_diff.startComparePointCloud() ```
{ "source": "565353780/railway-catenary-detect", "score": 2 }
#### File: Python/LapNet/test.py ```python import torch import numpy as np import time import os # import argparse import cv2 from LapNet import LAPNet from loss import DiscriminativeLoss from create_dataset import createDataset from logger import Logger from torch.nn import DataParallel from collections import OrderedDict from torch.nn.parameter import Parameter os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' class LapNet_Test: def __init__(self): # torch.cuda.set_device(args.gpu_idx) torch.cuda.set_device(0) # self.INPUT_CHANNELS = 3 # self.OUTPUT_CHANNELS = 2 # self.LEARNING_RATE = args.lr #1e-5 # self.BATCH_SIZE = args.batch_size #20 # self.NUM_EPOCHS = args.epoch #100 # self.LOG_INTERVAL = 20 # self.INS_CH = 32 # self.SIZE = [args.img_size[0], args.img_size[1]] #[224, 224] # self.NUM_WORKERS = args.num_workers #20 self.INPUT_CHANNELS = 3 self.OUTPUT_CHANNELS = 2 self.LEARNING_RATE = 3e-4 self.BATCH_SIZE = 32 self.NUM_EPOCHS = 10000000000000 self.LOG_INTERVAL = 20 self.INS_CH = 32 self.SIZE = [1024,512] self.NUM_WORKERS = 32 self.root_path = os.getcwd() + '/../src/Python/LapNet' # dataset_path = args.dataset_path self.model = LAPNet(input_ch=self.INPUT_CHANNELS, output_ch=self.OUTPUT_CHANNELS,internal_ch = 8).cuda() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.LEARNING_RATE, betas=(0.9, 0.99), amsgrad=True) self.start_epoch = -1 # chkpt_filename = "LapNet_chkpt_default"+"_GPU"+str(args.gpu_idx)+".pth" current_file_list = os.listdir(self.root_path + '/trained_model') current_epoch_num = -1 for file_name in current_file_list: print("filename:",file_name) self.output(["filename:",file_name]) if 'LapNet_chkpt_better_epoch' in file_name: temp_epoch_num = int(file_name.split('_')[3].split('h')[1]) if temp_epoch_num > current_epoch_num: current_epoch_num = temp_epoch_num # chkpt_filename = self.root_path + '/trained_model/'+"LapNet_chkpt_better_epoch" + str(current_epoch_num) + "_GPU" + str(args.gpu_idx) + ".pth" chkpt_filename = self.root_path + '/trained_model/'+"LapNet_chkpt_better_epoch" + str(current_epoch_num) + "_GPU" + str(0) + ".pth" if not os.path.exists(self.root_path + '/trained_model'): os.mkdir(self.root_path + '/trained_model') if os.path.isfile(chkpt_filename): checkpoint = torch.load(chkpt_filename) self.start_epoch = checkpoint['epoch'] print("Found Checkpoint file",chkpt_filename,".") self.output(["Found Checkpoint file",chkpt_filename,"."]) print("The checkpoint was saved at epoch",checkpoint['epoch'],".") self.output(["The checkpoint was saved at epoch",str(checkpoint['epoch']),"."]) print("Training stats is reset form epoch",self.start_epoch) self.output(["Training stats is reset form epoch",str(self.start_epoch)]) # if(args.optimizer_reset != 1): if(100 != 1): self.optimizer.load_state_dict(checkpoint['optimizer']) else: print("Optimizer State Reset.") self.output(["Optimizer State Reset."]) self.model.load_state_dict(checkpoint['net']) self.load_state_dict(self.model, self.state_dict(self.model)) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20,30,400,1000,6000,7000,8000], gamma=0.9) def output(self, string): with open(self.root_path + '/temp_output.txt', 'a+') as f: for str_ in string: f.write(str_) f.write('\n') return def state_dict(self, model, destination=None, prefix='', keep_vars=False): own_state = model.module if isinstance(model, torch.nn.DataParallel) \ else model if destination is None: destination = OrderedDict() for name, param in own_state._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.data for name, buf in own_state._buffers.items(): if buf is not None: destination[prefix + name] = buf for name, module in own_state._modules.items(): if module is not None: self.state_dict(module, destination, prefix + name + '.', keep_vars=keep_vars) return destination def load_state_dict(self, model, state_dict, strict=True): own_state = model.module.state_dict() if isinstance(model, torch.nn.DataParallel) \ else model.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, Parameter): # backwards compatibility for serialized parameters param = param.data try: own_state[name].copy_(param) except Exception: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: raise KeyError('unexpected key "{}" in state_dict' .format(name)) if strict: missing = set(own_state.keys()) - set(state_dict.keys()) if len(missing) > 0: raise KeyError('missing keys in state_dict: "{}"'.format(missing)) def test(self): self.model.eval() img_in_path = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval.jpg" img_out_path = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval_out.jpg" img_send_finished = os.getcwd() + "/../Server_DataBase/message_set/lapnet_eval_finish.txt" test_stopped = os.getcwd() + "/../Server_DataBase/message_set/lapnet_test_stopped.txt" while True: if os.path.exists(test_stopped): os.remove(test_stopped) return if not os.path.exists(img_send_finished): continue os.remove(img_send_finished) train_dataset = createDataset(img_in_path, size=self.SIZE) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=24, pin_memory=True, shuffle=False, num_workers=0) img = list(enumerate(train_dataloader))[0][1] img_tensor = torch.tensor(img).cuda() # Predictions sem_pred = self.model(img_tensor) # sem_pred=torch.floor(sem_pred) seg_map = torch.squeeze(sem_pred, 0).cpu().detach().numpy() seg_show = seg_map[1] # (h,w)=seg_show.shape # result_img = np.zeros((h, w)) # for i in range(result_img.shape[0]): # for j in range(result_img.shape[1]): # if seg_show[i][j] > -2: # result_img[i][j] = 255 _, seg_show2 = cv2.threshold(seg_show + 1, 0, 0, cv2.THRESH_TOZERO) seg_show2 = cv2.normalize(seg_show2, seg_show2, 0, 1, cv2.NORM_MINMAX) seg_show2 = cv2.convertScaleAbs(seg_show2, seg_show2, 255) result_img = cv2.applyColorMap(seg_show2, cv2.COLORMAP_MAGMA) cv2.imwrite(img_out_path, result_img) os.remove(img_in_path) def Main_LapNet_Test(): # logger = Logger('./logslite'+str(args.gpu_idx)) # parser = argparse.ArgumentParser(description="Train model") # parser.add_argument('--dataset-path', default='Dataset/train_dataset') # parser.add_argument('--lr', type=float, default=3e-4, help='learning rate') # parser.add_argument('--batch-size', type=int, default=32, help='batch size') # parser.add_argument('--img-size', type=int, nargs='+', default=[1024,512], help='image resolution: [width height]') # parser.add_argument('--epoch', type=int, default=10000000000000) # parser.add_argument('--gpu-idx',type = int,default= 0, help='using gpu(idx)') # parser.add_argument('--optimizer-reset', type=int, default=100) # parser.add_argument('--num-workers', type=int, default=1) # args = parser.parse_args() # if os.getcwd()[-6:] != "LapNet": # os.chdir(os.getcwd() + '/../src/Python/LapNet') with open(os.getcwd() + '/../src/Python/LapNet/temp_train_mode.txt', 'w') as f: f.write('True') print('in ok') lapnet_test = LapNet_Test() print('init ok') lapnet_test.test() print('test ok') return if __name__ == "__main__": Main_LapNet_Test() ```
{ "source": "565353780/robot-manage-ros", "score": 2 }
#### File: robot_move_state_manager/scripts/RobotMoveStateManager.py ```python from math import cos, sin, sqrt import numpy as np from time import time, sleep import rospy from tf import transformations from gazebo_msgs.srv import GetModelState from tensorboard_logger_ros.msg import Scalar from tensorboard_logger_ros.srv import ScalarToBool class RobotMoveStateManager(object): def __init__(self): self.robot_name = None self.robot_num = None self.robot_move_dist_list = None self.robot_wait_time_list = None sleep(10) self.get_model_state_proxy = \ rospy.ServiceProxy('/gazebo/get_model_state', GetModelState) self.tf_logger_proxy = \ rospy.ServiceProxy('/tensorboard_logger/log_scalar', ScalarToBool) return def loadRobot(self, robot_name, robot_num): self.robot_name = robot_name self.robot_num = robot_num self.robot_move_dist_list = [0 for _ in range(self.robot_num)] self.robot_wait_time_list = [0 for _ in range(self.robot_num)] return True def logScalar(self, name, step, value): scalar = Scalar() scalar.name = str(name) scalar.step = int(step) scalar.value = float(value) log_success = self.tf_logger_proxy(scalar) return log_success def getRobotState(self, robot_name): robot_state = self.get_model_state_proxy(robot_name, "") return robot_state def getEulerAngleFromQuaternion(self, quaternion): (roll, pitch, yaw) = transformations.euler_from_quaternion([ quaternion[0], quaternion[1], quaternion[2], quaternion[3]]) return np.array([roll, pitch, yaw]) def getQuaternionFromEulerAngle(self, euler_angle): quaternion = transformations.quaternion_from_euler( euler_angle[0], euler_angle[1], euler_angle[2]) return np.array([quaternion[0], quaternion[1], quaternion[2], quaternion[3]]) def getRotationMatrixFromEulerAngle(self, euler_angle): R_x = np.array([ [1, 0, 0], [0, cos(euler_angle[0]), -sin(euler_angle[0])], [0, sin(euler_angle[0]), cos(euler_angle[0])] ]) R_y = np.array([ [cos(euler_angle[1]), 0, sin(euler_angle[1])], [0, 1, 0], [-sin(euler_angle[1]), 0, cos(euler_angle[1])] ]) R_z = np.array([ [cos(euler_angle[2]), -sin(euler_angle[2]), 0], [sin(euler_angle[2]), cos(euler_angle[2]), 0], [0, 0, 1] ]) rotation_matrix = np.dot(R_z, np.dot( R_y, R_x )) return rotation_matrix def getForwardDirection(self, robot_state): x_axis_direction = np.array([1, 0, 0]) robot_orientation = robot_state.pose.orientation robot_quaternion = [ robot_orientation.x, robot_orientation.y, robot_orientation.z, robot_orientation.w] euler_angle = self.getEulerAngleFromQuaternion(robot_quaternion) rotation_matrix = self.getRotationMatrixFromEulerAngle(euler_angle) forward_direction = np.dot(rotation_matrix, x_axis_direction) forward_direction = np.array([forward_direction[0], forward_direction[1], 0]) forward_direction_norm = np.linalg.norm(forward_direction) if forward_direction_norm == 0: print("[ERROR][RobotMoveStateManager::getForwardDirection]") print("\t forward_direction_norm is 0!") return None forward_direction /= forward_direction_norm return forward_direction def getAllRobotState(self): robot_state_list = [] if self.robot_name is None: print("[ERROR][RobotMoveStateManager::getAllRobotState]") print("\t robot_name is None!") return None if self.robot_num is None: print("[ERROR][RobotMoveStateManager::getAllRobotState]") print("\t robot_num is None!") return None if self.robot_num < 1: print("[ERROR][RobotMoveStateManager::getAllRobotState]") print("\t robot_num not valid!") return None for robot_idx in range(self.robot_num): current_robot_full_name = self.robot_name + str(robot_idx) current_robot_state = self.getRobotState(current_robot_full_name) if current_robot_state is None: print("[ERROR][RobotMoveStateManager::getAllRobotState]") print("\t getRobotState for " + current_robot_full_name + " failed!") return None robot_state_list.append(current_robot_state) return robot_state_list def getPosisionDiff2(self, state_1, state_2): position_1 = state_1.pose.position position_2 = state_2.pose.position position_x_diff = position_1.x - position_2.x position_y_diff = position_1.y - position_2.y position_z_diff = position_1.z - position_2.z position_diff2 = \ position_x_diff * position_x_diff + \ position_y_diff * position_y_diff + \ position_z_diff * position_z_diff return position_diff2 def getOrientationDiff2(self, state_1, state_2): orientation_1 = state_1.pose.orientation orientation_2 = state_2.pose.orientation orientation_x_diff = orientation_1.x - orientation_2.x orientation_y_diff = orientation_1.y - orientation_2.y orientation_z_diff = orientation_1.z - orientation_2.z orientation_w_diff = orientation_1.w - orientation_2.w orientation_diff2 = \ orientation_x_diff * orientation_x_diff + \ orientation_y_diff * orientation_y_diff + \ orientation_z_diff * orientation_z_diff + \ orientation_w_diff * orientation_w_diff return orientation_diff2 def getPosisionDiff(self, state_1, state_2): position_diff2 = self.getPosisionDiff2(state_1, state_2) return sqrt(position_diff2) def getOrientationDiff(self, state_1, state_2): orientation_diff2 = self.getOrientationDiff2(state_1, state_2) return sqrt(orientation_diff2) def isSameState(self, state_1, state_2): position_diff2_max = 0.0001 orientation_diff2_max = 0.0001 position_diff2 = self.getPosisionDiff2(state_1, state_2) if position_diff2 > position_diff2_max: return False orientation_diff2 = self.getOrientationDiff2(state_1, state_2) if orientation_diff2 > orientation_diff2_max: return False return True def startListenRobotState(self): robot_wait_count_min_time = 10 log_start_time = time() last_log_time = 0 last_robot_state_list = [] robot_wait_count_list = [0 for _ in range(self.robot_num)] while True: last_start_time = time() sleep(0.1) new_robot_state_list = self.getAllRobotState() if new_robot_state_list is None: if len(last_robot_state_list) == 0: continue print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t getAllRobotState failed!") break if len(new_robot_state_list) != self.robot_num: print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t new_robot_state_list.size and robot_num not matched!") break if len(last_robot_state_list) == 0: last_robot_state_list = new_robot_state_list continue for i in range(self.robot_num): if self.isSameState( last_robot_state_list[i], new_robot_state_list[i]): robot_wait_count_list[i] += 1 else: robot_wait_count_list[i] = 0 self.robot_move_dist_list[i] += self.getPosisionDiff( last_robot_state_list[i], new_robot_state_list[i]) last_robot_state_list = new_robot_state_list for i in range(len(robot_wait_count_list)): if robot_wait_count_list[i] < robot_wait_count_min_time: continue new_wait_time = time() - last_start_time self.robot_wait_time_list[i] += new_wait_time new_log_time = time() if new_log_time == last_log_time: continue last_log_time = new_log_time for i in range(self.robot_num): if not self.logScalar( "RobotMoveStateManager/robot" + str(i) + "_move_dist", new_log_time - log_start_time, self.robot_move_dist_list[i]): print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t logScalar for robot_" + str(i) + "_move_dist failed!") break if not self.logScalar( "RobotMoveStateManager/robot" + str(i) + "_wait_time", new_log_time - log_start_time, self.robot_wait_time_list[i]): print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t logScalar for robot_" + str(i) + "_wait_time failed!") break robot_move_dist_array = np.array(self.robot_move_dist_list) robot_move_dist_mean = np.mean(robot_move_dist_array) robot_move_dist_std = np.std(robot_move_dist_array) robot_move_dist_load_balance = 0 if robot_move_dist_mean > 0: robot_move_dist_load_balance = \ robot_move_dist_std / robot_move_dist_mean if not self.logScalar( "RobotMoveStateManager/robot_move_dist_load_balance", new_log_time - log_start_time, robot_move_dist_load_balance): print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t logScalar for robot_move_dist_load_balance failed!") break robot_wait_time_array = np.array(self.robot_wait_time_list) robot_wait_time_mean = np.mean(robot_wait_time_array) robot_wait_time_percentage = 0 if robot_wait_time_mean > 0: robot_wait_time_percentage = \ robot_wait_time_mean / (new_log_time - log_start_time) if not self.logScalar( "RobotMoveStateManager/robot_wait_time_percentage", new_log_time - log_start_time, robot_wait_time_percentage): print("[ERROR][RobotMoveStateManager::startListenRobotState]") print("\t logScalar for robot_wait_time_percentage failed!") break return True if __name__ == "__main__": rospy.init_node("RobotMoveStateManager") robot_name = rospy.get_param("/robot_name") robot_num = int(rospy.get_param("/robot_num")) robot_move_state_manager = RobotMoveStateManager() robot_move_state_manager.loadRobot(robot_name, robot_num) robot_move_state_manager.startListenRobotState() ```
{ "source": "565353780/stable-baselines-explore-environment", "score": 2 }
#### File: stable-baselines-explore-environment/scripts/RobotScanning2DEnvironment.py ```python from PIL import Image, ImageTk import numpy as np import matplotlib.pyplot as plt from math import sin, cos, pi, ceil from cv2 import namedWindow, imshow, WINDOW_AUTOSIZE, waitKey import random from random import randint import gym from gym import spaces import os from stable_baselines.common.env_checker import check_env from stable_baselines.common.policies import MlpPolicy, CnnPolicy, CnnLstmPolicy, CnnLnLstmPolicy from stable_baselines.common.vec_env import DummyVecEnv, SubprocVecEnv, VecNormalize, VecFrameStack from stable_baselines.common import make_vec_env from stable_baselines import PPO2 from stable_baselines import results_plotter from stable_baselines.bench import Monitor from stable_baselines.results_plotter import load_results, ts2xy from stable_baselines.common.noise import AdaptiveParamNoiseSpec from stable_baselines.common.callbacks import BaseCallback from RobotScanning2DRewardStrategy import RobotScanning2DRewardStrategy as RewardStrategy from RobotScanning2DDoneStrategy import RobotScanning2DDoneStrategy as DoneStrategy class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). :param check_freq: (int) :param log_dir: (str) Path to the folder where the model will be saved. It must contains the file created by the ``Monitor`` wrapper. :param verbose: (int) """ def __init__(self, check_freq: int, log_dir: str, verbose=1): super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, 'best_model') self.best_mean_reward = -np.inf def _init_callback(self) -> None: # Create folder if needed if self.save_path is not None: os.makedirs(self.save_path, exist_ok=True) def _on_step(self) -> bool: if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward = np.mean(y[-100:]) if self.verbose > 0: print("Num timesteps: {}".format(self.num_timesteps)) print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward, mean_reward)) # New best model, you could save the agent here if mean_reward > self.best_mean_reward: self.best_mean_reward = mean_reward # Example for saving best model if self.verbose > 0: print("Saving new best model to {}".format(self.save_path)) self.model.save(self.save_path) return True # label of environment[i][j]: # [0]: # 0:can not go to # 1:can go to # [1]: # 0:do not know the message # 1:got the messages class RobotScanning2DEnvironment(gym.Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, map_file, seed=None, angle=60.0, distance=5, delta_angle=0.01, SELF_RENDER=True, TRAIN_MODE=False, init_max_move_num=100): super(RobotScanning2DEnvironment, self).__init__() # Define action and observation space # They must be gym.spaces objects # Example when using discrete actions: # self.action_space = spaces.Discrete(8) # Example for using image as input: # self.observation_space = spaces.Box(low=0, high=255, # shape=(128, 128, 3), dtype=np.uint8) self.max_w = 200 self.max_h = 200 self.init_max_move_num = init_max_move_num self.add_move_time = 1 self.add_max_move_num_per_episode_num = 50 self.max_hit_obstacle_time = -1 self.unknown_color = [0, 0, 0] self.free_color = [128, 128, 128] self.obstacle_color = [255, 255, 255] self.pose_color = [255, 0, 0] self.init_pose_fixed = False self.SHOW_IMAGE = False self.seed(seed) self.observation_space = None self.SELF_RENDER = SELF_RENDER self.TRAIN_MODE = TRAIN_MODE self.total_reward = 0 self.raw_map_file = map_file self.observation = None self.global_map = None self.output_image = None self.sight_angle = angle self.sight_distance = distance self.delta_ray_angle = delta_angle self.init_pose = np.array([1.0, 1.0, 0.0], dtype=np.float64) self.current_pose = self.init_pose.copy() self.action_space = None self.action_spaces = None self.load_map() self.init_action_space() self.reward_strategy = RewardStrategy(self.global_map) self.done_strategy = DoneStrategy(self.global_map) self.path = [self.current_pose.copy()] self.namedWindow = None self.hit_obstacle_time = 0 self.total_move_num = 0 self.finish_episode = 0 self.test_idx = 0 # 0:free 1:unknown 2:obstacle 3:position self.observation_output = np.zeros(self.observation_space.shape) self.free_label = [255, 0, 0, 0] self.unknown_label = [0, 255, 0, 0] self.obstacle_label = [0, 0, 255, 0] self.pose_label = [0, 0, 0, 255] # self.reward_range = [-1000, 1000] def init_action_space(self): self.action_space = spaces.Discrete(8) self.action_spaces = np.empty((8, 3), dtype=np.float64) self.action_spaces[0] = [1.0, 0.0, 90.0] self.action_spaces[1] = [-1.0, 0.0, -90.0] self.action_spaces[2] = [0.0, -1.0, 180.0] self.action_spaces[3] = [0.0, 1.0, 0.0] self.action_spaces[4] = [1.0, -1.0, 135.0] self.action_spaces[5] = [1.0, 1.0, 45.0] self.action_spaces[6] = [-1.0, -1.0, -135.0] self.action_spaces[7] = [-1.0, 1.0, -45.0] # self.action_spaces[8] = [2.0, 0.0, 90.0] # self.action_spaces[9] = [-2.0, 0.0, -90.0] # self.action_spaces[10] = [0.0, -2.0, 180.0] # self.action_spaces[11] = [0.0, 2.0, 0.0] def get_num_actions(self): return len(self.action_spaces) # return self.action_space.n def update_observation_output(self): for i in range(self.observation_output.shape[0]): for j in range(self.observation_output.shape[1]): if all(self.observation[i][j] == self.free_color): self.observation_output[i][j] = self.free_label elif all(self.observation[i][j] == self.unknown_color): self.observation_output[i][j] = self.unknown_label elif all(self.observation[i][j] == self.obstacle_color): self.observation_output[i][j] = self.obstacle_label # elif all(self.observation[i][j] == self.pose_color): # self.observation_output[i][j] = self.pose_label self.observation_output[:][:][3] = 0 path_num = len(self.path) for i in range(min(path_num, 255)): [x, y] = self.path[path_num - i - 1][:2] if self.observation_output[int(x)][int(y)][3] == 0: self.observation_output[int(x)][int(y)][3] = 255 - i def step(self, action): if action not in range(len(self.action_spaces)): # if action not in range(self.action_space.n): print("Error action!") return (None, None, None, dict()) else: self.total_move_num += 1 target_pose = self.current_pose.copy() target_pose[:2] += self.action_spaces[action][:2] if not 0 <= int(target_pose[0]) < self.global_map.shape[0] or not 0 <= int(target_pose[1]) < self.global_map.shape[1]: self.hit_obstacle_time = 0 self.total_reward -= 100.0 self.debug() self.output(False) self.total_reward = 0 self.total_move_num = 0 self.finish_episode += 1 self.update_observation_output() # return (self.observation, -100, True, dict()) return (self.observation_output, -100, True, dict()) if self.global_map[int(target_pose[0])][int(target_pose[1])][0] == 0 and (self.hit_obstacle_time < self.max_hit_obstacle_time or self.max_hit_obstacle_time == -1): self.hit_obstacle_time += 1 self.total_reward -= 10.0 self.debug() done = False if self.total_move_num >= self.max_move_num: done = True if done: self.hit_obstacle_time = 0 self.output(True) self.total_reward = 0 self.total_move_num = 0 self.finish_episode += 1 self.update_observation_output() # return (self.observation, -10.0, done, dict()) return (self.observation_output, -10.0, done, dict()) target_pose[2] = self.action_spaces[action][2] self.update_observation(target_pose) self.current_pose = target_pose.copy() reward = self.reward_strategy.compute_reward(self.current_pose, self.observation) done = self.done_strategy.is_done(self.current_pose, self.observation) last_path = self.path[len(self.path) - 1] self.path.append(self.current_pose.copy()) self.observation[int(last_path[0])][int(last_path[1])] = self.free_color self.observation[int(self.current_pose[0])][int(self.current_pose[1])] = self.pose_color if self.total_move_num >= self.max_move_num: done = True self.total_reward += reward self.debug() if done: self.hit_obstacle_time = 0 self.output(True) self.total_reward = 0 self.total_move_num = 0 self.finish_episode += 1 self.update_observation_output() # return (self.observation, reward, done, dict()) return (self.observation_output, reward, done, dict()) def debug(self): if False: print('total reward : ', self.total_reward) print('total_move_num : ', self.total_move_num) def output(self, done): if self.TRAIN_MODE: with open('reward.txt', 'a+') as f: f.write(str(int(self.total_reward))) f.write('\n') if not done: print('') print("Total Reward : ", self.total_reward) print("Total Step : ", self.total_move_num) print("======================================") def reset(self): self.observation = np.zeros(self.global_map.shape, dtype=np.int32) # self.update_observation(self.init_pose) if self.init_pose_fixed: test_pose = [[int(0.45 * self.max_h), int(0.1 * self.max_w), 0], [int(0.55 * self.max_h), int(0.1 * self.max_w), 0]] random_pose = test_pose[self.test_idx] self.test_idx = (self.test_idx + 1) % len(test_pose) else: rand_w_l = int(0.1 * self.max_w) rand_w_r = int(0.9 * self.max_w) rand_h_l = int(0.1 * self.max_h) rand_h_r = int(0.9 * self.max_h) random_pose = np.array([randint(rand_h_l, rand_h_r), randint(rand_w_l, rand_w_r), 0], dtype=np.float64) while self.global_map[int(random_pose[0])][int(random_pose[1])][0] == 0: random_pose[0] = randint(rand_h_l, rand_h_r) random_pose[1] = randint(rand_w_l, rand_w_r) self.init_pose = random_pose.copy() self.current_pose = self.init_pose.copy() self.path = [] self.path.append(self.current_pose.copy()) if self.finish_episode % self.add_max_move_num_per_episode_num == 0: self.max_move_num = self.init_max_move_num + self.add_move_time * int(self.finish_episode / self.add_max_move_num_per_episode_num) if self.max_move_num > self.global_map.shape[0] * self.global_map.shape[1]: self.max_move_num = self.global_map.shape[0] * self.global_map.shape[1] print('max move num : ', self.max_move_num) self.update_observation_output() # return self.observation return self.observation_output def seed(self, seed=None): if seed is not None: random.seed(seed) def load_map(self): img = Image.open(self.raw_map_file) img = img.convert("RGB") max_scale = self.max_w / img.size[0] if self.max_h / img.size[1] < max_scale: max_scale = self.max_h / img.size[1] if max_scale < 1: img = img.resize((int(img.size[0]*max_scale), int(img.size[1]*max_scale)), resample=Image.LANCZOS) self.max_w = img.size[0] self.max_h = img.size[1] self.global_map = self.transform_between_image_coordinate_and_map_coordinate(np.array(img)) for i in range(self.global_map.shape[0]): for j in range(self.global_map.shape[1]): if self.global_map[i][j][0] < 200 or self.global_map[i][j][1] < 200 or self.global_map[i][j][2] < 200: self.global_map[i][j] = [0, 0, 0] else: self.global_map[i][j] = [255, 255, 255] self.add_boundary() # self.observation_space = spaces.Box(low=0, high=255, shape=(img.size[0], img.size[1], 3), dtype=np.uint8) self.observation_space = spaces.Box(low=0, high=255, shape=(img.size[0], img.size[1], 4), dtype=np.uint8) self.max_move_num = self.global_map.shape[0] * self.global_map.shape[1] # imshow('test', self.global_map) # waitKey() def add_boundary(self): self.global_map[0] = 0 self.global_map[-1] = 0 self.global_map[:, 0] = 0 self.global_map[:, -1] = 0 def transform_between_image_coordinate_and_map_coordinate(self, input_array): output_array = np.empty(input_array.shape, dtype=np.uint8) height = input_array.shape[0] width = input_array.shape[1] for i in range(height): for j in range(width): output_array[i][j] = np.uint8(input_array[height - 1 - i][j]) return output_array def add_new_end_point(self, end_points, center_position, ray_angle): new_end_point_x = int(center_position[0] + self.sight_distance * sin(ray_angle * pi / 180.0)) new_end_point_y = int(center_position[1] + self.sight_distance * cos(ray_angle * pi / 180.0)) if end_points is None or len(end_points) == 0: return np.array([[new_end_point_x, new_end_point_y]], dtype=np.int32) else: if new_end_point_x != end_points[-1, 0] or new_end_point_y != end_points[-1, 1]: return np.append(end_points, [[new_end_point_x, new_end_point_y]], axis=0) else: return end_points def compute_ray_end_points(self, target_pose): ray_angle_right = target_pose[2] - self.sight_angle / 2.0 ray_angle_left = target_pose[2] + self.sight_angle / 2.0 # ray_num = ceil((ray_angle_left - ray_angle_right) / self.delta_ray_angle) + 1 # end_points = self.add_new_end_point(None, target_pose[:2], ray_angle_right) end_points = None #for i in range(1, ray_num - 1): for ray_angle in np.arange(ray_angle_right, ray_angle_left, self.delta_ray_angle): end_points = self.add_new_end_point(end_points, target_pose[:2], ray_angle) end_points = self.add_new_end_point(end_points, target_pose[:2], ray_angle_left) return end_points def end_points_based_ray_cast(self, target_pose): end_points = self.compute_ray_end_points(target_pose) for i in range(len(end_points)): ray = end_points[i] - target_pose[:2] self.single_ray_cast(target_pose[:2], ray) def single_ray_cast(self, start_point, ray): long_axis_length = np.max(np.abs(ray)) moving_unit = ray / long_axis_length for j in range(int(long_axis_length) + 1): if self.global_map[int(start_point[0] + moving_unit[0] * j)][int(start_point[1] + moving_unit[1] * j)][0] == 0: self.observation[int(start_point[0] + moving_unit[0] * j)][int(start_point[1] + moving_unit[1] * j)] = self.obstacle_color break else: self.observation[int(start_point[0] + moving_unit[0] * j)][int(start_point[1] + moving_unit[1] * j)] = self.free_color def uniform_angle_based_ray_cast(self, target_pose): ray_angle_right = target_pose[2] - self.sight_angle / 2.0 ray_angle_left = target_pose[2] + self.sight_angle / 2.0 for ray_angle in np.arange(ray_angle_right, ray_angle_left, self.delta_ray_angle): ray = [self.sight_distance * sin(ray_angle * pi / 180.0), self.sight_distance * cos(ray_angle * pi / 180.0)] self.single_ray_cast(target_pose[:2], ray) ray = [self.sight_distance * sin(ray_angle_left * pi / 180.0), self.sight_distance * cos(ray_angle_left * pi / 180.0)] self.single_ray_cast(target_pose[:2], ray) def update_observation(self, target_pose): if not 0 <= target_pose[0] < self.global_map.shape[0] or not 0 <= target_pose[1] < self.global_map.shape[1]: # print("Target pose out of range!") return self.end_points_based_ray_cast(target_pose) # self.uniform_angle_based_ray_cast(target_pose) self.current_pose = target_pose.copy() def paint_color(self): self.output_image = self.global_map.copy() # self.output_image[np.where(self.observation == 1)] = 255 for i in range(self.output_image.shape[0]): for j in range(self.output_image.shape[1]): if all(self.observation[i][j] == self.free_color): self.output_image[i][j] = [0, 0, 255] for pose in self.path: self.output_image[int(pose[0])][int(pose[1])] = [0, 255, 0] self.output_image = self.transform_between_image_coordinate_and_map_coordinate(self.output_image) def render(self, mode='human'): self.paint_color() if self.SELF_RENDER: if not self.SHOW_IMAGE: self.namedWindow = namedWindow('test_environment', WINDOW_AUTOSIZE) self.SHOW_IMAGE = True imshow('test_environment', self.output_image) waitKey(1) return self.output_image # plt.imshow(self.output_image) # plt.axis('off') # plt.show() def close (self): pass def test(self, position, forward_direction, show_image=False): if self.global_map is None: self.reset() target_pose = [position[0], position[1], forward_direction] self.update_observation(target_pose) if show_image: # self.show_output_image() self.render() if __name__ == "__main__": game_name = "My2DEnv" # game_name = "CartPole-v1" # game_name = "Breakout-v0" train_mode = True policy = CnnPolicy init_max_move_num = 654 log_dir = "./tmp/" os.makedirs(log_dir, exist_ok=True) start_episode = 0 total_time_step =2500000 num_cpu = 16 global_seeds = 0 def set_global_seeds(seed=0): global_seeds = seed def make_env(rank, seed=0, SELF_RENDER=False): def _init(): env = RobotScanning2DEnvironment(map_file="./32x32.png", seed=seed+rank, angle=60.0, distance=5, delta_angle=0.01, SELF_RENDER=SELF_RENDER, TRAIN_MODE=train_mode, init_max_move_num=init_max_move_num) return env set_global_seeds(seed) return _init def make_framestack_env(rank, seed=0, SELF_RENDER=False): def _init(): env = RobotScanning2DEnvironment(map_file="./32x32.png", seed=seed+rank, angle=60.0, distance=5, delta_angle=0.01, SELF_RENDER=SELF_RENDER, TRAIN_MODE=train_mode, init_max_move_num=init_max_move_num) env = DummyVecEnv([lambda : env]) env = VecFrameStack(env, n_stack=4) return env set_global_seeds(seed) return _init env = None if game_name == "My2DEnv": if train_mode: if policy == CnnLnLstmPolicy or policy == CnnLstmPolicy: env = SubprocVecEnv([make_env(10, i) for i in range(num_cpu)]) elif policy == CnnPolicy: # env = DummyVecEnv([lambda : RobotScanning2DEnvironment(map_file="./32x32.png", seed=10, angle=60.0, distance=5, delta_angle=0.01, SELF_RENDER=False, TRAIN_MODE=train_mode)]) env = SubprocVecEnv([make_env(10, i) for i in range(num_cpu)]) # env = VecFrameStack(env, n_stack=4) else: if policy == CnnLnLstmPolicy or policy == CnnLstmPolicy: env = SubprocVecEnv([make_env(10, i) for i in range(num_cpu)]) elif policy == CnnPolicy: env = RobotScanning2DEnvironment(map_file="./32x32.png", seed=10, angle=60.0, distance=5, delta_angle=0.01, SELF_RENDER=True, TRAIN_MODE=train_mode, init_max_move_num=init_max_move_num) # env = Monitor(env, log_dir, info_keywords=('as', 'ac', 'rc')) env = DummyVecEnv([lambda : env]) # env = VecFrameStack(env, n_stack=4) else: if train_mode: env = make_vec_env(game_name, n_envs=4) else: env = make_vec_env(game_name, n_envs=1) # check_env(env) model = None start_step_num = 0 if start_episode > 0: model = PPO2.load("PPO2_" + game_name + "_" + str(start_episode), env) else: file_list = os.listdir(os.getcwd()) for file_name in file_list: if "PPO2_" + game_name + "_" in file_name: current_step_num = int(file_name.split(".")[0].split("_")[2]) if current_step_num > start_step_num: start_step_num = current_step_num if start_step_num > 0: model = PPO2.load("PPO2_" + game_name + "_" + str(start_step_num), env) else: if game_name == "My2DEnv": model = PPO2(policy, env, verbose=1) else: model = PPO2(MlpPolicy, env, verbose=1) # callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir) if train_mode: round = 0 model.learning_rate = 1e-4 while True: # model.learn(total_timesteps=total_time_step, callback=callback) model.learn(total_timesteps=total_time_step) try: os.remove("PPO2_" + game_name + "_" + str(start_step_num + round * total_time_step) + ".zip") except: pass round += 1 model.save("PPO2_" + game_name + "_" + str(start_step_num + round * total_time_step)) del model else: # results_plotter.plot_results([log_dir], total_time_step, results_plotter.X_TIMESTEPS, "PPO2 My2DEnv") # plt.show() while True: obs = env.reset() if policy == CnnLnLstmPolicy or policy == CnnLstmPolicy: done = [False, False] while not all(done): action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render('human') done = dones else: done = False while not done: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() done = dones # env.reset() # env.test(position=[70, 10], forward_direction=0, show_image=True) # env.reset() # env.test(position=[7, 7], forward_direction=0, show_image=True) # env.test(position=[40, 7], forward_direction=30, show_image=True) ''' 3.4GHz 每个线程训练速度为 3w steps / h 目前为 16线程 训练速度为 48w steps / h 每个完整 episode 从训练初期 100 steps 到后期 1024 steps,即 训练初期 4800 episodes / h 训练后期 168 episodes / h 平均下来测试一次需训练 20w episodes, 需要约 200 h 即 8.3 days ''' ```
{ "source": "565353780/tensorflow2-din", "score": 2 }
#### File: tensorflow2-din/DIEN/afm.py ```python import tensorflow as tf import itertools class AFM(tf.keras.layers.Layer): def __init__(self, mode, att_vector=8, activation='relu', dropout=0.5, embed_reg=1e-6): super(AFM, self).__init__() self.mode = mode if self.mode == 'att': self.attention_W = tf.keras.layers.Dense(att_vector, activation=activation, use_bias=True) self.attention_dense = tf.keras.layers.Dense(1, activation=None) self.dropout = tf.keras.layers.Dropout(dropout) self.dense = tf.keras.layers.Dense(1, activation=None) def call(self, inputs): row = [] col = [] for r, c in itertools.combinations(range(inputs.shape[1]), 2): row.append(r) col.append(c) p = tf.gather(inputs, row, axis=1) q = tf.gather(inputs, col, axis=1) bi_interaction = p * q if self.mode == "max": x = tf.reduce_max(bi_interaction, axis=1) elif self.mode == 'avg': x = tf.reduce_mean(bi_interaction, axis=1) else: x = self.attention(bi_interaction) outputs = tf.nn.sigmoid(self.dense(x)) #outputs = self.dense(x) return outputs def attention(self, bi_interaction): a = self.attention_W(bi_interaction) a = self.attention_dense(a) a_score = tf.nn.softmax(a, 1) outputs = tf.reduce_sum(bi_interaction * a_score, 1) return outputs ```
{ "source": "565353780/voc_image_cut", "score": 2 }
#### File: 565353780/voc_image_cut/auto_cut_and_merge.py ```python import os from Method.image_format_switcher import switchImageFormat from Method.label_cutter import LabelCutter from Method.label_merger import LabelMerger from Method.yolo_builder import YOLOBuilder def demo(): # Param source_folder_path = "/home/chli/chLi/Download/DeepLearning/Dataset/WaterDrop/20220419_cap/rgb_data/1_1/" target_folder_path = "/home/chli/waterdrop_data/1_1/" source_format = ".png" target_format = ".png" cut_by_label_list = ["container"] cut_save_label_list = ["drop"] merge_save_label_list = ["drop"] merge_row_image_num = 4 merge_col_image_num = 4 is_row_merge_first = True merge_image_num = 16 merge_image_time = 300 * 16 merge_image_size = [416 * 4, 416 * 4] classes = ["container", "drop", "zbar"] # Algorithm target_image_folder_path = \ target_folder_path + target_format.split(".")[1] + "/" if source_format != target_format: switchImageFormat(source_folder_path, source_format, target_image_folder_path, target_format) else: target_image_folder_path = source_folder_path label_cutter = LabelCutter() label_cutter.setCutInfo(target_image_folder_path, target_folder_path + "cut/", cut_by_label_list, cut_save_label_list) label_cutter.cutAllImage(target_format) label_merger = LabelMerger() label_merger.setMergeInfo(target_folder_path + "cut/", target_folder_path + "merge/", merge_save_label_list, merge_row_image_num, merge_col_image_num, is_row_merge_first) label_merger.mergeAllImage(merge_image_num, merge_image_time, merge_image_size, target_format) yolo_builder = YOLOBuilder() yolo_builder.setVOCInfo(classes, target_folder_path + "merge/", target_folder_path + "yolo/") yolo_builder.transLabel(target_format) return True def demo_multi(): # Param source_folder_root = "/home/chli/chLi/Download/DeepLearning/Dataset/WaterDrop/20220419_cap/rgb_data/" source_folder_name_list = os.listdir(source_folder_root) target_folder_root = "/home/chli/waterdrop_data/" source_format = ".png" target_format = ".png" cut_by_label_list = ["container"] cut_save_label_list = ["drop"] merge_save_label_list = ["drop"] merge_row_image_num = 4 merge_col_image_num = 4 is_row_merge_first = True merge_image_num = 16 merge_image_time = 300 * 16 merge_image_size = [416 * 4, 416 * 4] classes = ["container", "drop", "zbar"] # Algorithm all_folder_exist = True for source_folder_name in source_folder_name_list: source_folder_path = source_folder_root + source_folder_name + "/" if not os.path.exists(source_folder_path): all_folder_exist = False print("[ERROR][auto_cut_and_merge::demo_multi]") print("\t folder [" + source_folder_name + "] not exist!") if not all_folder_exist: return False for source_folder_name in source_folder_name_list: source_folder_path = source_folder_root + source_folder_name + "/" target_folder_path = target_folder_root + source_folder_name + "/" print("[INFO][auto_cut_and_merge::demo_multi]") print("\t start trans: " + source_folder_name + " ...") target_image_folder_path = \ target_folder_path + target_format.split(".")[1] + "/" if source_format != target_format: switchImageFormat(source_folder_path, source_format, target_image_folder_path, target_format) else: target_image_folder_path = source_folder_path label_cutter = LabelCutter() label_cutter.setCutInfo(target_image_folder_path, target_folder_path + "cut/", cut_by_label_list, cut_save_label_list) label_cutter.cutAllImage(target_format) label_merger = LabelMerger() label_merger.setMergeInfo(target_folder_path + "cut/", target_folder_path + "merge/", merge_save_label_list, merge_row_image_num, merge_col_image_num, is_row_merge_first) label_merger.mergeAllImage(merge_image_num, merge_image_time, merge_image_size, target_format) yolo_builder = YOLOBuilder() yolo_builder.setVOCInfo(classes, target_folder_path + "merge/", target_folder_path + "yolo/") yolo_builder.transLabel(target_format) merge_train_txt_path = target_folder_root + "train.txt" with open(merge_train_txt_path, "w") as f: for source_folder_name in source_folder_name_list: target_folder_path = target_folder_root + source_folder_name + "/" with open(target_folder_path + "yolo/train.txt", "r") as fr: for line in fr.readlines(): f.write(line) return True def demo_multi_merge_and_cut_merge(): # Param source_folder_root = "/home/chli/chLi/Download/DeepLearning/Dataset/WaterDrop/20220419_cap/rgb_data/" source_folder_name_list = os.listdir(source_folder_root) target_folder_root = "/home/chli/waterdrop_data/" source_format = ".png" target_format = ".png" first_merge_save_label_list = ["container", "zbar"] first_merge_row_image_num = 4 first_merge_col_image_num = 4 first_is_row_merge_first = True first_merge_image_num = 16 first_merge_image_time = 300 first_merge_image_size = [416 * 4, 416 * 4] cut_by_label_list = ["container"] cut_save_label_list = ["drop"] merge_save_label_list = ["drop"] merge_row_image_num = 4 merge_col_image_num = 4 is_row_merge_first = True merge_image_num = 16 merge_image_time = 300 * 16 merge_image_size = [416 * 4, 416 * 4] classes = ["container", "drop", "zbar"] # Algorithm all_folder_exist = True for source_folder_name in source_folder_name_list: source_folder_path = source_folder_root + source_folder_name + "/" if not os.path.exists(source_folder_path): all_folder_exist = False print("[ERROR][auto_cut_and_merge::demo_multi]") print("\t folder [" + source_folder_name + "] not exist!") if not all_folder_exist: return False for source_folder_name in source_folder_name_list: source_folder_path = source_folder_root + source_folder_name + "/" target_folder_path = target_folder_root + source_folder_name + "/" print("[INFO][auto_cut_and_merge::demo_multi]") print("\t start trans: " + source_folder_name + " ...") target_image_folder_path = \ target_folder_path + target_format.split(".")[1] + "/" if source_format != target_format: switchImageFormat(source_folder_path, source_format, target_image_folder_path, target_format) else: target_image_folder_path = source_folder_path first_label_merger = LabelMerger() first_label_merger.setMergeInfo(target_image_folder_path, target_folder_path + "first_merge/", first_merge_save_label_list, first_merge_row_image_num, first_merge_col_image_num, first_is_row_merge_first) first_label_merger.mergeAllImage(first_merge_image_num, first_merge_image_time, first_merge_image_size, target_format) first_yolo_builder = YOLOBuilder() first_yolo_builder.setVOCInfo(classes, target_folder_path + "first_merge/", target_folder_path + "first_yolo/") first_yolo_builder.transLabel(target_format) label_cutter = LabelCutter() label_cutter.setCutInfo(target_image_folder_path, target_folder_path + "cut/", cut_by_label_list, cut_save_label_list) label_cutter.cutAllImage(target_format) label_merger = LabelMerger() label_merger.setMergeInfo(target_folder_path + "cut/", target_folder_path + "merge/", merge_save_label_list, merge_row_image_num, merge_col_image_num, is_row_merge_first) label_merger.mergeAllImage(merge_image_num, merge_image_time, merge_image_size, target_format) yolo_builder = YOLOBuilder() yolo_builder.setVOCInfo(classes, target_folder_path + "merge/", target_folder_path + "yolo/") yolo_builder.transLabel(target_format) merge_train_txt_path = target_folder_root + "train.txt" with open(merge_train_txt_path, "w") as f: for source_folder_name in source_folder_name_list: target_folder_path = target_folder_root + source_folder_name + "/" with open(target_folder_path + "first_yolo/train.txt", "r") as fr: for line in fr.readlines(): f.write(line) with open(target_folder_path + "yolo/train.txt", "r") as fr: for line in fr.readlines(): f.write(line) return True if __name__ == "__main__": # demo() # demo_multi() demo_multi_merge_and_cut_merge() ``` #### File: voc_image_cut/Method/yolo_builder.py ```python import os import xml.etree.ElementTree as ET from shutil import copyfile from tqdm import tqdm class YOLOBuilder(object): def __init__(self): self.classes = [] self.xml_folder_path = None self.save_folder_path = None return def setVOCInfo(self, classes, xml_folder_path, save_folder_path): self.classes = classes self.xml_folder_path = xml_folder_path self.save_folder_path = save_folder_path return True def convert(self, size, box): dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return (x,y,w,h) def convertAnnotation(self, xml_file_basename): tree = None xml_file_path = self.xml_folder_path + xml_file_basename + ".xml" if not os.path.exists(xml_file_path): with open(self.xml_folder_path + xml_file_basename + ".txt", 'w') as out_file: pass return True with open(xml_file_path, "r") as in_file: tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) with open(self.xml_folder_path + xml_file_basename + ".txt", 'w') as out_file: for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in self.classes or int(difficult) == 1: continue cls_id = self.classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = self.convert((w,h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') return True def transLabel(self, image_format): if not os.path.exists(self.xml_folder_path): print("[ERROR][YOLOBuilder::transLabel]") print("\t xml_folder_path not exist!") return False if os.path.exists(self.save_folder_path): save_folder_filename_list = os.listdir(self.save_folder_path) if len(save_folder_filename_list) > 0: print("[ERROR][YOLOBuilder::transLabel]") print("\t save_folder_path already exist and not empty!") return False else: os.makedirs(self.save_folder_path) xml_folder_filename_list = os.listdir(self.xml_folder_path) xml_file_basename_list = [] for xml_folder_filename in xml_folder_filename_list: xml_folder_filename_split_list = xml_folder_filename.split(".") if "." + xml_folder_filename_split_list[1] != image_format: continue xml_file_basename_list.append(xml_folder_filename_split_list[0]) # print("[INFO][YOLOBuilder::transLabel]") # print("\t start convert annotations...") with open(self.save_folder_path + "train.txt", "w") as list_file: # for image_file_basename in tqdm(xml_file_basename_list): for image_file_basename in xml_file_basename_list: list_file.write(self.xml_folder_path + image_file_basename + image_format + "\n") self.convertAnnotation(image_file_basename) return True def demo(): classes = ["container", "drop", "zbar"] xml_folder_path = "/home/chli/yolo/test/1_output/merge/" save_folder_path = "/home/chli/yolo/test/1_output/yolo/" image_format = ".png" yolo_builder = YOLOBuilder() yolo_builder.setVOCInfo(classes, xml_folder_path, save_folder_path) yolo_builder.transLabel(image_format) return True if __name__ == "__main__": demo() ```
{ "source": "5665750/owllook", "score": 2 }
#### File: owllook/fetcher/cache.py ```python import re import aiohttp import async_timeout from bs4 import BeautifulSoup from aiocache.serializers import PickleSerializer,JsonSerializer from urllib.parse import urlparse, parse_qs, urljoin from owllook.database.mongodb import MotorBase from owllook.fetcher.decorators import cached from owllook.fetcher.function import target_fetch, get_time, get_html_by_requests, get_random_user_agent from owllook.fetcher.extract_novels import extract_pre_next_chapter from owllook.config import RULES, LATEST_RULES, LOGGER @cached(ttl=300, key_from_attr='url', serializer=PickleSerializer(), namespace="main") async def cache_owllook_novels_content(url, netloc): headers = { 'user-agent': await get_random_user_agent() } html = await target_fetch(headers=headers, url=url) if html: soup = BeautifulSoup(html, 'html5lib') selector = RULES[netloc].content_selector if selector.get('id', None): content = soup.find_all(id=selector['id']) elif selector.get('class', None): content = soup.find_all(class_=selector['class']) else: content = soup.find_all(selector.get('tag')) if content: # 提取出真正的章节标题 title_reg = r'(第?\s*[一二两三四五六七八九十○零百千万亿0-91234567890]{1,6}\s*[章回卷节折篇幕集]\s*.*?)[_,-]' title = soup.title.string extract_title = re.findall(title_reg, title, re.I) if extract_title: title = extract_title[0] else: title = soup.select('h1')[0].get_text() if not title: title = soup.title.string # if "_" in title: # title = title.split('_')[0] # elif "-" in title: # title = title.split('-')[0] next_chapter = extract_pre_next_chapter(chapter_url=url, html=str(soup)) content = [str(i) for i in content] data = { 'content': str(''.join(content)), 'next_chapter': next_chapter, 'title': title } else: data = None return data return None # @cached(ttl=300, key_from_attr='url', serializer=PickleSerializer(), namespace="main") async def cache_owllook_novels_chapter(url, netloc): headers = { 'user-agent': await get_random_user_agent() } html = await target_fetch(headers=headers, url=url) if html: soup = BeautifulSoup(html, 'html5lib') selector = RULES[netloc].chapter_selector if selector.get('id', None): content = soup.find_all(id=selector['id']) elif selector.get('class', None): content = soup.find_all(class_=selector['class']) else: content = soup.find_all(selector.get('tag')) # 防止章节被display:none return str(content).replace('style', '') if content else None return None @cached(ttl=10800, key_from_attr='search_ranking', serializer=JsonSerializer(), namespace="ranking") async def cache_owllook_search_ranking(): motor_db = MotorBase().get_db() keyword_cursor = motor_db.search_records.find( {'count': {'$gte': 50}}, {'keyword': 1, 'count': 1, '_id': 0} ).sort('count', -1).limit(35) result = [] index = 1 async for document in keyword_cursor: result.append({'keyword': document['keyword'], 'count': document['count'], 'index': index}) index += 1 return result @cached(ttl=3600, key_from_attr='search_ranking', serializer=JsonSerializer(), namespace="ranking") async def cache_others_search_ranking(spider='qidian', novel_type='全部类别'): motor_db = MotorBase().get_db() item_data = await motor_db.novels_ranking.find_one({'spider': spider, 'type': novel_type}, {'data': 1, '_id': 0}) return item_data async def get_the_latest_chapter(chapter_url, timeout=15): try: with async_timeout.timeout(timeout): url = parse_qs(urlparse(chapter_url).query).get('url', '') novels_name = parse_qs(urlparse(chapter_url).query).get('novels_name', '') data = None if url and novels_name: url = url[0] novels_name = novels_name[0] netloc = urlparse(url).netloc if netloc in LATEST_RULES.keys(): headers = { 'user-agent': await get_random_user_agent() } try: html = await target_fetch(url=url, headers=headers, timeout=timeout) if html is None: html = get_html_by_requests(url=url, headers=headers, timeout=timeout) except TypeError: html = get_html_by_requests(url=url, headers=headers, timeout=timeout) except Exception as e: LOGGER.exception(e) return None try: soup = BeautifulSoup(html, 'html5lib') except Exception as e: LOGGER.exception(e) return None latest_chapter_name, latest_chapter_url = None, None if LATEST_RULES[netloc].plan: meta_value = LATEST_RULES[netloc].meta_value latest_chapter_name = soup.select( 'meta[property="{0}"]'.format(meta_value["latest_chapter_name"])) or soup.select( 'meta[name="{0}"]'.format(meta_value["latest_chapter_name"])) latest_chapter_name = latest_chapter_name[0].get('content', None) if latest_chapter_name else None latest_chapter_url = soup.select( 'meta[property="{0}"]'.format(meta_value["latest_chapter_url"])) or soup.select( 'meta[name="{0}"]'.format(meta_value["latest_chapter_url"])) latest_chapter_url = urljoin(chapter_url, latest_chapter_url[0].get('content', None)) if latest_chapter_url else None else: selector = LATEST_RULES[netloc].selector content_url = selector.get('content_url') if selector.get('id', None): latest_chapter_soup = soup.find_all(id=selector['id']) elif selector.get('class', None): latest_chapter_soup = soup.find_all(class_=selector['class']) else: latest_chapter_soup = soup.select(selector.get('tag')) if latest_chapter_soup: if content_url == '1': # TODO pass elif content_url == '0': # TODO pass else: latest_chapter_url = content_url + latest_chapter_soup[0].get('href', None) latest_chapter_name = latest_chapter_soup[0].get('title', None) if latest_chapter_name and latest_chapter_url: time_current = get_time() # print(latest_chapter_url) data = { "latest_chapter_name": latest_chapter_name, "latest_chapter_url": latest_chapter_url, "owllook_chapter_url": chapter_url, "owllook_content_url": "/owllook_content?url={latest_chapter_url}&name={name}&chapter_url={chapter_url}&novels_name={novels_name}".format( latest_chapter_url=latest_chapter_url, name=latest_chapter_name, chapter_url=url, novels_name=novels_name, ), } # 存储最新章节 motor_db = MotorBase().get_db() await motor_db.latest_chapter.update_one( {"novels_name": novels_name, 'owllook_chapter_url': chapter_url}, {'$set': {'data': data, "finished_at": time_current}}, upsert=True) return data except Exception as e: LOGGER.exception(e) return None async def update_all_books(loop, timeout=15): try: motor_db = MotorBase().get_db() # 获取所有书架链接游标 books_url_cursor = motor_db.user_message.find({}, {'books_url.book_url': 1, '_id': 0}) book_urls = [] already_urls = set() async for document in books_url_cursor: if document: books_url = document['books_url'] for book_url in books_url: chapter_url = book_url['book_url'] if chapter_url not in already_urls: try: await get_the_latest_chapter(chapter_url, timeout) except Exception as e: LOGGER.exception(e) already_urls.add(chapter_url) # 一组书架链接列表数据 # book_urls += [book_url['book_url'] for book_url in books_url] # url_tasks = [get_the_latest_chapter(each_url, loop) for each_url in set(book_urls)] # tasks = [asyncio.ensure_future(i) for i in url_tasks] # try: # await asyncio.gather(*tasks) # except asyncio.TimeoutError as e: # pass except Exception as e: LOGGER.exception(e) return False ```
{ "source": "56aaaaa/Physics-informed-neural-networks", "score": 2 }
#### File: main/continuous_time_identification (Navier-Stokes)/NavierStokes.py ```python import sys sys.path.insert(0, '../../Utilities/') import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import scipy.io import scipy.optimize import latex from scipy.interpolate import griddata import time import meshio from itertools import product, combinations from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from plotting import newfig, savefig from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.gridspec as gridspec import tensorflow_docs as tfdocs import tensorflow_docs.plots import tensorflow_docs.modeling import tensorflow_probability as tfp np.random.seed(1234) tf.random.set_seed(1234) class PhysicsInformedNN: # Initialize the class def __init__(self, x, y, t, u, v, layers): X = np.concatenate([x, y, t], 1) Y = np.concatenate([u, v], 1) self.lb = X.min(0) self.ub = X.max(0) self.X = X self.x = X[:,0:1] self.y = X[:,1:2] self.t = X[:,2:3] self.u = u self.v = v self.layers = layers self.weights, self.biases = self.initialize_NN(layers) self.dtype = "float32" # Descriptive Keras model #print("weights",self.weights) # tf.keras.backend.set_floatx(self.dtype) # self.model = tf.keras.Sequential() # self.model.add(tf.keras.layers.InputLayer(input_shape=(layers[0],))) # self.model.add(tf.keras.layers.Lambda( # lambda X: 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0)) # # Initialize NN # for width in layers[1:-1]: # self.model.add(tf.keras.layers.Dense( # width, activation=tf.nn.tanh, # kernel_initializer="glorot_normal")) # self.model.add(tf.keras.layers.Dense( # layers[-1], activation=None, # kernel_initializer="glorot_normal")) # Initialize parameters self.lambda_1 = tf.Variable([0.0], dtype=tf.float32) self.lambda_2 = tf.Variable([0.0], dtype=tf.float32) # tf placeholders and graph self.x = tf.Variable(X[:,0:1],dtype=tf.float32) self.y = tf.Variable(X[:,1:2],dtype=tf.float32) self.t = tf.Variable(X[:,2:3],dtype=tf.float32) self.u_pred, self.v_pred, self.p_pred, self.f_u_pred, self.f_v_pred = self.net_NS(self.x, self.y, self.t) self.u = tf.Variable(u,dtype=tf.float32) self.v = tf.Variable(v,dtype=tf.float32) self.Y = Y # self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, # method = 'L-BFGS-B', # options = {'maxiter': 50000, # 'maxfun': 50000, # 'maxcor': 50, # 'maxls': 50, # 'ftol' : 1.0 * np.finfo(float).eps}) def initialize_NN(self, layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = self.xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases def xavier_init(self, size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.random.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32) def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0 for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y def net_NS(self, x, y, t): lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 with tf.GradientTape(persistent=True) as tape: tape.watch(x) tape.watch(y) tape.watch(t) Xtmp=tf.concat([x,y,t], 1) psi_and_p = self.neural_net(Xtmp,self.weights,self.biases) psi = psi_and_p[:,0:1] p = psi_and_p[:,1:2] u = tape.gradient(psi, y) #print("u :",np.shape(u)) v = -tape.gradient(psi, x) #print("v :",np.shape(v)) u_t = tape.gradient(u, t) #print("u_t :",np.shape(u_t)) u_x = tape.gradient(u, x) #print("u_x :",np.shape(u_x)) u_y = tape.gradient(u, y) #print("u_y :",np.shape(u_y)) u_xx = tape.gradient(u_x, x) #print("u_xx :",np.shape(u_xx)) u_yy = tape.gradient(u_y, y) #print("u_yy :",np.shape(u_yy)) v_t = tape.gradient(v, t) #print("v_t :",np.shape(v_t)) v_x = tape.gradient(v, x) #print("v_x :",np.shape(v_x)) v_y = tape.gradient(v, y) #print("v_y :",np.shape(v_y)) v_xx = tape.gradient(v_x, x) #print("v_xx :",np.shape(v_xx)) v_yy = tape.gradient(v_y, y) #print("v_yy :",np.shape(v_yy)) p_x = tape.gradient(p, x) #print("p_x :",np.shape(p_x)) p_y = tape.gradient(p, y) #print("p_y :",np.shape(p_y)) f_u = u_t + lambda_1*(u*u_x + v*u_y) + p_x - lambda_2*(u_xx + u_yy) f_v = v_t + lambda_1*(u*v_x + v*v_y) + p_y - lambda_2*(v_xx + v_yy) del tape return u, v, p, f_u, f_v def lambda12(self, x, y, t): lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 with tf.GradientTape(persistent=True) as tape: tape.watch(x) tape.watch(y) tape.watch(t) Xtmp=tf.concat([x,y,t], 1) psi_and_p = self.neural_net(Xtmp,self.weights,self.biases) psi = psi_and_p[:,0:1] p = psi_and_p[:,1:2] u = tape.gradient(psi, y) #print("u :",np.shape(u)) v = -tape.gradient(psi, x) #print("v :",np.shape(v)) u_t = tape.gradient(u, t) #print("u_t :",np.shape(u_t)) u_x = tape.gradient(u, x) #print("u_x :",np.shape(u_x)) u_y = tape.gradient(u, y) #print("u_y :",np.shape(u_y)) u_xx = tape.gradient(u_x, x) #print("u_xx :",np.shape(u_xx)) u_yy = tape.gradient(u_y, y) #print("u_yy :",np.shape(u_yy)) v_t = tape.gradient(v, t) #print("v_t :",np.shape(v_t)) v_x = tape.gradient(v, x) #print("v_x :",np.shape(v_x)) v_y = tape.gradient(v, y) #print("v_y :",np.shape(v_y)) v_xx = tape.gradient(v_x, x) #print("v_xx :",np.shape(v_xx)) v_yy = tape.gradient(v_y, y) #print("v_yy :",np.shape(v_yy)) p_x = tape.gradient(p, x) #print("p_x :",np.shape(p_x)) p_y = tape.gradient(p, y) #print("p_y :",np.shape(p_y)) fu1 = (u*u_x + v*u_y) fu2 = (u_xx + u_yy) fu3 = u_t + p_x fv1 = (u*v_x + v*v_y) fv2 = (v_xx + v_yy) fv3 = v_t + p_y # f_u = self.lambda_1*fu1 - lambda_2*fu2+fu3 # f_v = self.lambda_1*fu1 - lambda_2*fu2+fu3 del tape return fu1,fu2,fu3,fv1,fv2,fv3 def callback(self, loss, lambda_1, lambda_2): print('Loss: %.3e, l1: %.3f, l2: %.5f' % (loss, lambda_1, lambda_2)) def grad(self, X, Y): with tf.GradientTape() as tape: loss_value = self.lossval grads = tape.gradient(loss_value, self.wrap_training_variables()) return loss_value, grads def train(self, nIter): start_time = time.time() trainable=[self.x, self.y, self.t,self.u, self.v, self.lambda_1, self.lambda_2] for it in range(nIter): with tf.GradientTape(persistent=True) as tape: [fu1,fu2,fu3,fv1,fv2,fv3] = self.lambda12(self.x,self.y,self.t) loss = lambda:tf.reduce_sum(tf.square(self.u - self.u_pred)) + \ tf.reduce_sum(tf.square(self.v - self.v_pred)) + \ tf.reduce_sum(tf.square(fu1*self.lambda_1+fu2*self.lambda_2+fu3)) + \ tf.reduce_sum(tf.square(fv1*self.lambda_1+fv2*self.lambda_2+fv3)) lossval = tf.reduce_sum(tf.square(self.u - self.u_pred)) + \ tf.reduce_sum(tf.square(self.v - self.v_pred)) + \ tf.reduce_sum(tf.square(self.f_u_pred)) + \ tf.reduce_sum(tf.square(self.f_v_pred)) grads = tape.gradient(lossval,trainable) optimizer_Adam = tf.keras.optimizers.Adam() optimizer_Adam.apply_gradients(zip(grads, trainable)) optimizer_Adam.minimize(loss,trainable) del tape # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = lossval lambda_1_value = self.lambda_1 lambda_2_value = self.lambda_2 print('It: %d, Loss: %.3e, l1: %.3f, l2: %.5f, Time: %.2f' % (it, loss_value, lambda_1_value, lambda_2_value, elapsed)) start_time = time.time() # optimizer_results=tfp.optimizer.lbfgs_minimize( # self.loss, # initial_position=np.random.randn(dim),f_relative_tolerance=1.0 * np.finfo(float).eps, # max_iterations=50000,tolerance=1e-08 # ) # print(optimizer_results) # print("TTTTTTTT",[lambda_1_value,lambda_2_value,self.x_tf,self.y_tf, self.t_tf]) # scipy.optimize.minimize(fun=self.loss,x0=[self.sess.run(self.lambda_1),self.sess.run(self.lambda_2),self.sess.run(self.x_tf), self.sess.run(self.y_tf), self.sess.run(self.t_tf)], # method='l-bfgs-b',options = {'maxiter': 50000, # 'maxfun': 50000, # 'maxcor': 50, # 'maxls': 50, # 'ftol' : 1.0 * np.finfo(float).eps}) def predict(self, x_star, y_star, t_star): tf_dict = {self.x_tf: x_star, self.y_tf: y_star, self.t_tf: t_star} u_star = self.sess.run(self.u_pred, tf_dict) v_star = self.sess.run(self.v_pred, tf_dict) p_star = self.sess.run(self.p_pred, tf_dict) return u_star, v_star, p_star def plot_solution(X_star, u_star, index): lb = X_star.min(0) ub = X_star.max(0) nn = 200 x = np.linspace(lb[0], ub[0], nn) y = np.linspace(lb[1], ub[1], nn) X, Y = np.meshgrid(x,y) U_star = griddata(X_star, u_star.flatten(), (X, Y), method='cubic') plt.figure(index) plt.pcolor(X,Y,U_star, cmap = 'jet') plt.colorbar() def axisEqual3D(ax): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:,1] - extents[:,0] centers = np.mean(extents, axis=1) maxsize = max(abs(sz)) r = maxsize/4 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) if __name__ == "__main__": N_train = 500 layers = [3, 100, 100, 100, 100, 100, 100, 100, 100, 100, 2] # Load Data # —————————————————————————————————————————————————————————————————— mesh = meshio.read( filename='/Users/howardxu/work/neuro-net/Physics-informed-neural-networks/main/Data/rec000068.vtu', # string, os.PathLike, or a buffer/open file # optional if filename is a path; inferred from extension ) x=mesh.points[:,0] y=mesh.points[:,1] t=np.arange(0,68*1.467451833203625E-004,1.467451833203625E-004); u=mesh.point_data['flds1']#x v=mesh.point_data['flds2']#y p=mesh.point_data['flds3']#pressure N = x.shape[0] T = t.shape[0] # —————————————————————————————————————————————————————————————————— x=x.flatten()[:,None] y=y.flatten()[:,None] t=t.flatten()[:,None] XX = np.tile(x, (1,T)) # N x T YY = np.tile(y, (1,T)) # N x T TT = np.tile(t, (N,1)) # N x T UU = np.tile(u, (1,T)) VV = np.tile(v, (1,T)) PP = np.tile(p, (1,T)) x = XX.flatten()[:,None] # NT x 1 y = YY.flatten()[:,None] # NT x 1 t = TT.flatten()[:,None] # NT x 1 u = UU.flatten()[:,None] # NT x 1 v = VV.flatten()[:,None] # NT x 1 p = PP.flatten()[:,None] # NT ###################################################################### ######################## Noiseles Data ############################### ###################################################################### # Training Data idx = np.random.choice(N*T, N_train, replace=False) x_train = x[idx,:] y_train = y[idx,:] t_train = t[idx,:] u_train = u[idx,:] v_train = v[idx,:] # Training model = PhysicsInformedNN(x_train, y_train, t_train, u_train, v_train, layers) model.train(50) t=np.arange(0,68*1.467451833203625E-004,1.467451833203625E-004); TT = np.tile(t, (N,1)) # Test Data snap = np.array([10]) x_star = XX[:,snap] y_star = YY[:,snap] t_star = TT[:,snap] u_star = UU[:,snap] v_star = VV[:,snap] p_star = PP[:,snap] # Prediction u_pred, v_pred, p_pred = model.predict(x_star, y_star, t_star) lambda_1_value = model.sess.run(model.lambda_1) lambda_2_value = model.sess.run(model.lambda_2) # Error error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2) error_v = np.linalg.norm(v_star-v_pred,2)/np.linalg.norm(v_star,2) error_p = np.linalg.norm(p_star-p_pred,2)/np.linalg.norm(p_star,2) error_lambda_1 = np.abs(lambda_1_value - 1.0)*100 error_lambda_2 = np.abs(lambda_2_value - 0.01)/0.01 * 100 print('Error u: %e' % (error_u)) print('Error v: %e' % (error_v)) print('Error p: %e' % (error_p)) print('Error l1: %.5f%%' % (error_lambda_1)) print('Error l2: %.5f%%' % (error_lambda_2)) # Plot Results # plot_solution(X_star, u_pred, 1) # plot_solution(X_star, v_pred, 2) # plot_solution(X_star, p_pred, 3) # plot_solution(X_star, p_star, 4) # plot_solution(X_star, p_star - p_pred, 5) #Import again in case of override x1=mesh.points[:,0] y1=mesh.points[:,1] # Predict for plotting X_star=np.concatenate([x1.flatten()[:,None],y1.flatten()[:,None]],axis=1) lb = X_star.min(0) ub = X_star.max(0) nn = 200 x = np.linspace(lb[0], ub[0], nn) y = np.linspace(lb[1], ub[1], nn) X, Y = np.meshgrid(x,y) UU_star = griddata(X_star, u_pred.flatten(), (X, Y), method='cubic') VV_star = griddata(X_star, v_pred.flatten(), (X, Y), method='cubic') PP_star = griddata(X_star, p_pred.flatten(), (X, Y), method='cubic') P_exact = griddata(X_star, p_star.flatten(), (X, Y), method='cubic') ###################################################################### ########################### Noisy Data ############################### ###################################################################### # noise = 0.01 # u_train = u_train + noise*np.std(u_train)*np.random.randn(u_train.shape[0], u_train.shape[1]) # v_train = v_train + noise*np.std(v_train)*np.random.randn(v_train.shape[0], v_train.shape[1]) # # Training # model = PhysicsInformedNN(x_train, y_train, t_train, u_train, v_train, layers) # model.train(1000) # lambda_1_value_noisy = model.sess.run(model.lambda_1) # lambda_2_value_noisy = model.sess.run(model.lambda_2) # error_lambda_1_noisy = np.abs(lambda_1_value_noisy - 1.0)*100 # error_lambda_2_noisy = np.abs(lambda_2_value_noisy - 0.01)/0.01 * 100 # print('Error l1: %.5f%%' % (error_lambda_1_noisy)) # print('Error l2: %.5f%%' % (error_lambda_2_noisy)) ###################################################################### ############################# Plotting ############################### ###################################################################### # Load Data data_vort = scipy.io.loadmat('../Data/cylinder_nektar_t0_vorticity.mat') x_vort = data_vort['x'] y_vort = data_vort['y'] w_vort = data_vort['w'] modes = np.asscalar(data_vort['modes']) nel = np.asscalar(data_vort['nel']) xx_vort = np.reshape(x_vort, (modes+1,modes+1,nel), order = 'F') yy_vort = np.reshape(y_vort, (modes+1,modes+1,nel), order = 'F') ww_vort = np.reshape(w_vort, (modes+1,modes+1,nel), order = 'F') box_lb = np.array([1.0, -2.0]) box_ub = np.array([8.0, 2.0]) fig, ax = newfig(1.0, 1.2) ax.axis('off') ####### Row 0: Vorticity ################## gs0 = gridspec.GridSpec(1, 2) gs0.update(top=1-0.06, bottom=1-2/4 + 0.12, left=0.0, right=1.0, wspace=0) ax = plt.subplot(gs0[:, :]) for i in range(0, nel): h = ax.pcolormesh(xx_vort[:,:,i], yy_vort[:,:,i], ww_vort[:,:,i], cmap='seismic',shading='gouraud', vmin=-3, vmax=3) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(h, cax=cax) ax.plot([box_lb[0],box_lb[0]],[box_lb[1],box_ub[1]],'k',linewidth = 1) ax.plot([box_ub[0],box_ub[0]],[box_lb[1],box_ub[1]],'k',linewidth = 1) ax.plot([box_lb[0],box_ub[0]],[box_lb[1],box_lb[1]],'k',linewidth = 1) ax.plot([box_lb[0],box_ub[0]],[box_ub[1],box_ub[1]],'k',linewidth = 1) ax.set_aspect('equal', 'box') ax.set_xlabel('$x$') ax.set_ylabel('$y$') ax.set_title('Vorticity', fontsize = 10) ####### Row 1: Training data ################## ######## u(t,x,y) ################### gs1 = gridspec.GridSpec(1, 2) gs1.update(top=1-2/4, bottom=0.0, left=0.01, right=0.99, wspace=0) ax = plt.subplot(gs1[:, 0], projection='3d') ax.axis('off') r1 = [x_star.min(), x_star.max()] r2 = [data['t'].min(), data['t'].max()] r3 = [y_star.min(), y_star.max()] for s, e in combinations(np.array(list(product(r1,r2,r3))), 2): if np.sum(np.abs(s-e)) == r1[1]-r1[0] or np.sum(np.abs(s-e)) == r2[1]-r2[0] or np.sum(np.abs(s-e)) == r3[1]-r3[0]: ax.plot3D(*zip(s,e), color="k", linewidth = 0.5) ax.scatter(x_train, t_train, y_train, s = 0.1) ax.contourf(X,UU_star,Y, zdir = 'y', offset = t_star.mean(), cmap='rainbow', alpha = 0.8) ax.text(x_star.mean(), data['t'].min() - 1, y_star.min() - 1, '$x$') ax.text(x_star.max()+1, data['t'].mean(), y_star.min() - 1, '$t$') ax.text(x_star.min()-1, data['t'].min() - 0.5, y_star.mean(), '$y$') ax.text(x_star.min()-3, data['t'].mean(), y_star.max() + 1, '$u(t,x,y)$') ax.set_xlim3d(r1) ax.set_ylim3d(r2) ax.set_zlim3d(r3) axisEqual3D(ax) ######## v(t,x,y) ################### ax = plt.subplot(gs1[:, 1], projection='3d') ax.axis('off') r1 = [x_star.min(), x_star.max()] r2 = [data['t'].min(), data['t'].max()] r3 = [y_star.min(), y_star.max()] for s, e in combinations(np.array(list(product(r1,r2,r3))), 2): if np.sum(np.abs(s-e)) == r1[1]-r1[0] or np.sum(np.abs(s-e)) == r2[1]-r2[0] or np.sum(np.abs(s-e)) == r3[1]-r3[0]: ax.plot3D(*zip(s,e), color="k", linewidth = 0.5) ax.scatter(x_train, t_train, y_train, s = 0.1) ax.contourf(X,VV_star,Y, zdir = 'y', offset = t_star.mean(), cmap='rainbow', alpha = 0.8) ax.text(x_star.mean(), data['t'].min() - 1, y_star.min() - 1, '$x$') ax.text(x_star.max()+1, data['t'].mean(), y_star.min() - 1, '$t$') ax.text(x_star.min()-1, data['t'].min() - 0.5, y_star.mean(), '$y$') ax.text(x_star.min()-3, data['t'].mean(), y_star.max() + 1, '$v(t,x,y)$') ax.set_xlim3d(r1) ax.set_ylim3d(r2) ax.set_zlim3d(r3) axisEqual3D(ax) # savefig('./figures/NavierStokes_data') fig, ax = newfig(1.015, 0.8) ax.axis('off') ######## Row 2: Pressure ####################### ######## Predicted p(t,x,y) ########### gs2 = gridspec.GridSpec(1, 2) gs2.update(top=1, bottom=1-1/2, left=0.1, right=0.9, wspace=0.5) ax = plt.subplot(gs2[:, 0]) h = ax.imshow(PP_star, interpolation='nearest', cmap='rainbow', extent=[x_star.min(), x_star.max(), y_star.min(), y_star.max()], origin='lower', aspect='auto') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(h, cax=cax) ax.set_xlabel('$x$') ax.set_ylabel('$y$') ax.set_aspect('equal', 'box') ax.set_title('Predicted pressure', fontsize = 10) ######## Exact p(t,x,y) ########### ax = plt.subplot(gs2[:, 1]) h = ax.imshow(P_exact, interpolation='nearest', cmap='rainbow', extent=[x_star.min(), x_star.max(), y_star.min(), y_star.max()], origin='lower', aspect='auto') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(h, cax=cax) ax.set_xlabel('$x$') ax.set_ylabel('$y$') ax.set_aspect('equal', 'box') ax.set_title('Exact pressure', fontsize = 10) ######## Row 3: Table ####################### gs3 = gridspec.GridSpec(1, 2) gs3.update(top=1-1/2, bottom=0.0, left=0.0, right=1.0, wspace=0) ax = plt.subplot(gs3[:, :]) ax.axis('off') s = r'$\begin{tabular}{|c|c|}'; s = s + r' \hline' s = s + r' Correct PDE & $\begin{array}{c}' s = s + r' u_t + (u u_x + v u_y) = -p_x + 0.01 (u_{xx} + u_{yy})\\' s = s + r' v_t + (u v_x + v v_y) = -p_y + 0.01 (v_{xx} + v_{yy})' s = s + r' \end{array}$ \\ ' s = s + r' \hline' s = s + r' Identified PDE (clean data) & $\begin{array}{c}' s = s + r' u_t + %.3f (u u_x + v u_y) = -p_x + %.5f (u_{xx} + u_{yy})' % (lambda_1_value, lambda_2_value) s = s + r' \\' s = s + r' v_t + %.3f (u v_x + v v_y) = -p_y + %.5f (v_{xx} + v_{yy})' % (lambda_1_value, lambda_2_value) s = s + r' \end{array}$ \\ ' s = s + r' \hline' s = s + r' Identified PDE (1\% noise) & $\begin{array}{c}' s = s + r' u_t + %.3f (u u_x + v u_y) = -p_x + %.5f (u_{xx} + u_{yy})' % (lambda_1_value_noisy, lambda_2_value_noisy) s = s + r' \\' s = s + r' v_t + %.3f (u v_x + v v_y) = -p_y + %.5f (v_{xx} + v_{yy})' % (lambda_1_value_noisy, lambda_2_value_noisy) s = s + r' \end{array}$ \\ ' s = s + r' \hline' s = s + r' \end{tabular}$' ax.text(0.015,0.0,s) # savefig('./figures/NavierStokes_prediction') ```
{ "source": "56kyle/bloons_auto", "score": 3 }
#### File: bloons_auto/api_creation/get_data_cleanly.py ```python from collections.abc import Iterable import re def with_brackets(type_str: str) -> str: return type_str.replace('<', '[').replace('>', ']') def get_data(*lines): game = {} main_offset = 0 section = '' dll_name = '' class_name = '' section_name = '' for line in lines: tabs = line.count('\t') stripped = line.replace('\t', '').replace('\n', '') address = None if ' : ' in stripped: address = stripped.split(' : ')[0] if tabs == 0: # Main exe offset game = {'address': address, 'dlls': {}} elif tabs == 1: # Dll dll_name = '.'.join(stripped.split(' : ')[-1].split('.')[:-1]) print(dll_name) game['dlls'][dll_name] = { 'address': address, 'classes': {} } elif tabs == 2: # Class class_name = stripped.split(' : ')[-1] game['dlls'][dll_name]['classes'][class_name] = { 'address': address, 'fields': {}, 'static_fields': {}, 'methods': {}, 'base_class': {}, } elif tabs == 3: # Field labels section_name = stripped game['dlls'][dll_name]['classes'][class_name][section_name] = {} elif tabs == 4: # Field data if section_name == 'static fields': static_field_name = stripped.split(' : ')[-1].split(' (')[0] static_field_type = stripped.split(' (type: ')[-1].replace(')', '') static_field_type = with_brackets(static_field_type) game['dlls'][dll_name]['classes'][class_name][section_name][static_field_name] = { 'address': address, 'type': static_field_type, } elif section_name == 'fields': field_name = stripped.split(' : ')[-1].split(' (')[0] field_type = stripped.split(' (type: ')[-1].replace(')', '') field_type = with_brackets(field_type) game['dlls'][dll_name]['classes'][class_name][section_name][field_name] = { 'address': address, 'type': field_type, } elif section_name == 'methods': method_name = stripped.split(' : ')[-1].split(' (')[0] method_parameters_whole: str = stripped.split(' -> ')[0].split(' (')[-1].replace(')', '') if method_parameters_whole: if ', ' in method_parameters_whole: method_parameters = method_parameters_whole.split(', ') else: method_parameters = [method_parameters_whole] else: method_parameters = [] method_parameters_data = {} for method_param in method_parameters: try: method_param_name, method_param_type = method_param.split(': ') method_param_type = with_brackets(method_param_type) method_parameters_data[method_param_name] = { 'type': method_param_type, } except Exception as e: pass method_return_type = stripped.split(' -> ')[-1] method_return_type = with_brackets(method_return_type) game['dlls'][dll_name]['classes'][class_name][section_name][method_name] = { 'address': address, 'params': method_parameters_data, 'return_type': method_return_type, } elif section_name == 'base_class': base_class_name = stripped.split(' : ')[-1] game['dlls'][dll_name]['classes'][class_name][section_name][base_class_name] = { 'address': address, } else: print(f'no section provided - {section}') return game if __name__ == '__main__': with open('./cheat_engine_output.TXT', 'r') as file: data = get_data(*file.readlines()) with open('./cheat_engine_direct_2.txt', 'w') as new_file: new_file.write(str(data)) ``` #### File: 56kyle/bloons_auto/hitbox.py ```python from maps import * from map import Map from towers import * from tower import Tower import pyscreeze import os from functools import cache from PIL import Image import numpy as np class Hitbox: def __init__(self, tower: Tower): self.tower = tower self.size = tower.size self.width = tower.width self.height = tower.height self.file_path = os.path.join('.', 'towers', 'hitboxes', f'{self.size}') self.img = Image.open(self.file_path + '.png') @cache def data(self): return np.array(self.img) def save(self): np.save(self.file_path + '.npy', self.data()) if __name__ == '__main__': for size in SIZES: try: hitbox = Hitbox(size[0]) new_img = hitbox.img.convert('1') hitbox.img = new_img new_data = [] for val in hitbox.img.getdata(): new_data.append(not val) hitbox.img.putdata(new_data) hitbox.img.save(hitbox.file_path + '_test.png') np.save(hitbox.file_path, hitbox.data()) except FileNotFoundError: pass ``` #### File: maps/infernal/infernal.py ```python from map import Map class Infernal(Map): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.name = 'infernal' self.difficulty = 'expert' self.page = 1 self.placement = [0, 0] ``` #### File: maps/peninsula/peninsula.py ```python from map import Map class Peninsula(Map): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.name = 'peninsula' self.difficulty = 'advanced' ``` #### File: maps/workshop/workshop.py ```python import keyboard import mouse import time from map import Map from towers import * from tower import Point from config import keybinds class Workshop(Map): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.name = 'workshop' self.difficulty = 'expert' self.page = 1 self.placement = [2, 0] def play_collection(self): dart = DartMonkey(location=Point(1016, 501)) self.start() self.toggle_fast_forward() # Wait for round one to end time.sleep(10) # Place Ben keyboard.press_and_release(keybinds['heroes'], .2) time.sleep(.3) mouse.move(1518, 987) time.sleep(.2) mouse.click() # Wait to buy wiz time.sleep(15) wiz = WizardMonkey(location=Point(1016, 437)) # Upgrade wiz time.sleep(15) wiz.assign_upgrades([0, 1, 0]) time.sleep(15) wiz.assign_upgrades([0, 2, 0]) # Wait to buy spike factory time.sleep(20) spike = SpikeFactory(location=Point(1580, 685)) # Upgrade spike factory. time.sleep(20) spike.assign_upgrades([1, 0, 0]) time.sleep(15) spike.assign_upgrades([1, 1, 0]) time.sleep(15) spike.assign_upgrades([1, 2, 0]) time.sleep(15) spike.assign_upgrades([2, 2, 0]) # Waut to buy a # Wait for round to finish out time.sleep(144) ``` #### File: bloons_auto/towers/banana_farm.py ```python from tower import Tower from config import keybinds class BananaFarm(Tower): name = 'banana_farm' range = 215 width = 162 height = 141 size = 'rectangle' keybind = keybinds[name] aquatic = False def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/towers/heli_pilot.py ```python from tower import Tower from config import keybinds class HeliPilot(Tower): name = 'heli_pilot' range = 118 width = 145 height = 127 size = 'rectangle' keybind = keybinds[name] aquatic = False def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/towers/monkey_ace.py ```python from tower import Tower from config import keybinds class MonkeyAce(Tower): name = 'monkey_ace' range = 118 width = 152 height = 85 size = 'rectangle' keybind = keybinds[name] aquatic = False def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/towers/monkey_buccaneer.py ```python from tower import Tower from config import keybinds class MonkeyBuccaneer(Tower): name = 'monkey_buccaneer' range = 323 width = 87 height = 75 size = 'large' keybind = keybinds[name] aquatic = True def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/towers/monkey_village.py ```python from tower import Tower from config import keybinds class MonkeyVillage(Tower): name = 'monkey_village' range = 215 width = 119 height = 103 size = 'xl' keybind = keybinds[name] aquatic = False def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/towers/sniper_monkey.py ```python from tower import Tower from config import keybinds class SniperMonkey(Tower): name = 'sniper_monkey' range = 107 width = 65 height = 57 size = 'small' keybind = keybinds[name] aquatic = False def __init__(self, **kwargs): super().__init__(**kwargs) ``` #### File: bloons_auto/util/collection.py ```python import time import os import psutil from ReadWriteMemory import ReadWriteMemory import mouse import pyscreeze import maps from map import Map from maps import * from tower import Tower, Point from towers import * class Collector: play_button = (820, 940) expert_map_button = (1340, 980) easy_button = (615, 420) standard_button = (640, 585) back_to_main_button = (60, 70) def __init__(self): self.current_map = None def click_expert(self): mouse.move(*self.expert_map_button) time.sleep(1) mouse.click() def is_map(self, map): os.path.join('./maps', map.name,) def click_ideal_map(self): self.click_expert() page = 1 time.sleep(1) idol = pyscreeze.locateCenterOnScreen('./collection_idol.png', confidence=.6) print(f'Moving to idol at - {idol}') if not idol: self.click_expert() page = 2 time.sleep(1) idol = pyscreeze.locateCenterOnScreen('./collection_idol.png', confidence=.6) print(idol) time.sleep(.1) mouse.move(*idol) time.sleep(.1) mouse.click() time.sleep(.1) return page, idol def click_play(self): mouse.move(*self.play_button) time.sleep(.4) mouse.click() time.sleep(1) def click_easy(self): mouse.move(*self.easy_button) time.sleep(.4) mouse.click() time.sleep(1) def click_standard(self): mouse.move(*self.standard_button) time.sleep(.4) mouse.click() time.sleep(1) if __name__ == '__main__': time.sleep(5) collector = Collector() while True: collector.click_play() time.sleep(1) collector.click_expert() time.sleep(1) #page, point_chosen = collector.click_ideal_map() page = 1 point_chosen = Point(1400, 570) mouse.move(*point_chosen) time.sleep(.2) mouse.click() time.sleep(1) collector.click_easy() time.sleep(1) collector.click_standard() time.sleep(5) ''' x, y = Map.point_to_map(point_chosen) for map_class in maps.ALL: if map_class.difficulty == 'Expert': if map_class.page == page and map_class.placement == [x, y]: map = map_class() break ''' collector.current_map = Workshop() collector.current_map.play_collection() ``` #### File: bloons_auto/util/convert_cheat_engine.py ```python import sys import inflection import os import re from typing import Union from pymem import Pymem from btd6_memory_info.cheat_engine_output_offsets import offsets # Returns address, class path class_re = re.compile(r"\t*([\w.\-<>]+) : ([\w.<>,=|{}-]+)\n") # Returns offset from class base address, name, type static_field_re = re.compile(r"\t*([\w\-<>]+) : ([^\s]+) \(type: ([\w.,<>{}-]+)\)\n") # Returns offset from class base address, name, type field_re = re.compile(r"\t*([\w\-<>]+) : ([^\s]+) \(type: ([\w.,<>{}-]+)\)\n") # Returns address, function name, function parameters, return type method_re = re.compile(r"\t*([\w<>-]+) : ([\w.,]+) \(([^)]*)\):([\w.,<>{}-]+)\n") def convert_all(): data = {} current_module_name = None sys.setrecursionlimit(2000) with open('../btd6_memory_info/cheat_engine_output.TXT', 'r') as old: lines = old.readlines() for i, line in enumerate(lines): if line.startswith('\t'): if line.startswith('\t\t'): if line.startswith('\t\t\t'): # Loops through in get_class_data anyway pass else: # Class class_data = get_class_data(current_module_base, lines, i-1) if not class_data['name'].startswith('<'): data['process']['modules'][current_module_name]['classes'][class_data['name']] = class_data else: # Module match = re.fullmatch(class_re, line) if match: address, name = match.groups() current_module_name = name current_module_base = int(address, 16) data['process']['modules'][current_module_name] = {'offset': base_address - int(address, 16), 'classes': {}} else: print("ONO") print(line) else: # Base base_address = int(line.replace('\n', ''), 16) data['process'] = {'name': 'BloonsTD6.exe', 'base_address': base_address, 'modules': {}} with open('../btd6_memory_info/cheat_engine_data.py', 'w') as new_file: new_file.write('data = ' + str(data)) tab_re = re.compile('\t') def get_class_data(module_base: int, lines: [str], base_class_tag_index: int) -> dict: static_field_tag_index = None field_tag_index = None method_tag_index = None base_class_tag_index_found = None current_line: int = base_class_tag_index data = { 'name': None, 'offset': None, 'static_fields': None, 'fields': None, 'methods': None, 'base_class': None, } def get_class_metadata(i: int) -> Union[dict, None]: # same as has_base_class if len(lines) == i + 1: return None match = re.fullmatch(class_re, lines[i+1]) if match: address, name = match.groups() if '<' in name: print(name) return {'offset_from_module': int(address, 16) - module_base, 'name': name} return None def get_static_field_data(i: int) -> Union[dict, None]: # lines[i] should end with 'static fields' match = re.fullmatch(static_field_re, lines[i+1]) if match: offset_from_class, name, type = match.groups() return {'offset_from_class': int(offset_from_class, 16), 'name': name, 'type': type} return None def get_field_data(i: int) -> Union[dict, None]: # lines[i] should end with 'fields' match = re.fullmatch(field_re, lines[i+1]) if match: offset_from_class, name, field_type = match.groups() return {'offset_from_class': int(offset_from_class, 16), 'name': name, 'type': field_type} return None def get_method_data(i: int) -> Union[dict, None]: # lines[i] should end with 'methods' match = re.fullmatch(method_re, lines[i+1]) def get_params(p): new_params = {} if p: for pair in p.split('; '): try: arg, value = pair.split(': ') new_params[arg] = value except ValueError as e: pass return new_params if match: address, name, params, return_type = match.groups() return {'offset_from_module': int(address, 16) - module_base, 'name': name, 'params': get_params(params), 'return_type': return_type} return None while not (static_field_tag_index and field_tag_index and method_tag_index and base_class_tag_index_found): if not data['name'] or not data['offset']: metadata = get_class_metadata(current_line) data['offset'] = metadata['offset_from_module'] data['name'] = metadata['name'] if lines[current_line].endswith('static fields\n') or (static_field_tag_index and not field_tag_index): new_field = get_static_field_data(current_line) if new_field: data['static_fields'] = data['static_fields'] if data['static_fields'] else {} data['static_fields'][new_field['name']] = new_field #print(new_field) static_field_tag_index = current_line if lines[current_line].endswith('fields\n') or (field_tag_index and not method_tag_index): new_field = get_field_data(current_line) if new_field: data['fields'] = data['fields'] if data['fields'] else {} data['fields'][new_field['name']] = new_field #print(new_field) field_tag_index = current_line if lines[current_line].endswith('methods\n') or (method_tag_index and not base_class_tag_index): new_method = get_method_data(current_line) if new_method: data['methods'] = data['methods'] if data['methods'] else {} data['methods'][new_method['name']] = new_method #print(new_method) method_tag_index = current_line if 'base class' in lines[current_line] and current_line != base_class_tag_index: data['base_class'] = get_class_metadata(current_line) base_class_tag_index_found = current_line current_line += 1 return data def handle_class(line): klass = line.strip('\t').strip('\n') klass_address, klass_path = klass.split(' : ') path_sections = klass_path.split('.') root = os.path.join('..', 'btd6_memory_info', 'generated') name = path_sections[-1] for folder in path_sections[:-1]: root = os.path.join(root, folder) try: if not os.path.isdir(root): os.mkdir(root) new_file = os.path.join(root, inflection.underscore(folder)) + '.py' if not os.path.isfile(new_file): print(new_file) with open(new_file, 'w') as new_klass: new_klass.write(f'''class {folder}:\tpass''') except OSError: pass return def re_test(): test = re.compile(r"\t+(\w+)\s:\s(.+)\n") data = {} with open('../btd6_memory_info/cheat_engine_output.TXT', 'r') as old: lines = old.readlines() for line in lines: match = re.fullmatch(test, line) if match: pass if __name__ == '__main__': convert_all() ``` #### File: bloons_auto/util/convert_data_to_api.py ```python import inflection import os from btd6_memory_info.cheat_engine_data import data def api_up(): for module_name, module_data in data['process']['modules'].items(): import_lines = [] import_names = [] classes = [] class_names = [] def get_class_lines(path, data): name = path.split('.')[-1] base_class = data.get('base_class') parent = '' class_imports = [] if base_class: base_path = base_class['name'].replace('.dll', '') base_name = base_path.split('.')[-1].replace('.dll', '') if base_name != name: import_names.append(base_path) class_imports.append(base_path) parent = f'({base_path})' if base_path else '' print(parent) methods = [] if data.get('methods'): for method_name, method_data in data['methods'].items(): #print('method_name - ', method_name) #print('method_data - ', method_data) pass try: params = ', '.join([f'{field["name"]}: {field["type"]}' for field_name, field in data["fields"].items()]) except AttributeError: params = '' offsets = {} try: class_variables = '\n'.join([f'\t{static_name}: {static["type"]}' for static_name, static in data['static_fields'].items()]) except AttributeError: class_variables = '' try: instance_variables = '\n'.join([f'\t\tself.{field["name"]} = {field["name"]}' for field_name, field in data["fields"].items()]) except AttributeError: instance_variables = '' if data['static_fields']: for cls_var in data['static_fields'].values(): offsets[cls_var['name']] = cls_var['offset_from_class'] if cls_var['type'] not in class_names and cls_var['type'] not in import_names: import_names.append(cls_var['type']) class_imports.append(cls_var['type']) if data['fields']: for inst_var in data['fields'].values(): offsets[inst_var['name']] = inst_var['offset_from_class'] if inst_var['type'] not in class_names and inst_var['type'] not in import_names: import_names.append(inst_var['type']) class_imports.append(inst_var['type']) class_lines = [ f'', f'class {name}{parent}:', f'{class_variables}', f' offsets = {offsets}' f' ', f' def __init__(self, {params + ", " if params else ""}**kwargs):', f' super().__init__(self, **kwargs)', f'{instance_variables}' f'', ] classes.append('\n'.join(class_lines)) module_data['classes'][class_data['name']]['lines'] = class_lines module_data['classes'][class_data['name']]['imports'] = class_imports for class_path, class_data in module_data['classes'].items(): get_class_lines(class_path.replace('.dll', ''), class_data) with open(os.path.join('.', 'gen', module_name + '.py'), 'w') as file: file.write('\n'.join(import_lines) + '\n\n' + '\n\n'.join(classes)) make_folder_api(module_name.replace('.dll', ''), module_data['classes']) def make_folder_api(module_name, classes_data): gen_test = os.path.join('.', 'gen_test') try_to_make(gen_test) module_path_base: list = module_name.split('.')[:-2] module_path_last: str = '.'.join(module_name.split('.')[-2:]) module_path = os.path.join(gen_test, *module_path_base, module_path_last) module_init = os.path.join(module_path, '__init__.py') try_to_make(module_path) with open(module_init, 'w') as file: pass for class_name, class_data in classes_data.items(): class_path = os.path.join(module_path, *class_name.split('.')) class_path = class_path.replace('<', '').replace('>', '').replace(',', '_').replace('|', '').replace('=', '_') try_to_make(class_path) class_init = os.path.join(class_path, '__init__.py') try: with open(class_init, 'w') as file: import_lines = [] for imp in class_data['imports']: import_lines.append(f'import {imp}') imports = '\n'.join(import_lines) file.write(imports + '\n'.join(class_data['lines'])) except Exception as e: print(e) def try_to_make(path): try: os.makedirs(path.replace('<', '').replace('>', '').replace(',', '_').replace('|', '')) path = path.replace('<', '').replace('>', '').replace(',', '_').replace('|', '') print(path) for section in path.split('/'): pass except: pass def api_down(): os.removedirs('./gen') if __name__ == '__main__': api_up() ``` #### File: bloons_auto/util/find_range_area.py ```python from maps import * from map import Map from towers import * from tower import Tower import exceptions from PIL import Image import numpy as np import mouse import keyboard import pyscreeze import random import time def find_range_area(): location_i = mouse.get_position() mouse.move(1900, 1060) time.sleep(.3) img_i = pyscreeze.screenshot() mouse.move(*location_i) time.sleep(.3) keyboard.press_and_release(DartMonkey.keybind, .3) time.sleep(.6) img_f = pyscreeze.screenshot() np_i = np.array(img_i) np_f = np.array(img_f) diff = np_f - np_i new_data = [] diff_img = Image.fromarray(diff) for px in diff_img.getdata(): if px == (0, 0, 0): new_data.append((0, 0, 0)) else: new_data.append((255, 255, 255)) diff_img.putdata(new_data) diff_img.putpixel(location_i, (0, 0, 0)) diff_img.convert('1').save(f'./data/{random.randint(1, 100000)}.png') if __name__ == '__main__': time.sleep(3) find_range_area() ``` #### File: bloons_auto/util/gradually_map.py ```python import os import sys from maps import * from map import Map import pyscreeze import win32gui import towers from tower import Tower, Point from hitbox import Hitbox from dynamic_info.placeable import PlaceableHook from dynamic_info.money import MoneyHook from dynamic_info.session import Btd6Session import collections import keyboard import numpy as np import mouse import random import time from config import keybinds from PIL import Image from window_input import Window, Key Region = collections.namedtuple('Region', 'xi yi xf yf') class MapScanner: def __init__(self, a_map, tower, regions): self.a_map = a_map self.tower = tower self.regions = regions self.checked = np.full((1080, 1920), False) self.placeable = np.full((1080, 1920), False) def get_placement_map(self): im = pyscreeze.screenshot() img_file_name = f'../maps/{self.a_map.name}/placement/{"land" if not self.tower.aquatic else "sea"}/{self.tower.size if self.tower.size != "rectangle" else self.tower.name}.png' im.save(f'../maps/{self.a_map.name}/{self.a_map.name}.png') try: img = Image.open(img_file_name) except: img = Image.new('RGB', (1920, 1080)) keyboard.press_and_release(self.tower.keybind) for region in self.regions: win = win32gui.GetActiveWindow() xi, yi, xf, yf = region for x in range(xi, xf, 16): for y in range(yi, yf, 12): if mouse.get_position() == (0, 0): print('fuck') return if self.tower.can_place(Point(x, y), im): a = False b = False if img.getpixel((x - 16, y)) == (255, 255, 255): a = True for dx in range(1, 17): img.putpixel((x - dx, y), (255, 255, 255)) if img.getpixel((x, y - 12)) == (255, 255, 255): b = True for dy in range(1, 17): img.putpixel((x, y - dy), (255, 255, 255)) if img.getpixel((x - 16, y - 12)) == (255, 255, 255) and a and b: for dy in range(1, 17): for dx in range(1, 17): img.putpixel((x - dx, y - dy), (255, 255, 255)) img.putpixel((x, y), (255, 255, 255)) img.save(img_file_name) def get_changing(self): location_i = mouse.get_position() mouse.move(1900, 1060) time.sleep(.3) img_i = pyscreeze.screenshot() time.sleep(.3) img_f = pyscreeze.screenshot() np_i = np.array(img_i) np_f = np.array(img_f) diff = np_f - np_i new_data = [] diff_img = Image.fromarray(diff) for px in diff_img.getdata(): if px == (0, 0, 0): new_data.append((0, 0, 0)) else: new_data.append((255, 255, 255)) diff_img.putdata(new_data) diff_img.putpixel(location_i, (0, 0, 0)) return np.array(diff_img.convert('1')) def get_np_placement_map(self): btd6_session = Btd6Session(hooks=[PlaceableHook]) img_file_name = f'./maps/{self.a_map.name}/placement/{"land" if not self.tower.aquatic else "sea"}/{self.tower.size if self.tower.size != "rectangle" else self.tower.name}' keyboard.press_and_release(self.tower.keybind) for region in self.regions: xi, yi, xf, yf = region #gx = int(16 / 2) #gy = int(12 / 2) gx = 16 gy = 12 while not (gx == 1 and gy == 1): for x in range(xi, xf, gx): for y in range(yi, yf, gy): #print('=====') if mouse.get_position() == (0, 0): print('fuck') return while not btd6_session.hooks['PlaceableHook'].np_checked[y, x]: mouse.move(x, y) else: quadrants = [ [gx, gy], # Top Left [-gx, gy], # Top Right [gx, -gy], # Bot Left [-gx, -gy], # Bot Right ] for pair in quadrants: print(f'pair - {pair}') if abs(gx) > 2 and abs(gy) > 2 and not btd6_session.hooks['PlaceableHook'].np_checked[y - int(abs(pair[1] / pair[1])), x - int(abs(pair[0] / pair[0]))]: print('greater than 2') if self.should_fill_quad(btd6_session.hooks['PlaceableHook'].np_checked, btd6_session.hooks['PlaceableHook'].np_placeable, x, y, pair[0], pair[1]): if gx < 0: xi = x xf = x - gx else: xi = x - gx xf = x if gy < 0: yi = y yf = y - gy else: yi = y - gy yf = y btd6_session.hooks['PlaceableHook'].np_placeable[yi:yf, xi:xf] = btd6_session.hooks['PlaceableHook'].np_placeable[y, x] btd6_session.hooks['PlaceableHook'].np_checked[yi:yf, xi:xf] = True ''' for xx in range(xi, xf): for yy in range(yi, yf): print(f'fillled {(yy, xx)}') btd6_session.hooks['PlaceableHook'].np_placeable[yy, xx] = btd6_session.hooks['PlaceableHook'].np_placeable[y, x] btd6_session.hooks['PlaceableHook'].np_checked[yy, xx] = True ''' else: print('---------------------') print('else') print('---------------------') np.save(img_file_name, btd6_session.hooks['PlaceableHook'].np_placeable) Image.fromarray(btd6_session.hooks['PlaceableHook'].np_placeable).save(img_file_name + '.png') gx = int(gx / 2) if gx != 1 else gx gy = int(gy / 2) if gy != 1 else gy def should_fill_quad(self, checked, placeable, x, y, gx, gy): """Checks if a given rectangle can be filled in and does so if possible""" print('should_fill_quad') point_one = checked[y - gy, x - gx] and placeable[y - gy, x - gx] point_two = checked[y, x - gx] and placeable[y, x - gx] point_three = checked[y - gy, x] and placeable[y - gy, x] desired_result = placeable[y, x] print('returning') return point_one == desired_result and point_two == desired_result and point_three == desired_result def get_np_placement_map_one(self): manual_delay_locations = self.get_changing() im = pyscreeze.screenshot() img_file_name = f'../maps/{self.a_map.name}/placement/{"land" if not self.tower.aquatic else "sea"}/{self.tower.size if self.tower.size != "rectangle" else self.tower.name}' im.save(f'../maps/{self.a_map.name}/{self.a_map.name}.png') np_im = np.array(im) if os.path.isfile(img_file_name + '.npy'): placeable = np.load(img_file_name + '.npy') else: placeable = np.full((1080, 1920), False) keyboard.press_and_release(self.tower.keybind) for region in self.regions: xi, yi, xf, yf = region #gx = int(16 / 2) #gy = int(12 / 2) for x in range(xi, xf): for y in range(yi, yf): #print('=====') if mouse.get_position() == (0, 0): print('fuck') return placeable[y, x] = self.tower.can_place_quick(Point(x, y), np_im, manual_delay_locations) np.save(img_file_name, placeable) Image.fromarray(placeable).save(img_file_name + '.png') def get_map_img(self): mouse.move(1910, 1070) time.sleep(.3) im = pyscreeze.screenshot() im.save(f'../maps/{self.a_map.name}/{self.a_map.name}.png') def get_map_v2(self): btd6_session = Btd6Session(hooks=[PlaceableHook]) print('post session') img_file_name = f'../maps/{self.a_map.name}/placement/{"land" if not self.tower.aquatic else "sea"}/{self.tower.size if self.tower.size != "rectangle" else self.tower.name}' if os.path.isfile(img_file_name + '.npy'): placeable = np.load(img_file_name + '.npy') else: placeable = np.full((1080, 1920), False) checked = np.full((1080, 1920), False) keyboard.press_and_release(self.tower.keybind) gx = 16 gy = 12 for region in self.region: xi, yi, xf, yf = region for x in range(xi, xf, gx): for y in range(yi, yf, gy): while not checked[y, x]: try: while btd6_session.location[0] != x or btd6_session.location[1] != y: mouse.move(x, y) else: placeable[y, x] = btd6_session.placeable checked[y, x] = True except: mouse.move(x, y) else: desired = placeable[y, x] self.should_fill_quad() np.save(img_file_name, placeable) img = Image.fromarray(placeable) img.save(img_file_name + '.png') def get_map_v3(self): btd6_session = Btd6Session(hooks=[PlaceableHook]) print('post session') img_file_name = f'./maps/{self.a_map.name}/placement/{"land" if not self.tower.aquatic else "sea"}/{self.tower.size if self.tower.size != "rectangle" else self.tower.name}' if os.path.isfile(img_file_name + '.npy'): placeable = np.load(img_file_name + '.npy') else: placeable = np.full((1080, 1920), False) btd6_session.hooks['PlaceableHook'].np_out = placeable keyboard.press_and_release(self.tower.keybind) for region in self.regions: xi, yi, xf, yf = region for x in range(xi, xf): for y in range(yi, yf): mouse.move(x, y) time.sleep(.005) np.save(img_file_name, btd6_session.hooks['PlaceableHook'].np_placeable) img = Image.fromarray(btd6_session.hooks['PlaceableHook'].np_placeable) img.save(img_file_name + '.png') if __name__ == '__main__': time.sleep(4) infernal_regions = [ Region(56, 424, 164, 714), Region(394, 154, 548, 300), Region(760, 262, 912, 410), Region(1106, 136, 1286, 308), Region(388, 752, 562, 932), Region(752, 664, 920, 818), Region(1126, 766, 1278, 926), Region(1502, 426, 1638, 710), ] dark_castle_regions = [ #Region(30, 30, 1048, 1050), Region(1264, 30, 1640, 1050) ] bloody_puddles_regions = [ Region(58, 28, 1890, 1050) ] ravine_regions = [ Region(32, 36, 1600, 1050) ] quad_regions = [ Region(32, 36, 1600, 1050) ] ouch_regions = [ Region(62, 36, 1600, 1050), #Region(32, 36, 360, 305), ] scanner = MapScanner(FloodedValley(), towers.SMALL[0], ouch_regions) scanner.get_map_v3() # get_placement_map(towers.MEDIUM[0]) # get_placement_map(towers.SpikeFactory) # get_placement_map(towers.XL[0]) # for tower in towers.RECTANGLE: # get_placement_map(tower) ``` #### File: bloons_auto/util/manual_place_data.py ```python from maps import * from tower import Tower, Point from towers import * from map import Map import mouse import keyboard import pyscreeze import time import win32gui def give_info(*args): x, y = mouse.get_position() img = pyscreeze.screenshot() win = win32gui.GetActiveWindow() keyboard.press_and_release(DartMonkey.keybind, .2) print('===============================') print('= Can Place Setup =') print('===============================') can_place_setup = DartMonkey.can_place(Point(x, y), img) print(f'= Result - {can_place_setup}') print('===============================') DartMonkey.deselect() time.sleep(1) print('===============================') print('= Can Place Not Setup =') print('===============================') can_place_new = DartMonkey.can_place(Point(x, y)) print(f'= Result - {can_place_new}') print('===============================') if __name__ == '__main__': keyboard.on_press_key('control', give_info) while True: pass ``` #### File: bloons_auto/util/manual_scan.py ```python from maps import * from map import Map import towers from tower import Tower, Point from PIL import Image import mouse import keyboard from window_input import Window, Key import collections import time from config import keybinds Region = collections.namedtuple('Region', 'xi yi xf yf') def can_place(cls, location, img, win): win = Window() while not mouse.get_position() == location: mouse.move(location.x, location.y) print(f'mouse moved to {location}') if location.x > 1100: measuring_point = Point(location.x - (cls.range - 2), location.y) else: measuring_point = Point(location.x + (cls.range - 2), location.y) print(f'measuring point is at {measuring_point}') before = img.getpixel(measuring_point) print(f'before = {before}') after = win.pixel(measuring_point.x, measuring_point.y) print(f'after = {after}') if (after[0] - before[0]) >= 8: return False else: return True if __name__ == '__main__': time.sleep(5) win = Window() tower = towers.SMALL[0] a_map = DarkCastle() im = win.capture(((0, 0), (1920, 1080))) im.save(f'../maps/{a_map.name}/{a_map.name}.png') img = Image.new('RGB', (1920, 1080)) keyboard.press_and_release(keybinds.get(tower.name)) while True: if mouse.get_position() == (0, 0): break x, y = mouse.get_position() if can_place(tower, Point(x, y), im, win): img.putpixel((x, y), (255, 255, 255)) img.save(f'../maps/{a_map.name}/placement/{"land" if not tower.aquatic else "sea"}/{tower.size}.png') ```
{ "source": "56kyle/cheat_engine_py", "score": 3 }
#### File: cheat_engine_py/src/frida_plz_help.py ```python import sys import frida import keyboard main_script = """ var ranges = Process.enumerateRangesSync({protection: 'r--', coalesce: true}); var range; function processNext(){ range = ranges.pop(); if(!range){ // we are done return; } // due to the lack of blacklisting in Frida, there will be // always an extra match of the given pattern (if found) because // the search is done also in the memory owned by Frida. Memory.scan(range.base, range.size, '%s', { onMatch: function(address, size){ console.log('[+] Pattern found at: ' + address.toString()); }, onError: function(reason){ console.log('[!] There was an error scanning memory'); }, onComplete: function(){ processNext(); } }); } processNext(); """ class Injector: def __init__(self): self.addresses = [] def on_message(self, message, data): self.addresses.append(data) print("[%s] -> %s" % (message, data)) print(self.addresses) def load(self, target_process, pattern): session = frida.attach(target_process) script = session.create_script(""" var ranges = Process.enumerateRangesSync({protection: 'r--', coalesce: true}); var range; function processNext(){ range = ranges.pop(); if(!range){ // we are done return; } // due to the lack of blacklisting in Frida, there will be // always an extra match of the given pattern (if found) because // the search is done also in the memory owned by Frida. Memory.scan(range.base, range.size, '%s', { onMatch: function(address, size){ console.log(address.toString()); }, onError: function(reason){ console.log('[!] There was an error scanning memory'); }, onComplete: function(){ processNext(); } }); } processNext(); """ % pattern) script.on('message', self.on_message) script.load() while not keyboard.is_pressed('`'): pass script.detach() if __name__ == '__main__': try: target_process = int(sys.argv[1]) except ValueError: target_process = sys.argv[1] except IndexError: target_process = 'BloonsTD6.exe' try: pattern = sys.argv[2] except IndexError: pattern = '48 8B 43 28 F2 0F11 73' inj = Injector() inj.load(target_process, pattern) ``` #### File: cheat_engine_py/src/process.py ```python import ctypes import os import psutil import pymem import re import struct import time import win32api import win32con import frida from pymem import Pymem from ReadWriteMemory import ReadWriteMemory rwm = ReadWriteMemory() def test(): base = 0x7FFB697E33F0 static_offset = 0x020F2858 dumb_base = 0x1D753805980 pointer_static_address = base + static_offset offsets = [0x190, 0x1E8, 0x10, 0x548] btd6 = rwm.get_process_by_id(Pymem('BloonsTD6.exe').process_id) btd6.open() pointer = btd6.get_pointer(dumb_base, offsets=offsets) pointer_value = btd6.read(pointer) print(pointer_value) def main(): btd6 = Pymem('BloonsTD6.exe') find(btd6) #bytes = b'\x40\x53\x48\x83\xEC\x30\x00\xF29\x74\x24\x20\x45\x33C0\x00\xF28\xF1\x48\x08\x0B\xD9\xE8\xC7FDFFFF\x48\x08\x0B\x43\x28\xF2\x00\xF11\x73\x28\x00\xF28\x74\x24\x20\x48\x89\x43\x30\x48\x83\xC4\x30\x05\x0B\xC3' #string_form = '40 53 48 83 EC 30 00 F29 74 24 20 45 33 C0 00 F28 F1 48 08 0B D9 E8 C7FDFFFF 48 08 0B 43 28 F2 00 F11 73 28 00 F28 74 24 20 48 89 43 30 48 83 C4 30 05 0B C3' #print(btd6.read_double(0x23a7455c3ed)) def find(btd6: Pymem): hwnd = ctypes.c_void_p(btd6.process_handle) game_assembly = pymem.process.module_from_name(btd6.process_handle, 'GameAssembly.dll') print(hex(0x7FFF36A59760 - game_assembly.lpBaseOfDll)) def scan(btd6): hwnd = ctypes.c_void_p(btd6.process_handle) print(pymem.memory.read_bytes(hwnd, 0x1D72381E028, pymem.struct.calcsize('d'))) for i in range(btd6.base_address, btd6.base_address + btd6.process_base.SizeOfImage, 1024): chunk = pymem.memory.read_bytes(hwnd, i, 1024) match = re.match(b'\x90\x8a@', chunk) if match: print(match) print(chunk) for module in btd6.list_modules(): for i in range(module.lpBaseOfDll, module.lpBaseOfDll + module.SizeOfImage, 1024): chunk = pymem.memory.read_bytes(hwnd, i, 1024) match = re.match(rb'\x90\x8a', chunk) if match: print(i) print(match) def immediately_find(btd6: Pymem): btd6.read_bytes if __name__ == '__main__': main() ```
{ "source": "56kyle/SQRL", "score": 3 }
#### File: SQRL/web_app/web_app.py ```python from flask import Flask, render_template, url_for app = Flask(__name__) @app.route('/') def home(): return render_template(url_for('home')) @app.route('/connections') def connections(): return render_template(url_for('connections')) @app.route('/connections/<conn>', methods=['GET', 'POST']) def a_conn(conn): return render_template(url_for(conn)) @app.route('/admin') def admin(): return render_template(url_for('home')) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "5703863336/electriity", "score": 2 }
#### File: apps/users/utils.py ```python import re from django.contrib.auth.backends import ModelBackend from itsdangerous import BadData from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from apps.users.models import User from meiduo_mall import settings class UsernameMobileModelBackend(ModelBackend): def authenticate(self, request, username=None, password=None, **kwargs): if re.match(r'1[3-9]\d{9}',username): user = User.objects.get(mobile=username) else: username = User.objects.get(username=username) if user and user.check_password(password): return user return None def generic_active_email_url(id,email): s = Serializer(secret_key=settings.SECRET_KEY,expires_in=3600) data = { 'id':id, 'email':email, } serect_data = s.dumps(data) return 'http://www.meiduo.site:8000/emailsactive/?token=%s'%serect_data.decode() def check_active_token(token): s = Serializer(secret_key=settings.SECRET_KEY,expires_in=3600) try: data = s.loads(token) except BadData: return None else: return data def generic_access_token_url(username,mobile): s = Serializer(secret_key=settings.SECRET_KEY,expires_in=3600) data = { 'username':username, 'mobile':mobile, } serect_data = s.dumps(data) return serect_data.decode() def check_access_token_token(token): s = Serializer(secret_key=settings.SECRET_KEY,expires_in=3600) try: data = s.loads(token) except BadData: return None else: return data ``` #### File: meiduo_mall/utils/storage.py ```python from django.core.files.storage import Storage class MyStorage(Storage): def _open(self,name,mode='rb'): pass def _save(self,name,content,max_length=None): pass def url(self,name): return "http://192.168.203.130:8888/" + name ```
{ "source": "572314705/meiduo_24", "score": 2 }
#### File: meiduo_admin/views/groups.py ```python from django.contrib.auth.models import Group, Permission from rest_framework.permissions import IsAdminUser from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from meiduo_admin.serializer.groups import GroupSerializer from meiduo_admin.serializer.permission import PermissionSerializer from meiduo_admin.utils import PageNum class GroupView(ModelViewSet): # 指定序列化器 serializer_class = GroupSerializer # 指定查询集 queryset = Group.objects.all() # 指定分页器 pagination_class = PageNum # 指定权限 permission_classes = [IsAdminUser] # 获取权限表数据 def simple(self, request): # 获取权限 permission = Permission.objects.all() # 序列化返回 ser = PermissionSerializer(permission, many=True) return Response(ser.data) ``` #### File: meiduo_admin/views/statistical.py ```python from datetime import date, timedelta from rest_framework import serializers from rest_framework.permissions import IsAdminUser from rest_framework.response import Response from goods.models import GoodsVisitCount from users.models import User from rest_framework.views import APIView class UserTotalCountView(APIView): # 用户总数统计 def get(self, request): # 获取当前日期 now_date = date.today() # 获取用户总数 count = User.objects.filter(is_staff=False).count() # 返回结果 return Response({ 'count': count, 'date': now_date, }) class UserDayCountView(APIView): # 日增用户统计 def get(self, request): # 获取当前日期 now_date = date.today() # 查询当日新增用户 count = User.objects.filter(is_staff=False, date_joined__gte=now_date).count() # 返回结果 return Response({ 'count': count, 'date': now_date, }) class UserActiveCountView(APIView): # 查询日活跃用户 def get(self, request): # 获取当前日期 now_date = date.today() # 查询当日活跃用户用户 last_login记录最后登录时间 count = User.objects.filter(is_staff=False, last_login__gte=now_date).count() # 返回结果 return Response({ 'count': count, 'date': now_date, }) class UserOrderCountView(APIView): # 查询日下单用户 # 指定权限 permission_classes = [IsAdminUser] def get(self, request): # 获取当前日期 now_date = date.today() # 查询当日下单用户 关联过滤查询 以订单表数据做为用户表查询条件 # count = User.objects.filter(is_staff=False,orders__create_time__gte=now_date).count() users = User.objects.filter(is_staff=False, orders__create_time__gte=now_date) # 下单用户数 user = set(users) count = len(user) # 返回结果 return Response({ 'count': count, 'date': now_date, }) class UserMonthCountView(APIView): permission_classes = [IsAdminUser] # 月增用户 def get(self, request): # 当天日期 now_date = date.today() # 一个月前的日期 old_date = now_date - timedelta(30) # 一个月的新增用户 user_date = [] for i in range(31): # 一个月前的日期 index_date = old_date + timedelta(i) # 一个月前的下一甜日期 next_date = old_date + timedelta(i + 1) count = User.objects.filter(is_staff=False, date_joined__gte=index_date, date_joined__lt=next_date).count() user_date.append({ 'count': count, 'date': next_date, }) return Response(user_date) # class GoodsDayView(APIView): # # 日商品分类访问量 # def get(self,request): # # 当天日期 # now_date = date.today() # # 获取对象查询集 # goods = GoodsVisitCount.objects.filter(date=now_date) # date_list = [] # for good in goods: # date_list.append({ # 'count':good.count, # 'category':good.category.name, # }) # return Response(date_list) class GoodsSerializer(serializers.ModelSerializer): # 指定返回分类名称 category=serializers.StringRelatedField(read_only=True) class Meta: model=GoodsVisitCount fields=('count','category') class GoodsDayView(APIView): def get(self,request): # 获取当天日期 now_date=date.today() # 获取当天访问的商品分类数量信息 data=GoodsVisitCount.objects.filter(date=now_date) # 序列化返回分类数量 ser=GoodsSerializer(data,many=True) return Response(ser.data) ```
{ "source": "573009114/configmanager", "score": 2 }
#### File: configmanager/home_application/query_model.py ```python from home_application.models import * import HTMLParser class QuerySet: """ 写入类 """ def __init__(self,**kwargs): self.ip=kwargs.get('ip') self.server_room=kwargs.get('serverRoom') self.service_type=kwargs.get('serviceType') self.serverip=kwargs.get('serverip') self.group_name=kwargs.get('groupName') self.group_id=kwargs.get('groupId') self.project_name=kwargs.get('projectName') self.sid=kwargs.get('sid') self.group_token=kwargs.get('groupToken') self.domain=kwargs.get('domain') def creat_group(self): """ 创建组 """ result=Groups.objects.create(name=self.group_name,typed=self.service_type, token=self.group_token,nginx_conf='') result.save() return result.id def creat_ipaddr(self): """ IP和组进行关联创建 """ list=[] for i in self.serverip.split(','): if i not in list: list.append(i) for ip in list: getExist=IpAddr.objects.filter(ip=ip).values('id') if getExist: IpAddr.objects.filter(ip=ip).delete() result=IpAddr.objects.create(ip=ip,gid_id=self.sid) result.save() return result.id def creat_project(self): result=Project.objects.create(name=self.project_name,domain=self.domain, gid_id=self.group_id, vhost_conf='',rewrite_conf='') result.save() return result.id class QueryUpdate: """ 更新数据 """ def __init__(self,**kwargs): self.id=kwargs.get('id') self.vhost=kwargs.get('vhost') self.rewrite=kwargs.get('rewrite') self.ngx=kwargs.get('nginx') self.groupname=kwargs.get('group_name') self.gid=kwargs.get('gid') self.pid=kwargs.get('pid') def update_project(self): """ 更新虚拟主机配置和跳转规则配置 """ html_parser = HTMLParser.HTMLParser() vhost=html_parser.unescape(self.vhost) rewrite=html_parser.unescape(self.rewrite) result=Project.objects.filter(id=self.id).update(vhost_conf=vhost,rewrite_conf=rewrite) return result def update_group(self): """ 更新nginx主配置 """ result=Groups.objects.filter(id=self.id).update(name=self.groupname,nginx_conf=self.ngx) return result def update_project_group_bond(self): """ 更新域名和项目绑定 """ result=Project.objects.filter(id=self.pid).update(gid_id=self.gid) return result class QueryGet: """ 查询类 """ def select_group_all(self): """ 查询组信息 """ result=Groups.objects.all().values('id','name','typed','token') return result def select_project_all_list(self,gid): """ 查询所有项目列表 """ result=Project.objects.filter(gid_id=gid).values('id','name','vhost_conf','rewrite_conf', 'gid_id__name','gid_id__typed','gid_id__token', 'gid_id__nginx_conf','domain') return result def select_project_all(self): result=Project.objects.all().values('id','domain') return result def select_project_conf(self,id): """ 查询项目配置 """ result=Project.objects.filter(id=id).values('vhost_conf','rewrite_conf','gid_id__token','domain') return result def select_ipaddr_group(self,gid): """ 根据组id查询组信息 """ result=IpAddr.objects.filter(gid_id=gid).values('id','ip','gid_id__name','gid_id__nginx_conf','gid_id__token') return result def select_ipaddr_nginx(self,gid): """ 根据IP所属组ID查询nginx主配置 """ result=Groups.objects.filter(id=gid).values('nginx_conf','name') return result def select_group_nginx(self,gid): """ 根据组id查找nginx配置和token """ result=Groups.objects.filter(id=gid).values('nginx_conf','token') return result def select_group_domain(self,domain): """ 根据域名查找业务组类型 """ result=Project.objects.filter(domain=domain).values('gid_id__typed') return result class QueryDel: def __init__(self,**kwargs): self.id=kwargs.get('id') def delete_project(self): """ 删除项目 """ result=Project.objects.filter(id=self.id).delete() return result def delete_ip(self): """ 删除ip """ result=IpAddr.objects.filter(id=self.id).delete() return result def delete_group(self): """ 删除项目组 """ result=Groups.objects.filter(id=self.id).delete() return result ```
{ "source": "573009114/webvirtmgr", "score": 2 }
#### File: webvirtmgr/create/remote.py ```python import uuid import time from fabric import Connection class ServerConn: def __init__(self,**kwargs): self.ip=kwargs.get('ip') self.port=kwargs.get('port') self.user=kwargs.get('user') self.memorysize=kwargs.get('memorysize') self.cpusize=kwargs.get('cpusize') self.maxvcpus=kwargs.get('maxvcpus') self.disksize=kwargs.get('disksize') self.version=kwargs.get('version') self.uuid=str(uuid.uuid4()) self.os=kwargs.get('os') self.vmip=kwargs.get('vmip') self.vmnetmask=kwargs.get('vmnetmask') self.vmgateway=kwargs.get('vmgateway') arch=kwargs.get('arch') if arch =='64': self.arch='x86_64' else: self.arch='i386' self.vmname=self.os+self.version+'-'+self.arch+'-'+self.vmip self.c = Connection( host='%s' % self.ip, user='%s' % self.user, port = self.port, connect_timeout=30, connect_kwargs={"password": ")<PASSWORD>"}) def install_vm(self): ''' 创建虚机 以及 磁盘 ''' self.c.run('virt-install --connect qemu:///system --name=%s \ --uuid=%s --ram=%s --vcpus %s,maxvcpus=%s\ --disk path=/export/kvm_images/volume-%s.qcow2,bus=virtio,size=30,format=qcow2 \ --accelerate --location=http://10.52.8.251/cobbler/ks_mirror/%s-%s-%s/ \ --extra-args "ks=http://10.52.8.251/cblr/svc/op/ks/profile/%s-%s-%s" \ --graphics vnc --network bridge=br0,model=virtio --force \ --autostart --noautoconsole \ ' %(self.vmname,self.uuid,self.memorysize,self.cpusize,self.maxvcpus,self.uuid,self.os,self.version,self.arch,self.os,self.version,self.arch)) if (len(self.disksize) >= 2): self.c.run('qemu-img create /export/kvm_images/volume-%s-1.qcow2 -f qcow2 %sG' % (self.uuid,self.disksize)) self.c.run('sed -i "/<\/disk>/a\ <disk type=\'file\' device=\'disk\'><driver name=\'qemu\' type=\'qcow2\' cache=\'none\'\/><source file=\'\/export\/kvm_images\/volume-%s-1.qcow2\'\/><target dev=\'vdb\' bus=\'virtio\'\/><\/disk>" /etc/libvirt/qemu/%s.xml' % (self.uuid,self.vmname)) msg='虚机开始创建' return msg def init_vm(self): ''' 初始化虚拟机配置 ''' xes_status=self.c.run("virsh list --all |grep %s |awk '{print $NF}'" %(self.vmname)) if xes_status != 'running': self.c.run('sed -i "/<boot dev=\'hd\'\/>/a\ <smbios mode=\'sysinfo\'\/>" /etc/libvirt/qemu/%s.xml' % (self.vmname)) self.c.run('sed -i "/<\/vcpu>/a\ <sysinfo type=\'smbios\'><bios><entry name=\'vendor\'>Fenghua</entry></bios><system><entry name=\'manufacturer\'>XCloud</entry><entry name=\'product\'>XCloud ECS</entry><entry name=\'version\'>pc-i440fx-2.1</entry><entry name=\'serial\'>Not Specified</entry><entry name=\'family\'>Not Specified</entry></system></sysinfo>" /etc/libvirt/qemu/%s.xml' % (self.vmname)) self.c.run('sed -i "s/clock offset=\'utc\'/clock offset=\'localtime\'/" /etc/libvirt/qemu/%s.xml' % (self.vmname)) self.c.run('sed -i "/<\/features>/a\ <cpu mode=\'host-passthrough\'>" /etc/libvirt/qemu/%s.xml' %(self.vmname)) self.c.run('sed -i "/<cpu mode=\'host-passthrough\'>/a\ </cpu>" /etc/libvirt/qemu/%s.xml' %(self.vmname)) else: msg = '初始化失败,请稍后再试' return msg def template_vm(self): ''' 创建模板 ''' ipconfig=''' DEVICE="eth0" BOOTPROTO="static" ONBOOT="yes" TYPE="Ethernet" IPADDR={ip} NETMASK={netmask} GATEWAY={gateway} '''.format(ip=self.vmip,netmask=self.vmnetmask,gateway=self.vmgateway) self.c.run('mkdir -p /opt/kvm_install/config/%s/' % self.vmip) self.c.run('echo "%s" >/opt/kvm_install/config/%s/ifcfg-eth0' %(ipconfig.replace(' ','').lstrip(),self.vmip)) rc_local='''\ #!/bin/sh # # This script will be executed *after* all the other init scripts. # You can put your own initialization stuff in here if you don't # want to do the full Sys V style init stuff. touch /var/lock/subsys/local curl http://10.52.8.252/chushihua.sh |bash ''' self.c.run('echo "%s" >/opt/kvm_install/config/rc.local'%(rc_local.strip())) def setting_vm(self): ''' 设置虚机参数 ''' #virt_check= self.c.run('which virt-copy-in') #print virt_check #if virt_check != 0: self.c.run('yum install -y libguestfs-tools-c') self.c.run('virt-copy-in -d %s /opt/kvm_install/config/%s/ifcfg-eth0 /etc/sysconfig/network-scripts/' %(self.vmname,self.vmip)) self.c.run('chmod 755 /opt/kvm_install/config/rc.local && virt-copy-in -d %s /opt/kvm_install/config/rc.local /etc/rc.d/' % (self.vmname)) self.c.run('cp /etc/libvirt/qemu/%s.xml /opt/kvm_install/%s.xml' % (self.vmname,self.vmname)) self.c.run('virsh undefine %s' %(self.vmname)) self.c.run('virsh define /opt/kvm_install/%s.xml' %(self.vmname)) self.c.run('mv /opt/kvm_install/%s.xml /opt/kvm_install/config/%s/%s.xml' %(self.vmname,self.vmip,self.vmname)) def start_vm(self): ''' 启动虚机 ''' status=self.c.run("virsh list --all |grep %s |awk '{print $NF}'" %(self.vmname)) if status != 'running': self.c.run('virsh start %s' % (self.vmname)) else: msg='虚机已启动' return msg ```
{ "source": "5730289021-NN/ros_pkg_gen", "score": 3 }
#### File: src/package_generator/enhanced_object.py ```python import inspect from termcolor import colored class EnhancedObject(object): """Enhanced Object with advanced log tool Attributes: name_ (str): name of the object """ def __init__(self, name="EnhancedObject"): """class constructor Args: name (str, optional): name of the object """ self.name_ = name def log(self, text): """display log message with the class name in parameter text the string to display Args: text (str): message to print """ print "[{}::{}] ".format(self.name_, inspect.stack()[1][3]) + text def log_warn(self, text): """display warn message with the class name in parameter text the string to display Args: text (str): warn message """ msg = "[{}::{}] ".format(self.name_, inspect.stack()[1][3]) + text print colored(msg, 'yellow') def log_error(self, text): """display warn message with the class name in parameter text the string to display Args: text (str): error message """ msg = "[{}::{}] ".format(self.name_, inspect.stack()[1][3]) + text print colored(msg, 'red') ``` #### File: src/package_generator/generate_package.py ```python import os import datetime import shutil import sys import rospkg from package_generator.code_generator import CodeGenerator from package_generator.jinja_generator import JinjaGenerator from package_generator.package_xml_parser import PackageXMLParser from package_generator.file_update_management import GeneratedFileAnalysis from package_generator.enhanced_object import EnhancedObject from package_generator.template_spec import TemplateSpec from termcolor import colored class PackageGenerator(EnhancedObject): """Handle the genration of a whole package Attributes: file_generator_ (CodeGenerator): custom generator jinja_generator_ (JinjaGenerator): generator based on jinja package_path_ (str): base location of the package to create path_pkg_backup_ (str): if the package already existed, location of the package backup spec_ (TemplateSpec): configuration of the template model template_path_ (str): path to the template to use xml_parser_ (PackageXMLParser): parser of the package description """ def __init__(self, name="PackageGenerator"): """Intialisation of the object Args: name (str, optional): Name of the component, for printing aspect """ # call super class constructor super(PackageGenerator, self).__init__(name) # path to the template to use self.template_path_ = None # base location of the package to create self.package_path_ = None # parser of the package description self.xml_parser_ = None # config parameter provide with the template self.spec_ = None # generic file generator self.file_generator_ = None # jinja-based generator self.jinja_generator_ = None # if the package already existed, location of the package backup self.path_pkg_backup_ = None def check_template_structure(self, template_path): """Check a provided path refers to a valid template structure Args: template_path (str): path to the package template Returns: Bool: True if basic sanity checks are successful """ if not os.path.exists(template_path): msg = "Template path ({}) is incorrect ".format(template_path) self.log_error(msg) return False if not os.path.isdir(template_path): msg = "Template path ({}) is not a directory ".format(template_path) self.log_error(msg) return False # check if minimum information is present. details = """A template should contain: * config/dictionary.yaml : the dictionary to be used * config/functions.py [optional] : additional functions used in the generation * config/generator.py [optional] : generator list (custom, jinja) default is custom * template/* set of elements to be generated Revise the template, and compare to examples """ is_ok = True # check for directories required_folders = ["config", "template"] for item in required_folders: req_folder = template_path + "/" + item if not os.path.isdir(req_folder): msg_err = "Error \n Expecting to have folder " + item msg_err += " in " + template_path self.log_error(msg_err) is_ok = False # check for files required_files = ["config/dictionary.yaml"] for item in required_files: req_file = template_path + "/" + item if not os.path.isfile(req_file): msg_err = "Error.\n Expecting to have file " + item msg_err += " in " + template_path self.log_error(msg_err) is_ok = False if not is_ok: self.log_error("\n{}".format(details)) return False return True def get_template_info(self): """Get information about the available package templates Returns: list: tuple with [absolute package path, list of package names] """ rospack = rospkg.RosPack() path_template = rospack.get_path('package_generator_templates') path_template += "/templates/" template_names = os.listdir(path_template) return [path_template, template_names] def generate_package(self, package_desc, output_path): """launches the package generation Args: package_desc (str): xml file containing the package description output_path (str): directory into which the package is created Returns: Bool: True if the operation succeeded """ if not os.path.exists(output_path): msg_err = "Incorrect desired package path ({})".format(output_path) self.log_error(msg_err) return False if not os.path.isdir(output_path): msg_err = "Desired package path ({}) not a directory ".format(output_path) self.log_error(msg_err) return False # Initialising needed components # todo bring it to the constructor? self.spec_ = TemplateSpec() self.xml_parser_ = PackageXMLParser() self.file_generator_ = CodeGenerator() self.jinja_generator_ = JinjaGenerator() # Start finding the template template = self.xml_parser_.get_template(package_desc) if template is None: return False # Locate template location try: [all_template_path, template_names] = self.get_template_info() except rospkg.common.ResourceNotFound as error: msg = "Package package_generator_templates not found in rospack" self.log_error(msg) self.log_error(error) return False except OSError as error: msg = "No template dounf in package_generator_templates" self.log_error(msg) self.log_error(error) return False if template not in template_names: msg = "Template requested: {} unknown".format(template) self.log_error(msg) msg = "Available templates: {}".format(template_names) self.log_error(msg) return False template_path = all_template_path + "/" + template # confirm this is a template... if not self.check_template_structure(template_path): msg = "Please revise template structure" self.log_error(msg) return False # template localized, ready to work! self.template_path_ = template_path self.path_pkg_backup_ = None dir_template_spec = self.template_path_ + "/config/" if not self.spec_.load_spec(dir_template_spec): self.log_error("Could not load the template spec") return False if not self.xml_parser_.set_template_spec(self.spec_): msg_err = "Package spec not compatible with xml parser expectations" self.log_error(msg_err) return False if not self.xml_parser_.load(package_desc): msg_err = "Prb while parsing xml file {}".format(package_desc) self.log_error(msg_err) return False # todo why only the custom generator is configured? if not self.file_generator_.configure(self.xml_parser_, self.spec_): return False package_name = self.xml_parser_.get_package_spec()["name"] self.package_path_ = output_path + "/" + package_name if os.path.exists(self.package_path_): self.log_warn("Package {} already exists".format(self.package_path_)) # moving preexisting code. # generating dir name using date now = datetime.datetime.now() str_date = now.strftime("%Y_%m_%d_%H_%M_%S") self.path_pkg_backup_ = "/tmp/{}_{}".format(os.path.basename(self.package_path_), str_date) self.log_warn("Original package temporally stored in {}".format(self.path_pkg_backup_)) # TODO check if the move succeeded shutil.move(self.package_path_, self.path_pkg_backup_) else: self.log("Package to be created in {}".format(self.package_path_)) os.makedirs(self.package_path_) nb_comp = self.xml_parser_.get_number_comps() self.log("Number of components defined: {}".format(nb_comp)) if not self.generate_content(): return False # we store the model into the directory model path = self.package_path_ + "/model" if not os.path.exists(path): os.makedirs(path) path += "/" + package_name + ".ros_package" if self.xml_parser_.is_dependency_complete_: try: if os.path.abspath(package_desc) == os.path.abspath(path): # self.log_warn("Using generated model...") stored_desc = self.path_pkg_backup_ + "/model/" + package_name + ".ros_package" # self.log("check {} is absolute: {}".format(package_desc, os.path.abspath(package_desc))) shutil.copyfile(stored_desc, path) else: shutil.copyfile(package_desc, path) self.log("Package model saved in: {}".format(path)) except IOError as error: self.log_error("Could not store model file: {}".format(error)) else: # some dependencies were automatically added # model needs to be rewritten try: self.xml_parser_.write_xml(path) self.log("Package model updated & saved in: {}".format(path)) except IOError as error: self.log_error("Could not store model file: {}".format(error)) is_ok = self.handle_maintained_files() return is_ok def generate_one_file(self, template_file, result_file, force_write): """Generate a template file, depending on the generators to be used Args: template_file (str): template filename result_file (str): filename to store the result (unless is None) force_write (str): force the writting of empty files (if not, files is not written) Returns: Bool: True on success """ generator = dict() generator["custom"] = self.file_generator_ generator["jinja"] = self.jinja_generator_ if len(self.spec_.generators_) == 1: return generator[self.spec_.generators_[0]].generate_disk_file(template_file, result_file, force_write) # two generators are to be used gen_one = generator[self.spec_.generators_[0]] gen_two = generator[self.spec_.generators_[1]] is_ok = gen_one.generate_disk_file(template_file) if not is_ok: return False return gen_two.generate_open_file(gen_one.rendered_, result_file, force_write) def check_template_file(self, template_file): """Generate a template file, depending on the generators to be used Args: template_file (str): template filename result_file (str): filename to store the result (unless is None) force_write (str): force the writting of empty files (if not, files is not written) Returns: Bool: True on success """ generator = dict() generator["custom"] = self.file_generator_ generator["jinja"] = self.jinja_generator_ if len(self.spec_.generators_) == 1: # self.log("Check with Generator {}".format(self.spec_.generators_[0])) return generator[self.spec_.generators_[0]].check_template_file(template_file) # two generators are to be used gen_one = generator[self.spec_.generators_[0]] gen_two = generator[self.spec_.generators_[1]] # self.log("Check with Generator {}".format(self.spec_.generators_[0])) is_ok = gen_one.check_template_file(template_file) if not is_ok: return False # self.log("Check with Generator {}".format(self.spec_.generators_[1])) if self.spec_.generators_[1] == "jinja": return gen_two.check_template_file(gen_one.rendered_, is_filename=False) return gen_two.check_template_file(template_file) def write_generated_file(self, result_file): """Write a generated file Args: result_file (str): filename to store the file. Returns: Bool: True on success """ generator = dict() generator["custom"] = self.file_generator_ generator["jinja"] = self.jinja_generator_ return generator[self.spec_.generators_[-1]].write_rendered_file(result_file) def get_generated_file(self): """Get the generated files Returns: list: list of of each line of the generated file """ generator = dict() generator["custom"] = self.file_generator_ generator["jinja"] = self.jinja_generator_ return generator[self.spec_.generators_[-1]].rendered_ def set_generated_file(self, l_file): """set the generated file Args: l_file (list): list of of each line of the generated file """ generator = dict() generator["custom"] = self.file_generator_ generator["jinja"] = self.jinja_generator_ generator[self.spec_.generators_[-1]].rendered_ = l_file def handle_maintained_files(self): """Restore file Developer requests to maintain Assuming these patterns are defined in file .gen_maintain Returns: Bool: True on sucess """ # check for files to be maintained if self.path_pkg_backup_ is None: # package just created, no maintained file return True filename_rel = ".gen_maintain" filename_abs = self.path_pkg_backup_ + "/" + filename_rel if os.path.exists(filename_abs) and os.path.isfile(filename_abs): self.log("Checking content to maintain after update") else: self.log("no maintained file defined in previous package version") return True with open(filename_abs) as open_file: for line in open_file: line = line.rstrip('\n') if not line: continue path_abs = self.path_pkg_backup_ + "/" + line if not os.path.exists(path_abs): msg = "Content {} not found. Revise {} content" self.log_error(msg.format(line, filename_abs)) continue new_path = self.package_path_ + "/" + line if os.path.isfile(path_abs): try: self.log("Restoring file {}".format(line)) # check if directories needs to be created dirname = os.path.dirname(line) # self.log("dirname is : {}".format(dirname)) if dirname: path_abs_dir = self.package_path_ + "/" + dirname if not os.path.isdir(path_abs_dir): os.makedirs(path_abs_dir) shutil.copyfile(path_abs, new_path) except IOError as error: msg = "Could not restore a file: {}" self.log_error(msg.format(error)) continue if os.path.isdir(path_abs): try: self.log("Restoring folder {}".format(line)) shutil.copytree(path_abs, new_path) except IOError as error: msg = "Could not restore folder: {}" self.log_error(msg.format(error)) continue self.log_error("Unkown statement {}".format(line)) # restoring the maintained content file try: self.log("Restoring file {}".format(filename_rel)) new_path = self.package_path_ + "/" + filename_rel shutil.copyfile(filename_abs, new_path) except IOError as error: msg = "Could not restore file: {}" self.log_error(msg.format(error)) return True def handle_status_and_advise(self, input_file, output_file, gen_flag): """Depending on the file generation process outcome, Adjust file status and inform user Args: input_file (str): path of the template file used output_file (str): path of the generated file gen_flag (Bool): Success of the generation process Returns: Bool: True on success of the file generation """ if not gen_flag: msg = "Prb while generating file {}".format(output_file) self.log_error(msg) return False # so the file generation went well if self.file_generator_.get_len_gen_file() == 0: # Only file __init__.py is kept empty if os.path.basename(output_file) != '__init__.py': msg = "File {} not written since empty".format(output_file) self.log_warn(msg) self.log_warn("Check: {}".format(os.path.basename(output_file))) return True # file has content file_status = os.stat(input_file) os.chmod(output_file, file_status.st_mode) # self.log("File {} handled".format(input_file)) self.log("File handled") self.log("*********************************") return True def generate_content(self): """Generation and storage of all content Returns: Bool -- True on success """ # Extracting all components from the template file_list = list() dir_list = list() path_root_template = self.template_path_ + "/template" for (root, dirs, files) in os.walk(path_root_template): # print "check {}: dir {}, files: {}".format(root, dirs, files) if os.path.samefile(root, path_root_template): for item in files: file_list.append(item) for item in dirs: dir_list.append(item) else: rel_path = os.path.relpath(root, path_root_template) for item in files: file_list.append(rel_path + "/" + item) for item in dirs: dir_list.append(rel_path + "/" + item) # Looking at final directory and filenames package_name = self.xml_parser_.get_package_spec()["name"] nb_comp = self.xml_parser_.get_number_comps() comps_name = [self.xml_parser_.data_comp_[id_comp]["attributes"]["name"] for id_comp in range(nb_comp)] self.log("Generating all folders") tmp = list() for item in dir_list: item = item.replace('package_name', package_name) if 'component' in item: for one_name in comps_name: tmp.append(item.replace('component', one_name)) else: tmp.append(item) dir_list = tmp for item in dir_list: path_folder = self.package_path_ + "/" + item if not os.path.exists(path_folder): os.makedirs(path_folder) generation_list = list() # File preparation: storing [template filename, new filename, comp id] for item in file_list: new_item = item.replace('package_name', package_name) if 'component' in item: for num, one_name in enumerate(comps_name): generation_list.append([item, new_item.replace('component', one_name), num]) else: # todo if no component active I should not set one generation_list.append([item, new_item, 0]) is_ok = True # self.log("\nFiles generation plan: ") for item in generation_list: [template_file, result_file, comp_id] = item self.log("{} --> {}".format(template_file, result_file)) if not self.xml_parser_.set_active_comp(comp_id): return False # reconfiguring the generator to adjust to the new active component # todo configure already called in generate_package function. Check why if not self.file_generator_.configure(self.xml_parser_, self.spec_): return False if not self.jinja_generator_.configure(self.xml_parser_, self.spec_): return False # Normally an empty file should not be written # The exception is currently only for the special python file __init__.py is_write_forced = (os.path.basename(result_file) == '__init__.py') result_file = self.package_path_ + "/" + result_file template_file = self.template_path_ + '/template/' + template_file if self.path_pkg_backup_ is None: self.log("Generating file {}".format(result_file)) is_ok = self.generate_one_file(template_file, result_file, is_write_forced) if self.handle_status_and_advise(template_file, result_file, is_ok): continue else: return False # A previous version of the package exists # Checking if an update is necessary rel_path = os.path.relpath(result_file, package_name) previous_filename = os.path.join(self.path_pkg_backup_, rel_path) # Check 1: does this file exist? if not os.path.isfile(previous_filename): msg = "File {} not previously existing. Just write it" self.log_warn(msg.format(rel_path)) is_ok = self.generate_one_file(template_file, result_file, is_write_forced) if self.handle_status_and_advise(template_file, result_file, is_ok): continue else: return False # File already existing. Processing previous version is_update_needed = False file_analyzor = GeneratedFileAnalysis() is_ok = file_analyzor.extract_protected_region(previous_filename) if is_ok: # Check if Developer inserted any contribution if file_analyzor.extracted_areas_: # contribution found, merge needed is_update_needed = True else: self.log("No Developer contribution found") else: msg = "prb while extracting protected area in {}" self.log_error(msg.format(previous_filename)) self.log_error("Previous file to be manually merged, sorry") # now we know if an update is needed if is_ok and is_update_needed: # self.log("Updating file {} in {}".format(rel_path, output_item)) self.log("Updating file {}".format(rel_path)) is_ok = self.generate_one_file(template_file, None, None) if not is_ok: return False # todo handle this in case jinja is involved. l_gen = self.get_generated_file() if not l_gen: msg = "New generated file empty. No code maintained from previous version" self.log_warn(msg) # we write it if forced if is_write_forced: is_ok = self.write_generated_file(result_file) else: self.log("Merging with previous version") l_gen = file_analyzor.update_file(l_gen) self.set_generated_file(l_gen) is_ok = self.write_generated_file(result_file) if self.handle_status_and_advise(template_file, result_file, is_ok): continue else: return False # Although the file existed before, we do not have to maintain it is_ok = self.generate_one_file(template_file, result_file, is_write_forced) if self.handle_status_and_advise(template_file, result_file, is_ok): continue else: return False return True def template_sanity_check(self, template): """Perform the package sanity check Returns: Bool: True on success """ # Locate template location try: [all_template_path, template_names] = self.get_template_info() except rospkg.common.ResourceNotFound as error: msg = "Package package_generator_templates not found in rospack" self.log_error(msg) self.log_error(error) return False except OSError as error: msg = "No template found in package_generator_templates" self.log_error(msg) self.log_error(error) return False is_template_found = False template_path = None if template in template_names: is_template_found = True template_path = all_template_path + "/" + template else: self.log("Could not find template {} in {}".format(template, all_template_path)) # check if the template provided is a relative path, and not a package in the repo if os.path.isabs(template): self.log("Loading template from absolute path {}".format(template)) is_template_found = True template_path = template else: # relative path ? template_path = os.getcwd() + "/" + template if os.path.isdir(template_path): self.log("Loading template from path {}".format(template_path)) is_template_found = True if not is_template_found: msg = "Template requested: {} unknown".format(template) self.log_error(msg) msg = "Available templates: {}".format(template_names) self.log_error(msg) return False # confirm this is a template... if not self.check_template_structure(template_path): msg = "Please revise template structure" self.log_error(msg) return False # TODO list number of files in template # Extracting all components from the template file_list = list() dir_list = list() path_root_template = template_path + "/template" for (root, dirs, files) in os.walk(path_root_template): # print "check {}: dir {}, files: {}".format(root, dirs, files) if os.path.samefile(root, path_root_template): for item in files: file_list.append(item) for item in dirs: dir_list.append(item) else: rel_path = os.path.relpath(root, path_root_template) for item in files: file_list.append(rel_path + "/" + item) for item in dirs: dir_list.append(rel_path + "/" + item) # print ("Dirs: ") # print("\n".join(dir_list)) # print("Files: ") # print("\n".join(file_list)) # setting the needed component. self.spec_ = TemplateSpec() self.xml_parser_ = PackageXMLParser() self.file_generator_ = CodeGenerator() self.jinja_generator_ = JinjaGenerator() dir_template_spec = template_path + "/config/" if not self.spec_.load_spec(dir_template_spec): self.log_error("Could not load the template spec") return False if not self.xml_parser_.set_template_spec(self.spec_): msg_err = "Package spec not compatible with xml parser expectations" self.log_error(msg_err) return False if not self.xml_parser_.set_empty_spec(): msg_err = "Failed generating empty spec" self.log_error(msg_err) return False if not self.file_generator_.configure(self.xml_parser_, self.spec_): return False if not self.jinja_generator_.configure(self.xml_parser_, self.spec_): return False is_ok = True for item in file_list: self.log("Checking file: {}".format(item)) item_abs = path_root_template + "/" + item is_ok = self.check_template_file(item_abs) if not is_ok: break if is_ok: self.log("No error detected") else: self.log_error("Revise the template") return is_ok # todo complete the usage description with available templates # and with existing commands USAGE_GEN = """ usage: generate_package [package_spec] package_spec: xml description of the component(s) interface """ def main(): """ @brief Entry point of the package. Generates a package, given a specified structure @return nothing Returns: int: negative value on error """ gen = PackageGenerator() if len(sys.argv) != 2: print colored("Wrong input parameters !", "red") print colored(USAGE_GEN, "yellow") try: [_, template_names] = gen.get_template_info() except rospkg.common.ResourceNotFound as error: msg = "Package package_generator_templates not found in rospack" print colored(msg, 'red') print colored(error, 'red') return -1 except OSError as error: msg = "No template found in package_generator_templates" print colored(msg, 'red') print colored(error, 'red') return -1 msg = "Available templates are: {}" print colored(msg.format(template_names), 'yellow') print "Bye bye" return -1 package_spec = sys.argv[1] path_current = os.getcwd() if not gen.generate_package(package_spec, path_current): print colored("Prb while generating the package", "red") return -1 else: print colored("Package generated", "green") print "Bye bye" return 0 USAGE_CHECK = """ usage: check_template package_template package_template: name of the template to check Packages template: either one defined in package `package_generator_templates`, either a path to a local one. """ def main_check(): """ @brief Entry point of the package. Check a template structure, as provided Returns: int: negative value on error """ gen = PackageGenerator() if len(sys.argv) != 2: print colored("Wrong input parameters !", "red") print colored(USAGE_CHECK, "yellow") try: [_, template_names] = gen.get_template_info() except rospkg.common.ResourceNotFound as error: msg = "Package package_generator_templates not found in rospack" print colored(msg, 'red') print colored(error, 'red') return -1 except OSError as error: msg = "No template found in package_generator_templates" print colored(msg, 'red') print colored(error, 'red') return -1 msg = "Available templates are: {}" print colored(msg.format(template_names), 'yellow') print "Bye bye" return -1 template_name = sys.argv[1] if not gen.template_sanity_check(template_name): print colored("Issue detected in template", "red") return -1 else: print colored("No issue detected", "green") print "Bye bye" return 0 ``` #### File: package_generator/tests/test_template_config.py ```python import unittest import os import rospkg from package_generator.template_spec import TemplateSpec class GenerateDictTest(unittest.TestCase): def setUp(self): rospack = rospkg.RosPack() node_path = rospack.get_path('package_generator_templates') self.dir_template_spec = node_path + "/templates/cpp_node_update/config/" self.spec = TemplateSpec() # creating a temporary repo for trials self.dir_name = "/tmp/test_template_spec" if not os.path.exists(self.dir_name): print "Creating the repo {}".format(self.dir_name) os.makedirs(self.dir_name) def test_undef_files(self): self.assertFalse(self.spec.load_yaml_desc("unknown_file.yaml")) self.assertFalse(self.spec.load_functions("unknown_file.py")) def test_yaml_error(self): bad_file = """bad_content: ["name", "author",""" filename = self.dir_name + "/bad_dico.yaml" with open(filename, 'w') as open_file: open_file.write(bad_file) self.assertFalse(self.spec.load_yaml_desc(filename)) def test_correct_folder(self): self.assertTrue(self.spec.load_spec(self.dir_template_spec)) if __name__ == '__main__': print "test_dic_generator -- begin" unittest.main() print "test_dic_generator -- end" ```
{ "source": "573dev/pakdump", "score": 3 }
#### File: pakdump/pakdump/pakdump_base.py ```python import argparse import logging from pathlib import Path from typing import Optional, Sequence from pakdump.dumper import PakDumper from pakdump.filegen import DEFAULT_FILELIST_PATH, load_filelist from pakdump.utils.ap import FullDirPath, FullPath logger = logging.getLogger(__name__) """pakdump.pakdump_base log object""" def main(args: Optional[Sequence[str]] = None) -> None: """ Dump data from GFDM V8 '.pak' files Args: args (Optional[Sequence[str]]) = None: Arguments List """ p_args = parse_args(args) logging.basicConfig( level=p_args.log_level, format="[ %(asctime)s | %(levelname)-8s | %(name)s ] %(message)s", ) # Create a dumper object, and dump the data dumper = PakDumper(p_args.input, p_args.output, p_args.force) if p_args.test_filepath != []: for filepath in p_args.test_filepath: exists = dumper.file_exists(filepath) if exists: print(f"Filepath exists: {filepath}") else: print(f"Filepath does not exist: {filepath}") elif p_args.extract_filepath != []: for filepath in p_args.extract_filepath: _ = dumper.file_exists(filepath) dumper.dump() else: # Gen all the files and dump load_filelist(dumper, filepath=p_args.filelist_path) # Dump only if this isn't a dry run if not p_args.dryrun: dumper.dump() else: found = len( [1 for k in dumper.entries if dumper.entries[k].filename is not None] ) print(f"Total files: {len(dumper.entries)}") print(f"Files found: {found}") print(f" Missing: {len(dumper.entries) - found}") def parse_args(args: Optional[Sequence[str]] = None) -> argparse.Namespace: """ Parse the arguments Args: args (Optional[Sequence[str]]) = None: Arguments List Returns: :class:`argparse.Namespace`: Namespace object of all parsed arguments Raises: :class:`argparse.ArgumentTypeError`: If input path doesn't point to the `data` dir """ parser = argparse.ArgumentParser( description="Dump data from GFDM V8 '.pak' files", ) parser.add_argument( "-i", "--input", action=FullDirPath, type=Path, required=True, help="Path to GFDM Data directory", ) parser.add_argument( "-o", "--output", action=FullDirPath, type=Path, default=Path.cwd(), help="Path to output directory. Defaults to your current working directory", ) parser.add_argument( "-t", "--test-filepath", type=Path, default=[], nargs="+", help="Test one or more file paths to see if they exist in the pack data", ) parser.add_argument( "-e", "--extract-filepath", type=Path, default=[], nargs="+", help="Extract one or more file paths if they exist", ) parser.add_argument( "-f", "--force", action="store_true", help="write out all extracted files even if they already exist", ) parser.add_argument( "-p", "--filelist-path", action=FullPath, type=Path, default=DEFAULT_FILELIST_PATH, help="Path to list of files to extract", ) parser.add_argument( "-r", "--dryrun", action="store_true", help="Perform a dry run. Don't actually extract any files", ) logger_group_parent = parser.add_argument_group( title="logging arguments", description="Control what log level the log outputs (default: ERROR)", ) logger_group = logger_group_parent.add_mutually_exclusive_group() default_log_level = logging.ERROR logger_group.add_argument( "-d", "--debug", dest="log_level", action="store_const", const=logging.DEBUG, default=default_log_level, help="Set log level to DEBUG", ) logger_group.add_argument( "-v", "--verbose", dest="log_level", action="store_const", const=logging.INFO, default=default_log_level, help="Set log level to INFO", ) parsed_args = parser.parse_args(args) if parsed_args.input.parts[-1] != "data": raise argparse.ArgumentTypeError("input must be in the GFDM `data` directory") return parsed_args if __name__ == "__main__": main() ```
{ "source": "5743rhodesm/PySabermetrics", "score": 4 }
#### File: 5743rhodesm/PySabermetrics/pullData.py ```python __author__ = 'mrhodes' # Import libraries import requests import json import bs4 as bs # Function to pull data def get_games_summary_data(s_month, s_day, s_year, e_month = None, e_day = None, e_year = None): """ Returns a JSON file containing the summary of the games played on a specified day. Currently working on allowing the user to specify a date range. :param s_month: Start month :param s_day: Start day :param s_year: Start year :param e_month: End month :param e_day: End day :param e_year: End year :return: """ # Specify the URL to pull data from. Months and days must have leading zeroes if single digit mlbam_url = 'http://gd2.mlb.com/components/game/mlb/year_' + str(s_year) + \ '/month_' + str("%02d" % s_month) +\ '/day_' + str("%02d" % s_day) + '/miniscoreboard.json' # Get the request mlbam_response = requests.get(mlbam_url) return json.loads(mlbam_response.content) ```
{ "source": "574411705/FlowMonitoringAndAnalysis", "score": 3 }
#### File: src/models/unsupervised.py ```python import pytorch_lightning as pl import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, random_split class EncoderLSTM(pl.LightningModule): def __init__(self, input_dim, hidden_dim, num_layers): super(EncoderLSTM, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.activation - nn.ReLU() # weight initialization nn.init.xavier_uniform(self.lstm.weight_ih_l0, gain=np.sqrt(2)) nn.init.xavier_uniform(self.lstm.weight_hh_l0, gain=np.sqrt(2)) def forward(self, x): pass def cross_entropy_loss(self, y_hat, y): return nn.CrossEntropy()(y_hat, y) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) return {"train_loss": self.cross_entropy_loss(y_hat, y)} def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) return {"val_loss": self.cross_entropy_loss(y_hat, y)} def validation_epoch_end(self, outputs): avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() tensorboard_logs = {"val_loss": avg_loss} return {"val_loss": avg_loss, "log": tensorboard_logs} def prepare_data(self): # get_data # create train_dataset # create val_dataset # possibly store them # return train_DS, test_DS pass def train_dataloader(self): # return Dataloader(get_dataset) pass def val_dataloader(self): pass def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=1.0e-3) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3) return [optimizer], [scheduler] ```
{ "source": "575-genetic-opt/MarbleOptimizer", "score": 3 }
#### File: 575-genetic-opt/MarbleOptimizer/marble_coaster.py ```python import random import math import sys import csv import matplotlib.pyplot as plt sys.setrecursionlimit(200) gene_per_section = 2 maximum_length = 0 corresponding_cost = 0 num_div_x = 10 # NUMBER OF COLUMNS num_div_y = 10 # NUMBER OF ROWS num_div_z = 10 # NUMBER OF FLOORS dz = .1 # HEIGHT OF PIECES (METERS) dx = .1 # X LENGTH OF PIECES (METERS) dy = .1 # Y LENGTH OF PIECES (METERS) v_start = .1 # STARTING VELOCITY OF MARBLE (M/S) mass = 0.00127 # MASS OF A MARBLE (KG) lpl = .01 # percent of energy lost due to normal track use g = 9.81 # GRAVITY (M/S^2) parts = [{'cost': 1., 'length': dz, 'loss': lpl*dz, 'cool': 90, 'e1': 'top', 'e2': 'bottom'}, {'cost': 3., 'length': (dz/2 + dy/2)*.8, 'loss': lpl*(dz/2 + dy/2)*.8, 'cool': 50, 'e1': 'top', 'e2': 1}, {'cost': 1., 'length': dy, 'loss': lpl*dy, 'cool': 70, 'e1': 1, 'e2': 3}, {'cost': 3., 'length': (dy/2 + dx/2)*.8, 'loss': lpl*(dy/2 + dx/2)*.8, 'cool': 50, 'e1': 1, 'e2': 4}, {'cost': 3., 'length': (dy/2 + dz/2)*.8, 'loss': lpl*(dy/2 + dx/2)*.8, 'cool': 50, 'e1': 1, 'e2': 'bottom'}] def calc_length(design): # RECORD MAX POSSIBLE PATH max_path = 0 # LIST OF GLOBAL PIECE NUMBERS IN BEST DESIGN max_loc_list = [] max_part_list = [] max_rot_list = [] max_en_his = [] # LOOP OVER PIECES ON TOP for i in range(0, num_div_x*num_div_y*gene_per_section, gene_per_section): for in_dir in ['e1', 'e2']: # SET STARTING ENERGIES up = num_div_y * dy * mass * g # POTENTIAL ENERGY uk = .5 * mass * math.pow(v_start, 2) # KINETIC ENERGY # SET STARTING DESIGN VALUES loc_his = [] part_his = [] rot_his = [] en_his = [] # GET LOCATION ID OF PIECE piece_number = int(i / gene_per_section) + 1 + int(num_div_x*num_div_y*(num_div_z-1)) length = traverse_length(design, piece_number, loc_his, part_his, rot_his, en_his, in_dir, uk, up) if length > max_path: max_path = length max_loc_list = loc_his max_part_list = part_his max_rot_list = rot_his max_en_his = en_his return max_path, max_loc_list, max_part_list, max_rot_list, max_en_his def locate_piece(piece_number): floor = int(math.ceil(float(piece_number)/float(num_div_x*num_div_y))) % num_div_z if floor == 0: floor = num_div_z local_num = piece_number % (num_div_x * num_div_y) # THIS IS THE PIECE NUMBER LOCAL TO IT'S OWN FLOOR row = int(math.ceil(float(local_num) / float(num_div_x))) % num_div_y if row == 0: row = num_div_y col = piece_number % num_div_x if col == 0: col = num_div_x return row, col, floor def inlet_outlet(design, g_piece_id, in_direction): # GET PIECE INFORMATION piece_gene_index = (g_piece_id - 1) * gene_per_section piece_rot = design[piece_gene_index + 1] piece_num = design[piece_gene_index] - 1 piece_type = parts[piece_num] if in_direction == 'e1': # GET OUTLET FACE ID outlet = piece_type['e2'] if type(piece_type['e2']) == int: outlet = (piece_type['e2'] + piece_rot) % 4 if outlet == 0: outlet = 4 # GET INLET FACE ID inlet = piece_type['e1'] if type(piece_type['e1']) == int: inlet = (piece_type['e1'] + piece_rot) % 4 if inlet == 0: inlet = 4 else: # GET OUTLET FACE ID outlet = piece_type['e1'] if type(piece_type['e1']) == int: outlet = (piece_type['e1'] + piece_rot) % 4 if outlet == 0: outlet = 4 # GET INLET FACE ID inlet = piece_type['e2'] if type(piece_type['e2']) == int: inlet = (piece_type['e2'] + piece_rot) % 4 if inlet == 0: inlet = 4 # GET ROW AND COLUMN ID OF PIECE row, col, floor = locate_piece(g_piece_id) location = (row, col, floor) out_neighbor = 0 in_neighbor = 0 if outlet == 'bottom': if floor > 1: out_neighbor = g_piece_id - num_div_x * num_div_y elif outlet == 'top': if floor < num_div_z: out_neighbor = g_piece_id + num_div_x * num_div_y if inlet == 'top': if floor < num_div_z: in_neighbor = g_piece_id + num_div_x * num_div_y elif inlet == 'bottom': if floor > 1: in_neighbor = g_piece_id - num_div_x * num_div_y if row == 1: # ON BOTTOM FACE if col == 1: # ON LEFT FACE if outlet == 1: # INTERIOR FACE out_neighbor = g_piece_id + num_div_x elif outlet == 2: out_neighbor = g_piece_id + 1 # INTERIOR FACE if inlet == 1: # INTERIOR FACE in_neighbor = g_piece_id + num_div_x elif inlet == 2: in_neighbor = g_piece_id + 1 # INTERIOR FACE elif col == num_div_x: # ON RIGHT FACE if outlet == 1: # INTERIOR FACE out_neighbor = g_piece_id + num_div_x elif outlet == 4: # INTERIOR FACE out_neighbor = g_piece_id - 1 if inlet == 1: # INTERIOR FACE in_neighbor = g_piece_id + num_div_x elif inlet == 4: # INTERIOR FACE in_neighbor = g_piece_id - 1 else: # MIDDLE COLUMN if outlet == 1: # INTERIOR FACE out_neighbor = g_piece_id + num_div_x elif outlet == 2: # INTERIOR FACE out_neighbor = g_piece_id + 1 elif outlet == 4: # INTERIOR FACE out_neighbor = g_piece_id - 1 if inlet == 1: # INTERIOR FACE in_neighbor = g_piece_id + num_div_x elif inlet == 2: # INTERIOR FACE in_neighbor = g_piece_id + 1 elif inlet == 4: # INTERIOR FACE in_neighbor = g_piece_id - 1 elif row == num_div_y: # ON TOP FACE if col == 1: # ON LEFT FACE if outlet == 3: # INTERIOR FACE out_neighbor = g_piece_id - num_div_x elif outlet == 2: # INTERIOR FACE out_neighbor = g_piece_id + 1 if inlet == 3: # INTERIOR FACE in_neighbor = g_piece_id - num_div_x elif inlet == 2: # INTERIOR FACE in_neighbor = g_piece_id + 1 elif col == num_div_x: # ON RIGHT FACE if outlet == 3: # FACING INTERIOR out_neighbor = g_piece_id - num_div_x elif outlet == 4: # INTERIOR FACE out_neighbor = g_piece_id - 1 if inlet == 3: # FACING INTERIOR in_neighbor = g_piece_id - num_div_x elif inlet == 4: # INTERIOR FACE in_neighbor = g_piece_id - 1 else: # MIDDLE COLUMN if outlet == 3: # FACING INTERIOR out_neighbor = g_piece_id - num_div_x elif outlet == 4: # INTERIOR FACE out_neighbor = g_piece_id - 1 elif outlet == 2: # INTERIOR FACE out_neighbor = g_piece_id + 1 if inlet == 3: # FACING INTERIOR in_neighbor = g_piece_id - num_div_x elif inlet == 4: # INTERIOR FACE in_neighbor = g_piece_id - 1 elif inlet == 2: # INTERIOR FACE in_neighbor = g_piece_id + 1 else: # IN MIDDLE ROW if col == 1: # ON LEFT FACE if outlet == 1: # FACING INTERIOR out_neighbor = g_piece_id + num_div_x elif outlet == 3: # INTERIOR FACE out_neighbor = g_piece_id - num_div_x elif outlet == 2: out_neighbor = g_piece_id + 1 if inlet == 1: # FACING INTERIOR in_neighbor = g_piece_id + num_div_x elif inlet == 3: # INTERIOR FACE in_neighbor = g_piece_id - num_div_x elif inlet == 2: in_neighbor = g_piece_id + 1 elif col == num_div_x: # ON RIGHT FACE if outlet == 1: # FACING INTERIOR out_neighbor = g_piece_id + num_div_x # FACING INTERIOR elif outlet == 3: out_neighbor = g_piece_id - num_div_x # FACING INTERIOR elif outlet == 4: # FACING INTERIOR out_neighbor = g_piece_id - 1 if inlet == 1: # FACING INTERIOR in_neighbor = g_piece_id + num_div_x # FACING INTERIOR elif inlet == 3: in_neighbor = g_piece_id - num_div_x # FACING INTERIOR elif inlet == 4: # FACING INTERIOR in_neighbor = g_piece_id - 1 else: # INTERIOR PIECE if outlet == 1: # FACING EXTERIOR out_neighbor = g_piece_id + num_div_x elif outlet == 3: # FACING INTERIOR out_neighbor = g_piece_id - num_div_x elif outlet == 2: # FACING INTERIOR out_neighbor = g_piece_id + 1 elif outlet == 4: # FACING INTERIOR out_neighbor = g_piece_id - 1 if inlet == 1: # FACING EXTERIOR in_neighbor = g_piece_id + num_div_x elif inlet == 3: # FACING INTERIOR in_neighbor = g_piece_id - num_div_x elif inlet == 2: # FACING INTERIOR in_neighbor = g_piece_id + 1 elif inlet == 4: # FACING INTERIOR in_neighbor = g_piece_id - 1 # CHECK IF NEIGHBORS HAVE ALIGNING FACES if in_neighbor > 0: in_gene_index = (in_neighbor - 1) * gene_per_section in_piece_rot = design[in_gene_index + 1] in_piece_num = design[in_gene_index] - 1 in_piece_type = parts[in_piece_num] in_n_e1 = in_piece_type['e1'] if type(in_piece_type['e1']) == int: in_n_e1 = (in_piece_type['e1'] + in_piece_rot) % 4 if in_n_e1 == 0: in_n_e1 = 4 in_n_e2 = in_piece_type['e2'] if type(in_piece_type['e2']) == int: in_n_e2 = (in_piece_type['e2'] + in_piece_rot) % 4 if in_n_e2 == 0: in_n_e2 = 4 in_neighbor_1 = in_neighbor in_neighbor_2 = in_neighbor if inlet == 'top': if in_n_e1 != 'bottom': in_neighbor_1 = 0 if in_n_e2 != 'bottom': in_neighbor_2 = 0 elif inlet == 'bottom': if in_n_e1 != 'top': in_neighbor_1 = 0 if in_n_e2 != 'top': in_neighbor_2 = 0 else: if type(in_n_e1) is int: if math.fabs(inlet - in_n_e1) != 2: in_neighbor_1 = 0 else: in_neighbor_1 = -1 if type(in_n_e2) is int: if math.fabs(inlet - in_n_e2) != 2: in_neighbor_2 = 0 else: in_neighbor_2 = 0 if in_neighbor_2 == 0: in_neighbor = in_neighbor_1 in_direction = 'e1' if out_neighbor: out_gene_index = (out_neighbor - 1) * gene_per_section out_piece_rot = design[out_gene_index + 1] out_piece_num = design[out_gene_index] - 1 out_piece_type = parts[out_piece_num] out_n_e1 = out_piece_type['e1'] if type(out_piece_type['e1']) == int: out_n_e1 = (out_piece_type['e1'] + out_piece_rot) % 4 if out_n_e1 == 0: out_n_e1 = 4 out_n_e2 = out_piece_type['e2'] if type(out_piece_type['e2']) == int: out_n_e2 = (out_piece_type['e2'] + out_piece_rot) % 4 if out_n_e2 == 0: out_n_e2 = 4 out_neighbor_1 = out_neighbor out_neighbor_2 = out_neighbor if outlet == 'bottom': if out_n_e1 != 'top': out_neighbor_1 = 0 if out_n_e2 != 'top': out_neighbor_2 = 0 elif outlet == 'top': if out_n_e1 != 'bottom': out_neighbor_1 = 0 if out_n_e2 != 'bottom': out_neighbor_2 = 0 else: if type(out_n_e1) is int: if math.fabs(outlet - out_n_e1) != 2: out_neighbor_1 = 0 else: out_neighbor_1 = 0 if type(out_n_e2) is int: if math.fabs(outlet - out_n_e2) != 2: out_neighbor_2 = 0 else: out_neighbor_2 = 0 if out_neighbor_2 > 0: in_direction = 'e2' else: out_neighbor = out_neighbor_1 return in_neighbor, out_neighbor, location, in_direction def traverse_length(design, g_piece_id, path_his, part_his, rot_his, en_his, in_dir, uk, up): piece_gene_index = (g_piece_id - 1) * gene_per_section piece_rot = design[piece_gene_index + 1] piece_num = design[piece_gene_index] - 1 piece_type = parts[piece_num] length = piece_type['length'] friction_loss = piece_type['loss']*uk in_neighbor, out_neighbor, location, in_dir = inlet_outlet(design, g_piece_id, in_dir) # Subtract friction loss from kinetic energy uk -= friction_loss # Subtract potential energy losses if len(path_his) > 0: uk -= (location[2] - path_his[-1][2]) * dz * g * mass up += (location[2] - path_his[-1][2]) * dz * g * mass if out_neighbor > 0 and location not in path_his and uk > 0: path_his.append(location) part_his.append(piece_num) rot_his.append(piece_rot) en_his.append(uk) length += traverse_length(design, out_neighbor, path_his, part_his, rot_his, en_his, in_dir, uk, up) else: path_his.append(location) part_his.append(piece_num) rot_his.append(piece_rot) en_his.append(uk) return length def calc_cost(design): cost_sum = 0 for part_num in design: cost_sum += parts[part_num]['cost'] return cost_sum def solve_track(design): max_path, max_loc_list, max_part_list, max_rot_list, en_his = calc_length(design) cost = calc_cost(max_part_list) return max_path, cost, max_part_list, max_loc_list, max_rot_list, en_his def good_design(): design = [1]*(num_div_x*num_div_y*num_div_z*gene_per_section) p_gene = num_div_x*num_div_y*(num_div_z-1)*gene_per_section design[p_gene] = 1 design[p_gene + 1] = 1 p_gene -= num_div_x*num_div_y*gene_per_section design[p_gene] = 2 design[p_gene + 1] = 1 p_gene += 1*gene_per_section design[p_gene] = 3 design[p_gene + 1] = 1 p_gene += 1*gene_per_section design[p_gene] = 3 design[p_gene + 1] = 3 p_gene += 1*gene_per_section design[p_gene] = 3 design[p_gene + 1] = 1 p_gene += 1*gene_per_section design[p_gene] = 4 design[p_gene + 1] = 4 p_gene += num_div_x*gene_per_section design[p_gene] = 3 design[p_gene + 1] = 4 p_gene += num_div_x*gene_per_section design[p_gene] = 3 design[p_gene + 1] = 2 p_gene += num_div_x*gene_per_section design[p_gene] = 5 design[p_gene + 1] = 2 p_gene -= num_div_x*num_div_y*gene_per_section design[p_gene] = 1 design[p_gene + 1] = 2 p_gene -= num_div_x * num_div_y*gene_per_section design[p_gene] = 1 design[p_gene + 1] = 3 p_gene -= num_div_x * num_div_y*gene_per_section design[p_gene] = 1 design[p_gene + 1] = 4 p_gene -= num_div_x * num_div_y*gene_per_section design[p_gene] = 2 design[p_gene + 1] = 3 p_gene -= 1*gene_per_section design[p_gene] = 2 design[p_gene + 1] = 1 p_gene += num_div_x*num_div_y*gene_per_section design[p_gene] = 5 design[p_gene + 1] = 3 p_gene -= 1*gene_per_section design[p_gene] = 5 design[p_gene + 1] = 1 p_gene -= num_div_x * num_div_y*gene_per_section design[p_gene] = 1 design[p_gene + 1] = 1 return design if __name__ == '__main__': gen_design = good_design() t_length, t_cost, p_list, p_loc, r_list, e_list = solve_track(gen_design) speeds = [] for e in e_list: speeds.append(math.sqrt(e/(.5*mass))) print(t_length) print(t_cost) print(p_list) print(p_loc) print(r_list) print(len(p_list)) print(e_list) print(speeds) with open('good_design.csv','w') as csvfile: spamwriter = csv.writer(csvfile) spamwriter.writerow(p_list) location_list = [] for location in p_loc: for item in location: location_list.append(item) spamwriter.writerow(location_list) spamwriter.writerow(r_list) ``` #### File: 575-genetic-opt/MarbleOptimizer/MultiObjectiveOptimizer.py ```python import numpy as np import copy class MultiObjectiveOptimizer: def __init__(self, x, fitness, n_generations=5, population_size=5, n_objectives=2, constraint=None, generation_func=None, constraint_func_input="design", crossover_type="uniform", mutation_type="unifom", use_genocide=False): """Initialize the optimizer x: list that contains a series of dictionaries that define the x values for the optimizer where type is either continuous or integer. and min and max are the minimum and maximum values of the variable this should follow the form [{'type': ('integer' or 'continuous'), 'bounds': (min, max)]] with a new dict for each x value fitness: function that accepts x array in the same order as given in the x input, and returns the fitness of each design. n_generations: the number of generations to carry out population_size: the number of members in the population at each generation n_objectives: the number of objectives that are returned by the fitness function constraint: function that accepts x array in the same order as given in x and returns a vector that contains the constraint violation state of each constraint where >0 suggests that the constraint is violated and <=0 suggests that the constraint is satisfied. generation_func: function that is called with each passing generation. calls the generation function with the current population of the algorithm. This is useful for things like plotting the generation at each iteration of the algorithm, but could be used for other fun things constraint_func_input: string, either "design" or "full" if design the constraint function is called with just the design, if full the constraint function is called with a 1d array where the 0th value is the maximin fitness of the design, the next n values are the n objectives returned by the fitness function, and the last n values are the n values that define the design. It is useful to define full if the fitness and constraints are based on the same values and they are somewhat expensive to obtain. crossover_type: string, either "transitional" or "uniform" if transitional a transitional crossover is performed if uniform a uniform crossover, meaning that the values are simply swapped is performed mutation_type: string, either "uniform" or "dynamic" this defines the type of mutation that will occur. dynamic mutation changes more at the beginning of the optimization and less toward the end. Uniform mutation randomly selects a value in the bounds. """ self.num_generations = n_generations self.num_population = np.trunc(population_size) if self.num_population % 2 != 0: self.num_population += 1 self.num_population = int(self.num_population) self.num_x = len(x) self.fitness_func = fitness self.constraint_func = constraint self.x_def = x self.num_objectives = n_objectives self.generation_call = generation_func self.constraint_func_input = constraint_func_input.lower() self.crossover_type = crossover_type.lower() self.mutation_type = mutation_type.lower() self.use_genocide = use_genocide self.tournament_size = 2 self.crossover_prob = 0.5 self.mutation_prob = 0.13 self.cross_eta = 0.5 self.mutation_beta = 0.13 self.no_diversity_counter = 0 self.population = self.generate_population() return def generate_population(self): # initialize population array # stored in the form ([fitness, objective values, x1, x2, x3, ..., xn]) population = np.zeros((self.num_population, self.num_x + self.num_objectives + 1)) for i in range(self.num_population): x_new = np.zeros(self.num_x) for j, val in enumerate(self.x_def): if val['type'] == 'integer': x_new[j] = np.random.randint(val['bounds'][0], val['bounds'][1] + 1) elif val['type'] == 'continuous': x_new[j] = np.random.uniform(val['bounds'][0], val['bounds'][1]) # else: # print("error unknown variable type") population[i, 1:self.num_objectives + 1] = self.fitness_func(x_new) population[i, self.num_objectives + 1:] = x_new population = sort_array_by_col(population, 0) population = self.calc_fitness(population) population = self.apply_constraints(population) if self.generation_call is not None: self.generation_call(population) return population def select_parents(self): """select the parents from the current population of the optimization""" # randomize the order of the population np.random.shuffle(self.population) # preallocate the array to hold the parents parents = np.zeros_like(self.population) # self.population = self.calc_maximin(self.population) # select random people from the population for tournament selection for row in range(parents.shape[0]): rand_indicies = np.random.randint(parents.shape[0], size=self.tournament_size) competitors = self.population[rand_indicies] sorted_competitors = sort_array_by_col(competitors, 0) parents[row, :] = sorted_competitors[0] return parents def calc_fitness(self, population): """calculates the maximin values for each point of the supplied population. Uses a bunch of information stored in the class, so probably not a good idea to pass in random populations, unless you know what you're doing.""" if self.num_objectives > 1: for idx in range(population.shape[0]): # get function values fVals = copy.deepcopy(population[:, 1:self.num_objectives+1]) for col_idx in range(self.num_objectives): test_val = fVals[idx, col_idx] fVals[:, col_idx] = -(fVals[:, col_idx] - test_val) fVals = np.delete(fVals, idx, 0) population[idx, 0] = np.nanmax(np.nanmin(fVals, 1)) else: population[:, 0] = population[:, 1] return population def check_diversity(self, population): """ Checks that a population is diverse. If it is not the best members of the population are kept and the rest of the population is randomly regenerated. :param population: the population whose diversity is to be checked. :return: the new population """ fitness_vals = population[:, 0] num_unique = len(np.unique(fitness_vals)) if num_unique == 1: self.no_diversity_counter += 1 if self.no_diversity_counter > 20: self.no_diversity_counter = 0 num_to_save = int(self.num_population * 0.2) # sort the designs population = sort_array_by_col(population, 0) # save the best 10% of designs best_designs = copy.deepcopy(population[0:num_to_save, :]) # regenerate the population new_population = self.generate_population() # replace the best designs new_population[0:num_to_save, :] = best_designs np.random.shuffle(new_population) return new_population else: self.no_diversity_counter = 0 return population def apply_constraints(self, population): """ applies appropriate penalties for designs that are outside of the permissible bounds. Requires that a constraint function be defined that returns the constraints in a row vector""" if self.constraint_func is None: return population max_fitness = np.nanmax(population[:, 0]) for row in population: design = row[self.num_objectives+1:] if self.constraint_func_input == "design": cons = self.constraint_func(design) elif self.constraint_func_input == "full": cons = self.constraint_func(row) # else: # print("unrecognized constraint input term check constraint_func_input argument at initialization") # quit() if np.max(cons) > 0: row[0] = max_fitness + np.max(cons) return population def find_min(self): """ Runs the optimizer. :return: the population at the end of the optimization routine. """ generations = [] for generation in range(self.num_generations): # select reproducing parents parents = self.select_parents() children = np.zeros_like(parents) # for each set of parents for idx in range(0, parents.shape[0], 2): child1 = copy.deepcopy(parents[idx, self.num_objectives+1:]) child2 = copy.deepcopy(parents[idx+1, self.num_objectives+1:]) for x_idx in range(len(child1)): crossover = np.random.random() mutate1 = np.random.random() mutate2 = np.random.random() if crossover < self.crossover_prob: # perform the crossover if self.crossover_type == "transitional": self.crossover_transitional(child1, child2, x_idx) else: self.crossover_uniform(child1, child2, x_idx) if mutate1 < self.mutation_prob: if self.mutation_type == "dynamic": child1 = self.mutate_dynamic(child1, x_idx, self.x_def[x_idx]['bounds'], self.x_def[x_idx]['type'], generation) else: child1 = self.mutate_uniform(child1, x_idx, self.x_def[x_idx]['bounds'], self.x_def[x_idx]['type']) if mutate2 < self.mutation_prob: if self.mutation_type == "dynamic": child2 = self.mutate_dynamic(child2, x_idx, self.x_def[x_idx]['bounds'], self.x_def[x_idx]['type'], generation) else: child1 = self.mutate_uniform(child1, x_idx, self.x_def[x_idx]['bounds'], self.x_def[x_idx]['type']) # put the children into the children array child1_fitness = self.fitness_func(child1) child2_fitness = self.fitness_func(child2) children[idx, 1:self.num_objectives+1] = child1_fitness children[idx, self.num_objectives+1:] = child1 children[idx + 1, 1:self.num_objectives+1] = child2_fitness children[idx + 1, self.num_objectives+1:] = child2 # perform elitism population_pool = np.append(parents, children, axis=0) population_pool = self.calc_fitness(population_pool) population_pool = self.apply_constraints(population_pool) sorted_pool = sort_array_by_col(population_pool, 0) self.population = sorted_pool[0:self.num_population] # generations.append(copy.deepcopy(self.population)) # print(generation) if self.use_genocide: self.population = self.check_diversity(self.population) if self.generation_call is not None: self.generation_call(self.population) return self.population def crossover_transitional(self, child1, child2, x_idx): """ Performs a transitional crossover from uniform to blend between the two children at the specifiec index. The children must be numpy arrays or some other object that is mutable so that the changes persist :param child1: Child 1 to be crossed a numpy array of the values :param child2: Child 2 to be crossed a numpy array of the values :param x_idx: Index location for the crossover. :return: none """ r = np.random.random() if r <= 0.5: a = ((2 * r) ** (1 / self.cross_eta)) / 2 else: a = 1 - ((2 - 2 * r) ** (1 / self.cross_eta)) / 2 child1_val = child1[x_idx] child2_val = child2[x_idx] y1 = a * child1_val + (1 - a) * child2_val y2 = (1 - a) * child1_val + a * child2_val child1[x_idx] = y1 child2[x_idx] = y2 # truncate the values if needed if self.x_def[x_idx]['type'] == 'integer': child1[x_idx] = int(np.round(child1[x_idx])) child2[x_idx] = int(np.round(child2[x_idx])) def crossover_uniform(self, child1, child2, x_idx): """ Performs a uniform crossover between the children at the specified x index :param child1: design 1 to be crossed :param child2: design 2 to be crossed :param x_idx: Index location for the crossover :return: none """ r = np.random.random() if r <= 0.5: temp = child1[x_idx] child1[x_idx] = child2[x_idx] child2[x_idx] = temp def mutate_dynamic(self, child, idx, bounds, type, generation): """ Perform a dynamic mutation on the child at the specified location meaning that the mutation amount decreases as the generation number increases :param child: array of values that represent the child to be mutated :param idx: the index where the mutation should occur :param bounds: tuple of the bounds of the value that is being mutated :param type: Type of the variable :param generation: generation number for the mutation. :return: the mutated child """ min = bounds[0] max = bounds[1] r = np.random.uniform(min, max) alpha = (1 - (generation) / self.num_generations) ** self.mutation_beta if r <= child[idx]: child[idx] = min + (r - min) ** alpha * (child[idx] - min) ** (1 - alpha) else: child[idx] = max - (max - r) ** alpha * (max - child[idx]) ** (1 - alpha) if type == 'integer': child[idx] = np.round(child[idx]) return child def mutate_uniform(self, child, idx, bounds, type): """ Perform a mutation of the child at the specified index. The mutation is uniform meaning that it will be randomly assigned in the bounds of the value. :param child: the design that is to be mutated :param idx: the index of the value where the mutation should occur :param bounds: tuple of the bounds on the variable that we are mutating :param type: the type of the variable :return: the mutated child """ min = bounds[0] max = bounds[1] if type == 'integer': child[idx] = np.random.randint(min, max+1) else: child[idx] = np.random.uniform(min, max+0.000001) return child def sort_array_by_col(array, sort_col=0): """take an array and sort it by the specified column""" new_array = array[np.argsort(array[:, sort_col])] return new_array ```
{ "source": "577145213/bolg", "score": 2 }
#### File: blog/home/views.py ```python from django.core.paginator import EmptyPage from django.shortcuts import render, redirect from django.urls import reverse from django.views import View from home.models import ArticleCategory, Article from django.http.response import HttpResponseNotFound # Create your views here. # 首页分类栏目# 首页分类栏目# 首页分类栏目# 首页分类栏目# 首页分类栏目# 首页分类栏目 class IndexView(View): def get(self,request): # 获取所有分类信息 categories = ArticleCategory.objects.all() # 接收用户点击的分类id cat_id = request.GET.get('cat_id', 1) # 根据分类id进行分类查询 try: category = ArticleCategory.objects.get(id=cat_id) except ArticleCategory.DoesNotExist: return HttpResponseNotFound('没有此分类') # 获取分页参数 page_num=request.GET.get('page_num', 1) page_siza=request.GET.get('page_size', 10) # 根据分类信息 查询文章数据 article=Article.objects.filter(category=category) # 创建分页器 from django.core.paginator import Paginator paginator=Paginator(article,per_page=page_siza) # 进行分页处理 try: page_articles=paginator.page(page_num) except EmptyPage: return HttpResponseNotFound('empty page') # 总页数 total_page = paginator.num_pages # 组织数据传递给模板 context = { 'categories': categories, 'category': category, 'articles':page_articles, 'page_size':page_siza, 'total_page':total_page, 'page_num':page_num, } return render(request, 'index.html', context=context) from home.models import Comment # 第八点一节 文章详情 class DetailView(View): def get(self,request): # 接收文章id信息 id=request.GET.get('id') # 根据文章id进行文章数据的查询 try: article = Article.objects.get(id=id) except Article.DoesNotExist: return render(request,'404.html') else: # 让浏览量加1 article.total_view+=1 article.save() # 查询分类数据 categories = ArticleCategory.objects.all() # 查询流量量前十文章 hot_articles=Article.objects.order_by('-total_view')[:9] page_size=request.GET.get('page_size',10) page_num=request.GET.get('page_num',1) comments=Comment.objects.filter(article=article).order_by('-created') total_count=comments.count() from django.core.paginator import Paginator,EmptyPage paginator=Paginator(comments,page_size) try: page_comments=paginator.page(page_num) except EmptyPage: return HttpResponseNotFound('empty page') total_page=paginator.num_pages # 组织模板数据 context ={ 'categories': categories, 'category': article.category, 'article': article, 'hot_articles':hot_articles, 'total_count':total_count, 'comments':page_comments, 'page_size':page_size, 'total_page':total_page, 'page_num':page_num } return render(request, 'detail.html',context=context) def post(self,request): # 先接收用户信息 user = request.user # 判断用户是否登陆 if user and user.is_authenticated: # 登录用户可以接受form数据 # 接收评论数据 id=request.POST.get('id') content=request.POST.get('content') try: # 验证文章是否存在 article=Article.objects.get(id=id) except Article.DoesNotExist: return HttpResponseNotFound('没有此文章') # 保存评论数据 Comment.objects.create( content=content, article=article, user=user ) article.comments_count+=1 # 修改评论的数量 article.save() path=reverse('home:detail')+'?id={}'.format(article.id) return redirect(path) else: return render(reverse('users:login')) ```
{ "source": "5783354/awokado", "score": 2 }
#### File: awokado/awokado/auth.py ```python from typing import Dict from sqlalchemy.sql import Selectable from awokado.exceptions import ( CreateResourceForbidden, ReadResourceForbidden, UpdateResourceForbidden, DeleteResourceForbidden, ) class BaseAuth: """ CREATE = { 'ROLE NAME': Boolean value } Example: 'ADMIN': True, 'GUEST': False READ, UPDATE, DELETE """ CREATE: Dict[str, bool] = { # 'ROLE NAME': Boolean value, # Example: # 'ADMIN': True, # 'GUEST': False, } READ: Dict[str, bool] = {} UPDATE: Dict[str, bool] = {} DELETE: Dict[str, bool] = {} @classmethod def can_create(cls, session, payload, user_id: int, skip_exc=False): if skip_exc: return False raise CreateResourceForbidden() @classmethod def can_read(cls, ctx, query: Selectable, skip_exc=False): if skip_exc: return False raise ReadResourceForbidden() @classmethod def can_update(cls, session, user_id: int, obj_ids: list, skip_exc=False): if skip_exc: return False raise UpdateResourceForbidden() @classmethod def can_delete(cls, session, user_id: int, obj_ids: list, skip_exc=False): if skip_exc: return False raise DeleteResourceForbidden() @classmethod def _get_read_query(cls, ctx, query: Selectable): return query ``` #### File: awokado/documentation/generate.py ```python from typing import Dict, List, Union, FrozenSet, Type, Sequence from awokado.consts import BULK_UPDATE, BULK_CREATE from awokado.documentation.routes import Route from awokado.documentation.utils import parse_doc_string from awokado.resource import BaseResource from awokado.utils import log INNER_METHOD_MAP = { "patch": "update", "post": "create", "get": "on_get", # not taking here "delete": "delete", } class APIDocs: def __init__( self, routes: list, models: dict, servers: Union[str, Sequence[str]] = "/", public_resources: FrozenSet[Type[BaseResource]] = frozenset(), ): self.doc = models self.routes = routes self.public_resources = public_resources self.servers = [servers] if isinstance(servers, str) else servers def collect_path_info(self, r: Route): resource_ext = r.uri.split("/")[2] resource_name = resource_ext.replace("-", "_") route_method = r.method_name.lower() is_patch = route_method == "patch" is_post = route_method == "post" is_bulk = False route_w_id = "{resource_id}" in r.uri if is_patch: is_bulk = BULK_UPDATE in r.resource.Meta.methods and not route_w_id if not route_w_id and is_patch and not is_bulk: log.info( f"skip bulk patch with resource id " f"{r.uri}:{resource_name}:{route_method}" ) return None, None if route_w_id and is_post: log.info( f"skip post with resource id " f"{r.uri}:{resource_name}:{route_method}" ) return None, None path_info = self.get_common_info(r, resource_name) path_info[r.method_name]["parameters"] = self.get_parameters( route_method, route_w_id ) if is_patch or is_post: rb = { "required": True, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/" + resource_name } } }, } path_info[r.method_name]["requestBody"] = rb if type(r.resource) not in self.public_resources: security: List[dict] = [] path_info[r.method_name]["security"] = security security.append({"bearerAuth": []}) return r.uri, path_info @staticmethod def get_common_info(r: Route, name: str): inner_method = INNER_METHOD_MAP[r.method_name.lower()] method_doc_str = getattr(r.resource, inner_method).__doc__ if not method_doc_str: method_doc_str = r.method.__doc__ summary, description = parse_doc_string(method_doc_str) if r.method_name == "post" and BULK_CREATE in r.resource.Meta.methods: summary += ". Supports bulk create" if description: description = description.replace("---", "") path_info = { r.method_name: { "tags": [r.uri.replace("{resource_id}", "")], "summary": summary, "description": description, "responses": { 200: { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/" + name } } }, } }, } } return path_info @staticmethod def get_parameters(route_method, route_with_id): parameters = [] if route_with_id: parameters.append( { "name": "resource_id", "in": "path", "description": "ID of resource", "required": True, "schema": {"type": "integer", "format": "int64"}, } ) else: if route_method == "get": params_description = ( ("limit", "The numbers of items to return", "integer"), ( "offset", "The number of items to skip before " "starting to collect the result set", "integer", ), ( "sort", "Sorting fields. Use '-' before field name " "to use DESC sorting example: full_name,-birth_date", "string", ), ) for name, description, q_type in params_description: parameters.append( { "name": f"{name}", "in": "query", "description": f"{description}", "schema": {"type": f"{q_type}"}, } ) return parameters def set_components(self): security_schemes = { "bearerAuth": { "type": "http", "scheme": "bearer", "bearerFormat": "JWT", } } if "components" in self.doc: self.doc["components"]["securitySchemes"] = security_schemes else: self.doc["components"] = {"securitySchemes": security_schemes} def run(self): for r in self.routes: route_key, route_result = self.collect_path_info(r) if not route_result: continue if route_key not in self.doc["paths"]: self.doc["paths"][route_key] = route_result else: self.doc["paths"][route_key].update(route_result) self.doc["servers"] = [{"url": server} for server in self.servers] self.set_components() return self.doc ``` #### File: awokado/documentation/routes.py ```python import functools from dataclasses import dataclass from typing import List, Callable from falcon import API from falcon.routing.compiled import CompiledRouterNode if False: from awokado.resource import BaseResource METHOD_MAPPING = { "POST": {"create", "bulk_create"}, "GET": {"read"}, "PATCH": {"update", "bulk_update"}, "DELETE": {"delete"}, } @dataclass class Route: uri: str var_name: str method_name: str method: Callable resource: "BaseResource" @dataclass class RawRoute: uri: str var_name: str method_map: dict resource: "BaseResource" def __init__(self, route: CompiledRouterNode): self.uri = route.uri_template self.var_name = route.var_name self.method_map = route.method_map self.resource = route.resource def get_routes(raw_routes: List[RawRoute]) -> List[Route]: routes = [] for raw_route in raw_routes: if not raw_route.method_map: continue for method_name, method in raw_route.method_map.items(): if raw_route.resource.Meta.skip_doc: continue valid_methods = METHOD_MAPPING.get(method_name, ()) if not any( m in raw_route.resource.Meta.methods for m in valid_methods ): continue if not isinstance(method, functools.partial): routes.append( Route( uri=raw_route.uri, var_name=raw_route.var_name, method_name=method_name.lower(), method=method, resource=raw_route.resource, ) ) return routes def collect_routes(falcon_app: API) -> List[Route]: raw_routes = [] for root_r in falcon_app._router._roots: for children_r in root_r.children: raw_routes.append(RawRoute(children_r)) for a in children_r.children: for a2 in a.children or (): raw_routes.append(RawRoute(a2)) raw_routes.append(RawRoute(a)) return get_routes(raw_routes) ``` #### File: awokado/awokado/meta.py ```python from dataclasses import dataclass, field from typing import Union, Tuple, Any, Type, Optional from sqlalchemy.sql import Join from awokado.auth import BaseAuth @dataclass class ResourceMeta: """ :param name: Resource name. Used for two resources connection by relation :param model: represents sqlalchemy model or cte :param methods: tuple of methods you want to allow :param auth: awokado `BaseAuth <#awokado.auth.BaseAuth>`_ class for embedding authentication logic :param skip_doc: set true if you don't need to add the resource to documentation :param disable_total: set false, if you don't need to know returning objects amount in read-requests :param id_field: you can specify your own primary key if it's different from the 'id' field. Used in reading requests (GET) :param select_from: provide data source here if your resource use another's model fields (for example sa.outerjoin(FirstModel, SecondModel, FirstModel.id == SecondModel.first_model_id)) """ name: str = "base_resource" methods: Tuple[str, ...] = () model: Any = None # type: ignore auth: Optional[Type[BaseAuth]] = None skip_doc: bool = False disable_total: bool = False id_field: str = "id" select_from: Optional[Join] = None def __post_init__(self): if not self.methods and self.name not in ("base_resource", "_resource"): raise Exception( f"ResourceMeta[{self.name}] object must have methods" ) @classmethod def from_class(cls, t: Type): return cls( **{k: v for k, v in t.__dict__.items() if not k.startswith("_")} ) ``` #### File: awokado/awokado/resource.py ```python import json import sys from typing import Dict, List, Optional, Tuple, Union, Type import bulky import falcon import sqlalchemy as sa from cached_property import cached_property from clavis import Transaction from marshmallow import utils, Schema, ValidationError from sqlalchemy.orm import Session from awokado.consts import ( AUDIT_DEBUG, BULK_CREATE, BULK_UPDATE, CREATE, DELETE, OP_IN, UPDATE, ) from awokado.custom_fields import ToMany, ToOne from awokado.db import DATABASE_URL, persistent_engine from awokado.exceptions import BadRequest, MethodNotAllowed from awokado.filter_parser import FilterItem from awokado.meta import ResourceMeta from awokado.request import ReadContext from awokado.response import Response from awokado.utils import ( get_ids_from_payload, get_read_params, get_id_field, M2MMapping, AuthBundle, ) class BaseResource(Schema): RESOURCES: Dict[str, Type["BaseResource"]] = {} Response = Response Meta: ResourceMeta def __new__(cls: Type["BaseResource"]): if cls.Meta.name not in ("base_resource", "_resource"): cls.RESOURCES[cls.Meta.name] = cls return super().__new__(cls) def __init__(self): super().__init__() cls_name = self.__class__.__name__ class_meta = getattr(self, "Meta", None) if isinstance(class_meta, type): print( "resourse.Meta as class will be deprecated soon", file=sys.stderr, ) self.Meta = ResourceMeta.from_class(class_meta) if not isinstance(self.Meta, ResourceMeta): raise Exception( f"{cls_name}.Meta must inherit from ResourceMeta class" ) if not self.Meta.name or self.Meta.name in ( "base_resource", "_resource", ): raise Exception(f"{cls_name} must have Meta.name") resource_id_name = get_id_field(self, name_only=True, skip_exc=True) if resource_id_name: resource_id_field = self.fields.get(resource_id_name) resource_id_field = resource_id_field.metadata.get("model_field") if not resource_id_field: raise Exception( f"Resource's {cls_name} id field {resource_id_name}" f" must have model_field." ) ########################################################################### # Marshmallow validation methods ########################################################################### def validate_create_request(self, req: falcon.Request, is_bulk=False): methods = self.Meta.methods payload = json.load(req.bounded_stream) if isinstance(payload.get(self.Meta.name), list): request_method = BULK_CREATE is_bulk = True else: request_method = CREATE if request_method not in methods: raise MethodNotAllowed() data = payload.get(self.Meta.name) if not data: raise BadRequest( f"Invalid schema, resource name is missing at the top level. " f"Your POST request has to look like: " f'{{"{self.Meta.name}": [{{"field_name": "field_value"}}] ' f'or {{"field_name": "field_value"}} }}' ) try: deserialized = self.load(data, many=is_bulk) except ValidationError as exc: raise BadRequest(exc.messages) req.stream = {self.Meta.name: deserialized} def validate_update_request(self, req: falcon.Request): methods = self.Meta.methods if UPDATE not in methods and BULK_UPDATE not in methods: raise MethodNotAllowed() payload = json.load(req.bounded_stream) data = payload.get(self.Meta.name) try: deserialized = self.load(data, partial=True, many=True) except ValidationError as exc: raise BadRequest(exc.messages) req.stream = {self.Meta.name: deserialized} ########################################################################### # Falcon methods ########################################################################### def on_patch( self, req: falcon.Request, resp: falcon.Response, *args, **kwargs ): """ Falcon method. PATCH-request entry point. Here is a database transaction opening. This is where authentication takes place (if auth class is pointed in `resource <#awokado.meta.ResourceMeta>`_) Then update method is run. """ with Transaction(DATABASE_URL, engine=persistent_engine) as t: session = t.session user_id, _ = self.auth(session, req, resp) self.validate_update_request(req) payload = req.stream data = payload[self.Meta.name] ids = get_ids_from_payload(self.Meta.model, data) if self.Meta.auth: self.Meta.auth.can_update(session, user_id, ids) self.audit_log( f"Update: {self.Meta.name}", payload, user_id, AUDIT_DEBUG ) result = self.update(session, payload, user_id) resp.body = json.dumps(result, default=str) def on_post(self, req: falcon.Request, resp: falcon.Response): """ Falcon method. POST-request entry point. Here is a database transaction opening. This is where authentication takes place (if auth class is pointed in `resource <#awokado.meta.ResourceMeta>`_) Then create method is run. """ with Transaction(DATABASE_URL, engine=persistent_engine) as t: session = t.session user_id, token = self.auth(session, req, resp) self.validate_create_request(req) payload = req.stream if self.Meta.auth: self.Meta.auth.can_create( session, payload, user_id, skip_exc=False ) self.audit_log( f"Create: {self.Meta.name}", payload, user_id, AUDIT_DEBUG ) result = self.create(session, payload, user_id) resp.body = json.dumps(result, default=str) def on_get( self, req: falcon.Request, resp: falcon.Response, resource_id: int = None, ): """ Falcon method. GET-request entry point. Here is a database transaction opening. This is where authentication takes place (if auth class is pointed in `resource <#awokado.meta.ResourceMeta>`_) Then read_handler method is run. It's responsible for the whole read workflow. """ with Transaction(DATABASE_URL, engine=persistent_engine) as t: session = t.session user_id, token = self.auth(session, req, resp) params = get_read_params(req, self.__class__) params["resource_id"] = resource_id result = self.read_handler(session, user_id, **params) resp.body = json.dumps(result, default=str) def on_delete( self, req: falcon.Request, resp: falcon.Response, resource_id: int = None, ): """ Falcon method. DELETE-request entry point. Here is a database transaction opening. This is where authentication takes place (if auth class is pointed in `resource <#awokado.meta.ResourceMeta>`_) Then delete method is run. """ with Transaction(DATABASE_URL, engine=persistent_engine) as t: session = t.session user_id, token = self.auth(session, req, resp) if DELETE not in self.Meta.methods: raise MethodNotAllowed() ids_to_delete = req.get_param_as_list("ids") data = [ids_to_delete, resource_id] if not any(data) or all(data): raise BadRequest( details=( "It should be a bulk delete (?ids=1,2,3) or delete" " of a single resource (v1/resource/1)" ) ) if not ids_to_delete: ids_to_delete = [resource_id] if self.Meta.auth: self.Meta.auth.can_delete(session, user_id, ids_to_delete) result = self.delete(session, user_id, ids_to_delete) resp.body = json.dumps(result, default=str) def auth(self, *args, **kwargs) -> AuthBundle: """This method should return (user_id, token) tuple""" return AuthBundle(0, "") def audit_log(self, *args, **kwargs): return def _check_model_exists(self): if not self.Meta.model: raise Exception( f"{self.__class__.__name__}.Meta.model field not set" ) ########################################################################### # Resource methods ########################################################################### def update( self, session: Session, payload: dict, user_id: int, *args, **kwargs ) -> dict: """ First of all, data is prepared for updating: Marshmallow load method for data structure deserialization and then preparing data for SQLAlchemy update query. Updates data with bulk_update_mappings sqlalchemy method. Saves many-to-many relationships. Returns updated resources with the help of read_handler method. """ self._check_model_exists() data = payload[self.Meta.name] data_to_update = self._to_update(data) ids = get_ids_from_payload(self.Meta.model, data_to_update) session.bulk_update_mappings(self.Meta.model, data_to_update) self._save_m2m(session, data, update=True) result = self.read_handler( session=session, user_id=user_id, filters=[FilterItem.create("id", OP_IN, ids)], ) return result def create(self, session: Session, payload: dict, user_id: int) -> dict: """ Create method You can override it to add your logic. First of all, data is prepared for creating: Marshmallow load method for data structure deserialization and then preparing data for SQLAlchemy create a query. Inserts data to the database (Uses bulky library if there is more than one entity to create). Saves many-to-many relationships. Returns created resources with the help of read_handler method. """ self._check_model_exists() # prepare data to insert data = payload[self.Meta.name] if isinstance(data, list): return self.bulk_create(session, user_id, data) data_to_insert = self._to_create(data) # insert to DB resource_id = session.execute( sa.insert(self.Meta.model) .values(data_to_insert) .returning(self.Meta.model.id) ).scalar() data["id"] = resource_id self._save_m2m(session, data) return self.read_handler( session=session, user_id=user_id, resource_id=resource_id ) def bulk_create(self, session: Session, user_id: int, data: list) -> dict: self._check_model_exists() data_to_insert = [self._to_create(i) for i in data] # insert to DB resource_ids = bulky.insert( session, self.Meta.model, data_to_insert, returning=[self.Meta.model.id], ) ids = [r.id for r in resource_ids] result = self.read_handler( session=session, user_id=user_id, filters=[FilterItem.create("id", OP_IN, ids)], ) return result def delete(self, session: Session, user_id: int, obj_ids: list): """ Simply deletes objects with passed identifiers """ self._check_model_exists() session.execute( sa.delete(self.Meta.model).where(self.Meta.model.id.in_(obj_ids)) ) return {} def _to_update(self, data: list) -> list: """ Prepare resource data for SQLAlchemy update query """ to_update_list = [] for data_line in data: to_update = {} for fn, v in data_line.items(): f = self.fields[fn] if isinstance(f, ToMany): continue model_field = f.metadata.get("model_field") if not model_field: continue to_update[model_field.key] = v to_update_list.append(to_update) return to_update_list def _to_create(self, data: dict) -> dict: """ Prepare resource data for SQLAlchemy create query """ to_create = {} for fn, v in data.items(): f = self.fields[fn] if isinstance(f, ToMany): continue model_field = f.metadata["model_field"] to_create[model_field.key] = v return to_create def read_handler( self, session: Session, user_id: int, include: list = None, filters: Optional[List[FilterItem]] = None, sort: list = None, resource_id: int = None, limit: int = None, offset: int = None, ) -> dict: ctx = ReadContext( session, self, user_id, include, filters, sort, resource_id, limit, offset, ) self.read__query(ctx) self.read__filtering(ctx) self.read__sorting(ctx) self.read__pagination(ctx) self.read__execute_query(ctx) if not ctx.obj_ids: if ctx.is_list: response = self.Response(self, is_list=ctx.is_list) return response.serialize() else: raise BadRequest("Object Not Found") self.read__includes(ctx) return self.read__serializing(ctx) def read__query(self, ctx: ReadContext): return ctx.read__query() def read__filtering(self, ctx: ReadContext): return ctx.read__filtering() def read__sorting(self, ctx: ReadContext): return ctx.read__sorting() def read__pagination(self, ctx: ReadContext): return ctx.read__pagination() def read__execute_query(self, ctx: ReadContext): return ctx.read__execute_query() def read__includes(self, ctx: ReadContext): return ctx.read__includes() def read__serializing(self, ctx: ReadContext) -> dict: return ctx.read__serializing() def get_related_model(self, field: Union[ToOne, ToMany]): resource_name = field.metadata["resource"] resource = self.RESOURCES[resource_name] return resource.Meta.model def _process_to_many_field(self, field: ToMany) -> M2MMapping: related_model = self.get_related_model(field) resource_model = self.Meta.model model_field = field.metadata["model_field"] field_obj = M2MMapping(related_model=related_model) if not isinstance(model_field, sa.Column): model_field = getattr( model_field.parent.persist_selectable.c, model_field.key ) if related_model.__table__ == model_field.table: for fk in model_field.table.foreign_keys: if fk.column.table == resource_model.__table__: field_obj.left_fk_field = fk.parent break else: field_obj.secondary = model_field.table for fk in model_field.table.foreign_keys: if fk.column.table == related_model.__table__: field_obj.right_fk_field = fk.parent elif fk.column.table == resource_model.__table__: field_obj.left_fk_field = fk.parent return field_obj @cached_property def _to_many_fields(self) -> List[Tuple[str, M2MMapping]]: return [ (field_name, self._process_to_many_field(field)) for field_name, field in self.fields.items() if isinstance(field, ToMany) ] @staticmethod def check_exists( session: Session, table: sa.Table, ids: list, field_name: str ): result = session.execute( sa.select([table.c.id]).where(table.c.id.in_(ids)) ) missed = set(ids) - {item.id for item in result} if missed: raise BadRequest( { field_name: f"objects with id {','.join(map(str, missed))} does not exist" } ) @staticmethod def _get_m2m(field: M2MMapping, field_name: str, data) -> List[dict]: m2m = [] for obj in data: rel_ids = obj.get(field_name) or () for rel_id in rel_ids: m2m.append( { field.left_fk_field: obj.get("id"), field.right_fk_field: rel_id, } ) return m2m def _save_m2m( self, session: Session, data: Union[list, dict], update: bool = False ) -> None: data = data if utils.is_collection(data) else [data] for field_name, field in self._to_many_fields: if field.secondary is not None: if update: session.execute( sa.delete(field.secondary).where( field.left_fk_field.in_( [obj.get("id") for obj in data] ) ) ) many_2_many = self._get_m2m(field, field_name, data) if many_2_many: self.check_exists( session, field.related_model.__table__, [obj[field.right_fk_field] for obj in many_2_many], field_name, ) session.execute( sa.insert(field.secondary).values(many_2_many) ) ``` #### File: awokado/tests/base.py ```python import unittest from unittest import mock import sqlalchemy as sa from clavis import Transaction from falcon import testing from sqlalchemy.orm import Session as _Session from sqlalchemy.pool import NullPool import awokado.db from tests.test_app import models as m class Session(_Session): def commit(self): self.flush() self.expire_all() def rollback(self): raise AssertionError("rollback is not supported within test run") class DbTest(unittest.TestCase): longMessage = True # XXX: assertXXX() message will be APPENDED to default def __setup_engine(self): self._engine = sa.create_engine( awokado.db.DATABASE_URL, poolclass=NullPool ) def setUp(self): import warnings warnings.filterwarnings("error") super(DbTest, self).setUp() self.__setup_engine() self.__db_conn = self._engine.connect() try: self.__db_txn = self.__db_conn.begin() if not hasattr(self, "__session") or not self.__session: self.__session = Session(bind=self.__db_conn) except: self.__db_conn.close() raise def tearDown(self): try: try: self.__db_txn.rollback() finally: self.__db_conn.close() finally: super(DbTest, self).tearDown() @property def session(self): return self.__session class BaseAPITest(testing.TestCase, DbTest): def patch_session(self, session_patch): class X: session = self.session mock_client = mock.MagicMock(spec=Transaction) mock_client.__enter__.return_value = X session_patch.return_value = mock_client def create_author(self, name): first_name, last_name = name.split() author_id = self.session.execute( sa.insert(m.Author) .values( {m.Author.first_name: first_name, m.Author.last_name: last_name} ) .returning(m.Author.id) ).scalar() return author_id def create_tag(self, name): tag_id = self.session.execute( sa.insert(m.Tag).values({m.Tag.name: name}).returning(m.Tag.id) ).scalar() return tag_id ``` #### File: awokado/tests/test_author.py ```python from unittest.mock import patch from tests.base import BaseAPITest from .test_app.routes import api class AuthorTest(BaseAPITest): def setUp(self): super().setUp() self.app = api @patch("awokado.resource.Transaction", autospec=True) def test_create(self, session_patch): self.patch_session(session_patch) payload = {"author": {"first_name": "Steven", "last_name": "King"}} api_response = self.simulate_post("/v1/author", json=payload) self.assertEqual(api_response.status, "200 OK", api_response.text) id_ = api_response.json["author"][0]["id"] self.assertIsNotNone(id_) self.assertDictEqual( api_response.json["author"][0], {"id": id_, "name": "<NAME>", "books_count": 0, "books": []}, ) @patch("awokado.resource.Transaction", autospec=True) def test_update(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") payload = { "author": [ {"id": author_id, "first_name": "Steven", "last_name": "King"} ] } api_response = self.simulate_patch("/v1/author/", json=payload) self.assertEqual(api_response.status, "200 OK", api_response.json) self.assertDictEqual( api_response.json["payload"]["author"][0], { "id": author_id, "name": "<NAME>", "books_count": 0, "books": [], }, ) @patch("awokado.resource.Transaction", autospec=True) def test_delete(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") api_response = self.simulate_delete(f"/v1/author/{author_id}") self.assertEqual(api_response.status, "200 OK", api_response.json) self.assertDictEqual(api_response.json, dict()) @patch("awokado.resource.Transaction", autospec=True) def test_read(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") api_response = self.simulate_get("/v1/author/") self.assertEqual(api_response.status, "200 OK", api_response.json) self.assertDictEqual( api_response.json["payload"]["author"][0], { "id": author_id, "name": "<NAME>", "books_count": 0, "books": [], }, ) ``` #### File: awokado/tests/test_forbidden_book.py ```python import sqlalchemy as sa from unittest.mock import patch from tests.base import BaseAPITest from .test_app import models as m from .test_app.resources.forbidden_book import ForbiddenBookResource from .test_app.routes import api class ForbiddenBookTest(BaseAPITest): def setUp(self): super().setUp() self.app = api @patch("awokado.resource.Transaction", autospec=True) def test_create(self, session_patch): self.patch_session(session_patch) payload = {"forbidden_book": {"title": "None"}} api_response = self.simulate_post("/v1/forbidden_book", json=payload) self.assertEqual( api_response.status, "403 Forbidden", api_response.text ) self.assertEqual(api_response.status_code, 403, api_response.text) self.assertEqual( api_response.json, { "status": "403 Forbidden", "title": "403 Forbidden", "code": "create-forbidden", "detail": "The creation of a resource forbidden", }, ) @patch("awokado.resource.Transaction", autospec=True) def test_update(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") book_id = self.session.execute( sa.insert(m.Book) .values( {m.Book.title: "The Dead Zone", m.Book.author_id: author_id} ) .returning(m.Book.id) ).scalar() payload = { "forbidden_book": [ { "id": book_id, "description": ( "Waking up from a five-year coma after " "a car accident, former schoolteacher" ), } ] } api_response = self.simulate_patch("/v1/forbidden_book/", json=payload) self.assertEqual( api_response.status, "403 Forbidden", api_response.text ) self.assertEqual(api_response.status_code, 403, api_response.text) self.assertEqual( api_response.json, { "status": "403 Forbidden", "title": "403 Forbidden", "code": "update-forbidden", "detail": "Change the resource is forbidden", }, ) @patch("awokado.resource.Transaction", autospec=True) def test_delete(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") book_id = self.session.execute( sa.insert(m.Book) .values( {m.Book.title: "The Dead Zone", m.Book.author_id: author_id} ) .returning(m.Book.id) ).scalar() api_response = self.simulate_delete(f"/v1/forbidden_book/{book_id}") self.assertEqual( api_response.status, "403 Forbidden", api_response.text ) self.assertEqual(api_response.status_code, 403, api_response.text) self.assertEqual( api_response.json, { "status": "403 Forbidden", "title": "403 Forbidden", "code": "delete-forbidden", "detail": "Delete the resource is forbidden", }, ) @patch("awokado.resource.Transaction", autospec=True) def test_read(self, session_patch): self.patch_session(session_patch) author_id = self.create_author("<NAME>") book_id = self.session.execute( sa.insert(m.Book) .values( {m.Book.title: "The Dead Zone", m.Book.author_id: author_id} ) .returning(m.Book.id) ).scalar() api_response = self.simulate_get("/v1/forbidden_book/") self.assertEqual( api_response.status, "403 Forbidden", api_response.text ) self.assertEqual(api_response.status_code, 403, api_response.text) self.assertEqual( api_response.json, { "status": "403 Forbidden", "title": "403 Forbidden", "code": "read-forbidden", "detail": "Read the resource is forbidden", }, ) @patch("awokado.resource.Transaction", autospec=True) def test_forbidden_auth_skip_exception(self, session_patch): self.assertFalse( ForbiddenBookResource.Meta.auth.can_create( None, None, None, skip_exc=True ) ) self.assertFalse( ForbiddenBookResource.Meta.auth.can_read(None, None, skip_exc=True) ) self.assertFalse( ForbiddenBookResource.Meta.auth.can_update( None, None, None, skip_exc=True ) ) self.assertFalse( ForbiddenBookResource.Meta.auth.can_delete( None, None, None, skip_exc=True ) ) ``` #### File: awokado/tests/test_store_stats.py ```python from unittest.mock import patch import sqlalchemy as sa from awokado.exceptions import IdFieldMissingError from tests.base import BaseAPITest from tests.test_app import models as m from tests.test_app.routes import api class StoreStatsTest(BaseAPITest): def setup_dataset(self): self.store_id = self.session.execute( sa.insert(m.Store) .values({m.Store.name: "bookstore"}) .returning(m.Store.id) ).scalar() self.book_id_1 = self.session.execute( sa.insert(m.Book) .values({m.Book.title: "new", m.Book.store_id: self.store_id}) .returning(m.Book.id) ).scalar() self.book_id_2 = self.session.execute( sa.insert(m.Book) .values({m.Book.title: "new 2", m.Book.store_id: self.store_id}) .returning(m.Book.id) ).scalar() def setUp(self): super().setUp() self.app = api self.setup_dataset() @patch("awokado.resource.Transaction", autospec=True) def test_read(self, session_patch): self.patch_session(session_patch) api_response = self.simulate_get(f"/v1/store_stats/{self.store_id}") self.assertEqual( api_response.status, "400 Bad Request", api_response.text ) self.assertEqual( api_response.json["detail"], IdFieldMissingError().details ) api_response = self.simulate_get("/v1/store_stats/") self.assertEqual( api_response.status, "400 Bad Request", api_response.text ) self.assertEqual( api_response.json["detail"], IdFieldMissingError().details ) ```
{ "source": "57r4n63r/dwm-status", "score": 3 }
#### File: dwm-status/Core/Actions.py ```python import sys class Actions: arguments = {} core = None def __init__(self,core): self.core = core for arg in sys.argv : if arg.find('--') != -1 : argname = arg.replace('--','').split('=')[0] self.arguments[argname] = arg.split('=')[1] self.setDefault() def handle(self): if self.arguments['output'] == 'print' : self.core.print() return if self.arguments['output'] == 'xsetroot' : self.core.xsetroot() return raise SystemExit('[error] Selected output is invalid') def setDefault(self): try: self.arguments['output'] if self.arguments['output'] == '' : self.arguments['output'] = 'print' except KeyError: self.arguments['output'] = 'print' ``` #### File: Modules/Network/Module.py ```python import re from subprocess import call, check_output from Core.Module.AbstractModule import AbstractModule from Core.Core import Core from Core.Icons import Icons import time class Network(AbstractModule): configurations = None getWanIpCommand = ['curl','-s'] getLanIpCommand = ['ip','addr','show'] interfaceStatePath = '/sys/class/net/{interface}/operstate' wanIp = None additionnal = [] interfaces = [] wifiIcon = 'wifi_good' wiredIcon = 'wired' wanLastChecked = False order=40 def init(self): core = Core.getInstance() self.configurations = core.configurations if 'wanProvider' in self.configurations['networking']: self.getWanIpCommand.append(self.configurations['networking']['wanProvider']) if("additionnal" in self.configurations['networking']): self.additionnal = self.configurations['networking']['additionnal'] if 'wired' in self.configurations['networking']: self.interfaces.append(self.configurations['networking']['wired']) if 'wifi' in self.configurations['networking']: self.interfaces.append(self.configurations['networking']['wifi']) if 'wifi-icon' in self.configurations['networking']: self.wifiIcon = self.configurations['networking']['wifi-icon'] if 'wired-icon' in self.configurations['networking']: self.wiredIcon = self.configurations['networking']['wired-icon'] self.interfaces = [*self.interfaces,*self.additionnal] def isInterfaceUp(self, interface): path = self.interfaceStatePath.replace('{interface}',interface) command = ['cat',path] output = check_output(command).strip().decode('utf-8') return True if output == 'up' else False def getWAN(self): if 'wanProvider' in self.configurations['networking']: if self.wanLastChecked: now = time.time() diff = now - self.wanLastChecked if diff > 300: #5 minutes self.wanLastChecked = time.time() self.wanIp = check_output(self.getWanIpCommand).strip().decode('utf-8') else: self.wanLastChecked = time.time() self.wanIp = check_output(self.getWanIpCommand).strip().decode('utf-8') return self.wanIp def getLan(self): ips = []; for interface in self.interfaces: if(self.isInterfaceUp(interface)): currentLanIpCommand = self.getLanIpCommand[:] currentLanIpCommand.append(interface) output = check_output(currentLanIpCommand).strip().decode('utf-8') ip = re.findall('(inet .+/)',output)[0].replace('inet ','').replace('/','') ips.append(ip) return ' | '.join(ips) def getStates(self): icons = [] if 'wired' in self.configurations['networking']: wired = self.configurations['networking']['wired'] else: wired = 'off' if 'wifi' in self.configurations['networking']: wifi = self.configurations['networking']['wifi'] else: wifi = 'off' if(wifi != 'off'): if(self.isInterfaceUp(wifi)): icons.append(Icons.get(self.wifiIcon)) if(wired != 'off'): if(self.isInterfaceUp(wired)): icons.append(Icons.get(self.wiredIcon)) return ' '.join(icons) def getString(self): output = [] wan = self.getWAN() lan = self.getLan() states = self.getStates() if wan != None: output.append(wan) if lan != "": output.append(lan) if states != "": output.append(states) return ' | '.join(output) ``` #### File: Modules/Power/Module.py ```python import os from Core.Module.AbstractModule import AbstractModule from subprocess import call, check_output from Core.Core import Core from Core.Icons import Icons class Power(AbstractModule): capacityPath = '/sys/class/power_supply/{battery}/capacity' statusPath = '/sys/class/power_supply/{battery}/status' chargeNowPath = '/sys/class/power_supply/{battery}/charge_now' chargeFullPath = '/sys/class/power_supply/{battery}/charge_full' batteryName = None order = 20 def init(self): core = Core.getInstance() if 'power' in core.configurations and 'battery' in core.configurations['power'] : self.batteryName = core.configurations['power']['battery'] self.capacityPath = self.capacityPath.replace('{battery}',self.batteryName) self.statusPath = self.statusPath.replace('{battery}',self.batteryName) self.chargeNowPath = self.chargeNowPath.replace('{battery}',self.batteryName) self.chargeFullPath = self.chargeFullPath.replace('{battery}',self.batteryName) def getValue(self,path): return check_output( ['cat', path]).strip().decode('utf-8') def getString(self): if self.batteryName == None : return Icons.get('battery_pluged') capacity = self.getValue(self.capacityPath) status = self.getValue(self.statusPath) chargeNow = self.getValue(self.chargeNowPath) chargeFull = self.getValue(self.chargeFullPath) statusIcon = Icons.get( 'battery_unpluged' ) level = "100%" if capacity == "0" or status == "Charging": statusIcon = Icons.get( 'battery_pluged' ) floatLevel = float(chargeNow) / float(chargeFull) * 100 level = str(int(floatLevel)) + '%' return level+' | '+statusIcon ```
{ "source": "57uff3r/pearsondictionary", "score": 3 }
#### File: pearsondictionary/pearsondictionary/tests.py ```python try: from .code import PearsonDictionary except ImportError: from code import PearsonDictionary import unittest COMMON_TEST_WORD = 'dog' COMMON_TEST_WORD_NOUN = 'noun' class FullTest(unittest.TestCase): def test_1(self): pd = PearsonDictionary() result = pd.get_definitions(COMMON_TEST_WORD) self.assertTrue(COMMON_TEST_WORD in result, msg='Low level api request with common word 2') len_short = len(result) self.assertTrue(len_short > 0) result = pd.get_definitions(COMMON_TEST_WORD, load_all_items=True) self.assertTrue(COMMON_TEST_WORD in result, msg='Low level api with recursive requests') len_full = len(result) self.assertTrue(len_full > 0) self.assertTrue(len_full > len_short, msg='Full answer vs short answer') result = pd.get_definitions(COMMON_TEST_WORD, pos=COMMON_TEST_WORD_NOUN) self.assertTrue(COMMON_TEST_WORD in result, msg='Low level api request with common word and pos = noun') if __name__ == '__main__': unittest.main() ```
{ "source": "57ur14/DAC-clustering-PoC", "score": 3 }
#### File: 57ur14/DAC-clustering-PoC/count_files_requiring_analysis.py ```python import os import pickle from multiprocessing import Process, Manager files = {} clusters = { 'imphash_clusters': {}, 'icon_clusters': {}, 'resource_clusters': {}, 'tlsh_clusters': {} } def load_from_pickles(folder, load_clusters=False): """ Load data from pickles Folder should be the path to a folder where the files "files.pkl" and "clusters.pkl" will be stored. Suggested values: pickles/extracted/ pickles/clustered/ pickles/validated/ If load_clusters is True, clusters will also be loaded Returns False on failure to load pickles and True on success """ global files global clusters files_path = os.path.join(folder, 'files.pkl') clusters_path = os.path.join(folder, 'clusters.pkl') if not os.path.exists(files_path): print("Files pickle not found. Perform feature extraction before attempting to cluster / validate.") return False else: with open(files_path, 'rb') as picklefile: files = pickle.load(picklefile) if load_clusters and not os.path.exists(clusters_path): print("Clusters pickle not found. Perform training before attempting to validate.") return False elif load_clusters: with open(clusters_path, 'rb') as picklefile: clusters = pickle.load(picklefile) return True def total_files_to_label(files): """ Identify the number of files that do not have a label. Returns the number of unlabelled, incoming files. """ total = 0 for fileinfo in files.values(): if fileinfo['incoming'] and fileinfo['given_label'] is None: total += 1 return total def fill_cluster_details(cluster, files): """ Count the number of incoming files, packed incoming files, unlabelled incoming and labelled incoming files. Add these properties to the cluster. """ incoming = 0 unlabelled = 0 packed = 0 for sha in cluster['items']: if files[sha]['incoming']: incoming += 1 if files[sha]['given_label'] is None: unlabelled += 1 if files[sha]['obfuscation'] is not None: packed += 1 labelled = incoming - unlabelled cluster['total_incoming'] = incoming cluster['packed_incoming'] = packed cluster['unlabelled_files'] = unlabelled cluster['labelled_files'] = labelled def is_good_quality(cluster): """ Evaluate the quality of a cluster. Returns True of the quality is evaluated to be good, and False if the quality is evaluated to be poor. """ if (cluster['total_incoming'] != 0 and cluster['label'] is None and cluster['unlabelled_files'] > cluster['labelled_files']): return True else: return False def get_unlabelled(cluster): """ Return the value contained in the key "unlabelled_files" """ return cluster['unlabelled_files'] def get_label_from_in_depth_analysis(fileinfo): """ Simulated in-depth analysis. Returns the real label of the file. """ return fileinfo['family'] def label_clusters_of_file(fileinfo, files, clusters): """ Iterate over all clusters a file is part of, and which do not have a label. If a cluster is of good quality, use the label of the given file to label the cluster and the files contained in the file. """ labelled = 0 correctly = 0 incorrectly = 0 results = [] if fileinfo['imphash'] is not None: cluster = clusters['imphash_clusters'][fileinfo['imphash']] if is_good_quality(cluster): results.append(label_cluster_and_files(fileinfo['given_label'], cluster, files, clusters)) if fileinfo['icon_hash'] is not None: cluster = clusters['icon_clusters'][fileinfo['icon_hash']] if is_good_quality(cluster): results.append(label_cluster_and_files(fileinfo['given_label'], cluster, files, clusters)) for sha in fileinfo['contained_resources']: cluster = clusters['resource_clusters'][sha] if is_good_quality(cluster): results.append(label_cluster_and_files(fileinfo['given_label'], cluster, files, clusters)) if fileinfo['tlsh_cluster'] is not None: cluster = clusters['tlsh_clusters'][fileinfo['tlsh_cluster']] if is_good_quality(cluster): results.append(label_cluster_and_files(fileinfo['given_label'], cluster, files, clusters)) for l, c, i in results: labelled += l correctly += c incorrectly += i return labelled, correctly, incorrectly def label_cluster_and_files(label, cluster, files, clusters): """ Use the provided label to label a given cluster. Then iterate over files in the cluster. If a file does not have a label, label the file and propagate labelling to the clusters of that file. """ l = 0 c = 0 i = 0 cluster['label'] = label for sha in cluster['items']: fileinfo = files[sha] if fileinfo['given_label'] is None: fileinfo['given_label'] = label if fileinfo['incoming']: if fileinfo['given_label'] == fileinfo['family']: c += 1 else: i += 1 l += 1 l2, c2, i2 = label_clusters_of_file(fileinfo, files, clusters) l += l2 c += c2 i += i2 return l, c, i if __name__ == '__main__': successfully_loaded = load_from_pickles('pickles/validated/', True) if not successfully_loaded: print("Run training (-T or -E + -C) and validation (-V) first") raise SystemExit num_files_to_label = total_files_to_label(files) files_analysed_in_depth = 0 correctly_labelled = 0 mislabelled = 0 print("Number of files to label before: " + str(num_files_to_label)) still_more = True while still_more: cluster_list = [] for cluster_type in clusters.values(): for cluster in cluster_type.values(): fill_cluster_details(cluster, files) if is_good_quality(cluster): cluster_list.append(cluster) cluster_list.sort(key=get_unlabelled) if cluster_list: prioritised = cluster_list.pop() else: break representative = None for sha in prioritised['items']: fileinfo = files[sha] if fileinfo['incoming']: if fileinfo['obfuscation'] is None: # Representative file should ideally # not be obfuscated representative = fileinfo break elif representative is None: # If no non-obfuscated file was available, # use an obfuscated file as representative file. representative = fileinfo # If an representative file was identified (should be true) if representative is not None: label = get_label_from_in_depth_analysis(representative) representative['given_label'] = label files_analysed_in_depth += 1 num_files_to_label -= 1 labelled, correctly, incorrectly = label_clusters_of_file(representative, files, clusters) num_files_to_label -= labelled correctly_labelled += correctly mislabelled += incorrectly if not cluster_list: still_more = False total_in_depth_analysis = files_analysed_in_depth + num_files_to_label print("Files sent to simulated in-depth analysis: " + str(files_analysed_in_depth)) print("Files correctly labelled through induction: " + str(correctly_labelled)) print("Files incorrectly labelled through induction: " + str(mislabelled)) print("Number of files to label after: " + str(num_files_to_label)) print("Files to send to in-depth analysis in total: " + str(total_in_depth_analysis)) ``` #### File: 57ur14/DAC-clustering-PoC/run.py ```python import argparse import configparser import multiprocessing import os import pickle import queue import time from multiprocessing.managers import BaseManager import clustering import feature_extraction # Data structure for storing files files = {} clusters = { 'imphash_clusters': {}, 'icon_clusters': {}, 'resource_clusters': {}, 'tlsh_clusters': {} } # Retreive configuration config = configparser.ConfigParser() config.read('config.ini') PRINT_PROGRESS = config.getboolean('general', 'print_progress') QUEUE_MANAGER_IP = config.get('queue_managers', 'ip') JOB_MANAGER_PORT = config.getint('queue_managers', 'job_port') DONE_MANAGER_PORT = config.getint('queue_managers', 'done_port') QUEUE_MANAGER_KEY = config.get('queue_managers', 'key').encode('utf-8') QUEUE_TIMEOUT = config.getint('queue_managers', 'timeout') CLUSTER_WITH_VHASH = config.getboolean('clustering', 'cluster_with_vhash') if CLUSTER_WITH_VHASH: clusters['vhash_clusters'] = {} # Define queue manager class class QueueManager(BaseManager): pass QueueManager.register('get_queue') def serve_simple_queue(ip, port, key): """ Start a queue on the specified port Start as new thread/process as the function will run "serve_forever()". """ simple_queue = queue.Queue() QueueManager.register('get_queue', callable=lambda:simple_queue) manager = QueueManager(address=(ip, port), authkey=key) server = manager.get_server() server.serve_forever() def feature_extraction_worker(training=False): """ Connect to feature extraction (job) queue and clustering (job done) queue If training is True, the file will be marked as being part of the training data set. """ job_manager = QueueManager(address=(QUEUE_MANAGER_IP, JOB_MANAGER_PORT), authkey=QUEUE_MANAGER_KEY) done_manager = QueueManager(address=(QUEUE_MANAGER_IP, DONE_MANAGER_PORT), authkey=QUEUE_MANAGER_KEY) try: job_manager.connect() done_manager.connect() except: print("Cannot connect to queue manager. Please check the configuration.") else: job_queue = job_manager.get_queue() done_queue = done_manager.get_queue() while True: try: file_to_cluster = job_queue.get(timeout=QUEUE_TIMEOUT) except EOFError: print("Queue not available. Please check if the feature extraction queue manager is still running.") break except queue.Empty: # Stop when queue is empty break else: result = feature_extraction.analyse_file(file_to_cluster['path'], family=file_to_cluster['family'], incoming=True, training=training) send_to_done_queue(result, done_queue) def send_to_done_queue(fileinfo, done_queue): """ Recursively send files to the queue of completed feature extraction jobs """ if fileinfo is not None: for contained_info in fileinfo['contained_pe_fileinfo'].values(): send_to_done_queue(contained_info, done_queue) fileinfo.pop('contained_pe_fileinfo') done_queue.put(fileinfo) def add_files_for_extraction(*file_list): """ Add files to the queue of files that should have their features extracted and their data sent to clustering """ job_manager = QueueManager(address=(QUEUE_MANAGER_IP, JOB_MANAGER_PORT), authkey=QUEUE_MANAGER_KEY) try: # Connect to feature extraction queue job_manager.connect() except: print("Cannot connect to queue manager. Make sure the daemon is running and the configuration is correct.") else: job_queue = job_manager.get_queue() for item in file_list: # Send all files in the list to the feature extraction queue job_queue.put(item) def get_done_queue(): """ Retrieve a queue object from a queue manager created with the options provided in the config file. """ done_manager = QueueManager(address=(QUEUE_MANAGER_IP, DONE_MANAGER_PORT), authkey=QUEUE_MANAGER_KEY) try: done_manager.connect() except: print("Cannot connect to queue manager. Please try again or check the configuration.") raise SystemExit return done_manager.get_queue() def get_fileinfo_from_done_queue(done_queue): """ Returns one fileinfo/file feature dictionary from the provided queue object. """ try: # Return file metadata the done queue return done_queue.get(timeout=QUEUE_TIMEOUT) except EOFError: print("Queue not available. Please check if the queue manager is still running.") return None except queue.Empty: if PRINT_PROGRESS: print("Done-queue empty. Stopping collection.") return None def collect_features(files): """ Retrieve fileinfo/file feature dictionaries from the feature extraction workers and store the feature information in the global "files" data structure. """ incoming_files_parsed = 0 done_queue = get_done_queue() # Attempt to retrieve a file from the done queue fileinfo = get_fileinfo_from_done_queue(done_queue) # Continue while it is possible to retrieve a file while fileinfo is not None: fileinfo['training'] = True if fileinfo['incoming']: incoming_files_parsed += 1 if PRINT_PROGRESS: print("Processing incoming file number: " + str(incoming_files_parsed)) # If file was successfully retrieved from queue if fileinfo['sha256'] in files.keys(): # If file has been received and clustered before # Merge new data into the existing data. if PRINT_PROGRESS: print("Merging file with existing information " + fileinfo['sha256']) current_file = files[fileinfo['sha256']] if fileinfo['incoming']: current_file['incoming'] = True else: # If file is not incoming (was unpacked from another file) # Update "unpacks_from" since it might be contained in multiple different binaries current_file['unpacks_from'].update(fileinfo['unpacks_from']) else: # If file has not been received before, add data if PRINT_PROGRESS: print("Storing file " + fileinfo['sha256']) # Add file information to global data structure files[fileinfo['sha256']] = fileinfo # Attempt to retrieve next file and continue loop fileinfo = get_fileinfo_from_done_queue(done_queue) def cluster_and_validate_incoming(files, clusters): """ Cluster and perform validation on files that are in the feature extraction job done queue. """ done_queue = get_done_queue() incoming_files_parsed = 0 correctly_labelled = 0 incorrectly_labelled = 0 not_labelled = 0 labelled_packed = 0 not_labelled_packed = 0 fast_clustered = 0 fast_clustered_incoming = 0 slow_clustered = 0 slow_clustered_incoming = 0 # Attempt to retrieve a file from the done queue fileinfo = get_fileinfo_from_done_queue(done_queue) # Continue while it is possible to retrieve a file while fileinfo is not None: if fileinfo['incoming']: incoming_files_parsed += 1 if PRINT_PROGRESS: print("Clustering incoming file number: " + str(incoming_files_parsed)) # If file was successfully retrieved from queue if fileinfo['sha256'] in files.keys(): # If file has been received and clustered before # Merge new data into the existing data. if PRINT_PROGRESS: print("Merging file with existing information " + fileinfo['sha256']) current_file = files[fileinfo['sha256']] if fileinfo['incoming']: current_file['incoming'] = True else: # If file is not incoming (was unpacked from another file) # Update "unpacks_from" since it might be contained in multiple different binaries current_file['unpacks_from'].update(fileinfo['unpacks_from']) else: # If file has not been received before, add data if PRINT_PROGRESS: print("Storing file " + fileinfo['sha256']) # Add file to global data structure files[fileinfo['sha256']] = fileinfo # Cluster the file if clustering.cluster_file(fileinfo, files, clusters): fast_clustered += 1 if fileinfo['incoming']: fast_clustered_incoming += 1 else: slow_clustered += 1 if fileinfo['incoming']: slow_clustered_incoming += 1 # Label the file clustering.label_file(fileinfo, files, clusters) if fileinfo['incoming']: # Check if correctly labelled and store results if fileinfo['given_label'] is not None: if fileinfo['family'] == fileinfo['given_label']: correctly_labelled += 1 else: incorrectly_labelled += 1 if fileinfo['obfuscation']: labelled_packed += 1 else: not_labelled += 1 if fileinfo['obfuscation'] is not None: not_labelled_packed += 1 # Attempt to retrieve next file and continue loop fileinfo = get_fileinfo_from_done_queue(done_queue) # Return statistics: return { 'correctly_labelled': correctly_labelled, 'incorrectly_labelled': incorrectly_labelled, 'not_labelled': not_labelled, 'not_labelled_packed': not_labelled_packed, 'labelled_packed': labelled_packed, 'incoming_files_parsed': incoming_files_parsed, 'fast_clustered': fast_clustered, 'fast_clustered_incoming': fast_clustered_incoming, 'slow_clustered': slow_clustered, 'slow_clustered_incoming': slow_clustered_incoming } def save_to_pickles(folder): """ Save data to pickles to allow later processing. Folder should be the path to a folder where the files "files.pkl" and "clusters.pkl" will be stored. Suggested values for folder: pickles/extracted/ pickles/clustered/ pickles/validated/ """ global files global clusters if not os.path.exists(folder): os.makedirs(folder) files_path = os.path.join(folder, 'files.pkl') clusters_path = os.path.join(folder, 'clusters.pkl') with open(files_path, 'wb') as picklefile: pickle.dump(files, picklefile) with open(clusters_path, 'wb') as picklefile: pickle.dump(clusters, picklefile) def load_from_pickles(folder, load_clusters=False): """ Load data from pickles Folder should be the path to a folder where the files "files.pkl" and "clusters.pkl" will be stored. Suggested values: pickles/extracted/ pickles/clustered/ pickles/validated/ If load_clusters is True, clusters will also be loaded Returns False on failure to load pickles and True on success """ global files global clusters files_path = os.path.join(folder, 'files.pkl') clusters_path = os.path.join(folder, 'clusters.pkl') if not os.path.exists(files_path): print("Files pickle not found. Perform feature extraction before attempting to cluster / validate.") return False else: with open(files_path, 'rb') as picklefile: files = pickle.load(picklefile) if load_clusters and not os.path.exists(clusters_path): print("Clusters pickle not found. Perform training before attempting to validate.") return False elif load_clusters: with open(clusters_path, 'rb') as picklefile: clusters = pickle.load(picklefile) return True # If main script (not another thread/process) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run feature extraction/clustering') parser.add_argument('-N', '--number-of-workers', type=int, default=multiprocessing.cpu_count(), help='Integer specifying the number of feature extraction threads') parser.add_argument('-E', '--extraction-list', help='Path to a text file containing filepaths to files that should have their features extracted (for clustering), where each line consists of <path> <family>. Path must not contain any spaces.') parser.add_argument('-C', '--cluster', action='store_true', help='Do clustering on files where features have been extracted.') parser.add_argument('-T', '--train-list', help='Equivalent of -E # -C. Path to a text file containing filepaths to files in training set, where each line consists of <path> <family>. Path must not contain any spaces.') parser.add_argument('-V', '--validation-list', help='Path to a text file containing filepaths to files in validation (testing) set, where each line consists of <path> <family>. Path must not contain any spaces.') args = parser.parse_args() # Fill list with files that should be sent to analysis files_for_analysis = [] filename = None mark_as_training = False do_extraction = False do_clustering = args.cluster do_validation = False if args.train_list is not None: filename = args.train_list mark_as_training = True do_extraction = True do_clustering = True if args.extraction_list is not None: filename = args.extraction_list mark_as_training = True do_extraction = True if args.validation_list is not None: filename = args.validation_list do_validation = True if do_extraction or do_validation: # Load paths and families from file and process the files with open(filename, 'r') as infile: lines = infile.read().splitlines() for line in lines: path, fam = line.split(' ') files_for_analysis.append({'path': path, 'family': fam}) number_of_files = len(files_for_analysis) if not number_of_files: print("No files to analyse") raise SystemExit # If filepaths have been loaded # Create queue daemon for files to perform feature extraction on multiprocessing.Process(target=serve_simple_queue, args=(QUEUE_MANAGER_IP, JOB_MANAGER_PORT, QUEUE_MANAGER_KEY), daemon=True).start() # Create queue daemon for files to perform clustering on multiprocessing.Process(target=serve_simple_queue, args=(QUEUE_MANAGER_IP, DONE_MANAGER_PORT, QUEUE_MANAGER_KEY), daemon=True).start() # Sleep for 0.2 second to ensure queues are running time.sleep(0.2) multiprocessing.Process(target=add_files_for_extraction, args=(files_for_analysis), daemon=True).start() # Create a thread that retrieves files from feature extraction queue, # extracts their features and adds them to the clustering queue. for i in range(args.number_of_workers): multiprocessing.Process(target=feature_extraction_worker, args=(mark_as_training,), daemon=True).start() if do_extraction: # Store files coming from feature extraction job done queue. collect_features(files) # Save file features to pickles save_to_pickles('pickles/extracted/') if do_clustering: # Load file features from pickles if do_extraction or load_from_pickles('pickles/extracted/'): # Cluster the files based on extracted features clustering.cluster_files(files, clusters) # Label the created clusters clustering.label_clusters(files, clusters) clustering_statistics = clustering.analyse_clustered_files(files) clustering_statistics.update(clustering.analyse_clusters(files, clusters)) for key, val in clustering_statistics.items(): print(str(key) + ": " + str(val)) # Save updated file information and clusters to pickles. save_to_pickles('pickles/clustered/') if do_validation: # Load files and clusters from training if load_from_pickles('pickles/clustered/', True): # Perform feature extraction, cluster and label # files coming from feature extraction job done queue. validation_statistics = cluster_and_validate_incoming(files, clusters) # Calculate number of files not parsed validation_statistics['non_parsed_files'] = number_of_files - validation_statistics['incoming_files_parsed'] # Collect statistics on clusters after validation validation_statistics.update(clustering.analyse_clustered_files(files)) validation_statistics.update(clustering.analyse_clusters(files, clusters)) # Print statistics when done: for key, val in validation_statistics.items(): print(str(key) + ": " + str(val)) # Save updated file information and clusters to pickles save_to_pickles('pickles/validated/') ``` #### File: 57ur14/DAC-clustering-PoC/unpacking.py ```python import configparser import hashlib import os import shutil import subprocess import sys import time config = configparser.ConfigParser() config.read('config.ini') STORE_UNPACKED = config.getboolean('unpacking', 'store_unpacked') if STORE_UNPACKED: UNPACKED_DIRECTORY = config.get('unpacking', 'directory') # Create necessary directory if it does not exist if STORE_UNPACKED and not os.path.exists(UNPACKED_DIRECTORY): os.makedirs(UNPACKED_DIRECTORY) def detect_obfuscation_by_diec(filepath): """ Detect obfuscaton with DetectItEasy """ diec_output = get_diec_output(filepath) if 'protector' in diec_output: # If it is protected, overwrite "type". return {'type': 'protected', 'protector': diec_output['protector']} elif 'packer' in diec_output: return {'type': 'packed', 'packer': diec_output['packer']} return None def get_diec_output(filepath): """ Run Detect It Easy Console on a file specified by a filepath and return values in a dictionary. Detect It Easy console version (diec) must be installed manually and "diec" must be included in $PATH. """ info = {} try: diec_process = subprocess.run(["diec", filepath], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) except subprocess.CalledProcessError as err: print(err) except OSError as err: # Potentially out of memory or encountered other error. # Print error message and retry later. print(err) print("Sleeping 5 minutes before trying again") time.sleep(300) return get_diec_output(filepath) else: try: diec_output = diec_process.stdout.decode('utf-8') except UnicodeDecodeError: diec_output = '' for line in diec_output.splitlines(): if line[0:12] == 'PE: packer: ': info['packer'] = line[12:] elif line[0:15] == 'PE: protector: ': info['protector'] = line[15:] elif line[0:12] == 'PE: linker: ': info['linker'] = line[12:] elif line[0:14] == 'PE: compiler: ': info['compiler'] = line[14:] elif line[0:13] == 'PE: library: ': info['library'] = line[13:] elif line[0:15] == 'PE: installer: ': info['installer'] = line[15:] elif line[0:13] == 'PE: overlay: ': info['overlay'] = line[13:] elif line[0:9] == 'PE: sfx: ': info['sfx'] = line[9:] elif line[0:13] == 'PE: archive: ': info['archive'] = line[13:] elif line[0:12] == 'PE: joiner: ': info['joiner'] = line[12:] return info def unpack_file(filepath, tmpdir): """ Attempt to unpack file. filepath is the path to the file that should be attempted unpacked. tmpdir is a path to a temporary directory unique to this thread where the thread will attempt to unpack files to. Returns a list of unpacked files or an empty list. """ # Other unpacking tools have been removed due to # lacking reliability and usefulness of the tools. # If multiple unpacking tools are to be used here, # subdirectories below tmpdir should be created for each # tool to avoid tools overwriting output of each other. # Attempt static unpacking with ClamAV. Return unpacked files. return clam_unpack(filepath, tmpdir) def clam_unpack(filepath, tmpdir): """ Attempt to unpack the malware statically with ClamAV. Returns a list that can either be empty or contain paths to files unpacked from the file at the specified path. Packers supported by ClamAV (https://www.clamav.net/documents/libclamav): * Aspack (2.12) * UPX (all versions) * FSG (1.3, 1.31, 1.33, 2.0) * Petite (2.x) * PeSpin (1.1) * NsPack * wwpack32 (1.20) * MEW * Upack * Y0da Cryptor (1.3) Dependencies (can be installed from apt on Ubuntu): * clamav * libclamunrar9 Loading and comparing all signatures typically requires 20 seconds extra runtime. To ensure fast execution, remove all signatures and disable signature updates.: * Disable the freshclam service: ``service clamav-freshclam stop && systemctl disable clamav-freshclam`` * Remove all signature files from /var/lib/clamav/: ``rm -r /var/lib/clamav/*`` * Add the new file /var/lib/clamav/pass.yar with the following content: rule pass { condition: false } """ unpacked = [] try: subprocess.run([ 'clamscan', '--debug', '--leave-temps=yes', '--tempdir='+tmpdir, '--no-summary', '--bytecode=no', '--scan-mail=no', '--phishing-sigs=no', '--phishing-scan-urls=no', '--heuristic-alerts=no', '--scan-pe=yes', '--scan-elf=no', '--scan-ole2=no', '--scan-pdf=no', '--scan-swf=no', '--scan-html=no', '--scan-xmldocs=no', '--scan-hwp3=no', filepath ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, timeout=5 ) except subprocess.TimeoutExpired: return unpacked # Timeout reached, return empty list except subprocess.CalledProcessError: return unpacked # clamscan crashed, return empty list except OSError as err: # Potentially out of memory or encountered other error. # Print error message and retry later. print(err) print("Sleeping 5 minutes before trying again") time.sleep(300) return clam_unpack(filepath, tmpdir) else: for root, _, files in os.walk(tmpdir, topdown=False): for filename in files: if STORE_UNPACKED: # Move file to permanent storage if # unpacked files should be stored. oldpath, newfilename = rename_to_sha256(os.path.join(root, filename)) newpath = os.path.join(UNPACKED_DIRECTORY, newfilename) shutil.move(oldpath, newpath) else: newpath = os.path.join(root, filename) unpacked.append(newpath) return unpacked def rename_to_sha256(filepath): """ Rename a file specified by a path to the sha256sum of the files and return the new path. Returns the new path and the sha256sum of the file """ with open(filepath, 'rb') as filehandle: rawfile = filehandle.read() directory = os.path.dirname(filepath) sha256sum = hashlib.sha256(rawfile).hexdigest() newpath = os.path.join(directory, sha256sum) if filepath != newpath: # Only rename if it is not already named as the sha256sum shutil.move(filepath, newpath) # Rename file to the sha256sum return newpath, sha256sum # Return the new path of the file and the sha256sum (filename) return None, None # Return None if the file could not be opened ```
{ "source": "580/mitmproxy", "score": 2 }
#### File: addons/browserup/browserup_addons_manager.py ```python import _thread import asyncio import json import falcon import os from wsgiref.simple_server import make_server from pathlib import Path from apispec import APISpec from apispec.ext.marshmallow import MarshmallowPlugin from falcon_apispec import FalconPlugin from mitmproxy.addons.browserup.har.har_schemas import MatchCriteriaSchema, VerifyResultSchema, ErrorSchema, CounterSchema from mitmproxy.addons.browserup.har_capture_addon import HarCaptureAddOn from mitmproxy import ctx class BrowserUpAddonsManagerAddOn: initialized = False def load(self, l): ctx.log.info('Loading BrowserUpAddonsManagerAddOn') l.add_option( "addons_management_port", int, 8088, "REST api management port.", ) def running(self): ctx.log.info('Scanning for custom add-ons resources...') global initialized if not self.initialized and self.is_script_loader_initialized(): ctx.log.info('Scanning for custom add-ons resources...') ctx.log.info('Starting falcon REST service...') _thread.start_new_thread(self.start_falcon, ()) initialized = True def is_script_loader_initialized(self): script_loader = ctx.master.addons.get("scriptloader") for custom_addon in script_loader.addons: if len(custom_addon.addons) == 0: return False return True def basic_spec(self, app): return APISpec( title='BrowserUp MitmProxy', version='1.0.0', servers = [{"url": "http://localhost:{port}/", "description": "The development API server", "variables": {"port": {"enum": ["8088"], "default": '8088'}} }], tags = [{"name": 'The BrowserUp MitmProxy API', "description": "BrowserUp MitmProxy REST API"}], info= {"description": """___ This is the REST API for controlling the BrowserUp MitmProxy. The BrowserUp MitmProxy is a swiss army knife for automated testing that captures HTTP traffic in HAR files. It is also useful for Selenium/Cypress tests. ___ """, "x-logo": {"url": "logo.png"}}, openapi_version='3.0.3', plugins=[ FalconPlugin(app), MarshmallowPlugin(), ], ) def write_spec(self, spec): pretty_json = json.dumps(spec.to_dict(), indent=2) root = Path(__file__).parent.parent.parent.parent schema_path = os.path.join(root, 'browserup-proxy.schema.json') f = open(schema_path, 'w') f.write(pretty_json) f.close() def load_resources_from_addons(self, app, spec): # Whenever the addons manager loads, we write out our openapi spec # There might be a better place for this, although where isn't clear to me yet addons = ctx.master.addons resources = [] get_resources_fun_name = "get_resources" for custom_addon in addons.chain: if hasattr(custom_addon, get_resources_fun_name): addon_resources = getattr(custom_addon, get_resources_fun_name)() for resource in addon_resources: route = "/" + resource.addon_path() app.add_route(route, resource) if 'apispec' in dir(resource): resource.apispec(spec) resources.append(resource) return resources def get_app(self): app = falcon.API() spec = self.basic_spec(app) spec.components.schema('MatchCriteria', schema=MatchCriteriaSchema) spec.components.schema('VerifyResult', schema=VerifyResultSchema) spec.components.schema('Error', schema=ErrorSchema) spec.components.schema('Counter', schema=CounterSchema) self.load_resources_from_addons(app, spec) self.write_spec(spec) return app def get_all_routes(self, app): routes_list = [] def get_children(node): if len(node.children): for child_node in node.children: get_children(child_node) else: routes_list.append((node.uri_template, node.resource)) [get_children(node) for node in app._router._roots] return routes_list def start_falcon(self): app = self.get_app() print("Routes: ") print(self.get_all_routes(app)) with make_server('', ctx.options.addons_management_port, app) as httpd: print('Starting REST API management on port: {}'.format(ctx.options.addons_management_port)) loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) httpd.serve_forever() # https://marshmallow.readthedocs.io/en/stable/quickstart.html addons = [ HarCaptureAddOn(), BrowserUpAddonsManagerAddOn() ] ``` #### File: addons/browserup/har_capture_addon.py ```python import mitmproxy.http from mitmproxy import ctx from mitmproxy.addons.browserup.har.har_resources import HarResource, HarPageResource, HarCaptureTypesResource, \ PresentResource, NotPresentResource, SizeResource, \ SLAResource, ErrorResource, CounterResource, \ HealthCheckResource from mitmproxy.addons.browserup.har.har_manager import HarManagerMixin from mitmproxy.addons.browserup.har.flow_capture import FlowCaptureMixin from mitmproxy.addons.browserup.har import flow_har_entry_patch flow_har_entry_patch.patch_flow() # patch flow object with a har entry method class HarCaptureAddOn(FlowCaptureMixin, HarManagerMixin): def load(self, l): ctx.log.info('Loading HarCaptureAddon') l.add_option("harcapture", str, "", "HAR capture path.") def get_resources(self): return [HarResource(self), HarPageResource(self), HarCaptureTypesResource(self), PresentResource(self), NotPresentResource(self), SizeResource(self), SLAResource(self), ErrorResource(self), CounterResource(self), HealthCheckResource() ] def websocket_message(self, flow: mitmproxy.http.HTTPFlow): if 'blocklisted' in flow.metadata: return self.capture_websocket_message(flow) def request(self, flow: mitmproxy.http.HTTPFlow): if 'blocklisted' in flow.metadata: return self.capture_request(flow) def response(self, flow: mitmproxy.http.HTTPFlow): if 'blocklisted' in flow.metadata: ctx.log.debug('Blocklist filtered, return nothing.') return self.capture_response(flow) addons = [ HarCaptureAddOn() ] ``` #### File: addons/browserup/latency_addon.py ```python from time import sleep class LatencyResource: def addon_path(self): return "latency/{latency}" def __init__(self, latency_addon): self.latency_addon = latency_addon def on_put(self, req, resp, latency): """Puts (sets) a value for latency --- description: Sets a value for latency in milliseconds. Default is 0. operationId: setAddedLatencyMillis parameters: - in: path name: latency type: int required: true tags: - BrowserUpProxy responses: 204: description: Success! """ self.latency_addon.latency_ms = int(latency) class LatencyAddOn: def __init__(self): self.num = 0 self.latency_ms = 0 def get_resources(self): return [LatencyResource(self)] def response(self, flow): if self.latency_ms != 0: sleep(self.latency_ms / 1000) addons = [ LatencyAddOn() ] ``` #### File: browserup/har/har_manager.py ```python from mitmproxy import ctx from datetime import datetime from datetime import timezone from mitmproxy.net.http import cookies from mitmproxy.addons.browserup.har.har_builder import HarBuilder from mitmproxy.addons.browserup.har.har_capture_types import HarCaptureTypes import json import copy import tempfile DEFAULT_PAGE_REF = "Default" DEFAULT_PAGE_TITLE = "Default" REQUEST_SUBMITTED_FLAG = "_request_submitted" class HarManagerMixin(): # Used to manage a single active har def __init__(self): self.num = 0 self.har = HarBuilder.har() self.har_page_count = 0 self.har_capture_types = [ HarCaptureTypes.REQUEST_HEADERS, HarCaptureTypes.REQUEST_COOKIES, HarCaptureTypes.REQUEST_CONTENT, HarCaptureTypes.REQUEST_BINARY_CONTENT, HarCaptureTypes.RESPONSE_HEADERS, HarCaptureTypes.RESPONSE_COOKIES, HarCaptureTypes.RESPONSE_CONTENT, HarCaptureTypes.RESPONSE_BINARY_CONTENT, HarCaptureTypes.WEBSOCKET_MESSAGES, ] self.current_har_page = None self.http_connect_timings = {} def create_har_entry(self, flow): har = self.get_or_create_har(DEFAULT_PAGE_REF, DEFAULT_PAGE_TITLE, True) entry = HarBuilder.entry() har['log']['entries'].append(entry) return entry def get_har(self, clean_har): if clean_har: return self.new_har(DEFAULT_PAGE_REF, DEFAULT_PAGE_TITLE) return self.har def get_default_har_page(self): for hp in self.har['log']['pages']: if hp['title'] == DEFAULT_PAGE_TITLE: return hp return None def get_or_create_har(self, page_ref, page_title, create_page=False): if self.har is None: self.new_har(page_ref, page_title, create_page) if create_page: self.get_or_create_default_page() return self.har def new_page(self, page_ref, page_title): ctx.log.info( 'Creating new page with initial page ref: {}, title: {}'. format(page_ref, page_title)) har = self.get_or_create_har(page_ref, page_title, False) end_of_page_har = None if self.current_har_page is not None: current_page_ref = self.current_har_page['id'] self.end_page() end_of_page_har = self.copy_har_through_page_ref(har, current_page_ref) if page_ref is None: self.har_page_count += 1 page_ref = "Page " + str(self.har_page_count) if page_title is None: page_title = page_ref new_page = HarBuilder.page(title=page_title, id=page_ref) har['log']['pages'].append(new_page) self.current_har_page = new_page return end_of_page_har def get_current_page_ref(self): har_page = self.current_har_page if har_page is None: har_page = self.get_or_create_default_page() return har_page['id'] def get_or_create_current_page(self): har_page = self.current_har_page if har_page is None: har_page = self.get_or_create_default_page() return har_page def get_or_create_default_page(self): default_page = self.get_default_page() if default_page is None: default_page = self.add_default_page() return default_page def add_default_page(self): self.get_or_create_har(DEFAULT_PAGE_REF, DEFAULT_PAGE_TITLE, False) new_page = HarBuilder.page(title=DEFAULT_PAGE_REF,id=DEFAULT_PAGE_REF) self.har['log']['pages'].append(new_page) return new_page def get_default_page(self): for p in self.har['log']['pages']: if p['id'] == DEFAULT_PAGE_REF: return p return None def new_har(self, initial_page_ref=DEFAULT_PAGE_REF, initial_page_title=DEFAULT_PAGE_TITLE, create_page=False): if create_page: ctx.log.info( 'Creating new har with initial page ref: {}, title: {}'. format(initial_page_ref, initial_page_title)) else: ctx.log.info('Creating new har without initial page') old_har = self.end_har() self.har_page_count = 0 self.har = HarBuilder.har() if create_page: self.new_page(initial_page_ref, initial_page_title) self.copy_entries_without_response(old_har) return old_har def add_verification_to_har(self, verification_name, verification_type, result): page = self.get_or_create_current_page() page.setdefault('_verifications', {}).setdefault(verification_name, { "type": verification_type, "passed": result }) def end_har(self): ctx.log.info('Ending current har...') old_har = self.har if old_har is None: return self.end_page() self.har = None return old_har def copy_entries_without_response(self, old_har): if old_har is not None: for entry in old_har['log']['entries']: if not self.har_entry_has_response(entry): self.har['log']['entries'].append(entry) def add_har_page(self, pageRef, pageTitle): ctx.log.debug('Adding har page with ref: {} and title: {}'.format(pageRef, pageTitle)) har_page = HarBuilder.page(id=pageRef, title=pageTitle) self.har['log']['pages'].append(har_page) return har_page def end_page(self): ctx.log.info('Ending current page...') previous_har_page = self.current_har_page self.current_har_page = None if previous_har_page is None: return def is_har_entry_submitted(self, har_entry): return REQUEST_SUBMITTED_FLAG in har_entry def har_entry_has_response(self, har_entry): return bool(har_entry['response']) def har_entry_clear_request(self, har_entry): har_entry['request'] = {} def filter_har_for_report(self, har): if har is None: return har har_copy = copy.deepcopy(har) entries_to_report = [] for entry in har_copy['log']['entries']: if self.is_har_entry_submitted(entry): if self.har_entry_has_response(entry): del entry[REQUEST_SUBMITTED_FLAG] self.har_entry_clear_request(entry) entries_to_report.append(entry) else: entries_to_report.append(entry) har_copy['log']['entries'] = entries_to_report return har_copy def mark_har_entries_submitted(self, har): if har is not None: for entry in har['log']['entries']: entry[REQUEST_SUBMITTED_FLAG] = True def copy_har_through_page_ref(self, har, page_ref): if har is None: return None if har['log'] is None: return HarBuilder.har() page_refs_to_copy = [] for page in har['log']['pages']: page_refs_to_copy.append(page['id']) if page_ref == page['id']: break log_copy = HarBuilder.log() for entry in har['log']['entries']: if entry['pageref'] in page_refs_to_copy: log_copy['entries'].append(entry) for page in har['log']['pages']: if page['id'] in page_refs_to_copy: log_copy['pages'].append(page) har_copy = HarBuilder.har() har_copy['log'] = log_copy return har_copy def format_cookies(self, cookie_list): rv = [] for name, value, attrs in cookie_list: cookie_har = { "name": name, "value": value, } # HAR only needs some attributes for key in ["path", "domain", "comment"]: if key in attrs: cookie_har[key] = attrs[key] # These keys need to be boolean! for key in ["httpOnly", "secure"]: cookie_har[key] = bool(key in attrs) # Expiration time needs to be formatted expire_ts = cookies.get_expiration_ts(attrs) if expire_ts is not None: cookie_har["expires"] = datetime.fromtimestamp(expire_ts, timezone.utc).isoformat() rv.append(cookie_har) return rv def save_har(self, full_path): json_dump: str = json.dumps(self.har, indent=2) with open(full_path, "wb") as file: raw: bytes = json_dump.encode() file.write(raw) file.flush() file.close() def format_request_cookies(self, fields): return self.format_cookies(cookies.group_cookies(fields)) def format_response_cookies(self, fields): return self.format_cookies((c[0], c[1][0], c[1][1]) for c in fields) def name_value(self, obj): """ Convert (key, value) pairs to HAR format. """ return [{"name": k, "value": v} for k, v in obj.items()] ``` #### File: addons/browserup/perfdata_script_addon.py ```python from netlib.http import decoded from bs4 import BeautifulSoup class InjectPerformanceTimingScriptAddOn: def __init__(self): file_name = "../" with open(file_name) as f: self.script = f.read().replace('{{URL}}', url) def response(self, ctx, flow): url = "http://{}:{}".format( ctx.options.listen_host or "127.0.0.1", ctx.options.listen_port ) url = 'http://localhost8088:/proxy/har/custom'.format( ctx.options.listen_port, ctx.options.listen_host) if flow.request.host in ctx.script: return # Make sure JS isn't injected to itself with decoded(flow.response): html = BeautifulSoup(flow.response.content) if html.body and ("text/html" in flow.response.headers["content-type"]): script = html.new_tag("script", type="application/javascript") script.insert(0, self.script) html.body.insert(1, script) flow.response.content = str(html) print("Injected Perf Timings Script") ``` #### File: 580/mitmproxy/test.py ```python import subprocess import time import urllib import urllib.request def main(): proc = subprocess.Popen(['python3', '-u', '-m', 'http.server', '8070'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) try: time.sleep(0.2) resp = urllib.request.urlopen('http://localhost:8070') assert b'Directory listing' in resp.read() finally: proc.terminate() try: outs, _ = proc.communicate(timeout=0.2) print('== subprocess exited with rc =', proc.returncode) print(outs.decode('utf-8')) except subprocess.TimeoutExpired: print('subprocess did not terminate in time') if __name__ == "__main__": main() ```
{ "source": "582911658/learn_python", "score": 3 }
#### File: learn_python/alien_invasion/alien_invasion.py ```python import sys import pygame from settings import Settings from ship import Ship def run_game(): # 初始化游戏并创建一个屏幕对象 pygame.init() ai_settings = Settings() screen = pygame.display.set_mode((ai_settings.screen_width, ai_settings.screen_height)) pygame.display.set_caption('第一个python游戏') # 创建第一艘飞船 ship = Ship(screen) # 开始游戏主循环 while True: # 监视键盘鼠标事件 for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() # 每次循环都重新绘制屏幕 screen.fill(ai_settings.bg_color) ship.blitme() # 让最近绘制的屏幕可见 pygame.display.flip() run_game() ```
{ "source": "582BandOfBrothers/Final", "score": 3 }
#### File: Final/titanic/Titanic.py ```python import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier import pprint def clean_data(df, drop_passenger_id): pp = pprint.PrettyPrinter(indent=4) # Get the unique values of Sex sexes = sorted(df['Sex'].unique()) # Generate a mapping of Sex from a string to a number representation # Fill in missing values of Embarked # Since the vast majority of passengers embarked in 'S': 3, # we assign the missing vavlues in Embarked to 'S': genders_mapping = dict(zip(sexes, range(0, len(sexes) + 1))) # Transform Sex from a string to a number representation df['Sex_Val'] = df['Sex'].map(genders_mapping).astype(int) # Replace nan with S df = df.replace({'Embarked': { np.nan: 'S' }}); # Get the unique values of Embarked embarked_locs = sorted(df['Embarked'].unique()) # Generate a mapping of Embarked from a string to a number representation embarked_locs_mapping = dict(zip(embarked_locs, range(0, len(embarked_locs) + 1))) # Transform Embarked from a string to dummy variables df = pd.concat([df, pd.get_dummies(df['Embarked'], prefix='Embarked_Val')], axis=1) # Fill in missing values of Fare with the average Fare if len(df[df['Fare'].isnull()] > 0): avg_fare = df['Fare'].mean() df.replace({ None: avg_fare }, inplace=True) # To keep Age in tact, make a copy of it called AgeFill # that we will use to fill in the missing ages: df['AgeFill'] = df['Age'] # Determine the Age typical for each passenger class by Sex_Val. # We'll use the median instead of the mean because the Age # histogram seems to be right skewed. df['AgeFill'] = df['AgeFill'] \ .groupby([df['Sex_Val'], df['Pclass']]) \ .apply(lambda x: x.fillna(x.median())) # Define a new feature FamilySize that is the sum of # Parch (number of parents or children on board) and # SibSp (number of siblings or spouses): df['FamilySize'] = df['SibSp'] + df['Parch'] # Drop the columns we won't use: df = df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1) # Drop the Age column since we will be using the AgeFill column instead. # Drop the SibSp and Parch columns since we will be using FamilySize. # Drop the PassengerId column since it won't be used as a feature. df = df.drop(['Age', 'SibSp', 'Parch'], axis=1) if drop_passenger_id: df = df.drop(['PassengerId'], axis=1) return df df_train = pd.read_csv('./data/train.csv') df_train = clean_data(df_train, drop_passenger_id=True) train_data = df_train.values # print(df_train) clf = RandomForestClassifier(n_estimators=100) # Training data features, skip the first column 'Survived' train_features = train_data[:, 1:] # 'Survived' column values train_target = train_data[:, 0] # Fit the model to our training data clf = clf.fit(train_features, train_target) score = clf.score(train_features, train_target) "Mean accuracy of Random Forest: {0}".format(score) df_test = pd.read_csv('./data/test.csv') # Data wrangle the test set and convert it to a numpy array df_test = clean_data(df_test, drop_passenger_id=False) test_data = df_test.values # Get the test data features, skipping the first column 'PassengerId' test_x = test_data[:, 1:] # Predict the Survival values for the test data test_y = clf.predict(test_x) df_test['Survived'] = test_y.astype(int) df_test[['PassengerId', 'Survived']].to_csv('./data/result.csv', index=False) ```
{ "source": "584807419/FreeProxyPool", "score": 3 }
#### File: crawlers/free_proxy_website/1xila.py ```python import re from proxypool.schemas.proxy import Proxy from proxypool.crawlers.base import BaseCrawler class xilaCrawler(BaseCrawler): urls = ['http://www.xiladaili.com/http/', 'http://www.xiladaili.com/http/2/', 'http://www.xiladaili.com/http/3/', 'http://www.xiladaili.com/http/4/', 'http://www.xiladaili.com/http/5/', 'http://www.xiladaili.com/http/6/'] def parse(self, html_content): ips = re.findall(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}:\d{1,5}", html_content) for i in ips: ip_temp = i.split(':') host = ip_temp[0] port = ip_temp[1] yield Proxy(host=host, port=port) if __name__ == '__main__': crawler = xilaCrawler() for proxy in crawler.crawl(): print(proxy) ``` #### File: crawlers/free_proxy_website/89ip.py ```python from lxml import html from proxypool.schemas.proxy import Proxy from proxypool.crawlers.base import BaseCrawler BASE_URL = 'http://www.89ip.cn/tqdl.html?api=1&num=100&port=&address=&isp=' class Ip89Crawler(BaseCrawler): urls = [BASE_URL] def parse(self, html_content): doc = html.fromstring(html_content) node = doc.xpath('//text()') for i in node: ii = i.strip().replace('\n', '') if ii and len(ii) < 23: tr_list = ii.split(':') host = tr_list[0] port = tr_list[1] yield Proxy(host=host, port=port) if __name__ == '__main__': crawler = Ip89Crawler() for proxy in crawler.crawl(): print(proxy) ``` #### File: crawlers/free_proxy_website/jiangxianli.py ```python import json from proxypool.schemas.proxy import Proxy from proxypool.crawlers.base import BaseCrawler BASE_URL = 'https://ip.jiangxianli.com/api/proxy_ips' class jiangxianliCrawler(BaseCrawler): urls = [BASE_URL] def parse(self, html_content): i_list = json.loads(html_content).get('data').get('data') for i in i_list: if i and len(i) < 23: host = i.get('ip') port = i.get('port') yield Proxy(host=host, port=port) if __name__ == '__main__': crawler = jiangxianliCrawler() for proxy in crawler.crawl(): print(proxy) ``` #### File: crawlers/free_proxy_website/kuaidaili.py ```python from proxypool.crawlers.base import BaseCrawler from proxypool.schemas.proxy import Proxy class KuaidailiCrawler(BaseCrawler): # urls = ['http://ent.kdlapi.com/api/getproxy/?orderid=950753676261960&num=100&protocol=2&method=2&an_an=1&an_ha=1&sp1=1&quality=2&sort=2&sep=1'] urls = ['http://ent.kdlapi.com/api/getproxy/?orderid=950753676261960&num=200&sort=2&sep=1'] def parse(self, html): proxies_list = html.split("\r\n") for item in proxies_list: td_ip = item.split(':')[0] td_port = item.split(':')[1] yield Proxy(host=td_ip, port=td_port) if __name__ == '__main__': crawler = KuaidailiCrawler() for proxy in crawler.crawl(): print(proxy) ``` #### File: proxypool/processors/getter.py ```python from loguru import logger from proxypool.storages.redis import RedisClient from proxypool.setting import PROXY_NUMBER_MAX from proxypool.crawlers import __all__ as crawlers_cls class Getter(object): """ getter of proxypool """ def __init__(self): """ init db and crawlers """ self.redis = RedisClient() self.crawlers_cls = crawlers_cls self.crawlers = [crawler_cls() for crawler_cls in self.crawlers_cls] def is_full(self): """ if proxypool if full return: bool """ return self.redis.count() >= PROXY_NUMBER_MAX @logger.catch def run(self): """ run crawlers to get proxy :return: """ if self.is_full(): return for crawler in self.crawlers: for proxy in crawler.crawl(crawler.data, crawler.headers, crawler.cookies): self.redis.add(proxy) if __name__ == '__main__': getter = Getter() getter.run() ```
{ "source": "58563528/coolqqbot", "score": 2 }
#### File: plugins/ban/__init__.py ```python from enum import Enum from typing import Dict, Optional from nonebot import on_command, on_notice from nonebot.adapters import Bot, Event from nonebot.adapters.cqhttp import (GroupAdminNoticeEvent, GroupMessageEvent, MessageSegment, PrivateMessageEvent) from nonebot.typing import T_State from src.utils.helpers import render_expression #region 禁言 EXPR_OK = ( '好的,满足你!', '已禁言。', '{duration} 分钟后见~' ) # yapf: disable EXPR_NEED_HELP = ( '{at_user} 你是管理员,我没法禁言你,不过我可以帮你 {at_owner}~', '有人想被禁言 {duration} 分钟,群主 {at_owner},快满足 {at_user}~', '群主群主 {at_owner},快禁言 {at_user} {duration} 分钟' ) # yapf: disable EXPR_OWNER = ( '你是群主,你开心就好。', '群主别闹了!', '没人能禁言你的!请不要再找我了!' ) # yapf: disable class BanType(Enum): """ 禁言的种类 """ OWNER = '禁言对象是群主' NEED_HELP = '需要群主帮忙禁言' OK = '可以直接禁言' def get_ban_type(bot_role: str, sender_role: str) -> BanType: """ 计算禁言的种类 """ if sender_role == 'owner': return BanType.OWNER if bot_role == 'member': return BanType.NEED_HELP if bot_role == 'admin' and sender_role == 'admin': return BanType.NEED_HELP return BanType.OK ban_cmd = on_command('ban', aliases={'禁言'}, block=True) ban_cmd.__doc__ = """ ban 禁言 自主禁言 禁言自己,单位为分钟 /ban 30 (禁言 30 分钟) 解除禁言 /ban 0 如果私聊,则需要再提供群号 """ @ban_cmd.args_parser async def ban_args_parser(bot: Bot, event: Event, state: T_State): """ 处理参数,转换成数字 """ args = str(event.get_message()).strip() # 检查输入参数是不是数字 if args.isdigit(): state[state['_current_key']] = int(args) else: await ban_cmd.reject('请只输入数字,不然我没法理解呢!') @ban_cmd.handle() async def ban_handle_first_receive(bot: Bot, event: Event, state: T_State): """ 获取需要的参数 """ # 如果没有获取机器人在群中的职位,则获取 if not _bot_role: await refresh_bot_role(bot) args = str(event.get_message()).strip() if not args: return # 检查输入参数是不是数字 if args.isdigit(): state['duration'] = int(args) else: await ban_cmd.finish('参数必须仅为数字') @ban_cmd.got('duration', prompt='你想被禁言多少分钟呢?') async def ban_handle_group_message(bot: Bot, event: GroupMessageEvent, state: T_State): """ 如果在群里发送,则在当前群禁言/解除 """ group_id = event.group_id user_id = event.user_id duration = state['duration'] duration_sec = duration * 60 bot_role = _bot_role[group_id] sender_role = event.sender.role if not sender_role: return ban_type = get_ban_type(bot_role, sender_role) if ban_type == BanType.OWNER: await ban_cmd.finish(render_expression(EXPR_OWNER), at_sender=True) elif ban_type == BanType.NEED_HELP: owner_id = await get_owner_id(group_id, bot) if not owner_id: raise Exception('无法获取群主QQ号') await ban_cmd.finish( render_expression(EXPR_NEED_HELP, duration=duration, at_owner=MessageSegment.at(owner_id), at_user=MessageSegment.at(user_id))) else: await bot.set_group_ban(group_id=group_id, user_id=user_id, duration=duration_sec) await ban_cmd.finish(render_expression(EXPR_OK, duration=duration), at_sender=True) @ban_cmd.got('duration', prompt='你想被禁言多少分钟呢?') @ban_cmd.got('group_id', prompt='请问你想针对哪个群?') async def ban_handle_private_message(bot: Bot, event: PrivateMessageEvent, state: T_State): """ 如果私聊的话,则向用户请求群号,并仅在支持的群禁言/解除 """ group_id = state['group_id'] user_id = event.user_id duration = state['duration'] duration_sec = duration * 60 if group_id not in _bot_role: await ban_cmd.finish('抱歉,我不在那个群里,帮不了你 >_<') bot_role = _bot_role[group_id] sender_role = await get_user_role_in_group(user_id, group_id, bot) ban_type = get_ban_type(bot_role, sender_role) if ban_type == BanType.OWNER: await ban_cmd.finish(render_expression(EXPR_OWNER)) elif ban_type == BanType.NEED_HELP: owner_id = await get_owner_id(group_id, bot) if not owner_id: raise Exception('无法获取群主QQ号') await bot.send_group_msg(group_id=group_id, message=render_expression( EXPR_NEED_HELP, duration=duration, at_owner=MessageSegment.at(owner_id), at_user=MessageSegment.at(user_id))) await ban_cmd.finish('帮你@群主了,请耐心等待。') else: await bot.set_group_ban(group_id=group_id, user_id=user_id, duration=duration_sec) await ban_cmd.finish(render_expression(EXPR_OK, duration=duration)) async def get_owner_id(group_id: int, bot: Bot) -> Optional[int]: """ 获取群主 QQ 号 """ group_member_list = await bot.get_group_member_list(group_id=group_id) for member in group_member_list: if member['role'] == 'owner': return member['user_id'] async def get_user_role_in_group(user_id: int, group_id: int, bot: Bot) -> str: """ 获取用户在群内的身份 """ group_member_info = await bot.get_group_member_info(user_id=user_id, group_id=group_id) return group_member_info['role'] #endregion #region 机器人是否为管理员 _bot_role: Dict[int, str] = {} async def refresh_bot_role(bot: Bot) -> None: """ 更新机器人在群内的身份 """ group_list = await bot.get_group_list() for group in group_list: member_info = await bot.get_group_member_info( group_id=group['group_id'], user_id=bot.self_id) _bot_role[group['group_id']] = member_info['role'] admin_notice = on_notice() @admin_notice.handle() async def admin_handle(bot: Bot, event: GroupAdminNoticeEvent, state: T_State): """ 群内管理员发生变化时,更新机器人在群内的身份 """ if bot.self_id == event.self_id: if event.sub_type == 'set': _bot_role[event.group_id] = 'admin' elif event.sub_type == 'unset': _bot_role[event.group_id] = 'member' #endregion ``` #### File: plugins/ff14/config.py ```python from typing import List from nonebot import get_driver from pydantic import BaseSettings, validator from dateutil.parser import parse from datetime import date, datetime from src.utils.helpers import groupidtostr, strtobool, strtogroupid from src.utils.plugin import PluginData DATA = PluginData('ff14') class Config(BaseSettings): # 新闻推送相关配置 # 自动推送新闻的间隔,单位 分钟 push_news_interval: int = int( DATA.config.get('ff14', 'push_news_interval', '30')) # 上次推送新闻的发布时间 push_news_last_news_date: datetime = parse( DATA.config.get('ff14', 'push_news_last_news_date', '2000-01-01')) # 启用新闻推送的群 push_news_group_id: List[int] = strtogroupid( DATA.config.get('ff14', 'push_news_group_id')) @validator('push_news_last_news_date', always=True) def push_news_last_news_date_validator(cls, v: datetime): """ 验证并保存配置 """ DATA.config.set('ff14', 'push_news_last_news_date', v.isoformat()) return v @validator('push_news_group_id', always=True) def push_news_group_id_validator(cls, v: List[int]): """ 验证并保存配置 """ DATA.config.set('ff14', 'push_news_group_id', groupidtostr(v)) return v # FFLogs 相关配置 fflogs_token: str = DATA.config.get('fflogs', 'token') # 默认从两周的数据中计算排名百分比 fflogs_range: int = int(DATA.config.get('fflogs', 'range', '14')) # 是否开启定时缓存 fflogs_cache: bool = strtobool( DATA.config.get('fflogs', 'cache_enable', '0')) # 缓存的时间 fflogs_cache_hour: int = int( DATA.config.get('fflogs', 'cache_hour', fallback='4')) fflogs_cache_minute: int = int( DATA.config.get('fflogs', 'cache_minute', fallback='30')) fflogs_cache_second: int = int( DATA.config.get('fflogs', 'cache_second', fallback='0')) # 需要缓存的副本 fflogs_cache_boss: List[str] = DATA.config.get('fflogs', 'cache_boss').split() @validator('fflogs_token', always=True) def fflogs_token_validator(cls, v): """ 验证并保存配置 """ DATA.config.set('fflogs', 'token', v) return v @validator('fflogs_cache', always=True) def fflogs_cache_validator(cls, v): """ 验证并保存配置 """ if v: DATA.config.set('fflogs', 'cache_enable', '1') else: DATA.config.set('fflogs', 'cache_enable', '0') return v class Config: extra = 'ignore' validate_assignment = True global_config = get_driver().config plugin_config = Config(**global_config.dict()) ``` #### File: plugins/ff14/fflogs_api.py ```python import asyncio import json import math from datetime import datetime, timedelta from typing import List, Literal import httpx from nonebot import logger, require from .config import DATA, plugin_config from .fflogs_data import (get_boss_info_by_nickname, get_job_info_by_nickname, get_jobs_info) scheduler = require("nonebot_plugin_apscheduler").scheduler class DataException(Exception): """ 数据异常 """ pass class ParameterException(Exception): """ 参数异常 """ pass class AuthException(Exception): """ 认证异常 """ pass class FFLogs: def __init__(self): self.base_url = 'https://cn.fflogs.com/v1' # 定时缓存任务 self._cache_job = None # 根据配置启动 if plugin_config.fflogs_cache: self.enable_cache() # QQ号 与 最终幻想14 角色用户名,服务器的对应关系 if DATA.exists('characters.pkl'): self.characters = DATA.load_pkl('characters') else: self.characters = {} def enable_cache(self) -> None: """ 开启定时缓存任务 """ self._cache_job = scheduler.add_job( self.cache_data, 'cron', hour=plugin_config.fflogs_cache_hour, minute=plugin_config.fflogs_cache_minute, second=plugin_config.fflogs_cache_second, id='fflogs_cache') plugin_config.fflogs_cache = True logger.info( f'开启定时缓存,执行时间为每天 {plugin_config.fflogs_cache_hour}:{plugin_config.fflogs_cache_minute}:{plugin_config.fflogs_cache_second}' ) def disable_cache(self) -> None: """ 关闭定时缓存任务 """ self._cache_job.remove() self._cache_job = None plugin_config.fflogs_cache = False logger.info('定时缓存已关闭') @property def is_cache_enabled(self) -> bool: """ 是否启用定时缓存 """ if self._cache_job: return True else: return False async def cache_data(self) -> None: """ 缓存数据 """ jobs = await get_jobs_info() for boss in plugin_config.fflogs_cache_boss: for job in jobs: await self.dps(boss, job.name) logger.info(f'{boss} {job.name}的数据缓存完成。') await asyncio.sleep(30) @staticmethod async def _http(url): try: # 使用 httpx 库发送最终的请求 async with httpx.AsyncClient() as client: resp = await client.get(url) if resp.status_code == 401: raise AuthException('Token 有误,无法获取数据') if resp.status_code == 400: raise ParameterException('参数有误,无法获取数据') if resp.status_code != 200: # 如果 HTTP 响应状态码不是 200,说明调用失败 return None return json.loads(resp.text) except (httpx.HTTPError, json.JSONDecodeError, KeyError): # 抛出上面任何异常,说明调用失败 return None async def _get_one_day_ranking(self, boss: int, difficulty: int, job: int, date: datetime) -> List: """ 获取指定 boss,指定职业,指定一天中的排名数据 """ # 查看是否有缓存 cache_name = f'{boss}_{difficulty}_{job}_{date.strftime("%Y%m%d")}' if DATA.exists(f'{cache_name}.pkl'): return DATA.load_pkl(cache_name) page = 1 hasMorePages = True rankings = [] end_date = date + timedelta(days=1) # 转换成 API 支持的时间戳格式 start_timestamp = int(date.timestamp()) * 1000 end_timestamp = int(end_date.timestamp()) * 1000 # API 只支持获取 50 页以内的数据 while hasMorePages and page < 51: rankings_url = f'{self.base_url}/rankings/encounter/{boss}?metric=rdps&difficulty={difficulty}&spec={job}&page={page}&filter=date.{start_timestamp}.{end_timestamp}&api_key={plugin_config.fflogs_token}' res = await self._http(rankings_url) if not res: raise DataException('服务器没有正确返回数据') hasMorePages = res['hasMorePages'] rankings += res['rankings'] page += 1 # 如果获取数据的日期不是当天,则缓存数据 # 因为今天的数据可能还会增加,不能先缓存 if end_date < datetime.now(): DATA.save_pkl(rankings, cache_name) return rankings async def _get_whole_ranking(self, boss: int, difficulty: int, job: int, dps_type: Literal['rdps', 'adps', 'pdps'], date: datetime) -> List: date = datetime(year=date.year, month=date.month, day=date.day) rankings = [] for _ in range(plugin_config.fflogs_range): rankings += await self._get_one_day_ranking( boss, difficulty, job, date) date -= timedelta(days=1) # 根据 DPS 类型进行排序,并提取数据 if dps_type == 'rdps': rankings.sort(key=lambda x: x['total'], reverse=True) rankings = [i['total'] for i in rankings] if dps_type == 'adps': rankings.sort(key=lambda x: x['otherAmount'], reverse=True) rankings = [i['otherAmount'] for i in rankings] if dps_type == 'pdps': rankings.sort(key=lambda x: x['rawDPS'], reverse=True) rankings = [i['rawDPS'] for i in rankings] if not rankings: raise DataException('网站里没有数据') return rankings async def _get_character_ranking(self, characterName: str, serverName: str, zone: int, encounter: int, difficulty: int, metric: Literal['rdps', 'adps', 'pdps']): """ 查询指定角色的 DPS 返回列表 """ url = f'https://cn.fflogs.com/v1/rankings/character/{characterName}/{serverName}/CN?zone={zone}&encounter={encounter}&metric={metric}&api_key={plugin_config.fflogs_token}' res = await self._http(url) if not res and isinstance(res, list): raise DataException('网站里没有数据') if not res: raise DataException('获取数据失败') if 'hidden' in res: raise DataException('角色数据被隐藏') # 提取所需的数据 # 零式副本的难度是 101,普通的则是 100 # 极神也是 100 if difficulty == 0: ranking = [i for i in res if i['difficulty'] == 101] else: ranking = [i for i in res if i['difficulty'] == 100] if not ranking: raise DataException('网站里没有数据') return ranking async def zones(self): """ 副本 """ url = f'{self.base_url}/zones?api_key={plugin_config.fflogs_token}' data = await self._http(url) return data async def classes(self): """ 职业 """ url = f'{self.base_url}/classes?api_key={plugin_config.fflogs_token}' data = await self._http(url) return data async def dps(self, boss_nickname: str, job_nickname: str, dps_type: Literal['rdps', 'adps', 'pdps'] = 'rdps') -> str: """ 查询 DPS 百分比排名 :param boss_nickname: BOSS 的称呼 :param job_nickname: 职业的称呼 :param dps_type: DPS 的种类,支持 rdps, adps, pdps (Default value = 'rdps') """ boss = await get_boss_info_by_nickname(boss_nickname) if not boss: return f'找不到 {boss_nickname} 的数据,请换个名字试试' job = await get_job_info_by_nickname(job_nickname) if not job: return f'找不到 {job_nickname} 的数据,请换个名字试试' if dps_type not in ['adps', 'rdps', 'pdps']: return f'找不到类型为 {dps_type} 的数据,只支持 adps rdps pdps' # 排名从前一天开始排,因为今天的数据并不全 date = datetime.now() - timedelta(days=1) try: rankings = await self._get_whole_ranking(boss.encounter, boss.difficulty, job.spec, dps_type, date) except DataException as e: return f'{e},请稍后再试' reply = f'{boss.name} {job.name} 的数据({dps_type})' total = len(rankings) reply += f'\n数据总数:{total} 条' # 计算百分比的 DPS percentage_list = [100, 99, 95, 75, 50, 25, 10] for perc in percentage_list: number = math.floor(total * 0.01 * (100 - perc)) dps_value = float(rankings[number]) reply += f'\n{perc}% : {dps_value:.2f}' return reply def set_character(self, user_id: int, character_name: str, server_name: str) -> None: """ 设置 QQ号 与 最终幻想14 用户名和服务器名 """ self.characters[user_id] = [character_name, server_name] DATA.save_pkl(self.characters, 'characters') async def character_dps( self, boss_nickname: str, character_name: str, server_name: str, dps_type: Literal['rdps', 'adps', 'pdps'] = 'rdps') -> str: """ 查询指定角色在某个副本的 DPS :param boss_nickname: BOSS 的称呼 :param character_name: 角色名 :param server_name: 服务器名 :param dps_type: DPS 的种类,支持 rdps, adps (Default value = 'rdps') """ boss = await get_boss_info_by_nickname(boss_nickname) if not boss: return f'找不到 {boss_nickname} 的数据,请换个名字试试' reply = f'{boss.name} {character_name}-{server_name} 的排名({dps_type})' try: ranking = await self._get_character_ranking( character_name, server_name, boss.zone, boss.encounter, boss.difficulty, dps_type) except DataException as e: return f'{e},请稍后再试' except ParameterException: return '角色名或者服务器名有误,无法获取数据。' for i in ranking: reply += f'\n{i["spec"]} {i["percentile"]:.2f}% {i["total"]:.2f}' return reply fflogs = FFLogs() ``` #### File: plugins/music/__init__.py ```python from nonebot import on_command from nonebot.adapters import Bot, Event from nonebot.adapters.cqhttp.event import MessageEvent from nonebot.typing import T_State from src.utils.helpers import render_expression from .netease import call_netease_api # 无法获取歌曲时的回答 EXPR_NOT_FOUND = ( '为什么找不到匹配的歌呢!', '似乎哪里出错了,找不到你想点的歌 ~><~', '没有找到,要不要换个关键字试试?' ) # yapf: disable music_cmd = on_command('music', aliases={'点歌'}, block=True) music_cmd.__doc__ = """ music 点歌 点歌 参数为歌曲相关信息 /music Sagitta luminis 如果仅凭歌曲名称无法获得正确歌曲时 可以尝试在后面加上歌手名称或其他信息 /music Sagitta luminis 梶浦由記 """ @music_cmd.handle() async def music_handle_first_receive(bot: Bot, event: MessageEvent, state: T_State): args = str(event.message).strip() if args: state['name'] = args @music_cmd.got('name', prompt='你想听哪首歌呢?') async def music_handle(bot: Bot, event: MessageEvent, state: T_State): music_message = await call_netease_api(state['name']) if music_message: await music_cmd.finish(music_message) else: await music_cmd.finish(render_expression(EXPR_NOT_FOUND), at_sender=True) @music_cmd.args_parser async def music_args_parser(bot: Bot, event: Event, state: T_State): args = str(event.get_message()).strip() if not args: await music_cmd.reject('歌曲名不能为空呢,请重新输入!') state[state['_current_key']] = args ``` #### File: plugins/robot/tencent.py ```python import hashlib import json import random import string import time from typing import Optional from urllib import parse import httpx from nonebot.adapters.cqhttp import MessageEvent from .config import plugin_config async def call_tencent_api(event: MessageEvent, text: str) -> Optional[str]: """ 调用腾讯机器人的 API 获取回复 """ if not plugin_config.tencent_ai_app_key: return None if not text: return None url = 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_textchat' # 构造请求数据 payload = { 'app_id': int(plugin_config.tencent_ai_app_id), 'time_stamp': int(time.time()), 'nonce_str': ''.join(random.sample(string.ascii_letters + string.digits, 32)), 'session': event.get_session_id(), 'question': text } # 接口鉴权 签名 payload['sign'] = gen_sign_string(payload, plugin_config.tencent_ai_app_key) try: # 使用 httpx 库发送最终的请求 async with httpx.AsyncClient() as client: resp = await client.get(url, params=payload) if resp.status_code != 200: # 如果 HTTP 响应状态码不是 200,说明调用失败 return None resp_payload = json.loads(resp.text) if resp_payload['ret'] != 0: # 返回非 0 表示出错 return None return resp_payload['data']['answer'] except (httpx.HTTPError, json.JSONDecodeError, KeyError): # 抛出上面任何异常,说明调用失败 return None def gen_sign_string(parser, app_key: str) -> str: """ 获取请求签名,接口鉴权 https://ai.qq.com/doc/auth.shtml 1.将 <key, value> 请求参数对按 key 进行字典升序排序,得到有序的参数对列表 N 2.将列表 N 中的参数对按 URL 键值对的格式拼接成字符串,得到字符串 T(如:key1=value1&key2=value2), URL 键值拼接过程 value 部分需要 URL 编码,URL 编码算法用大写字母,例如 %E8,而不是小写 %e8 3.将应用密钥以 app_key 为键名,组成 URL 键值拼接到字符串 T 末尾,得到字符串 S(如:key1=value1&key2=value2&app_key = 密钥) 4.对字符串 S 进行 MD5 运算,将得到的 MD5 值所有字符转换成大写,得到接口请求签名 :param parser: dect :param app_key: str :return: str,签名 """ params = sorted(parser.items()) uri_str = parse.urlencode(params, encoding='UTF-8') sign_str = '{}&app_key={}'.format(uri_str, app_key) # print('sign =', sign_str.strip()) hash_md5 = hashlib.md5(sign_str.encode('UTF-8')) return hash_md5.hexdigest().upper() ``` #### File: plugins/roll/__init__.py ```python import re from nonebot import on_command from nonebot.adapters import Bot, Event from nonebot.typing import T_State from nonebot.adapters.cqhttp import MessageEvent from .rand import get_rand from .data import roll_dices #region roll roll_cmd = on_command('roll', block=True) roll_cmd.__doc__ = """ roll NGA 风格 ROLL 点 roll 一次点数100 /roll d100 roll 两次点数100和两次点数50 /roll 2d100+2d50 """ @roll_cmd.handle() async def roll_handle_first_receive(bot: Bot, event: MessageEvent, state: T_State): args = str(event.message).strip() # 检查是否符合规则 match = re.match(r'^([\dd+\s]+?)$', args) if args and match: state['input'] = args @roll_cmd.args_parser async def roll_args_parser(bot: Bot, event: Event, state: T_State): args = str(event.get_message()).strip() # 检查是否符合规则 match = re.match(r'^([\dd+\s]+?)$', args) if not args: await roll_cmd.reject('ROLL 点方式不能为空呢,请重新输入') if not match: await roll_cmd.reject('请输入正确的参数 ~>_<~') state[state['_current_key']] = args @roll_cmd.got( 'input', prompt='欢迎使用 NGA 风格 ROLL 点插件\n请问你想怎么 ROLL 点\n你可以输入 d100\n也可以输入 2d100+2d50') async def roll_handle(bot: Bot, event: MessageEvent, state: T_State): input_str = state['input'] str_data = roll_dices(input_str) await roll_cmd.finish(str_data, at_sender=True) #endregion #region rand rand_cmd = on_command('rand', block=True) rand_cmd.__doc__ = """ rand 获得 0-100 的点数 /rand 获得一件事情的概率 /rand 今天捐钱的概率 """ @rand_cmd.handle() async def rand_handle(bot: Bot, event: MessageEvent, state: T_State): args = str(event.message).strip() str_data = get_rand(args) await rand_cmd.finish(str_data, at_sender=True) #endregion ```
{ "source": "58563528/nonebot-hk-reporter", "score": 2 }
#### File: plugins/nonebot_bison/config_manager.py ```python from typing import Type from nonebot import logger, on_command from nonebot.adapters._bot import Bot as AbstractBot from nonebot.adapters._event import Event as AbstractEvent from nonebot.adapters.cqhttp import Bot, Event, GroupMessageEvent from nonebot.adapters.cqhttp.message import Message from nonebot.adapters.cqhttp.permission import GROUP_ADMIN, GROUP_MEMBER, GROUP_OWNER from nonebot.matcher import Matcher from nonebot.permission import Permission, SUPERUSER from nonebot.rule import to_me from nonebot.typing import T_State from .config import Config, NoSuchSubscribeException from .platform import check_sub_target, platform_manager from .types import Target from .utils import parse_text def _gen_prompt_template(prompt: str): if hasattr(Message, 'template'): return Message.template(prompt) return prompt common_platform = [p.platform_name for p in \ filter(lambda platform: platform.enabled and platform.is_common, platform_manager.values()) ] help_match = on_command('help', rule=to_me(), priority=5) @help_match.handle() async def send_help(bot: Bot, event: Event, state: T_State): message = '使用方法:\n@bot 添加订阅(仅管理员)\n@bot 查询订阅\n@bot 删除订阅(仅管理员)' await help_match.finish(Message(await parse_text(message))) def do_add_sub(add_sub: Type[Matcher]): @add_sub.handle() async def init_promote(bot: Bot, event: Event, state: T_State): state['_prompt'] = '请输入想要订阅的平台,目前支持,请输入冒号左边的名称:\n' + \ ''.join(['{}:{}\n'.format(platform_name, platform_manager[platform_name].name) \ for platform_name in common_platform]) + \ '要查看全部平台请输入:“全部”' async def parse_platform(bot: AbstractBot, event: AbstractEvent, state: T_State) -> None: platform = str(event.get_message()).strip() if platform == '全部': message = '全部平台\n' + \ '\n'.join(['{}:{}'.format(platform_name, platform.name) \ for platform_name, platform in platform_manager.items()]) await add_sub.reject(message) elif platform in platform_manager: state['platform'] = platform else: await add_sub.reject('平台输入错误') @add_sub.got('platform', _gen_prompt_template('{_prompt}'), parse_platform) @add_sub.handle() async def init_id(bot: Bot, event: Event, state: T_State): if platform_manager[state['platform']].has_target: state['_prompt'] = '请输入订阅用户的id,详情查阅https://nonebot-bison.vercel.app/usage/#%E6%89%80%E6%94%AF%E6%8C%81%E5%B9%B3%E5%8F%B0%E7%9A%84uid' else: state['id'] = 'default' state['name'] = await platform_manager[state['platform']].get_target_name(Target('')) async def parse_id(bot: AbstractBot, event: AbstractEvent, state: T_State): target = str(event.get_message()).strip() try: name = await check_sub_target(state['platform'], target) if not name: await add_sub.reject('id输入错误') state['id'] = target state['name'] = name except: await add_sub.reject('id输入错误') @add_sub.got('id', _gen_prompt_template('{_prompt}'), parse_id) @add_sub.handle() async def init_cat(bot: Bot, event: Event, state: T_State): if not platform_manager[state['platform']].categories: state['cats'] = [] return state['_prompt'] = '请输入要订阅的类别,以空格分隔,支持的类别有:{}'.format( ' '.join(list(platform_manager[state['platform']].categories.values()))) async def parser_cats(bot: AbstractBot, event: AbstractEvent, state: T_State): res = [] for cat in str(event.get_message()).strip().split(): if cat not in platform_manager[state['platform']].reverse_category: await add_sub.reject('不支持 {}'.format(cat)) res.append(platform_manager[state['platform']].reverse_category[cat]) state['cats'] = res @add_sub.got('cats', _gen_prompt_template('{_prompt}'), parser_cats) @add_sub.handle() async def init_tag(bot: Bot, event: Event, state: T_State): if not platform_manager[state['platform']].enable_tag: state['tags'] = [] return state['_prompt'] = '请输入要订阅的tag,订阅所有tag输入"全部标签"' async def parser_tags(bot: AbstractBot, event: AbstractEvent, state: T_State): if str(event.get_message()).strip() == '全部标签': state['tags'] = [] else: state['tags'] = str(event.get_message()).strip().split() @add_sub.got('tags', _gen_prompt_template('{_prompt}'), parser_tags) @add_sub.handle() async def add_sub_process(bot: Bot, event: Event, state: T_State): config = Config() config.add_subscribe(state.get('_user_id') or event.group_id, user_type='group', target=state['id'], target_name=state['name'], target_type=state['platform'], cats=state.get('cats', []), tags=state.get('tags', [])) await add_sub.finish('添加 {} 成功'.format(state['name'])) def do_query_sub(query_sub: Type[Matcher]): @query_sub.handle() async def _(bot: Bot, event: Event, state: T_State): config: Config = Config() sub_list = config.list_subscribe(state.get('_user_id') or event.group_id, "group") res = '订阅的帐号为:\n' for sub in sub_list: res += '{} {} {}'.format(sub['target_type'], sub['target_name'], sub['target']) platform = platform_manager[sub['target_type']] if platform.categories: res += ' [{}]'.format(', '.join(map(lambda x: platform.categories[x], sub['cats']))) if platform.enable_tag: res += ' {}'.format(', '.join(sub['tags'])) res += '\n' await query_sub.finish(Message(await parse_text(res))) def do_del_sub(del_sub: Type[Matcher]): @del_sub.handle() async def send_list(bot: Bot, event: Event, state: T_State): config: Config = Config() sub_list = config.list_subscribe(state.get('_user_id') or event.group_id, "group") res = '订阅的帐号为:\n' state['sub_table'] = {} for index, sub in enumerate(sub_list, 1): state['sub_table'][index] = {'target_type': sub['target_type'], 'target': sub['target']} res += '{} {} {} {}\n'.format(index, sub['target_type'], sub['target_name'], sub['target']) platform = platform_manager[sub['target_type']] if platform.categories: res += ' [{}]'.format(', '.join(map(lambda x: platform.categories[x], sub['cats']))) if platform.enable_tag: res += ' {}'.format(', '.join(sub['tags'])) res += '\n' res += '请输入要删除的订阅的序号' await bot.send(event=event, message=Message(await parse_text(res))) @del_sub.receive() async def do_del(bot, event: Event, state: T_State): try: index = int(str(event.get_message()).strip()) config = Config() config.del_subscribe(state.get('_user_id') or event.group_id, 'group', **state['sub_table'][index]) except Exception as e: await del_sub.reject('删除错误') logger.warning(e) else: await del_sub.finish('删除成功') async def parse_group_number(bot: AbstractBot, event: AbstractEvent, state: T_State): state[state["_current_key"]] = int(str(event.get_message())) add_sub_matcher = on_command("添加订阅", rule=to_me(), permission=GROUP_ADMIN | GROUP_OWNER | SUPERUSER, priority=5) do_add_sub(add_sub_matcher) manage_add_sub_mather = on_command('管理-添加订阅', permission=SUPERUSER, priority=5) @manage_add_sub_mather.got('_user_id', "群号", parse_group_number) async def handle(bot: Bot, event: Event, state: T_State): pass do_add_sub(manage_add_sub_mather) query_sub_macher = on_command("查询订阅", rule=to_me(), priority=5) do_query_sub(query_sub_macher) manage_query_sub_mather = on_command('管理-查询订阅', permission=SUPERUSER, priority=5) @manage_query_sub_mather.got('_user_id', "群号", parse_group_number) async def handle(bot: Bot, event: Event, state: T_State): pass do_query_sub(manage_query_sub_mather) del_sub_macher = on_command("删除订阅", rule=to_me(), permission=GROUP_ADMIN | GROUP_OWNER | SUPERUSER, priority=5) do_del_sub(del_sub_macher) manage_del_sub_mather = on_command('管理-删除订阅', permission=SUPERUSER, priority=5) @manage_del_sub_mather.got('_user_id', "群号", parse_group_number) async def handle(bot: Bot, event: Event, state: T_State): pass do_del_sub(manage_del_sub_mather) ``` #### File: plugins/nonebot_bison/post.py ```python import base64 from dataclasses import dataclass, field from functools import reduce from io import BytesIO from typing import Optional, Union from PIL import Image import httpx from nonebot import logger from nonebot.adapters.cqhttp.message import Message, MessageSegment from .plugin_config import plugin_config from .utils import parse_text @dataclass class Post: target_type: str text: str url: Optional[str] = None target_name: Optional[str] = None compress: bool = False override_use_pic: Optional[bool] = None pics: Union[list[Union[str,bytes]], list[str], list[bytes]] = field(default_factory=list) extra_msg: list[Message] = field(default_factory=list) _message: Optional[list] = None def _use_pic(self): if not self.override_use_pic is None: return self.override_use_pic return plugin_config.bison_use_pic async def _pic_url_to_image(self, data: Union[str, bytes]) -> Image.Image: pic_buffer = BytesIO() if isinstance(data, str): async with httpx.AsyncClient() as client: res = await client.get(data) pic_buffer.write(res.content) else: pic_buffer.write(data) return Image.open(pic_buffer) def _check_image_square(self, size: tuple[int, int]) -> bool: return abs(size[0] - size[1]) / size[0] < 0.05 async def _pic_merge(self) -> None: if len(self.pics) < 3: return first_image = await self._pic_url_to_image(self.pics[0]) if not self._check_image_square(first_image.size): return images: list[Image.Image] = [first_image] # first row for i in range(1, 3): cur_img = await self._pic_url_to_image(self.pics[i]) if not self._check_image_square(cur_img.size): return if cur_img.size[1] != images[0].size[1]: # height not equal return images.append(cur_img) _tmp = 0 x_coord = [0] for i in range(3): _tmp += images[i].size[0] x_coord.append(_tmp) y_coord = [0, first_image.size[1]] async def process_row(row: int) -> bool: if len(self.pics) < (row + 1) * 3: return False row_first_img = await self._pic_url_to_image(self.pics[row * 3]) if not self._check_image_square(row_first_img.size): return False if row_first_img.size[0] != images[0].size[0]: return False image_row: list[Image.Image] = [row_first_img] for i in range(row * 3 + 1, row * 3 + 3): cur_img = await self._pic_url_to_image(self.pics[i]) if not self._check_image_square(cur_img.size): return False if cur_img.size[1] != row_first_img.size[1]: return False if cur_img.size[0] != images[i % 3].size[0]: return False image_row.append(cur_img) images.extend(image_row) y_coord.append(y_coord[-1] + row_first_img.size[1]) return True if await process_row(1): matrix = (3,2) else: matrix = (3,1) if await process_row(2): matrix = (3,3) logger.info('trigger merge image') target = Image.new('RGB', (x_coord[-1], y_coord[-1])) for y in range(matrix[1]): for x in range(matrix[0]): target.paste(images[y * matrix[0] + x], ( x_coord[x], y_coord[y], x_coord[x+1], y_coord[y+1] )) target_io = BytesIO() target.save(target_io, 'JPEG') self.pics = self.pics[matrix[0] * matrix[1]: ] self.pics.insert(0, target_io.getvalue()) async def generate_messages(self): if self._message is None: await self._pic_merge() msgs = [] text = '' if self.text: if self._use_pic(): text += '{}'.format(self.text) else: text += '{}'.format(self.text if len(self.text) < 500 else self.text[:500] + '...') text += '\n来源: {}'.format(self.target_type) if self.target_name: text += ' {}'.format(self.target_name) if self._use_pic(): msgs.append(await parse_text(text)) if not self.target_type == 'rss' and self.url: msgs.append(MessageSegment.text(self.url)) else: if self.url: text += ' \n详情: {}'.format(self.url) msgs.append(MessageSegment.text(text)) for pic in self.pics: # if isinstance(pic, bytes): # pic = 'base64://' + base64.b64encode(pic).decode() # msgs.append(Message("[CQ:image,file={url}]".format(url=pic))) msgs.append(MessageSegment.image(pic)) if self.compress: msgs = [reduce(lambda x, y: x.append(y), msgs, Message())] msgs.extend(self.extra_msg) self._message = msgs return self._message def __str__(self): return 'type: {}\nfrom: {}\ntext: {}\nurl: {}\npic: {}'.format( self.target_type, self.target_name, self.text if len(self.text) < 500 else self.text[:500] + '...', self.url, ', '.join(map(lambda x: 'b64img' if isinstance(x, bytes) or x.startswith('base64') else x, self.pics)) ) ``` #### File: plugins/nonebot_bison/send.py ```python import time from nonebot import logger from nonebot.adapters.cqhttp.bot import Bot from .plugin_config import plugin_config QUEUE = [] LAST_SEND_TIME = time.time() async def _do_send(bot: 'Bot', user: str, user_type: str, msg): if user_type == 'group': await bot.call_api('send_group_msg', group_id=user, message=msg) elif user_type == 'private': await bot.call_api('send_private_msg', user_id=user, message=msg) async def do_send_msgs(): global LAST_SEND_TIME if time.time() - LAST_SEND_TIME < 1.5: return if QUEUE: bot, user, user_type, msg, retry_time = QUEUE.pop(0) try: await _do_send(bot, user, user_type, msg) except Exception as e: if retry_time > 0: QUEUE.insert(0, (bot, user, user_type, msg, retry_time - 1)) else: msg_str = str(msg) if len(msg_str) > 50: msg_str = msg_str[:50] + '...' logger.warning(f'send msg err {e} {msg_str}') LAST_SEND_TIME = time.time() async def send_msgs(bot, user, user_type, msgs): if plugin_config.bison_use_queue: for msg in msgs: QUEUE.append((bot, user, user_type, msg, 2)) else: for msg in msgs: await _do_send(bot, user, user_type, msg) ``` #### File: nonebot-hk-reporter/tests/conftest.py ```python import pytest import nonebot import typing if typing.TYPE_CHECKING: import sys sys.path.append('./src/plugins') import nonebot_bison @pytest.fixture#(scope="module") def plugin_module(tmpdir): nonebot.init(bison_config_path=str(tmpdir)) nonebot.load_plugins('src/plugins') plugins = nonebot.get_loaded_plugins() plugin = list(filter(lambda x: x.name == 'nonebot_bison', plugins))[0] return plugin.module @pytest.fixture def dummy_user_subinfo(plugin_module: 'nonebot_bison'): user = plugin_module.types.User('123', 'group') return plugin_module.types.UserSubInfo( user=user, category_getter=lambda _: [], tag_getter=lambda _: [] ) ``` #### File: tests/platforms/test_platform.py ```python import sys import typing from typing import Any, Optional import pytest if typing.TYPE_CHECKING: import sys sys.path.append('./src/plugins') import nonebot_bison from nonebot_bison.types import * from nonebot_bison.post import Post from time import time now = time() passed = now - 3 * 60 * 60 raw_post_list_1 = [ {'id': 1, 'text': 'p1', 'date': now, 'tags': ['tag1'], 'category': 1} ] raw_post_list_2 = raw_post_list_1 + [ {'id': 2, 'text': 'p2', 'date': now, 'tags': ['tag1'], 'category': 1}, {'id': 3, 'text': 'p3', 'date': now, 'tags': ['tag2'], 'category': 2}, {'id': 4, 'text': 'p4', 'date': now, 'tags': ['tag2'], 'category': 3} ] @pytest.fixture def dummy_user(plugin_module: 'nonebot_bison'): user = plugin_module.types.User('123', 'group') return user @pytest.fixture def user_info_factory(plugin_module: 'nonebot_bison', dummy_user): def _user_info(category_getter, tag_getter): return plugin_module.types.UserSubInfo(dummy_user, category_getter, tag_getter) return _user_info @pytest.fixture def mock_platform_without_cats_tags(plugin_module: 'nonebot_bison'): class MockPlatform(plugin_module.platform.platform.NewMessage, plugin_module.platform.platform.TargetMixin): platform_name = 'mock_platform' name = 'Mock Platform' enabled = True is_common = True schedule_interval = 10 enable_tag = False categories = {} def __init__(self): self.sub_index = 0 super().__init__() @staticmethod async def get_target_name(_: 'Target'): return 'MockPlatform' def get_id(self, post: 'RawPost') -> Any: return post['id'] def get_date(self, raw_post: 'RawPost') -> float: return raw_post['date'] async def parse(self, raw_post: 'RawPost') -> 'Post': return plugin_module.post.Post('mock_platform', raw_post['text'], 'http://t.tt/' + str(self.get_id(raw_post)), target_name='Mock') async def get_sub_list(self, _: 'Target'): if self.sub_index == 0: self.sub_index += 1 return raw_post_list_1 else: return raw_post_list_2 return MockPlatform() @pytest.fixture def mock_platform(plugin_module: 'nonebot_bison'): class MockPlatform(plugin_module.platform.platform.NewMessage, plugin_module.platform.platform.TargetMixin): platform_name = 'mock_platform' name = 'Mock Platform' enabled = True is_common = True schedule_interval = 10 enable_tag = True categories = { 1: '转发', 2: '视频', } def __init__(self): self.sub_index = 0 super().__init__() @staticmethod async def get_target_name(_: 'Target'): return 'MockPlatform' def get_id(self, post: 'RawPost') -> Any: return post['id'] def get_date(self, raw_post: 'RawPost') -> float: return raw_post['date'] def get_tags(self, raw_post: 'RawPost') -> list['Tag']: return raw_post['tags'] def get_category(self, raw_post: 'RawPost') -> 'Category': return raw_post['category'] async def parse(self, raw_post: 'RawPost') -> 'Post': return plugin_module.post.Post('mock_platform', raw_post['text'], 'http://t.tt/' + str(self.get_id(raw_post)), target_name='Mock') async def get_sub_list(self, _: 'Target'): if self.sub_index == 0: self.sub_index += 1 return raw_post_list_1 else: return raw_post_list_2 return MockPlatform() @pytest.fixture def mock_platform_no_target(plugin_module: 'nonebot_bison'): class MockPlatform(plugin_module.platform.platform.NewMessage, plugin_module.platform.platform.NoTargetMixin): platform_name = 'mock_platform' name = 'Mock Platform' enabled = True is_common = True schedule_type = 'interval' schedule_kw = {'seconds': 30} enable_tag = True categories = { 1: '转发', 2: '视频', 3: '不支持' } def __init__(self): self.sub_index = 0 super().__init__() @staticmethod async def get_target_name(_: 'Target'): return 'MockPlatform' def get_id(self, post: 'RawPost') -> Any: return post['id'] def get_date(self, raw_post: 'RawPost') -> float: return raw_post['date'] def get_tags(self, raw_post: 'RawPost') -> list['Tag']: return raw_post['tags'] def get_category(self, raw_post: 'RawPost') -> 'Category': if raw_post['category'] == 3: raise plugin_module.platform.platform.CategoryNotSupport() return raw_post['category'] async def parse(self, raw_post: 'RawPost') -> 'Post': return plugin_module.post.Post('mock_platform', raw_post['text'], 'http://t.tt/' + str(self.get_id(raw_post)), target_name='Mock') async def get_sub_list(self, _: 'Target'): if self.sub_index == 0: self.sub_index += 1 return raw_post_list_1 else: return raw_post_list_2 return MockPlatform() @pytest.fixture def mock_platform_no_target_2(plugin_module: 'nonebot_bison'): class MockPlatform(plugin_module.platform.platform.NewMessage, plugin_module.platform.platform.NoTargetMixin): platform_name = 'mock_platform' name = 'Mock Platform' enabled = True schedule_type = 'interval' schedule_kw = {'seconds': 30} is_common = True enable_tag = True categories = { 4: 'leixing4', 5: 'leixing5', } def __init__(self): self.sub_index = 0 super().__init__() @staticmethod async def get_target_name(_: 'Target'): return 'MockPlatform' def get_id(self, post: 'RawPost') -> Any: return post['id'] def get_date(self, raw_post: 'RawPost') -> float: return raw_post['date'] def get_tags(self, raw_post: 'RawPost') -> list['Tag']: return raw_post['tags'] def get_category(self, raw_post: 'RawPost') -> 'Category': return raw_post['category'] async def parse(self, raw_post: 'RawPost') -> 'Post': return plugin_module.post.Post('mock_platform_2', raw_post['text'], 'http://t.tt/' + str(self.get_id(raw_post)), target_name='Mock') async def get_sub_list(self, _: 'Target'): list_1 = [ {'id': 5, 'text': 'p5', 'date': now, 'tags': ['tag1'], 'category': 4} ] list_2 = list_1 + [ {'id': 6, 'text': 'p6', 'date': now, 'tags': ['tag1'], 'category': 4}, {'id': 7, 'text': 'p7', 'date': now, 'tags': ['tag2'], 'category': 5}, ] if self.sub_index == 0: self.sub_index += 1 return list_1 else: return list_2 return MockPlatform() @pytest.fixture def mock_status_change(plugin_module: 'nonebot_bison'): class MockPlatform(plugin_module.platform.platform.StatusChange, plugin_module.platform.platform.NoTargetMixin): platform_name = 'mock_platform' name = 'Mock Platform' enabled = True is_common = True enable_tag = False schedule_type = 'interval' schedule_kw = {'seconds': 10} categories = { 1: '转发', 2: '视频', } def __init__(self): self.sub_index = 0 super().__init__() async def get_status(self, _: 'Target'): if self.sub_index == 0: self.sub_index += 1 return {'s': False} elif self.sub_index == 1: self.sub_index += 1 return {'s': True} else: return {'s': False} def compare_status(self, target, old_status, new_status) -> list['RawPost']: if old_status['s'] == False and new_status['s'] == True: return [{'text': 'on', 'cat': 1}] elif old_status['s'] == True and new_status['s'] == False: return [{'text': 'off', 'cat': 2}] return [] async def parse(self, raw_post) -> 'Post': return plugin_module.post.Post('mock_status', raw_post['text'], '') def get_category(self, raw_post): return raw_post['cat'] return MockPlatform() @pytest.mark.asyncio async def test_new_message_target_without_cats_tags(mock_platform_without_cats_tags, user_info_factory): res1 = await mock_platform_without_cats_tags.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res1) == 0) res2 = await mock_platform_without_cats_tags.fetch_new_post('dummy', [ user_info_factory(lambda _: [], lambda _: []), ]) assert(len(res2) == 1) posts_1 = res2[0][1] assert(len(posts_1) == 3) id_set_1 = set(map(lambda x: x.text, posts_1)) assert('p2' in id_set_1 and 'p3' in id_set_1 and 'p4' in id_set_1) @pytest.mark.asyncio async def test_new_message_target(mock_platform, user_info_factory): res1 = await mock_platform.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res1) == 0) res2 = await mock_platform.fetch_new_post('dummy', [ user_info_factory(lambda _: [1,2], lambda _: []), user_info_factory(lambda _: [1], lambda _: []), user_info_factory(lambda _: [1,2], lambda _: ['tag1']) ]) assert(len(res2) == 3) posts_1 = res2[0][1] posts_2 = res2[1][1] posts_3 = res2[2][1] assert(len(posts_1) == 2) assert(len(posts_2) == 1) assert(len(posts_3) == 1) id_set_1 = set(map(lambda x: x.text, posts_1)) id_set_2 = set(map(lambda x: x.text, posts_2)) id_set_3 = set(map(lambda x: x.text, posts_3)) assert('p2' in id_set_1 and 'p3' in id_set_1) assert('p2' in id_set_2) assert('p2' in id_set_3) @pytest.mark.asyncio async def test_new_message_no_target(mock_platform_no_target, user_info_factory): res1 = await mock_platform_no_target.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res1) == 0) res2 = await mock_platform_no_target.fetch_new_post('dummy', [ user_info_factory(lambda _: [1,2], lambda _: []), user_info_factory(lambda _: [1], lambda _: []), user_info_factory(lambda _: [1,2], lambda _: ['tag1']) ]) assert(len(res2) == 3) posts_1 = res2[0][1] posts_2 = res2[1][1] posts_3 = res2[2][1] assert(len(posts_1) == 2) assert(len(posts_2) == 1) assert(len(posts_3) == 1) id_set_1 = set(map(lambda x: x.text, posts_1)) id_set_2 = set(map(lambda x: x.text, posts_2)) id_set_3 = set(map(lambda x: x.text, posts_3)) assert('p2' in id_set_1 and 'p3' in id_set_1) assert('p2' in id_set_2) assert('p2' in id_set_3) res3 = await mock_platform_no_target.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res3) == 0) @pytest.mark.asyncio async def test_status_change(mock_status_change, user_info_factory): res1 = await mock_status_change.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res1) == 0) res2 = await mock_status_change.fetch_new_post('dummy', [ user_info_factory(lambda _: [1,2], lambda _:[]) ]) assert(len(res2) == 1) posts = res2[0][1] assert(len(posts) == 1) assert(posts[0].text == 'on') res3 = await mock_status_change.fetch_new_post('dummy', [ user_info_factory(lambda _: [1,2], lambda _: []), user_info_factory(lambda _: [1], lambda _: []), ]) assert(len(res3) == 2) assert(len(res3[0][1]) == 1) assert(res3[0][1][0].text == 'off') assert(len(res3[1][1]) == 0) res4 = await mock_status_change.fetch_new_post('dummy', [user_info_factory(lambda _: [1,2], lambda _: [])]) assert(len(res4) == 0) @pytest.mark.asyncio async def test_group(plugin_module: 'nonebot_bison', mock_platform_no_target, mock_platform_no_target_2, user_info_factory): group_platform = plugin_module.platform.platform.NoTargetGroup([mock_platform_no_target, mock_platform_no_target_2]) res1 = await group_platform.fetch_new_post('dummy', [user_info_factory(lambda _: [1,4], lambda _: [])]) assert(len(res1) == 0) res2 = await group_platform.fetch_new_post('dummy', [user_info_factory(lambda _: [1,4], lambda _: [])]) assert(len(res2) == 1) posts = res2[0][1] assert(len(posts) == 2) id_set_2 = set(map(lambda x: x.text, posts)) assert('p2' in id_set_2 and 'p6' in id_set_2) res3 = await group_platform.fetch_new_post('dummy', [user_info_factory(lambda _: [1,4], lambda _: [])]) assert(len(res3) == 0) ```
{ "source": "58563528/omega-miyabot", "score": 2 }
#### File: plugins/miya_button/__init__.py ```python import re import os from nonebot import MatcherGroup, logger from nonebot.typing import T_State from nonebot.rule import to_me from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.message import MessageSegment from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_plugin_utils import init_permission_state from .resources import miya_voices """ miya按钮bot实现版本 测试中 """ button = MatcherGroup( type='message', rule=to_me(), # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='button', command=True, level=10), permission=GROUP, priority=100, block=False) miya_button = button.on_endswith(msg='喵一个') @miya_button.handle() async def handle_miya_button(bot: Bot, event: GroupMessageEvent, state: T_State): arg = str(event.get_plaintext()).strip().lower() voice = re.sub('喵一个', '', arg) voice_file = miya_voices.get_voice(keyword=voice) if not os.path.exists(voice_file): await miya_button.send('喵?') else: msg = MessageSegment.record(file=f'file:///{voice_file}') await miya_button.send(msg) ``` #### File: plugins/Omega_vocation/__init__.py ```python import re from datetime import datetime, timedelta from nonebot import MatcherGroup, export, logger, require from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_Base import DBSkill, DBUser, DBGroup, DBTable from omega_miya.utils.Omega_plugin_utils import init_export, init_permission_state, check_auth_node # Custom plugin usage text __plugin_name__ = '请假' __plugin_usage__ = r'''【Omega 请假插件】 用来设置/查询自己以及群员的状态和假期 仅限群聊使用 **Permission** Command with AuthNode **AuthNode** basic **Usage** /我的状态 /重置状态 /我的假期 /请假 [时间] [理由] /销假 /谁有空 [技能名称] /谁在休假''' # 声明本插件可配置的权限节点 __plugin_auth_node__ = [ 'basic' ] # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__, __plugin_auth_node__) # 注册事件响应器 vocation = MatcherGroup( type='message', # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='vocation', command=True, auth_node='basic'), permission=GROUP, priority=10, block=True) my_status = vocation.on_command('我的状态') @my_status.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): user_id = event.user_id user = DBUser(user_id=user_id) result = await user.status() if result.success(): status = result.result if status == 1: status = '请假中' elif status == 2: status = '工作中' else: status = '空闲中' logger.info(f"my_status: {event.group_id}/{user_id}, Success, {result.info}") await my_status.finish(f'你现在的状态是: 【{status}】') else: logger.error(f"my_status: {event.group_id}/{user_id}, Failed, {result.info}") await my_status.finish('没有查询到你的状态信息QAQ, 请尝试使用【/重置状态】来解决问题') # 注册事件响应器 reset_status = vocation.on_command('重置状态', aliases={'销假'}) @reset_status.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): user_id = event.user_id user = DBUser(user_id=user_id) result = await user.status_set(status=0) if result.success(): logger.info(f"reset_status: {event.group_id}/{user_id}, Success, {result.info}") await my_status.finish('Success') else: logger.error(f"reset_status: {event.group_id}/{user_id}, Failed, {result.info}") await my_status.finish('Failed QAQ') # 注册事件响应器 my_vocation = vocation.on_command('我的假期') @my_vocation.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): user_id = event.user_id user = DBUser(user_id=user_id) result = await user.vocation_status() if result.success(): status, stop_time = result.result if status == 1: msg = f'你的假期将持续到: 【{stop_time}】' else: msg = '你似乎并不在假期中呢~需要现在请假吗?' logger.info(f"my_vocation: {event.group_id}/{user_id}, Success, {result.info}") await my_status.finish(msg) else: logger.error(f"my_vocation: {event.group_id}/{user_id}, Failed, {result.info}") await my_status.finish('没有查询到你的假期信息QAQ, 请尝试使用【/重置状态】来解决问题') # 注册事件响应器 set_vocation = vocation.on_command('请假') # 修改默认参数处理 @set_vocation.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: await set_vocation.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args[0] if state[state["_current_key"]] == '取消': await set_vocation.finish('操作已取消') @set_vocation.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: pass elif args and len(args) == 1: state['vocation_time'] = args[0] state['reason'] = None elif args and len(args) == 2: state['vocation_time'] = args[0] state['reason'] = args[1] else: await set_vocation.finish('参数错误QAQ') @set_vocation.got('vocation_time', prompt='请输入你想请假的时间: \n仅支持数字+周/天/小时/分/分钟/秒') async def handle_vocation_time(bot: Bot, event: GroupMessageEvent, state: T_State): time = state['vocation_time'] add_time = timedelta() if re.match(r'^\d+周$', time): time = int(re.sub(r'周$', '', time)) add_time = timedelta(weeks=time) elif re.match(r'^\d+天$', time): time = int(re.sub(r'天$', '', time)) add_time = timedelta(days=time) elif re.match(r'^\d+小时$', time): time = int(re.sub(r'小时$', '', time)) add_time = timedelta(hours=time) elif re.match(r'^\d+(分|分钟)$', time): time = int(re.sub(r'(分|分钟)$', '', time)) add_time = timedelta(minutes=time) elif re.match(r'^\d+秒$', time): time = int(re.sub(r'秒$', '', time)) add_time = timedelta(seconds=time) else: await set_vocation.reject('仅支持数字+周/天/小时/分/分钟/秒, 请重新输入, 取消命令请发送【取消】:') state['stop_at'] = datetime.now() + add_time @set_vocation.got('stop_at', prompt='stop_at?') @set_vocation.got('reason', prompt='请输入你的请假理由:') async def handle_vocation_stop(bot: Bot, event: GroupMessageEvent, state: T_State): user_id = event.user_id user = DBUser(user_id=user_id) stop_at = state['stop_at'] reason = state['reason'] result = await user.vocation_set(stop_time=stop_at, reason=reason) if result.success(): logger.info(f"Group: {event.group_id}/{user_id}, set_vocation, Success, {result.info}") await set_vocation.finish(f'请假成功! 你的假期将持续到【{stop_at.strftime("%Y-%m-%d %H:%M:%S")}】') else: logger.error(f"Group: {event.group_id}/{user_id}, set_vocation, Failed, {result.info}") await set_vocation.finish('请假失败, 发生了意外的错误QAQ') # 注册事件响应器 get_idle = vocation.on_command('谁有空') # 修改默认参数处理 @get_idle.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: await get_idle.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args[0] if state[state["_current_key"]] == '取消': await get_idle.finish('操作已取消') @get_idle.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip().lower().split() if not args: state['skill'] = None elif args and len(args) == 1: state['skill'] = args[0] else: await set_vocation.finish('参数错误QAQ') @get_idle.got('skill', prompt='空闲技能组?') async def handle_skill(bot: Bot, event: GroupMessageEvent, state: T_State): skill = state['skill'] group_id = event.group_id group = DBGroup(group_id=group_id) if not skill: result = await group.idle_member_list() if result.success() and result.result: msg = '' for nickname, user_skill in result.result: msg += f'\n【{nickname}{user_skill}】' logger.info(f"Group: {event.group_id}, get_idle, Success, {result.info}") await get_idle.finish(f'现在有空的人: \n{msg}') elif result.success() and not result.result: logger.info(f"Group: {event.group_id}, get_idle, Success, {result.info}") await get_idle.finish(f'现在似乎没人有空呢QAQ') else: logger.error(f"Group: {event.group_id}, get_idle, Failed, {result.info}") await get_idle.finish(f'似乎发生了点错误QAQ') else: skill_table = DBTable(table_name='Skill') skill_res = await skill_table.list_col(col_name='name') exist_skill = [x for x in skill_res.result] if skill not in exist_skill: await get_idle.reject(f'没有{skill}这个技能, 请重新输入, 取消命令请发送【取消】:') result = await group.idle_skill_list(skill=DBSkill(name=skill)) if result.success() and result.result: msg = '' for nickname in result.result: msg += f'\n【{nickname}】' await get_idle.finish(f'现在有空的{skill}人: \n{msg}') elif result.success() and not result.result: logger.info(f"Group: {event.group_id}, get_idle, Success, {result.info}") await get_idle.finish(f'现在似乎没有{skill}人有空呢QAQ') else: logger.error(f"Group: {event.group_id}, get_idle, Failed, {result.info}") await get_idle.finish(f'似乎发生了点错误QAQ') # 注册事件响应器 get_vocation = vocation.on_command('谁在休假') @get_vocation.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): group_id = event.group_id group = DBGroup(group_id=group_id) result = await group.vocation_member_list() if result.success() and result.result: msg = '' for nickname, stop_at in result.result: msg += f'\n【{nickname}/休假到: {stop_at}】' logger.info(f"Group: {event.group_id}, get_vocation, Success, {result.info}") await get_vocation.finish(f'现在在休假的的人: \n{msg}') elif result.success() and not result.result: logger.info(f"Group: {event.group_id}, get_vocation, Success, {result.info}") await get_vocation.finish(f'现在似乎没没有人休假呢~') else: logger.error(f"Group: {event.group_id}, get_vocation, Failed, {result.info}") await get_idle.finish(f'似乎发生了点错误QAQ') # 启用检查假期的定时任务 scheduler = require("nonebot_plugin_apscheduler").scheduler @scheduler.scheduled_job( 'cron', # year=None, # month=None, # day='*/1', # week=None, # day_of_week=None, # hour='4', minute='*/10', # second='*/10', # start_date=None, # end_date=None, # timezone=None, id='member_vocations_monitor', coalesce=True, misfire_grace_time=60 ) async def member_vocations_monitor(): logger.debug(f"member_vocations_monitor: vocation checking started") from nonebot import get_bots over_vocation_user = set() for bot_id, bot in get_bots().items(): group_list = await bot.call_api('get_group_list') for group in group_list: group_id = group.get('group_id') # 跳过不具备权限的组 auth_check_res = await check_auth_node( auth_id=group_id, auth_type='group', auth_node='Omega_vocation.basic') if auth_check_res != 1: continue logger.debug(f"member_vocations_monitor: checking group: {group_id}") # 调用api获取群成员信息 group_member_list = await bot.call_api(api='get_group_member_list', group_id=group_id) for user_info in group_member_list: user_nickname = user_info['card'] if not user_nickname: user_nickname = user_info['nickname'] user_qq = user_info['user_id'] user = DBUser(user_id=user_qq) user_vocation_res = await user.vocation_status() status, stop_time = user_vocation_res.result if status == 1 and datetime.now() >= stop_time: msg = f'【{user_nickname}】的假期已经结束啦~\n快给他/她安排工作吧!' await bot.call_api(api='send_group_msg', group_id=group_id, message=msg) over_vocation_user.add(user) for user in over_vocation_user: _res = await user.status_set(status=0) if not _res.success(): logger.error(f"reset user status failed: {_res.info}") logger.debug('member_vocations_monitor: vocation checking completed') ``` #### File: plugins/pixivsion_monitor/monitor.py ```python import asyncio from nonebot import logger, require, get_bots from nonebot.adapters.cqhttp import MessageSegment from omega_miya.utils.Omega_Base import DBSubscription, DBTable from omega_miya.utils.pixiv_utils import PixivIllust, PixivisionArticle from .utils import pixivsion_article_parse from .block_tag import TAG_BLOCK_LIST # 启用检查动态状态的定时任务 scheduler = require("nonebot_plugin_apscheduler").scheduler @scheduler.scheduled_job( 'cron', # year=None, # month=None, # day='*/1', # week=None, # day_of_week=None, # hour='*/1', minute='*/30', # second='*/30', # start_date=None, # end_date=None, # timezone=None, id='pixivision_monitor', coalesce=True, misfire_grace_time=45 ) async def pixivision_monitor(): logger.debug(f"pixivision_monitor: checking started") # 获取当前bot列表 bots = [] for bot_id, bot in get_bots().items(): bots.append(bot) # 获取所有有通知权限的群组 t = DBTable(table_name='Group') group_res = await t.list_col_with_condition('group_id', 'notice_permissions', 1) all_noitce_groups = [int(x) for x in group_res.result] # 初始化tag黑名单 block_tag_id = [] block_tag_name = [] for block_tag in TAG_BLOCK_LIST: block_tag_id.append(block_tag.get('id')) block_tag_name.append(block_tag.get('name')) # 提取数据库中已有article的id列表 t = DBTable(table_name='Pixivision') pixivision_res = await t.list_col(col_name='aid') exist_article = [int(x) for x in pixivision_res.result] # 获取最新一页pixivision的article new_article = [] articles_result = await PixivisionArticle.get_illustration_list() if articles_result.error: logger.error(f'pixivision_monitor: checking pixivision failed: {articles_result.info}') return for article in articles_result.result: try: article = dict(article) article_tags_id = [] article_tags_name = [] for tag in article['tags']: article_tags_id.append(int(tag['tag_id'])) article_tags_name.append(str(tag['tag_name'])) # 跳过黑名单tag的article if list(set(article_tags_id) & set(block_tag_id)) or list(set(article_tags_name) & set(block_tag_name)): continue # 获取新的article内容 if int(article['id']) not in exist_article: logger.info(f"pixivision_monitor: 检查到新的Pixivision article: {article['id']}") new_article.append({'aid': int(article['id']), 'tags': article_tags_name}) except Exception as e: logger.error(f'pixivision_monitor: an error occured in checking pixivision: {repr(e)}') continue if not new_article: logger.info(f'pixivision_monitor: checking completed, 没有新的article') return sub = DBSubscription(sub_type=8, sub_id=-1) # 获取订阅了该直播间的所有群 sub_group_res = await sub.sub_group_list() sub_group = sub_group_res.result # 需通知的群 notice_group = list(set(all_noitce_groups) & set(sub_group)) # 处理新的aritcle for article in new_article: aid = int(article['aid']) tags = list(article['tags']) a_res = await pixivsion_article_parse(aid=aid, tags=tags) if a_res.success(): if not notice_group: continue article_data = a_res.result msg = f"新的Pixivision特辑!\n\n" \ f"《{article_data['title']}》\n\n{article_data['description']}\n{article_data['url']}" for group_id in notice_group: for _bot in bots: try: await _bot.call_api(api='send_group_msg', group_id=group_id, message=msg) except Exception as e: logger.warning(f"向群组: {group_id} 发送article简介信息失败, error: {repr(e)}") continue # 处理article中图片内容 tasks = [] for pid in article_data['illusts_list']: tasks.append(PixivIllust(pid=pid).pic_2_base64()) p_res = await asyncio.gather(*tasks) image_error = 0 for image_res in p_res: if not image_res.success(): image_error += 1 continue else: img_seg = MessageSegment.image(image_res.result) # 发送图片 for group_id in notice_group: for _bot in bots: try: await _bot.call_api(api='send_group_msg', group_id=group_id, message=img_seg) # 避免风控控制推送间隔 await asyncio.sleep(1) except Exception as e: logger.warning(f"向群组: {group_id} 发送图片内容失败, error: {repr(e)}") continue logger.info(f"article: {aid} 图片已发送完成, 失败: {image_error}") else: logger.error(f"article: {aid} 信息解析失败, info: {a_res.info}") logger.info(f'pixivision_monitor: checking completed, 已处理新的article: {repr(new_article)}') __all__ = [ 'scheduler' ] ``` #### File: sticker_maker/utils/default_render.py ```python from PIL import Image, ImageDraw, ImageFont def stick_maker_temp_default(text: str, image_file: bytes, font_path: str, image_wight: int, image_height: int): # 处理图片 draw = ImageDraw.Draw(image_file) font_size = 72 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) while text_w >= image_wight: font_size = font_size * 3 // 4 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) # 计算居中文字位置 text_coordinate = (((image_wight - text_w) // 2), 9 * (image_height - text_h) // 10) # 为文字设置黑边 text_b_resize = 4 if font_size >= 72: text_b_resize = 4 elif font_size >= 36: text_b_resize = 3 elif font_size >= 24: text_b_resize = 2 elif font_size < 12: text_b_resize = 1 text_coordinate_b1 = (text_coordinate[0] + text_b_resize, text_coordinate[1]) text_coordinate_b2 = (text_coordinate[0] - text_b_resize, text_coordinate[1]) text_coordinate_b3 = (text_coordinate[0], text_coordinate[1] + text_b_resize) text_coordinate_b4 = (text_coordinate[0], text_coordinate[1] - text_b_resize) draw.multiline_text(text_coordinate_b1, text, font=font, fill=(0, 0, 0)) draw.multiline_text(text_coordinate_b2, text, font=font, fill=(0, 0, 0)) draw.multiline_text(text_coordinate_b3, text, font=font, fill=(0, 0, 0)) draw.multiline_text(text_coordinate_b4, text, font=font, fill=(0, 0, 0)) # 白字要后画,后画的在上层,不然就是黑滋在上面挡住了 draw.multiline_text(text_coordinate, text, font=font, fill=(255, 255, 255)) return image_file def stick_maker_temp_littleangel(text: str, image_file: bytes, font_path: str, image_wight: int, image_height: int): # 处理图片 background_w = image_wight + 100 background_h = image_height + 230 background = Image.new(mode="RGB", size=(background_w, background_h), color=(255, 255, 255)) # 处理粘贴位置 上留100像素,下留130像素 image_coordinate = (((background_w - image_wight) // 2), 100) background.paste(image_file, image_coordinate) draw = ImageDraw.Draw(background) font_down_1 = ImageFont.truetype(font_path, 48) text_down_1 = r'非常可爱!简直就是小天使' text_down_1_w, text_down_1_h = font_down_1.getsize(text_down_1) text_down_1_coordinate = (((background_w - text_down_1_w) // 2), background_h - 120) draw.text(text_down_1_coordinate, text_down_1, font=font_down_1, fill=(0, 0, 0)) font_down_2 = ImageFont.truetype(font_path, 26) text_down_2 = r'她没失踪也没怎么样 我只是觉得你们都该看一下' text_down_2_w, text_down_2_h = font_down_2.getsize(text_down_2) text_down_2_coordinate = (((background_w - text_down_2_w) // 2), background_h - 60) draw.text(text_down_2_coordinate, text_down_2, font=font_down_2, fill=(0, 0, 0)) font_size_up = 72 font_up = ImageFont.truetype(font_path, font_size_up) text_up = f'请问你们看到{text}了吗?' text_up_w, text_up_h = font_up.getsize(text_up) while text_up_w >= background_w: font_size_up = font_size_up * 5 // 6 font_up = ImageFont.truetype(font_path, font_size_up) text_up_w, text_up_h = font_up.getsize(text_up) # 计算居中文字位置 text_up_coordinate = (((background_w - text_up_w) // 2), 25) draw.text(text_up_coordinate, text_up, font=font_up, fill=(0, 0, 0)) return background def stick_maker_temp_whitebg(text: str, image_file: bytes, font_path: str, image_wight: int, image_height: int): # 处理文本 if image_wight > image_height: font_size = 72 else: font_size = 84 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) while text_w >= (image_wight * 8 // 9): font_size = font_size * 7 // 8 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) # 处理图片 background_w = image_wight background_h = image_height + round(text_h * 1.5) background = Image.new(mode="RGB", size=(background_w, background_h), color=(255, 255, 255)) # 处理粘贴位置 顶头 image_coordinate = (0, 0) background.paste(image_file, image_coordinate) draw = ImageDraw.Draw(background) # 计算居中文字位置 text_coordinate = (((background_w - text_w) // 2), image_height + round(text_h / 100) * round(text_h * 0.1)) draw.multiline_text(text_coordinate, text, font=font, fill=(0, 0, 0)) return background def stick_maker_temp_blackbg(text: str, image_file: bytes, font_path: str, image_wight: int, image_height: int): # 处理文本 if image_wight > image_height: font_size = 96 else: font_size = 108 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) while text_w >= (image_wight * 9 // 10): font_size = font_size * 8 // 9 font = ImageFont.truetype(font_path, font_size) text_w, text_h = font.getsize_multiline(text) # 处理图片 background_w = image_wight + 150 background_h = image_height + 115 + round(text_h * 1.5) background = Image.new(mode="RGB", size=(background_w, background_h), color=(0, 0, 0)) layer_1 = Image.new(mode="RGB", size=(image_wight + 12, image_height + 12), color=(255, 255, 255)) layer_2 = Image.new(mode="RGB", size=(image_wight + 10, image_height + 10), color=(0, 0, 0)) layer_3 = Image.new(mode="RGB", size=(image_wight + 6, image_height + 6), color=(255, 255, 255)) layer_4 = Image.new(mode="RGB", size=(image_wight + 4, image_height + 4), color=(0, 0, 0)) # 处理粘贴位置 留出黑边距离 background.paste(layer_1, (70, 70)) background.paste(layer_2, (71, 71)) background.paste(layer_3, (73, 73)) background.paste(layer_4, (74, 74)) background.paste(image_file, (76, 76)) draw = ImageDraw.Draw(background) # 计算居中文字位置 text_coordinate = (((background_w - text_w) // 2), image_height + 110 - round(text_h / 9) + round(text_h / 100) * round(text_h * 0.1)) draw.multiline_text(text_coordinate, text, font=font, fill=(255, 255, 255)) return background __all__ = [ 'stick_maker_temp_whitebg', 'stick_maker_temp_blackbg', 'stick_maker_temp_default', 'stick_maker_temp_littleangel' ] ``` #### File: utils/Omega_Base/class_result.py ```python from dataclasses import dataclass from typing import Dict, List, Set, Tuple, Union, Any @dataclass class BaseResult: error: bool info: str def success(self) -> bool: if not self.error: return True else: return False class Result(object): @dataclass class DictResult(BaseResult): result: dict def __repr__(self): return f'<DictResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class IntDictResult(BaseResult): result: Dict[int, int] def __repr__(self): return f'<IntDictResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TextDictResult(BaseResult): result: Dict[str, str] def __repr__(self): return f'<TextDictResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class JsonDictResult(BaseResult): result: Dict[str, Union[str, int, bool, list, dict]] def __repr__(self): return f'<JsonDictResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class ListResult(BaseResult): result: list def __repr__(self): return f'<ListResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class IntListResult(BaseResult): result: List[int] def __repr__(self): return f'<IntListResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TextListResult(BaseResult): result: List[str] def __repr__(self): return f'<TextListResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class DictListResult(BaseResult): result: List[dict] def __repr__(self): return f'<DictListResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class SetResult(BaseResult): result: set def __repr__(self): return f'<SetResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class IntSetResult(BaseResult): result: Set[int] def __repr__(self): return f'<IntSetResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TextSetResult(BaseResult): result: Set[str] def __repr__(self): return f'<TextSetResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TupleResult(BaseResult): result: tuple def __repr__(self): return f'<TupleResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class IntTupleResult(BaseResult): result: Tuple[int, ...] def __repr__(self): return f'<IntTupleResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TextTupleResult(BaseResult): result: Tuple[str, ...] def __repr__(self): return f'<TextTupleResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class IntResult(BaseResult): result: int def __repr__(self): return f'<IntResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class TextResult(BaseResult): result: str def __repr__(self): return f'<TextResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class BoolResult(BaseResult): result: bool def __repr__(self): return f'<BoolResult(error={self.error}, info={self.info}, result={self.result})>' @dataclass class AnyResult(BaseResult): result: Any def __repr__(self): return f'<AnyResult(error={self.error}, info={self.info}, result={self.result})>' __all__ = [ 'Result' ] ``` #### File: Omega_Base/model/pixivillust.py ```python from typing import List from omega_miya.utils.Omega_Base.database import NBdb from omega_miya.utils.Omega_Base.class_result import Result from omega_miya.utils.Omega_Base.tables import Pixiv, PixivT2I from .pixivtag import DBPixivtag from datetime import datetime from sqlalchemy.future import select from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound from sqlalchemy.sql.expression import func from sqlalchemy import or_ class DBPixivillust(object): def __init__(self, pid: int): self.pid = pid async def id(self) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Pixiv.id).where(Pixiv.pid == self.pid) ) pixiv_table_id = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=pixiv_table_id) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def exist(self) -> bool: result = await self.id() return result.success() async def add(self, uid: int, title: str, uname: str, nsfw_tag: int, tags: List[str], url: str) -> Result.IntResult: # 将tag写入pixiv_tag表 for tag in tags: _tag = DBPixivtag(tagname=tag) await _tag.add() tag_text = ','.join(tags) # 将作品信息写入pixiv_illust表 async_session = NBdb().get_async_session() async with async_session() as session: try: need_upgrade_pixivt2i = False async with session.begin(): try: session_result = await session.execute( select(Pixiv).where(Pixiv.pid == self.pid) ) exist_illust = session_result.scalar_one() exist_illust.title = title exist_illust.uname = uname if nsfw_tag > exist_illust.nsfw_tag: exist_illust.nsfw_tag = nsfw_tag exist_illust.tags = tag_text exist_illust.updated_at = datetime.now() result = Result.IntResult(error=False, info='Exist illust updated', result=0) except NoResultFound: new_illust = Pixiv(pid=self.pid, uid=uid, title=title, uname=uname, url=url, nsfw_tag=nsfw_tag, tags=tag_text, created_at=datetime.now()) session.add(new_illust) need_upgrade_pixivt2i = True result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() # 写入tag_pixiv关联表 # 获取本作品在illust表中的id id_result = await self.id() if id_result.success() and need_upgrade_pixivt2i: _illust_id = id_result.result # 根据作品tag依次写入tag_illust表 async with session.begin(): for tag in tags: _tag = DBPixivtag(tagname=tag) _tag_id_res = await _tag.id() if not _tag_id_res.success(): continue _tag_id = _tag_id_res.result try: new_tag_illust = PixivT2I(illust_id=_illust_id, tag_id=_tag_id, created_at=datetime.now()) session.add(new_tag_illust) except Exception as e: continue await session.commit() result = Result.IntResult(error=False, info='Success added with tags', result=0) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result @classmethod async def rand_illust(cls, num: int, nsfw_tag: int) -> Result.ListResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Pixiv.pid). where(Pixiv.nsfw_tag == nsfw_tag). order_by(func.random()).limit(num) ) res = [x for x in session_result.scalars().all()] result = Result.ListResult(error=False, info='Success', result=res) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result @classmethod async def status(cls) -> Result.DictResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute(select(func.count(Pixiv.id))) all_count = session_result.scalar() session_result = await session.execute(select(func.count(Pixiv.id)).where(Pixiv.nsfw_tag == 0)) moe_count = session_result.scalar() session_result = await session.execute(select(func.count(Pixiv.id)).where(Pixiv.nsfw_tag == 1)) setu_count = session_result.scalar() session_result = await session.execute(select(func.count(Pixiv.id)).where(Pixiv.nsfw_tag == 2)) r18_count = session_result.scalar() res = {'total': int(all_count), 'moe': int(moe_count), 'setu': int(setu_count), 'r18': int(r18_count)} result = Result.DictResult(error=False, info='Success', result=res) except Exception as e: result = Result.DictResult(error=True, info=repr(e), result={}) return result @classmethod async def list_illust( cls, keywords: List[str], num: int, nsfw_tag: int, acc_mode: bool = False) -> Result.ListResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: if acc_mode: # 构造查询, 精确搜索标题, 用户和tag query = select(Pixiv.pid).where(Pixiv.nsfw_tag == nsfw_tag) for keyword in keywords: query = query.where(or_( func.find_in_set(keyword, Pixiv.tags), func.find_in_set(keyword, Pixiv.uname), func.find_in_set(keyword, Pixiv.title) )) query = query.order_by(func.random()).limit(num) session_result = await session.execute(query) res = [x for x in session_result.scalars().all()] if not acc_mode or (acc_mode and not res): # 构造查询, 模糊搜索标题, 用户和tag query = select(Pixiv.pid).where(Pixiv.nsfw_tag == nsfw_tag) for keyword in keywords: query = query.where(or_( Pixiv.tags.ilike(f'%{keyword}%'), Pixiv.uname.ilike(f'%{keyword}%'), Pixiv.title.ilike(f'%{keyword}%') )) query = query.order_by(func.random()).limit(num) session_result = await session.execute(query) res = [x for x in session_result.scalars().all()] result = Result.ListResult(error=False, info='Success', result=res) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result ``` #### File: utils/Omega_CoolDown/__init__.py ```python from nonebot import get_plugin, get_driver, logger from nonebot.adapters.cqhttp import MessageSegment, Message from nonebot.exception import IgnoredException from nonebot.message import run_preprocessor from nonebot.typing import T_State from nonebot.matcher import Matcher from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import MessageEvent from omega_miya.utils.Omega_plugin_utils import \ check_and_set_global_cool_down, check_and_set_plugin_cool_down, \ check_and_set_group_cool_down, check_and_set_user_cool_down, PluginCoolDown from omega_miya.utils.Omega_Base import DBCoolDownEvent, DBAuth @run_preprocessor async def handle_plugin_cooldown(matcher: Matcher, bot: Bot, event: MessageEvent, state: T_State): group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') global_config = get_driver().config superusers = global_config.superusers # 忽略超级用户 if user_id in [int(x) for x in superusers]: return # 只处理message事件 if matcher.type != 'message': return # 处理插件冷却 # 冷却处理优先级: 全局>插件>群组>用户 # 冷却限制优先级: 用户>群组>插件>全局 plugin_name = matcher.module plugin = get_plugin(plugin_name) plugin_cool_down_list = plugin.export.get('cool_down') # 只处理声明了__plugin_cool_down__的插件 if not plugin_cool_down_list: return # 检查用户或群组是否有skip_cd权限, 跳过冷却检查 skip_cd_auth_node = f'{plugin_name}.{PluginCoolDown.skip_auth_node}' user_auth = DBAuth(auth_id=user_id, auth_type='user', auth_node=skip_cd_auth_node) user_tag_res = await user_auth.tags_info() if user_tag_res.result[0] == 1 and user_tag_res.result[1] == 0: return group_auth = DBAuth(auth_id=group_id, auth_type='group', auth_node=skip_cd_auth_node) group_tag_res = await group_auth.tags_info() if group_tag_res.result[0] == 1 and group_tag_res.result[1] == 0: return # 检查冷却情况 global_check = await DBCoolDownEvent.check_global_cool_down_event() plugin_check = await DBCoolDownEvent.check_plugin_cool_down_event(plugin=plugin_name) group_check = await DBCoolDownEvent.check_group_cool_down_event(plugin=plugin_name, group_id=group_id) user_check = await DBCoolDownEvent.check_user_cool_down_event(plugin=plugin_name, user_id=user_id) # 处理全局冷却 # 先检查是否已有全局冷却 if plugin_check.result == 1 or group_check.result == 1 or user_check.result == 1: pass elif global_check.result == 1: await bot.send(event=event, message=Message(f'{MessageSegment.at(user_id=user_id)}命令冷却中!\n{global_check.info}')) raise IgnoredException('全局命令冷却中') elif global_check.result == 0: pass else: logger.error(f'全局冷却事件异常! group: {group_id}, user: {user_id}, error: {global_check.info}') # 然后再处理命令中存在的全局冷却 for time in [x.cool_down_time for x in plugin_cool_down_list if x.type == PluginCoolDown.global_type]: # 若有插件、群组或用户冷却则交由其处理 if plugin_check.result == 1 or group_check.result == 1 or user_check.result == 1: break res = await check_and_set_global_cool_down(minutes=time) if res.result == 1: await bot.send(event=event, message=Message(f'{MessageSegment.at(user_id=user_id)}命令冷却中!\n{res.info}')) raise IgnoredException('全局命令冷却中') elif res.result == 0: pass else: logger.error(f'全局冷却事件异常! group: {group_id}, user: {user_id}, error: {res.info}') # 处理插件冷却 for time in [x.cool_down_time for x in plugin_cool_down_list if x.type == PluginCoolDown.plugin_type]: # 若有群组或用户冷却则交由其处理 if group_check.result == 1 or user_check.result == 1: break res = await check_and_set_plugin_cool_down(minutes=time, plugin=plugin_name) if res.result == 1: await bot.send(event=event, message=Message(f'{MessageSegment.at(user_id=user_id)}命令冷却中!\n{res.info}')) raise IgnoredException('插件命令冷却中') elif res.result == 0: pass else: logger.error(f'插件冷却事件异常! group: {group_id}, user: {user_id}, plugin: {plugin_name}, error: {res.info}') # 处理群组冷却 for time in [x.cool_down_time for x in plugin_cool_down_list if x.type == PluginCoolDown.group_type]: if not group_id: break # 若有用户冷却则交由其处理 if user_check.result == 1: break res = await check_and_set_group_cool_down(minutes=time, plugin=plugin_name, group_id=group_id) if res.result == 1: await bot.send(event=event, message=Message(f'{MessageSegment.at(user_id=user_id)}命令冷却中!\n{res.info}')) raise IgnoredException('群组命令冷却中') elif res.result == 0: pass else: logger.error(f'群组冷却事件异常! group: {group_id}, user: {user_id}, plugin: {plugin_name}, error: {res.info}') # 处理用户冷却 for time in [x.cool_down_time for x in plugin_cool_down_list if x.type == PluginCoolDown.user_type]: if not user_id: break res = await check_and_set_user_cool_down(minutes=time, plugin=plugin_name, user_id=user_id) if res.result == 1: await bot.send(event=event, message=Message(f'{MessageSegment.at(user_id=user_id)}命令冷却中!\n{res.info}')) raise IgnoredException('用户命令冷却中') elif res.result == 0: pass else: logger.error(f'用户冷却事件异常! group: {group_id}, user: {user_id}, plugin: {plugin_name}, error: {res.info}') ``` #### File: utils/Omega_history/__init__.py ```python from nonebot import MatcherGroup, on_message, on_request, on_notice, logger from nonebot.plugin import on from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import Event from omega_miya.utils.Omega_Base import DBHistory # 注册事件响应器, 处理MessageEvent Message_history = MatcherGroup(type='message', priority=101, block=True) message_history = Message_history.on_message() @message_history.handle() async def handle_message(bot: Bot, event: Event, state: T_State): try: message_id = event.dict().get('message_id') user_name = event.dict().get('sender').get('card') if not user_name: user_name = event.dict().get('sender').get('nickname') time = event.dict().get('time') self_id = event.dict().get('self_id') post_type = event.get_type() detail_type = event.dict().get(f'{event.get_type()}_type') sub_type = event.dict().get('sub_type') group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') raw_data = repr(event) msg_data = str(event.dict().get('message')) new_event = DBHistory(time=time, self_id=self_id, post_type=post_type, detail_type=detail_type) res = await new_event.add(sub_type=sub_type, event_id=message_id, group_id=group_id, user_id=user_id, user_name=user_name, raw_data=raw_data, msg_data=msg_data) if res.error: logger.error(f'Message history recording Failed with database error: {res.info}') except Exception as e: logger.error(f'Message history recording Failed, error: {repr(e)}') # 注册事件响应器, 处理message_sent message_sent_history = on(type='message_sent', priority=101, block=True) @message_sent_history.handle() async def handle_message_sent_history(bot: Bot, event: Event, state: T_State): try: user_name = event.dict().get('sender').get('card') if not user_name: user_name = event.dict().get('sender').get('nickname') time = event.dict().get('time') self_id = event.dict().get('self_id') post_type = event.get_type() detail_type = 'self_sent' sub_type = 'self' group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') raw_data = repr(event) msg_data = str(event.dict().get('message')) new_event = DBHistory(time=time, self_id=self_id, post_type=post_type, detail_type=detail_type) res = await new_event.add(sub_type=sub_type, group_id=group_id, user_id=user_id, user_name=user_name, raw_data=raw_data, msg_data=msg_data) if res.error: logger.error(f'Self-sent Message history recording Failed with database error: {res.info}') except Exception as e: logger.error(f'Self-sent Message history recording Failed, error: {repr(e)}') # 注册事件响应器, 处理NoticeEvent notice_history = on_notice(priority=101, block=True) @notice_history.handle() async def handle_notice(bot: Bot, event: Event, state: T_State): try: time = event.dict().get('time') self_id = event.dict().get('self_id') post_type = event.get_type() detail_type = event.dict().get(f'{event.get_type()}_type') sub_type = event.dict().get('sub_type') group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') raw_data = repr(event) msg_data = str(event.dict().get('message')) new_event = DBHistory(time=time, self_id=self_id, post_type=post_type, detail_type=detail_type) res = await new_event.add(sub_type=sub_type, group_id=group_id, user_id=user_id, user_name=None, raw_data=raw_data, msg_data=msg_data) if res.error: logger.error(f'Notice history recording Failed with database error: {res.info}') except Exception as e: logger.error(f'Notice history recording Failed, error: {repr(e)}') # 注册事件响应器, 处理RequestEvent request_history = on_request(priority=101, block=True) @request_history.handle() async def handle_request(bot: Bot, event: Event, state: T_State): try: time = event.dict().get('time') self_id = event.dict().get('self_id') post_type = event.get_type() detail_type = event.dict().get(f'{event.get_type()}_type') sub_type = event.dict().get('sub_type') group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') raw_data = repr(event) msg_data = str(event.dict().get('message')) new_event = DBHistory(time=time, self_id=self_id, post_type=post_type, detail_type=detail_type) res = await new_event.add(sub_type=sub_type, group_id=group_id, user_id=user_id, user_name=None, raw_data=raw_data, msg_data=msg_data) if res.error: logger.error(f'Request history recording Failed with database error: {res.info}') except Exception as e: logger.error(f'Request history recording Failed, error: {repr(e)}') ``` #### File: utils/Omega_plugin_utils/__init__.py ```python from typing import Optional from nonebot.plugin import Export from nonebot.typing import T_State from .rules import * from .encrypt import AESEncryptStr from .cooldown import * from .permission import * from .http_fetcher import HttpFetcher from .picture_encoder import PicEncoder from .zip_utils import create_zip_file, create_7z_file def init_export( plugin_export: Export, custom_name: str, usage: str, auth_node: list = None, cool_down: list = None, **kwargs: str) -> Export: setattr(plugin_export, 'custom_name', custom_name) setattr(plugin_export, 'usage', usage) setattr(plugin_export, 'auth_node', auth_node) setattr(plugin_export, 'cool_down', cool_down) for key, value in kwargs.items(): setattr(plugin_export, key, value) return plugin_export def init_permission_state( name: str, notice: Optional[bool] = None, command: Optional[bool] = None, level: Optional[int] = None, auth_node: Optional[str] = None) -> T_State: return { '_matcher': name, '_notice_permission': notice, '_command_permission': command, '_permission_level': level, '_auth_node': auth_node } __all__ = [ 'init_export', 'init_permission_state', 'has_notice_permission', 'has_command_permission', 'has_auth_node', 'has_level_or_node', 'permission_level', 'has_friend_private_permission', 'AESEncryptStr', 'PluginCoolDown', 'check_and_set_global_cool_down', 'check_and_set_plugin_cool_down', 'check_and_set_group_cool_down', 'check_and_set_user_cool_down', 'check_notice_permission', 'check_command_permission', 'check_permission_level', 'check_auth_node', 'check_friend_private_permission', 'HttpFetcher', 'PicEncoder', 'create_zip_file', 'create_7z_file' ] ``` #### File: utils/Omega_plugin_utils/permission.py ```python from omega_miya.utils.Omega_Base import DBFriend, DBGroup, DBAuth async def check_notice_permission(group_id: int) -> bool: res = await DBGroup(group_id=group_id).permission_notice() if res.result == 1: return True else: return False async def check_command_permission(group_id: int) -> bool: res = await DBGroup(group_id=group_id).permission_command() if res.result == 1: return True else: return False async def check_permission_level(group_id: int, level: int) -> bool: res = await DBGroup(group_id=group_id).permission_level() if res.result >= level: return True else: return False async def check_auth_node(auth_id: int, auth_type: str, auth_node: str) -> int: auth = DBAuth(auth_id=auth_id, auth_type=auth_type, auth_node=auth_node) tag_res = await auth.tags_info() allow_tag = tag_res.result[0] deny_tag = tag_res.result[1] if allow_tag == 1 and deny_tag == 0: return 1 elif allow_tag == -2 and deny_tag == -2: return 0 else: return -1 async def check_friend_private_permission(user_id: int) -> bool: res = await DBFriend(user_id=user_id).get_private_permission() if res.error: return False elif res.result == 1: return True else: return False __all__ = [ 'check_notice_permission', 'check_command_permission', 'check_permission_level', 'check_auth_node', 'check_friend_private_permission' ] ``` #### File: utils/tencent_cloud_api/cloud_api.py ```python import json import hashlib import hmac import datetime from dataclasses import dataclass from typing import Dict, Any import nonebot from omega_miya.utils.Omega_plugin_utils import HttpFetcher global_config = nonebot.get_driver().config SECRET_ID = global_config.secret_id SECRET_KEY = global_config.secret_key class TencentCloudApi(object): @dataclass class ApiRes: error: bool info: str result: dict def success(self) -> bool: if not self.error: return True else: return False def __init__(self, secret_id: str, secret_key: str, host: str): self.__secret_id = secret_id self.__secret_key = secret_key self.__host = host self.__endpoint = f'https://{host}' self.__service = host.split('.')[0] self.__headers = { "Content-Type": "application/json", "Host": self.__host } self.__request_timestamp = int(datetime.datetime.now().timestamp()) self.__date = datetime.datetime.utcfromtimestamp(self.__request_timestamp).strftime('%Y-%m-%d') self.__credential_scope = f'{self.__date}/{self.__service}/tc3_request' sort_signed_headers = [f'{x}'.lower() for x in self.__headers.keys()] sort_signed_headers.sort() self.__signed_headers = ';'.join(sort_signed_headers) def __upgrade_signed_header(self, action: str, region: str, version: str, payload: Dict[str, Any]): self.__headers = { 'Authorization': self.__sign_v3(payload=payload), 'Content-Type': 'application/json', 'Host': self.__host, 'X-TC-Action': action, 'X-TC-Region': region, 'X-TC-Timestamp': str(self.__request_timestamp), 'X-TC-Version': version } def __canonical_request(self, payload: Dict[str, Any], http_request_method: str = 'POST', canonical_uri: str = '/', canonical_query_string: str = '') -> str: sort_headers = [f'{x}:{y}\n'.lower() for x, y in self.__headers.items()] sort_headers.sort() canonical_headers = ''.join(sort_headers) payload_str = json.dumps(payload) hashed_request_payload = hashlib.sha256(payload_str.encode('utf-8')).hexdigest().lower() canonical_request = f'{http_request_method}\n' \ f'{canonical_uri}\n' \ f'{canonical_query_string}\n' \ f'{canonical_headers}\n' \ f'{self.__signed_headers}\n' \ f'{hashed_request_payload}' return canonical_request def __string_to_sign(self, canonical_request: str, algorithm: str = 'TC3-HMAC-SHA256') -> str: hashed_canonical_request = hashlib.sha256(canonical_request.encode('utf-8')).hexdigest().lower() string_to_sign = f'{algorithm}\n' \ f'{self.__request_timestamp}\n' \ f'{self.__credential_scope}\n' \ f'{hashed_canonical_request}' return string_to_sign def __sign_v3(self, payload: Dict[str, Any]) -> str: # 计算签名摘要函数 def __sign(key, msg): return hmac.new(key, msg.encode("utf-8"), hashlib.sha256).digest() secret_date = __sign(f'TC3{self.__secret_key}'.encode("utf-8"), self.__date) secret_service = __sign(secret_date, self.__service) secret_signing = __sign(secret_service, "tc3_request") canonical_request = self.__canonical_request(payload=payload) string_to_sign = self.__string_to_sign(canonical_request) signature = hmac.new(secret_signing, string_to_sign.encode("utf-8"), hashlib.sha256).hexdigest() authorization = f'TC3-HMAC-SHA256 Credential={self.__secret_id}/{self.__credential_scope}, ' \ f'SignedHeaders={self.__signed_headers}, ' \ f'Signature={signature}' return authorization async def post_request(self, action: str, region: str, version: str, payload: Dict[str, Any]) -> ApiRes: self.__upgrade_signed_header(action=action, region=region, version=version, payload=payload) fetcher = HttpFetcher(timeout=10, flag=f'tencent_cloud_api_{action}', headers=self.__headers) result = await fetcher.post_json(url=self.__endpoint, json=payload) return self.ApiRes(error=result.error, info=result.info, result=result.result) __all__ = [ 'TencentCloudApi', 'SECRET_ID', 'SECRET_KEY' ] ```
{ "source": "58563528/omega-miya", "score": 2 }
#### File: plugins/http_cat/data_source.py ```python import os import pathlib from nonebot import get_driver from omega_miya.utils.Omega_plugin_utils import HttpFetcher from omega_miya.utils.Omega_Base import Result global_config = get_driver().config TMP_PATH = global_config.tmp_path_ API_URL = 'https://http.cat/' async def get_http_cat(http_code: int) -> Result.TextResult: file_name = f'{http_code}.jpg' folder_path = os.path.abspath(os.path.join(TMP_PATH, 'http_cat')) file_path = os.path.abspath(os.path.join(folder_path, file_name)) if os.path.exists(file_path): file_url = pathlib.Path(file_path).as_uri() return Result.TextResult(error=False, info='Success, file exists', result=file_url) url = f'{API_URL}{http_code}.jpg' fetcher = HttpFetcher(timeout=10, flag='http_cat') result = await fetcher.download_file(url=url, path=folder_path, file_name=file_name) if result.success(): file_url = pathlib.Path(result.result).as_uri() return Result.TextResult(error=False, info='Success', result=file_url) else: return Result.TextResult(error=True, info=result.info, result='') ``` #### File: plugins/Omega_auto_manager/group_welcome_message.py ```python from nonebot import logger from nonebot.plugin import on_notice, CommandGroup from nonebot.typing import T_State from nonebot.rule import to_me from nonebot.permission import SUPERUSER from nonebot.adapters.cqhttp.permission import GROUP_ADMIN, GROUP_OWNER from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.message import Message, MessageSegment from nonebot.adapters.cqhttp.event import GroupMessageEvent, GroupIncreaseNoticeEvent from omega_miya.utils.Omega_Base import DBBot, DBBotGroup from omega_miya.utils.Omega_plugin_utils import OmegaRules SETTING_NAME: str = 'group_welcome_message' DEFAULT_WELCOME_MSG: str = '欢迎新朋友~\n进群请先看群公告~\n一起愉快地聊天吧!' # 注册事件响应器 WelcomeMsg = CommandGroup( 'WelcomeMsg', rule=to_me(), permission=SUPERUSER | GROUP_ADMIN | GROUP_OWNER, priority=10, block=True ) welcome_msg_set = WelcomeMsg.command('set', aliases={'设置欢迎消息'}) welcome_msg_clear = WelcomeMsg.command('clear', aliases={'清空欢迎消息'}) # 修改默认参数处理 @welcome_msg_set.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_message()).strip() if not args: await welcome_msg_set.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await welcome_msg_set.finish('操作已取消') @welcome_msg_set.got('welcome_msg', prompt='请发送你要设置的欢迎消息:') async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): welcome_msg = state['welcome_msg'] group_id = event.group_id self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=group_id, self_bot=self_bot) msg_set_result = await group.setting_set(setting_name=SETTING_NAME, main_config='Custom', extra_config=welcome_msg, setting_info='自定义群组欢迎信息') if msg_set_result.success(): logger.info(f'已为群组: {group_id} 设置自定义欢迎信息: {welcome_msg}') await welcome_msg_set.finish(f'已为本群组设定了自定义欢迎信息!') else: logger.error(f'为群组: {group_id} 设置自定义欢迎信息失败, error info: {msg_set_result.info}') await welcome_msg_set.finish(f'为本群组设定自定义欢迎信息失败了QAQ, 请稍后再试或联系管理员处理') @welcome_msg_clear.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): group_id = event.group_id self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=group_id, self_bot=self_bot) msg_set_result = await group.setting_del(setting_name=SETTING_NAME) if msg_set_result.success(): logger.info(f'已为群组: {group_id} 清除自定义欢迎信息') await welcome_msg_clear.finish(f'已清除了本群组设定的自定义欢迎信息!') else: logger.error(f'为群组: {group_id} 清除自定义欢迎信息失败, error info: {msg_set_result.info}') await welcome_msg_clear.finish(f'为本群组清除自定义欢迎信息失败了QAQ, 请稍后再试或联系管理员处理') # 注册事件响应器, 新增群成员 group_increase = on_notice(priority=100, rule=OmegaRules.has_group_command_permission()) @group_increase.handle() async def handle_group_increase(bot: Bot, event: GroupIncreaseNoticeEvent, state: T_State): user_id = event.user_id group_id = event.group_id self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=group_id, self_bot=self_bot) # 获取自定义欢迎信息 welcome_msg_result = await group.setting_get(setting_name=SETTING_NAME) if welcome_msg_result.success(): main, second, extra = welcome_msg_result.result if extra: msg = extra else: msg = DEFAULT_WELCOME_MSG else: msg = DEFAULT_WELCOME_MSG # 发送欢迎消息 at_seg = MessageSegment.at(user_id=user_id) await bot.send(event=event, message=Message(at_seg).append(msg)) logger.info(f'群组: {group_id}, 有新用户: {user_id} 进群') __all__ = [ 'WelcomeMsg', 'group_increase' ] ``` #### File: plugins/Omega_email/imap.py ```python import imaplib import email import hashlib from email.header import Header from typing import List class Email(object): def __init__(self, date: str, header: str, sender: str, to: str, body: str = '', html: str = ''): self.date = date self.header = header self.sender = sender self.to = to self.body = body self.html = html hash_str = str([date, header, sender, to]) md5 = hashlib.md5() md5.update(hash_str.encode('utf-8')) _hash = md5.hexdigest() self.hash = _hash def __repr__(self): return f'<Email(header={self.header}, _from={self.sender}, to={self.to}' \ f"\n\nbody={self.body}\n\nhtml={self.html})>" class EmailImap(object): def __init__(self, host: str, address: str, password: str, port: int = 993): self.__mail = imaplib.IMAP4_SSL(host=host, port=port) self.__address = address self.__password = password def __enter__(self): """enter方法,返回file_handler""" self.__mail.login(self.__address, self.__password) return self.__mail def __exit__(self, exc_type, exc_val, exc_tb): """exit方法,关闭文件并返回True""" self.__mail.select() if self.__mail.state == 'SELECTED': self.__mail.close() self.__mail.logout() return True def get_mail_info(self, charset, *criteria) -> List[Email]: self.__mail.login(self.__address, self.__password) if self.__address.endswith('@163.com'): # 添加163邮箱 IMAP ID 验证 imaplib.Commands['ID'] = ('AUTH',) args = ("name", "omega", "contact", "<EMAIL>", "version", "1.0.2", "vendor", "pyimaplibclient") typ, dat = self.__mail._simple_command('ID', '("' + '" "'.join(args) + '")') self.__mail._untagged_response(typ, dat, 'ID') self.__mail.select() typ, msg_nums = self.__mail.search(charset, *criteria) msg_nums = str(msg_nums[0], encoding='utf8') result_list = [] # 遍历所有邮件 for num in msg_nums.split(' '): if num == '': continue stat_code, data = self.__mail.fetch(num, 'RFC822') msg = email.message_from_bytes(data[0][1]) # 解析邮件 # 日期 date = email.header.decode_header(msg.get('Date'))[0][0] date = str(date) # 标题 header, charset = email.header.decode_header(msg.get('subject'))[0] header = str(header, encoding=charset) # 发件人 sender_info = email.header.decode_header(msg.get('from')) sender = '' for sender_text, charset in sender_info: if charset and type(sender_text) == bytes: sender_text = str(sender_text, encoding=charset) sender += sender_text elif type(sender_text) == bytes: sender_text = str(sender_text, encoding='utf8') sender += sender_text else: sender += sender_text # 收件人 receiver_info = email.header.decode_header(msg.get('to')) receiver = '' for receiver_text, charset in receiver_info: if charset and type(receiver_text) == bytes: receiver_text = str(receiver_text, encoding=charset) receiver += receiver_text elif type(receiver_text) == bytes: receiver_text = str(receiver_text, encoding='utf8') receiver += receiver_text else: receiver += receiver_text body = None html = None for part in msg.walk(): if part.get_content_type() == "text/plain": charset = part.get_content_charset() body = part.get_payload(decode=True) if not body: continue if charset and type(body) == bytes: body = str(body, encoding=charset) elif type(body) == bytes: body = str(body, encoding='utf8') else: body = str(body) body = body.replace(r'&nbsp;', '\n') elif part.get_content_type() == "text/html": charset = part.get_content_charset() html = part.get_payload(decode=True) if not html: continue if charset and type(html) == bytes: html = str(html, encoding=charset) elif type(html) == bytes: html = str(html, encoding='utf8') else: html = str(html) html = html.replace('&nbsp;', '') else: pass result_list.append(Email(date=date, header=header, sender=sender, to=receiver, body=body, html=html)) return result_list ``` #### File: plugins/Omega_sign_in/__init__.py ```python from nonebot import CommandGroup, logger, export, get_driver from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_plugin_utils import init_export, init_permission_state from omega_miya.utils.Omega_Base import DBUser from .config import Config __global_config = get_driver().config plugin_config = Config(**__global_config.dict()) FAVORABILITY_ALIAS = plugin_config.favorability_alias ENERGY_ALIAS = plugin_config.energy_alias CURRENCY_ALIAS = plugin_config.currency_alias class SignInException(Exception): pass class DuplicateException(SignInException): pass class FailedException(SignInException): pass # Custom plugin usage text __plugin_name__ = '签到' __plugin_usage__ = r'''【Omega 签到插件】 轻量化签到插件 好感度系统基础支持 仅限群聊使用 **Permission** Command & Lv.10 or AuthNode **AuthNode** basic **Usage** /签到''' # 声明本插件可配置的权限节点 __plugin_auth_node__ = [ 'basic' ] # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__, __plugin_auth_node__) SignIn = CommandGroup( 'SignIn', # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='sign_in', command=True, level=10, auth_node='basic'), permission=GROUP, priority=10, block=True) sign_in = SignIn.command('sign_in', aliases={'签到'}) @sign_in.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): user = DBUser(user_id=event.user_id) try: # 尝试签到 sign_in_result = await user.sign_in() if sign_in_result.error: raise FailedException(f'签到失败, {sign_in_result.info}') elif sign_in_result.result == 1: raise DuplicateException('重复签到') # 查询连续签到时间 sign_in_c_d_result = await user.sign_in_continuous_days() if sign_in_c_d_result.error: raise FailedException(f'查询连续签到时间失败, {sign_in_c_d_result.info}') continuous_days = sign_in_c_d_result.result # 尝试为用户增加好感度 if continuous_days < 7: favorability_inc = 10 currency_inc = 1 elif continuous_days < 30: favorability_inc = 30 currency_inc = 2 else: favorability_inc = 50 currency_inc = 5 favorability_result = await user.favorability_add(favorability=favorability_inc, currency=currency_inc) if favorability_result.error and favorability_result.info == 'NoResultFound': favorability_result = await user.favorability_reset(favorability=favorability_inc, currency=currency_inc) if favorability_result.error: raise FailedException(f'增加好感度失败, {favorability_result.info}') # 获取当前好感度信息 favorability_status_result = await user.favorability_status() if favorability_status_result.error: raise FailedException(f'获取好感度信息失败, {favorability_status_result}') status, mood, favorability, energy, currency, response_threshold = favorability_status_result.result msg = f'签到成功! {FAVORABILITY_ALIAS}+{favorability_inc}, {CURRENCY_ALIAS}+{currency_inc}!\n\n' \ f'你已连续签到{continuous_days}天\n' \ f'当前{FAVORABILITY_ALIAS}: {favorability}\n' \ f'当前{CURRENCY_ALIAS}: {currency}' logger.info(f'{event.group_id}/{event.user_id} 签到成功') await sign_in.finish(msg) except DuplicateException as e: logger.info(f'{event.group_id}/{event.user_id} 重复签到, {str(e)}') await sign_in.finish('你今天已经签到过了, 请明天再来吧~') except FailedException as e: logger.error(f'{event.group_id}/{event.user_id} 签到失败, {str(e)}') await sign_in.finish('签到失败了QAQ, 请稍后再试或联系管理员处理') ``` #### File: plugins/repeater/__init__.py ```python from typing import Dict from nonebot import on_message from nonebot.typing import T_State from nonebot.exception import FinishedException from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_plugin_utils import OmegaRules from .data_source import REPLY_RULES LAST_MSG: Dict[int, str] = {} LAST_REPEAT_MSG: Dict[int, str] = {} REPEAT_COUNT: Dict[int, int] = {} repeater = on_message(rule=OmegaRules.has_group_command_permission(), permission=GROUP, priority=100, block=False) @repeater.handle() async def handle_ignore_msg(bot: Bot, event: GroupMessageEvent, state: T_State): msg = event.raw_message if msg.startswith('/'): raise FinishedException elif msg.startswith('!SU'): raise FinishedException @repeater.handle() async def handle_auto_reply(bot: Bot, event: GroupMessageEvent, state: T_State): # 处理回复规则 msg = event.raw_message group_id = event.group_id check_res, reply_msg = REPLY_RULES.check_rule(group_id=group_id, message=msg) if check_res: await repeater.finish(reply_msg) @repeater.handle() async def handle_repeater(bot: Bot, event: GroupMessageEvent, state: T_State): # 处理复读姬 global LAST_MSG, LAST_REPEAT_MSG, REPEAT_COUNT group_id = event.group_id try: LAST_MSG[group_id] except KeyError: LAST_MSG[group_id] = '' try: LAST_REPEAT_MSG[group_id] except KeyError: LAST_REPEAT_MSG[group_id] = '' message = event.get_message() raw_msg = event.raw_message # 如果当前消息与上一条消息不同, 或者与上一次复读的消息相同, 则重置复读计数, 并更新上一条消息LAST_MSG if raw_msg != LAST_MSG[group_id] or raw_msg == LAST_REPEAT_MSG[group_id]: LAST_MSG[group_id] = raw_msg REPEAT_COUNT[group_id] = 0 return # 否则这条消息和上条消息一致, 开始复读计数 else: REPEAT_COUNT[group_id] += 1 LAST_REPEAT_MSG[group_id] = '' # 当复读计数等于2时说明已经有连续三条同样的消息了, 此时触发复读, 更新上次服务消息LAST_REPEAT_MSG, 并重置复读计数 if REPEAT_COUNT[group_id] >= 2: await repeater.send(message) REPEAT_COUNT[group_id] = 0 LAST_MSG[group_id] = '' LAST_REPEAT_MSG[group_id] = raw_msg ``` #### File: plugins/schedule_message/__init__.py ```python import nonebot import re from datetime import datetime from apscheduler.schedulers.asyncio import AsyncIOScheduler from nonebot import MatcherGroup, export, logger, require from nonebot.typing import T_State from nonebot.permission import SUPERUSER from nonebot.adapters.cqhttp.permission import GROUP_ADMIN, GROUP_OWNER from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.message import Message from nonebot.adapters.cqhttp.event import GroupMessageEvent from omega_miya.utils.Omega_Base import DBBot, DBBotGroup, Result from omega_miya.utils.Omega_plugin_utils import init_export, init_permission_state # Custom plugin usage text __plugin_name__ = '定时消息' __plugin_usage__ = r'''【定时消息】 设置群组定时通知消息 仅限群聊使用 **Permission** Command & Lv.10 or AuthNode **AuthNode** basic **Usage** **GroupAdmin and SuperUser Only** /设置定时消息 /查看定时消息 /删除定时消息''' # 声明本插件可配置的权限节点 __plugin_auth_node__ = [ 'basic' ] # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__, __plugin_auth_node__) driver = nonebot.get_driver() scheduler: AsyncIOScheduler = require("nonebot_plugin_apscheduler").scheduler # 注册事件响应器 ScheduleMsg = MatcherGroup( type='message', # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='schedule_message', command=True, level=10, auth_node='basic'), permission=GROUP_ADMIN | GROUP_OWNER | SUPERUSER, priority=10, block=True) set_schedule_message = ScheduleMsg.on_command('设置定时消息', aliases={'添加定时消息'}) list_schedule_message = ScheduleMsg.on_command('查看定时消息') del_schedule_message = ScheduleMsg.on_command('删除定时消息', aliases={'移除定时消息'}) # 设置定时消息部分 # 修改默认参数处理 @set_schedule_message.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_message()).strip() if not args: await set_schedule_message.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await set_schedule_message.finish('操作已取消') @set_schedule_message.got('mode', prompt='请发送设置定时消息的模式:\n【 cron / interval 】\n\n模式说明:\n' 'cron(闹钟) - 每天某个具体时间发送消息\n' 'interval(定时器) - 每间隔一定时间发送消息') async def handle_mode(bot: Bot, event: GroupMessageEvent, state: T_State): mode = state['mode'] if mode not in ['cron', 'interval']: await set_schedule_message.finish('您发送的不是有效的模式QAQ') if mode == 'interval': state['repeat'] = 'all' @set_schedule_message.got('name', prompt='请发送为当前定时任务设置的名称:') async def handle_time(bot: Bot, event: GroupMessageEvent, state: T_State): _name = state['name'] if len(_name) > 100: await set_schedule_message.finish('设置的名称过长QAQ') @set_schedule_message.got('time', prompt='请发送你要设置定时时间, 时间格式为24小时制四位数字:\n\n设置说明:\n' '若模式为cron(闹钟), 则“1830”代表每天下午六点半发送定时消息\n' '若模式为interval(定时器), 则“0025”代表每隔25分钟发送定时消息') async def handle_time(bot: Bot, event: GroupMessageEvent, state: T_State): time = state['time'] mode = state['mode'] try: _time = datetime.strptime(time, '%H%M') _hour = _time.hour _minute = _time.minute except ValueError: await set_schedule_message.finish('输入的时间格式错误QAQ, 应该为24小时制四位数字') return if mode == 'interval' and _hour == 0 and _minute == 0: await set_schedule_message.finish('输入的时间格式错误QAQ, interval模式不允许时间为0000') return state['hour'] = _hour state['minute'] = _minute @set_schedule_message.got('repeat', prompt='是否按星期重复?\n\n若只想在一周的某一天执行请以下日期中选择:\n' '【mon/tue/wed/thu/fri/sat/sun】\n\n' '若想每一天都执行请输入:\n【all】') async def handle_time(bot: Bot, event: GroupMessageEvent, state: T_State): repeat = state['repeat'] if repeat not in ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun', 'all']: await set_schedule_message.finish('输入的日期格式错误QAQ, 请在【mon/tue/wed/thu/fri/sat/sun/all】中选择输入') @set_schedule_message.got('message', prompt='请发送你要设置的消息内容:') async def handle_message(bot: Bot, event: GroupMessageEvent, state: T_State): message = state['message'] name = state['name'] mode = state['mode'] hour = state['hour'] minute = state['minute'] repeat = state['repeat'] group_id = event.group_id self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=group_id, self_bot=self_bot) try: await add_scheduler( group=group, schedule_name=name, mode=mode, hour=hour, minute=minute, repeat=repeat, message=message) except Exception as e: logger.error(f'为群组: {group_id} 设置群组定时消息失败任务, 添加计划任务时发生错误: {repr(e)}') await set_schedule_message.finish(f'为本群组设定群组定时消息失败了QAQ, 请稍后再试或联系管理员处理') msg_set_result = await add_db_group_schedule_message( group=group, schedule_name=name, mode=mode, hour=hour, minute=minute, repeat=repeat, message=message) if msg_set_result.success(): logger.info(f'已为群组: {group_id} 设置群组定时消息: {name}{mode}/{hour}:{minute}') await set_schedule_message.finish(f'已为本群组设定了群组定时消息:\n{name}/{mode}/{repeat}:{hour}:{minute}') else: logger.error(f'为群组: {group_id} 设置群组定时消息失败, error info: {msg_set_result.info}') await set_schedule_message.finish(f'为本群组设定了群组定时消息失败了QAQ, 请稍后再试或联系管理员处理') # 查看定时消息部分 @list_schedule_message.handle() async def handle(bot: Bot, event: GroupMessageEvent, state: T_State): self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=event.group_id, self_bot=self_bot) schedule_result = await list_db_group_schedule_message(group=group) if schedule_result.error: logger.error(f'Get group {event.group_id} message schedule list failed: {schedule_result.info}') await list_schedule_message.finish(f'获取群定时消息失败了QAQ, 请稍后再试或联系管理员处理') msg = f'本群已设置的定时消息任务:\n{"="*12}' for _name, _mode, _time, _message in schedule_result.result: _name = re.sub(r'^ScheduleMsg_', '', str(_name)) msg += f'\n【{_name}】 - {_mode}({_time})' await list_schedule_message.finish(msg) # 删除定时消息部分 # 修改默认参数处理 @del_schedule_message.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_message()).strip() if not args: await del_schedule_message.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await del_schedule_message.finish('操作已取消') @del_schedule_message.handle() async def handle_jobs(bot: Bot, event: GroupMessageEvent, state: T_State): self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=event.group_id, self_bot=self_bot) schedule_result = await list_db_group_schedule_message(group=group) if schedule_result.error: logger.error(f'Get group {event.group_id} message schedule list failed: {schedule_result.info}') await list_schedule_message.finish(f'获取群定时消息列表失败了QAQ, 请稍后再试或联系管理员处理') msg = f'本群已设置的定时消息任务有:\n{"="*12}' for _name, _mode, _time, _message in schedule_result.result: _name = re.sub(r'^ScheduleMsg_', '', str(_name)) msg += f'\n【{_name}】 - {_mode}({_time})' await list_schedule_message.send(msg) @del_schedule_message.got('name', prompt='请发送将要移除的定时任务的名称:') async def handle_remove(bot: Bot, event: GroupMessageEvent, state: T_State): name = state['name'] group_id = event.group_id self_bot = DBBot(self_qq=int(bot.self_id)) group = DBBotGroup(group_id=group_id, self_bot=self_bot) try: await remove_scheduler(group=group, schedule_name=name) except Exception as e: logger.error(f'移除群组: {group_id} 定时消息失败, 移除计划任务时发生错误: {repr(e)}') await del_schedule_message.finish(f'移除群组定时消息失败了QAQ, 请稍后再试或联系管理员处理') msg_del_result = await del_db_group_schedule_message(group=group, schedule_name=name) if msg_del_result.success(): logger.info(f'已移除群组: {group_id} 群组定时消息: {name}') await del_schedule_message.finish(f'已移除群组定时消息: {name}') else: logger.error(f'移除群组: {group_id} 群组定时消息失败, error info: {msg_del_result.info}') await del_schedule_message.finish(f'移除群组定时消息失败了QAQ, 请稍后再试或联系管理员处理') async def add_db_group_schedule_message( group: DBBotGroup, schedule_name: str, mode: str, hour: int, minute: int, repeat: str, message: str) -> Result.IntResult: # 初始化计划任务设置ID _schedule_setting_id = f'ScheduleMsg_{schedule_name}' schedule_set_result = await group.setting_set(setting_name=_schedule_setting_id, main_config=mode, secondary_config=f'{repeat}:{hour}:{minute}', extra_config=message, setting_info='群组定时消息') return schedule_set_result async def list_db_group_schedule_message(group: DBBotGroup) -> Result.ListResult: exist_setting = await group.setting_list() if exist_setting.error: return Result.ListResult(error=True, info=f'Get config wrong: {exist_setting.info}', result=[]) else: result = [x for x in exist_setting.result if str(x[0]).startswith('ScheduleMsg_')] return Result.ListResult(error=False, info=f'Success', result=result) async def del_db_group_schedule_message(group: DBBotGroup, schedule_name: str) -> Result.IntResult: _schedule_setting_id = f'ScheduleMsg_{schedule_name}' result = await group.setting_del(setting_name=_schedule_setting_id) return result async def add_scheduler( group: DBBotGroup, schedule_name: str, mode: str, hour: int, minute: int, repeat: str, message: str): global scheduler _schedule_setting_id = f'ScheduleMsg_{group.self_bot.self_qq}_{schedule_name}' self_bot: Bot = nonebot.get_bots().get(str(group.self_bot.self_qq), None) if not self_bot: raise ValueError('Can not get Bot') async def _scheduler_handle(): await self_bot.send_group_msg(group_id=group.group_id, message=Message(f'【定时消息】\n{"="*12}\n{message}')) if mode == 'cron': if repeat == 'all': scheduler.add_job( _scheduler_handle, 'cron', hour=hour, minute=minute, id=_schedule_setting_id, coalesce=True, misfire_grace_time=10 ) else: scheduler.add_job( _scheduler_handle, 'cron', day_of_week=repeat, hour=hour, minute=minute, id=_schedule_setting_id, coalesce=True, misfire_grace_time=10 ) elif mode == 'interval': if hour == 0 and minute != 0: scheduler.add_job( _scheduler_handle, 'interval', minutes=minute, id=_schedule_setting_id, coalesce=True, misfire_grace_time=10 ) elif minute == 0: scheduler.add_job( _scheduler_handle, 'interval', hours=hour, id=_schedule_setting_id, coalesce=True, misfire_grace_time=10 ) else: scheduler.add_job( _scheduler_handle, 'interval', hours=hour, minutes=minute, id=_schedule_setting_id, coalesce=True, misfire_grace_time=10 ) else: raise ValueError(f'Unknown mode {mode}') async def remove_scheduler(group: DBBotGroup, schedule_name: str): global scheduler _schedule_setting_id = f'ScheduleMsg_{group.self_bot.self_qq}_{schedule_name}' scheduler.remove_job(_schedule_setting_id) # Bot 连接时初始化其消息任务 @driver.on_bot_connect async def init_bot_message_schedule(bot: Bot): self_bot = DBBot(self_qq=int(bot.self_id)) group_list_result = await DBBotGroup.list_exist_bot_groups(self_bot=self_bot) if group_list_result.error: logger.error(f'Init bot message schedule failed, get bot group list failed: {group_list_result.info}') for group in group_list_result.result: _bot_group = DBBotGroup(group_id=group, self_bot=self_bot) schedule_result = await list_db_group_schedule_message(group=_bot_group) if schedule_result.error: logger.error(f'Error occurred in init bot message schedule, ' f'get group {_bot_group.group_id} message schedule list failed: {schedule_result.info}') continue for _name, _mode, _time, _message in schedule_result.result: _name = re.sub(r'^ScheduleMsg_', '', str(_name)) _repeat, _hour, _minute = [x for x in str(_time).split(':', maxsplit=3)] _hour = int(_hour) _minute = int(_minute) try: await add_scheduler(group=_bot_group, schedule_name=_name, mode=_mode, hour=_hour, minute=_minute, repeat=_repeat, message=_message) except Exception as e: logger.error(f'Init bot message schedule failed, ' f'为群组: {_bot_group.group_id} 添加群组定时消息任务失败, 添加计划任务时发生错误: {repr(e)}') continue # Bot 断开连接时移除其消息任务 @driver.on_bot_disconnect async def remove_bot_message_schedule(bot: Bot): self_bot = DBBot(self_qq=int(bot.self_id)) group_list_result = await DBBotGroup.list_exist_bot_groups(self_bot=self_bot) if group_list_result.error: logger.error(f'Remove bot message schedule failed, get bot group list failed: {group_list_result.info}') for group in group_list_result.result: _bot_group = DBBotGroup(group_id=group, self_bot=self_bot) schedule_result = await list_db_group_schedule_message(group=_bot_group) if schedule_result.error: logger.error(f'Error occurred in remove bot message schedule, ' f'get group {_bot_group.group_id} message schedule list failed: {schedule_result.info}') continue for _name, _mode, _time, _message in schedule_result.result: _repeat, _hour, _minute = [x for x in str(_time).split(':', maxsplit=3)] _hour = int(_hour) _minute = int(_minute) try: await remove_scheduler(group=_bot_group, schedule_name=_name) except Exception as e: logger.error(f'Remove bot message schedule failed, ' f'移除群组: {_bot_group.group_id} 定时消息任务失败, 移除计划任务时发生错误: {repr(e)}') continue ``` #### File: plugins/search_image/__init__.py ```python import random import asyncio from nonebot import on_command, export, logger, get_driver from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import MessageEvent, GroupMessageEvent, PrivateMessageEvent from nonebot.adapters.cqhttp.permission import GROUP, PRIVATE_FRIEND from nonebot.adapters.cqhttp import MessageSegment, Message from omega_miya.utils.Omega_Base import DBBot from omega_miya.utils.Omega_plugin_utils import init_export, init_permission_state, PicEncoder, PermissionChecker from omega_miya.utils.pixiv_utils import PixivIllust from .utils import SEARCH_ENGINE, HEADERS from .config import Config __global_config = get_driver().config plugin_config = Config(**__global_config.dict()) ENABLE_SAUCENAO = plugin_config.enable_saucenao ENABLE_IQDB = plugin_config.enable_iqdb ENABLE_ASCII2D = plugin_config.enable_ascii2d # Custom plugin usage text __plugin_name__ = '识图' __plugin_usage__ = r'''【识图助手】 使用SauceNAO/ascii2d识别各类图片、插画 群组/私聊可用 **Permission** Friend Private Command & Lv.50 or AuthNode **AuthNode** basic **Usage** /识图 **Hidden Command** /再来点''' # 声明本插件可配置的权限节点 __plugin_auth_node__ = [ 'basic', 'recommend_image', 'allow_recommend_r18' ] # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__, __plugin_auth_node__) # 注册事件响应器 search_image = on_command( '识图', aliases={'搜图'}, # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='search_image', command=True, level=50, auth_node='basic'), permission=GROUP | PRIVATE_FRIEND, priority=20, block=True) # 修改默认参数处理 @search_image.args_parser async def parse(bot: Bot, event: MessageEvent, state: T_State): args = str(event.get_message()).strip().split() if not args: await search_image.reject('你似乎没有发送有效的消息呢QAQ, 请重新发送:') if state["_current_key"] == 'using_engine': if args[0] == '是': return else: await search_image.finish('操作已取消') state[state["_current_key"]] = args[0] if state[state["_current_key"]] == '取消': await search_image.finish('操作已取消') for msg_seg in event.message: if msg_seg.type == 'image': state[state["_current_key"]] = msg_seg.data.get('url') return @search_image.handle() async def handle_first_receive(bot: Bot, event: MessageEvent, state: T_State): # 识图引擎开关 usable_engine = [] if ENABLE_SAUCENAO: usable_engine.append('saucenao') if ENABLE_IQDB: usable_engine.append('iqdb') if ENABLE_ASCII2D: usable_engine.append('ascii2d') state['using_engine'] = usable_engine.pop(0) if usable_engine else None state['usable_engine'] = usable_engine # 提取图片链接, 默认只取消息中的第一张图 img_url = None if event.reply: for msg_seg in event.reply.message: if msg_seg.type == 'image': img_url = msg_seg.data.get('url') break else: for msg_seg in event.message: if msg_seg.type == 'image': img_url = msg_seg.data.get('url') break if img_url: state['image_url'] = img_url return args = str(event.get_plaintext()).strip().lower().split() if args: await search_image.finish('你发送的好像不是图片呢QAQ') @search_image.got('image_url', prompt='请发送你想要识别的图片:') async def handle_got_image(bot: Bot, event: MessageEvent, state: T_State): image_url = state['image_url'] if not str(image_url).startswith('http'): await search_image.finish('错误QAQ,你发送的不是有效的图片') await search_image.send('获取识别结果中, 请稍后~') @search_image.got('using_engine', prompt='使用识图引擎识图:') async def handle_saucenao(bot: Bot, event: MessageEvent, state: T_State): image_url = state['image_url'] using_engine = state['using_engine'] usable_engine = list(state['usable_engine']) # 获取识图结果 search_engine = SEARCH_ENGINE.get(using_engine, None) if using_engine and search_engine: identify_result = await search_engine(image_url) if identify_result.success() and identify_result.result: # 有结果了, 继续执行接下来的结果解析handler pass else: # 没有结果 if identify_result.error: logger.warning(f'{using_engine}引擎获取识别结果失败: {identify_result.info}') if usable_engine: # 还有可用的识图引擎 next_using_engine = usable_engine.pop(0) msg = f'{using_engine}引擎没有找到相似度足够高的图片,是否继续使用{next_using_engine}引擎识别图片?\n\n【是/否】' state['using_engine'] = next_using_engine state['usable_engine'] = usable_engine await search_image.reject(msg) else: # 没有可用的识图引擎了 logger.info(f'{event.user_id} 使用了searchimage所有的识图引擎, 但没有找到相似的图片') await search_image.finish('没有找到相似度足够高的图片QAQ') else: logger.error(f'获取识图引擎异常, using_engine: {using_engine}') await search_image.finish('发生了意外的错误QAQ, 请稍后再试或联系管理员') return state['identify_result'] = identify_result.result @search_image.handle() async def handle_result(bot: Bot, event: MessageEvent, state: T_State): if isinstance(event, GroupMessageEvent): group_id = event.group_id else: group_id = 'Private event' identify_result = state['identify_result'] try: if identify_result: for item in identify_result: try: if isinstance(item['ext_urls'], list): ext_urls = '\n'.join(item['ext_urls']) else: ext_urls = item['ext_urls'].strip() img_result = await PicEncoder( pic_url=item['thumbnail'], headers=HEADERS).get_file(folder_flag='search_image') if img_result.error: msg = f"识别结果: {item['index_name']}\n\n相似度: {item['similarity']}\n资源链接: {ext_urls}" await search_image.send(msg) else: img_seg = MessageSegment.image(img_result.result) msg = f"识别结果: {item['index_name']}\n\n相似度: {item['similarity']}\n资源链接: {ext_urls}\n{img_seg}" await search_image.send(Message(msg)) except Exception as e: logger.warning(f'处理和发送识别结果时发生了错误: {repr(e)}') continue logger.info(f"{group_id} / {event.user_id} 使用searchimage成功搜索了一张图片") return else: await search_image.send('没有找到相似度足够高的图片QAQ') logger.info(f"{group_id} / {event.user_id} 使用了searchimage, 但没有找到相似的图片") return except Exception as e: await search_image.send('识图失败, 发生了意外的错误QAQ, 请稍后重试') logger.error(f"{group_id} / {event.user_id} 使用命令searchimage时发生了错误: {repr(e)}") return # 注册事件响应器 recommend_image = on_command( # 使用 pixiv api 的相关作品推荐功能查找相似作品 '再来点', aliases={'多来点', '相似作品', '类似作品'}, # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='search_image_recommend_image', command=True, auth_node='recommend_image'), permission=GROUP | PRIVATE_FRIEND, priority=20, block=True) @recommend_image.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): # 从回复消息中捕获待匹配的图片信息 # 只返回匹配到的第一个符合要求的链接或图片 if event.reply: # 首先筛查链接 for msg_seg in event.reply.message: if msg_seg.type == 'text': text = msg_seg.data.get('text') if pid := PixivIllust.parse_pid_from_url(text=text): state['pid'] = pid logger.debug(f"Recommend image | 已从消息段文本匹配到 pixiv url, pid: {pid}") return # 若消息被分片可能导致链接被拆分 raw_text = event.reply.dict().get('raw_message') if pid := PixivIllust.parse_pid_from_url(text=raw_text): state['pid'] = pid logger.debug(f"Recommend image | 已从消息 raw 文本匹配到 pixiv url, pid: {pid}") return # 没有发现则开始对图片进行识别, 为保证准确性只使用 saucenao api for msg_seg in event.reply.message: if msg_seg.type == 'image': img_url = msg_seg.data.get('url') saucenao_search_engine = SEARCH_ENGINE.get('saucenao') identify_result = await saucenao_search_engine(img_url) # 从识别结果中匹配图片 for url_list in [x.get('ext_urls') for x in identify_result.result]: for url in url_list: if pid := PixivIllust.parse_pid_from_url(text=url): state['pid'] = pid logger.debug(f"Recommend image | 已从识别图片匹配到 pixiv url, pid: {pid}") return else: logger.debug(f'Recommend image | 命令没有引用消息, 操作已取消') await recommend_image.finish('没有引用需要查找的图片QAQ, 请使用本命令时直接回复相关消息') @recommend_image.handle() async def handle_illust_recommend(bot: Bot, event: GroupMessageEvent, state: T_State): pid = state.get('pid') if not pid: logger.debug(f'Recommend image | 没有匹配到图片pid, 操作已取消') await recommend_image.finish('没有匹配到相关图片QAQ, 请确认搜索的图片是在 Pixiv 上的作品') recommend_result = await PixivIllust(pid=pid).get_recommend(init_limit=36) if recommend_result.error: logger.warning(f'Recommend image | 获取相似作品信息失败, pid: {pid}, error: {recommend_result.info}') await recommend_image.finish('获取相关作品信息失败QAQ, 原作品可能已经被删除') # 获取推荐作品的信息 await recommend_image.send('稍等, 正在获取相似作品~') pid_list = [x.get('id') for x in recommend_result.result.get('illusts') if x.get('illustType') == 0] tasks = [PixivIllust(pid=x).get_illust_data() for x in pid_list] recommend_illust_data_result = await asyncio.gather(*tasks) # 执行 r18 权限检查 if isinstance(event, PrivateMessageEvent): user_id = event.user_id auth_checker = await PermissionChecker(self_bot=DBBot(self_qq=int(bot.self_id))). \ check_auth_node(auth_id=user_id, auth_type='user', auth_node='search_image.allow_recommend_r18') elif isinstance(event, GroupMessageEvent): group_id = event.group_id auth_checker = await PermissionChecker(self_bot=DBBot(self_qq=int(bot.self_id))). \ check_auth_node(auth_id=group_id, auth_type='group', auth_node='search_image.allow_recommend_r18') else: auth_checker = 0 # 筛选推荐作品 筛选条件 收藏不少于2k 点赞数不少于收藏一半 点赞率大于百分之五 if auth_checker == 1: filtered_illust_data_result = [x for x in recommend_illust_data_result if ( x.success() and 2000 <= x.result.get('bookmark_count') <= 2 * x.result.get('like_count') and x.result.get('view_count') <= 20 * x.result.get('like_count') )] else: filtered_illust_data_result = [x for x in recommend_illust_data_result if ( x.success() and not x.result.get('is_r18') and 2000 <= x.result.get('bookmark_count') <= 2 * x.result.get('like_count') and x.result.get('view_count') <= 20 * x.result.get('like_count') )] # 从筛选结果里面随机挑三个 if len(filtered_illust_data_result) > 3: illust_list = [PixivIllust(pid=x.result.get('pid')) for x in random.sample(filtered_illust_data_result, k=3)] else: illust_list = [PixivIllust(pid=x.result.get('pid')) for x in filtered_illust_data_result] if not illust_list: logger.info(f'Recommend image | 筛选结果为0, 没有找到符合要求的相似作品') await recommend_image.finish('没有找到符合要求的相似作品QAQ') # 直接下载图片 tasks = [x.get_sending_msg() for x in illust_list] illust_download_result = await asyncio.gather(*tasks) for img, info in [x.result for x in illust_download_result if x.success()]: img_seg = MessageSegment.image(file=img) try: await recommend_image.send(Message(img_seg).append(info)) except Exception as e: logger.warning(f'Recommend image | 发送图片失败, error: {repr(e)}') continue logger.info(f'Recommend image | User: {event.user_id} 已获取相似图片') ``` #### File: plugins/tencent_cloud/__init__.py ```python import re from nonebot import MatcherGroup, logger, export from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import GroupMessageEvent from nonebot.adapters.cqhttp.permission import GROUP from omega_miya.utils.Omega_plugin_utils import init_export, init_permission_state, OmegaRules from omega_miya.utils.tencent_cloud_api import TencentNLP, TencentTMT # Custom plugin usage text __plugin_name__ = 'TencentCloudCore' __plugin_usage__ = r'''【TencentCloud API Support】 腾讯云API插件 测试中 **Permission** Command & Lv.50 or AuthNode **AuthNode** basic **Usage** /翻译''' # 声明本插件可配置的权限节点 __plugin_auth_node__ = [ 'tmt', 'nlp' ] # Init plugin export init_export(export(), __plugin_name__, __plugin_usage__, __plugin_auth_node__) tencent_cloud = MatcherGroup( type='message', permission=GROUP, priority=100, block=False) translate = tencent_cloud.on_command( '翻译', aliases={'translate'}, # 使用run_preprocessor拦截权限管理, 在default_state初始化所需权限 state=init_permission_state( name='translate', command=True, level=30, auth_node='tmt'), priority=30, block=True) # 修改默认参数处理 @translate.args_parser async def parse(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip() if not args: await translate.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await translate.finish('操作已取消') @translate.handle() async def handle_first_receive(bot: Bot, event: GroupMessageEvent, state: T_State): args = str(event.get_plaintext()).strip() if not args: pass else: state['content'] = args @translate.got('content', prompt='请发送需要翻译的内容:') async def handle_roll(bot: Bot, event: GroupMessageEvent, state: T_State): content = state['content'] translate_result = await TencentTMT().translate(source_text=content) if translate_result.error: await translate.finish('翻译失败了QAQ, 发生了意外的错误') else: await translate.finish(f"翻译结果:\n\n{translate_result.result.get('targettext')}") nlp = tencent_cloud.on_message( rule=OmegaRules.has_group_command_permission() & OmegaRules.has_level_or_node(30, 'tencent_cloud.nlp')) @nlp.handle() async def handle_nlp(bot: Bot, event: GroupMessageEvent, state: T_State): arg = str(event.get_plaintext()).strip().lower() # 排除列表 ignore_pattern = [ re.compile(r'喵一个'), re.compile(r'^今天'), re.compile(r'[这那谁你我他她它]个?是[(什么)谁啥]') ] for pattern in ignore_pattern: if re.search(pattern, arg): await nlp.finish() # describe_entity实体查询 if re.match(r'^(你?知道)?(.{1,32}?)的(.{1,32}?)是(什么|谁|啥)吗?[??]?$', arg): item, attr = re.findall(r'^(你?知道)?(.{1,32}?)的(.{1,32}?)是(什么|谁|啥)吗?[??]?$', arg)[0][1:3] res = await TencentNLP().describe_entity(entity_name=item, attr=attr) if not res.error and res.result: await nlp.finish(f'{item}的{attr}是{res.result}') else: logger.warning(f'nlp handling describe entity failed: {res.info}') elif re.match(r'^(你?知道)?(.{1,32}?)是(什么|谁|啥)吗?[??]?$', arg): item = re.findall(r'^(你?知道)?(.{1,32}?)是(什么|谁|啥)吗?[??]?$', arg)[0][1] res = await TencentNLP().describe_entity(entity_name=item) if not res.error and res.result: await nlp.finish(str(res.result)) else: logger.warning(f'nlp handling describe entity failed: {res.info}') ``` #### File: utils/dice_utils/exception.py ```python class DiceBaseException(Exception): pass class CalculateException(DiceBaseException): """ 计算模块异常 """ def __init__(self, reason, expression): self.reason = reason self.expression = expression def __repr__(self): return f'<CalculateException, reason={self.reason}, expression={self.expression}>' def __str__(self): return self.__repr__() ``` #### File: Omega_Base/model/friend.py ```python from typing import Optional from datetime import datetime from omega_miya.utils.Omega_Base.database import NBdb from omega_miya.utils.Omega_Base.class_result import Result from omega_miya.utils.Omega_Base.tables import Friends, User, Subscription, UserSub from .user import DBUser from .bot_self import DBBot from .subscription import DBSubscription from sqlalchemy.future import select from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound class DBFriend(DBUser): def __init__(self, user_id: int, self_bot: DBBot): super().__init__(user_id) self.self_bot = self_bot @classmethod async def list_exist_friends(cls, self_bot: DBBot) -> Result.ListResult: self_bot_id_result = await self_bot.id() if self_bot_id_result.error: return Result.ListResult(error=True, info='Bot not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(User.qq). join(Friends). where(User.id == Friends.user_id). where(Friends.bot_self_id == self_bot_id_result.result) ) exist_friends = [x for x in session_result.scalars().all()] result = Result.ListResult(error=False, info='Success', result=exist_friends) except NoResultFound: result = Result.ListResult(error=True, info='NoResultFound', result=[]) except MultipleResultsFound: result = Result.ListResult(error=True, info='MultipleResultsFound', result=[]) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result @classmethod async def list_exist_friends_by_private_permission( cls, private_permission: int, self_bot: DBBot) -> Result.ListResult: self_bot_id_result = await self_bot.id() if self_bot_id_result.error: return Result.ListResult(error=True, info='Bot not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(User.qq). join(Friends). where(User.id == Friends.user_id). where(Friends.bot_self_id == self_bot_id_result.result). where(Friends.private_permissions == private_permission) ) exist_friends = [x for x in session_result.scalars().all()] result = Result.ListResult(error=False, info='Success', result=exist_friends) except NoResultFound: result = Result.ListResult(error=True, info='NoResultFound', result=[]) except MultipleResultsFound: result = Result.ListResult(error=True, info='MultipleResultsFound', result=[]) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result async def friend_id(self) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) self_bot_id_result = await self.self_bot.id() if self_bot_id_result.error: return Result.IntResult(error=True, info='Bot not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(Friends.id). where(Friends.bot_self_id == self_bot_id_result.result). where(Friends.user_id == user_id_result.result) ) friend_table_id = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=friend_table_id) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def exist(self) -> bool: result = await self.friend_id() return result.success() async def set_friend( self, nickname: str, remark: Optional[str] = None, private_permissions: Optional[int] = None ) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) self_bot_id_result = await self.self_bot.id() if self_bot_id_result.error: return Result.IntResult(error=True, info='Bot not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(Friends). where(Friends.user_id == user_id_result.result). where(Friends.bot_self_id == self_bot_id_result.result) ) exist_friend = session_result.scalar_one() exist_friend.nickname = nickname exist_friend.remark = remark if private_permissions: exist_friend.private_permissions = private_permissions exist_friend.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: if private_permissions: new_friend = Friends(user_id=user_id_result.result, bot_self_id=self_bot_id_result.result, nickname=nickname, remark=remark, private_permissions=private_permissions, created_at=datetime.now()) else: new_friend = Friends(user_id=user_id_result.result, bot_self_id=self_bot_id_result.result, nickname=nickname, remark=remark, private_permissions=0, created_at=datetime.now()) session.add(new_friend) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def del_friend(self) -> Result.IntResult: friend_id_result = await self.friend_id() if friend_id_result.error: return Result.IntResult(error=True, info='Friend not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): # 删除好友表中该好友信息 session_result = await session.execute( select(Friends). where(Friends.id == friend_id_result.result) ) exist_friend = session_result.scalar_one() await session.delete(exist_friend) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def set_private_permission(self, private_permissions: int) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) self_bot_id_result = await self.self_bot.id() if self_bot_id_result.error: return Result.IntResult(error=True, info='Bot not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(Friends). where(Friends.user_id == user_id_result.result). where(Friends.bot_self_id == self_bot_id_result.result) ) exist_friend = session_result.scalar_one() exist_friend.private_permissions = private_permissions exist_friend.updated_at = datetime.now() await session.commit() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def get_private_permission(self) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) self_bot_id_result = await self.self_bot.id() if self_bot_id_result.error: return Result.IntResult(error=True, info='Bot not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(Friends.private_permissions). where(Friends.user_id == user_id_result.result). where(Friends.bot_self_id == self_bot_id_result.result) ) private_permissions = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=private_permissions) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-2) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def subscription_list(self) -> Result.TupleListResult: """ :return: Result: List[Tuple[sub_type, sub_id, up_name]] """ friend_id_result = await self.friend_id() if friend_id_result.error: return Result.TupleListResult(error=True, info='Friend not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Subscription.sub_type, Subscription.sub_id, Subscription.up_name). join(UserSub). where(Subscription.id == UserSub.sub_id). where(UserSub.user_id == friend_id_result.result) ) res = [(x[0], x[1], x[2]) for x in session_result.all()] result = Result.TupleListResult(error=False, info='Success', result=res) except Exception as e: result = Result.TupleListResult(error=True, info=repr(e), result=[]) return result async def subscription_list_by_type(self, sub_type: int) -> Result.TupleListResult: """ :param sub_type: 订阅类型 :return: Result: List[Tuple[sub_id, up_name]] """ friend_id_result = await self.friend_id() if friend_id_result.error: return Result.TupleListResult(error=True, info='Friend not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Subscription.sub_id, Subscription.up_name). join(UserSub). where(Subscription.sub_type == sub_type). where(Subscription.id == UserSub.sub_id). where(UserSub.user_id == friend_id_result.result) ) res = [(x[0], x[1]) for x in session_result.all()] result = Result.TupleListResult(error=False, info='Success', result=res) except Exception as e: result = Result.TupleListResult(error=True, info=repr(e), result=[]) return result async def subscription_add(self, sub: DBSubscription, user_sub_info: str = None) -> Result.IntResult: friend_id_result = await self.friend_id() if friend_id_result.error: return Result.IntResult(error=True, info='Friend not exist', result=-1) sub_id_result = await sub.id() if sub_id_result.error: return Result.IntResult(error=True, info='Subscription not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(UserSub). where(UserSub.user_id == friend_id_result.result). where(UserSub.sub_id == sub_id_result.result) ) # 订阅关系已存在, 更新信息 exist_subscription = session_result.scalar_one() exist_subscription.user_sub_info = user_sub_info exist_subscription.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: subscription = UserSub(sub_id=sub_id_result.result, user_id=friend_id_result.result, user_sub_info=user_sub_info, created_at=datetime.now()) session.add(subscription) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def subscription_del(self, sub: DBSubscription) -> Result.IntResult: friend_id_result = await self.friend_id() if friend_id_result.error: return Result.IntResult(error=True, info='Friend not exist', result=-1) sub_id_result = await sub.id() if sub_id_result.error: return Result.IntResult(error=True, info='Subscription not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserSub). where(UserSub.user_id == friend_id_result.result). where(UserSub.sub_id == sub_id_result.result) ) exist_subscription = session_result.scalar_one() await session.delete(exist_subscription) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def subscription_clear(self) -> Result.IntResult: friend_id_result = await self.friend_id() if friend_id_result.error: return Result.IntResult(error=True, info='Friend not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserSub).where(UserSub.user_id == friend_id_result.result) ) for exist_user_sub in session_result.scalars().all(): await session.delete(exist_user_sub) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def subscription_clear_by_type(self, sub_type: int) -> Result.IntResult: friend_id_result = await self.friend_id() if friend_id_result.error: return Result.IntResult(error=True, info='Friend not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserSub).join(Subscription). where(UserSub.sub_id == Subscription.id). where(Subscription.sub_type == sub_type). where(UserSub.user_id == friend_id_result.result) ) for exist_user_sub in session_result.scalars().all(): await session.delete(exist_user_sub) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result ``` #### File: Omega_Base/model/mail.py ```python from omega_miya.utils.Omega_Base.database import NBdb from omega_miya.utils.Omega_Base.class_result import Result from omega_miya.utils.Omega_Base.tables import Email, EmailBox, GroupEmailBox from datetime import datetime from sqlalchemy.future import select from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound class DBEmailBox(object): def __init__(self, address: str): self.address = address async def id(self) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(EmailBox.id). where(EmailBox.address == self.address) ) email_box_table_id = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=email_box_table_id) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def exist(self) -> bool: result = await self.id() return result.success() @classmethod async def list(cls) -> Result.ListResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(EmailBox.address).order_by(EmailBox.id) ) res = [x for x in session_result.scalars().all()] result = Result.ListResult(error=False, info='Success', result=res) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result async def get_info(self) -> Result.DictResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(EmailBox). where(EmailBox.address == self.address) ) exist_box = session_result.scalar_one() server_host = exist_box.server_host port = exist_box.port password = <PASSWORD> res_dict = {'server_host': server_host, 'port': port, 'password': password} result = Result.DictResult(error=False, info='Success', result=res_dict) except NoResultFound: result = Result.DictResult(error=True, info='NoResultFound', result={}) except MultipleResultsFound: result = Result.DictResult(error=True, info='MultipleResultsFound', result={}) except Exception as e: result = Result.DictResult(error=True, info=repr(e), result={}) return result async def add(self, server_host: str, password: str, port: int = 993) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: # 已存在则更新 session_result = await session.execute( select(EmailBox). where(EmailBox.address == self.address) ) exist_box = session_result.scalar_one() exist_box.server_host = server_host exist_box.port = port exist_box.password = password exist_box.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: new_box = EmailBox(address=self.address, server_host=server_host, password=password, port=port, created_at=datetime.now()) session.add(new_box) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def delete(self) -> Result.IntResult: id_result = await self.id() if id_result.error: return Result.IntResult(error=True, info='EmailBox not exist', result=-1) # 清空持已绑定这个邮箱的群组 await self.mailbox_group_clear() async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(EmailBox). where(EmailBox.address == self.address) ) exist_box = session_result.scalar_one() await session.delete(exist_box) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def mailbox_group_clear(self) -> Result.IntResult: id_result = await self.id() if id_result.error: return Result.IntResult(error=True, info='EmailBox not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(GroupEmailBox).where(GroupEmailBox.email_box_id == id_result.result) ) for exist_group_mailbox in session_result.scalars().all(): await session.delete(exist_group_mailbox) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result class DBEmail(object): def __init__(self, mail_hash: str): self.mail_hash = mail_hash async def add( self, date: str, header: str, sender: str, to: str, body: str = None, html: str = None ) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): new_email = Email(mail_hash=self.mail_hash, date=date, header=header, sender=sender, to=to, body=body, html=html, created_at=datetime.now()) session.add(new_email) await session.commit() result = Result.IntResult(error=False, info='Success added', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result ``` #### File: Omega_Base/model/user.py ```python from typing import List, Optional from datetime import date, datetime from dataclasses import dataclass from omega_miya.utils.Omega_Base.database import NBdb from omega_miya.utils.Omega_Base.class_result import Result from omega_miya.utils.Omega_Base.tables import User, UserFavorability, UserSignIn, Skill, UserSkill, Vacation from .skill import DBSkill from sqlalchemy.future import select from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound class DBUser(object): def __init__(self, user_id: int): self.qq = user_id @dataclass class DateListResult(Result.AnyResult): result: List[date] def __repr__(self): return f'<DateListResult(error={self.error}, info={self.info}, result={self.result})>' async def id(self) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(User.id).where(User.qq == self.qq) ) user_table_id = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=user_table_id) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def exist(self) -> bool: result = await self.id() return result.success() async def nickname(self) -> Result.TextResult: async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(User.nickname).where(User.qq == self.qq) ) user_nickname = session_result.scalar_one() result = Result.TextResult(error=False, info='Success', result=user_nickname) except NoResultFound: result = Result.TextResult(error=True, info='NoResultFound', result='') except MultipleResultsFound: result = Result.TextResult(error=True, info='MultipleResultsFound', result='') except Exception as e: result = Result.TextResult(error=True, info=repr(e), result='') return result async def add(self, nickname: str, aliasname: str = None) -> Result.IntResult: async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: # 用户已存在则更新成员表昵称 session_result = await session.execute( select(User).where(User.qq == self.qq) ) exist_user = session_result.scalar_one() if exist_user.nickname == nickname: result = Result.IntResult(error=False, info='Nickname not change', result=0) else: exist_user.nickname = nickname exist_user.aliasname = aliasname exist_user.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: # 不存在则成员表中添加新成员 new_user = User(qq=self.qq, nickname=nickname, aliasname=aliasname, created_at=datetime.now()) session.add(new_user) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def delete(self) -> Result.IntResult: id_result = await self.id() if id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): # 删除用户表中用户 session_result = await session.execute( select(User).where(User.qq == self.qq) ) exist_user = session_result.scalar_one() await session.delete(exist_user) await session.commit() result = Result.IntResult(error=False, info='Success Delete', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def skill_list(self) -> Result.ListResult: id_result = await self.id() if id_result.error: return Result.ListResult(error=True, info='User not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Skill.name, UserSkill.skill_level). join(UserSkill). where(Skill.id == UserSkill.skill_id). where(UserSkill.user_id == id_result.result) ) res = [(x[0], x[1]) for x in session_result.all()] result = Result.ListResult(error=False, info='Success', result=res) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[]) return result async def skill_add(self, skill: DBSkill, skill_level: int) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) skill_id_result = await skill.id() if skill_id_result.error: return Result.IntResult(error=True, info='Skill not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): # 查询用户已有技能 try: # 已有技能, 更新等级 session_result = await session.execute( select(UserSkill). where(UserSkill.skill_id == skill_id_result.result). where(UserSkill.user_id == user_id_result.result) ) exist_skill = session_result.scalar_one() exist_skill.skill_level = skill_level exist_skill.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: new_skill = UserSkill(user_id=user_id_result.result, skill_id=skill_id_result.result, skill_level=skill_level, created_at=datetime.now()) session.add(new_skill) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def skill_del(self, skill: DBSkill) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) skill_id_result = await skill.id() if skill_id_result.error: return Result.IntResult(error=True, info='Skill not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserSkill). where(UserSkill.skill_id == skill_id_result.result). where(UserSkill.user_id == user_id_result.result) ) exist_skill = session_result.scalar_one() await session.delete(exist_skill) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def skill_clear(self) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserSkill).where(UserSkill.user_id == user_id_result.result) ) for exist_skill in session_result.scalars().all(): await session.delete(exist_skill) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def status(self) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Vacation.status).where(Vacation.user_id == user_id_result.result) ) res = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=res) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def vacation_status(self) -> Result.ListResult: user_id_result = await self.id() if user_id_result.error: return Result.ListResult(error=True, info='User not exist', result=[-1, None]) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(Vacation.status, Vacation.stop_at). where(Vacation.user_id == user_id_result.result) ) res = session_result.one() result = Result.ListResult(error=False, info='Success', result=[res[0], res[1]]) except Exception as e: result = Result.ListResult(error=True, info=repr(e), result=[-1, None]) return result async def status_set(self, status: int) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(Vacation).where(Vacation.user_id == user_id_result.result) ) exist_status = session_result.scalar_one() exist_status.status = status exist_status.stop_at = None exist_status.reason = None exist_status.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: new_status = Vacation(user_id=user_id_result.result, status=status, created_at=datetime.now()) session.add(new_status) result = Result.IntResult(error=False, info='Success set', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def vacation_set(self, stop_time: datetime, reason: str = None) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(Vacation).where(Vacation.user_id == user_id_result.result) ) exist_status = session_result.scalar_one() exist_status.status = 1 exist_status.stop_at = stop_time exist_status.reason = reason exist_status.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: new_status = Vacation(user_id=user_id_result.result, status=1, stop_at=stop_time, reason=reason, created_at=datetime.now()) session.add(new_status) result = Result.IntResult(error=False, info='Success set', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def status_del(self) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(Vacation).where(Vacation.user_id == user_id_result.result) ) exist_status = session_result.scalar_one() await session.delete(exist_status) await session.commit() result = Result.IntResult(error=False, info='Success', result=0) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def sign_in(self, *, sign_in_info: Optional[str] = 'Normal sign in') -> Result.IntResult: """ 签到 :param sign_in_info: 签到信息 :return: IntResult 1: 已签到 0: 签到成功 -1: 错误 """ user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) datetime_now = datetime.now() date_now = datetime_now.date() async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(UserSignIn). where(UserSignIn.user_id == user_id_result.result). where(UserSignIn.sign_in_date == date_now) ) # 已有签到记录 exist_sign_in = session_result.scalar_one() exist_sign_in.sign_in_info = 'Duplicate sign in' exist_sign_in.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=1) except NoResultFound: sign_in = UserSignIn(user_id=user_id_result.result, sign_in_date=date_now, sign_in_info=sign_in_info, created_at=datetime.now()) session.add(sign_in) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def sign_in_statistics(self) -> DateListResult: """ 查询所有签到记录 :return: Result: List[sign_in_date] """ user_id_result = await self.id() if user_id_result.error: return self.DateListResult(error=True, info='User not exist', result=[]) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(UserSignIn.sign_in_date). where(UserSignIn.user_id == user_id_result.result) ) res = [x for x in session_result.scalars().all()] result = self.DateListResult(error=False, info='Success', result=res) except Exception as e: result = self.DateListResult(error=True, info=repr(e), result=[]) return result async def sign_in_continuous_days(self) -> Result.IntResult: """ 查询到目前为止最长连续签到日数 """ sign_in_statistics_result = await self.sign_in_statistics() if sign_in_statistics_result.error: return Result.IntResult(error=True, info=sign_in_statistics_result.info, result=-1) # 还没有签到过 if not sign_in_statistics_result.result: return Result.IntResult(error=False, info='Success with sign in not found', result=0) datetime_now = datetime.now() date_now = datetime_now.date() date_now_toordinal = date_now.toordinal() # 先将签到记录中的日期转化为整数便于比较 all_sign_in_list = list(set([x.toordinal() for x in sign_in_statistics_result.result])) # 去重后由大到小排序 all_sign_in_list.sort(reverse=True) # 如果今日日期不等于已签到日期最大值, 说明今日没有签到, 则连签日数为0 if date_now_toordinal != all_sign_in_list[0]: return Result.IntResult(error=False, info='Success with not sign in today', result=0) # 从大到小检查(即日期从后向前检查), 如果当日序号大小大于与今日日期之差, 说明在这里断签了 for index, value in enumerate(all_sign_in_list): if index != date_now_toordinal - value: return Result.IntResult(error=False, info='Success with found interrupt', result=index) else: # 如果全部遍历完了那就说明全部没有断签 return Result.IntResult(error=False, info='Success with all continuous', result=len(all_sign_in_list)) async def favorability_status(self) -> Result.TupleResult: """ 查询好感度记录 :return: Result: Tuple[status: str, mood: float, favorability: float, energy: float, currency: float, response_threshold: float] """ user_id_result = await self.id() if user_id_result.error: return Result.TupleResult(error=True, info='User not exist', result=()) async_session = NBdb().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(UserFavorability.status, UserFavorability.mood, UserFavorability.favorability, UserFavorability.energy, UserFavorability.currency, UserFavorability.response_threshold). where(UserFavorability.user_id == user_id_result.result) ) res = session_result.one() result = Result.TupleResult(error=False, info='Success', result=res) except NoResultFound: result = Result.TupleResult(error=True, info='NoResultFound', result=()) except MultipleResultsFound: result = Result.TupleResult(error=True, info='MultipleResultsFound', result=()) except Exception as e: result = Result.TupleResult(error=True, info=repr(e), result=()) return result async def favorability_reset( self, *, status: str = 'normal', mood: float = 0, favorability: float = 0, energy: float = 0, currency: float = 0, response_threshold: float = 0 ) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): try: session_result = await session.execute( select(UserFavorability). where(UserFavorability.user_id == user_id_result.result) ) # 已有好感度记录条目 exist_favorability = session_result.scalar_one() exist_favorability.status = status exist_favorability.mood = mood exist_favorability.favorability = favorability exist_favorability.energy = energy exist_favorability.currency = currency exist_favorability.response_threshold = response_threshold exist_favorability.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: favorability = UserFavorability( user_id=user_id_result.result, status=status, mood=mood, favorability=favorability, energy=energy, currency=currency, response_threshold=response_threshold, created_at=datetime.now()) session.add(favorability) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def favorability_add( self, *, status: Optional[str] = None, mood: Optional[float] = None, favorability: Optional[float] = None, energy: Optional[float] = None, currency: Optional[float] = None, response_threshold: Optional[float] = None ) -> Result.IntResult: user_id_result = await self.id() if user_id_result.error: return Result.IntResult(error=True, info='User not exist', result=-1) async_session = NBdb().get_async_session() async with async_session() as session: try: async with session.begin(): session_result = await session.execute( select(UserFavorability). where(UserFavorability.user_id == user_id_result.result) ) # 已有好感度记录条目 exist_favorability = session_result.scalar_one() if status: exist_favorability.status = status if mood: exist_favorability.mood += mood if favorability: exist_favorability.favorability += favorability if energy: exist_favorability.energy += energy if currency: exist_favorability.currency += currency if response_threshold: exist_favorability.response_threshold += response_threshold exist_favorability.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) await session.commit() except NoResultFound: await session.rollback() result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result ``` #### File: utils/Omega_plugin_utils/__init__.py ```python from typing import Optional from nonebot.plugin import Export from nonebot.typing import T_State from .rules import OmegaRules from .encrypt import AESEncryptStr from .cooldown import PluginCoolDown from .permission import PermissionChecker from .http_fetcher import HttpFetcher from .message_sender import MsgSender from .picture_encoder import PicEncoder from .picture_effector import PicEffector from .process_utils import ProcessUtils from .zip_utils import create_zip_file, create_7z_file def init_export( plugin_export: Export, custom_name: str, usage: str, auth_node: list = None, cool_down: list = None, **kwargs: str) -> Export: setattr(plugin_export, 'custom_name', custom_name) setattr(plugin_export, 'usage', usage) setattr(plugin_export, 'auth_node', auth_node) setattr(plugin_export, 'cool_down', cool_down) for key, value in kwargs.items(): setattr(plugin_export, key, value) return plugin_export def init_permission_state( name: str, notice: Optional[bool] = None, command: Optional[bool] = None, level: Optional[int] = None, auth_node: Optional[str] = None) -> T_State: return { '_matcher': name, '_notice_permission': notice, '_command_permission': command, '_permission_level': level, '_auth_node': auth_node } __all__ = [ 'init_export', 'init_permission_state', 'OmegaRules', 'AESEncryptStr', 'PluginCoolDown', 'PermissionChecker', 'HttpFetcher', 'MsgSender', 'PicEncoder', 'PicEffector', 'ProcessUtils', 'create_zip_file', 'create_7z_file' ] ``` #### File: utils/Omega_plugin_utils/message_sender.py ```python from nonebot import logger from typing import Optional, List, Union from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.message import Message, MessageSegment from omega_miya.utils.Omega_Base import DBBot, DBBotGroup, DBFriend, DBSubscription class MsgSender(object): def __init__(self, bot: Bot, log_flag: Optional[str] = 'DefaultSender'): self.bot = bot self.self_bot = DBBot(self_qq=int(bot.self_id)) self.log_flag = f'MsgSender/{log_flag}/Bot[{bot.self_id}]' async def safe_broadcast_groups_subscription( self, subscription: DBSubscription, message: Union[str, Message, MessageSegment]): """ 向所有具有某个订阅且启用了通知权限 notice permission 的群组发送消息 """ # 获取所有需要通知的群组 notice_group_res = await subscription.sub_group_list_by_notice_permission(self_bot=self.self_bot, notice_permission=1) if notice_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast message, ' f'getting sub group list with notice permission failed, error: {notice_group_res.info}') return for group_id in notice_group_res.result: try: await self.bot.send_group_msg(group_id=group_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast message ' f'to group: {group_id} failed, error: {repr(e)}') continue async def safe_broadcast_groups_subscription_node_custom( self, subscription: DBSubscription, message_list: List[Union[str, Message, MessageSegment]], *, custom_nickname: str = '<PASSWORD>' ): """ 向所有具有某个订阅且启用了通知权限 notice permission 的群组发送自定义转发消息节点 仅支持 cq-http """ # 获取所有需要通知的群组 notice_group_res = await subscription.sub_group_list_by_notice_permission(self_bot=self.self_bot, notice_permission=1) if notice_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast node_custom message, ' f'getting sub group list with notice permission failed, error: {notice_group_res.info}') return # 构造自定义消息节点 custom_user_id = self.bot.self_id node_message = [] for msg in message_list: if not msg: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | A None-type message in message_list.') continue node_message.append({ "type": "node", "data": { "name": custom_nickname, "uin": custom_user_id, "content": msg } }) for group_id in notice_group_res.result: try: await self.bot.send_group_forward_msg(group_id=group_id, messages=node_message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast node_custom message ' f'to group: {group_id} failed, error: {repr(e)}') continue async def safe_send_group_node_custom( self, group_id: int, message_list: List[Union[str, Message, MessageSegment]], *, custom_nickname: str = '<PASSWORD>' ): """ 向某个群组发送自定义转发消息节点 仅支持 cq-http """ # 构造自定义消息节点 custom_user_id = self.bot.self_id node_message = [] for msg in message_list: if not msg: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | A None-type message in message_list.') continue node_message.append({ "type": "node", "data": { "name": custom_nickname, "user_id": custom_user_id, "uin": custom_user_id, "content": msg } }) try: await self.bot.send_group_forward_msg(group_id=group_id, messages=node_message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending node_custom message ' f'to group: {group_id} failed, error: {repr(e)}') async def safe_broadcast_friends_subscription( self, subscription: DBSubscription, message: Union[str, Message, MessageSegment]): """ 向所有具有某个订阅且启用了通知权限 notice permission 的好友发送消息 """ # 获取所有需要通知的好友 notice_friends_res = await subscription.sub_user_list_by_private_permission(self_bot=self.self_bot, private_permission=1) if notice_friends_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast message, ' f'getting sub friends list with private permission failed, error: {notice_friends_res.info}') return for user_id in notice_friends_res.result: try: await self.bot.send_private_msg(user_id=user_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending subscription ' f'{subscription.sub_type}/{subscription.sub_id} broadcast message ' f'to user: {user_id} failed, error: {repr(e)}') continue async def safe_send_msg_enabled_friends(self, message: Union[str, Message, MessageSegment]): """ 向所有具有好友权限 private permission (已启用bot命令) 的好友发送消息 """ # 获取所有启用 private permission 好友 enabled_friends_res = await DBFriend.list_exist_friends_by_private_permission(self_bot=self.self_bot, private_permission=1) if enabled_friends_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send message to friends, ' f'getting enabled friends list with private permission failed, error: {enabled_friends_res.info}') return for user_id in enabled_friends_res.result: try: await self.bot.send_private_msg(user_id=user_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to friend: {user_id} failed, error: {repr(e)}') continue async def safe_send_msg_all_friends(self, message: Union[str, Message, MessageSegment]): """ 向所有好友发送消息 """ # 获取数据库中所有好友 all_friends_res = await DBFriend.list_exist_friends(self_bot=self.self_bot) if all_friends_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send message to friends, ' f'getting all friends list with private permission failed, error: {all_friends_res.info}') return for user_id in all_friends_res.result: try: await self.bot.send_private_msg(user_id=user_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to friend: {user_id} failed, error: {repr(e)}') continue async def safe_send_msg_enabled_command_groups(self, message: Union[str, Message, MessageSegment]): """ 向所有具有命令权限 command permission 的群组发送消息 """ # 获取所有需要通知的群组 command_group_res = await DBBotGroup.list_exist_bot_groups_by_command_permissions(self_bot=self.self_bot, command_permissions=1) if command_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription message to command groups, ' f'getting command group list failed, error: {command_group_res.info}') return for group_id in command_group_res.result: try: await self.bot.send_group_msg(group_id=group_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to group: {group_id} failed, error: {repr(e)}') continue async def safe_send_msg_enabled_notice_groups(self, message: Union[str, Message, MessageSegment]): """ 向所有具有通知权限 notice permission 的群组发送消息 """ # 获取所有需要通知的群组 notice_group_res = await DBBotGroup.list_exist_bot_groups_by_notice_permissions(self_bot=self.self_bot, notice_permissions=1) if notice_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription message to notice groups, ' f'getting notice group list failed, error: {notice_group_res.info}') return for group_id in notice_group_res.result: try: await self.bot.send_group_msg(group_id=group_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to group: {group_id} failed, error: {repr(e)}') continue async def safe_send_msg_permission_level_groups( self, permission_level: int, message: Union[str, Message, MessageSegment]): """ 向所有大于等于指定权限等级 permission level 的群组发送消息 """ # 获取所有需要通知的群组 level_group_res = await DBBotGroup.list_exist_bot_groups_by_permission_level(self_bot=self.self_bot, permission_level=permission_level) if level_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription message to groups had level, ' f'getting permission level group list failed, error: {level_group_res.info}') return for group_id in level_group_res.result: try: await self.bot.send_group_msg(group_id=group_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to group: {group_id} failed, error: {repr(e)}') continue async def safe_send_msg_all_groups(self, message: Union[str, Message, MessageSegment]): """ 向所有群组发送消息 """ # 获取所有需要通知的群组 all_group_res = await DBBotGroup.list_exist_bot_groups(self_bot=self.self_bot) if all_group_res.error: logger.opt(colors=True).error( f'<Y><lw>{self.log_flag}</lw></Y> | Can not send subscription message to all groups, ' f'getting permission all group list failed, error: {all_group_res.info}') return for group_id in all_group_res.result: try: await self.bot.send_group_msg(group_id=group_id, message=message) except Exception as e: logger.opt(colors=True).warning( f'<Y><lw>{self.log_flag}</lw></Y> | Sending message to group: {group_id} failed, error: {repr(e)}') continue __all__ = [ 'MsgSender' ] ``` #### File: utils/text_to_img/__init__.py ```python import os import asyncio from datetime import datetime from nonebot import logger, get_driver from PIL import Image, ImageDraw, ImageFont from omega_miya.utils.Omega_Base import Result global_config = get_driver().config TMP_PATH = global_config.tmp_path_ FOLDER_PATH = os.path.abspath(os.path.dirname(__file__)) def __text_to_img(text: str, image_wight: int = 512) -> Image: font_path = os.path.abspath(os.path.join(FOLDER_PATH, 'default_font.otf')) if not os.path.exists(font_path): raise ValueError('Font not found') # 处理文字层 主体部分 font_main_size = image_wight // 25 font_main = ImageFont.truetype(font_path, font_main_size) # 按长度切分文本 spl_num = 0 spl_list = [] for num in range(len(text)): text_w = font_main.getsize_multiline(text[spl_num:num])[0] if text_w >= image_wight * 0.78: spl_list.append(text[spl_num:num]) spl_num = num else: spl_list.append(text[spl_num:]) test_main_fin = '\n' + '\n'.join(spl_list) + '\n' # 绘制文字图层 text_w, text_h = font_main.getsize_multiline(test_main_fin) text_main_img = Image.new(mode="RGBA", size=(text_w, text_h), color=(0, 0, 0, 0)) ImageDraw.Draw(text_main_img).multiline_text(xy=(0, 0), text=test_main_fin, font=font_main, fill=(0, 0, 0)) # 初始化背景图层 image_height = text_h + 100 background = Image.new(mode="RGB", size=(image_wight, image_height), color=(255, 255, 255)) # 向背景图层中置入文字图层 background.paste(im=text_main_img, box=(image_wight // 10, 50), mask=text_main_img) return background async def text_to_img(text: str, image_wight: int = 512) -> Result.TextResult: def __handle(): byte_img = __text_to_img(text, image_wight) # 检查生成图片路径 img_folder_path = os.path.abspath(os.path.join(TMP_PATH, 'text_to_img')) if not os.path.exists(img_folder_path): os.makedirs(img_folder_path) img_path = os.path.abspath( os.path.join(img_folder_path, f"{hash(text)}_{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.jpg")) # 保存图片 byte_img.save(img_path, 'JPEG') return img_path loop = asyncio.get_running_loop() try: path_result = await loop.run_in_executor(None, __handle) path = os.path.abspath(path_result) return Result.TextResult(error=False, info='Success', result=path) except Exception as e: logger.error(f'text_to_img failed, error: {repr(e)}') return Result.TextResult(error=True, info=repr(e), result='') __all__ = [ 'text_to_img' ] ```
{ "source": "58565856/checkinpanel", "score": 2 }
#### File: 58565856/checkinpanel/ck_acfun.py ```python import re import requests import urllib3 from notify_mtr import send from utils import get_data urllib3.disable_warnings() class AcFun: def __init__(self, check_items): self.check_items = check_items self.contentid = "27259341" self.content_type = "application/x-www-form-urlencoded" self.user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36 Edg/91.0.864.70" def get_cookies(self, session, phone, password): url = "https://id.app.acfun.cn/rest/app/login/signin" headers = { "Host": "id.app.acfun.cn", "user-agent": "AcFun/6.39.0 (iPhone; iOS 14.3; Scale/2.00)", "devicetype": "0", "accept-language": "zh-Hans-CN;q=1, en-CN;q=0.9, ja-CN;q=0.8, zh-Hant-HK;q=0.7, io-Latn-CN;q=0.6", "accept": "application/json", "content-type": self.content_type, } data = f"password={password}&username={phone}" response = session.post(url=url, data=data, headers=headers, verify=False) acpasstoken = response.json().get("acPassToken") auth_key = str(response.json().get("auth_key")) if acpasstoken and auth_key: cookies = {"acPasstoken": acpasstoken, "auth_key": auth_key} return cookies else: return False def get_token(self, session, cookies): url = "https://id.app.acfun.cn/rest/web/token/get" data = "sid=acfun.midground.api" headers = {"Content-Type": self.content_type} response = session.post( url=url, cookies=cookies, data=data, headers=headers, verify=False ) return response.json().get("acfun.midground.api_st") def get_video(self, session): url = "https://www.acfun.cn/rest/pc-direct/rank/channel" data = "channelId=0&rankPeriod=DAY" headers = { "Content-Type": self.content_type, "User-Agent": self.user_agent, } response = session.post(url=url, data=data, headers=headers, verify=False) self.contentid = response.json().get("rankList")[0].get("contentId") return self.contentid def sign(self, session, cookies): url = "https://www.acfun.cn/rest/pc-direct/user/signIn" headers = {"User-Agent": self.user_agent} response = session.post(url=url, cookies=cookies, headers=headers, verify=False) return response.json().get("msg") def danmu(self, session, cookies): url = "https://www.acfun.cn/rest/pc-direct/new-danmaku/add" data = { "mode": "1", "color": "16777215", "size": "25", "body": "123321", "videoId": "26113662", "position": "2719", "type": "douga", "id": "31224739", "subChannelId": "1", "subChannelName": "动画", } headers = { "cookie": f"acPasstoken={cookies.get('acPasstoken')};auth_key={cookies.get('auth_key')}", "referer": "https://www.acfun.cn/", "User-Agent": self.user_agent, } res = session.get( url=f"https://www.acfun.cn/v/ac{self.contentid}", headers=headers ) videoId = re.findall('"currentVideoId":(\d+),', res.text) subChannel = re.findall( '{subChannelId:(\d+),subChannelName:"([\u4e00-\u9fa5]+)"}', res.text ) if len(videoId) > 0: data["videoId"] = videoId[0] data["subChannelId"] = subChannel[0][0] data["subChannelName"] = subChannel[0][1] response = session.post(url=url, data=data, headers=headers, verify=False) if response.json().get("result") == 0: msg = "弹幕成功" else: msg = "弹幕失败" return msg def throwbanana(self, session, cookies): url = "https://www.acfun.cn/rest/pc-direct/banana/throwBanana" data = {"resourceId": self.contentid, "count": "1", "resourceType": "2"} headers = { "cookie": f"acPasstoken={cookies.get('acPasstoken')};auth_key={cookies.get('auth_key')}", "referer": "https://www.acfun.cn/", "User-Agent": self.user_agent, } response = session.post(url=url, data=data, headers=headers, verify=False) if response.json().get("result") == 0: msg = "香蕉成功" else: msg = "香蕉失败" return msg def like(self, session, token): like_url = "https://api.kuaishouzt.com/rest/zt/interact/add" unlike_url = "https://api.kuaishouzt.com/rest/zt/interact/delete" headers = { "Content-Type": self.content_type, "User-Agent": self.user_agent, } cookies = {"acfun.midground.api_st": token, "kpn": "ACFUN_APP"} body = f"interactType=1&objectId={self.contentid}&objectType=2&subBiz=mainApp" response = session.post( url=like_url, cookies=cookies, data=body, headers=headers, verify=False ) session.post( url=unlike_url, cookies=cookies, data=body, headers=headers, verify=False ) if response.json().get("result") == 1: msg = "点赞成功" else: msg = "点赞失败" return msg def share(self, session, cookies): url = "https://api-ipv6.acfunchina.com/rest/app/task/reportTaskAction?taskType=1&market=tencent&product=ACFUN_APP&appMode=0" headers = {"Content-Type": self.content_type} response = session.get(url=url, cookies=cookies, headers=headers, verify=False) if response.json().get("result") == 0: msg = "分享成功" else: msg = "分享失败" return msg def main(self): msg_all = "" for check_item in self.check_items: phone = check_item.get("phone") password = check_item.get("password") session = requests.session() self.get_video(session=session) cookies = self.get_cookies(session=session, phone=phone, password=password) token = self.get_token(session=session, cookies=cookies) sign_msg = self.sign(session=session, cookies=cookies) like_msg = self.like(session=session, token=token) share_msg = self.share(session=session, cookies=cookies) danmu_msg = self.danmu(session=session, cookies=cookies) throwbanana_msg = self.throwbanana(session=session, cookies=cookies) msg = ( f"帐号信息: *******{phone[-4:]}\n" f"签到状态: {sign_msg}\n" f"点赞任务: {like_msg}\n" f"弹幕任务: {danmu_msg}\n" f"香蕉任务: {throwbanana_msg}\n" f"分享任务: {share_msg}" ) msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("ACFUN", []) res = AcFun(check_items=_check_items).main() send("AcFun", res) ``` #### File: 58565856/checkinpanel/ck_airport.py ```python import json import re import traceback import requests import urllib3 from notify_mtr import send from utils import get_data urllib3.disable_warnings() class SspanelQd(object): def __init__(self, check_items): self.check_items = check_items @staticmethod def checkin(url, email, password): url = url.rstrip("/") email = email.split("@") if len(email) > 1: email = email[0] + "%40" + email[1] else: email = email[0] session = requests.session() """ 以下 except 都是用来捕获当 requests 请求出现异常时, 通过捕获然后等待网络情况的变化,以此来保护程序的不间断运行 """ try: session.get(url, verify=False) except requests.exceptions.ConnectionError: msg = url + "\n" + "网络不通" return msg except requests.exceptions.ChunkedEncodingError: msg = url + "\n" + "分块编码错误" return msg except Exception: msg = url + "\n" + "未知错误,请查看日志" print(f"未知错误,错误信息:\n{traceback.format_exc()}") return msg login_url = url + "/auth/login" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", } post_data = "email=" + email + "&passwd=" + password + "&code=" post_data = post_data.encode() try: res = session.post(login_url, post_data, headers=headers, verify=False) res_str = res.text.encode("utf-8").decode("unicode_escape") print(f"{url} 接口登录返回信息:{res_str}") res_dict = json.loads(res_str) if res_dict.get("ret") == 0: msg = url + "\n" + str(res_dict.get("msg")) return msg except Exception: msg = url + "\n" + "登录失败,请查看日志" print(f"登录失败,错误信息:\n{traceback.format_exc()}") return msg headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36", "Referer": url + "/user", } try: response = session.post( url + "/user/checkin", headers=headers, verify=False ) res_str = response.text.encode("utf-8").decode("unicode_escape") print(f"{url} 接口签到返回信息:{res_str}") res_dict = json.loads(res_str) check_msg = res_dict.get("msg") if check_msg: msg = url + "\n" + str(check_msg) else: msg = url + "\n" + str(res_dict) except Exception: msg = url + "\n" + "签到失败,请查看日志" print(f"签到失败,错误信息:\n{traceback.format_exc()}") info_url = url + "/user" response = session.get(info_url, verify=False) """ 以下只适配了editXY主题 """ try: level = re.findall(r'\["Class", "(.*?)"],', response.text)[0] day = re.findall(r'\["Class_Expire", "(.*)"],', response.text)[0] rest = re.findall(r'\["Unused_Traffic", "(.*?)"]', response.text)[0] msg = ( url + "\n- 今日签到信息:" + str(msg) + "\n- 用户等级:" + str(level) + "\n- 到期时间:" + str(day) + "\n- 剩余流量:" + str(rest) ) except Exception: pass return msg def main(self): msg_all = "" for check_item in self.check_items: # 机场地址 url = str(check_item.get("url")) # 登录信息 email = str(check_item.get("email")) password = str(check_item.get("password")) if url and email and password: msg = self.checkin(url=url, email=email, password=password) else: msg = "配置错误" msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("AIRPORT", []) res = SspanelQd(check_items=_check_items).main() send("机场签到", res) ``` #### File: 58565856/checkinpanel/ck_csdn.py ```python import requests from notify_mtr import send from utils import get_data class CSDN: def __init__(self, check_items): self.check_items = check_items self.headers = { "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_2) AppleWebKit/537.36 (KHTML, like Gecko)" "Chrome/88.0.4324.182 Safari/537.36 Edg/88.0.705.74" } def sign(self, cookies): url = "https://me.csdn.net/api/LuckyDraw_v2/signIn" response = requests.get(url=url, headers=self.headers, cookies=cookies).json() if response.get("code") == 200: msg = response.get("data").get("msg") else: msg = "签到失败" print(response) return msg def draw(self, cookies): url = "https://me.csdn.net/api/LuckyDraw_v2/goodluck" response = requests.get(url=url, headers=self.headers, cookies=cookies).json() if response.get("code") == 200: if response.get("data").get("prize_title") != None: msg = f", {response.get('data').get('prize_title')}" else: msg = f"{response.get('data').get('msg')}" else: msg = "抽奖失败\n" return msg def main(self): msg_all = "" for check_item in self.check_items: cookie = { item.split("=")[0]: item.split("=")[1] for item in check_item.get("cookie").split("; ") } try: user_name = cookie.get("UserName", "") except Exception as e: print(f"获取用户信息失败: {e}") user_name = "未获取到用户信息" sign_msg = self.sign(cookies=cookie) draw_msg = self.draw(cookies=cookie) msg = f"帐号信息: {user_name}\n签到信息: {sign_msg}\n抽奖结果: {draw_msg}" msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("CSDN", []) res = CSDN(check_items=_check_items).main() send("CSDN", res) ``` #### File: 58565856/checkinpanel/ck_lecloud.py ```python import requests from notify_mtr import send from utils import get_data class LECloud: def __init__(self, check_items): self.check_items = check_items self.total_size = "" def userinfo(self, cookie): url = "https://pimapi.lenovomm.com/userspaceapi/storage/userinfo" headers = { "cookie": cookie, "user-agent": "Mozilla/5.0 (Linux; Android 11; PCAM00 Build/RKQ1.201217.002; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/83.0.4103.106 Mobile Safari/537.36 com.lenovo.leos.cloud.sync/6.3.0.99", } res = requests.post(url=url, headers=headers) if "error" in res.text: print("cookie 失效") else: self.total_size = res.json().get("data", {}).get("totalSize") // 1048576 # 签到 def addspace(self, cookie): url = "https://pim.lenovo.com/lesynch5/userspaceapi/v4/addspace" headers = { "cookie": cookie, "user-agent": "Mozilla/5.0 (Linux; Android 11; PCAM00 Build/RKQ1.201217.002; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/83.0.4103.106 Mobile Safari/537.36 com.lenovo.leos.cloud.sync/6.3.0.99", } res = requests.get(url=url, headers=headers) if "spaceadd" in res.text: data = res.json() if "lastspaceadd" in res.text: msg = f'今日以获{data.get("lastspaceadd")}M, 总空间{self.total_size}M' else: msg = f'获得{data.get("spaceadd")}M, 总空间{self.total_size + data.get("spaceadd")}M' return msg def main(self): msg_all = "" for check_item in self.check_items: cookie = check_item.get("cookie") self.usrinfo(cookie) msg = self.addspace(cookie) msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("LECLOUD", []) res = LECloud(check_items=_check_items).main() send("联想乐云", res) ``` #### File: 58565856/checkinpanel/ck_smzdm.py ```python from urllib.parse import quote, unquote import requests from notify_mtr import send from utils import get_data class Smzdm: def __init__(self, check_items): self.check_items = check_items @staticmethod def sign(session): try: current = session.get( url="https://zhiyou.smzdm.com/user/info/jsonp_get_current" ).json() if current["checkin"]["has_checkin"]: msg = ( f"用户信息: {current.get('nickname', '')}\n目前积分: {current.get('point', '')}\n" f"经验值: {current.get('exp', '')}\n金币: {current.get('gold', '')}\n" f"碎银子: {current.get('silver', '')}\n威望: {current.get('prestige', '')}\n" f"等级: {current.get('level', '')}\n" f"已经签到: {current.get('checkin', {}).get('daily_checkin_num', '')} 天" ) else: response = ( session.get( url="https://zhiyou.smzdm.com/user/checkin/jsonp_checkin" ) .json() .get("data", {}) ) msg = ( f"用户信息: {current.get('nickname', '')}\n目前积分: {response.get('point', '')}\n" f"增加积分: {response.get('add_point', '')}\n经验值: {response.get('exp', '')}\n" f"金币: {response.get('gold', '')}\n威望: {response.get('prestige', '')}\n" f"等级: {response.get('rank', '')}\n" f"已经签到: {response.get('checkin_num', {})} 天" ) except Exception as e: msg = f"签到状态: 签到失败\n错误信息: {e},请重新获取 cookie" return msg def main(self): msg_all = "" for check_item in self.check_items: cookie = { item.split("=")[0]: quote(unquote(item.split("=")[1])) for item in check_item.get("cookie").split("; ") if item.split("=")[0] == "sess" } session = requests.session() requests.utils.add_dict_to_cookiejar(session.cookies, cookie) session.headers.update( { "Accept": "*/*", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9", "Connection": "keep-alive", "Host": "zhiyou.smzdm.com", "Referer": "https://www.smzdm.com/", "Sec-Fetch-Dest": "script", "Sec-Fetch-Mode": "no-cors", "Sec-Fetch-Site": "same-site", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36", } ) sign_msg = self.sign(session=session) msg = f"{sign_msg}" msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("SMZDM", []) res = Smzdm(check_items=_check_items).main() send("什么值得买", res) ``` #### File: 58565856/checkinpanel/ck_wzyd.py ```python from urllib import parse import requests from notify_mtr import send from utils import get_data class WZYD: def __init__(self, check_items): self.check_items = check_items @staticmethod def sign(data): response = requests.post( url="https://ssl.kohsocialapp.qq.com:10001/play/h5sign", data=data ).json() try: if response["result"] == 0: msg = "签到成功" else: msg = response["returnMsg"] except Exception: msg = "请求失败,请检查接口" return msg def main(self): msg_all = "" for check_item in self.check_items: data = check_item.get("data") data = {k: v[0] for k, v in parse.parse_qs(data).items()} try: user_id = data.get("userId", "") except Exception as e: print(f"获取用户信息失败: {e}") user_id = "未获取到用户信息" sign_msg = self.sign(data=data) msg = f"帐号信息: {user_id}\n签到信息: {sign_msg}" msg_all += msg + "\n\n" return msg_all if __name__ == "__main__": data = get_data() _check_items = data.get("WZYD", []) res = WZYD(check_items=_check_items).main() send("王者营地", res) ```
{ "source": "589hero/putting-nerf-on-a-diet", "score": 3 }
#### File: putting-nerf-on-a-diet/nerf/model_utils.py ```python import functools from typing import Any, Callable from flax import linen as nn import jax from jax import lax from jax import random import jax.numpy as jnp class MLP(nn.Module): """A simple MLP.""" net_depth: int = 8 # The depth of the first part of MLP. net_width: int = 256 # The width of the first part of MLP. net_depth_condition: int = 1 # The depth of the second part of MLP. net_width_condition: int = 128 # The width of the second part of MLP. net_activation: Callable[..., Any] = nn.relu # The activation function. skip_layer: int = 4 # The layer to add skip layers to. num_rgb_channels: int = 3 # The number of RGB channels. num_sigma_channels: int = 1 # The number of sigma channels. @nn.compact def __call__(self, x, condition=None): """ Evaluate the MLP. Args: x: jnp.ndarray(float32), [batch, num_samples, feature], points. condition: jnp.ndarray(float32), [batch, feature], if not None, this variable will be part of the input to the second part of the MLP concatenated with the output vector of the first part of the MLP. If None, only the first part of the MLP will be used with input x. In the original paper, this variable is the view direction. Returns: raw_rgb: jnp.ndarray(float32), with a shape of [batch, num_samples, num_rgb_channels]. raw_sigma: jnp.ndarray(float32), with a shape of [batch, num_samples, num_sigma_channels]. """ feature_dim = x.shape[-1] num_samples = x.shape[1] x = x.reshape([-1, feature_dim]) dense_layer = functools.partial( nn.Dense, kernel_init=jax.nn.initializers.glorot_uniform()) inputs = x dtype = x.dtype for i in range(self.net_depth): x = dense_layer(self.net_width, dtype = dtype)(x) x = self.net_activation(x) if i % self.skip_layer == 0 and i > 0: x = jnp.concatenate([x, inputs], axis=-1) raw_sigma = dense_layer(self.num_sigma_channels, dtype = dtype)(x).reshape( [-1, num_samples, self.num_sigma_channels]) if condition is not None: # Output of the first part of MLP. bottleneck = dense_layer(self.net_width, dtype = dtype)(x) # Broadcast condition from [batch, feature] to # [batch, num_samples, feature] since all the samples along the same ray # have the same viewdir. condition = jnp.tile(condition[:, None, :], (1, num_samples, 1)) # Collapse the [batch, num_samples, feature] tensor to # [batch * num_samples, feature] so that it can be fed into nn.Dense. condition = condition.reshape([-1, condition.shape[-1]]) x = jnp.concatenate([bottleneck, condition], axis=-1) # Here use 1 extra layer to align with the original nerf model. for i in range(self.net_depth_condition): x = dense_layer(self.net_width_condition, dtype = dtype)(x) x = self.net_activation(x) raw_rgb = dense_layer(self.num_rgb_channels, dtype = dtype)(x).reshape( [-1, num_samples, self.num_rgb_channels]) return raw_rgb, raw_sigma def cast_rays(z_vals, origins, directions): return origins[..., None, :] + z_vals[..., None] * directions[..., None, :] def sample_along_rays(key, origins, directions, num_samples, near, far, randomized, lindisp): """ Stratified sampling along the rays. Args: key: jnp.ndarray, random generator key. origins: jnp.ndarray(float32), [batch_size, 3], ray origins. directions: jnp.ndarray(float32), [batch_size, 3], ray directions. num_samples: int. near: float, near clip. far: float, far clip. randomized: bool, use randomized stratified sampling. lindisp: bool, sampling linearly in disparity rather than depth. Returns: z_vals: jnp.ndarray, [batch_size, num_samples], sampled z values. points: jnp.ndarray, [batch_size, num_samples, 3], sampled points. """ batch_size = origins.shape[0] dtype = origins.dtype t_vals = jnp.linspace(0., 1., num_samples, dtype = dtype) if lindisp: z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * t_vals) else: z_vals = near * (1. - t_vals) + far * t_vals if randomized: mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) upper = jnp.concatenate([mids, z_vals[..., -1:]], -1) lower = jnp.concatenate([z_vals[..., :1], mids], -1) t_rand = random.uniform(key, [batch_size, num_samples]) z_vals = lower + (upper - lower) * t_rand else: # Broadcast z_vals to make the returned shape consistent. z_vals = jnp.broadcast_to(z_vals[None, ...], [batch_size, num_samples]).astype(dtype) coords = cast_rays(z_vals, origins, directions) return z_vals, coords def posenc(x, min_deg, max_deg, legacy_posenc_order=False): """ Cat x with a positional encoding of x with scales 2^[min_deg, max_deg-1]. Instead of computing [sin(x), cos(x)], we use the trig identity cos(x) = sin(x + pi/2) and do one vectorized call to sin([x, x+pi/2]). Args: x: jnp.ndarray, variables to be encoded. Note that x should be in [-pi, pi]. min_deg: int, the minimum (inclusive) degree of the encoding. max_deg: int, the maximum (exclusive) degree of the encoding. legacy_posenc_order: bool, keep the same ordering as the original tf code. Returns: encoded: jnp.ndarray, encoded variables. """ if min_deg == max_deg: return x dtype = x.dtype scales = jnp.array([2 ** i for i in range(min_deg, max_deg)], dtype = dtype) if legacy_posenc_order: xb = x[..., None, :] * scales[:, None] four_feat = jnp.reshape( jnp.sin(jnp.stack([xb, xb + 0.5 * jnp.pi], -2)), list(x.shape[:-1]) + [-1]) else: xb = jnp.reshape((x[..., None, :] * scales[:, None]), list(x.shape[:-1]) + [-1]) four_feat = jnp.sin(jnp.concatenate([xb, xb + 0.5 * jnp.pi], axis=-1)) return jnp.concatenate([x] + [four_feat], axis=-1) def volumetric_rendering(rgb, sigma, z_vals, dirs, white_bkgd): """ Volumetric Rendering Function. Args: rgb: jnp.ndarray(float32), color, [batch_size, num_samples, 3] sigma: jnp.ndarray(float32), density, [batch_size, num_samples, 1]. z_vals: jnp.ndarray(float32), [batch_size, num_samples]. dirs: jnp.ndarray(float32), [batch_size, 3]. white_bkgd: bool. Returns: comp_rgb: jnp.ndarray(float32), [batch_size, 3]. disp: jnp.ndarray(float32), [batch_size]. acc: jnp.ndarray(float32), [batch_size]. weights: jnp.ndarray(float32), [batch_size, num_samples] """ dtype = rgb.dtype eps = jnp.array(1e-10, dtype = dtype) dists = jnp.concatenate([ z_vals[..., 1:] - z_vals[..., :-1], jnp.broadcast_to(jnp.array([1e10]),#, dtype = dtype), z_vals[..., :1].shape) ], -1) dists = dists * jnp.linalg.norm(dirs[..., None, :], axis=-1) # Note that we're quietly turning sigma from [..., 0] to [...]. alpha = 1.0 - jnp.exp(-sigma[..., 0] * dists) accum_prod = jnp.concatenate([ jnp.ones_like(alpha[..., :1], alpha.dtype), jnp.cumprod(1.0 - alpha[..., :-1] + eps, axis=-1) ], axis=-1) weights = alpha * accum_prod weights = weights.astype(dtype) comp_rgb = (weights[..., None] * rgb).sum(axis=-2) depth = (weights * z_vals).sum(axis=-1) acc = weights.sum(axis=-1) # Equivalent to (but slightly more efficient and stable than): # disp = 1 / max(eps, where(acc > eps, depth / acc, 0)) inv_eps = 1 / eps disp = acc / depth disp = jnp.where((disp > 0) & (disp < inv_eps) & (acc > eps), disp, inv_eps) if white_bkgd: comp_rgb = comp_rgb + (1. - acc[..., None]) return comp_rgb, disp, acc, weights def piecewise_constant_pdf(key, bins, weights, num_samples, randomized): """ Piecewise-Constant PDF sampling. Args: key: jnp.ndarray(float32), [2,], random number generator. bins: jnp.ndarray(float32), [batch_size, num_bins + 1]. weights: jnp.ndarray(float32), [batch_size, num_bins]. num_samples: int, the number of samples. randomized: bool, use randomized samples. Returns: z_samples: jnp.ndarray(float32), [batch_size, num_samples]. """ # Pad each weight vector (only if necessary) to bring its sum to `eps`. This # avoids NaNs when the input is zeros or small, but has no effect otherwise. dtype = bins.dtype eps = 1e-5 weight_sum = jnp.sum(weights, axis=-1, keepdims=True) padding = jnp.maximum(0, eps - weight_sum) weights += padding / weights.shape[-1] weight_sum += padding # Compute the PDF and CDF for each weight vector, while ensuring that the CDF # starts with exactly 0 and ends with exactly 1. pdf = weights / weight_sum cdf = jnp.minimum(1, jnp.cumsum(pdf[..., :-1], axis=-1)) cdf = jnp.concatenate([ jnp.zeros(list(cdf.shape[:-1]) + [1], dtype = dtype), cdf, jnp.ones(list(cdf.shape[:-1]) + [1], dtype = dtype) ], axis=-1) # Draw uniform samples. if randomized: # Note that `u` is in [0, 1) --- it can be zero, but it can never be 1. u = random.uniform(key, list(cdf.shape[:-1]) + [num_samples]) else: # Match the behavior of random.uniform() by spanning [0, 1-eps]. u = jnp.linspace(0., 1. - jnp.finfo(dtype).eps, num_samples, dtype = dtype) u = jnp.broadcast_to(u, list(cdf.shape[:-1]) + [num_samples]) # Identify the location in `cdf` that corresponds to a random sample. # The final `True` index in `mask` will be the start of the sampled interval. mask = u[..., None, :] >= cdf[..., :, None] def find_interval(x): # Grab the value where `mask` switches from True to False, and vice versa. # This approach takes advantage of the fact that `x` is sorted. x0 = jnp.max(jnp.where(mask, x[..., None], x[..., :1, None]), -2) x1 = jnp.min(jnp.where(~mask, x[..., None], x[..., -1:, None]), -2) return x0, x1 bins_g0, bins_g1 = find_interval(bins) cdf_g0, cdf_g1 = find_interval(cdf) t = jnp.clip(jnp.nan_to_num((u - cdf_g0) / (cdf_g1 - cdf_g0), 0), 0, 1) samples = bins_g0 + t * (bins_g1 - bins_g0) # Prevent gradient from backprop-ing through `samples`. return lax.stop_gradient(samples) def sample_pdf(key, bins, weights, origins, directions, z_vals, num_samples, randomized): """ Hierarchical sampling. Args: key: jnp.ndarray(float32), [2,], random number generator. bins: jnp.ndarray(float32), [batch_size, num_bins + 1]. weights: jnp.ndarray(float32), [batch_size, num_bins]. origins: jnp.ndarray(float32), [batch_size, 3], ray origins. directions: jnp.ndarray(float32), [batch_size, 3], ray directions. z_vals: jnp.ndarray(float32), [batch_size, num_coarse_samples]. num_samples: int, the number of samples. randomized: bool, use randomized samples. Returns: z_vals: jnp.ndarray(float32), [batch_size, num_coarse_samples + num_fine_samples]. points: jnp.ndarray(float32), [batch_size, num_coarse_samples + num_fine_samples, 3]. """ z_samples = piecewise_constant_pdf(key, bins, weights, num_samples, randomized) # Compute united z_vals and sample points z_vals = jnp.sort(jnp.concatenate([z_vals, z_samples], axis=-1), axis=-1) coords = cast_rays(z_vals, origins, directions) return z_vals, coords def add_gaussian_noise(key, raw, noise_std, randomized): """ Adds gaussian noise to `raw`, which can used to regularize it. Args: key: jnp.ndarray(float32), [2,], random number generator. raw: jnp.ndarray(float32), arbitrary shape. noise_std: float, The standard deviation of the noise to be added. randomized: bool, add noise if randomized is True. Returns: raw + noise: jnp.ndarray(float32), with the same shape as `raw`. """ if (noise_std is not None) and randomized: return raw + random.normal(key, raw.shape, dtype=raw.dtype) * noise_std else: return raw ```
{ "source": "58DBA/ansible", "score": 3 }
#### File: ansible/playbooks/groups.py ```python num = 16 target = 32 step = 5 iplist = [] groups = [] port = 7301 ################################## def getIpListFromFile(ipfile): """ get the ip list from file. """ with open(ipfile,'r') as f : for line in f.readlines(): iplist.append(line.strip()) return(iplist) ################################## def getIpGroups(target,step,iplist): """ get the ip group from iplist """ for time in range(0, target): cur_g=[] groups.append(cur_g) for index in range(0, step): cur_num = (time + index) % num cur_g.append(iplist[cur_num]) return(groups) ################################## def createInventoryFile(inventory, iplist, primary, secondary): """ create inventory file for playbook """ inventory_info="""# # This is %s for playbook [mongod] %s [primary] %s [secondary] %s """ % (inventory, '\n'.join(iplist), primary, '\n'.join(secondary)) return(inventory_info) ################################## if __name__ == '__main__': try: fiplist=getIpListFromFile('./inventory/uc_hosts.txt') groups=getIpGroups(target=32,step=5,iplist=fiplist) for group in groups: #inventory_file="./inventory/inventory_%s" % port #inventory_info=createInventoryFile(inventory_file, # group, # group[0], # group[1:]) #with open(inventory_file, "w") as f: # f.write(inventory_info) #print(inventory_file) #print(group) #print(inventory_info) #print(">>" * 40) print("sh.addShard(\"%s/%s:%s\")") % (port, group[0], port) port+=1 except Exception as e: print e ``` #### File: ansible/playbooks/playbook.py ```python from collections import namedtuple from ansible.parsing.dataloader import DataLoader from ansible.vars import VariableManager from ansible.inventory import Inventory from ansible.playbook.play import Play from ansible.executor.task_queue_manager import TaskQueueManager from ansible.plugins.callback import CallbackBase # Create a callback object so we can capture the output class ResultsCollector(CallbackBase): def __init__(self, *args, **kwargs): super(ResultsCollector, self).__init__(*args, **kwargs) self.host_ok = {} self.host_unreachable = {} self.host_failed = {} def v2_runner_on_unreachable(self, result): self.host_unreachable[result._host.get_name()] = result def v2_runner_on_ok(self, result, *args, **kwargs): self.host_ok[result._host.get_name()] = result def v2_runner_on_failed(self, result, *args, **kwargs): self.host_failed[result._host.get_name()] = result def main(): Options = namedtuple('Options', ['connection','module_path', 'forks', 'remote_user', 'private_key_file', 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args', 'scp_extra_args', 'become', 'become_method', 'become_user', 'verbosity', 'check']) # initialize needed objects variable_manager = VariableManager() loader = DataLoader() options = Options(connection='smart', module_path='/usr/share/ansible', forks=100, remote_user=None, private_key_file=None, ssh_common_args=None, ssh_extra_args=None, sftp_extra_args=None, scp_extra_args=None, become=None, become_method=None, become_user=None, verbosity=None, check=False) passwords = dict() # create inventory and pass to var manager inventory = Inventory(loader=loader, variable_manager=variable_manager, host_list=host_list) variable_manager.set_inventory(inventory) # create play with tasks play_source = dict( name = "Ansible Play", gather_facts = 'no', tasks = [ dict(action=dict(module='command', args=dict(cmd='/usr/bin/uptime'))) ] ) play = Play().load(play_source, variable_manager=variable_manager, loader=loader) # actually run it tqm = None callback = ResultsCollector() try: tqm = TaskQueueManager( inventory=inventory, variable_manager=variable_manager, loader=loader, options=options, passwords=passwords, ) tqm._stdout_callback = callback result = tqm.run(play) finally: if tqm is not None: tqm.cleanup() # print "UP ***********" for host, result in callback.host_ok.items(): print '{} >>> {}'.format(host, result._result['stdout']) # print "FAILED *******" # for host, result in callback.host_failed.items(): # print '{} >>> {}'.format(host, result._result['msg']) # print "DOWN *********" # for host, result in callback.host_unreachable.items(): # print '{} >>> {}'.format(host, result._result['msg']) if __name__ == '__main__': main() ```
{ "source": "592767809/ykdl", "score": 2 }
#### File: extractors/bilibili/live.py ```python from .._common import * class BiliLive(Extractor): name = 'Bilibili live (哔哩哔哩直播)' profile_2_id = { '杜比': 'unknown', # FIXME: placeholder '4K': '4K', '原画': 'OG', '蓝光': 'BD', '超清': 'TD', '高清': 'HD', '流畅': 'SD' } def live_status(self): id = match1(self.url, '/(\d+)') data = get_response( 'https://api.live.bilibili.com/room/v1/Room/room_init', params={'id': id}, cache=False).json() assert data['code'] == 0, data['msg'] data = data['data'] self.vid = data['room_id'], str(data['uid']) live_status = data['live_status'] assert not data['is_locked'], '房间已封禁' assert not data['encrypted'], '房间已加密' assert live_status > 0, '主播正在觅食......' return live_status def list_only(self): return self.live_status() == 2 def prepare(self): info = MediaInfo(self.name, True) room_id, uid = self.vid data = get_response( 'https://api.live.bilibili.com/room/v1/Room/get_status_info_by_uids', params={'uids[]': uid}, cache=False).json() assert data['code'] == 0, data['msg'] data = data['data'][uid] info.title = '{data[title]} - {data[uname]}'.format(**vars()) info.add_comment(data['tag_name']) g_qn_desc = None aqlts = set() aqlts_p = set() size = float('inf') def get_live_info(qn=1): data = get_response( 'https://api.live.bilibili.com/xlive/web-room/v2/index/getRoomPlayInfo', params={ 'room_id': room_id, 'protocol': '0,1', # 0 = http_stream, 1 = http_hls 'format': '0,1,2', 'codec': '0,1', # 0 = avc, 1 = hevc 'qn': qn, 'platform': 'web', 'ptype': 8, 'dolby': 5 }, cache=False).json() assert data['code'] == 0, data['msg'] data = data['data']['playurl_info']['playurl'] nonlocal g_qn_desc, aqlts if g_qn_desc is None: g_qn_desc = {x['qn']: x['desc'] for x in data['g_qn_desc']} qlt = None for stream in data['stream']: for format in stream['format']: for codec in format['codec']: aqlts.update(x for x in codec['accept_qn'] if x not in aqlts_p) if qlt is None: qlt = codec['current_qn'] prf = g_qn_desc[qlt] st = self.profile_2_id[prf] if 'http_hls' in stream['protocol_name']: ext = 'm3u8' st += '-hls' else: ext = format['format_name'] if codec['codec_name'] == 'hevc': st += '-h265' if st in info.streams: self.logger.debug('skip stream: [ %s %s %s ]', stream['protocol_name'], format['format_name'], codec['codec_name'],) continue url_info = random.choice(codec['url_info']) url = url_info['host'] + codec['base_url'] + url_info['extra'] info.streams[st] = { 'container': ext, 'video_profile': prf, 'src' : [url], 'size': size } if qn == 1: aqlts.remove(qlt) aqlts_p.add(qlt) while aqlts: qlt = aqlts.pop() aqlts_p.add(qlt) get_live_info(qlt) get_live_info() info.extra.referer= 'https://live.bilibili.com/' return info def prepare_list(self): from .video import site if self.vid is None: self.live_status() room_id, uid = self.vid self.start = -1 # skip is not allowed while True: data = get_response( 'https://api.live.bilibili.com/live/getRoundPlayVideo', params={'room_id': room_id}, cache=False).json() assert data['code'] == 0, data['msg'] bvid_url = data['data'].get('bvid_url') assert bvid_url, '轮播结束' info = site.parser(bvid_url) info.site = '哔哩哔哩轮播' info.title = '(轮播) ' + info.title yield info site = BiliLive() ``` #### File: ykdl/extractors/_byted.py ```python from ._common import * js_dom = ''' var window = this, document = {{referrer: '{url}'}}, location = {{href: '{url}', protocol: 'https'}}, navigator = {{userAgent: '{ua}'}}; ''' js_acrawler = None def get_cookies_d(url): return {c.name: c.value for c in get_cookies(urlsplit(url).hostname, '/')} def cd2cs(cd): return ';'.join('='.join(kv) for kv in cd.items()) def get_signer(url): assert JSEngine, "No JS Interpreter found, can't load byted acrawler!" global js_acrawler if js_acrawler is None: js_acrawler = get_pkgdata_str(__name__, '_byted_acrawler.js', 'https://lf3-cdn-tos.bytescm.com/obj/rc-web-sdk/acrawler.js') js_ctx = JSEngine(js_dom.format(url=url, ua=fake_headers['User-Agent'])) js_ctx.append(js_acrawler) def sign(*args): return js_ctx.call('byted_acrawler.sign', *args) return sign def get_signed_cookies(url): assert JSEngine, "No JS Interpreter found, can't load byted acrawler!" install_cookie() get_response(url) cookies = get_cookies_d(url) cookies.update({ '__ac_signature': get_signer(url)('', cookies['__ac_nonce']), '__ac_referer': '__ac_blank' }) uninstall_cookie() return cd2cs(cookies) def get_ttwid_cookies(url): install_cookie() get_response(url) cookies = get_cookies_d(url) cookies['ttwid_date'] = '1' get_response(url, headers={'Cookie': cd2cs(cookies)}) cookies = get_cookies_d(url) uninstall_cookie() return cd2cs(cookies) cookies = None _get_content = get_content def get_content(url): global cookies if cookies is None: if 'douyin.' in url: cookies = get_signed_cookies(url) elif 'ixigua.' in url: cookies = get_ttwid_cookies(url) return _get_content(url, headers={'Cookie': cookies}) ``` #### File: extractors/le/__init__.py ```python from .._common import * def get_extractor(url): add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) ' 'AppleWebKit/603.1.30 (KHTML, like Gecko) ' 'Version/10.1 Safari/603.1.30') if 'lunbo' in url: from . import lunbo as s elif match(url, '(live[\./]|/izt/)'): from . import live as s elif 'bcloud' in url: from . import letvcloud as s else: from . import le as s return s.site, url ``` #### File: extractors/le/le.py ```python from .._common import * def calcTimeKey(t): ror = lambda val, r_bits: ((val & (2**32-1)) >> r_bits%32) | \ (val << (32-(r_bits%32)) & (2**32-1)) magic = 185025305 return ror(t, magic % 17) ^ magic def decode(data): version = data[0:5] if version.lower() == b'vc_01': #get real m3u8 loc2 = bytearray(data[5:]) length = len(loc2) loc4 = [0]*(2*length) for i in range(length): loc4[2*i] = loc2[i] >> 4 loc4[2*i+1]= loc2[i] & 15; loc6 = loc4[len(loc4)-11:]+loc4[:len(loc4)-11] loc7 = bytearray(length) for i in range(length): loc7[i] = (loc6[2 * i] << 4) +loc6[2*i+1] return loc7 else: # directly return return data class Letv(Extractor): name = '乐视 (Letv)' stream_2_id_profile = { '1080p': ['BD', '1080P'], '1300': ['TD', '超清'], '1000': ['HD', '高清'], '720p': ['SD', '标清'], '350': ['LD', '流畅'] } __STREAM_TEMP__ = [] def prepare(self): info = MediaInfo(self.name) stream_temp = {st: None for st in self.stream_2_id_profile.keys()} self.__STREAM_TEMP__.append(stream_temp) if not self.vid: self.vid = match1(self.url, 'vplay/(\d+).html', '#record/(\d+)') #normal process data = get_response('http://player-pc.le.com/mms/out/video/playJson', params={ 'id': self.vid, 'platid': 1, 'splatid': 105, 'format': 1, 'tkey': calcTimeKey(int(time.time())), 'domain': 'www.le.com', 'region': 'cn', 'source': 1000, 'accessyx': 1 }).json()['msgs'] info.title = data['playurl']['title'] for stream, sdp in data['playurl']['dispatch'].items(): s_url = data['playurl']['domain'][0] + sdp[0] data2 = get_response(s_url, params={ 'm3v': 1, 'termid': 1, 'format': 1, 'hwtype': 'un', 'ostype': 'MacOS10.12.4', 'p1': 1, 'p2': 10, 'p3': '-', 'expect': '3', 'tn': random.random(), 'vid': self.vid, 'uuid': hash.sha1(s_url) + '_0', 'tss': 'ios' }).json() # hold on ! more things to do # to decode m3u8 (encoded) m3u8 = get_content(data2['location'], params={ 'r': int(time.time() * 1000), 'appid': 500 }, charset='ignore') m3u8_list = decode(m3u8) stream_id, video_profile = self.stream_2_id_profile[stream] info.streams[stream_id] = { 'container': 'm3u8', 'video_profile': video_profile, 'size' : 0 } stream_temp[stream] = compact_tempfile(mode='w+b', suffix='.m3u8') stream_temp[stream].write(m3u8_list) info.streams[stream_id]['src'] = [stream_temp[stream].name] stream_temp[stream].flush() return info def prepare_list(self): html = get_content(self.url) return matchall(html, 'vid="(\d+)"') site = Letv() ``` #### File: extractors/le/live.py ```python from .._common import * def get_playback(vid): from .le import Letv site = Letv() site.name = 'Le Live(乐视直播回看)' site.vid = vid return site.prepare() class LeLive(Extractor): name = 'Le Live(乐视直播)' stream_2_id_profile = { 'flv_1080p3m': ['BD', '1080p'], 'flv_1080p' : ['BD', '1080p'], 'flv_1300' : ['TD', '超清'], 'flv_1000' : ['HD', '高清'], 'flv_720p' : ['SD', '标清'], 'flv_350' : ['LD', '流畅'] } def prepare(self): self.vid = match1(self.url, 'd=(\d+)', 'live/(\d+)') if '/izt/' in self.url: vid = self.vid if not vid: html = get_content(self.url) vid = match1(html, 'vid\s*:\s*"(\d+)",', 'vid="(\d+)"') return get_playback(vid) else: if not self.vid: html = get_content(self.url) self.vid = match1(html, 'liveId\s*:\s*"(\d+)"') live_data = get_response( 'http://api.live.letv.com/v1/liveRoom/single/1001', params={'id': self.vid}).json() if live_data.get('status') != 2: return get_playback(live_data['recordingId']) # live video is dead, the followed code will not be used live_data = get_response( 'http://player.pc.le.com/player/startup_by_pid/1001/' + self.vid, params={'host': 'live.le.com'}).json() info = MediaInfo(self.name, True) info.title = live_data['title'] for st in live_data['rows']: stream, profile = self.stream_2_id_profile[st['rateType']] data = get_response(st['streamUrl'], params={ 'format': 1, 'expect': 2, 'termid': 1, 'platid': 10, 'playid': 1, 'sign': 'live_web', 'splatid': 1001, 'vkit': 20161017, 'station': self.vid }).json() src = data['location'] info.streams[stream] = { 'container': 'm3u8', 'video_profile': profile, 'size' : float('inf'), 'src' : [src] } return info def prepare_list(self): html = get_content(self.url) vids = matchall(html, 'vid="(\d+)"') # fake urls return ['http://live.le.com/izt/vid={}'.format(vid) for vid in vids] site = LeLive() ``` #### File: extractors/sina/video.py ```python from .._common import * def get_realurl(url, vid): resp = get_response(url, params={'vid': vid}) if resp.locations: return resp.url else: return matchall(resp, 'CDATA\[([^\]]+)')[1] class Sina(Extractor): name = '新浪视频 (sina)' def prepare(self): info = MediaInfo(self.name) if not self.vid: self.vid = match1(self.url, 'video_id=(\d+)', '#(\d{5,})', '(\d{5,})\.swf') if not self.vid: html = get_content(self.url) self.vid = match1(html, 'video_id[\'"]?\s*[:=]\s*[\'"]?(\d+)') assert self.vid, "can't get vid" data = get_response('http://s.video.sina.com.cn/video/h5play', params={'video_id': self.vid}).json() data = data['data'] info.title = data['title'] for t in ['mp4', 'flv', '3gp']: video_info = data['videos'].get(t) if video_info: break for profile in video_info: v = video_info[profile] r_url = get_realurl(v['file_api'], v['file_id']) info.streams[profile] = { 'container': v['type'], 'video_profile': profile, 'src': [r_url], 'size' : 0 } return info def prepare_list(self): html = get_content(self.url) return matchall(html, 'video_id: ([^,]+)') site = Sina() ``` #### File: ykdl/extractors/yinyuetai.py ```python from ._common import * class YinYueTai(Extractor): name = '音悦台 (YinYueTai)' def prepare(self): info = MediaInfo(self.name) info.extra.referer = 'https://www.yinyuetai.com/' if not self.vid: self.vid = match1(self.url,'\Wid=(\d+)') data = get_response('https://data.yinyuetai.com/video/getVideoInfo', params={'id': self.vid}).json() assert not data['delFlag'], 'MTV has been deleted!' info.title = data['videoName'] info.artist = data['artistName'] url = data['videoUrl'] info.streams['current'] = { 'container': url_info(url)[1], 'video_profile': 'current', 'src' : [url] } return info site = YinYueTai() ```
{ "source": "59-29/bot", "score": 4 }
#### File: 59-29/bot/commands.py ```python from discord.ext import commands import discord import collections import datetime import time import pprint import sys def find_color(ctx): """Find the bot's rendered color. If it's the default color or we're in a DM, return Discord's "greyple" color""" try: if ctx.guild.me.color == discord.Color.default(): color = discord.Color.greyple() else: color = ctx.guild.me.color except AttributeError: #* If it's a DM channel color = discord.Color.greyple() return color class Commands(commands.Cog): """Commands for the N-Word Counter""" def __init__(self, bot): self.bot = bot @commands.command() async def help(self, ctx): """This help command!""" cmds = sorted([c for c in self.bot.commands if not c.hidden], key=lambda c: c.name) embed = discord.Embed( title="N-Word Counter: Help Command", description="I keep track of every time a user says the N-word, hard R or not. I'm a " "pretty simple bot to use. My prefix is an @mention, meaning you'll have " f"to put {self.bot.user.mention} before every command." "\n\nHere's a short list of my commands:", color=find_color(ctx)) embed.set_footer( text="Note: I don't count N-words said in the past before I joined this server") for c in cmds: embed.add_field(name=c.name, value=c.help, inline=False) await ctx.send(embed=embed) @commands.command(aliases=["info"]) async def about(self, ctx): """Some basic info about me""" embed = discord.Embed( title=str(self.bot.user), description=self.bot.app_info.description + f"\n\n**User/Client ID**: {self.bot.app_info.id}", color=find_color(ctx)) embed.set_thumbnail(url=self.bot.app_info.icon_url) embed.add_field(name="Owner", value=self.bot.app_info.owner) embed.add_field(name="Server Count", value=len(self.bot.guilds)) embed.add_field(name="User Count", value=len(self.bot.users)) embed.add_field( name="Language", value=f"Python {sys.version_info[0]}.{sys.version_info[1]}.{sys.version_info[2]}") embed.add_field( name="Library", value="[discord.py](https://github.com/Rapptz/discord.py)") embed.add_field( name="License", value="[CC0 1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/)") embed.add_field( name="Source Code", value="https://github.com/NWordCounter/bot", inline=False) await ctx.send(embed=embed) @commands.command() async def count(self, ctx, user: discord.User=None): """Get the number of times a user has said the N-Word Format like this: `count <@mention user>` If you don't mention a user, I'll get **your** N-word count """ if user is None: user = ctx.author if user == self.bot.user: return await ctx.send("You crazy? I'd never, ever say the ***nigga***-word") if user.bot: return await ctx.send( "I don't count N-Words said by bots. Can you imagine how hectic that would be?") try: count = self.bot.nwords[user.id] except: return await ctx.send(f"{user.mention} has not said the N-word yet. Good for them") if count["total"]: msg = (f"{user.mention} has said the N-word **{count['total']:,} " f"time{'' if count['total'] == 1 else 's'}**") if count["hard_r"]: msg += f", __{count['hard_r']:,} of which had a hard-R__" if "last_time" in count: since_last = count["total"] - count["last_time"] if since_last: msg += (f".\n\nThey've said the N-word __{since_last:,} " f"time{'' if since_last == 1 else 's'}__ since they were last " "investigated") await ctx.send(msg) self.bot.nwords[user.id]["last_time"] = self.bot.nwords[user.id]["total"] else: await ctx.send(f"{user.mention} has not said the N-word yet. Good for them") @count.error async def count_error(self, ctx, exc): if isinstance(exc, commands.BadArgument): return await ctx.send(exc) @commands.command() async def invite(self, ctx): """Sends an invite link so you can invite me to your own server""" await ctx.send("Here's my invite link so I can count N-words on your server too:\n" f"https://discordapp.com/oauth2/authorize?client_id={self.bot.app_info.id}" "&scope=bot&permissions=8") @commands.command() async def stats(self, ctx): """View my statistics""" await ctx.channel.trigger_typing() uptime = datetime.datetime.utcnow() - self.bot.started_at #* This code was copied from my other bot, MAT y = int(uptime.total_seconds()) // 31557600 #* Number of seconds in 356.25 days mo = int(uptime.total_seconds()) // 2592000 % 12 #* Number of seconds in 30 days d = int(uptime.total_seconds()) // 86400 % 30 #* Number of seconds in 1 day h = int(uptime.total_seconds()) // 3600 % 24 #* Number of seconds in 1 hour mi = int(uptime.total_seconds()) // 60 % 60 #* etc. se = int(uptime.total_seconds()) % 60 frmtd_uptime = [] if y != 0: frmtd_uptime.append(f"{y}y") if mo != 0: frmtd_uptime.append(f"{mo}mo") if d != 0: frmtd_uptime.append(f"{d}d") if h != 0: frmtd_uptime.append(f"{h}hr") if mi != 0: frmtd_uptime.append(f"{mi}m") if se != 0: frmtd_uptime.append(f"{se}s") embed = discord.Embed( description=f"User ID: {self.bot.user.id}", timestamp=datetime.datetime.utcnow(), color=find_color(ctx)) embed.add_field(name="Server Count", value=f"{len(self.bot.guilds):,} servers") embed.add_field(name="User Count", value=f"{len(self.bot.users):,} unique users") embed.add_field( name="Channel Count", value=f"{len(list(self.bot.get_all_channels()) + self.bot.private_channels):,} " "channels") embed.add_field( name="Memory Usage", value=f"{round(self.bot.process.memory_info().rss / 1000000, 2)} MB") embed.add_field(name="Latency/Ping", value=f"{round(self.bot.latency * 1000, 2)}ms") embed.add_field(name="Uptime", value=" ".join(frmtd_uptime) + " since last restart") embed.add_field( name="Number of Users Who Have Said the N-Word", value=f"{len(self.bot.nwords):,}", inline=False) embed.add_field( name="Total N-Words Counted", value=f"{self.bot.nwords[0]['total']:,} " f"({self.bot.nwords[0]['hard_r']:,} with hard-R)", inline=False) embed.set_author(name="N-Word Counter Bot: Statistics", icon_url=self.bot.user.avatar_url) embed.set_footer(text="These statistics are accurate as of:") await ctx.send(embed=embed) @commands.command(aliases=["leaderboard", "high"]) @commands.guild_only() async def top(self, ctx, param: str=None): """See the leaderboard of the top N-word users of this server. Do `top global` to see the top users across all servers Note: If a user said N-words on another server that I'm also on, those will be taken into account """ await ctx.channel.trigger_typing() def create_leaderboard(): leaderboard = {} if param == "global": for u, n in self.bot.nwords.items(): if self.bot.get_user(u): leaderboard.update({self.bot.get_user(u): n["total"]}) leaderboard = dict(collections.Counter(leaderboard).most_common(10)) else: for m in ctx.guild.members: if m.id in self.bot.nwords and not m.bot: if self.bot.nwords[m.id]["total"]: leaderboard.update({m: self.bot.nwords[m.id]["total"]}) leaderboard = dict(collections.Counter(leaderboard).most_common(10)) return leaderboard leaderboard = await self.bot.loop.run_in_executor(None, create_leaderboard) if not len(leaderboard): return await ctx.send("No one on this server has said the N-word yet") description = "\n" counter = 1 for m, c in leaderboard.items(): description += (f"**{counter}.** {m if param == 'global' else m.mention} - __{c:,} " f"time{'' if c == 1 else 's'}__ ({self.bot.nwords[m.id]['hard_r']:,} " "with hard-R)\n") counter += 1 description = description.replace("**1.**", ":first_place:").replace("**2.**", ":second_place:").replace("**3.**", ":third_place:") embed = discord.Embed(description=description, color=find_color(ctx), timestamp=datetime.datetime.utcnow()) if param == "global": embed.set_author( name=f"Top N-Word Users of All Time") else: embed.set_author( name=f"Top N-Word Users of {ctx.guild.name}", icon_url=ctx.guild.icon_url) embed.set_footer( text="These listings are accurate as of:", icon_url=self.bot.user.avatar_url) await ctx.send(embed=embed) @top.error async def top_error(self, ctx, exc): if isinstance(exc, commands.NoPrivateMessage): return await ctx.send(exc) @commands.command(hidden=True) @commands.is_owner() async def edit(self, ctx, user_id: int, total: int, hard_r: int, last_time: int=None): """Edit a user's entry in the dict or add a new one""" if last_time: self.bot.nwords[user_id] = {"id": user_id, "total": total, "hard_r": hard_r, "last_time": last_time} else: self.bot.nwords[user_id] = {"id": user_id, "total": total, "hard_r": hard_r} await ctx.send("Done") @commands.command(hidden=True) @commands.is_owner() async def pop(self, ctx, user_id: int): """Delete a user's entry from the dict""" try: self.bot.nwords.pop(user_id) await ctx.send("Done") except KeyError as e: await ctx.send(f"KeyError: ```{e}```") @commands.command(hidden=True) @commands.is_owner() async def execute(self, ctx, *, query): """Execute a query in the database""" try: with ctx.channel.typing(): async with self.bot.pool.acquire() as conn: result = await conn.execute(query) await ctx.send(f"Query complete:```{result}```") except Exception as e: await ctx.send(f"Query failed:```{e}```") @commands.command(hidden=True) @commands.is_owner() async def fetch(self, ctx, *, query): """Run a query in the database and fetch the result""" try: with ctx.channel.typing(): async with self.bot.pool.acquire() as conn: result = await conn.fetch(query) fmtd_result = pprint.pformat([dict(i) for i in result]) await ctx.send(f"Query complete:```{fmtd_result}```") except Exception as e: await ctx.send(f"Query failed:```{e}```") @commands.command(aliases=["resetstatus"], hidden=True) @commands.is_owner() async def restartstatus(self, ctx): await self.bot.change_presence(status=discord.Status.dnd, activity=discord.Activity( name=f"for N-Words on {len(self.bot.guilds)} servers", type=discord.ActivityType.watching)) await ctx.send("Reset playing status") @commands.command(hidden=True) @commands.is_owner() async def setstatus(self, ctx, status): """Change the bot's presence""" if status.startswith("on"): await self.bot.change_presence(status=discord.Status.online) elif status.startswith("id"): await self.bot.change_presence(status=discord.Status.idle) elif status.startswith("d"): await self.bot.change_presence(status=discord.Status.dnd) elif status.startswith("off") or status.startswith("in"): await self.bot.change_presence(status=discord.Status.invisible) else: await ctx.send("Invalid status") await ctx.send("Set new status") @commands.command(hidden=True) @commands.is_owner() async def updatedb(self, ctx): temp = await ctx.send("Manually updating... This may take a few minutes... Please wait...") with ctx.channel.typing(): start = time.perf_counter() async with self.bot.pool.acquire() as conn: await conn.execute(""" INSERT INTO nwords (id) VALUES {} ON CONFLICT DO NOTHING ;""".format(", ".join([f"({u})" for u in self.bot.nwords]))) for data in self.bot.nwords.copy().values(): await conn.execute(""" UPDATE nwords SET total = {}, hard_r = {} WHERE id = {} ;""".format(data["total"], data["hard_r"], data["id"])) delta = time.perf_counter() - start mi = int(delta) // 60 sec = int(delta) % 60 ms = round(delta * 1000 % 1000) await temp.delete() await ctx.send(f"Finished updating database ({mi}m {sec}s {ms}ms)") def setup(bot): bot.add_cog(Commands(bot)) ```
{ "source": "594422814/ContrastCorr", "score": 2 }
#### File: ContrastCorr/libs/model.py ```python import copy import torch import torch.nn as nn import torch.nn.functional as F from libs.net_utils import NLM_NC_woSoft from libs.utils import * from libs.autoencoder import encoder3, decoder3, encoder_res18, encoder_res50 import pdb class NLM_woSoft(nn.Module): """ Non-local mean layer w/o softmax on affinity """ def __init__(self): super(NLM_woSoft, self).__init__() def forward(self, in1, in2): n,c,h,w = in1.size() in1 = in1.view(n,c,-1) in2 = in2.view(n,c,-1) affinity = torch.bmm(in1.permute(0,2,1), in2) return affinity def transform(aff, frame1): """ Given aff, copy from frame1 to construct frame2. INPUTS: - aff: (h*w)*(h*w) affinity matrix - frame1: n*c*h*w feature map """ b,c,h,w = frame1.size() frame1 = frame1.view(b,c,-1) frame2 = torch.bmm(frame1, aff) return frame2.view(b,c,h,w) class normalize(nn.Module): """Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std """ def __init__(self, mean, std = (1.0,1.0,1.0)): super(normalize, self).__init__() self.mean = nn.Parameter(torch.FloatTensor(mean).cuda(), requires_grad=False) self.std = nn.Parameter(torch.FloatTensor(std).cuda(), requires_grad=False) def forward(self, frames): b,c,h,w = frames.size() frames = (frames - self.mean.view(1,3,1,1).repeat(b,1,h,w))/self.std.view(1,3,1,1).repeat(b,1,h,w) return frames def create_flat_grid(F_size, GPU=True): """ INPUTS: - F_size: feature size OUTPUT: - return a standard grid coordinate """ b, c, h, w = F_size theta = torch.tensor([[1,0,0],[0,1,0]]) theta = theta.unsqueeze(0).repeat(b,1,1) theta = theta.float() # grid is a uniform grid with left top (-1,1) and right bottom (1,1) # b * (h*w) * 2 grid = torch.nn.functional.affine_grid(theta, F_size) grid[:,:,:,0] = (grid[:,:,:,0]+1)/2 * w grid[:,:,:,1] = (grid[:,:,:,1]+1)/2 * h grid_flat = grid.view(b,-1,2) if(GPU): grid_flat = grid_flat.cuda() return grid_flat class Model_switchGTfixdot_swCC_Res(nn.Module): def __init__(self, encoder_dir = None, decoder_dir = None, temp = None, pretrainRes = False, uselayer=4): ''' For switchable concenration loss Using Resnet18 ''' super(Model_switchGTfixdot_swCC_Res, self).__init__() self.gray_encoder = encoder_res18(pretrained = pretrainRes, uselayer=uselayer) # self.gray_encoder = encoder_res50(pretrained = pretrainRes, uselayer=uselayer) self.rgb_encoder = encoder3(reduce = True) # self.nlm = NLM_woSoft() # testing stage: mutual correlation for affinity computation self.nlm = NLM_NC_woSoft() self.decoder = decoder3(reduce = True) self.temp = temp self.softmax = nn.Softmax(dim=1) self.cos_window = torch.Tensor(np.outer(np.hanning(40), np.hanning(40))).cuda() self.normalize = normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.R = 8 # window size self.P = self.R * 2 + 1 self.topk = 5 if(not encoder_dir is None): print("Using pretrained encoders: %s."%encoder_dir) self.rgb_encoder.load_state_dict(torch.load(encoder_dir)) if(not decoder_dir is None): print("Using pretrained decoders: %s."%decoder_dir) self.decoder.load_state_dict(torch.load(decoder_dir)) for param in self.decoder.parameters(): param.requires_grad = False for param in self.rgb_encoder.parameters(): param.requires_grad = False def forward(self, gray1, gray2, color1=None, color2=None): gray1 = (gray1 + 1) / 2 gray2 = (gray2 + 1) / 2 gray1 = self.normalize(gray1) gray2 = self.normalize(gray2) Fgray1 = self.gray_encoder(gray1) Fgray2 = self.gray_encoder(gray2) aff = self.nlm(Fgray1, Fgray2) aff_norm = self.softmax(aff * self.temp) if(color1 is None): # for testing return aff_norm, Fgray1, Fgray2 Fcolor1 = self.rgb_encoder(color1) Fcolor2 = self.rgb_encoder(color2) Fcolor2_est = transform(aff_norm, Fcolor1) pred2 = self.decoder(Fcolor2_est) Fcolor1_est = transform(aff_norm.transpose(1,2), Fcolor2) pred1 = self.decoder(Fcolor1_est) return pred1, pred2, aff_norm, aff, Fgray1, Fgray2 def propagate_neighbor_frames(self, gray2, gray1, mask): # propagate the mask of gray1 to gray2 gray1 = (gray1 + 1) / 2 gray2 = (gray2 + 1) / 2 gray1 = self.normalize(gray1) gray2 = self.normalize(gray2) Fgray1 = self.gray_encoder(gray1) Fgray2 = self.gray_encoder(gray2) # prepare mask b, feat_c, feat_h, feat_w = Fgray1.size() _, mask_c, _, _ = mask.size() pad_mask = F.pad(mask, (self.R, self.R, self.R, self.R), mode='replicate') window_mask = F.unfold(pad_mask, kernel_size=self.P) window_mask = window_mask.reshape([b, mask_c, self.P*self.P, feat_h*feat_w]) # affinity pad_Fgray1 = F.pad(Fgray1, (self.R, self.R, self.R, self.R), mode='constant', value=0) window_Fgray1 = F.unfold(pad_Fgray1, kernel_size=self.P) window_Fgray1 = window_Fgray1.reshape([b, feat_c, self.P*self.P, feat_h*feat_w]) Fgray2 = Fgray2.reshape([b, feat_c, 1, -1]) # [B, C, 1, window_num] aff = (Fgray2 * window_Fgray1).sum(dim=1) aff[aff == 0] = -1e10 # discount padding at edge for softmax aff = F.softmax(aff*self.temp, dim=1) # temp: 1 # top-k selection b, N1, N2 = aff.size() tk_val, tk_idx = torch.topk(aff, dim = 1, k = self.topk) tk_val_min, _ = torch.min(tk_val, dim=1) tk_val_min = tk_val_min.view(b, 1, N2) aff[tk_val_min > aff] = 0 aff = aff.unsqueeze(1) # predicted mask of gray2 out = (aff * window_mask).sum(dim=2).reshape([b, mask_c, feat_h, feat_w]) return out ``` #### File: 594422814/ContrastCorr/model.py ```python import copy import torch import torch.nn as nn import torch.nn.functional as F from libs.net_utils import NLM, NLM_dot, NLM_woSoft, NLM_NC_woSoft, Batch_Contrastive from torchvision.models import resnet18 from libs.autoencoder import encoder3, decoder3, encoder_res18, encoder_res50 from libs.utils import * import pdb def transform(aff, frame1): """ Given aff, copy from frame1 to construct frame2. INPUTS: - aff: (h*w)*(h*w) affinity matrix - frame1: n*c*h*w feature map """ b,c,h,w = frame1.size() frame1 = frame1.view(b,c,-1) frame2 = torch.bmm(frame1, aff) return frame2.view(b,c,h,w) class normalize(nn.Module): """Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std """ def __init__(self, mean, std = (1.0,1.0,1.0)): super(normalize, self).__init__() self.mean = nn.Parameter(torch.FloatTensor(mean).cuda(), requires_grad=False) self.std = nn.Parameter(torch.FloatTensor(std).cuda(), requires_grad=False) def forward(self, frames): b,c,h,w = frames.size() frames = (frames - self.mean.view(1,3,1,1).repeat(b,1,h,w))/self.std.view(1,3,1,1).repeat(b,1,h,w) return frames def create_flat_grid(F_size, GPU=True): """ INPUTS: - F_size: feature size OUTPUT: - return a standard grid coordinate """ b, c, h, w = F_size theta = torch.tensor([[1,0,0],[0,1,0]]) theta = theta.unsqueeze(0).repeat(b,1,1) theta = theta.float() # grid is a uniform grid with left top (-1,1) and right bottom (1,1) # b * (h*w) * 2 grid = torch.nn.functional.affine_grid(theta, F_size) grid[:,:,:,0] = (grid[:,:,:,0]+1)/2 * w grid[:,:,:,1] = (grid[:,:,:,1]+1)/2 * h grid_flat = grid.view(b,-1,2) if(GPU): grid_flat = grid_flat.cuda() return grid_flat def coords2bbox(coords, patch_size, h_tar, w_tar): """ INPUTS: - coords: coordinates of pixels in the next frame - patch_size: patch size - h_tar: target image height - w_tar: target image widthg """ b = coords.size(0) center = torch.mean(coords, dim=1) # b * 2 center_repeat = center.unsqueeze(1).repeat(1,coords.size(1),1) dis_x = torch.sqrt(torch.pow(coords[:,:,0] - center_repeat[:,:,0], 2)) dis_x = torch.mean(dis_x, dim=1).detach() dis_y = torch.sqrt(torch.pow(coords[:,:,1] - center_repeat[:,:,1], 2)) dis_y = torch.mean(dis_y, dim=1).detach() left = (center[:,0] - dis_x*2).view(b,1) left[left < 0] = 0 right = (center[:,0] + dis_x*2).view(b,1) right[right > w_tar] = w_tar top = (center[:,1] - dis_y*2).view(b,1) top[top < 0] = 0 bottom = (center[:,1] + dis_y*2).view(b,1) bottom[bottom > h_tar] = h_tar new_center = torch.cat((left,right,top,bottom),dim=1) return new_center def dropout2d(img1, img2): # drop same layers for all images if np.random.random() < 0.3: return img1, img2 drop_ch_num = int(np.random.choice(np.arange(1, 3), 1)) drop_ch_ind = np.random.choice(np.arange(3), drop_ch_num, replace=False) for dropout_ch in drop_ch_ind: img1[:, dropout_ch] = 0 img2[:, dropout_ch] = 0 img1 *= (3 / (3 - drop_ch_num)) img2 *= (3 / (3 - drop_ch_num)) return img1, img2 class track_match_comb(nn.Module): def __init__(self, pretrained, encoder_dir = None, decoder_dir = None, temp=1, Resnet = "r18", color_switch=True, coord_switch=True, contrastive=True): super(track_match_comb, self).__init__() if Resnet in "r18": self.gray_encoder = encoder_res18(pretrained=pretrained, uselayer=4) elif Resnet in "r50": self.gray_encoder = encoder_res50(pretrained=pretrained, uselayer=4) self.rgb_encoder = encoder3(reduce=True) self.decoder = decoder3(reduce=True) self.rgb_encoder.load_state_dict(torch.load(encoder_dir)) self.decoder.load_state_dict(torch.load(decoder_dir)) for param in self.decoder.parameters(): param.requires_grad = False for param in self.rgb_encoder.parameters(): param.requires_grad = False self.nlm = NLM_woSoft() self.cont_model = Batch_Contrastive(temp=temp) self.normalize = normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.softmax = nn.Softmax(dim=1) self.temp = temp self.grid_flat = None self.grid_flat_crop = None self.color_switch = color_switch self.coord_switch = coord_switch self.contrastive_flag = contrastive self.self_reconstruction = True def forward(self, img_ref, img_tar, warm_up=True, patch_size=None): n, c, h_ref, w_ref = img_ref.size() # [b, 3, 256, 256] n, c, h_tar, w_tar = img_tar.size() # UVC algorithm uses the gray-scale images as the inputs. # We do not use the gray-scale image but randomly drop the image channel, which slightly outperforms the gray-scale baseline. gray_ref = copy.deepcopy(img_ref) gray_tar = copy.deepcopy(img_tar) gray_ref = (gray_ref + 1) / 2 gray_tar = (gray_tar + 1) / 2 gray_ref = self.normalize(gray_ref) gray_tar = self.normalize(gray_tar) # following CorrFlow method, channel dropout gray_ref, gray_tar = dropout2d(gray_ref, gray_tar) Fgray1 = self.gray_encoder(gray_ref) Fgray2 = self.gray_encoder(gray_tar) Fcolor1 = self.rgb_encoder(img_ref) output = [] if warm_up: aff = self.nlm(Fgray1, Fgray2) aff_norm = self.softmax(aff * self.temp) Fcolor2_est = transform(aff_norm, Fcolor1) color2_est = self.decoder(Fcolor2_est) output.append(color2_est) output.append(aff) if self.color_switch: Fcolor2 = self.rgb_encoder(img_tar) Fcolor1_est = transform(aff_norm.transpose(1,2), Fcolor2) color1_est = self.decoder(Fcolor1_est) output.append(color1_est) if self.self_reconstruction: self_aff1 = self.nlm(Fgray1, Fgray1) self_aff1 -= (torch.eye(self_aff1.size(-1)).unsqueeze(0) * 1e10).cuda() self_aff1_norm = self.softmax(self_aff1) Fcolor1_reconstruct = transform(self_aff1_norm, Fcolor1) color1_reconstruct = self.decoder(Fcolor1_reconstruct) output.append(color1_reconstruct) else: if(self.grid_flat is None): self.grid_flat = create_flat_grid(Fgray2.size()) aff_ref_tar = self.nlm(Fgray1, Fgray2) aff_ref_tar = torch.nn.functional.softmax(aff_ref_tar * self.temp, dim=2) coords = torch.bmm(aff_ref_tar, self.grid_flat) center = torch.mean(coords, dim=1) # b * 2 # new_c = center2bbox(center, patch_size, h_tar, w_tar) new_c = center2bbox(center, patch_size, Fgray2.size(2), Fgray2.size(3)) # print("center2bbox:", new_c, h_tar, w_tar) Fgray2_crop = diff_crop(Fgray2, new_c[:,0], new_c[:,2], new_c[:,1], new_c[:,3], patch_size[1], patch_size[0]) # print("HERE: ", Fgray2.size(), Fgray1.size(), Fgray2_crop.size()) aff_p = self.nlm(Fgray1, Fgray2_crop) aff_norm = self.softmax(aff_p * self.temp) Fcolor2_est = transform(aff_norm, Fcolor1) color2_est = self.decoder(Fcolor2_est) Fcolor2_full = self.rgb_encoder(img_tar) Fcolor2_crop = diff_crop(Fcolor2_full, new_c[:,0], new_c[:,2], new_c[:,1], new_c[:,3], patch_size[1], patch_size[0]) output.append(color2_est) output.append(aff_p) output.append(new_c*8) output.append(coords) # color orthorganal if self.color_switch: Fcolor1_est = transform(aff_norm.transpose(1,2), Fcolor2_crop) color1_est = self.decoder(Fcolor1_est) output.append(color1_est) # coord orthorganal if self.coord_switch: aff_norm_tran = self.softmax(aff_p.permute(0,2,1) * self.temp) if self.grid_flat_crop is None: self.grid_flat_crop = create_flat_grid(Fp_tar.size()).permute(0,2,1).detach() C12 = torch.bmm(self.grid_flat_crop, aff_norm) C11 = torch.bmm(C12, aff_norm_tran) output.append(self.grid_flat_crop) output.append(C11) if self.self_reconstruction: self_aff1 = self.nlm(Fgray1, Fgray1) self_aff1 -= (torch.eye(self_aff1.size(-1)).unsqueeze(0) * 1e10).cuda() self_aff1_norm = self.softmax(self_aff1) Fcolor1_reconstruct = transform(self_aff1_norm, Fcolor1) color1_reconstruct = self.decoder(Fcolor1_reconstruct) output.append(color1_reconstruct) if self.contrastive_flag: # contrastive loss on a pair of features Fcolor2_est_batch, sparse_loss = self.cont_model(Fgray2_crop, Fgray1, Fcolor1) Fcolor2_est_batch = self.decoder(Fcolor2_est_batch) output.append(Fcolor2_est_batch) output.append(sparse_loss) return output ``` #### File: 594422814/ContrastCorr/train_trackingnet.py ```python import os import cv2 import sys import time import copy import torch import logging import argparse import numpy as np import torch.nn as nn import torch.nn.functional as F from libs.loader_trackingnet import VidListv1, VidListv2 import torch.backends.cudnn as cudnn import libs.transforms_multi as transforms from model import track_match_comb as Model from libs.loss import L1_loss from libs.concentration_loss import ConcentrationSwitchLoss as ConcentrationLoss from libs.train_utils import save_vis, AverageMeter, save_checkpoint, log_current from libs.utils import diff_crop import pdb FORMAT = "[%(asctime)-15s %(filename)s:%(lineno)d %(funcName)s] %(message)s" logging.basicConfig(format=FORMAT) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) ############################## helper functions ############################## def parse_args(): parser = argparse.ArgumentParser(description='') # file/folder pathes parser.add_argument("--videoRoot", type=str, default="/data1/trackingnet/", help='train video path') ### change the dataset path parser.add_argument("--encoder_dir",type=str, default='weights/encoder_single_gpu.pth', help="pretrained encoder") parser.add_argument("--decoder_dir",type=str, default='weights/decoder_single_gpu.pth', help="pretrained decoder") parser.add_argument('--resume', type=str, default='', metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument("-c","--savedir",type=str,default="trackingnet_contrastive/", help='checkpoints path') parser.add_argument("--Resnet", type=str, default="r18", help="choose from r18 or r50") # main parameters parser.add_argument("--pretrainRes",action="store_true") parser.add_argument("--batchsize",type=int, default=16, help="batchsize") parser.add_argument('--workers', type=int, default=16) parser.add_argument("--patch_size", type=int, default=256, help="crop size for localization.") parser.add_argument("--full_size", type=int, default=640, help="full size for one frame.") parser.add_argument("--rotate",type=int,default=10, help='degree to rotate training images') parser.add_argument("--scale",type=float,default=1.2, help='random scale') parser.add_argument("--lr",type=float,default=1e-4, help='learning rate') parser.add_argument('--lr-mode', type=str, default='step') # poly step parser.add_argument("--window_len",type=int,default=2, help='number of images (2 for pair and 3 for triple)') parser.add_argument("--log_interval",type=int,default=10, help='') parser.add_argument("--save_interval",type=int,default=200, help='save model every x epoch') parser.add_argument("--momentum",type=float,default=0.9, help='momentum') parser.add_argument("--weight_decay",type=float,default=0.005, help='weight decay') parser.add_argument("--device", type=int, default=2, help="0~device_count-1 for single GPU, device_count for dataparallel.") parser.add_argument("--temp", type=int, default=1, help="temprature for softmax.") # set epoches parser.add_argument("--wepoch",type=int,default=100, help='warmup epoch') parser.add_argument("--nepoch",type=int,default=200, help='max epoch') parser.add_argument("--step",type=int,default=40, help='step for lr') # concenration regularization parser.add_argument("--lc",type=float,default=0.3, help='weight of concentration loss') parser.add_argument("--lc_win",type=int,default=8, help='win_len for concentration loss') # orthorganal regularization parser.add_argument("--color_switch",type=float,default=0.1, help='weight of color switch loss') parser.add_argument("--coord_switch",type=float,default=0, help='weight of color switch loss') # contrastive loss parser.add_argument("--contrastive",type=float,default=1, help='weight of contrastive loss') print("Begin parser arguments.") args = parser.parse_args() assert args.videoRoot is not None if not os.path.exists(args.savedir): os.mkdir(args.savedir) args.savepatch = os.path.join(args.savedir,'savepatch') args.logfile = open(os.path.join(args.savedir,"logargs.txt"),"w") args.multiGPU = args.device == torch.cuda.device_count() if not args.multiGPU: torch.cuda.set_device(args.device) if not os.path.exists(args.savepatch): os.mkdir(args.savepatch) args.vis = True if args.color_switch > 0: args.color_switch_flag = True else: args.color_switch_flag = False if args.coord_switch > 0: args.coord_switch_flag = True else: args.coord_switch_flag = False if args.contrastive > 0: args.contrastive_flag = True else: args.contrastive_flag = False try: from tensorboardX import SummaryWriter global writer writer = SummaryWriter() except ImportError: args.vis = False print(' '.join(sys.argv)) print('\n') args.logfile.write(' '.join(sys.argv)) args.logfile.write('\n') for k, v in args.__dict__.items(): print(k, ':', v) args.logfile.write('{}:{}\n'.format(k,v)) args.logfile.close() return args def adjust_learning_rate(args, optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" if args.lr_mode == 'step': lr = args.lr * (0.5 ** (epoch // args.step)) elif args.lr_mode == 'poly': lr = args.lr * (1 - epoch / args.nepoch) ** 0.9 else: raise ValueError('Unknown lr mode {}'.format(args.lr_mode)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def create_loader(args): dataset_train_warm = VidListv1(args.videoRoot, args.patch_size, args.rotate, args.scale) dataset_train = VidListv2(args.videoRoot, args.patch_size, args.window_len, args.rotate, args.scale, args.full_size) if args.multiGPU: train_loader_warm = torch.utils.data.DataLoader( dataset_train_warm, batch_size=args.batchsize, shuffle = True, num_workers=args.workers, pin_memory=True, drop_last=True) train_loader = torch.utils.data.DataLoader( dataset_train, batch_size=args.batchsize, shuffle = True, num_workers=args.workers, pin_memory=True, drop_last=True) else: train_loader_warm = torch.utils.data.DataLoader( dataset_train_warm, batch_size=args.batchsize, shuffle = True, num_workers=0, drop_last=True) train_loader = torch.utils.data.DataLoader( dataset_train, batch_size=args.batchsize, shuffle = True, num_workers=0, drop_last=True) return train_loader_warm, train_loader def train(args): loader_warm, loader = create_loader(args) cudnn.benchmark = True best_loss = 1e10 start_epoch = 0 model = Model(args.pretrainRes, args.encoder_dir, args.decoder_dir, temp = args.temp, Resnet = args.Resnet, color_switch = args.color_switch_flag, coord_switch = args.coord_switch_flag, contrastive = args.contrastive_flag) if args.multiGPU: model = torch.nn.DataParallel(model).cuda() closs = ConcentrationLoss(win_len=args.lc_win, stride=args.lc_win, F_size=torch.Size((args.batchsize//torch.cuda.device_count(),2, args.patch_size//8, args.patch_size//8)), temp = args.temp) closs = nn.DataParallel(closs).cuda() optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model._modules['module'].parameters()),args.lr) else: closs = ConcentrationLoss(win_len=args.lc_win, stride=args.lc_win, F_size=torch.Size((args.batchsize,2, args.patch_size//8, args.patch_size//8)), temp = args.temp) model.cuda() closs.cuda() optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),args.lr) if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) start_epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{} ({})' (epoch {})" .format(args.resume, best_loss, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) for epoch in range(start_epoch, args.nepoch): if epoch < args.wepoch: lr = adjust_learning_rate(args, optimizer, epoch) print("Base lr for epoch {}: {}.".format(epoch, optimizer.param_groups[0]['lr'])) best_loss = train_iter(args, loader_warm, model, closs, optimizer, epoch, best_loss) else: lr = adjust_learning_rate(args, optimizer, epoch-args.wepoch) print("Base lr for epoch {}: {}.".format(epoch, optimizer.param_groups[0]['lr'])) best_loss = train_iter(args, loader, model, closs, optimizer, epoch, best_loss) def forward(frame1, frame2, model, warm_up, patch_size=None): n, c, h, w = frame1.size() if warm_up: output = model(frame1, frame2) else: output = model(frame1, frame2, warm_up=False, patch_size=[patch_size//8, patch_size//8]) new_c = output[2] color2_gt = diff_crop(frame2, new_c[:,0], new_c[:,2], new_c[:,1], new_c[:,3], patch_size, patch_size) output.append(color2_gt) return output def train_iter(args, loader, model, closs, optimizer, epoch, best_loss): losses = AverageMeter() batch_time = AverageMeter() c_losses = AverageMeter() MSE_Loss = torch.nn.MSELoss(reduction = 'mean') p_losses = AverageMeter() model.train() end = time.time() if args.coord_switch_flag: coord_switch_loss = nn.L1Loss() sc_losses = AverageMeter() if args.contrastive_flag: cont_losses = AverageMeter() s_losses = AverageMeter() if epoch < 1 or (epoch>=args.wepoch and epoch< args.wepoch+2): thr = None else: thr = 2.5 for i,frames in enumerate(loader): frame1_var = frames[0].cuda() frame2_var = frames[1].cuda() if epoch < args.wepoch: output = forward(frame1_var, frame2_var, model, warm_up=True) color2_est = output[0] aff = output[1] b,x,_ = aff.size() color1_est = None if args.color_switch_flag: color1_est = output[2] loss_ = L1_loss(color2_est, frame2_var, 10, 10, thr=thr, pred1=color1_est, frame1_var = frame1_var) # frame self reconstruction reconstruction_loss = L1_loss(output[-1], frame1_var, 10, 10, thr=thr) if epoch >= 10 and args.lc > 0: constraint_loss = torch.sum(closs(aff.view(b,1,x,x))) * args.lc c_losses.update(constraint_loss.item(), frame1_var.size(0)) loss = loss_ + reconstruction_loss + constraint_loss else: loss = loss_ + reconstruction_loss if(i % args.log_interval == 0): save_vis(color2_est, frame2_var, frame1_var, frame2_var, args.savepatch) else: output = forward(frame1_var, frame2_var, model, warm_up=False, patch_size = args.patch_size) color2_est = output[0] aff = output[1] new_c = output[2] coords = output[3] Fcolor2_crop = output[-1] b,x,x = aff.size() color1_est = None count = 3 constraint_loss = torch.sum(closs(aff.view(b,1,x,x))) * args.lc c_losses.update(constraint_loss.item(), frame1_var.size(0)) if args.color_switch_flag: count += 1 color1_est = output[count] # intra-video transformation loss_color = L1_loss(color2_est, Fcolor2_crop, 10, 10, thr=thr, pred1=color1_est, frame1_var = frame1_var) reconstruction_loss = L1_loss(output[-4], frame1_var, 10, 10, thr=thr) loss_ = loss_color + reconstruction_loss + constraint_loss if args.coord_switch_flag: count += 1 grids = output[count] C11 = output[count+1] loss_coord = args.coord_switch * coord_switch_loss(C11, grids) loss = loss_ + loss_coord sc_losses.update(loss_coord.item(), frame1_var.size(0)) else: loss = loss_ if args.contrastive_flag: sparse_loss = output[-2] color2_est_batch = output[-3] # intra- and inter-video transformation consistency loss_color2_contrastive = L1_loss(color2_est_batch, color2_est, 10, 10, thr=thr) # sparsity constraint for the batch-level affinity sparse_loss = sparse_loss.mean() * args.contrastive # total loss loss = loss + sparse_loss + loss_color2_contrastive cont_losses.update(loss_color2_contrastive.item(), frame1_var.size(0)) s_losses.update(sparse_loss.item(), frame1_var.size(0)) if(i % args.log_interval == 0): save_vis(color2_est, Fcolor2_crop, frame1_var, frame2_var, args.savepatch, new_c) losses.update(loss.item(), frame1_var.size(0)) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) end = time.time() if epoch >= args.wepoch and args.contrastive_flag: logger.info('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Total Loss {loss.val:.4f} ({loss.avg:.4f})\t ' 'Contrastive Loss {ct_loss.val:.4f} ({ct_loss.avg:.4f})\t ' 'Sparse Loss {s_loss.val:.4f} ({s_loss.avg:.4f})\t ' 'Constraint Loss {c_loss.val:.4f} ({c_loss.avg:.4f})\t '.format( epoch, i+1, len(loader), batch_time=batch_time, loss=losses, ct_loss=cont_losses, s_loss=s_losses, c_loss=c_losses)) else: logger.info('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Total Loss {loss.val:.4f} ({loss.avg:.4f})\t ' 'Constraint Loss {c_loss.val:.4f} ({c_loss.avg:.4f})\t '.format( epoch, i+1, len(loader), batch_time=batch_time, loss=losses, c_loss=c_losses)) if((i + 1) % args.save_interval == 0): is_best = losses.avg < best_loss best_loss = min(losses.avg, best_loss) checkpoint_path = os.path.join(args.savedir, 'checkpoint_latest.pth.tar') save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_loss': best_loss, }, is_best, filename=checkpoint_path, savedir = args.savedir) log_current(epoch, losses.avg, best_loss, filename = "log_current.txt", savedir=args.savedir) return best_loss if __name__ == '__main__': args = parse_args() train(args) writer.close() ```
{ "source": "594422814/TransformerTrack", "score": 2 }
#### File: models/target_classifier/multihead_attention.py ```python import torch.nn as nn import torch import math import torch.nn.functional as F import numpy as np import pdb class MultiheadAttention(nn.Module): def __init__(self, feature_dim=512, n_head=8, key_feature_dim=64): super(MultiheadAttention, self).__init__() self.Nh = n_head self.head = nn.ModuleList() for N in range(self.Nh): self.head.append(RelationUnit(feature_dim, key_feature_dim)) # self.out_conv = nn.Linear(n_head*key_feature_dim, feature_dim) # bias=False def forward(self, query=None, key=None, value=None): isFirst = True for N in range(self.Nh): if(isFirst): concat = self.head[N](query, key, value) isFirst = False else: concat = torch.cat((concat, self.head[N](query, key, value)), -1) # output = self.out_conv(concat) output = concat return output class RelationUnit(nn.Module): def __init__(self, feature_dim=512, key_feature_dim=64): super(RelationUnit, self).__init__() self.temp = 30 self.WK = nn.Linear(feature_dim, key_feature_dim) # bias=False # self.WQ = nn.Linear(feature_dim, key_feature_dim) self.WV = nn.Linear(feature_dim, feature_dim) # Init weights for m in self.WK.modules(): m.weight.data.normal_(0, math.sqrt(2. / m.out_features)) # m.weight.data.normal_(1. / m.in_features, math.sqrt(2. / m.out_features)) if m.bias is not None: m.bias.data.zero_() ''' for m in self.WQ.modules(): m.weight.data.normal_(0, math.sqrt(2. / m.out_features)) # m.weight.data.normal_(1. / m.in_features, math.sqrt(2. / m.out_features)) if m.bias is not None: m.bias.data.zero_() ''' for m in self.WV.modules(): m.weight.data.normal_(0, math.sqrt(2. / m.out_features)) # m.weight.data.normal_(1. / m.in_features, math.sqrt(2. / m.out_features)) if m.bias is not None: m.bias.data.zero_() def forward(self, query=None, key=None, value=None): w_k = self.WK(key) w_k = F.normalize(w_k, p=2, dim=-1) w_k = w_k.permute(1,2,0) # Batch, Dim, Len_1 w_q = self.WK(query) w_q = F.normalize(w_q, p=2, dim=-1) w_q = w_q.permute(1,0,2) # Batch, Len_2, Dim dot_prod = torch.bmm(w_q, w_k) # Batch, Len_2, Len_1 affinity = F.softmax(dot_prod*self.temp, dim=-1) w_v = value.permute(1,0,2) # Batch, Len_1, Dim output = torch.bmm(affinity, w_v) # Batch, Len_2, Dim output = output.permute(1,0,2) return output ``` #### File: TransformerTrack/pytracking/GOT10k_UAV.py ```python from got10k.trackers import Tracker as GOT_Tracker from got10k.experiments import ExperimentUAV123 import numpy as np import os import sys import argparse import importlib import pdb env_path = os.path.join(os.path.dirname(__file__), '..') if env_path not in sys.path: sys.path.append(env_path) from pytracking.evaluation import Sequence, Tracker parser = argparse.ArgumentParser(description='Run UAV.') parser.add_argument('--tracker_name', type=str, default='trdimp') parser.add_argument('--tracker_param', type=str, default='trdimp') # trsiam / trdimp parser.add_argument('--run_id', type=int, default=None) parser.add_argument('--debug', type=int, default=0, help='Debug level.') args = parser.parse_args() TrTracker = Tracker(args.tracker_name, args.tracker_param, args.run_id) class GOT_Tracker(GOT_Tracker): def __init__(self): super(GOT_Tracker, self).__init__(name='GOT_Tracker') self.tracker = TrTracker.tracker_class(TrTracker.get_parameters()) def init(self, image, box): image = np.array(image) self.tracker.initialize(image, box) def update(self, image): image = np.array(image) self.box = self.tracker.track(image) return self.box if __name__ == '__main__': # setup tracker tracker = GOT_Tracker() # run experiments on UAV experiment = ExperimentUAV123('/data3/wangning/UAV123', version='UAV123') ### version='UAV123' 'UAV20L' experiment.run(tracker, visualize=False) # report performance experiment.report([tracker.name]) ```
{ "source": "594zyc/alfworld", "score": 2 }
#### File: agents/controller/oracle.py ```python import os import cv2 import sys import json import re import random import traceback import numpy as np import gen.constants as constants from collections import Counter from agents.controller.base import BaseAgent from agents.utils.misc import extract_admissible_commands_with_heuristics class OracleAgent(BaseAgent): def __init__(self, env, traj_data, traj_root, load_receps=False, debug=False, goal_desc_human_anns_prob=0.0, use_gt_relations=False): self.openable_points = self.get_openable_points(traj_data) self.use_gt_relations = use_gt_relations self.exploration_frames = [] super().__init__(env, traj_data, traj_root, load_receps=load_receps, debug=debug, goal_desc_human_anns_prob=goal_desc_human_anns_prob) def get_openable_points(self, traj_data): scene_num = traj_data['scene']['scene_num'] openable_json_file = os.path.join(os.environ['ALFRED_ROOT'], 'gen/layouts/FloorPlan%d-openable.json' % scene_num) with open(openable_json_file, 'r') as f: openable_points = json.load(f) return openable_points def get_obj_cls_from_metadata(self, name): objs = [obj for obj in self.env.last_event.metadata['objects'] if obj['visible'] and name in obj['objectType']] return objs[0] if len(objs) > 0 else None def get_obj_id_from_metadata(self, object_id): objs = [obj for obj in self.env.last_event.metadata['objects'] if object_id == obj['objectId']] return objs[0] if len(objs) > 0 else None def get_num_interactable_objs(self, recep_id): return len([obj for obj in self.env.last_event.metadata['objects'] if obj['visible'] and obj['parentReceptacles'] and recep_id in obj['parentReceptacles']]) def get_exploration_frames(self): return self.exploration_frames # use pre-computed openable points from ALFRED to store receptacle locations def explore_scene(self): agent_height = self.env.last_event.metadata['agent']['position']['y'] for object_id, point in self.openable_points.items(): action = {'action': 'TeleportFull', 'x': point[0], 'y': agent_height, 'z': point[1], 'rotateOnTeleport': False, 'rotation': point[2], 'horizon': point[3]} event = self.env.step(action) if event.metadata['lastActionSuccess']: self.exploration_frames.append(np.array(self.env.last_event.frame[:,:,::-1])) instance_segs = np.array(self.env.last_event.instance_segmentation_frame) color_to_object_id = self.env.last_event.color_to_object_id # find unique instance segs color_count = Counter() for x in range(instance_segs.shape[0]): for y in range(instance_segs.shape[1]): color = instance_segs[y, x] color_count[tuple(color)] += 1 for color, num_pixels in color_count.most_common(): if color in color_to_object_id: object_id = color_to_object_id[color] object_type = object_id.split('|')[0] if "Basin" in object_id: object_type += "Basin" if object_type in self.STATIC_RECEPTACLES: if object_id not in self.receptacles: self.receptacles[object_id] = { 'object_id': object_id, 'object_type': object_type, 'locs': action, 'num_pixels': num_pixels, 'num_id': "%s %d" % (object_type.lower(), self.get_next_num_id(object_type, self.receptacles)), 'closed': True if object_type in constants.OPENABLE_CLASS_LIST else None } elif object_id in self.receptacles and num_pixels > self.receptacles[object_id]['num_pixels']: self.receptacles[object_id]['locs'] = action # .append(action) self.receptacles[object_id]['num_pixels'] = num_pixels # self.save_receps() # ground-truth instance segemetations (with consistent object IDs) from THOR def get_instance_seg(self): instance_segs = np.array(self.env.last_event.instance_segmentation_frame) inst_color_to_object_id = self.env.last_event.color_to_object_id # find unique instance segs inst_color_count = Counter() for x in range(instance_segs.shape[0]): for y in range(instance_segs.shape[1]): color = instance_segs[y, x] inst_color_count[tuple(color)] += 1 return inst_color_count, inst_color_to_object_id # ground-truth object state info maintained by ThorEnv def get_object_state(self, object_id): is_clean = object_id in self.env.cleaned_objects is_hot = object_id in self.env.heated_objects is_cool = object_id in self.env.cooled_objects is_sliced = 'Sliced' in object_id return is_clean, is_cool, is_hot, is_sliced def get_admissible_commands(self): return extract_admissible_commands_with_heuristics(self.intro, self.frame_desc, self.feedback, self.curr_recep, self.inventory) def print_frame(self, recep, loc): inst_color_count, inst_color_to_object_id = self.get_instance_seg() recep_object_id = recep['object_id'] # for each unique seg add to object dictionary if it's more visible than before visible_objects = [] for color, num_pixels in inst_color_count.most_common(): if color in inst_color_to_object_id: object_id = inst_color_to_object_id[color] object_type = object_id.split("|")[0] object_metadata = self.get_obj_id_from_metadata(object_id) is_obj_in_recep = (object_metadata and object_metadata['parentReceptacles'] and len(object_metadata['parentReceptacles']) > 0 and recep_object_id in object_metadata['parentReceptacles']) if object_type in self.OBJECTS and object_metadata and (not self.use_gt_relations or is_obj_in_recep): if object_id not in self.objects: self.objects[object_id] = { 'object_id': object_id, 'object_type': object_type, 'parent': recep['object_id'], 'loc': loc, 'num_pixels': num_pixels, 'num_id': "%s %d" % (object_type.lower() if "Sliced" not in object_id else "sliced-%s" % object_type.lower(), self.get_next_num_id(object_type, self.objects)) } elif object_id in self.objects and num_pixels > self.objects[object_id]['num_pixels']: self.objects[object_id]['loc'] = loc self.objects[object_id]['num_pixels'] = num_pixels if self.objects[object_id]['num_id'] not in self.inventory: visible_objects.append(self.objects[object_id]['num_id']) visible_objects_with_articles = ["a %s," % vo for vo in visible_objects] feedback = "" if len(visible_objects) > 0: feedback = "On the %s, you see %s" % (recep['num_id'], self.fix_and_comma_in_the_end(' '.join(visible_objects_with_articles))) elif not recep['closed'] and len(visible_objects) == 0: feedback = "On the %s, you see nothing." % (recep['num_id']) return visible_objects, feedback def step(self, action_str): event = None self.feedback = "Nothing happens." try: cmd = self.parse_command(action_str) if cmd['action'] == self.Action.GOTO: target = cmd['tar'] recep = self.get_object(target, self.receptacles) if recep and recep['num_id'] == self.curr_recep: return self.feedback self.curr_loc = recep['locs'] event = self.navigate(self.curr_loc) self.curr_recep = recep['num_id'] self.visible_objects, self.feedback = self.print_frame(recep, self.curr_loc) # feedback conditions loc_id = list(self.receptacles.keys()).index(recep['object_id']) loc_feedback = "You arrive at loc %s. " % loc_id state_feedback = "The {} is {}. ".format(self.curr_recep, "closed" if recep['closed'] else "open") if recep['closed'] is not None else "" loc_state_feedback = loc_feedback + state_feedback self.feedback = loc_state_feedback + self.feedback if "closed" not in state_feedback else loc_state_feedback self.frame_desc = str(self.feedback) elif cmd['action'] == self.Action.PICK: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] if obj in self.visible_objects: object = self.get_object(obj, self.objects) event = self.env.step({'action': "PickupObject", 'objectId': object['object_id'], 'forceAction': True}) self.inventory.append(object['num_id']) self.feedback = "You pick up the %s from the %s." % (obj, tar) elif cmd['action'] == self.Action.PUT: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] recep = self.get_object(tar, self.receptacles) event = self.env.step({'action': "PutObject", 'objectId': self.env.last_event.metadata['inventoryObjects'][0]['objectId'], 'receptacleObjectId': recep['object_id'], 'forceAction': True}) if event.metadata['lastActionSuccess']: self.inventory.pop() self.feedback = "You put the %s %s the %s." % (obj, rel, tar) elif cmd['action'] == self.Action.OPEN: target = cmd['tar'] recep = self.get_object(target, self.receptacles) event = self.env.step({'action': "OpenObject", 'objectId': recep['object_id'], 'forceAction': True}) self.receptacles[recep['object_id']]['closed'] = False self.visible_objects, self.feedback = self.print_frame(recep, self.curr_loc) action_feedback = "You open the %s. The %s is open. " % (target, target) self.feedback = action_feedback + self.feedback.replace("On the %s" % target, "In it") self.frame_desc = str(self.feedback) elif cmd['action'] == self.Action.CLOSE: target = cmd['tar'] recep = self.get_object(target, self.receptacles) event = self.env.step({'action': "CloseObject", 'objectId': recep['object_id'], 'forceAction': True}) self.receptacles[recep['object_id']]['closed'] = True self.feedback = "You close the %s." % target elif cmd['action'] == self.Action.TOGGLE: target = cmd['tar'] obj = self.get_object(target, self.objects) event = self.env.step({'action': "ToggleObjectOn", 'objectId': obj['object_id'], 'forceAction': True}) self.feedback = "You turn on the %s." % target elif cmd['action'] == self.Action.HEAT: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] obj_id = self.env.last_event.metadata['inventoryObjects'][0]['objectId'] recep = self.get_object(tar, self.receptacles) # open the microwave, heat the object, take the object, close the microwave events = [] events.append(self.env.step({'action': 'OpenObject', 'objectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'PutObject', 'objectId': obj_id, 'receptacleObjectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'CloseObject', 'objectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'ToggleObjectOn', 'objectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'Pass'})) events.append(self.env.step({'action': 'ToggleObjectOff', 'objectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'OpenObject', 'objectId': recep['object_id'], 'forceAction': True})) events.append(self.env.step({'action': 'PickupObject', 'objectId': obj_id, 'forceAction': True})) events.append(self.env.step({'action': 'CloseObject', 'objectId': recep['object_id'], 'forceAction': True})) if all(e.metadata['lastActionSuccess'] for e in events) and self.curr_recep == tar: self.feedback = "You heat the %s using the %s." % (obj, tar) elif cmd['action'] == self.Action.CLEAN: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] object = self.env.last_event.metadata['inventoryObjects'][0] sink = self.get_obj_cls_from_metadata('BathtubBasin' if "bathtubbasin" in tar else "SinkBasin") faucet = self.get_obj_cls_from_metadata('Faucet') # put the object in the sink, turn on the faucet, turn off the faucet, pickup the object events = [] events.append(self.env.step({'action': 'PutObject', 'objectId': object['objectId'], 'receptacleObjectId': sink['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'ToggleObjectOn', 'objectId': faucet['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'Pass'})) events.append(self.env.step({'action': 'ToggleObjectOff', 'objectId': faucet['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'PickupObject', 'objectId': object['objectId'], 'forceAction': True})) if all(e.metadata['lastActionSuccess'] for e in events) and self.curr_recep == tar: self.feedback = "You clean the %s using the %s." % (obj, tar) elif cmd['action'] == self.Action.COOL: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] object = self.env.last_event.metadata['inventoryObjects'][0] fridge = self.get_obj_cls_from_metadata('Fridge') # open the fridge, put the object inside, close the fridge, open the fridge, pickup the object events = [] events.append(self.env.step({'action': 'OpenObject', 'objectId': fridge['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'PutObject', 'objectId': object['objectId'], 'receptacleObjectId': fridge['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'CloseObject', 'objectId': fridge['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'Pass'})) events.append(self.env.step({'action': 'OpenObject', 'objectId': fridge['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'PickupObject', 'objectId': object['objectId'], 'forceAction': True})) events.append(self.env.step({'action': 'CloseObject', 'objectId': fridge['objectId'], 'forceAction': True})) if all(e.metadata['lastActionSuccess'] for e in events) and self.curr_recep == tar: self.feedback = "You cool the %s using the %s." % (obj, tar) elif cmd['action'] == self.Action.SLICE: obj, rel, tar = cmd['obj'], cmd['rel'], cmd['tar'] object = self.get_object(obj, self.objects) inventory_objects = self.env.last_event.metadata['inventoryObjects'] if 'Knife' in inventory_objects[0]['objectType']: event = self.env.step({'action': "SliceObject", 'objectId': object['object_id']}) self.feedback = "You slice %s with the %s" % (obj, tar) elif cmd['action'] == self.Action.INVENTORY: if len(self.inventory) > 0: self.feedback = "You are carrying: a %s" % (self.inventory[0]) else: self.feedback = "You are not carrying anything." elif cmd['action'] == self.Action.EXAMINE: target = cmd['tar'] receptacle = self.get_object(target, self.receptacles) object = self.get_object(target, self.objects) if receptacle: self.visible_objects, self.feedback = self.print_frame(receptacle, self.curr_loc) self.frame_desc = str(self.feedback) elif object: self.feedback = self.print_object(object) elif cmd['action'] == self.Action.LOOK: if self.curr_recep == "nothing": self.feedback = "You are in the middle of a room. Looking quickly around you, you see nothing." else: self.feedback = "You are facing the %s. Next to it, you see nothing." % self.curr_recep except: if self.debug: print(traceback.format_exc()) if event and not event.metadata['lastActionSuccess']: self.feedback = "Nothing happens." if self.debug: print(self.feedback) return self.feedback ``` #### File: agents/dqn/train_dqn.py ```python import datetime import os import random import time import copy import json import glob import importlib import numpy as np import sys sys.path.insert(0, os.environ['ALFRED_ROOT']) sys.path.insert(0, os.path.join(os.environ['ALFRED_ROOT'], 'agents')) from agent import TextDQNAgent import modules.generic as generic from eval import evaluate_dqn from modules.generic import HistoryScoreCache, EpisodicCountingMemory, ObjCentricEpisodicMemory from agents.utils.misc import extract_admissible_commands os.environ["TOKENIZERS_PARALLELISM"] = "false" def train(): time_1 = datetime.datetime.now() config = generic.load_config() agent = TextDQNAgent(config) env_type = config["env"]["type"] id_eval_env, num_id_eval_game = None, 0 ood_eval_env, num_ood_eval_game = None, 0 if env_type == "Hybrid": thor = getattr(importlib.import_module("environment"), "AlfredThorEnv")(config) tw = getattr(importlib.import_module("environment"), "AlfredTWEnv")(config) thor_env = thor.init_env(batch_size=agent.batch_size) tw_env = tw.init_env(batch_size=agent.batch_size) else: alfred_env = getattr(importlib.import_module("environment"), config["env"]["type"])(config, train_eval="train") env = alfred_env.init_env(batch_size=agent.batch_size) if agent.run_eval: # in distribution if config['dataset']['eval_id_data_path'] is not None: alfred_env = getattr(importlib.import_module("environment"), config["general"]["evaluate"]["env"]["type"])(config, train_eval="eval_in_distribution") id_eval_env = alfred_env.init_env(batch_size=agent.eval_batch_size) num_id_eval_game = alfred_env.num_games # out of distribution if config['dataset']['eval_ood_data_path'] is not None: alfred_env = getattr(importlib.import_module("environment"), config["general"]["evaluate"]["env"]["type"])(config, train_eval="eval_out_of_distribution") ood_eval_env = alfred_env.init_env(batch_size=agent.eval_batch_size) num_ood_eval_game = alfred_env.num_games output_dir = config["general"]["save_path"] data_dir = config["general"]["save_path"] if not os.path.exists(output_dir): os.makedirs(output_dir) # visdom if config["general"]["visdom"]: import visdom viz = visdom.Visdom() reward_win, step_win = None, None dqn_loss_win = None viz_game_points, viz_step, viz_overall_rewards = [], [], [] viz_id_eval_game_points, viz_id_eval_step = [], [] viz_ood_eval_game_points, viz_ood_eval_step = [], [] viz_dqn_loss = [] step_in_total = 0 episode_no = 0 running_avg_game_points = HistoryScoreCache(capacity=500) running_avg_overall_rewards = HistoryScoreCache(capacity=500) running_avg_game_steps = HistoryScoreCache(capacity=500) running_avg_dqn_loss = HistoryScoreCache(capacity=500) json_file_name = agent.experiment_tag.replace(" ", "_") best_performance_so_far, best_ood_performance_so_far = 0.0, 0.0 episodic_counting_memory = EpisodicCountingMemory() # episodic counting based memory obj_centric_episodic_counting_memory = ObjCentricEpisodicMemory() # load model from checkpoint if agent.load_pretrained: if os.path.exists(data_dir + "/" + agent.load_from_tag + ".pt"): agent.load_pretrained_model(data_dir + "/" + agent.load_from_tag + ".pt") agent.update_target_net() while(True): if episode_no > agent.max_episode: break # hybrid env switching if env_type == "Hybrid": if random.uniform(0, 1) < config["env"]["hybrid_tw_prob"]: env = tw_env else: env = thor_env np.random.seed(episode_no) env.seed(episode_no) obs, infos = env.reset() batch_size = len(obs) agent.train() agent.init(batch_size) episodic_counting_memory.reset() # reset episodic counting based memory obj_centric_episodic_counting_memory.reset() # reset object centric episodic counting based memory previous_dynamics = None chosen_actions = [] prev_step_dones, prev_rewards = [], [] for _ in range(batch_size): chosen_actions.append("restart") prev_step_dones.append(0.0) prev_rewards.append(0.0) observation_strings = list(obs) task_desc_strings, observation_strings = agent.get_task_and_obs(observation_strings) task_desc_strings = agent.preprocess_task(task_desc_strings) observation_strings = agent.preprocess_observation(observation_strings) first_sight_strings = copy.deepcopy(observation_strings) agent.observation_pool.push_first_sight(first_sight_strings) if agent.action_space == "exhaustive": action_candidate_list = [extract_admissible_commands(intro, obs) for intro, obs in zip(first_sight_strings, observation_strings)] else: action_candidate_list = list(infos["admissible_commands"]) action_candidate_list = agent.preprocess_action_candidates(action_candidate_list) observation_only = observation_strings observation_strings = [item + " [SEP] " + a for item, a in zip(observation_strings, chosen_actions)] # appending the chosen action at previous step into the observation episodic_counting_memory.push(observation_only) # update init observation into memory obj_centric_episodic_counting_memory.push(observation_only) # it requires to store sequences of transitions into memory with order, # so we use a cache to keep what agents returns, and push them into memory # altogether in the end of game. transition_cache = [] still_running_mask = [] sequence_game_rewards, sequence_count_rewards, sequence_novel_object_rewards, sequence_game_points = [], [], [], [] print_actions = [] act_randomly = False if agent.noisy_net else episode_no < agent.learn_start_from_this_episode for step_no in range(agent.max_nb_steps_per_episode): # push obs into observation pool agent.observation_pool.push_batch(observation_strings) # get most recent k observations most_recent_observation_strings = agent.observation_pool.get() if agent.noisy_net: agent.reset_noise() # Draw a new set of noisy weights # predict actions if agent.action_space == "generation": chosen_actions, chosen_indices, current_dynamics = agent.command_generation_act(most_recent_observation_strings, task_desc_strings, previous_dynamics, random=act_randomly) elif agent.action_space == "beam_search_choice": chosen_actions, chosen_indices, current_dynamics, action_candidate_list = agent.beam_search_choice_act(most_recent_observation_strings, task_desc_strings, previous_dynamics, random=act_randomly) elif agent.action_space in ["admissible", "exhaustive"]: chosen_actions, chosen_indices, current_dynamics = agent.admissible_commands_act(most_recent_observation_strings, task_desc_strings, action_candidate_list, previous_dynamics, random=act_randomly) else: raise NotImplementedError() replay_info = [most_recent_observation_strings, task_desc_strings, action_candidate_list, chosen_indices] transition_cache.append(replay_info) obs, _, dones, infos = env.step(chosen_actions) scores = [float(item) for item in infos["won"]] dones = [float(item) for item in dones] observation_strings = list(obs) observation_strings = agent.preprocess_observation(observation_strings) if agent.action_space == "exhaustive": action_candidate_list = [extract_admissible_commands(intro, obs) for intro, obs in zip(first_sight_strings, observation_strings)] else: action_candidate_list = list(infos["admissible_commands"]) action_candidate_list = agent.preprocess_action_candidates(action_candidate_list) observation_only = observation_strings observation_strings = [item + " [SEP] " + a for item, a in zip(observation_strings, chosen_actions)] # appending the chosen action at previous step into the observation seeing_new_states = episodic_counting_memory.is_a_new_state(observation_only) seeing_new_objects = obj_centric_episodic_counting_memory.get_object_novelty_reward(observation_only) episodic_counting_memory.push(observation_only) # update new observation into memory obj_centric_episodic_counting_memory.push(observation_only) # update new observation into memory previous_dynamics = current_dynamics if agent.noisy_net and step_in_total % agent.update_per_k_game_steps == 0: agent.reset_noise() # Draw a new set of noisy weights if episode_no >= agent.learn_start_from_this_episode and step_in_total % agent.update_per_k_game_steps == 0: dqn_loss, _ = agent.update_dqn() if dqn_loss is not None: running_avg_dqn_loss.push(dqn_loss) if step_no == agent.max_nb_steps_per_episode - 1: # terminate the game because DQN requires one extra step dones = [1.0 for _ in dones] step_in_total += 1 still_running = [1.0 - float(item) for item in prev_step_dones] # list of float prev_step_dones = dones step_rewards = [float(curr) - float(prev) for curr, prev in zip(scores, prev_rewards)] # list of float count_rewards = [r * agent.count_reward_lambda for r in seeing_new_states] # list of float novel_object_rewards = [r * agent.novel_object_reward_lambda for r in seeing_new_objects] # list of novel object rewards sequence_game_points.append(copy.copy(step_rewards)) prev_rewards = scores still_running_mask.append(still_running) sequence_game_rewards.append(step_rewards) sequence_count_rewards.append(count_rewards) sequence_novel_object_rewards.append(novel_object_rewards) print_actions.append(chosen_actions[0] if still_running[0] else "--") # if all ended, break if np.sum(still_running) == 0: break still_running_mask_np = np.array(still_running_mask) game_rewards_np = np.array(sequence_game_rewards) * still_running_mask_np # step x batch count_rewards_np = np.array(sequence_count_rewards) * still_running_mask_np # step x batch novel_object_rewards_np = np.array(sequence_novel_object_rewards) * still_running_mask_np game_points_np = np.array(sequence_game_points) * still_running_mask_np # step x batch game_rewards_pt = generic.to_pt(game_rewards_np, enable_cuda=False, type='float') # step x batch count_rewards_pt = generic.to_pt(count_rewards_np, enable_cuda=False, type='float') # step x batch novel_object_rewards_pt = generic.to_pt(novel_object_rewards_np, enable_cuda=False, type='float') # push experience into replay buffer (dqn) avg_reward_in_replay_buffer = agent.dqn_memory.get_avg_rewards() for b in range(game_rewards_np.shape[1]): if still_running_mask_np.shape[0] == agent.max_nb_steps_per_episode and still_running_mask_np[-1][b] != 0: # need to pad one transition avg_reward = game_rewards_np[:, b].tolist() + [0.0] _need_pad = True else: avg_reward = game_rewards_np[:, b] _need_pad = False avg_reward = np.mean(avg_reward) is_prior = avg_reward >= avg_reward_in_replay_buffer mem = [] for i in range(game_rewards_np.shape[0]): observation_strings, task_strings, action_candidate_list, chosen_indices = transition_cache[i] mem.append([observation_strings[b], task_strings[b], action_candidate_list[b], chosen_indices[b], game_rewards_pt[i][b], count_rewards_pt[i][b], novel_object_rewards_pt[i][b]]) if still_running_mask_np[i][b] == 0.0: break if _need_pad: observation_strings, task_strings, action_candidate_list, chosen_indices = transition_cache[-1] mem.append([observation_strings[b], task_strings[b], action_candidate_list[b], chosen_indices[b], game_rewards_pt[-1][b] * 0.0, count_rewards_pt[-1][b] * 0.0, novel_object_rewards_pt[-1][b] * 0.0]) agent.dqn_memory.push(is_prior, avg_reward, mem) for b in range(batch_size): running_avg_game_points.push(np.sum(game_points_np, 0)[b]) running_avg_overall_rewards.push(np.sum(game_rewards_np, 0)[b] + np.sum(count_rewards_np, 0)[b] + np.sum(novel_object_rewards_np, 0)[b]) running_avg_game_steps.push(np.sum(still_running_mask_np, 0)[b]) # finish game agent.finish_of_episode(episode_no, batch_size) episode_no += batch_size if episode_no < agent.learn_start_from_this_episode: continue if agent.report_frequency == 0 or (episode_no % agent.report_frequency > (episode_no - batch_size) % agent.report_frequency): continue time_2 = datetime.datetime.now() print("Episode: {:3d} | time spent: {:s} | dqn loss: {:2.3f} | overall rewards: {:2.3f}/{:2.3f} | game points: {:2.3f}/{:2.3f} | used steps: {:2.3f}/{:2.3f}".format(episode_no, str(time_2 - time_1).rsplit(".")[0], running_avg_dqn_loss.get_avg(), np.mean(np.sum(game_rewards_np, 0) + np.sum(count_rewards_np, 0) + np.sum(novel_object_rewards_np, 0)), running_avg_overall_rewards.get_avg(), np.mean(np.sum(game_points_np, 0)), running_avg_game_points.get_avg(), np.mean(np.sum(still_running_mask_np, 0)), running_avg_game_steps.get_avg())) # print(game_id + ": " + " | ".join(print_actions)) print(" | ".join(print_actions)) # evaluate id_eval_game_points, id_eval_game_step = 0.0, 0.0 ood_eval_game_points, ood_eval_game_step = 0.0, 0.0 if agent.run_eval: if id_eval_env is not None: id_eval_res = evaluate_dqn(id_eval_env, agent, num_id_eval_game) id_eval_game_points, id_eval_game_step = id_eval_res['average_points'], id_eval_res['average_steps'] if ood_eval_env is not None: ood_eval_res = evaluate_dqn(ood_eval_env, agent, num_ood_eval_game) ood_eval_game_points, ood_eval_game_step = ood_eval_res['average_points'], ood_eval_res['average_steps'] if id_eval_game_points >= best_performance_so_far: best_performance_so_far = id_eval_game_points agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_id.pt") if ood_eval_game_points >= best_ood_performance_so_far: best_ood_performance_so_far = ood_eval_game_points agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_ood.pt") else: if running_avg_game_points.get_avg() >= best_performance_so_far: best_performance_so_far = running_avg_game_points.get_avg() agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + ".pt") # plot using visdom if config["general"]["visdom"]: viz_game_points.append(running_avg_game_points.get_avg()) viz_overall_rewards.append(running_avg_overall_rewards.get_avg()) viz_step.append(running_avg_game_steps.get_avg()) viz_dqn_loss.append(running_avg_dqn_loss.get_avg()) viz_id_eval_game_points.append(id_eval_game_points) viz_id_eval_step.append(id_eval_game_step) viz_ood_eval_game_points.append(ood_eval_game_points) viz_ood_eval_step.append(ood_eval_game_step) viz_x = np.arange(len(viz_game_points)).tolist() if reward_win is None: reward_win = viz.line(X=viz_x, Y=viz_game_points, opts=dict(title=agent.experiment_tag + "_game_points"), name="game points") viz.line(X=viz_x, Y=viz_overall_rewards, opts=dict(title=agent.experiment_tag + "_overall_rewards"), win=reward_win, update='append', name="overall rewards") viz.line(X=viz_x, Y=viz_id_eval_game_points, opts=dict(title=agent.experiment_tag + "_id_eval_game_points"), win=reward_win, update='append', name="id eval game points") viz.line(X=viz_x, Y=viz_ood_eval_game_points, opts=dict(title=agent.experiment_tag + "_ood_eval_game_points"), win=reward_win, update='append', name="ood eval game points") else: viz.line(X=[len(viz_game_points) - 1], Y=[viz_game_points[-1]], opts=dict(title=agent.experiment_tag + "_game_points"), win=reward_win, update='append', name="game points") viz.line(X=[len(viz_overall_rewards) - 1], Y=[viz_overall_rewards[-1]], opts=dict(title=agent.experiment_tag + "_overall_rewards"), win=reward_win, update='append', name="overall rewards") viz.line(X=[len(viz_id_eval_game_points) - 1], Y=[viz_id_eval_game_points[-1]], opts=dict(title=agent.experiment_tag + "_id_eval_game_points"), win=reward_win, update='append', name="id eval game points") viz.line(X=[len(viz_ood_eval_game_points) - 1], Y=[viz_ood_eval_game_points[-1]], opts=dict(title=agent.experiment_tag + "_ood_eval_game_points"), win=reward_win, update='append', name="ood eval game points") if step_win is None: step_win = viz.line(X=viz_x, Y=viz_step, opts=dict(title=agent.experiment_tag + "_step"), name="step") viz.line(X=viz_x, Y=viz_id_eval_step, opts=dict(title=agent.experiment_tag + "_id_eval_step"), win=step_win, update='append', name="id eval step") viz.line(X=viz_x, Y=viz_ood_eval_step, opts=dict(title=agent.experiment_tag + "_ood_eval_step"), win=step_win, update='append', name="ood eval step") else: viz.line(X=[len(viz_step) - 1], Y=[viz_step[-1]], opts=dict(title=agent.experiment_tag + "_step"), win=step_win, update='append', name="step") viz.line(X=[len(viz_id_eval_step) - 1], Y=[viz_id_eval_step[-1]], opts=dict(title=agent.experiment_tag + "_id_eval_step"), win=step_win, update='append', name="id eval step") viz.line(X=[len(viz_ood_eval_step) - 1], Y=[viz_ood_eval_step[-1]], opts=dict(title=agent.experiment_tag + "_ood_eval_step"), win=step_win, update='append', name="ood eval step") if dqn_loss_win is None: dqn_loss_win = viz.line(X=viz_x, Y=viz_dqn_loss, opts=dict(title=agent.experiment_tag + "_dqn_loss"), name="dqn loss") else: viz.line(X=[len(viz_dqn_loss) - 1], Y=[viz_dqn_loss[-1]], opts=dict(title=agent.experiment_tag + "_dqn_loss"), win=dqn_loss_win, update='append', name="dqn loss") # write accuracies down into file _s = json.dumps({"time spent": str(time_2 - time_1).rsplit(".")[0], "dqn loss": str(running_avg_dqn_loss.get_avg()), "overall rewards": str(running_avg_overall_rewards.get_avg()), "train game points": str(running_avg_game_points.get_avg()), "train steps": str(running_avg_game_steps.get_avg()), "id eval game points": str(id_eval_game_points), "id eval steps": str(id_eval_game_step), "ood eval game points": str(ood_eval_game_points), "ood eval steps": str(ood_eval_game_step)}) with open(output_dir + "/" + json_file_name + '.json', 'a+') as outfile: outfile.write(_s + '\n') outfile.flush() agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_final.pt") if __name__ == '__main__': train() ``` #### File: agents/detector/mrcnn.py ```python import torch import torchvision from torchvision.models.detection.rpn import AnchorGenerator, RPNHead from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor import os import sys sys.path.insert(0, os.environ["ALFRED_ROOT"]) import gen.constants as constants def get_model_instance_segmentation(num_classes): # load an instance segmentation model pre-trained pre-trained on COCO model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) anchor_generator = AnchorGenerator( sizes=tuple([(4, 8, 16, 32, 64, 128, 256, 512) for _ in range(5)]), aspect_ratios=tuple([(0.25, 0.5, 1.0, 2.0) for _ in range(5)])) model.rpn.anchor_generator = anchor_generator # 256 because that's the number of features that FPN returns model.rpn.head = RPNHead(256, anchor_generator.num_anchors_per_location()[0]) # get number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # now get the number of input features for the mask classifier in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels hidden_layer = 256 # and replace the mask predictor with a new one model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes) return model def load_pretrained_model(path, num_classes): mask_rcnn = get_model_instance_segmentation(num_classes) mask_rcnn.load_state_dict(torch.load(path)) return mask_rcnn ``` #### File: alfworld/scripts/play_alfred_thor.py ```python import os import sys sys.path.insert(0, os.environ['ALFRED_ROOT']) import json import argparse from env.thor_env import ThorEnv from agents.detector.mrcnn import load_pretrained_model from agents.controller import OracleAgent, OracleAStarAgent, MaskRCNNAgent, MaskRCNNAStarAgent def setup_scene(env, traj_data, r_idx, args, reward_type='dense'): # scene setup scene_num = traj_data['scene']['scene_num'] object_poses = traj_data['scene']['object_poses'] dirty_and_empty = traj_data['scene']['dirty_and_empty'] object_toggles = traj_data['scene']['object_toggles'] scene_name = 'FloorPlan%d' % scene_num env.reset(scene_name) env.restore_scene(object_poses, object_toggles, dirty_and_empty) # initialize to start position env.step(dict(traj_data['scene']['init_action'])) # print goal instr print("Task: %s" % (traj_data['turk_annotations']['anns'][r_idx]['task_desc'])) # setup task for reward env.set_task(traj_data, args, reward_type=reward_type) def main(args): # start THOR env = ThorEnv() # load traj_data root = args.problem json_file = os.path.join(root, 'traj_data.json') with open(json_file, 'r') as f: traj_data = json.load(f) # setup scene setup_scene(env, traj_data, 0, args) # choose controller if args.controller == "oracle": AgentModule = OracleAgent agent = AgentModule(env, traj_data, traj_root=root, load_receps=args.load_receps, debug=args.debug) elif args.controller == "oracle_astar": AgentModule = OracleAStarAgent agent = AgentModule(env, traj_data, traj_root=root, load_receps=args.load_receps, debug=args.debug) elif args.controller == "mrcnn": AgentModule = MaskRCNNAgent mask_rcnn = load_pretrained_model('./agents/detector/models/mrcnn.pth') agent = AgentModule(env, traj_data, traj_root=root, pretrained_model=mask_rcnn, load_receps=args.load_receps, debug=args.debug) elif args.controller == "mrcnn_astar": AgentModule = MaskRCNNAStarAgent mask_rcnn = load_pretrained_model('./agents/detector/models/mrcnn.pth') agent = AgentModule(env, traj_data, traj_root=root, pretrained_model=mask_rcnn, load_receps=args.load_receps, debug=args.debug) else: raise NotImplementedError() print(agent.feedback) while True: cmd = input() if cmd == "ipdb": from ipdb import set_trace; set_trace() continue agent.step(cmd) if not args.debug: print(agent.feedback) done = env.get_goal_satisfied() if done: print("You won!") break if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("problem", help="Path to folder containing pddl and traj_data files") parser.add_argument("--controller", default="oracle", choices=["oracle", "oracle_astar", "mrcnn", "mrcnn_astar"]) parser.add_argument("--debug", action="store_true") parser.add_argument('--load_receps', action="store_true") parser.add_argument('--reward_config', type=str, default="agents/config/rewards.json") args = parser.parse_args() main(args) ``` #### File: alfworld/scripts/play_alfred_tw.py ```python import os import json import glob import argparse import textworld from textworld.agents import HumanAgent import gym import textworld.gym import sys sys.path.append(os.environ["ALFRED_ROOT"]) from agents.utils.misc import Demangler, get_templated_task_desc, clean_alfred_facts, add_task_to_grammar class AlfredDemangler(textworld.core.Wrapper): def load(self, *args, **kwargs): super().load(*args, **kwargs) demangler = Demangler(game_infos=self._game.infos) for info in self._game.infos.values(): info.name = demangler.demangle_alfred_name(info.id) def main(args): GAME_LOGIC = { "pddl_domain": open(args.domain).read(), "grammar": "\n".join(open(f).read() for f in glob.glob("data/textworld_data/logic/*.twl2")), } # load state and trajectory files pddl_file = os.path.join(args.problem, 'initial_state.pddl') json_file = os.path.join(args.problem, 'traj_data.json') with open(json_file, 'r') as f: traj_data = json.load(f) GAME_LOGIC['grammar'] = add_task_to_grammar(GAME_LOGIC['grammar'], traj_data) # dump game file gamedata = dict(**GAME_LOGIC, pddl_problem=open(pddl_file).read()) gamefile = os.path.join(os.path.dirname(pddl_file), 'game.tw-pddl') json.dump(gamedata, open(gamefile, "w")) # register a new Gym environment. infos = textworld.EnvInfos(won=True, admissible_commands=True) env_id = textworld.gym.register_game(gamefile, infos, max_episode_steps=1000000, wrappers=[AlfredDemangler]) # reset env env = gym.make(env_id) obs, infos = env.reset() # human agent agent = HumanAgent(True) agent.reset(env) while True: print(obs) cmd = agent.act(infos, 0, False) if cmd == "ipdb": from ipdb import set_trace; set_trace() continue obs, score, done, infos = env.step(cmd) if done: print("You won!") break if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("problem", help="Path to folder containing pddl and traj_data files") parser.add_argument("--domain", default=os.environ.get("ALFRED_ROOT", ".") + "/gen/planner/domains/PutTaskExtended_domain.pddl", help="Path to a PDDL file describing the domain." " Default: `%(default)s`.") args = parser.parse_args() main(args) ```
{ "source": "594zyc/CMCC_DialogSystem", "score": 2 }
#### File: 594zyc/CMCC_DialogSystem/Agent.py ```python import os import sys import time import argparse import logging BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '../..')) os.environ["CUDA_VISIBLE_DEVICES"]="1" from DM.DST.StateTracking import DialogStateTracker from DM.policy.RuleMapping import RulePolicy from data.DataManager import DataManager from NLU.NLUManager import NLUManager from NLG.NLGManager import rule_based_NLG parser = argparse.ArgumentParser() parser.add_argument('-p', '--print', type=bool, default=True, help='print details') FLAGS= parser.parse_args() UserPersonal = { "已购业务": ["180元档幸福流量年包", "18元4G飞享套餐升级版"], # 这里应该是完整的业务的信息dict "套餐使用情况": "剩余流量 11.10 GB,剩余通话 0 分钟,话费余额 110.20 元,本月已产生话费 247.29 元", "号码": "18811369685", "归属地" : "北京", "品牌": "动感地带", "是否转品牌过渡期": "否", "话费查询": "话费余额 110.20 元", "流量查询": "剩余流量 11.10 GB", "订购时间": "订购时间 2017-04-04, 生效时间 2017-05-01", "是否停机": "否", "话费充值": "请登录网上营业厅、微厅或 APP 充值", "流量充值": "请登录网上营业厅、微厅或 APP 充值", "账单查询": "请登录网上营业厅、微厅或 APP 查询" } NLU_save_path_dict = { 'domain': os.path.join(BASE_DIR, 'NLU/DomDect/model/ckpt'), 'useract': os.path.join(BASE_DIR, 'NLU/UserAct/model/ckpt'), 'slotfilling': os.path.join(BASE_DIR, 'NLU/SlotFilling/model/ckpt'), 'entity': os.path.join(BASE_DIR, 'NLU/ER/entity_list.txt'), 'sentiment': os.path.join(BASE_DIR, 'NLU/SentiDect') } class DialogAgent: def __init__(self): self.history_savedir = None self.detail_savedir = None self.logger = None self.user = self.create_user() self.rule_policy = RulePolicy() self.dst = DialogStateTracker(UserPersonal, FLAGS.print, self.logger) self.data_manager = DataManager(os.path.join(BASE_DIR, 'data/tmp')) self.nlu_manager = NLUManager(NLU_save_path_dict) # self.nlg_template = NLG_template self.turn_num = 1 self.dialog_history = [] def create_user(self): user_name = input("请输入您的用户名:") user_path = os.path.join(BASE_DIR, 'user', user_name) log_path = os.path.join(user_path, 'log') if not os.path.exists(user_path): os.mkdir(user_path) os.mkdir(log_path) self.history_savedir = user_path + '/dialogs.txt' log_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) self.detail_savedir = log_path +'/' + log_name + '.log' self.logger = self.create_logger(self.detail_savedir) return user_name def create_logger(self, logdir): fmt = '%(message)s' # datefmt = "%y-%m-%d %H:%M:%S" logging.basicConfig(level=logging.INFO, format=fmt) # datefmt=datefmt) logger = logging.getLogger('mylogger') logger.setLevel(logging.INFO) fh = logging.FileHandler(logdir) fh.setLevel(logging.INFO) logger.addHandler(fh) return logger def run(self): if FLAGS.print: self.logger.info('对话记录时间:'+time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) try: while True: user_utter = input("用户输入:") if FLAGS.print: with open(self.detail_savedir, 'a') as f: f.write('-------------- Turn ' + str(self.turn_num) + '--------------\n') f.write('用户:' + user_utter + '\n') self.dialog_history.append('用户:' + user_utter) if user_utter in ['restart' , '重来' , '重新开始']: self.dst = DialogStateTracker(UserPersonal, FLAGS.print, self.logger) self.rule_policy = RulePolicy() if FLAGS.print: self.logger.info('对话状态已重置') else: print('对话状态已重置') continue if '再见' in user_utter or '结束' in user_utter or '谢谢' in user_utter: self.close() break nlu_results = self.nlu_manager.get_NLU_results(user_utter, self.data_manager) self.dst.update(nlu_results, self.rule_policy, self.data_manager) reply = rule_based_NLG(self.dst) if FLAGS.print: self.logger.info('系统:' + reply + '\n') else: print('系统:', reply, '\n') self.dialog_history.append('系统:' + reply) self.turn_num += 1 except KeyboardInterrupt: self.close() def close(self): self.nlu_manager.close() reply = '感谢您的使用,再见!' if FLAGS.print: self.logger.info('系统:' + reply + '\n') else: print('系统:', reply, '\n') with open(os.path.join(BASE_DIR, self.history_savedir), 'a') as f: f.write('对话记录时间:') f.write(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())+'\n\n') for dialog in self.dialog_history: dialog = '\n'.join(dialog.split()) f.write(dialog+'\n\n') f.write('系统:感谢您的使用,再见!\n') f.write('————————————————————————————————\n') if __name__ == '__main__': agent = DialogAgent() agent.run() ``` #### File: DomDect/model/model.py ```python import tensorflow as tf # requestable slots 对应的 DialogData20180613 的 id, 用于指导生成训练数据 class DomainModel: """ 一个简单的 CNN 文字描述,输出为 高、中、低、无 功能费、流量、通话 """ def __init__(self, name, max_sent_length=40, max_word_length=6, # 没用到,因为我 charCNN 取得是均值 word_embed_size=20, char_embed_size=20, hidden_size=60, learning_rate=0.01, word_feature_map=100, # window 1,2,3 dropout_rate = 0.7, noise_scale = 0, LSR_mix_rate = 0.1, ): self.name = name with tf.device('/gpu:0'), tf.variable_scope(name_or_scope=self.name, initializer=tf.truncated_normal_initializer(0, 0.1)): self.is_training = tf.placeholder(dtype=tf.bool) self.word_emb_matrix = tf.placeholder(dtype=tf.float32, shape=[None, max_sent_length, word_embed_size]) self.char_emb_matrix = tf.placeholder(dtype=tf.float32, shape=[None, max_sent_length, char_embed_size]) self.input = tf.concat([self.word_emb_matrix, self.char_emb_matrix], 2) self.input_noise = noise_scale * tf.random_normal(tf.shape(self.input)) self.input = tf.cond(self.is_training, lambda: self.input + self.input_noise, lambda: self.input ) self.output = tf.placeholder(dtype=tf.int32, shape=(None)) self.batch_size = tf.shape(self.word_emb_matrix)[0] self.dropout_rate = dropout_rate self.LSR = LSR_mix_rate def conv_relu(inputs, filters, kernel, poolsize): conv = tf.layers.conv1d( inputs=inputs, filters=filters, kernel_size=kernel, strides=1, padding='same', activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(0, 0.01) ) # conv_bn = tf.contrib.layers.batch_norm(conv, is_training=self.is_training) # conv_bn_activated = tf.nn.relu(conv_bn) # print('conv:', conv.get_shape()) pool = tf.layers.max_pooling1d( inputs=conv, pool_size=poolsize, strides=1, ) # print('pool:', pool.get_shape()) _pool = tf.squeeze(pool, [1]) # print('_pool:', _pool.get_shape()) return _pool def cnn(inputs, maxlength): with tf.variable_scope("winsize2"): conv2 = conv_relu(inputs, word_feature_map, 1, maxlength) with tf.variable_scope("winsize3"): conv3 = conv_relu(inputs, word_feature_map, 2, maxlength) with tf.variable_scope("winsize4"): conv4 = conv_relu(inputs, word_feature_map, 3, maxlength) return tf.concat([conv2, conv3, conv4], 1) with tf.variable_scope("CNN_output"): self.feature = cnn(self.input, max_sent_length) # self.feature = tf.layers.batch_normalization(self.feature, training=self.is_training) # self.feature = self.feature = tf.layers.dropout(self.feature, rate=self.dropout_rate, training=self.is_training) # print('cnn_output:', self.feature.get_shape()) # with tf.variable_scope("hidden"): # self.hidden_layer = tf.layers.dense(inputs=self.feature, units=hidden_size, # activation=tf.nn.relu) # # self.hidden_layer = tf.layers.batch_normalization(self.hidden_layer, training=self.is_training) # self.hidden_layer = tf.layers.dropout(self.hidden_layer , rate=self.dropout_rate, # training=self.is_training) with tf.variable_scope("projection"): self.final_output_logits = tf.layers.dense(inputs=self.feature , units=7, activation=tf.nn.relu) # print(self.final_output_logits.get_shape()) with tf.variable_scope("loss"): self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.final_output_logits, labels=self.output) # print(self.loss.get_shape()) # self.final_loss = tf.reduce_mean(self.loss) # print(self.final_loss.get_shape()) with tf.variable_scope("train"): self.lr = tf.Variable(learning_rate, trainable=False) self.new_lr = tf.placeholder(dtype=tf.float32, shape=[], name="new_learning_rate") self.lr_update = tf.assign(self.lr, self.new_lr) self.tvars = tf.get_collection(key=tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name) self.optimizer = tf.train.AdamOptimizer(self.lr) self.l2_loss = [tf.nn.l2_loss(v) for v in self.tvars] self.unbalance_loss = self.loss self.final_loss = tf.reduce_mean(self.loss)*(1-self.LSR) + 1/7*self.LSR # tf.reduce_mean(self.loss) + 0.001 * tf.add_n(self.l2_loss) self.train_op = self.optimizer.minimize(self.final_loss) with tf.variable_scope("predict"): # probability self.probs = tf.nn.softmax(self.final_output_logits) # predict self.predict = tf.argmax(self.final_output_logits, axis=1) # print(self.predict.get_shape()) self.correct = tf.equal(tf.cast(self.predict, tf.int32), tf.cast(self.output, tf.int32)) self.accuracy = tf.reduce_mean(tf.cast(self.correct, tf.float32)) def assign_lr(self, session, lr_value): session.run(self.lr_update, feed_dict={self.new_lr: lr_value}) if __name__ == '__main__': informable_slots = DomainModel(name='test') ``` #### File: DomDect/model/train.py ```python import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '../../..')) import tensorflow as tf import copy, pprint from data.DataManager import DataManager from NLU.DomDect.model.input_data import * from NLU.DomDect.model.model import * os.environ["CUDA_VISIBLE_DEVICES"]="0" def train(domain_dataset): """ 用于训练模型,先训练完存好了才能用 :param data_tmp_path: data tmp 文件夹位置 """ print('载入 Domain 模型...') model = DomainModel("DomDect") tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.allow_soft_placement=True with tf.Session(config=tf_config) as sess: sess.run(tf.group(tf.global_variables_initializer())) saver = tf.train.Saver() # saver.restore(sess, "./ckpt/model.ckpt") # 训练 domain detector model average_loss = 0 average_accu = 0 display_step = 100 valid_data, valid_output = domain_dataset.produce_valid_data() valid_char_emb, valid_word_emb, seqlen = data_manager.sent2num(valid_data, 40, 6) for step in range(40000): batch_data, batch_output = domain_dataset.next_train_batch() train_char_emb, train_word_emb, seqlen = data_manager.sent2num(batch_data, 40, 6) _, training_loss, training_accu = sess.run([model.train_op, model.final_loss, model.accuracy], feed_dict={ model.char_emb_matrix: train_char_emb, model.word_emb_matrix: train_word_emb, model.output: batch_output, model.is_training: True }) average_loss += training_loss / display_step average_accu += training_accu / display_step if step % display_step == 0: valid_loss, valid_accu = sess.run([model.final_loss, model.accuracy], feed_dict={ model.char_emb_matrix: valid_char_emb, model.word_emb_matrix: valid_word_emb, model.output: valid_output, model.is_training: False }) print("step % 4d, train - loss: %0.4f accu: %0.4f, valid - loss: %.4f accu: %.4f" % (step, average_loss, average_accu, valid_loss, valid_accu)) average_loss = 0 average_accu = 0 if step == 20000: model.assign_lr(sess, 0.001) if step == 30000: model.assign_lr(sess, 0.0001) # 保存模型 saver.save(sess, "./ckpt/model.ckpt") def evaluate(domain_dataset): """ 用于训练模型,先训练完存好了才能用 :param data_tmp_path: data tmp 文件夹位置 """ print('载入 Domain 模型...') model = DomainModel("DomDect") tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.allow_soft_placement=True with tf.Session(config=tf_config) as sess: sess.run(tf.group(tf.global_variables_initializer())) saver = tf.train.Saver() saver.restore(sess, "./ckpt/model.ckpt") # 训练 domain detector model for domain in domains: step_count = 0 average_loss = 0 average_accu = 0 domain_dataset.batch_id[domain] = 0 while True: step_count += 1 batch_data, batch_output, end_flag = domain_dataset.test_by_domain(domain, 100) char_emb_matrix, word_emb_matrix, seqlen = data_manager.sent2num(batch_data, 40, 6) loss, accu, predictions = sess.run( [model.final_loss, model.accuracy, model.predict], feed_dict={ model.char_emb_matrix: char_emb_matrix, model.word_emb_matrix: word_emb_matrix, model.output: batch_output, model.is_training: False}) average_loss += loss average_accu += accu # print(testing_accu) if end_flag: average_loss /= step_count average_accu /= step_count break print("domain:"+domain+ ", loss %0.4f, accu %0.4f" % (average_loss, average_accu)) print("domain:"+domain+ ", num %d" %len(domain_dataset.valid_data[domain])) with open('test_result.txt', 'a') as f: f.write("domain:"+domain+ ", loss %0.4f, accu %0.4f\n" % (average_loss, average_accu)) with open('test_result.txt', 'a') as f: f.write('\n') if __name__ == '__main__': print('载入数据管理器...') data_manager = DataManager('../../../data/tmp') print('载入训练数据...') domain_dataset = generate_domain_dataset(data_manager.DialogData, domain_data_ids) train(domain_dataset) tf.reset_default_graph() evaluate(domain_dataset) ``` #### File: SlotFilling/model/train.py ```python import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '../../..')) import tensorflow as tf import numpy as np import copy, pprint from data.DataManager import DataManager from NLU.SlotFilling.model.input_data import InformableSlotDataset, RequestableSlotDataset from NLU.SlotFilling.model.model import InformableSlotDector, RequestableSlotDector # requestable slots 对应的 DialogData20180613 的 id, 用于指导生成训练数据 All_requestable_slots = { '已购业务':['id1', 'id14'], '订购时间':['id2', 'id14'], '使用情况':['id3'], '号码':['id4'], '归属地':['id5'], '品牌':['id6'], '是否转品牌过渡期':['id7'], '是否停机':['id8'], '账单查询':['id9'], '话费充值':['id10','id15','id16'], '流量充值':['id11','id15','id17'], '话费查询':['id12','id16','id18'], '流量查询':['id13','id17','id18'], '功能费':['id22','id24','id28','id30','id71','id38'], '套餐内容_国内主叫':['id20','id26','id72','id149', 'id43'], '套餐内容_国内流量':['id19','id23','id25','id29','id75','id152','id68','id48'], '产品介绍':['id76'], '计费方式':['id77'], '适用品牌':['id70'], '套餐内容_国内短信':['id21','id27','id73','id150'], '套餐内容_国内彩信':['id74','id151'], '套餐内容_其他功能':['id78'], '套餐内容':['id79'], '超出处理_国内主叫':['id80','id153'], '超出处理_国内流量':['id81'], '超出处理':['id82','id115'], '结转规则_国内主叫':['id83'], '结转规则_国内流量':['id84'], '结转规则_赠送流量':['id85'], '结转规则':['id86'], '是否全国接听免费':['id87'], '能否结转滚存':['id88'], '能否分享':['id89','id91','id126','id127','id128'], '能否转赠':['id90','id92'], '转户转品牌管理':['id93'], '停机销号管理':['id94'], '赠送优惠活动':['id95'], '使用限制':['id96','id113'], '使用有效期':['id97'], '使用方式设置':['id98','id114'], '封顶规则':['id99'], '限速说明':['id100'], '受理时间':['id101'], '互斥业务':['id102','id129','id130'], '开通客户限制':['id103','id131','id132'], '累次叠加规则':['id104'], '开通方式':['id105'], '开通生效规则':['id106'], '是否到期自动取消':['id107'], '能否变更或取消':['id108'], '取消方式':['id109'], '取消变更生效规则':['id110'], '变更方式':['id111'], '密码重置方式':['id112'], '激活方式':['id116'], '副卡数量上限':['id125'], '主卡添加成员':['id134'], '主卡删除成员':['id135'], '副卡成员主动退出':['id136'], '主卡查询副卡':['id137'], '副卡查询主卡':['id138'], '恢复流量功能':['id139'], '开通方向':['id148'] } All_requestable_slots_order = dict(zip(All_requestable_slots.keys(), range(len(All_requestable_slots.keys())))) def extract_informable_data(DialogData, dict): dialog_data = copy.deepcopy(DialogData) high_data = [] for id in dict['高']: high_data.extend(dialog_data[id]["用户回复示例"]) del dialog_data[id] medium_data = [] for id in dict['中']: medium_data.extend(dialog_data[id]["用户回复示例"]) del dialog_data[id] low_data = [] for id in dict['低']: low_data.extend(dialog_data[id]["用户回复示例"]) del dialog_data[id] none_data = [] for id, item in dialog_data.items(): none_data.extend(item["用户回复示例"]) return high_data, medium_data, low_data, none_data def extract_requestable_data(DialogData, list): dialog_data = copy.deepcopy(DialogData) positive_data = [] negative_data = [] for id in list: positive_data.extend(dialog_data[id]["用户回复示例"]) del dialog_data[id] for id, item in dialog_data.items(): negative_data.extend(item["用户回复示例"]) return positive_data, negative_data def generate_dataset(DialogData): """ 生成informable slots 和 requestable slots 的训练数据集 """ # 生成 功能费 相关的训练数据 informable_slot_dataset_cost = InformableSlotDataset( *extract_informable_data(DialogData, {"高": ["id36", "id51"], "中": ["id35", "id50"], "低": ["id34", "id49"]})) # 通话时长 相关的训练数据 informable_slot_dataset_time = InformableSlotDataset( *extract_informable_data(DialogData, {"高": ["id39", "id52"], "中": ["id40", "id53"], "低": ["id41", "id54"]})) # 流量 相关的训练数据 informable_slot_dataset_data = InformableSlotDataset( *extract_informable_data(DialogData, {"高": ["id44", "id55"], "中": ["id45", "id56"], "低": ["id46", "id57"]})) informable_slot_datasets = { "功能费":informable_slot_dataset_cost, "流量": informable_slot_dataset_data, "通话时长":informable_slot_dataset_time } requestable_slot_datasets = {} for k,v in All_requestable_slots.items(): requestable_slot_datasets[k] = \ RequestableSlotDataset(*extract_requestable_data(DialogData, v)) return informable_slot_datasets,requestable_slot_datasets def get_F1score(correct, predict): """ correct like [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] predict like [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0] :return: F1 """ hit = 0 precision_set = 0 recall_set = 0 for i in range(len(correct)): if correct[i] == predict[i] and predict[i] == 0: hit += 1 if correct[i] == 0 : precision_set += 1 if predict[i] == 0: recall_set += 1 return 2*hit/(precision_set + recall_set) def train_informable(data_tmp_path): """ 用于训练模型,先训练完存好了才能用 训练用 early stopping :param data_tmp_path: data tmp 文件夹位置 """ print('载入数据管理器...') data_manager = DataManager(data_tmp_path) print('载入训练数据...') informable_slot_datasets, requestable_slot_datasets = generate_dataset(data_manager.DialogData) print('载入 informable slot detector ...') init_learning_rate = 0.005 informable_batch_ratios = { # 不同slot 的minibatch ratio "通话时长": [2, 8, 8, 8], "流量": [4, 8, 8, 8], "功能费": [4, 8, 8, 8] } graph = tf.Graph() with graph.as_default(): informable_slots_models = { "功能费": InformableSlotDector('cost', learning_rate=init_learning_rate), "流量": InformableSlotDector('data', learning_rate=init_learning_rate), "通话时长": InformableSlotDector('time', learning_rate=init_learning_rate), } with tf.Session(graph=graph,config=tf.ConfigProto( allow_soft_placement=True)) as sess: sess.run(tf.group(tf.global_variables_initializer())) saver = tf.train.Saver() # saver.restore(sess, "./ckpt/informable/model.ckpt") # 训练 informable slots informable_slots_accus = [] for slot , model in informable_slots_models.items(): learning_rate = init_learning_rate average_loss = 0 best_accu = 0 tolerance = 20 tolerance_count = 0 display_step = 10 for step in range(5000): step += 1 batch_data, batch_output = informable_slot_datasets[slot].next_batch(informable_batch_ratios[slot]) char_emb_matrix, word_emb_matrix, seqlen = data_manager.sent2num(batch_data) _, training_loss = sess.run([model.train_op, model.final_loss], feed_dict={ model.char_emb_matrix: char_emb_matrix, model.word_emb_matrix: word_emb_matrix, model.output: batch_output }) average_loss += training_loss / display_step if step % display_step == 0: batch_data, batch_output = informable_slot_datasets[slot].get_testset() char_emb_matrix, word_emb_matrix, seqlen = data_manager.sent2num(batch_data) pred, accu = sess.run([model.predict, model.accuracy], feed_dict={ model.char_emb_matrix: char_emb_matrix, model.word_emb_matrix: word_emb_matrix, model.output: batch_output }) if best_accu < accu: best_accu = accu tolerance_count = 0 if not os.path.exists("./ckpt/informable/"): os.makedirs("./ckpt/informable/") saver.save(sess, "./ckpt/informable/model.ckpt") if tolerance_count == tolerance: break print("%s, step % 4d, loss %0.4f, accu %0.4f" % (slot, step, average_loss, accu)) average_loss = 0 tolerance_count += 1 learning_rate = max(learning_rate*0.95, 0.0001) sess.run(model.update_lr, feed_dict={model.new_lr: learning_rate}) print("informable slot: %s, best accu %0.4f" % (slot, best_accu)) informable_slots_accus.append(best_accu) def train_requestable(data_tmp_path): """ 用于训练模型,先训练完存好了才能用 训练用 early stopping :param data_tmp_path: data tmp 文件夹位置 """ print('载入数据管理器...') data_manager = DataManager(data_tmp_path) print('载入训练数据...') informable_slot_datasets, requestable_slot_datasets = generate_dataset(data_manager.DialogData) print('载入 requestable slot detector...') init_learning_rate = 0.005 graph = tf.Graph() with graph.as_default(): requestable_slots_models = {} for k, v in All_requestable_slots_order.items(): requestable_slots_models[k] = RequestableSlotDector(str(v), learning_rate=init_learning_rate) with tf.Session(graph=graph,config=tf.ConfigProto( allow_soft_placement=True)) as sess: sess.run(tf.group(tf.global_variables_initializer())) saver = tf.train.Saver() # saver.restore(sess, "./ckpt/requestable/model.ckpt") # 训练 requestable slots requestable_slots_F1s = {} for slot, model in requestable_slots_models.items(): average_loss = 0 learning_rate = init_learning_rate best_F1 = 0 tolerance = 30 tolerance_count = 0 display_step = 10 for step in range(5000): step += 1 batch_data, batch_output = requestable_slot_datasets[slot].next_batch() char_emb_matrix, word_emb_matrix, seqlen = data_manager.sent2num(batch_data) _, training_loss = sess.run([model.train_op, model.final_loss], feed_dict={ model.char_emb_matrix: char_emb_matrix, model.word_emb_matrix: word_emb_matrix, model.output: batch_output }) average_loss += training_loss / display_step if step % display_step == 0: batch_data, batch_output = requestable_slot_datasets[slot].get_testset() char_emb_matrix, word_emb_matrix, seqlen = data_manager.sent2num(batch_data) pred, accu = sess.run([model.predict, model.accuracy], feed_dict={ model.char_emb_matrix: char_emb_matrix, model.word_emb_matrix: word_emb_matrix, model.output: batch_output }) F1 = get_F1score(batch_output, pred.tolist()) if best_F1 < F1: best_F1 = F1 tolerance_count = 0 if not os.path.exists("./ckpt/requestable/"): os.makedirs("./ckpt/requestable/") saver.save(sess, "./ckpt/requestable/model.ckpt") if tolerance_count == tolerance: break print("%s, step % 4d, loss %0.4f, F1 %0.4f, accu %0.4f" % (slot, step, average_loss, F1, accu)) average_loss = 0 tolerance_count += 1 learning_rate = max(learning_rate * 0.98, 0.001) sess.run(model.update_lr, feed_dict={model.new_lr: learning_rate}) print("requestable slot: %s, best F1 %0.4f" % (slot, best_F1)) requestable_slots_F1s[slot] = best_F1 print(requestable_slots_F1s) print(sum(requestable_slots_F1s.values())/len(requestable_slots_F1s.values())) if __name__ == '__main__': # train_informable('../../../data/tmp') # tf.reset_default_graph() train_requestable('../../../data/tmp') ```
{ "source": "594zyc/HiTUT", "score": 2 }
#### File: HiTUT/data/dataset.py ```python import os, sys, json, pickle, io, time, random, copy import h5py import pprint import threading, queue from tqdm import tqdm from collections import Counter from transformers import MobileBertTokenizer import cv2 from PIL import Image import numpy as np import revtok import torch sys.path.append(os.path.join(os.environ['ALFRED_ROOT'])) from gen.constants import * from gen.utils.py_util import remove_spaces_and_lower from gen.utils.bb_util import bb_IoU from models.config.configs import Config from models.utils.vocab import Vocab from models.nn.mrcnn import MaskRCNNDetector from models.utils.bert_utils import get_bert_tknz, mmt_word_ids_to_bert_ids lock = threading.Lock() class AlfredPyTorchDataset(torch.utils.data.Dataset): def __init__(self, alfred_data, split, task_type, args): self.data = alfred_data self.split = split self.task_type = task_type self.args = args self.detector_type = args.detector_type self.topk = args.topk_objs self.max_length = args.max_enc_length self.image_size = args.image_size self.action_vocab = self.data.dec_in_vocab self.level = task_type.split('_')[0] self.low_data = task_type.split('_')[1] if self.level == 'low' else None self.dataset = self.get_data_instances() # if self.args.use_bert: # with open('data/full_2.1.0_pp/language_%s.json'%self.split, 'r') as f: # self.language_data = json.load(f) # self.resnet18_feats = h5py.File('data/resnet18_feats.hdf5', 'r') # with open('data/full_2.1.0_pp/img_map_%s.json'%split, 'r') as f: # self.img_map = json.load(f) def get_data_instances(self): det_sp = os.path.join(self.data.pp_path, '%s_det_res_%s.json'%(self.split, self.args.detector_type)) with open(det_sp, 'rb') as f: self.obj_det_res = json.load(f) if self.level == 'high': sp = os.path.join(self.data.pp_path, '%s_high_action_instances.json'%(self.split)) elif self.level == 'low': sp = os.path.join(self.data.pp_path, '%s_low_action_instances_%s.json'%(self.split, self.low_data)) if self.args.train_one_shot and self.split == 'train': sp = sp.replace('instances', 'seed') if not os.path.exists(sp) or not os.path.exists(det_sp): self.data.prepare_data_instances() with open(sp, 'rb') as f: self.dataset = json.load(f) if self.split == 'train': if self.args.train_one_shot: total_len = 209331 if self.low_data == 'mani' else 983260 self.args.train_proportion = len(self.dataset) / total_len * 100 elif self.args.train_proportion != 100: random.shuffle(self.dataset) prop = int(len(self.dataset) * self.args.train_proportion / 100)+1 self.dataset = self.dataset[:prop] # if self.args.low_data == 'navi': # self.dataset_new = [] # add_list = [] # for idx, d in enumerate(self.dataset): # if d['actype_output'] == 12: # add_list.append(d) # self.dataset_new.append(d) # elif d['actype_output'] == 0 and random.random()>0.5: # pass # else: # self.dataset_new.append(d) # self.dataset = self.dataset_new + add_list print('%s: %s action data instance: #%d'%(self.split, self.level, len(self))) return self.dataset def __len__(self): return len(self.dataset) def __getitem__(self, idx): # get a data instance args = self.args instance = self.dataset[idx] # record the item in which data are transformed to PyTorch Tensors item = {'batch_type': self.task_type} item['interact'] = instance['interact'] if 'interact' in instance else 0 for i in ['path', 'high_idx', 'low_idx']: if i in instance: item[i] = instance[i] # process the visual input task_path = instance['path'] ins_obj_det_res = self.obj_det_res[task_path+str(instance['vision_input'])] vis_len = args.topk_objs + 1 obj_num = min(vis_len - 1, len(ins_obj_det_res['score'])) vis_feat_col = np.zeros((vis_len, 7)) # vis_len x 7 vis_cls_col = np.zeros((vis_len, ), dtype=int) # vis_len if not args.disable_feat_vis: for obj_idx in range(obj_num): bbox = [i/self.image_size for i in ins_obj_det_res['bbox'][obj_idx]] cls_idx = self.action_vocab.w2id(ins_obj_det_res['class'][obj_idx]) vis_feat_col[obj_idx+1][:4] = bbox vis_feat_col[obj_idx+1][4] = bbox[2]-bbox[0] vis_feat_col[obj_idx+1][5] = bbox[3]-bbox[1] vis_feat_col[obj_idx+1][6] = ins_obj_det_res['score'][obj_idx] # 1d vis_cls_col[obj_idx + 1] = cls_idx vis_cls_col[0] = 1 item['vision_feats'] = vis_feat_col.astype(np.float32) # np: vis_len x 7 item['vision_cls'] = vis_cls_col # np: vis_len # history visual input if self.args.enable_feat_vis_his and 'navi' in self.task_type: his_len = args.history_max_length - 1 max_obj_num = 10 his_vis_feat = np.zeros((his_len, max_obj_num, 7), dtype=np.float32) # his_len x max_obj_num x 7 his_vis_cls = np.zeros((his_len, max_obj_num), dtype=int) # his_len x max_obj_num for his_idx, img_idx in enumerate(instance['vis_history_input'][-his_len:]): his_ins_obj_det_res = self.obj_det_res[task_path+str(img_idx)] obj_num = min(max_obj_num, len(his_ins_obj_det_res['class'])) for obj_idx in range(obj_num): bbox = [i/self.image_size for i in his_ins_obj_det_res['bbox'][obj_idx]] cls_idx = self.action_vocab.w2id(his_ins_obj_det_res['class'][obj_idx]) his_vis_feat[his_idx][obj_idx] = bbox + [bbox[2]-bbox[0], bbox[3]-bbox[1], his_ins_obj_det_res['score'][obj_idx]] his_vis_cls[his_idx][obj_idx] = cls_idx item['his_vis_feat'] = his_vis_feat item['his_vis_cls'] = his_vis_cls # dp = os.path.join('../../moca', task_path.replace('full_2.1.0_pp', 'json_feat_2.1.0'), 'feat_conv.pt') # img_idx = self.img_map[task_path][str(instance['vision_input'])] # item['resnet18feat'] = self.resnet18_feats[dp][img_idx] # process mask selection label label = ins_obj_det_res['label'] # None or an obj index if label is None or instance['arg_output'] == 105: label = -1 elif isinstance(label, int): label += 1 if label >= vis_len: label = 0 elif item['interact']: # leave the vis idx 0 as the indicator of not sure about how to ground label = 0 item['mask_label'] = label # int # process the language input lang_len = args.lang_max_length lang_widx = np.zeros((lang_len,), dtype=int) # lang_len # if not self.args.use_bert: # lang_widx[:2] = self.data.vocab.w2id('[SEP]') if not args.disable_feat_lang: wids = instance['lang_input'] if self.args.use_bert: wids = mmt_word_ids_to_bert_ids(wids[1:-1], self.data.vocab, self.data.bert_tknz) actual_len = min(lang_len, len(wids)) if actual_len != len(wids): print('warning: %d truncated to %s'%(len(wids), lang_len)) lang_widx[:actual_len] = wids[:actual_len] if not self.args.use_bert: lang_widx[lang_widx >= self.data.vocab.vocab_size] = 0 item['lang_input'] = lang_widx #np: lang_len # else: # if self.level == 'high': # item['lang_input'] = random.choice(self.language_data[task_path]['goal']) # else: # item['lang_input'] = random.choice(self.language_data[task_path]['instr'])[instance['high_idx']] # process history actions action_len = args.history_max_length * 2 #*2 because an action consists of a type and an arg action_seq = np.zeros((action_len,), dtype=int) # max_his_len*2 if not args.disable_feat_action_his: for aidx, a in enumerate(instance['actype_history_input'][-args.history_max_length:]): action_seq[aidx*2] = a action_seq[aidx*2+1] = instance['arg_history_input'][-args.history_max_length:][aidx] item['action_history_input'] = action_seq #np: max_his_len*2 # action type/arg labels item['actype_label'] = instance['actype_output'] #int item['arg_label'] = instance['arg_output'] #int if 'navi' in self.task_type: item['arg_label'] = -1 # do not predict arguments for non-interactable low actions # # process the sequence mask seq_mask = np.zeros((args.max_enc_length,), dtype=int) + 1 # max_enc_length offset = 1 for l, seq in [(vis_len, vis_cls_col), (lang_len, lang_widx) , (action_len, action_seq)]: seq_mask[offset: offset+l] = (seq!=0).astype(int) offset += l assert offset == args.max_enc_length item['seq_mask'] = seq_mask #np: max_enc_length item['arg_pos'] = seq_mask.nonzero()[0][-1] item['type_pos'] = item['arg_pos'] - 1 if 'navi' in self.task_type: if self.args.auxiliary_loss_navi: item['visible_label'] = instance['visible'] item['reached_label'] = instance['reached'] item['progress_label'] = instance['progress'] if self.args.enable_feat_posture: item['rotation'] =int(instance['rotation']) item['horizon'] = int(instance['horizon'])%12 return item class AlfredDataset(object): def __init__(self, args): self.args = args self.raw_path = args.raw_data self.pp_path = args.pp_data # preprocessed data saving path self.image_size = args.image_size with open(self.args.splits) as f: self.dataset_splits = json.load(f) pprint.pprint({k: len(v) for k, v in self.dataset_splits.items()}) if not os.path.isdir(self.pp_path): os.makedirs(self.pp_path) # load/construct vocabularies self.prepare_vocab() # preprocess data if args.preprocess: if not args.skip_detection: # load trajectory images recorded in the full dataset self.image_hdf_path = args.img_data self.image_data = h5py.File(self.image_hdf_path, 'r') # self.image_data.visit(lambda x: print(x)) self.mrcnn = MaskRCNNDetector(args, ['all', 'sep']) self.batch_size = 10 self.init_statistics() self.preprocess_data() self.prepare_data_instances() self.save_statistics() def init_statistics(self): self.stats = { 'goal length': Counter(), 'instr length': Counter(), 'high action steps': Counter(), 'low action steps': Counter(), 'detection num': Counter(), 'object num': Counter(), 'receptacle num': Counter(), } self.interact_num = 0 self.good_detect_num = {'all':0, 'sep':0} def save_statistics(self): for k,v in self.stats.items(): if isinstance(v, dict): self.stats[k] = dict(sorted(v.items(), key=lambda item: item[0])) with open(os.path.join(self.pp_path, 'statistics.json'), 'w') as f: json.dump(self.stats, f, indent=2) print('interact_num:', int(self.interact_num/2)) print('good_detect_num:', self.good_detect_num) def prepare_vocab(self): # vocab save/load paths self.language_vocab_save = os.path.join(self.pp_path, 'vocab') self.dec_in_vocab_save = os.path.join(self.pp_path, 'dec_in_vocab') self.dec_out_vocab_high_save = os.path.join(self.pp_path, 'dec_out_vocab_high') self.dec_out_vocab_low_save = os.path.join(self.pp_path, 'dec_out_vocab_low') self.dec_out_vocab_args_save = os.path.join(self.pp_path, 'dec_out_vocab_arg') preprocess_vocab = not os.path.exists(self.language_vocab_save+'.w2id.json') # preprocess_vocab= True if preprocess_vocab: # natural language vocabulary (word <-> idx for encoder) self.vocab = Vocab(self.args.vocab_size, special_tokens=[PAD, UNK, SEP, SOS, 'None']) print('Constructing vocabulary for natural language') for k, d in self.dataset_splits.items(): if 'test' in k: continue # should not see test sets even for vocabulary construction print(' - dataset: {}'.format(k)) for task in tqdm(d): # load json file json_path = os.path.join(self.args.raw_data, k, task['task'], 'traj_data.json') with open(json_path) as f: traj_raw = json.load(f) self.process_language(traj_raw, {}, 0, for_vocab_construction=True) # save vocab in data path self.vocab.construct(self.language_vocab_save) print('Constructing vocabularies for encoder/decoder actions and objects') # decoder input (action/object names <-> idx) task_tokens = [PAD, UNK, SOS]+list(ACTION_TO_WORDS.keys()) task_tokens += ALL_OBJECTS+['None'] self.dec_in_vocab = Vocab(special_tokens=task_tokens) self.dec_in_vocab.construct(self.dec_in_vocab_save) # high-level decoder action output (high actions <-> idx) self.dec_out_vocab_high = Vocab(special_tokens=HIGH_ACTIONS) self.dec_out_vocab_high.construct(self.dec_out_vocab_high_save) # low-level decoder action output (high actions <-> idx) self.dec_out_vocab_low = Vocab(special_tokens=LOW_ACTIONS) self.dec_out_vocab_low.construct(self.dec_out_vocab_low_save) # decoder arguments output (object names <-> idx) self.dec_out_vocab_arg = Vocab(special_tokens=ACTION_ARGS) self.dec_out_vocab_arg.construct(self.dec_out_vocab_args_save) else: print('Loading vocabularies') self.vocab = Vocab() self.vocab.load(self.language_vocab_save, self.args.vocab_size) self.dec_in_vocab = Vocab() self.dec_in_vocab.load(self.dec_in_vocab_save) self.dec_out_vocab_high = Vocab() self.dec_out_vocab_high.load(self.dec_out_vocab_high_save) self.dec_out_vocab_low = Vocab() self.dec_out_vocab_low.load(self.dec_out_vocab_low_save) self.dec_out_vocab_arg = Vocab() self.dec_out_vocab_arg.load(self.dec_out_vocab_args_save) if self.args.use_bert: self.bert_tknz = get_bert_tknz(self.args) def preprocess_data(self): ''' saves preprocessed data as jsons in specified folder ''' if self.args.num_threads in [0,1]: for k, d in self.dataset_splits.items(): print('Preprocessing {}'.format(k)) # debugging: if self.args.fast_epoch: d = d[:10] for task in tqdm(d): self.preprocess_traj(k, task) else: task_queue = queue.Queue() for k, d in self.dataset_splits.items(): if 'tests' in k: continue if self.args.fast_epoch: d = d[:30] for task in d: task_queue.put((k, task)) pbar = tqdm(total=task_queue.qsize()) # start threads threads = [] for n in range(self.args.num_threads): thread = threading.Thread(target=run, args=(self.preprocess_traj, task_queue, pbar)) threads.append(thread) thread.start() for t in threads: t.join() def preprocess_traj(self, k, task): train_mode = 'test' not in k # load json file json_path = os.path.join(self.args.raw_data, k, task['task'], 'traj_data.json') with open(json_path) as f: traj_raw = json.load(f) # check if preprocessing storage folder exists pp_save_path = os.path.join(self.pp_path, k, task['task']) if not os.path.isdir(pp_save_path): os.makedirs(pp_save_path) traj_pp = {} # root & split traj_pp['raw_path'] = os.path.join(self.raw_path, k, task['task']) traj_pp['pp_path'] = pp_save_path traj_pp['split'] = k traj_pp['repeat_idx'] = r_idx = task['repeat_idx'] # index of the annotation for each trajectory # preprocess language self.process_language(traj_raw, traj_pp, r_idx) # for train/valid splits only if train_mode: self.process_actions(traj_raw, traj_pp) self.process_images(traj_raw, traj_pp) # save preprocessed json pp_json_path = os.path.join(pp_save_path, "ann_%d.json" % r_idx) with open(pp_json_path, 'w') as f: json.dump(traj_pp, f, indent=2) def tokenize(self, lang): return [SEP] + revtok.tokenize(remove_spaces_and_lower(lang)) + [SEP] def process_language(self, ex, traj, r_idx, for_vocab_construction=False): # goal instruction task_desc = ex['turk_annotations']['anns'][r_idx]['task_desc'] # step-by-step instructions high_descs = ex['turk_annotations']['anns'][r_idx]['high_descs'] # tokenize language traj['lang'] = { 'repeat_idx': r_idx, 'goal_tokenize': self.tokenize(task_desc), 'instr_tokenize': [self.tokenize(x) for x in high_descs] } if for_vocab_construction: # add to vocab for w in traj['lang']['goal_tokenize']: self.vocab.add_word_counts(w) for instr in traj['lang']['instr_tokenize']: for w in instr: self.vocab.add_word_counts(w) return self.stats['goal length'][len(traj['lang']['goal_tokenize'])] += 1 for instr in traj['lang']['instr_tokenize']: self.stats['instr length'][len(instr)] += 1 # word2idx traj['lang']['goal'] = self.vocab.seq_encode(traj['lang']['goal_tokenize']) traj['lang']['instr'] = [self.vocab.seq_encode(x) for x in traj['lang']['instr_tokenize']] def process_actions(self, ex, traj): def get_normalized_arg(a, level): if level == 'high': arg = a['discrete_action']['args'] if arg == [] or arg == ['']: return 'None' else: arg =arg[-1] #argument for action PutObject is the receptacle (2nd item in the list) elif level == 'low': if 'objectId' in a['api_action']: if a['api_action']['action'] == 'PutObject': arg = a['api_action']['receptacleObjectId'].split('|')[0] elif len(a['api_action']['objectId'].split('|')) == 4: arg = a['api_action']['objectId'].split('|')[0] else: arg = a['api_action']['objectId'].split('|')[4].split('_')[0] else: return 'None' if arg in OBJECTS_LOWER_TO_UPPER: arg = OBJECTS_LOWER_TO_UPPER[arg] # fix high argument for sliced objects if level == 'high' and arg in {'Apple', 'Bread', 'Lettuce', 'Potato', 'Tomato'} and \ 'objectId' in a['planner_action'] and 'Sliced' in a['planner_action']['objectId']: arg += 'Sliced' return arg def fix_missing_high_pddl_end_action(ex): ''' appends a terminal action to a sequence of high-level actions ''' if ex['plan']['high_pddl'][-1]['planner_action']['action'] != 'End': ex['plan']['high_pddl'].append({ 'discrete_action': {'action': 'NoOp', 'args': []}, 'planner_action': {'value': 1, 'action': 'End'}, 'high_idx': len(ex['plan']['high_pddl']) }) # deal with missing end high-level action fix_missing_high_pddl_end_action(ex) # process high-level actions picked = None actions, args = [SOS], ['None'] for idx, a in enumerate(ex['plan']['high_pddl']): high_action = a['discrete_action']['action'] high_arg = get_normalized_arg(a, 'high') # change destinations into ones can be inferred # e.g. For task "clean a knife" turn GotoLocation(SideTable) to GotoLocation(Knife) if high_action == 'GotoLocation' and idx+1 < len(ex['plan']['high_pddl']): next_a = ex['plan']['high_pddl'][idx+1] if next_a['discrete_action']['action'] == 'PickupObject': next_high_arg = get_normalized_arg(next_a, 'high') high_arg = next_high_arg # fix argument of sliced object for Clean, Cool and Heat if high_action == 'PickupObject': picked = high_arg if high_action == 'PutObject': picked = None if picked is not None and 'Sliced' in picked and picked[:-6] == high_arg: high_arg = picked actions.append(high_action) args.append(high_arg) self.stats['high action steps'][len(actions)] += 1 # high actions to action decoder input ids (including all task special tokens) traj['high'] = {} traj['high']['dec_in_high_actions'] = self.dec_in_vocab.seq_encode(actions) traj['high']['dec_in_high_args'] = self.dec_in_vocab.seq_encode(args) # high actions to high action decoder output ids traj['high']['dec_out_high_actions'] = self.dec_out_vocab_high.seq_encode(actions)[1:] traj['high']['dec_out_high_args'] = self.dec_out_vocab_arg.seq_encode(args)[1:] # process low-level actions num_hl_actions = len(ex['plan']['high_pddl']) # temporally aligned with HL actions traj['low'] = {} traj['low']['dec_in_low_actions'] = [list() for _ in range(num_hl_actions)] traj['low']['dec_in_low_args'] = [list() for _ in range(num_hl_actions)] traj['low']['dec_out_low_actions'] = [list() for _ in range(num_hl_actions)] traj['low']['dec_out_low_args'] = [list() for _ in range(num_hl_actions)] traj['low']['bbox'] = [list() for _ in range(num_hl_actions)] traj['low']['centroid'] = [list() for _ in range(num_hl_actions)] traj['low']['mask'] = [list() for _ in range(num_hl_actions)] traj['low']['interact'] = [list() for _ in range(num_hl_actions)] low_actions = [list() for _ in range(num_hl_actions)] low_args = [list() for _ in range(num_hl_actions)] prev_high_idx = -1 for idx, a in enumerate(ex['plan']['low_actions']): # high-level action index (subgoals) high_idx = a['high_idx'] if high_idx != prev_high_idx: # add NoOp to indicate the terimination of low-level action prediction low_actions[prev_high_idx].append('NoOp') low_args[prev_high_idx].append('None') # add the high-level action name as the first input of low-level action decoding high_action = ex['plan']['high_pddl'][high_idx] high_arg = get_normalized_arg(high_action, 'high') low_actions[high_idx].append(high_action['discrete_action']['action']) low_args[high_idx].append(high_arg) prev_high_idx = high_idx low_arg = get_normalized_arg(a, 'low') low_action = a['discrete_action']['action'] if '_' in low_action: low_action = low_action.split('_')[0] low_actions[high_idx].append(low_action) low_args[high_idx].append(low_arg) # low-level bounding box (not used in the model) if 'bbox' in a['discrete_action']['args']: traj['low']['bbox'][high_idx].append(a['discrete_action']['args']['bbox']) xmin, ymin, xmax, ymax = [float(x) if x != 'NULL' else -1 for x in a['discrete_action']['args']['bbox']] traj['low']['centroid'][high_idx].append([ (xmin + (xmax - xmin) / 2) / self.image_size, (ymin + (ymax - ymin) / 2) / self.image_size, ]) else: traj['low']['bbox'][high_idx].append([]) traj['low']['centroid'][high_idx].append([]) # low-level interaction mask (Note: this mask needs to be decompressed) mask = a['discrete_action']['args']['mask'] if 'mask' in a['discrete_action']['args'] else None traj['low']['mask'][high_idx].append(mask) # interaction validity has_interact = 0 if low_action in NON_INTERACT_ACTIONS else 1 traj['low']['interact'][high_idx].append(has_interact) # add termination indicator for the last low-level action sequence low_actions[high_idx].append('NoOp') low_args[high_idx].append('None') for high_idx in range(num_hl_actions): actions, args = low_actions[high_idx], low_args[high_idx] traj['low']['dec_in_low_actions'][high_idx] = self.dec_in_vocab.seq_encode(actions) traj['low']['dec_in_low_args'][high_idx] = self.dec_in_vocab.seq_encode(args) traj['low']['dec_out_low_actions'][high_idx] = self.dec_out_vocab_low.seq_encode(actions)[1:] traj['low']['dec_out_low_args'][high_idx] = self.dec_out_vocab_arg.seq_encode(args)[1:] self.stats['low action steps'][len(actions)] += 1 # check alignment between step-by-step language and action sequence segments action_low_seg_len = num_hl_actions lang_instr_seg_len = len(traj['lang']['instr']) seg_len_diff = action_low_seg_len - lang_instr_seg_len if seg_len_diff != 1: assert (seg_len_diff == 2) # sometimes the alignment is off by one ¯\_(ツ)_/¯ # print('Non align data file:', traj['raw_path']) # Because 1) this bug only in a few trajs 2) merge is very troublesome # we simply duplicate the last language instruction to align traj['lang']['instr_tokenize'].append(traj['lang']['instr_tokenize'][-1]) traj['lang']['instr'].append(traj['lang']['instr'][-1]) def process_images(self, ex, traj): def name2id(img_name): return int(img_name.split('.')[0]) num_hl_actions = len(ex['plan']['high_pddl']) traj['high']['images'] = [] traj['low']['images'] = [list() for _ in range(num_hl_actions)] prev_high_idx, prev_low_idx = -1, -1 for img in ex['images']: high_idx, low_idx = img['high_idx'], img['low_idx'] if high_idx != prev_high_idx: # reach a new high action, use the current image as the visual observation # 1) to predict the current high action # 2) to predict the termination low action of the previous high action traj['high']['images'].append(name2id(img['image_name'])) if prev_high_idx >= 0: traj['low']['images'][prev_high_idx].append(name2id(img['image_name'])) prev_high_idx = high_idx if low_idx != prev_low_idx: # reach a new low action, use the current image as the visual observation # to predict the current low action traj['low']['images'][high_idx].append(name2id(img['image_name'])) prev_low_idx = low_idx # add the last frame for predicting termination action NoOp traj['high']['images'].append(name2id(img['image_name'])) traj['low']['images'][high_idx].append(name2id(img['image_name'])) # length check assert(len(traj['high']['images']) == len(traj['high']['dec_in_high_actions']) - 1) for hi in range(num_hl_actions): assert(len(traj['low']['images'][hi]) == len(traj['low']['dec_in_low_actions'][hi]) - 1) # use mask rcnn for object detection if traj['repeat_idx'] != 0 or self.args.skip_detection: return # for different annotations only need do object detection once all_imgs = [i for i in traj['high']['images']] for img_list in traj['low']['images']: all_imgs += img_list all_imgs = sorted(list(set(all_imgs))) dp = traj['raw_path'].replace('data/', '') results_masks, results_others = {}, {} for model_type in ['all', 'sep']: for idx in range(0, len(all_imgs), self.batch_size): batch = all_imgs[idx: idx + self.batch_size] img_path_batch = [self.image_data[dp][b] for b in batch] lock = threading.Lock() if model_type == 'all': masks, boxes, classes, scores = self.mrcnn.get_mrcnn_preds_all(img_path_batch) else: masks, boxes, classes, scores = self.mrcnn.get_mrcnn_preds_sep(img_path_batch) lock.release() # results_masks += masks for i, img_name in enumerate(batch): results_others[img_name] = { 'bbox': [[int(coord) for coord in box] for box in boxes[i]], 'score': [float(s) for s in scores[i]], 'class': classes[i], 'label': None, } results_masks[img_name] = [np.packbits(m) for m in masks[i]] self.stats['detection num'][len(classes[i])] += 1 self.stats['object num'][len([j for j in classes[i] if j in OBJECTS_DETECTOR])] += 1 self.stats['receptacle num'][len([j for j in classes[i] if j in STATIC_RECEPTACLES])] += 1 # get object grounding labels for hidx, bbox_seq in enumerate(traj['low']['bbox']): for lidx, gt in enumerate(bbox_seq): if gt: self.interact_num += 1 img_idx = traj['low']['images'][hidx][lidx] preds = results_others[img_idx]['bbox'] if not preds: continue max_iou = -1 for obj_idx, pred in enumerate(preds): iou = bb_IoU(pred, gt) if iou > max_iou: max_iou = iou best_obj_id, best_pred = obj_idx, pred true_cls = ACTION_ARGS[traj['low']['dec_out_low_args'][hidx][lidx]] try: pred_cls = results_others[img_idx]['class'][best_obj_id] except: print('-'*10) print('traj:', traj['raw_path'], 'img:', img_idx) if max_iou > 0.7 or true_cls in pred_cls or pred_cls in true_cls: results_others[img_idx]['label'] = best_obj_id self.good_detect_num[model_type] += 1 # else: # print('-'*30) # print('traj:', traj['raw_path'], 'img:', img_idx) # print('iou: %.3f'%max_iou) # print('true class:', true_cls) # print('pred class:', pred_cls) # print('true:', gt) # print('pred:', best_pred) # save object detection results pp_save_path = traj['pp_path'] pk_save_path = os.path.join(pp_save_path, "masks_%s.pkl"%model_type) json_save_path = os.path.join(pp_save_path, "bbox_cls_scores_%s.json"%model_type) with open(pk_save_path, 'wb') as f: pickle.dump(results_masks, f) with open(json_save_path, 'w') as f: json.dump(results_others, f, indent=4) def prepare_data_instances(self): statistic = {'horizon': Counter() ,'rotation': Counter(), 'mani': Counter(), 'navi': Counter()} mani_subgoal = {} for split, tasks in self.dataset_splits.items(): if 'test' in split: continue print('Preparing %s data instances'%split) high_instances = [] low_instances_mani = [] low_instances_navi = [] low_mani_seed = [] low_navi_seed = [] det_res_all = {} det_res_sep = {} cc=0 for task in tqdm(tasks): # cc+=1 # if cc == 30: # break task_path = os.path.join(self.pp_path, split, task['task']) traj_path = os.path.join(task_path, 'ann_%d.json'%task['repeat_idx']) with open(traj_path, 'r') as f: traj = json.load(f) with open(os.path.join(traj['raw_path'], 'traj_data.json'), 'r') as f: traj_raw = json.load(f) init_action = traj_raw['scene']['init_action'] obj_det_path_all = os.path.join(task_path, 'bbox_cls_scores_all.json') obj_det_path_sep = os.path.join(task_path, 'bbox_cls_scores_sep.json') with open(obj_det_path_all, 'r') as f: obj_det_all = json.load(f) with open(obj_det_path_sep, 'r') as f: obj_det_sep = json.load(f) for img_idx in obj_det_all: det_res_all[task_path+img_idx] = obj_det_all[img_idx] det_res_sep[task_path+img_idx] = obj_det_sep[img_idx] # process the vision input num_high_without_NoOp = len(traj['lang']['instr']) for hidx in range(num_high_without_NoOp + 1): lang_input = traj['lang']['goal'] # list of int vision_input = traj['high']['images'][hidx] actype_history_input = traj['high']['dec_in_high_actions'][:hidx+1] arg_history_input = traj['high']['dec_in_high_args'][:hidx+1] actype_output = traj['high']['dec_out_high_actions'][hidx] arg_output = traj['high']['dec_out_high_args'][hidx] instance = { 'path': task_path, 'high_idx': hidx, 'lang_input': lang_input, 'vision_input': vision_input, 'actype_history_input': actype_history_input, 'arg_history_input': arg_history_input, 'actype_output': actype_output, 'arg_output': arg_output, } high_instances.append(instance) horizon = init_action['horizon'] rotation = init_action['rotation'] for hidx in range(num_high_without_NoOp): # check the category of subgoal sg_type = self.dec_in_vocab.id2w(traj['low']['dec_in_low_actions'][hidx][0]) sg_arg = self.dec_in_vocab.id2w(traj['low']['dec_in_low_args'][hidx][0]) subgoal = '%s(%s)'%(sg_type, sg_arg) low_action_seq = ' '.join(self.dec_in_vocab.seq_decode(traj['low']['dec_in_low_actions'][hidx][1:])) add_to_mani = split == 'train' and sg_type != 'GotoLocation' and subgoal not in statistic['mani'] add_to_navi = split == 'train' and sg_type == 'GotoLocation' and subgoal not in statistic['navi'] if add_to_mani: if sg_type not in mani_subgoal: mani_subgoal[sg_type] = Counter() mani_subgoal[sg_type][low_action_seq] += 1 if mani_subgoal[sg_type][low_action_seq] == 1: mani_subgoal[sg_type][low_action_seq+' (objs)'] = [sg_arg] elif sg_arg not in mani_subgoal[sg_type][low_action_seq+' (objs)']: mani_subgoal[sg_type][low_action_seq+' (objs)'].append(sg_arg) lang_input = traj['lang']['instr'][hidx] num_low_steps = len(traj['low']['dec_out_low_actions'][hidx]) vis_history = [] for low_idx in range(num_low_steps): vision_input = traj['low']['images'][hidx][low_idx] actype_history_input = traj['low']['dec_in_low_actions'][hidx][:low_idx+1] arg_history_input = traj['low']['dec_in_low_args'][hidx][:low_idx+1] actype_output = traj['low']['dec_out_low_actions'][hidx][low_idx] arg_output = traj['low']['dec_out_low_args'][hidx][low_idx] try: interact = traj['low']['interact'][hidx][low_idx] except: interact = 0 if actype_history_input[0] == 3: # gotolocation target_obj = self.dec_in_vocab.id2w(arg_history_input[0]) detected_objs = obj_det_sep[str(vision_input)]['class'] visible = 0 if target_obj not in detected_objs else 1 reached = 0 if low_idx == (num_low_steps - 1): reached = 1 if low_idx == (num_low_steps - 2): action = self.dec_out_vocab_low.id2w(traj['low']['dec_out_low_actions'][hidx][low_idx]) if action in {'LookDown', 'LookUp'} and visible: reached = 1 progress = (low_idx+1)/num_low_steps else: visible, reached, progress = -1, -1, -1 instance = { 'path': task_path, 'high_idx': hidx, 'low_idx': low_idx, 'interact': interact, 'lang_input': lang_input, 'vision_input': vision_input, 'actype_history_input': actype_history_input, 'arg_history_input': arg_history_input, 'vis_history_input': copy.deepcopy(vis_history), 'actype_output': actype_output, 'arg_output': arg_output, 'visible': visible, 'reached': reached, 'progress': progress, 'rotation': (rotation%360)/90, 'horizon': horizon/15, } statistic['horizon'][horizon] += 1 statistic['rotation'][rotation] += 1 if self.dec_out_vocab_low.id2w(actype_output) == 'RotateRight': rotation += 90 elif self.dec_out_vocab_low.id2w(actype_output) == 'RotateLeft': rotation -= 90 elif self.dec_out_vocab_low.id2w(actype_output) == 'LookUp': horizon += 15 elif self.dec_out_vocab_low.id2w(actype_output) == 'LookDown': horizon -= 15 vis_history.append(vision_input) if actype_history_input[0] == 3: # gotolocation low_instances_navi.append(instance) else: low_instances_mani.append(instance) if add_to_mani: low_mani_seed.append(instance) if add_to_navi: low_navi_seed.append(instance) statistic['mani'][subgoal] += 1 statistic['navi'][subgoal] += 1 print('high len:', len(high_instances)) print('low mani len:', len(low_instances_mani)) print('low navi len:', len(low_instances_navi)) statistic['%s high len'%split] = len(high_instances) statistic['%s low-mani len'%split] = len(low_instances_mani) statistic['%s low-navi len'%split] = len(low_instances_navi) if split == 'train': statistic['train low-navi seed len'] = len(low_navi_seed) statistic['train low-mani seed len'] = len(low_mani_seed) high_save_path = os.path.join(self.pp_path, '%s_high_action_instances.json'%split) with open(high_save_path, 'w') as f: json.dump(high_instances, f, indent=2) low_save_path = os.path.join(self.pp_path, '%s_low_action_instances_mani.json'%split) with open(low_save_path, 'w') as f: json.dump(low_instances_mani, f, indent=2) with open(low_save_path.replace('mani', 'navi'), 'w') as f: json.dump(low_instances_navi, f, indent=2) if split == 'train': low_save_path = os.path.join(self.pp_path, '%s_low_action_seed_mani.json'%split) with open(low_save_path, 'w') as f: json.dump(low_mani_seed, f, indent=2) with open(low_save_path.replace('mani', 'navi'), 'w') as f: json.dump(low_navi_seed, f, indent=2) with open(os.path.join(self.pp_path, 'mani_subgoals.json'), 'w') as f: json.dump(mani_subgoal, f, indent=2) det_all_save_path = os.path.join(self.pp_path, '%s_det_res_all.json'%split) with open(det_all_save_path, 'w') as f: json.dump(det_res_all, f, indent=2) det_sep_save_path = os.path.join(self.pp_path, '%s_det_res_sep.json'%split) with open(det_sep_save_path, 'w') as f: json.dump(det_res_sep, f, indent=2) for k,v in statistic.items(): if isinstance(v, dict): statistic[k] = dict(sorted(v.items(), key=lambda item: item[0])) with open(os.path.join(self.pp_path, 'data_statistics.json'), 'w') as f: json.dump(statistic, f, indent=2) def run(func, task_queue, pbar): while task_queue.qsize() > 0: lock.acquire() try: k, task = task_queue.get(False) except: lock.release() return lock.release() func(k,task) pbar.update(1) if __name__ == '__main__': from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser # os.system("taskset -p 0xffffffff %d" % os.getpid()) parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) Config(parser) parser.add_argument('--skip_detection', action='store_true') args = parser.parse_args() pprint.pprint(args) dataset = AlfredDataset(args) # dataset.prepare_data_instances() ``` #### File: models/config/configs.py ```python import logging, os, time def Config(parser): # general settings parser.add_argument('--seed', default=123, help='random seed', type=int) parser.add_argument('--raw_data', default='data/full_2.1.0', help='dataset folder') parser.add_argument('--pp_data', default='data/full_2.1.0_pp', help='folder name for preprocessed data') parser.add_argument('--img_data', default='data/full_2.1.0_imgs.hdf5', help='path of the hdf5 data file storing the images of full_2.1.0') parser.add_argument('--splits', default='data/splits/oct21.json', help='json file containing train/dev/test splits') parser.add_argument('--all_detector_path', default='models/detector/maskrcnn_all.pth', help='path of loading pretrained mask rcnn model for all 105 objects') parser.add_argument('--obj_detector_path', default='models/detector/mrcnn_object.pth', help='path of loading pretrained mask rcnn model for all 73 movable objects') parser.add_argument('--rec_detector_path', default='models/detector/mrcnn_receptacle.pth', help='path of loading pretrained mask rcnn model for all 32 static receptacles') parser.add_argument('--preprocess', action='store_true', help='store preprocessed data to json files') parser.add_argument('--exp_temp', default='exp', help='temp experimental sub directory for saving models and logs') parser.add_argument('--name_temp', default='exp', help='temp experimental name for saving models and logs') parser.add_argument('--use_templated_goals', help='use templated goals instead of human-annotated goal descriptions', action='store_true') parser.add_argument('--image_size', default=300, type=int, help='image pixel size (assuming square shape eg: 300x300)') parser.add_argument('--vocab_size', default=1500, type=int, help='vocabulary size') # model settings parser.add_argument('--max_enc_length', default=160, type=int, help='maximum length of encoder input') parser.add_argument('--use_bert', action='store_true', help='use a pretrained bert model as the encoder') parser.add_argument('--bert_model', default='bert', choices=['bert', 'albert', 'mobilebert', 'roberta'], help='which pretrained bert to use') parser.add_argument('--bert_lr_schedule', action='store_true', help='use a warmup-linear-decay lr scheduler for bert') parser.add_argument('--enc_layer_num', default=4, type=int) parser.add_argument('--head_num', default=4, type=int) parser.add_argument('--hidden_dim', default=512, type=int) parser.add_argument('--inner_dim', default=2048, type=int) parser.add_argument('--dropout', default=0.0, type=float, help='dropout rate for self-attention block hidden states') parser.add_argument('--drop_input', default=0.0, type=float, help='dropout rate for input feats') parser.add_argument('--topk_objs', default=30, type=int, help='use top k object proposals detected by the object detector module') parser.add_argument('--confidence', default=0.4, help='object proposals lower than the confidence score wil be pruned', type=float) parser.add_argument('--detector_type', default='sep', type=str, choices=['all', 'sep'], help='use a single mrcnn model to detect all the objects or two mrcnn models to detect movable objects and static receptacles separately') parser.add_argument('--lang_max_length', default=64, type=int, help='cutoff to language input to lang_max_length') parser.add_argument('--history_max_length', default=32, type=int, help='only keep the history_max_length most recent actions') parser.add_argument('--emb_dim', default=300, type=int, help='word embedding size') parser.add_argument('--emb_init', default='xavier', help='word embedding initialization weights') parser.add_argument('--emb_freeze', action='store_true', help='freeze word embedding') parser.add_argument('--pred_head_pos', default='cls', type=str, choices=['cls', 'sep'], help='To use the first [CLS] output to make all predictions [cls] or use the final positions to of actions [sep]') # training settings parser.add_argument('--train_level', default='mix', type=str, choices=['mix', 'low', 'high'], help='train the model on low-level data only, high-level data only or mixed or both') parser.add_argument('--train_proportion', default=100, type=int, help='percentage of training data to use') parser.add_argument('--train_one_shot', action='store_true', help='use one-shot seed data to train') parser.add_argument('--valid_metric', default='type', type=str, choices=['type','arg', 'mask'], help='validation metric to select the best model') parser.add_argument('--low_data', default='all', type=str, choices=['all', 'mani', 'navi'], help='train the model on low-level data only, high-level data only or mixed or both') parser.add_argument('--resume', help='load a checkpoint') parser.add_argument('--batch', help='batch size', default=512, type=int) parser.add_argument('--epoch', help='number of epochs', default=50, type=int) parser.add_argument('--early_stop', help='validation check fail time before early stop training', default=5, type=int) parser.add_argument('--optimizer', default='adam', type=str, choices=['adam'], help='optimizer type') parser.add_argument('--weigh_loss', action='store_true', help='weigh each loss term based on its uncertainty. Credit to Kendall et al CVPR18 paper') parser.add_argument('--focal_loss', help='use focal loss', action='store_true') parser.add_argument('--focal_gamma', default=2, type=float, help='gamma in focal loss') parser.add_argument('--beta2', default=0.999, type=float, help='beta2 for adam optimizer') parser.add_argument('--lr', default=1e-4, type=float, help='optimizer learning rate') parser.add_argument('--lr_scheduler', default='step', type=str, choices=['step', 'noam'], help='lr_scheduler type') parser.add_argument('--step_decay_epoch', default=2, type=int, help='num epoch to step decay learning rate') parser.add_argument('--step_decay_factor', default=0.5, type=float, help='decay factor of learning rate each step') parser.add_argument('--noam_lr_factor', default=0.1, type=float, help='optimizer learning rate factor for noam') parser.add_argument('--noam_warmup_iter', default=2000, type=int, help='warmup iteration number for step/noam') parser.add_argument('--auxiliary_loss_navi', help='additional navigation loss', action='store_true') parser.add_argument('--random_skip', help='random skip some data of each epoch', action='store_true') parser.add_argument('--disable_feat_lang', help='do not use language features as input', action='store_true') parser.add_argument('--disable_feat_vis', help='do not use visual features as input', action='store_true') parser.add_argument('--disable_feat_action_his', help='do not use action history features as input', action='store_true') parser.add_argument('--enable_feat_vis_his', help='use additional history visual features as input', action='store_true') parser.add_argument('--enable_feat_posture', help='use additional agent posture features as input', action='store_true') parser.add_argument('--num_threads', default=0, type=int, help='enable multi-threading parallelism for data preprocessing if num_thread >0') parser.add_argument('--gpu', help='use gpu', action='store_true') parser.add_argument('--fast_epoch', action='store_true', help='fast epoch during debugging') parser.add_argument('--debug', dest='debug', action='store_true') # model_structure_parameters = [ # 'enc_layer_num', 'head_num', 'hidden_dim', 'emb_dim', 'train_level', 'low_data', 'inner_dim', # ] # return model_structure_parameters ``` #### File: models/model/mmt.py ```python import os, sys, collections, time, logging import numpy as np import revtok # tokenizer import torch from torch import nn from torch.nn import functional as F sys.path.append(os.path.join(os.environ['ALFRED_ROOT'])) from models.nn.nn_utils import drop_input from models.nn.transformer import Encoder from models.nn.embedding import WordEmbedding, SpecialEmbedding from models.utils.bert_utils import get_bert_model, mmt_word_ids_to_bert_ids from gen.constants import * class MultiModalTransformer(nn.Module): def __init__(self, args, dataset): super().__init__() self.args = args self.dataset = dataset self.vocab = dataset.vocab self.bert_tknz = dataset.bert_tknz if args.use_bert else None self.action_vocab = dataset.dec_in_vocab self.dec_vocabs = { 'type_high': self.dataset.dec_out_vocab_high, 'type_low': self.dataset.dec_out_vocab_low, 'arg': self.dataset.dec_out_vocab_arg, } self.can_navi = args.train_level !='high' and args.low_data != 'mani' self.device = torch.device('cuda') if args.gpu else torch.device('cpu') self.seq_len = self.args.max_enc_length self.emb_dim = args.emb_dim self.image_size = self.args.image_size self.vis_len = args.topk_objs + 1 self.lang_len = args.lang_max_length self.his_len = args.history_max_length * 2 assert self.seq_len == (1+self.vis_len+self.lang_len+self.his_len) # 0: pad, 1: vision, 2: language, 3: action history, 4: cls (optional, may be used # to obtain a state representation) self.modal_indicator = self.totensor([4]+[1]*self.vis_len+[2]*self.lang_len+[3]*self.his_len) # self.print_parameters() self.high_actions = self.totensor(self.action_vocab.seq_encode(HIGH_ACTIONS)) self.low_actions = self.totensor(self.action_vocab.seq_encode(LOW_ACTIONS)) self.objs = self.totensor(self.action_vocab.seq_encode(ACTION_ARGS)) self.position_indexes = self.totensor(list(range(args.max_enc_length))) self.zero = self.totensor(0) self._construct_model() self.print_parameters() def totensor(self, x): return torch.tensor(x).to(device=self.device) def print_parameters(self): amount = 0 for p in self.parameters(): amount += np.prod(p.size()) print("total number of parameters: %.2fM" % (amount/1e6)) parameters = filter(lambda p: p.requires_grad, self.parameters()) amount = 0 for p in parameters: amount += np.prod(p.size()) print("number of trainable parameters: %.2fM" % (amount/1e6)) def _construct_model(self): args = self.args # input if not self.args.use_bert: # trainable positional embeddings self.positional_emb = nn.Embedding(self.seq_len, args.hidden_dim) # 0: pad, 1: vision, 2: language, 3: action history, 4: [CLS] self.modality_emb = nn.Embedding(5, args.hidden_dim) # the transformer encoder self.encoder = Encoder(n_layers=args.enc_layer_num, n_head=args.head_num, d_model=args.hidden_dim, d_inner=args.inner_dim, dropout=args.dropout) # word embedding for natural language self.word_emb = WordEmbedding(args.emb_dim, self.vocab, trainable=not args.emb_freeze, init_method=args.emb_init, pretrain_path='data/glove840B300d_extracted.pkl') # token embedding for action types and arguments (objects) self.action_emb = SpecialEmbedding(args, self.word_emb, self.vocab, self.action_vocab) # self.action_emb = nn.Embedding(len(self.action_vocab), args.emb_dim) # features -> transformer encoder input self.vision_to_enc_input = nn.Sequential( nn.Linear(args.emb_dim + 7, args.hidden_dim), nn.LayerNorm(args.hidden_dim, eps=1e-6) ) self.lang_to_enc_input = nn.Sequential( self.word_emb, nn.Linear(args.emb_dim, args.hidden_dim), nn.LayerNorm(args.hidden_dim, eps=1e-6) ) self.action_to_enc_input = nn.Sequential( self.action_emb, nn.Linear(args.emb_dim, args.hidden_dim), nn.LayerNorm(args.hidden_dim, eps=1e-6) ) # historical visual features as additional input if self.args.enable_feat_vis_his: self.vis_his_to_enc_input = nn.Sequential( nn.Linear(args.emb_dim + 7, args.hidden_dim), nn.LayerNorm(args.hidden_dim, eps=1e-6) ) # agent posture features as additional input if self.args.enable_feat_posture: self.rotation_emb = nn.Embedding(4, args.hidden_dim) self.horizon_emb = nn.Embedding(12, args.hidden_dim) self.pos_ln = nn.LayerNorm(args.hidden_dim, eps=1e-6) else: self.encoder = get_bert_model(args) self.word_emb = self.encoder.embeddings.word_embeddings scale =torch.std(self.word_emb.weight[:1000]).item() self.action_emb = SpecialEmbedding(args, self.word_emb, self.vocab, self.action_vocab, self.bert_tknz) self.vis_feat_to_emb = nn.Sequential( nn.Linear(7, args.emb_dim), # nn.LayerNorm(args.emb_dim, eps=1e-6) ) nn.init.normal_(self.vis_feat_to_emb[0].weight, std=scale) nn.init.constant_(self.vis_feat_to_emb[0].bias, 0) self.arg_head = nn.Linear(args.hidden_dim, len(ACTION_ARGS)) self.high_head = nn.Linear(args.hidden_dim, len(HIGH_ACTIONS)) self.low_head = nn.Linear(args.hidden_dim, len(LOW_ACTIONS)) if self.args.enable_feat_vis_his: self.vis_his_to_enc_input = nn.Linear(args.emb_dim + 7, args.emb_dim) if self.args.enable_feat_posture: self.rotation_emb = nn.Embedding(4, args.hidden_dim) self.horizon_emb = nn.Embedding(12, args.hidden_dim) self.pos_ln = nn.LayerNorm(args.hidden_dim, eps=1e-6) nn.init.normal_(self.rotation_emb.weight, std=scale) nn.init.normal_(self.horizon_emb.weight, std=scale) # output # transformatinos before going into the classification heads if args.hidden_dim != args.emb_dim: self.fc1 = nn.Linear(args.hidden_dim, args.emb_dim) self.fc2 = nn.Linear(args.hidden_dim, args.emb_dim) self.fc3 = nn.Linear(args.hidden_dim, args.emb_dim) else: self.fc1 = self.fc2 = self.fc3 = nn.Identity() # navigation status monitoring if self.can_navi and self.args.auxiliary_loss_navi: self.visible_monitor = nn.Linear(args.hidden_dim, 1) self.reached_monitor = nn.Linear(args.hidden_dim, 1) self.progress_monitor = nn.Linear(args.hidden_dim, 1) self.dropout = nn.Dropout(args.dropout) # self.softmax = nn.Softmax(dim=1) def forward(self, batch, is_optimizing=True): task_type = batch['batch_type'][0] inputs, enc_masks, labels = self.process_batch(batch) if not self.args.use_bert: enc_output, attns_list = self.encoder(inputs, enc_masks) # enc_output: batch x seq_len x hid else: outputs = self.encoder(inputs_embeds=inputs, attention_mask =enc_masks, output_attentions=True) enc_output = outputs.last_hidden_state attns_list = outputs.attentions type_logits, arg_logits, mask_logits, navi_logits = self.outputs_to_logits(enc_output, attns_list, labels['type_pos'], labels['arg_pos'], task_type) #_bert if not is_optimizing: type_preds, arg_preds, mask_preds, navi_preds = self.pred(type_logits, arg_logits, mask_logits, navi_logits) return type_preds, arg_preds, mask_preds, navi_preds, labels type_loss, arg_loss, mask_loss, navi_loss = self.get_loss(type_logits, arg_logits, mask_logits, navi_logits, labels, task_type) return type_loss, arg_loss, mask_loss, navi_loss def process_batch(self, batch): """convert batch data to tensor matrix Args: batch: list of from items from AlfredPyTorchDataset Returns: inputs: encoder input matrix (tensor of size [batch x seq_len x hid]) enc_masks: input sequence masks (tensor of size [batch x seq_len]) labels: dict storing type: action type labels (tensor of size [batch]) arg: action argument labels (tensor of size [batch]) mask: interactive mask selection labels (list of tensor [1] or None) interact: whether mask prediction is required (list of True/False) type_pos: list of positions to perform argument prediction (+1 for type positions) arg_pos: list of positions to perform argument prediction vis_len: list of length of visual inputs (i.e. object number +1) """ for k,v in batch.items(): if isinstance(v, torch.Tensor): batch[k] = v.to(device = self.device, non_blocking=True) lang_feats = batch['lang_input'] vis_cls_col = batch['vision_cls'] if self.args.drop_input != 0: lang_feats =drop_input(lang_feats, self.args.drop_input, self.training) vis_cls_col = drop_input(vis_cls_col, self.args.drop_input, self.training) his_feats = batch['action_history_input'] vis_feat1 = self.action_emb(vis_cls_col) if not self.args.use_bert: vis_feat2 = batch['vision_feats'] vis_feats = torch.cat([vis_feat1, vis_feat2], dim=2) else: vis_feat2 = self.vis_feat_to_emb(batch['vision_feats']) vis_feats = vis_feat1 + vis_feat2 vis_his_feats = None if 'his_vis_cls' in batch: vis_his_feat1 = self.action_emb(batch['his_vis_cls']) # batch x vis_his_len x obj_num x emb_dim vis_his_feat2 = batch['his_vis_feat'] # batch x vis_his_len x obj_num x 7 vis_his_feats = torch.cat([vis_his_feat1, vis_his_feat2], dim=3).sum(dim=2) # batch x vis_his_len x (emb_dim+7) pos_feats = {'rotation': batch['rotation'], 'horizon': batch['horizon']} if 'rotation' in batch else None bs = len(lang_feats) feat2input = self.feats_to_inputs if not self.args.use_bert else self.feats_to_inputs_bert inputs = feat2input(lang_feats, vis_feats, his_feats, vis_his_feats, pos_feats) enc_masks = batch['seq_mask'] # batch x seq_len # cls_ = torch.ones((bs,1)).to(device=self.device, dtype=torch.long) # enc_masks = torch.cat([cls_, vis_cls_col, lang_feats, his_feats], dim=1) # enc_masks = (enc_masks != 0) # assert (enc_masks==batch['seq_mask']).sum() == enc_masks.shape[0]*enc_masks.shape[1] # print('vision:') # print(enc_masks[0][:32].data) # print(inputs[0][:10][:30].data) # print(vis_feat1[0][:10][:30].data) # print(batch['vision_feats'][0][:10].data) # print(vis_feat2[0][:10][:30].data) # print('language:') # print(lang_feats[0].data) # print(enc_masks[0][32:96].data) # print(inputs[0][32:66][:30].data) # print('action:') # print(enc_masks[0][96:].data) # print(inputs[0][96:117][:30].data) labels = { 'type': batch['actype_label'], 'arg': batch['arg_label'], 'mask': batch['mask_label'], 'interact': batch['interact'], 'type_pos': batch['type_pos'], 'arg_pos': batch['arg_pos'], } if 'visible_label' in batch: labels.update({ 'visible': batch['visible_label'], 'reached': batch['reached_label'], 'progress': batch['progress_label'], }) return inputs, enc_masks, labels def feats_to_inputs(self, lang_feats, vis_feats, his_feats, vis_his_feats=None, pos_feats=None): """convert features (indexes, vision features) to transformer inputs (embeddings) Args: lang_feats: word ids of size (batch, lang_len) vis_feats: vision features of size (batch, vis_len, vis_feat_dim) his_feats: action ids of size (batch, his_len) Returns: inputs: transformer inputs of size (batch, seq_len, hid) """ vis_in = self.vision_to_enc_input(vis_feats) #batch x vis_len x hid lang_in = self.lang_to_enc_input(lang_feats) # batch x lang_len x hid act_in = self.action_to_enc_input(his_feats) # batch x action_len x hid if vis_his_feats is not None: vis_his_in = self.vis_his_to_enc_input(vis_his_feats) # batch x (action_len/2-1) x hid act_in[:, fc00:e968:6179::de52:7100, :] = vis_his_in if pos_feats is not None: ro = self.rotation_emb(pos_feats['rotation']) ho = self.horizon_emb(pos_feats['horizon']) cls_in = self.pos_ln(ro+ho).unsqueeze(1) else: bs, hid = len(lang_feats), self.args.hidden_dim cls_in = torch.zeros(bs, 1, hid).to(device=self.device) #batch x 1 x hid token_emb = torch.cat([cls_in, vis_in, lang_in, act_in], dim=1) # batch x seq_len x hid modal_emb = self.modality_emb(self.modal_indicator) pos_emb = self.positional_emb(self.position_indexes) inputs = self.dropout(token_emb + modal_emb + pos_emb) # batch x seq_len x hid # inputs = token_emb + modal_emb + pos_emb # batch x seq_len x hid return inputs def feats_to_inputs_bert(self, lang_feats, vis_feats, his_feats, vis_his_feats=None, pos_feats=None): """convert features (indexes, vision features) to transformer inputs (embeddings) Args: lang_feats: word ids of size (batch, lang_len) vis_feats: vision features of size (batch, vis_len, vis_feat_dim) his_feats: action ids of size (batch, his_len) Returns: inputs: transformer inputs of size (batch, seq_len, hid) """ # vis_in = self.vision_to_emb_input(vis_feats) #batch x vis_len x emb vis_in = vis_feats #batch x vis_len x emb lang_in = self.word_emb(lang_feats) # batch x lang_len x emb act_in = self.action_emb(his_feats) # batch x action_len x emb if pos_feats is not None: ro = self.rotation_emb(pos_feats['rotation']) ho = self.horizon_emb(pos_feats['horizon']) cls_in = self.pos_ln(ro+ho).unsqueeze(1) else: bs, emb = len(lang_feats), self.args.emb_dim cls_in = torch.zeros(bs, 1, emb).to(device=self.device) #batch x 1 x emb input_emb = torch.cat([cls_in, vis_in, lang_in, act_in], dim=1) # batch x seq_len x emb # input_emb = self.input_emb(inputs_embeds=input_emb) # batch x seq_len x hid return input_emb def outputs_to_logits(self, enc_output, attns_list, type_pos, arg_pos, task_type): bs = len(enc_output) enum = list(range(bs)) if self.args.pred_head_pos == 'cls' and 'navi' in task_type: type_output = enc_output[:, 0, :] arg_output = enc_output[:, 0, :] else: type_output = enc_output[enum, type_pos] # batch x hid arg_output = enc_output[enum, arg_pos] # batch x hid weight_arg = self.action_emb(self.objs) # num_obj x emb_dim arg_logits = self.fc3(arg_output).mm(weight_arg.t()) # arg_logits = self.out_to_obj(arg_output) # batch x num_obj mask_logits, navi_logits = [], {} if 'high' in task_type: weight_high = self.action_emb(self.high_actions) # num_high x emb_dim type_logits = self.fc1(type_output).mm(weight_high.t()) # type_logits = self.out_to_high(type_output) # batch x num_high elif 'low' in task_type: weight_low = self.action_emb(self.low_actions) # num_high x emb_dim type_logits = self.fc2(type_output).mm(weight_low.t()) # type_logits = self.out_to_low(type_output) # batch x num_low # if not self.args.use_bert: attns = attns_list[-1] # last layer attns: batch x num_head x q_len x v_len attns = attns.sum(dim=1) # sum/select of heads: b x q_len x v_len # attn of arg prediction token over each vision input if self.args.pred_head_pos == 'cls' and 'navi' in task_type: mask_logits = attns[:, 0, 1:(self.args.topk_objs+2)] # batch x vis_len else: mask_logits = attns[enum, arg_pos, 1:(self.args.topk_objs+2)] # batch x vis_len # else: # mask_out = enc_output[enum, arg_pos] #enc_output[:, 0, :] # mask_logits = self.mask_prediction_head(mask_out) if self.args.auxiliary_loss_navi and 'navi' in task_type: cls_output = enc_output[:, 0, :] # batch x hid navi_logits['visible'] = self.visible_monitor(cls_output) navi_logits['reached'] = self.reached_monitor(cls_output) navi_logits['progress'] = self.progress_monitor(cls_output) return type_logits, arg_logits, mask_logits, navi_logits def get_loss(self, type_logits, arg_logits, mask_logits, navi_logits, labels, task_type): mask_loss, navi_loss = self.zero, {} if self.args.focal_loss: bs = len(type_logits) enum = list(range(bs)) type_probs = F.softmax(type_logits, dim=1)[enum, labels['type']] type_loss = F.cross_entropy(type_logits, labels['type'], reduction='none') type_loss = torch.mean(type_loss * (1-type_probs) ** self.args.focal_gamma) arg_probs = F.softmax(arg_logits, dim=1)[enum, labels['arg']] arg_loss = F.cross_entropy(arg_logits, labels['arg'], ignore_index=-1, reduction='none') arg_loss = torch.mean(arg_loss * (1-arg_probs) ** self.args.focal_gamma) if 'mani' in task_type: mask_probs = F.softmax(mask_logits, dim=1)[enum, labels['mask']] mask_loss = F.cross_entropy(mask_logits, labels['mask'], ignore_index=-1, reduction='none') mask_loss = torch.mean(mask_loss * (1-mask_probs) ** self.args.focal_gamma) else: type_loss = F.cross_entropy(type_logits, labels['type']) arg_loss = F.cross_entropy(arg_logits, labels['arg'], ignore_index=-1) # mask_loss = self.totensor(0.0) if 'mani' in task_type: mask_loss = F.cross_entropy(mask_logits, labels['mask'], ignore_index=-1) if self.args.auxiliary_loss_navi and 'navi' in task_type: l_v = F.binary_cross_entropy_with_logits(navi_logits['visible'].view(-1), labels['visible'], reduction='none') l_r = F.binary_cross_entropy_with_logits(navi_logits['reached'].view(-1), labels['reached'], reduction='none') l_p = 0.5 * (torch.sigmoid(navi_logits['progress']).view(-1) - labels['progress']).square() navi_loss['visible'] = l_v[labels['visible']!=-1].mean() navi_loss['reached'] = l_r[labels['reached']!=-1].mean() navi_loss['progress'] = l_p[labels['progress']!=-1].mean() return type_loss, arg_loss, mask_loss, navi_loss def pred(self, type_logits, arg_logits, mask_logits, navi_logits): type_preds = torch.argmax(type_logits, dim=1) arg_preds = torch.argmax(arg_logits, dim=1) mask_preds = torch.argmax(mask_logits, dim=1) if mask_logits != [] else [] navi_preds = {} if navi_logits != {}: navi_preds['visible'] = (navi_logits['visible']>0.5).view(-1) navi_preds['reached'] = (navi_logits['reached']>0.5).view(-1) navi_preds['progress'] = torch.sigmoid(navi_logits['progress'].view(-1)) return type_preds, arg_preds, mask_preds, navi_preds def step(self, observations, task_type, topk=1): # language lang_feats = self.lang_obs_to_feats(observations['lang']) # current vision vis_feat_dim = self.emb_dim+7 if not self.args.use_bert else self.emb_dim if observations['vis'] is None: vis_feats = torch.zeros((self.vis_len, vis_feat_dim), device=self.device) # vis_len x (emb_dim+7) vis_cls_col = torch.zeros((self.vis_len, ), dtype=torch.long, device=self.device) # vis_len else: vis_feats, vis_cls_col = self.vis_obs_to_feats(*observations['vis']) # history actions his_feats = self.action_history_to_feats(observations['act_his']) # history visions and posture if 'navi' not in task_type: vis_his_feats = pos_feats = None else: vis_his_feats = self.vis_his_obs_to_feats(observations['vis_his']) pos_feats = {k: self.totensor(v).unsqueeze(0) for k,v in observations['pos'].items()} feats_input = (lang_feats.unsqueeze(0), vis_feats.unsqueeze(0), his_feats.unsqueeze(0), vis_his_feats, pos_feats) feat2input = self.feats_to_inputs if not self.args.use_bert else self.feats_to_inputs_bert inputs = feat2input(*feats_input) enc_masks = torch.cat([self.totensor([1]), vis_cls_col, lang_feats, his_feats], dim=0) enc_masks = (enc_masks != 0) # print('action_history', action_history) # print('enc_masks', enc_masks) if not self.args.use_bert: enc_output, attns_list = self.encoder(inputs, enc_masks) # enc_output: batch x seq_len x hid else: outputs = self.encoder(inputs_embeds=inputs, attention_mask=enc_masks.unsqueeze(0), output_attentions=True) enc_output = outputs.last_hidden_state attns_list = outputs.attentions arg_pos = enc_masks.nonzero()[-1] type_pos = arg_pos - 1 # print('type_pos', type_pos, 'arg_pos:', arg_pos) type_logits, arg_logits, mask_logits, _ = self.outputs_to_logits(enc_output, attns_list, type_pos, arg_pos, task_type) # type_pos.unsqueeze(0), arg_pos.unsqueeze(0), level) level = task_type.split('_')[0] type_probs, type_preds = self.topk_preds(type_logits, topk) type_preds = self.dec_vocabs['type_%s'%level].seq_decode(type_preds) arg_probs, arg_preds = self.topk_preds(arg_logits, topk) arg_preds = self.dec_vocabs['arg'].seq_decode(arg_preds) if level == 'low': mask_probs, mask_preds = self.topk_preds(mask_logits, topk) else: mask_probs, mask_preds = [], [] preds = {'type': type_preds, 'arg': arg_preds, 'mask': mask_preds} probs = {'type': type_probs, 'arg': arg_probs, 'mask': mask_probs} return preds, probs def topk_preds(self, logits, topk): probs = F.softmax(logits.squeeze(), dim=0) probs_sorted, idx_sorted = probs.topk(min(topk, len(probs))) return probs_sorted.tolist(), idx_sorted.tolist() def lang_obs_to_feats(self, lang_obs): lang_widx = torch.zeros((self.lang_len,), dtype=torch.long, device=self.device) # lang_len if lang_obs is None: return lang_widx if self.args.use_bert: lang_obs = mmt_word_ids_to_bert_ids(lang_obs[1:-1], self.vocab, self.bert_tknz) actual_len = min(self.lang_len, len(lang_obs)) lang_widx[:actual_len] = self.totensor(lang_obs[:actual_len]) if not self.args.use_bert: lang_widx[lang_widx >= self.dataset.vocab.vocab_size] = 0 # logging.info(lang_widx) return lang_widx # lang_len def vis_obs_to_feats(self, boxes, classes, scores): obj_num = min(self.vis_len - 1, len(scores)) vis_feat_col = torch.zeros((self.vis_len, 7), device=self.device) # vis_len x 7 vis_cls_col = torch.zeros((self.vis_len, ), dtype=torch.long, device=self.device) # vis_len for obj_idx in range(obj_num): bbox = self.totensor(boxes[obj_idx]).to(torch.float) / self.image_size cls_idx = self.action_vocab.w2id(classes[obj_idx]) vis_feat_col[obj_idx+1][:4] = bbox vis_feat_col[obj_idx+1][4] = bbox[2]-bbox[0] vis_feat_col[obj_idx+1][5] = bbox[3]-bbox[1] vis_feat_col[obj_idx+1][6] = float(scores[obj_idx]) # 1d vis_cls_col[obj_idx + 1] = cls_idx vis_cls_col[0] = 1 cls_feat = self.action_emb(vis_cls_col) if not self.args.use_bert: vis_feat = torch.cat([cls_feat, vis_feat_col], dim=1) #vis_len x (emb_dim+7) else: vis_feat = cls_feat + self.vis_feat_to_emb(vis_feat_col) # print('vis_feat:', vis_feat.shape) return vis_feat, vis_cls_col def vis_his_obs_to_feats(self, vis_his): if vis_his is None: return None # history visual input vis_his_len = self.vis_his_len = self.args.history_max_length - 1 max_obj_num = self.max_obj_num = 10 his_vis_feat = torch.zeros((vis_his_len, max_obj_num, 7), device=self.device) # vis_his_len x max_obj_num x 7 his_vis_cls = torch.zeros((vis_his_len, max_obj_num), dtype=torch.long, device=self.device) # vis_his_len x max_obj_num for his_idx, dets in enumerate(vis_his[-vis_his_len:]): obj_num = min(max_obj_num, len(dets[0])) for obj_idx in range(obj_num): bbox = self.totensor(dets[0][obj_idx]).to(torch.float) / self.image_size cls_idx = self.action_vocab.w2id(dets[1][obj_idx]) his_vis_feat[his_idx][obj_idx][:4] = bbox his_vis_feat[his_idx][obj_idx][4] = bbox[2]-bbox[0] his_vis_feat[his_idx][obj_idx][5] = bbox[3]-bbox[1] his_vis_feat[his_idx][obj_idx][6] = float(dets[2][obj_idx]) his_vis_cls[his_idx][obj_idx] = cls_idx his_cls_feat = self.action_emb(his_vis_cls) # vis_his_len x max_obj_num x emb_dim his_vis_feat_all = torch.cat([his_cls_feat, his_vis_feat], dim=2) #vis_his_len x max_obj_num x (emb_dim+7) return his_vis_feat_all.sum(dim=1).unsqueeze(0) #1 x vis_his_len x (emb_dim+7) def action_history_to_feats(self, action_history_seq): action_seq = torch.zeros((self.his_len,), dtype=torch.long, device=self.device) if action_history_seq is None: return action_seq elif isinstance(action_history_seq[0], str): action_history_seq = self.action_vocab.seq_encode(action_history_seq) actual_len = min(self.his_len, len(action_history_seq)) action_seq[:actual_len] = self.totensor(action_history_seq[-actual_len:]) # logging.info(action_seq) return action_seq # his_len ```
{ "source": "5966466/SIMLR-python", "score": 3 }
#### File: SIMLR/src/dist2.py ```python import numpy as np def dist2(*args): if len(args) == 1: x = args[0] c = x elif len(args) == 2: x = args[0] c = args[1] else: raise ValueError("The number of input is uncorrect") if type(x) != np.ndarray or type(c) != np.ndarray: raise TypeError("Please input numpy.ndarray variable") ndata, dimx = x.shape ncentres, dimc = c.shape if dimx != dimc: raise ValueError("Data dimension does not match dimension of centres") n2 = np.dot(np.ones((ncentres, 1)), np.sum(x**2, axis=1).reshape(1, -1)).T + \ np.dot(np.ones((ndata, 1)), np.sum(c**2, axis=1).reshape(1, -1)) - \ 2*(np.dot(x, c.T)) if True in (n2<0).flatten(): n2[n2<0] = 0 return n2 ``` #### File: SIMLR/src/large_multipleK.py ```python import numpy as np from scipy.stats import norm from .dist2 import dist2 import pdb eps = np.finfo(np.double).eps def large_multipleK(val,ind,KK): # if type(x) != np.ndarray: # raise TypeError("Please input 'numpy.ndarray' type variable into function multipleK") val = val*val sigma = np.arange(2, 1-0.25, -0.25) allk = np.arange(np.ceil(KK/2), np.ceil(KK*1.5)+np.ceil(KK/10), np.ceil(KK/10)) D_Kernels = [] for allk_l in allk: if allk_l < val.shape[1]: temp = np.mean(val[:,0:int(allk_l)], axis=1, keepdims=True) temp0 = 0.5*(np.tile(temp,(1,val.shape[1])) + temp[ind].squeeze())+ eps for sigma_j in sigma: temp = norm.pdf(val,0,sigma_j*temp0) temptemp = temp[:,0] temp = 0.5*(np.tile(temptemp[:,np.newaxis],(1,val.shape[1])) + temptemp[ind]) - temp; D_Kernels.append(temp+eps) D_Kernels = np.array(D_Kernels) return D_Kernels ``` #### File: SIMLR/src/multipleK.py ```python import numpy as np from scipy.stats import norm from .dist2 import dist2 eps = np.finfo(np.double).eps def multipleK(x): if type(x) != np.ndarray: raise TypeError("Please input 'numpy.ndarray' type variable into function multipleK") N = x.shape[0] Kernels = [] sigma = np.arange(2, 1-0.25, -0.25) Diff = dist2(x) T = np.sort(Diff) INDEX = np.argsort(Diff) m, n = Diff.shape allk = np.arange(10, 30+2, 2) for allk_l in allk: if allk_l < N-1: TT = np.mean(T[:,2-1:allk_l+1], axis=1, keepdims=True) + eps Sig = (np.tile(TT, n) + np.tile(TT.T, (n, 1))) / 2 Sig = Sig * (Sig>eps) + eps for sigma_j in sigma: W = norm.pdf(Diff, 0, sigma_j*Sig) Kernels.append((W+W.T)/2) Kernels = np.array(Kernels) D_Kernels = [] for K in Kernels: k = 1 / np.sqrt(np.diag(K)+1) G = K G_diag = np.diag(G).reshape(-1,1) D_temp = (np.tile(G_diag, len(G)) + np.tile(G_diag.T, (len(G), 1)) - 2*G) / 2 D_temp = D_temp - np.diag(np.diag(D_temp)) D_Kernels.append(D_temp) D_Kernels = np.array(D_Kernels) return D_Kernels ``` #### File: SIMLR/src/Network_Diffusion.py ```python import numpy as np from .dominateset import dominateset from .TransitionFields import TransitionFields from scipy.sparse import dia_matrix def Network_Diffusion(A, K): A = A - np.diag(np.diag(A)) P = dominateset(np.abs(A), min(K, len(A)-1)) * np.sign(A) DD = np.sum(np.abs(P.T), axis=0) P = P + np.eye(len(P)) + np.diag(DD) P = TransitionFields(P) D, U = np.linalg.eig(P) d = np.real(D + np.finfo(np.double).eps) alpha = 0.8 beta = 2 d = (1-alpha)*d / (1-alpha*(d**beta)) D = np.diag(np.real(d)) #U = np.real(U) W = np.dot(U, np.dot(D, U.T)) W = (W*(1-np.eye(len(W)))) / np.tile(1-np.diag(W).reshape(-1,1), len(W)) D = dia_matrix(np.diag(DD)) W = D.dot(W) W = (W + W.T) / 2 return W ``` #### File: SIMLR/src/TransitionFields.py ```python import numpy as np from .NE_dn import NE_dn def TransitionFields(W): zeroindex = np.nonzero(np.sum(W, axis=1) == 0)[0] W = W * len(W) W = NE_dn(W, 'ave') w = np.sqrt(np.sum(np.abs(W), axis=0)+np.finfo(np.double).eps) W = W / np.tile(w, (len(W),1)) W = np.dot(W, W.T) Wnew = W Wnew[zeroindex, :] = 0 Wnew[:, zeroindex] = 0 return Wnew ```
{ "source": "5966466/software-curriculum-design", "score": 2 }
#### File: managsys/data/views.py ```python from django.shortcuts import render, redirect from .models import App, FilesApp from register.models import Acc from django.http import HttpResponse import shutil, os from django.contrib.auth.decorators import login_required from django.conf import settings from django.utils import timezone #from data.funcs import get_file, check_dir from .funcs import * from django.http import FileResponse # Create your views here. @login_required def detail(request, account_id, prestatus='default'): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) files = check_dir(account) url = 'img/' + os.path.basename(account.img.url) content = { 'account': account, 'files': files, 'url': url, 'prestatus': prestatus, } return render(request, 'registers/homepage.html', content) @login_required def before_add(request, account_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) prestatus = 'appspace' content = { 'id': account_id, 'prestatus': prestatus, } return render(request, 'datas/add.html', content) @login_required def add(request, account_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) appName = request.POST['appName'] st, msg_path = make_dir(account, appName) if not st: prestatus = 'appspace' content = { 'id': account_id, 'prestatus': prestatus, 'error_message': msg_path } return render(request, 'datas/add.html', content) names = ['dataPre', 'dataPro', 'dataSho'] files = request.FILES.getlist('data') st, msg = uploadFile(files, names, msg_path) if not st: prestatus = 'appspace' content = { 'id': account_id, 'prestatus': prestatus, 'error_message': msg } return render(request, 'datas/add.html', content) otherFile = request.FILES.get('others') if otherFile is not None: st, msg = uploadZip(otherFile, msg_path) if not st: prestatus = 'appspace' content = { 'id': account_id, 'prestatus': prestatus, 'error_message': msg } return render(request, 'datas/add.html', content) account.app_set.create( name=account, appName=appName, path=msg_path ) prestatus = 'appspace' content = { 'message': "Successfully added", 'account': account, 'prestatus': prestatus, 'type': 1, } return render(request, 'datas/message.html', content) @login_required def application(request, account_id, app_id, error_message): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) app = App.objects.get(pk=app_id) files = check_dir(account) dates = [] for f in files: f = account.filesacc_set.get(name = f) dates.append(f.date) f_d = list(zip(files, dates)) url = 'img/' + os.path.basename(account.img.url) if error_message == 'NULL': error_message = None content = { 'id': account_id, 'error_message': error_message, 'app': app, 'f_d': f_d, 'url': url, } return render(request, 'datas/application.html', content) @login_required def manage_file(request, account_id, prestatus): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) files = check_dir(account) url = 'img/' + os.path.basename(account.img.url) prestatus = 'filespace' content = { 'account': account, 'files': files, 'url': url, 'prestatus': prestatus, } return render(request, 'registers/homepage.html', content) @login_required def delete_file(request, account_id, filename): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) os.remove(os.path.join(account.path, 'downloadfiles', filename)) delete_all(account, filename) files = check_dir(account) url = 'img/' + os.path.basename(account.img.url) prestatus = 'filespace' content = { 'message': "Successfully deleted", 'account': account, 'files': files, 'url': url, 'prestatus': prestatus, 'type': 1, } return render(request, 'registers/homepage.html', content) @login_required def before_upLog(request, account_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) prestatus = 'filespace' content = { 'account': account, 'prestatus': prestatus, } return render(request, 'datas/uplog.html', content) @login_required def upLog(request, account_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) file = request.FILES.get('data') if file is None: prestatus = 'filespace' content = { 'account': account, 'prestatus': prestatus, 'error_message': "Please select a log file to upload" } return render(request, 'datas/uplog.html', content) filename = file.name st, msg = get_file(file, os.path.join(account.path, \ 'downloadfiles', filename)) if not st: prestatus = 'filespace' content = { 'account': account, 'prestatus': prestatus, 'error_message': msg } return render(request, 'datas/uplog.html', content) file = account.filesacc_set.filter(name=filename) if list(file) == []: account.filesacc_set.create( name = filename, date = timezone.now() ) else: file[0].date = timezone.now() file[0].save() files = check_dir(account) url = 'img/' + os.path.basename(account.img.url) prestatus = 'filespace' content = { 'message': "Successfully upLoaded", 'account': account, 'files': files, 'url': url, 'prestatus': prestatus, 'type': 1, } return render(request, 'registers/homepage.html', content) @login_required def delete(request, account_id, app_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) app = App.objects.get(pk=app_id) app.delete() shutil.rmtree(app.path) prestatus = 'appspace' content = { 'message': "Successfully deleted", 'account': account, 'prestatus': prestatus, 'type': 1, } return render(request, 'datas/message.html', content) @login_required def before_revise(request, account_id, app_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) app = App.objects.get(pk=app_id) prestatus = 'appspace' account = Acc.objects.get(pk=account_id) content = { 'account': account, 'id': account_id, 'prestatus': prestatus, 'app': app, } return render(request, 'datas/revise.html', content) @login_required def revise(request, account_id, app_id): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) app = App.objects.get(pk=app_id) names = ['dataPre', 'dataPro', 'dataSho'] isModify = False for i in range(3): file = request.FILES.get('data%s' % (i+1)) path = os.path.join(app.path, names[i] + '.py') if file is not None: isModify = True st, msg = modifyFile(file, path) if not st: prestatus = 'appspace' content = { 'account': account, 'id': account_id, 'app': app, 'prestatus': prestatus, 'error_message': msg, } return render(request, 'datas/revise.html', content) otherFile = request.FILES.get('others') if otherFile is not None: st, msg = uploadZip(otherFile, app.path) if not st: prestatus = 'appspace' content = { 'id': account_id, 'prestatus': prestatus, 'error_message': msg } return render(request, 'datas/add.html', content) new_name = request.POST['appName'] if new_name == '': prestatus = 'appspace' content = { 'account': account, 'id': account_id, 'app': app, 'prestatus': prestatus, 'error_message': "Please input app Name", } return render(request, 'datas/revise.html', content) st, msg = modify_dir(app, new_name) if not st: prestatus = 'appspace' content = { 'account': account, 'id': account_id, 'app': app, 'prestatus': prestatus, 'error_message': msg, } return render(request, 'datas/revise.html', content) if isModify: for f in app.filesapp_set.all(): f.isAnalysis = False f.save() prestatus = 'appspace' content = { 'error_message': "Successfully revised", 'account': account, 'prestatus': prestatus, 'app': app, 'type': 2, } return render(request, 'datas/message.html', content) @login_required def show_loading(request, account_id, app_id, filename): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) #account = Acc.objects.get(pk=account_id) #app = App.objects.get(pk=app_id) content = { 'id': account_id, 'a_id': app_id, 'f': filename, } return render(request, 'datas/show_loading.html', content) @login_required def show_approx(request, account_id, app_id, filename): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) app = App.objects.get(pk=app_id) st, show = show_in_views(account, app, filename) if not st: content = { 'error_message': show, 'account': account, 'app': app, 'type': 2, } return render(request, 'datas/message.html', content) para = show.show_appro() para = showPara(*para) content = { 'para': para, 'account': account, 'id': app_id, 'f': filename, } return render(request, 'datas/show_approx.html', content) @login_required def show_detail(request, account_id, app_id, filename, item): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) app = App.objects.get(pk=app_id) st, show = show_in_views(account, app, filename) if not st: content = { 'error_message': show, 'account': account, 'app': app, 'type': 2, } return render(request, 'datas/message.html', content) if item == 'ALL': items, *values = show.show_all() else: items, *values = show.show_det(item) content = { 'items': items, 'values': list(zip(*values)), 'account': account, 'item': item, 'app': app, 'f': filename, } return render(request, 'datas/show_detail.html', content) @login_required def downloadLocal(request, account_id, filename): if request.user.acc.id != account_id: return redirect('%s?next=%s' % (settings.LOGIN_URL, request.path)) account = Acc.objects.get(pk=account_id) path = os.path.join(account.path, 'downloadfiles', filename) return FileResponse(open(path, 'rb'), as_attachment=True) ``` #### File: managsys/register/funcs.py ```python from .models import Acc, IPaddr import random import os from ftplib import FTP import paramiko import threading from django.utils import timezone """ def sentence_name(name_id): name_id = name_id.strip() try: if name_id.isdigit(): name_id = int(name_id) account = Acc.objects.get(id=name_id) else: account = Acc.objects.get(account_name=name_id) except Acc.DoesNotExist: return (True, None) else: #passwd = account.account_passwd return (False, account) """ def generate_id(): while 1: ids = int(random.uniform(0.1, 1) * 1e10) try: account = Acc.objects.get(id=ids) except Acc.DoesNotExist: break else: continue return ids def make_dir(ids): path = os.path.dirname(os.getcwd()) path = os.path.join(path, str(ids)) os.makedirs(path) path2 = os.path.join(path, 'downloadfiles') os.makedirs(path2) return path class Account_thread(threading.Thread): def __init__(self, target, args=(), kwargs={}): super().__init__() self.target = target self.args = args self.kwargs = kwargs self.result = (True, None) def run(self): self.result = self.target(*self.args, **self.kwargs) def get_result(self): return self.result class Account(): def __init__(self, account): self.account = account def add_server(self, IPv4, user, passwd, path, port=21): st, msg = self.check_ip(IPv4) if not st: return (st, msg) st, msg = self.check_port(port) if not st: return (st, msg) if user == '' or passwd == '' or path == '': return (False, "Please input") try: self.account.ipaddr_set.create( name=self.account, ipAddr=IPv4, userName=user, userPasswd=<PASSWORD>, port=port, serverPath=path ) except Exception as e: return (False, "Failed to add: " + str(e)) return (True, None) def add_multiserver(self, textPath): with open(textPath, 'r') as file: first = file.readline().strip().split(' ') while '' in first: first.remove('') second = first.copy() items = ['IPv4', 'port', 'user', 'passwd', 'path'] for i in items: if i not in second: print("hello") return (False, "Illegal text file format") second.remove(i) if second != []: print("hi") return (False, "Illegal text file format") threads = [] for i in file.readlines(): i = i.strip().split(' ') while '' in i: i.remove('') in_add = dict(zip(first, i)) thread = Account_thread(target=self.add_server, kwargs=in_add) thread.daemon = True threads.append(thread) thread.start() for thread in threads: thread.join() st, msg = thread.get_result() if not st: return (False, msg) return (True, None) def change_fileState(self, ip_choice): filename = os.path.basename(ip_choice.serverPath) file = self.account.filesacc_set.filter(name=filename) if list(file) == []: self.account.filesacc_set.create( name = os.path.basename(ip_choice.serverPath), date = timezone.now() ) else: file[0].date = timezone.now() file[0].save() def fetch_file_ftp(self, ip_choice): ftp=FTP() try: ftp.connect(ip_choice.ipAddr, ip_choice.port) ftp.login(ip_choice.userName, ip_choice.userPasswd) except Exception as e: return (False, "Couldn't connect to the server: " + str(e)) path_a = os.path.basename(ip_choice.serverPath) path_b = os.path.dirname(ip_choice.serverPath) try: ftp.cwd(path_b) fd = open(os.path.join(self.account.path, 'downloadfiles', path_a), \ 'wb') ftp.retrbinary('RETR '+ path_a, fd.write) except Exception as e: return (False, "Couldn't access to the file: " + str(e)) fd.close() self.change_fileState(ip_choice) return (True, None) def fetch_file_sftp(self, ip_choice): try: sf = paramiko.Transport(ip_choice.ipAddr, ip_choice.port) sf.connect(username=ip_choice.userName, password=ip_choice.userPasswd) sftp = paramiko.SFTPClient.from_transport(sf) except Exception as e: return (False, "Couldn't connect to the server: " + str(e)) path_a = os.path.basename(ip_choice.serverPath) try: sftp.get(ip_choice.serverPath.strip(), \ os.path.join(self.account.path, 'downloadfiles', path_a)) except Exception as e: return (False, "Couldn't access to the file: " + str(e)) self.change_fileState(ip_choice) return (True, None) def fetch_multifile(self, choice_list, d_type): if d_type.lower() == 'ftp': func = self.fetch_file_ftp elif d_type.lower() == 'sftp': func = self.fetch_file_sftp else: return (False, "No type match") threads = [] for choice_id in choice_list: ip_choice = IPaddr.objects.get(pk=choice_id) thread = Account_thread(target=func, args=(ip_choice,)) thread.daemon = True threads.append(thread) thread.start() for thread in threads: thread.join() st, msg = thread.get_result() if not st: return (False, msg) return (True, None) def modify_item(self, ip_choice, item, value): if item == 'ipAddr': st, msg = self.check_ip(value) if not st: return (st, msg) elif item == 'port': st, msg = self.check_port(value) if not st: return (st, msg) command = "ip_choice.%s = '%s'" % (item, value) try: exec(command) ip_choice.save() except Exception as e: return (False, "Failed to revise %s: %s" % (item, str(e))) return (True, None) def delete_item(self, ip_choice): ip_choice.delete() def delete_multifile(self, choice_list): threads = [] for choice_id in choice_list: ip_choice = IPaddr.objects.get(pk=choice_id) thread = Account_thread(target=self.delete_item, args=(ip_choice,)) thread.daemon = True threads.append(thread) thread.start() for thread in threads: thread.join() thread.get_result() return (True, None) def check_ip(self, IPv4): a = IPv4.split('.') if len(a) != 4: return (False, "Illegal IPv4 address") for i in a: if not i.isdigit(): return (False, "Illegal IPv4 address") if int(i) > 255: return (False, "Illegal IPv4 address") return (True, None) def check_port(self, port): if type(port) == int: return (True, None) elif not port.isdigit(): return (False, "Illegal Port") else: return (True, None) ``` #### File: software-curriculum-design/supplement/dataPre2.py ```python import torch import torchvision from torch import nn import torch.nn.functional as F import torchvision.transforms as transforms import sqlite3 import os import numpy as np import threading, time import zipfile, shutil from xdb_test import XDB_test import sys class DataPre(): def __init__(self, filepath, setpath): self.filepath = filepath.split('.')[0] self.setpath = setpath self.st_msg = (True, None) setName = os.path.basename(filepath) self.setName = setName.split('.')[0] self.tableName = 'DataPre' self.connection = sqlite3.connect(\ os.path.join(self.setpath, self.setName+'.db')) self.cursor = self.connection.cursor() path = os.path.join(self.setpath, self.setName) if not os.path.exists(path): os.mkdir(path) self.states = np.array(['Wrong', 'Right']) self.labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', \ 'dog', 'frog', 'horse', 'ship', 'truck'] self.lock = threading.Lock() #self.net = 0 #self.device = 0 #self.tups = [] def add_msg(self, msg): if self.st_msg[0]: self.st_msg = (False, msg) def execute_set(self, demand): self.cursor.execute(demand) self.connection.commit() data = self.cursor.fetchall() return data def create_table(self): dm = '''CREATE TABLE %s ( id integer NOT NULL PRIMARY KEY AUTOINCREMENT, labelled_img varchar(50) NULL, interfered_img varchar(50) NULL, state varchar(10) NULL );''' % self.tableName try: self.execute_set(dm) except Exception as e: self.add_msg(str(e)) def insert_table(self, labelled_img, interfered_img, state): dm = '''INSERT INTO %s(labelled_img, interfered_img, state) VALUES('%s', '%s', '%s');'''\ % (self.tableName, labelled_img, interfered_img, state) try: self.execute_set(dm) except Exception as e: self.add_msg(str(e)) def insert_table_all(self, tups): for tup in tups: dm = '''INSERT INTO %s(labelled_img, interfered_img, state) VALUES('%s', '%s', '%s');'''\ % (self.tableName, tup[0], tup[1], tup[2]) try: self.cursor.execute(dm) except Exception as e: self.add_msg(str(e)) try: self.connection.commit() except Exception as e: self.add_msg(str(e)) def get_pics(self, test_data): #net = torch.load(os.path.join(self.setpath, 'model'), map_location='cpu')['net'] #device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #net.to(device) #net.eval() tups = [] tol = len(test_data) for i, (inputs, name) in enumerate(test_data): if (i+1) % 10 != 0: continue inputs = inputs.to(self.device) outputs = self.net(inputs) pre_label = outputs.max(1)[1] lbs = [self.labels[i] for i in pre_label] sentc = list(np.array(lbs) == np.array(name)) sentc = [int(j) for j in sentc] sentc = list(self.states[sentc]) tup = list(zip(name, lbs, sentc)) tups.extend(tup) print('%s/%s' % (i, tol)) return tups def initialize(self): filepath = self.filepath + '.zip' try: z = zipfile.ZipFile(filepath, 'r') z.extractall(path=os.path.dirname(filepath)) except Exception as e: for i in a.namelist(): if os.path.isdir(i): shutil.rmtree(filepath) elif os.path.isfile(i): os.remove(filepath) self.st_msg = (False, str(e)) z.close() sys.path.append(self.filepath) import procdb procdb.update(self.filepath) sys.path.remove(self.filepath) transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) path = os.path.join(self.filepath, 'test_list.txt') test_set = XDB_test(path, transform = transform) test_data = torch.utils.data.DataLoader(test_set, batch_size = 128, shuffle = False) self.net = torch.load(os.path.join(self.setpath, 'model'))['net'] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.net.to(self.device) self.net.eval() return test_data def estab_table(self): self.create_table() test_data = self.initialize() print(time.ctime()) tups = self.get_pics(test_data) print(time.ctime()) self.insert_table_all(tups) print(time.ctime()) shutil.rmtree(self.filepath) def get_one_pic(self, t_d): for inputs, name in t_d: inputs = inputs.to(self.device) outputs = self.net(inputs) pre_label = outputs.max(1)[1] lbs = [self.labels[i] for i in pre_label] sentc = list(np.array(lbs) == np.array(name)) sentc = [int(j) for j in sentc] sentc = list(self.states[sentc]) tup = list(zip(name, lbs, sentc)) self.lock.acquire() self.tups.extend(tup) self.lock.release() def estab_table2(self): self.create_table() test_data = self.initialize() self.tups = [] t_d = [] for i, (inputs, name) in enumerate(test_data): t_d.append((inputs, name)) if (i+1) % 10 == 0: thread = threading.Thread(target=self.get_one_pic, args=(t_d,)) thread.daemon = True thread.start() print(i) t_d = [] if t_d != []: thread = threading.Thread(target=self.get_one_pic, args=(t_d,)) thread.daemon = True thread.start() print(i) thread.join() self.insert_table_all(self.tups) shutil.rmtree(self.filepath) def show(self): dm = "SELECT DISTINCT(labelled_img) FROM %s" % (self.tableName) data = self.execute_set(dm) print(data) print("hello") #for i in data: # print(i) ``` #### File: software-curriculum-design/supplement/dataPro.py ```python import sqlite3 import os import numpy as np import pickle class DataPro(): def __init__(self, pre): self.pre = pre self.path = os.path.join(pre.setpath, pre.setName) dm = "SELECT COUNT(*) FROM %s" % self.pre.tableName data = self.pre.execute_set(dm) if data[0][0] == 0: self.st_msg = (False, "There is no datum to analyze") os.remove(os.path.join(pre.setpath, pre.setName+'.db')) os.rmdir(self.path) else: self.st_msg = (True, None) def acc_Dates(self): dm = "SELECT DISTINCT(Dates) FROM %s" % self.pre.tableName data = self.execute_set(dm) date_dict = {i[0]:[] for i in data} for i in date_dict.keys(): dm = "SELECT Timing, user, IP, state FROM %s WHERE Dates = '%s'" \ % (self.pre.tableName, i) data = self.execute_set(dm) date_dict[i] = np.array(data) self.save(date_dict, 'Dates') def acc_user(self): dm = "SELECT DISTINCT user, IP FROM %s" % self.pre.tableName data = self.execute_set(dm) user_dict = {i:[] for i in data} for i in user_dict.keys(): dm = "SELECT Dates, Timing, state FROM %s WHERE user = '%s' AND IP = '%s'" \ % (self.pre.tableName, i[0], i[1]) data = self.execute_set(dm) user_dict[i] = np.array(data) self.save(user_dict, 'user') def acc_state(self): state_dict = {'Success': 0, 'Failure': 0} dm = "SELECT COUNT(*) FROM %s WHERE state = 'Success'" % self.pre.tableName data = self.execute_set(dm) state_dict['Success'] = data[0][0] dm = "SELECT COUNT(*) FROM %s WHERE state = 'Failure'" % self.pre.tableName data = self.execute_set(dm) state_dict['Failure'] = data[0][0] self.save(state_dict, 'state') def execute_set(self, demand): self.pre.cursor.execute(demand) self.pre.connection.commit() data = self.pre.cursor.fetchall() return data def save(self, data, name): with open(os.path.join(self.path, name+'.pkl'), 'wb') as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) def add_msg(self, msg): if self.st_msg[0]: self.st_msg = (False, msg) def acc_all(self): try: self.acc_Dates() self.acc_user() self.acc_state() except Exception as e: self.add_msg(str(e)) ``` #### File: software-curriculum-design/supplement/dataSho.py ```python import numpy as np import pickle, os class DataSho(): def __init__(self, pro): self.pro = pro def load(self, name): with open(os.path.join(self.pro.path, name+'.pkl'), 'rb') as f: return pickle.load(f) def show_items(self): return 'Dates', 'Timing', 'user', 'IP', 'state' def show_appro(self): chart = {'type': 'column'} title = {'text': 'Analyzed log'} date_dict = self.load('Dates') xAxis = {'categories': list(date_dict.keys())} yAxis = {'title': {'text': 'log10(Numbers)'}, 'type': 'logarithmic'} success = [] failure = [] log = True for i in date_dict.keys(): a = date_dict[i][:, 3] #success.append(np.log10(np.sum(a == 'Success')+1)) #failure.append(np.log10(np.sum(a == 'Failure')+1)) success.append(np.sum(a == 'Success')) failure.append(np.sum(a == 'Failure')) series = {"Success": success, "Failure": failure} #return series return chart, title, xAxis, yAxis, series #def show_det(self, return_value): # return self.show_date(return_value) def show_det(self, dates): dating = self.load('Dates')[dates] users = list(set(dating[:, 1])) user_ips = [] for u in users: rows = (dating[:, 1] == u) ips = list(set(dating[rows, 2])) user_ips.extend([(u, ip) for ip in ips]) success = [] failure = [] for user_ip in user_ips: rows = (dating[:, 1] == user_ip[0]) a = dating[rows, :] rows = (a[:, 2] == user_ip[1]) a = a[rows, :] success.append(np.sum(a=='Success')) failure.append(np.sum(a=='Failure')) user_ips = np.array(user_ips) users = list(user_ips[:, 0]) ips = list(user_ips[:, 1]) return ["user", "ip", "Success", "Failure"], users, ips, success, failure def show_all(self): user_ips = self.load('user') users = [] ips = [] datings = [] success = [] failure = [] for user_ip, mat in user_ips.items(): dating = list(set(mat[:, 0])) for d in dating: users.append(user_ip[0]) ips.append(user_ip[1]) datings.append(d) rows = (mat[:, 0] == d) a = mat[rows, 2] success.append(np.sum(a=='Success')) failure.append(np.sum(a=='failure')) namelist = ["user", "ip", "Date", "Success", "Failure"] return namelist, users, ips, datings, success, failure ```
{ "source": "596acres/django-livinglots-friendlyowners", "score": 2 }
#### File: django-livinglots-friendlyowners/livinglots_friendlyowners/views.py ```python from django.views.generic import CreateView, TemplateView from django_monitor.views import MonitorMixin class BaseAddFriendlyOwnerView(MonitorMixin, CreateView): def get_template_names(self): return ['livinglots/friendlyowners/add_friendlyowner.html',] class BaseAddFriendlyOwnerSuccessView(TemplateView): def get_template_names(self): return ['livinglots/friendlyowners/add_friendlyowner_success.html',] ```
{ "source": "596acres/django-livinglots", "score": 2 }
#### File: django-livinglots/livinglots/models.py ```python from django.apps import apps from django.conf import settings from django.core.exceptions import ImproperlyConfigured def get_model_name(name, optional=True): try: return settings.LIVING_LOTS['MODELS'][name] except KeyError: if not optional: raise ImproperlyConfigured(('Could not find a %s model. Did you ' 'set LIVING_LOTS.MODELS.%s in your ' 'settings.py?') % (name, name)) return None def get_model(name, optional=True): try: model_name = get_model_name(name, optional=optional) return apps.get_model(*model_name.split('.')) except Exception: if not optional: raise ImproperlyConfigured(('Could not find a %s model. Did you ' 'set LIVING_LOTS.MODELS.%s in your ' 'settings.py?') % (name, name)) return None def get_lot_model(): return get_model('lot') def get_lot_model_name(): return get_model_name('lot') def get_lotgroup_model(): return get_model('lotgroup') def get_lotlayer_model(): return get_model('lotlayer', optional=True) def get_organizer_model(): return get_model('organizer') def get_organizer_model_name(): return get_model_name('organizer') def get_owner_model(): return get_model('owner') def get_owner_model_name(): return get_model_name('owner') def get_owner_contact_model(): return get_model('owner_contact') def get_owner_contact_model_name(): return get_model_name('owner_contact') def get_owner_group_model(): return get_model('owner_group') def get_owner_group_model_name(): return get_model_name('owner_group') def get_parcel_model(): return get_model('parcel') def get_parcel_model_name(): return get_model_name('parcel') def get_pathway_model(): return get_model('pathway') def get_stewardproject_model(): return get_model('stewardproject') def get_stewardproject_model_name(): return get_model_name('stewardproject') def get_watcher_model(): return get_model('watcher') def get_watcher_model_name(): return get_model_name('watcher') ```
{ "source": "596acres/django-livinglots-steward", "score": 2 }
#### File: django-livinglots-steward/livinglots_steward/models.py ```python from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models from django.utils.translation import ugettext_lazy as _ from livinglots_organize.models import BaseOrganizer class OptedInStewardProjectManager(models.Manager): """ A manager that only returns StewardProject instances where the group asked to be included on the map. """ def get_queryset(self): return super(OptedInStewardProjectManager, self).get_queryset().filter( include_on_map=True, ) class StewardProjectMixin(models.Model): objects = models.Manager() opted_in = OptedInStewardProjectManager() project_name = models.CharField(_('project name'), max_length=256, help_text=_('The name of the project using this lot.'), ) use = models.ForeignKey('livinglots_lots.Use', limit_choices_to={'visible': True}, help_text=_('How is the project using the land?'), verbose_name=_('use'), ) support_organization = models.CharField(_('support organization'), max_length=300, blank=True, null=True, help_text=_("What is your project's support organization, if any?"), ) land_tenure_status = models.CharField(_('land tenure status'), choices=( ('owned', _('project owns the land')), ('licensed', _('project has a license for the land')), ('lease', _('project has a lease for the land')), ('access', _('project has access to the land')), ('not sure', _("I'm not sure")), ), default=_('not sure'), max_length=50, help_text=_('What is the land tenure status for the project? (This ' 'will not be shared publicly.)'), ) include_on_map = models.BooleanField(_('include on map'), default=True, help_text=_('Can we include the project on our map?'), ) class Meta: abstract = True class BaseStewardProject(StewardProjectMixin): started_here = models.BooleanField(default=False) content_type = models.ForeignKey(ContentType, related_name='+') object_id = models.PositiveIntegerField() content_object = GenericForeignKey('content_type', 'object_id') class Meta: abstract = True class BaseStewardNotification(StewardProjectMixin, BaseOrganizer): """ A notification from someone who is part of a stewarding project letting us know that they are stewards on a given lot. """ class Meta: abstract = True def __unicode__(self): return self.name ```
{ "source": "5977862/pyspider", "score": 2 }
#### File: database/sqlalchemy/resultdb.py ```python import re import six import time import json import sqlalchemy.exc from sqlalchemy import (create_engine, MetaData, Table, Column, String, Float, LargeBinary) from sqlalchemy.engine.url import make_url from pyspider.database.base.resultdb import ResultDB as BaseResultDB from pyspider.libs import utils from .sqlalchemybase import SplitTableMixin, result2dict class ResultDB(SplitTableMixin, BaseResultDB): __tablename__ = '' def __init__(self, url): self.table = Table('__tablename__', MetaData(), Column('taskid', String(64), primary_key=True, nullable=False), Column('url', String(1024)), Column('result', LargeBinary), Column('updatetime', Float(32)), mysql_engine='InnoDB', mysql_charset='utf8' ) self.url = make_url(url) if self.url.database: database = self.url.database self.url.database = None try: engine = create_engine(self.url, convert_unicode=True, pool_recycle=3600) engine.execute("CREATE DATABASE IF NOT EXISTS %s" % database) except sqlalchemy.exc.SQLAlchemyError: pass self.url.database = database self.engine = create_engine(url, convert_unicode=True, pool_recycle=3600) self._list_project() def _create_project(self, project): assert re.match(r'^\w+$', project) is not None if project in self.projects: return self.table.name = self._tablename(project) self.table.create(self.engine) @staticmethod def _parse(data): for key, value in list(six.iteritems(data)): if isinstance(value, six.binary_type): data[key] = utils.text(value) if 'result' in data: if isinstance(data['result'], bytearray): data['result'] = str(data['result']) data['result'] = json.loads(data['result']) return data @staticmethod def _stringify(data): if 'result' in data: data['result'] = utils.utf8(json.dumps(data['result'])) return data def save(self, project, taskid, url, result): if project not in self.projects: self._create_project(project) self._list_project() self.table.name = self._tablename(project) obj = { 'taskid': taskid, 'url': url, 'result': result, 'updatetime': time.time(), } if self.get(project, taskid, ('taskid', )): del obj['taskid'] return self.engine.execute(self.table.update() .where(self.table.c.taskid == taskid) .values(**self._stringify(obj))) else: return self.engine.execute(self.table.insert() .values(**self._stringify(obj))) def select(self, project, fields=None, offset=0, limit=None): if project not in self.projects: self._list_project() if project not in self.projects: return self.table.name = self._tablename(project) columns = [getattr(self.table.c, f, f) for f in fields] if fields else self.table.c for task in self.engine.execute(self.table.select() .with_only_columns(columns=columns) .order_by(self.table.c.updatetime.desc()) .offset(offset).limit(limit) .execution_options(autocommit=True)): yield self._parse(result2dict(columns, task)) def count(self, project): if project not in self.projects: self._list_project() if project not in self.projects: return 0 self.table.name = self._tablename(project) for count, in self.engine.execute(self.table.count()): return count def get(self, project, taskid, fields=None): if project not in self.projects: self._list_project() if project not in self.projects: return self.table.name = self._tablename(project) columns = [getattr(self.table.c, f, f) for f in fields] if fields else self.table.c for task in self.engine.execute(self.table.select() .with_only_columns(columns=columns) .where(self.table.c.taskid == taskid) .limit(1)): return self._parse(result2dict(columns, task)) ``` #### File: pyspider/scheduler/task_queue.py ```python import time import heapq import logging import threading try: from UserDict import DictMixin except ImportError: from collections import Mapping as DictMixin from .token_bucket import Bucket from six.moves import queue as Queue logger = logging.getLogger('scheduler') try: cmp except NameError: cmp = lambda x, y: (x > y) - (x < y) class InQueueTask(DictMixin): __slots__ = ('taskid', 'priority', 'exetime') __getitem__ = lambda *x: getattr(*x) __setitem__ = lambda *x: setattr(*x) __iter__ = lambda self: iter(self.__slots__) __len__ = lambda self: len(self.__slots__) keys = lambda self: self.__slots__ def __init__(self, taskid, priority=0, exetime=0): self.taskid = taskid self.priority = priority self.exetime = exetime def __cmp__(self, other): if self.exetime == 0 and other.exetime == 0: return -cmp(self.priority, other.priority) else: return cmp(self.exetime, other.exetime) def __lt__(self, other): return self.__cmp__(other) < 0 class PriorityTaskQueue(Queue.Queue): ''' TaskQueue Same taskid items will been merged ''' def _init(self, maxsize): self.queue = [] self.queue_dict = dict() def _qsize(self, len=len): return len(self.queue_dict) def _put(self, item, heappush=heapq.heappush): if item.taskid in self.queue_dict: task = self.queue_dict[item.taskid] changed = False if item.priority > task.priority: task.priority = item.priority changed = True if item.exetime < task.exetime: task.exetime = item.exetime changed = True if changed: self._resort() else: heappush(self.queue, item) self.queue_dict[item.taskid] = item def _get(self, heappop=heapq.heappop): while self.queue: item = heappop(self.queue) if item.taskid is None: continue self.queue_dict.pop(item.taskid, None) return item return None @property def top(self): while self.queue and self.queue[0].taskid is None: heapq.heappop(self.queue) if self.queue: return self.queue[0] return None def _resort(self): heapq.heapify(self.queue) def __contains__(self, taskid): return taskid in self.queue_dict def __getitem__(self, taskid): return self.queue_dict[taskid] def __setitem__(self, taskid, item): assert item.taskid == taskid self.put(item) def __delitem__(self, taskid): self.queue_dict.pop(taskid).taskid = None class TaskQueue(object): ''' task queue for scheduler, have a priority queue and a time queue for delayed tasks ''' processing_timeout = 10 * 60 def __init__(self, rate=0, burst=0): self.mutex = threading.RLock() self.priority_queue = PriorityTaskQueue() self.time_queue = PriorityTaskQueue() self.processing = PriorityTaskQueue() self.bucket = Bucket(rate=rate, burst=burst) @property def rate(self): return self.bucket.rate @rate.setter def rate(self, value): self.bucket.rate = value @property def burst(self): return self.bucket.burst @burst.setter def burst(self, value): self.bucket.burst = value def check_update(self): ''' Check time queue and processing queue put tasks to priority queue when execute time arrived or process timeout ''' self._check_time_queue() self._check_processing() def _check_time_queue(self): now = time.time() self.mutex.acquire() while self.time_queue.qsize() and self.time_queue.top and self.time_queue.top.exetime < now: task = self.time_queue.get_nowait() task.exetime = 0 self.priority_queue.put(task) self.mutex.release() def _check_processing(self): now = time.time() self.mutex.acquire() while self.processing.qsize() and self.processing.top and self.processing.top.exetime < now: task = self.processing.get_nowait() if task.taskid is None: continue task.exetime = 0 self.priority_queue.put(task) logger.info("processing: retry %s", task.taskid) self.mutex.release() def put(self, taskid, priority=0, exetime=0): '''Put a task into task queue''' now = time.time() task = InQueueTask(taskid, priority, exetime) self.mutex.acquire() if taskid in self.priority_queue: self.priority_queue.put(task) elif taskid in self.time_queue: self.time_queue.put(task) elif taskid in self.processing and self.processing[taskid].taskid: # force update a processing task is not allowed as there are so many # problems may happen pass else: if exetime and exetime > now: self.time_queue.put(task) else: self.priority_queue.put(task) self.mutex.release() def get(self): '''Get a task from queue when bucket available''' if self.bucket.get() < 1: return None now = time.time() self.mutex.acquire() try: task = self.priority_queue.get_nowait() self.bucket.desc() except Queue.Empty: self.mutex.release() return None task.exetime = now + self.processing_timeout self.processing.put(task) self.mutex.release() return task.taskid def done(self, taskid): '''Mark task done''' if taskid in self.processing: self.mutex.acquire() if taskid in self.processing: del self.processing[taskid] self.mutex.release() return True return False def delete(self, taskid): if taskid not in self: return False if taskid in self.priority_queue: self.mutex.acquire() del self.priority_queue[taskid] self.mutex.release() elif taskid in self.time_queue: self.mutex.acquire() del self.time_queue[taskid] self.mutex.release() elif taskid in self.processing: self.done(taskid) return True def size(self): return self.priority_queue.qsize() + self.time_queue.qsize() + self.processing.qsize() def is_processing(self, taskid): ''' return True if taskid is in processing ''' return taskid in self.processing and self.processing[taskid].taskid def __len__(self): return self.size() def __contains__(self, taskid): if taskid in self.priority_queue or taskid in self.time_queue: return True if taskid in self.processing and self.processing[taskid].taskid: return True return False if __name__ == '__main__': task_queue = TaskQueue() task_queue.processing_timeout = 0.1 task_queue.put('a3', 3, time.time() + 0.1) task_queue.put('a1', 1) task_queue.put('a2', 2) assert task_queue.get() == 'a2' time.sleep(0.1) task_queue._check_time_queue() assert task_queue.get() == 'a3' assert task_queue.get() == 'a1' task_queue._check_processing() assert task_queue.get() == 'a2' assert len(task_queue) == 0 ```
{ "source": "59de44955ebd/QMediaTool", "score": 2 }
#### File: 59de44955ebd/QMediaTool/myprocess.py ```python from PyQt5.QtCore import QProcess ######################################## # ######################################## class MyProcess (QProcess): def kill (self): if 'ffmpeg' in self.program() or 'bash' in self.program(): # exit cleanly by sending 'q' self.write(b'q') self.waitForBytesWritten() ok = self.waitForFinished(3000) if not ok: super().kill() else: super().kill() #self._proc.terminate() -> only for GUI apps, sends WM_CLOSE ```
{ "source": "59-lmq/MyDataDealForYOLOv2", "score": 3 }
#### File: 59-lmq/MyDataDealForYOLOv2/tray.py ```python # import os # import shutil # import xml.etree.ElementTree as ET # import cv2 # from numpy import zeros # # # def make_new_folder(folder_path): # """ # 用来创建新文件夹 # :param folder_path: 文件夹的位置 # :return: # """ # if os.path.exists(folder_path) is False: # print(f"[INFO] 文件夹{folder_path} 不存在,正在创建……") # os.mkdir(folder_path) # print(f"[INFO] 文件夹{folder_path} 创建完毕。") # # # def change_image_brightness(image, image_path, a=0.5, g=10): # """ # 用来改变图片的亮度,并保存到新的文件地址 # :param image: 输入的图片,需要opencv格式 # :param image_path: 需要保存的文件位置 # :param a: 亮度控制,0-1,默认为 0.5 # :param g: 默认为 10 # :return: # """ # h, w, ch = image.shape # src2 = zeros([h, w, ch], image.dtype) # dst = cv2.addWeighted(image, a, src2, 1 - a, g) # cv2.imshow('dst', dst) # cv2.waitKey(25) # cv2.imwrite(image_path, dst) # # # def copyh2t(file_path, new_file_path): # # shutil.copy(file_path, new_file_path) # # # def deal_xml(xml_path, file_name, user_path): # doc = ET.parse(xml_path) # root = doc.getroot() # sub1 = root.find('filename') # 找到filename标签, # sub1.text = file_name # sub2 = root.find('path') # sub3 = root.find('folder') # sub2.text = user_path + sub3.text + '\\' + file_name # doc.write(xml_path) # 保存修改 # # # def find_file(): # # 从标签文件中找到对应的文件并放在新的文件夹中 # this_path = os.getcwd() # xmls_path = '/new_x' # images_path = '/new_i' # new_xmls_path = '/new_xml' # new_images_path = '/new_images' # files_xml = os.listdir(this_path + xmls_path) # if os.path.exists('.' + new_xmls_path) == False: # os.makedirs('.' + new_xmls_path) # if os.path.exists('.' + new_images_path) == False: # os.makedirs('.' + new_images_path) # print(this_path) # # for file_ in files_xml: # print(file_) # if os.path.exists('.' + new_xmls_path + '/' + file_) == False: # os.makedirs('.' + new_xmls_path + '/' + file_) # if os.path.exists('.' + new_images_path + '/' + file_) == False: # os.makedirs('.' + new_images_path + '/' + file_) # path_xml_label = this_path + xmls_path + '/' + file_ # files_ = os.listdir(path_xml_label) # for file__ in files_: # print(file__) # xml_name = os.path.splitext(file__) # xml_path = path_xml_label + '/' + xml_name[0] + xml_name[1] # new_xml_path = this_path + new_xmls_path + '/' + file_ + '/' + xml_name[0] + xml_name[1] # image_path = this_path + images_path + '/' + file_ + '/' + xml_name[0] + '.jpg' # new_image_path = this_path + new_images_path + '/' + file_ + '/' + xml_name[0] + '.jpg' # copyh2t(image_path, new_image_path) # copyh2t(xml_path, new_xml_path) # # # def get_new_image(): # # 改变图片亮度,并复制粘贴标签文件 # a = [1.3] # this_path = os.getcwd() # data_path = "\\test_data\\" # img_path = 'Mr_Hai_2\\' # xml_path = 'Mr_Hai_xmls_2\\' # color_name = data_path + 'new_color_' # x_color_name = data_path + 'new_color_xmls_' # files = os.listdir(this_path + data_path + img_path) # # print(files) # for i in range(len(a)): # new_img_folder_path = this_path + color_name + str(i) + '_' + str(int(a[i]*10)) # new_xml_folder_path = this_path + x_color_name + str(i) + '_' + str(int(a[i]*10)) # make_new_folder(new_img_folder_path) # make_new_folder(new_xml_folder_path) # for step, file in enumerate(files): # print(step) # img_name_path = this_path + data_path + img_path + file # new_img_name_path = new_img_folder_path + "/" + file # # print(img_name_path, new_img_name_path) # img = cv2.imread(img_name_path) # img = cv2.resize(img, (224, 224)) # cv2.imshow('img', img) # # cv2.waitKey(1) # change_image_brightness(img, a[i], 10, new_img_name_path) # now_xml_path = this_path + data_path + xml_path + file.split('.')[0] + ".xml" # new_xml_path = new_xml_folder_path + "/" + file.split('.')[0] + ".xml" # shutil.copy(now_xml_path, new_xml_path) # # # # get_new_image() # # # def mian(): # # this_path = os.getcwd() # # # # # 将文件夹中的图片进行排序 # this_path = os.getcwd() # xml = '/test_data/raw_half_xmls' # images = '/test_data/raw_half_images' # path = this_path + xml # xml_path = path + '/' # images_path = this_path + images + '/' # user_path = "F:\\pythonProject\\TOOLS\\ForPictureAndVideo\\test_data\\raw_half_images" # files = os.listdir(path) # print(files) # for _, file0 in enumerate(files): # # files_ = os.listdir(path + '/' + file0) # for i, file in enumerate(files_): # print(i) # # 获得一级目录下的所有文件 # path0 = path + '/' + file # # 得到该一级文件目录文件内的绝对路径 # ext = os.path.splitext(file) # new_xml_file_name = file0 + '_' + str(i) + '.xml' # new_img_file_name = file0 + '_' + str(i) + '.jpg' # img_file_path = images_path + file0 + '/' # img_file = ext[0] + '.jpg' # xml_file = xml_path + file0 + '/' + file # deal_xml(xml_path=xml_file, file_name=new_img_file_name, user_path=user_path) # # os.chdir(xml_path + '/' + file0 + '/') # os.rename(file, new_xml_file_name) # # os.chdir(img_file_path) # os.rename(img_file, new_img_file_name) # print(i, '----------done--------') # # # # mian() # # # def main(): # # 将某文件夹中所有文件夹中的文件复制粘贴到某文件夹中 # this_path = os.getcwd() # img_path = '/test_data/raw_half_images/' # xml_path = '/test_data/raw_half_xmls' # new_img_path = '/test_data/raw_3quarter_images/' # new_xml_path = '/test_data/raw_3quarter_xmls/' # files = os.listdir(this_path + xml_path) # for file in files: # files_ = os.listdir(this_path + xml_path + '/' + file) # for i, file_ in enumerate(files_): # file_name = os.path.splitext(file_) # make_new_folder(this_path + new_xml_path) # make_new_folder(this_path + new_img_path) # old_xml_file_path = this_path + xml_path + '/' + file + '/' + file_name[0] + file_name[1] # new_xml_file_path = this_path + new_xml_path + '/' + file_name[0] + file_name[1] # copyh2t(old_xml_file_path, new_xml_file_path) # # old_img_file_path = this_path + img_path + '/' + file + '/' + file_name[0] + '.jpg' # new_img_file_path = this_path + new_img_path + '/' + file_name[0] + '.jpg' # copyh2t(old_img_file_path, new_img_file_path) # print(i, '----------done--------') # # # main() # # # def renaming(): # this_path = os.getcwd() # xml = '/xml' # images = '/images' # path = this_path + xml # xml_path = path + '/' # user_path = "E:\\Pycharm\\peixun\\2\\images\\" # i = 0 # files_ = os.listdir(path) # for file in files_: # # 得到该一级文件目录文件内的绝对路径 # ext = os.path.splitext(file) # new_xml_file_name = str(i) + '.xml' # new_img_file_name = str(i) + '.jpg' # img_file_path = this_path + images + '/' # img_file = ext[0] + '.jpg' # xml_file = xml_path + file # doc = ET.parse(xml_file) # root = doc.getroot() # sub1 = root.find('filename') # 找到filename标签, # sub1.text = new_img_file_name # sub2 = root.find('path') # sub3 = root.find('folder') # sub2.text = user_path + sub3.text + '\\' + sub1.text # doc.write(xml_file) # 保存修改 # # os.chdir(xml_path + '/') # os.rename(file, new_xml_file_name) # # os.chdir(img_file_path) # os.rename(img_file, new_img_file_name) # print(i, '----------done--------') # i += 1 # # # # renaming() ```
{ "source": "5A4B48/bing-it-on", "score": 3 }
#### File: 5A4B48/bing-it-on/bingit.py ```python import requests import json import webbrowser import time import random terms = [] def getterms(): a = requests.get('https://corporatebs-generator.sameerkumar.website/') b = json.loads(a.content.decode('latin-1')) c = b.get('phrase').split() return c while len(terms) < 45: d = getterms() for i in d: terms.append(i) for q in terms: webbrowser.open("https://bing.com/search?q=" + q) time.sleep(random.randint(1, 8)) ```
{ "source": "5A4B48/protectwise-lib", "score": 3 }
#### File: protectwise-lib/protectwise/__init__.py ```python import datetime import getpass import json import os import time from configparser import ConfigParser import requests try: input = raw_input except: pass homedirectory = os.path.expanduser("~") def get_times(daydiff): # Takes an integer and returns a list of start # and end times converted into the proper format #//Todo make this more granular to support hours, times, ranges, etc. daystotime = daydiff * 86400 et = int(datetime.datetime.utcnow().timestamp()) st = et - daystotime endtime = et * 1000 starttime = st * 1000 return (str(starttime), str(endtime)) def initialize_token(): email = input("Email: ") password = <PASSWORD>("Password: ") try: response = requests.post( url="https://api.protectwise.com/api/v1/token", headers={ "Content-Type": "application/json", }, data=json.dumps({ "email": email, "password": password })) token = json.loads(response.content)['token'] config = ConfigParser() config.add_section('Token') config.set('Token', 'token', token) with open(os.path.join(homedirectory, '.config', 'protectwise.ini'), "w") as configfile: config.write(configfile) except requests.exceptions.RequestException: print('HTTP Request failed') def generate_token(): # Get Token from protectwise # POST https://api.protectwise.com/api/v1/token if os.path.isdir(os.path.join(homedirectory, '.config')): if os.path.isfile(os.path.join(homedirectory, '.config', 'protectwise.ini')): dothis = input( "Protectwise config file already exists, refresh token? [Y/N]: " ) if str(dothis).upper().startswith('Y'): initialize_token() else: print("[*] You selected to not refresh token, aborting") else: print("[*] creating protectwise configuration file as it does not exist") initialize_token() else: creatdir = input("Directory " + os.path.join(homedirectory, '.config') + " does not exist create" " it now? [Y/N]:") if str(creatdir).upper().startswith("Y"): os.mkdir(os.path.join(homedirectory, '.config')) print("[+] created directory " + os.path.join(homedirectory, '.config')) initialize_token() def get_token(): config = ConfigParser() config.read(os.path.join(homedirectory, '.config', 'protectwise.ini')) token = config.get('Token', 'token') return token def get_domainReputation(domain): # Domain Reputation # GET https://api.protectwise.com/api/v1/reputations/domains/ucar.edu token = get_token() try: response = requests.get( url="https://api.protectwise.com/api/v1/reputations/domains/" + domain, params={ "details": "domain,geo", }, headers={ "X-Access-Token": token, }, ) return response.content except requests.exceptions.RequestException: print('HTTP Request failed') def get_ipReputation(ip): # IP Reputation # GET https://api.protectwise.com/api/v1/reputations/ips/x.x.x.x token = get_token() try: response = requests.get( url="https://api.protectwise.com/api/v1/reputations/ips/" + ip, params={ "details": "ip,geo", }, headers={ "X-Access-Token": token, }, ) return response.content except requests.exceptions.RequestException: print('HTTP Request failed') def get_event_info(days): # Event Collection # GET https://api.protectwise.com/api/v1/events # Returns a list of events, the events are dictionarie. token = get_token() start, end = get_times(days) try: response = requests.get( url="https://api.protectwise.com/api/v1/events", params={ "start": start, "end": end, }, headers={ "X-Access-Token": token, }, ) events = json.loads(response.content)['events'] for e in events: if e['state'] is None: yield e except requests.exceptions.RequestException: print('HTTP Request failed') def get_pcap(eventid, filename, basedir=os.getcwd()): # Event Pcap Download # GET https://api.protectwise.com/api/v1/events/eventid token = get_token() try: response = requests.get( url="https://api.protectwise.com/api/v1/pcaps/events/" + eventid, params={ "filename": filename, }, headers={ "X-Access-Token": token, }, ) with open(os.path.join(basedir, filename) + '.pcap', 'wb') as f: f.write(response.content) except requests.exceptions.RequestException: print('HTTP Request failed') ```
{ "source": "5A59/Zvm", "score": 3 }
#### File: base/utils/common_utils.py ```python import struct # 主要是给跳转指令用 def get_short_from_bytes(byte1, byte2): val = (byte1 << 8) | byte2 return struct.unpack('>h', val.to_bytes(2, byteorder='big'))[0] def get_int_from_bytes(data): if len(data) == 2: return struct.unpack('>h', data)[0] if len(data) == 4: return struct.unpack('>i', data)[0] return 0 def get_float_from_bytes(data): return struct.unpack('>f', data)[0] def get_long_from_bytes(high, low): return struct.unpack('>q', high + low)[0] def get_double_from_bytes(high, low): return struct.unpack('>d', high + low)[0] def get_string_from_bytes(data): return data.decode('utf-8') ``` #### File: base/utils/error_handler.py ```python def rise_runtime_error(msg): raise RuntimeError("jvm internal error: " + msg) def rise_null_point_error(): raise RuntimeError("error: java.lang.NullPointerException") def rise_class_cast_error(): raise RuntimeError("error: java.lang.ClassCastException") def rise_error(error): raise error class InternalError(Exception): pass class OutOfMemoryError(Exception): pass class StackOverflowError(Exception): pass class UnknownError(Exception): pass ``` #### File: Zvm/interpreter/interpreter.py ```python from runtime.thread import Thread, Frame, JavaStack from runtime.jclass import Method from base.utils import print_utils, error_handler from instruction import instruction from interpreter.code_parser import CodeParser from jgc.gc import GC import threading class Interpreter(object): def __init__(self): self.thread = None def run(self, method): print_utils.print_jvm_status(threading.currentThread.__name__) print_utils.print_jvm_status('\n=================== running status =====================\n') self.thread = Thread.new_thread() thread = self.thread frame = Frame(thread, method) thread.add_frame(frame) code_parser = CodeParser(method.code) while True: if not thread.has_frame(): break GC.check_gc() frame = thread.top_frame() method = frame.method code_parser.reset(method.code, frame.pc) ins_code = code_parser.read_code() print_utils.print_jvm_status('ins_code: %x' % ins_code) ins = instruction.get_instruction(ins_code) ins.read_operands(code_parser) thread.pc = frame.pc # 保存上一条 pc frame.pc = code_parser.pc ins.execute_wrapper(frame) print_utils.print_jvm_status('\n=================== output =====================') print_utils.StreamPrinter.print_all(thread) Thread.finish_thread(thread) @staticmethod def exec_method(method): m_interpreter = Interpreter() m_interpreter.run(method) ``` #### File: Zvm/runtime/jclass.py ```python from base.utils import common_utils, print_utils from java_class.class_file import * from java_class.class_parser import ClassParser from runtime.thread import Slot from runtime.heap import Heap from base.jvm_config import jdk_path import os # 对应 java 中的 Class class JClass(object): ACC_PUBLIC = 0x0001 ACC_PRIVATE = 0x0002 ACC_PROTECTED = 0x0004 ACC_STATIC = 0x0008 ACC_FINAL = 0x0010 ACC_VOLATILE = 0x0040 ACC_TRANSIENT = 0x0080 ACC_SYNTHETIC = 0x1000 ACC_ENUM = 0x4000 @staticmethod def is_public(flag): return flag & JClass.ACC_PUBLIC != 0 @staticmethod def is_private(flag): return flag & JClass.ACC_PRIVATE != 0 @staticmethod def is_static(flag): return flag & JClass.ACC_STATIC != 0 def __init__(self): self.access_flag = None self.name = None self.super_class_name = None self.super_class = None self.interfaces = None self.fields = None self.methods = None self.constant_pool = None self.class_loader = None self.static_fields = None # map{ name: Slot } self.has_inited = False def new_jclass(self, class_file): Heap.new_jclass(self) self.access_flag = common_utils.get_int_from_bytes(class_file.access_flag) self.constant_pool = ConstantPool.new_constant_pool(class_file) self.fields = Field.new_fields(class_file.fields, self.constant_pool.constants) self.methods = Method.new_methods(self, class_file.methods, self.constant_pool.constants) super_class = self.constant_pool.constants[common_utils.get_int_from_bytes(class_file.super_class)] if super_class is not None: self.super_class_name = super_class.class_name # 从方法区取 self.interfaces = None self.static_fields = {} for sf in self.__get_static_fields(): desc = sf.descriptor slot = Slot() if desc == 'B' or desc == 'I' or desc == 'J' or desc == 'S' or desc == 'Z': slot.num = 0 elif desc == 'C': slot.num = '0' elif desc == 'F': slot.num = 0.0 elif desc == 'D': slot.num = 0.0 self.static_fields[sf.name] = slot def get_instance_fields(self): return [field for field in self.fields if not JClass.is_static(field.access_flag)] # return Field[] def __get_static_fields(self): return [field for field in self.fields if JClass.is_static(field.access_flag)] def get_main_method(self): methods = self.methods for method in methods: if method.name == 'main' and method.descriptor == '([Ljava/lang/String;)V': return method return None class ConstantPool(object): def __init__(self): self.constants = None @staticmethod def new_constant_pool(class_file): r_cp = class_file.constant_pool constants = [] for cp in r_cp: if isinstance(cp, ClassInfo): constants.append(ClassRef.new_class_ref(r_cp, cp)) elif isinstance(cp, FieldRefInfo): constants.append(FieldRef.new_field_ref(r_cp, cp)) elif isinstance(cp, MethodRefInfo): constants.append(MethodRef.new_method_ref(r_cp, cp)) elif isinstance(cp, InterfaceMethodRefInfo): constants.append(None) elif isinstance(cp, StringInfo): st = r_cp[common_utils.get_int_from_bytes(cp.string_index)] st = common_utils.get_string_from_bytes(st.bytes) jstring = JString() jstring.data = st constants.append(jstring) elif isinstance(cp, IntegerInfo): jint = JInteger() jint.data = common_utils.get_int_from_bytes(cp.bytes) constants.append(jint) elif isinstance(cp, FloatInfo): jfloat = JFloat() jfloat.data = common_utils.get_float_from_bytes(cp.bytes) constants.append(jfloat) elif isinstance(cp, LongInfo): jlong = JLong() jlong.data = common_utils.get_long_from_bytes(cp.high_bytes, cp.low_bytes) constants.append(jlong) elif isinstance(cp, DoubleInfo): jdouble = JDouble() jdouble.data = common_utils.get_double_from_bytes(cp.high_bytes, cp.low_bytes) constants.append(jdouble) elif isinstance(cp, NameAndTypeInfo): constants.append(None) elif isinstance(cp, Utf8Info): constants.append(common_utils.get_string_from_bytes(cp.bytes)) elif isinstance(cp, MethodHandleInfo): constants.append(None) else: constants.append(None) constants_pool = ConstantPool() constants_pool.constants = constants return constants_pool def get_attribute(attributes, constant_pool, name): for attr in attributes: index = common_utils.get_int_from_bytes(attr.attribute_name_index) aname = constant_pool[index] if aname == name: return attr return None class Field(object): def __init__(self): self.access_flag = None self.name = None self.descriptor = None self.descriptor_index = None self.constant_value_index = None self.signature = None # 记录范型变量 self.type = None # JClass def is_public(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PUBLIC) def is_protected(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PROTECTED) def is_private(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PRIVATE) def is_static(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_STATIC) def is_final(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_FINAL) def is_volatile(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_VOLATILE) def is_transient(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_TRANSIENT) @staticmethod def new_fields(cf_fields, constant_pool): fields = [] for f in cf_fields: nf = Field() nf.access_flag = common_utils.get_int_from_bytes(f.access_flags) nf.name = constant_pool[common_utils.get_int_from_bytes(f.name_index)] nf.descriptor_index = common_utils.get_int_from_bytes(f.descriptor_index) nf.descriptor = constant_pool[nf.descriptor_index] attr = get_attribute(f.attributes, constant_pool, 'ConstantValue') if attr is not None: nf.constant_value_index = common_utils.get_int_from_bytes(attr.constant_value_index) fields.append(nf) return fields class Method(object): def __init__(self): self.access_flag = None self.name = None self.descriptor = None self.max_stack = None self.max_locals = None self.code = None self.exceptions = None # ExceptionTable[] self.arg_desc = None self.jclass = None @staticmethod def new_methods(jclass, cf_methods, constant_pool): methods = [] for m in cf_methods: nm = Method() nm.jclass = jclass nm.access_flag = common_utils.get_int_from_bytes(m.access_flags) nm.name = constant_pool[common_utils.get_int_from_bytes(m.name_index)] nm.descriptor = constant_pool[common_utils.get_int_from_bytes(m.descriptor_index)] attr = get_attribute(m.attributes, constant_pool, 'Code') nm.max_stack = common_utils.get_int_from_bytes(attr.max_stack) nm.max_locals = common_utils.get_int_from_bytes(attr.max_locals) nm.code = attr.code nm.exceptions = [] for ex in attr.exception_table: jex = JException() jex.start_pc = common_utils.get_int_from_bytes(ex.start_pc) jex.end_pc = common_utils.get_int_from_bytes(ex.end_pc) jex.handler_pc = common_utils.get_int_from_bytes(ex.handler_pc) jex.catch_type = common_utils.get_int_from_bytes(ex.catch_type) nm.exceptions.append(jex) nm.arg_desc = Method.get_arg_desc(nm.descriptor) methods.append(nm) return methods @staticmethod def get_arg_desc(descs): arg_desc = [] desc = '' for s in descs: if s == ')': break if len(desc) == 0: if s == 'B' or s == 'C' or s == 'D' or s == 'F' or s == 'I' or s == 'J' or s == 'S' or s == 'Z': desc = s arg_desc.append(desc) desc = '' elif s == 'L': desc += s else: if desc[0] == 'L': desc += s if s == ';': arg_desc.append(desc) desc = '' elif desc[0] == '[': if 'L' in desc: desc += s if s == ';': arg_desc.append(desc) desc = '' else: desc += s if s != '[': arg_desc.append(desc) desc = '' return arg_desc class JException(object): def __init__(self): self.start_pc = 0 self.end_pc = 0 self.handler_pc = 0 self.catch_type = 0 class Ref(object): def __init__(self): self.cp = None self.class_name = None self.cache_class = None # JClass def resolve_class(self, class_loader, need_re_resolve=False, class_name=None): if self.cache_class is not None and not need_re_resolve: return self.cache_class if class_loader is None: class_loader = ClassLoader.default_class_loader() if class_name is None: class_name = self.class_name self.cache_class = class_loader.load_class(class_name) self.cache_class.class_loader = class_loader return self.cache_class class ClassRef(Ref): def __init__(self): super(ClassRef, self).__init__() @staticmethod def new_class_ref(cp, class_info): # ConstantPool ConstantClassInfo cr = ClassRef() cr.cp = cp tmp = cp[common_utils.get_int_from_bytes(class_info.name_index)] cr.class_name = common_utils.get_string_from_bytes(tmp.bytes) return cr class MemberRef(Ref): def __init__(self): super(MemberRef, self).__init__() self.name = None self.descriptor = None self.access_flag = None @staticmethod def check_state(flag, state): if flag is None: return False return (flag & state) != 0 @staticmethod def get_string(cp, index_byte): return common_utils.get_string_from_bytes(cp[common_utils.get_int_from_bytes(index_byte)].bytes) @staticmethod def get_obj(cp, index_byte): return cp[common_utils.get_int_from_bytes(index_byte)] class FieldRef(MemberRef): ACC_PUBLIC = 0x0001 ACC_PRIVATE = 0x0002 ACC_PROTECTED = 0x0004 ACC_STATIC = 0x0008 ACC_FINAL = 0x0010 ACC_VOLATILE = 0x0040 ACC_TRANSIENT = 0x0080 ACC_SYNTHETIC = 0x1000 ACC_ENUM = 0x4000 def __init__(self): super(FieldRef, self).__init__() self.field = None def is_public(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PUBLIC) def is_protected(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PROTECTED) def is_private(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_PRIVATE) def is_static(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_STATIC) def is_final(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_FINAL) def is_volatile(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_VOLATILE) def is_transient(self): return MemberRef.check_state(self.access_flag, FieldRef.ACC_TRANSIENT) @staticmethod def new_field_ref(cp, field_ref_info): fr = FieldRef() cl = cp[common_utils.get_int_from_bytes(field_ref_info.class_index)] fr.class_name = MemberRef.get_string(cp, cl.name_index) fr.cp = cp name_and_type = MemberRef.get_obj(cp, field_ref_info.name_and_type_index) fr.name = MemberRef.get_string(cp, name_and_type.name_index) fr.descriptor = MemberRef.get_string(cp, name_and_type.descriptor_index) return fr def resolve_field(self, class_loader): if self.field is not None: return self.field if self.cache_class is None: self.resolve_class(class_loader) fields = self.cache_class.fields for f in fields: if f.name == self.name: self.field = f break return self.field class MethodRef(MemberRef): def __init__(self): super(MethodRef, self).__init__() self.method = None @staticmethod def new_method_ref(cp, method_ref_info): mr = MethodRef() cl = cp[common_utils.get_int_from_bytes(method_ref_info.class_index)] mr.class_name = MemberRef.get_string(cp, cl.name_index) mr.cp = cp name_and_type = MemberRef.get_obj(cp, method_ref_info.name_and_type_index) mr.name = MemberRef.get_string(cp, name_and_type.name_index) mr.descriptor = MemberRef.get_string(cp, name_and_type.descriptor_index) return mr # TODO: 方法权限等的处理 def resolve_method(self, class_loader, need_re_resolve=False, class_name=None): if self.method is not None and not need_re_resolve: return self.method if self.cache_class is None or need_re_resolve: self.resolve_class(class_loader, need_re_resolve, class_name) methods = self.cache_class.methods for m in methods: if m.name == self.name and m.descriptor == self.descriptor: self.method = m break return self.method def resolve_method_with_super(self, class_loader): self.resolve_method(class_loader, True) if self.method is None: super_class = self.cache_class.super_class while super_class is not None: for m in super_class.methods: if m.name == self.name: self.method = m break if self.method is not None: break super_class = super_class.super_class return self.method def re_resolve_method_with_super_by_class_name(self, class_loader, class_name): self.resolve_method(class_loader, True, class_name) if self.method is None: super_class = self.cache_class.super_class while super_class is not None: for m in super_class.methods: if m.name == self.name: self.method = m break if self.method is not None: break super_class = super_class.super_class return self.method class BaseType(object): def __init__(self): self.data = None class JInteger(BaseType): def __init__(self): super(JInteger, self).__init__() class JFloat(BaseType): def __init__(self): super(JFloat, self).__init__() class JLong(BaseType): def __init__(self): super(JLong, self).__init__() class JDouble(BaseType): def __init__(self): super(JDouble, self).__init__() class JString(BaseType): def __init__(self): super(JString, self).__init__() # TODO: 感觉还是应该分一个包出去 class ClassLoader(object): default_loader = None def __init__(self): self._loading_classes = [] self._loaded_classes = {} self.pkg_path = jdk_path self.hack() def get_all_loaded_class(self): return self._loading_classes def hack(self): # 先提前 load self.load_class('java/lang/Object') @staticmethod def default_class_loader(): # TODO: 线程同步 if ClassLoader.default_loader is None: ClassLoader.default_loader = ClassLoader() return ClassLoader.default_loader def add_path(self, path): self.pkg_path.append(path) # TODO: jar zip 处理 def load_class(self, class_name): # TODO: load class 线程之间同步 暂时轮询 if class_name in self._loading_classes: while True: if class_name not in self._loading_classes: break if class_name in self._loaded_classes: return self._loaded_classes[class_name] jclass = self.__load_class(class_name) self._loading_classes.remove(class_name) return jclass def __load_class(self, class_name): self._loading_classes.append(class_name) if class_name[0] == '[': return self.__load_array_class(class_name) for path in self.pkg_path: class_path = path + class_name.replace('.', '/') + '.class' if not os.path.exists(class_path): continue print_utils.print_jvm_status('load class: ' + class_path) jclass = self.define_class(class_name, class_path) self._loaded_classes[class_name] = jclass return jclass return None def __load_array_class(self, class_name): jclass = JClass() jclass.super_class_name = 'java/lang/Object' jclass.class_loader = self jclass.has_inited = True jclass.name = class_name self._loaded_classes[class_name] = jclass def define_class(self, class_name, path): parser = ClassParser(path) parser.parse() jclass = JClass() jclass.name = class_name jclass.new_jclass(parser.class_file) jclass.super_class = self.load_super_class(jclass) return jclass def load_super_class(self, jclass): if jclass.super_class_name == 'java/lang/Object' or jclass.super_class_name is None: return return self.load_class(jclass.super_class_name) ``` #### File: Zvm/test/test.py ```python from runtime.jclass import ClassLoader from runtime.jclass import JClass from interpreter import interpreter def main(): loader = ClassLoader() j_class = loader.load_class('Hello') print(j_class) method = j_class.get_main_method() interpreter.Interpreter.exec_method(method) if __name__ == '__main__': main() ``` #### File: 5A59/Zvm/Zvm.py ```python import path_import import sys from runtime.jclass import ClassLoader from interpreter import interpreter def parse_params(): args = sys.argv if len(args) <= 1: print('use: python Zvm.py xx[.class]') print('eg: python Zvm.py main') print('eg: python Zvm.py main.class') return None name = sys.argv[1] if name.endswith('.class'): name = name[:name.find('.class')] return name def main(): class_file = parse_params() if class_file is None: return loader = ClassLoader() j_class = loader.load_class(class_file) print(j_class) method = j_class.get_main_method() interpreter.Interpreter.exec_method(method) if __name__ == '__main__': main() ```
{ "source": "5A5H/PyFEMP", "score": 3 }
#### File: PyFEMP/elements/Laplace_Q1.py ```python import numpy as np def Elmt_Init(): ''' The initialization function of a PyFEMP element. ''' NoElementDim = 2 # Number of dimensions NoElementNodes = 4 # Number of nodes on the element (here: 4-Node Quadirlateral) NoElementHistory = 0 # Number of history variables ElementDofNames = ["T"] # Element degrees of freedom specified by a string for each scalar ElementMaterialNames = ["alpha_q"] # Element material parameters specified by a string for each scalar ElementPostNames = ["T"] # Element postprocessing parameters return NoElementDim, NoElementNodes, ElementDofNames, NoElementHistory, ElementMaterialNames, ElementPostNames def SH0_Q1(xi, eta): ''' SH0_Q1(xi, eta) -> SH0 Return a two dimensional array containing shape functions and derivatives for Q1 element. Usage: SH0( NodeNumber, SHPIndex) with SHPIndex = { 0 -> shape function, 1 -> derived shape function w.r.t. xi, 2 -> derived shape function w.r.t. eta } ''' return 1/4 * np.array([ [(1.0-xi)*(1.0-eta), -(1.0-eta), -(1.0-xi)], [(1.0+xi)*(1.0-eta), (1.0-eta), -(1.0+xi)], [(1.0+xi)*(1.0+eta), (1.0+eta), (1.0+xi)], [(1.0-xi)*(1.0+eta), -(1.0+eta), (1.0-xi)] ], dtype=np.float64) def Elmt_KS(XL, UL, Hn, Ht, Mat, dt): ''' This function returns element vector and matrix. Generally the element matrix is the straight derivative of the element vector with respect to the nodal degrees of freedoms, in the order of the UL field. Both need to be returned as numpy arrays, with dimensions: element vector r_e : number of nodal degrees of freedom times number of nodes element matrix k_e : NoNodes * NoNodalDOF ,NoNodes * NoNodalDOF ''' verbose = False # True; if verbose: print('XI :',XL) if verbose: print('UI :',UL) if verbose: print('Hn :',Hn) if verbose: print('Ht :',Ht) if verbose: print('b :',Mat) if verbose: print('dt :',dt) # element parameters NoElmtNodes = 4 NoNodalDOF = 1 NoDim = 2 # initialize element vector /matrix r_e = np.zeros(NoElmtNodes*NoNodalDOF) k_e = np.zeros((NoElmtNodes*NoNodalDOF, NoElmtNodes*NoNodalDOF)) # geometry and dofs XI = XL.reshape(-1,NoDim) # reformat to a matrix field: XI = [[X1x, X1y] ,[X2x, X2y] ,[X3x, X3y] ,[X4x, X4y]] TI = UL # Material Parameters alpha_q = Mat[0] # Provide integration points a = 1/np.sqrt(3) EGP = np.array([[-a,-a,1],[a,-a,1],[a,a,1],[-a,a,1]]) NoInt = len(EGP) # Start integration Loop for GP in range(NoInt): if verbose: print('GP: ',GP) xi, eta, wgp = EGP[GP] # compute current shape functions SH0 = SH0_Q1(xi, eta) # compute mapping Jed = np.einsum('Ii,Ij->ij', XI ,SH0[:,1:3]) detJ = np.linalg.det(Jed) if (detJ <= 0): raise NameError("Error unphysical mapping detected.") if verbose: print('detJ: ',detJ) Jed_inv = np.linalg.inv(Jed) # map shape function derivative SHP = np.copy(SH0) SHP[:,1:3] = np.einsum('Ij,ji->Ii', SH0[:,1:3], Jed_inv) # compute gradient of temperature / heat flux gradT = np.einsum('Ii,I->i' , SHP[:,1:3], TI) if verbose: print('gradT: ') if verbose: print(gradT) q = - alpha_q * gradT # export element vector for I in range(NoElmtNodes): # integrate nodal right hand side and export r_e[I*NoNodalDOF+0] += q.dot(SHP[I,1:3]) * wgp * detJ for J in range(NoElmtNodes): # compute nodal stiffness matrix k_e[I*NoNodalDOF+0, J*NoNodalDOF+0] += - alpha_q * SHP[J,1:3].dot( SHP[I,1:3])* wgp * detJ return r_e, k_e def Elmt_Post(XL, UL, Hn, Ht, Mat, dt, PostName): ''' ''' if (PostName=="T"): r_post = np.array([UL[0], UL[1], UL[2], UL[3]]) return r_post else: print("Waring: PostName "+PostName+" not defined!") return np.array([0.0, 0.0, 0.0, 0.0]) ``` #### File: PyFEMP/elements/LE_T1.py ```python import numpy as np def Elmt_Init(): NoElementDim = 2 NoElementNodes = 3 NoElementHistory = 0 ElementDofNames = ["UX", "UY"] ElementMaterialNames = ["E", "nu"] ElementPostNames = ["UX", "UY", "SigMises"] return NoElementDim, NoElementNodes, ElementDofNames, NoElementHistory, ElementMaterialNames, ElementPostNames def SH0_T1(xi, eta): ''' SH0_T1(xi, eta) -> SH0 Return a two dimensional array containing shape functions and derivatives for T1 element. Usage: SH0( NodeNumber, SHPIndex) with SHPIndex = { 0 -> shape function, 1 -> derived shape function w.r.t. xi, 2 -> derived shape function w.r.t. eta } ''' return np.array([ [xi , 1.0, 0.0], [eta , 0.0, 1.0], [1 -xi -eta, -1.0, -1.0], ], dtype=np.float64) def BmatVoigt2D(SHP): ''' BmatVoigt(SHP) -> Bmat Returns a B-Matrix (as dim:3) for computing the strain vector in voigt notation. This B-Matrix assumes a 2D plane strain approximation. The is a shape function matrix with derived functions w.r.t. physical space. Input: SHP( NodeNumber, SHPIndex) with SHPIndex = { 0 -> shape function, 1 -> derived shape function w.r.t. x, 2 -> derived shape function w.r.t. y } Output: Bmat(NodeNumber, i, j) for eps_i = B_Iij * u_Ij with eps_i = [eps_11, eps_22, eps_33, 2*eps_12, 2*eps_23, 2*eps_13] u_Ij = [[u_11, u_12] ... [u_n1, u_n2]] ''' return np.array([ [ [N[1], 0 ], [0 , N[2]], [0 , 0 ], [N[2], N[1]], [0 , 0 ], [0 , 0 ] ] for N in SHP ], dtype=np.float64) def HookeMatVoigt(lam, mue): ''' HookeMatVoigt(lam, mue) -> Cmat Returns the constitutive Voigt MATRIX(6,6) for a Hooke material law. The input are the elastic Lame constants. sig_i = Cmat_ij * eps_j with sig_i = [sig_11, sig_22, sig_33, sig_12, sig_23, sig_13] eps_i = [eps_11, eps_22, eps_33, 2*eps_12, 2*eps_23, 2*eps_13] ''' return np.array([ [lam + 2* mue, lam , lam , 0 , 0 , 0 ], [lam , lam + 2* mue, lam ,0 , 0 , 0 ], [lam , lam , lam + 2* mue, 0 , 0 , 0 ], [0 , 0 , 0 , mue, 0 , 0 ], [0 , 0 , 0 , 0 , mue, 0 ], [0 , 0 , 0 , 0 , 0 , mue] ], dtype=np.float64) def Elmt_KS(XL, UL, Hn, Ht, Mat, dt): ''' ''' verbose = False # True; if verbose: print('XI :',XL) if verbose: print('UI :',UL) if verbose: print('Hn :',Hn) if verbose: print('Ht :',Ht) if verbose: print('b :',Mat) if verbose: print('dt :',dt) # element specific paremeters NoElementNodes = 3 NoNodalDOF = 2 NoDimension = 2 # initialize element vector /matrix r_e = np.zeros(NoElementNodes*NoNodalDOF) k_e = np.zeros((NoElementNodes*NoNodalDOF, NoElementNodes*NoNodalDOF)) # geometry and dofs XI = XL.reshape(-1,NoDimension) uI = UL.reshape(-1,NoNodalDOF) # Material Parameters Emod, nu = Mat[0], Mat[1] lam , mue = (Emod*nu)/((1.0+nu)*(1.0-2.0*nu)), Emod/(2.0*(1.0+nu)) # constitutive matrix (hooke) Cmat = HookeMatVoigt(lam, mue) # Provide integration points EGP = 1.0/6.0 * np.array([[1.0, 1.0, 1.0], [4.0, 1.0, 1.0], [1.0, 4.0, 1.0]]) NoInt = len(EGP) # Start integration Loop for GP in range(NoInt): if verbose: print('GP: ',GP) xi, eta, wgp = EGP[GP] # compute current shape functions SH0 = SH0_T1(xi, eta) # compute mapping Jed = np.einsum('Ii,Ij->ij', XI ,SH0[:,1:3]) detJ = np.linalg.det(Jed) if (detJ <= 0): raise NameError("Error unphysical mapping detected.") if verbose: print('detJ: ',detJ) Jed_inv = np.linalg.inv(Jed) # map shape function derivative SHP = np.copy(SH0) SHP[:,1:3] = np.einsum('Ij,ji->Ii', SH0[:,1:3], Jed_inv) Bmat = BmatVoigt2D(SHP) # compute strains / stresses eps = np.einsum('Iij,Ij->i', Bmat, uI) if verbose: print('eps: ') if verbose: print(np.array([eps[0], eps[3]/2, eps[4]/2, eps[3]/2, eps[1], eps[5]/2, eps[4]/2, eps[5]/2, eps[2]])) sig = np.einsum('ij,j->i' , Cmat, eps) if verbose: print('sig: ') if verbose: print(np.array([[sig[0], sig[3], sig[4]],[sig[3], sig[1], sig[5]],[sig[4], sig[5], sig[2]]])) # export right hand side | this element has 4 nodes with 2 dofs each for I in range(NoElementNodes): # compute nodal right hand side nodal_rhs_vec = np.einsum('i,ij->j',sig, Bmat[I]) # integrate nodal right hand side and export r_e[I*2+0] += nodal_rhs_vec[0] * wgp * detJ r_e[I*2+1] += nodal_rhs_vec[1] * wgp * detJ for J in range(NoElementNodes): # compute nodal stiffness matrix nodal_stiffness = np.einsum('ki,ko,oj->ij', Bmat[I], Cmat, Bmat[J]) k_e[I*2+0, J*2+0] += nodal_stiffness[0,0] * wgp * detJ k_e[I*2+0, J*2+1] += nodal_stiffness[0,1] * wgp * detJ k_e[I*2+1, J*2+0] += nodal_stiffness[1,0] * wgp * detJ k_e[I*2+1, J*2+1] += nodal_stiffness[1,1] * wgp * detJ return r_e, k_e def Elmt_Post(XL, UL, Hn, Ht, Mat, dt, PostName): ''' ''' ## NEW post strategy is to return indexes # and contribuzions # 3 nodes r_post = np.zeros(3) # geometry and dofs XI = XL.reshape(-1,2) uI = UL.reshape(-1,2) # Material Parameters Emod, nu = Mat[0], Mat[1] lam , mue = (Emod*nu)/((1.0+nu)*(1.0-2.0*nu)), Emod/(2.0*(1.0+nu)) # constitutive matrix (hooke) Cmat = HookeMatVoigt(lam, mue) # Provide integration points EGP = 1.0/6.0 * np.array([[1.0, 1.0, 1.0], [4.0, 1.0, 1.0], [1.0, 4.0, 1.0]]) NoInt = len(EGP) # Start integration Loop for GP in range(NoInt): xi, eta, wgp = EGP[GP] # compute current shape functions SH0 = SH0_T1(xi, eta) # compute mapping Jed = np.einsum('Ii,Ij->ij', XI ,SH0[:,1:3]) detJ = np.linalg.det(Jed) if (detJ <= 0): raise NameError("Error unphysical mapping detected.") Jed_inv = np.linalg.inv(Jed) # map shape function derivative SHP = np.copy(SH0) SHP[:,1:3] = np.einsum('Ij,ji->Ii', SH0[:,1:3], Jed_inv) Bmat = BmatVoigt2D(SHP) # compute strains / stresses eps = np.einsum('Iij,Ij->i', Bmat, uI) sig = np.einsum('ij,j->i' , Cmat, eps) sig_vm = np.sqrt( \ sig[0]**2 + sig[1]**2 + sig[2]**2 \ -sig[0]*sig[1] -sig[0]*sig[2] -sig[1]*sig[2] \ + 3* (sig[3]**2 + sig[4]**2 + sig[5]**2) \ ) if (PostName=="SigMises"): r_post += sig_vm * SHP[:,0] if (PostName=="UX"): r_post = np.array([UL[0], UL[2], UL[4]]) return r_post elif (PostName=="UY"): r_post = np.array([UL[1], UL[3], UL[5]]) return r_post elif (PostName=="SigMises"): return r_post else: print("Waring: PostName "+PostName+" not defined!") return np.array([0.0, 0.0, 0.0, 0.0]) ``` #### File: PyFEMP/elements/T1_J2.py ```python import numpy as np def Elmt_Init(): NoElementDim = 2 NoElementNodes = 3 NoElementHistory = 7 ElementDofNames = ["UX", "UY"] ElementMaterialNames = ["E", "nu", "y0", "kh"] ElementPostNames = ["UX", "UY", "SigMises", "a"] return NoElementDim, NoElementNodes, ElementDofNames, NoElementHistory, ElementMaterialNames, ElementPostNames def SH0_T1(xi, eta): ''' SH0_T1(xi, eta) -> SH0 Return a two dimensional array containing shape functions and derivatives for T1 element. Usage: SH0( NodeNumber, SHPIndex) with SHPIndex = { 0 -> shape function, 1 -> derived shape function w.r.t. xi, 2 -> derived shape function w.r.t. eta } ''' return np.array([ [xi , 1.0, 0.0], [eta , 0.0, 1.0], [1 -xi -eta, -1.0, -1.0], ], dtype=np.float64) def BmatVoigt2D(SHP): ''' BmatVoigt(SHP) -> Bmat Returns a B-Matrix (as dim:3) for computing the strain vector in voigt notation. This B-Matrix assumes a 2D plane strain approximation. SHP is a shape function matrix with derived functions w.r.t. physical space. Input: SHP( NodeNumber, SHPIndex) with SHPIndex = { 0 -> shape function, 1 -> derived shape function w.r.t. x, 2 -> derived shape function w.r.t. y } Output: Bmat(NodeNumber, i, j) for eps_i = B_Iij * u_Ij with eps_i = [eps_11, eps_22, eps_33, 2*eps_12, 2*eps_23, 2*eps_13] u_Ij = [[u_11, u_12] ... [u_n1, u_n2]] ''' return np.array([ [ [N[1], 0 ], [0 , N[2]], [0 , 0 ], [N[2], N[1]], [0 , 0 ], [0 , 0 ] ] for N in SHP ], dtype=np.float64) def HookeMatVoigt(kappa, mue): ''' HookeMatVoigt(kappa, mue) -> Cmat Returns the constitutive Voigt MATRIX(6,6) for a Hooke material law. The input are the kompression modulus kappa and the shear modulus mue. sig_i = Cmat_ij * eps_j with sig_i = [sig_11, sig_22, sig_33, sig_12, sig_23, sig_13] eps_i = [eps_11, eps_22, eps_33, 2*eps_12, 2*eps_23, 2*eps_13] ''' return np.array([ [kappa+(4.0/3.0)*mue, kappa-(2.0/3.0)*mue, kappa-(2.0/3.0)*mue, 0 , 0 , 0 ], [kappa-(2.0/3.0)*mue, kappa+(4.0/3.0)*mue, kappa-(2.0/3.0)*mue, 0 , 0 , 0 ], [kappa-(2.0/3.0)*mue, kappa-(2.0/3.0)*mue, kappa+(4.0/3.0)*mue, 0 , 0 , 0 ], [0 , 0 , 0 , mue, 0 , 0 ], [0 , 0 , 0 , 0 , mue, 0 ], [0 , 0 , 0 , 0 , 0 , mue] ], dtype=np.float64) # definition of auxillary matrix pp1, pp2, pp3 = (2.0/3.0), -(1.0/3.0), (1.0/2.0) PP = np.array( \ [[pp1, pp2, pp2, 0.0, 0.0, 0.0], \ [ pp2, pp1, pp2, 0.0, 0.0, 0.0], \ [ pp2, pp2, pp1, 0.0, 0.0, 0.0], \ [ 0.0, 0.0, 0.0, pp3, 0.0, 0.0], \ [ 0.0, 0.0, 0.0, 0.0, pp3, 0.0], \ [ 0.0, 0.0, 0.0, 0.0, 0.0, pp3]] \ ,dtype=np.float64) def Elmt_KS(XL, UL, Hn, Ht, Mat, dt): ''' ''' verbose = False # True; if verbose: print('XI :',XL) # XL = [x11, x12, x21, x22, x31, x32] if verbose: print('UI :',UL) # UL = [u11, u12, u21, u22, u31, u32] if verbose: print('Hn :',Hn) # Hn = [eps_pl_11, eps_pl_22, eps_pl_33, 2*eps_pl_12, 2*eps_pl_23, 2*eps_pl_13, a] if verbose: print('Ht :',Ht) # Ht = [eps_pl_11, eps_pl_22, eps_pl_33, 2*eps_pl_12, 2*eps_pl_23, 2*eps_pl_13, a] if verbose: print('b :',Mat) # Mat = [Emod, nue, y0, kh] if verbose: print('dt :',dt) # dt = dt # element specific paremeters NoElementNodes = 3 NoNodalDOF = 2 NoDimension = 2 # initialize element vector /matrix r_e = np.zeros(NoElementNodes*NoNodalDOF) k_e = np.zeros((NoElementNodes*NoNodalDOF, NoElementNodes*NoNodalDOF)) # geometry and dofs XI = XL.reshape(-1, NoDimension) uI = UL.reshape(-1, NoNodalDOF) # Material Parameters Emod, nu, y0, kh = Mat[0], Mat[1], Mat[2], Mat[3] kappa , mue = Emod/(3*(1.0-2.0*nu)), Emod/(2.0*(1.0+nu)) # constitutive matrix (hooke) Cmat = HookeMatVoigt(kappa, mue) # provide integration points EGP = np.array([[(1.0/3.0), (1.0/3.0), (1.0/2.0)]]) NoInt = len(EGP) # start integration Loop for GP in range(NoInt): if verbose: print('GP: ',GP) xi, eta, wgp = EGP[GP] # read gp history NoHGP = 7 # number of history at each gp eps_pl_n = Hn[ GP*NoHGP : GP*NoHGP+6] a_n = Hn[ GP*NoHGP+6] # compute current shape functions SH0 = SH0_T1(xi, eta) # compute mapping Jed = np.einsum('Ii,Ij->ij', XI ,SH0[:,1:3]) detJ = np.linalg.det(Jed) if (detJ <= 0): raise NameError("Error unphysical mapping detected.") if verbose: print('detJ: ',detJ) Jed_inv = np.linalg.inv(Jed) # map shape function derivative SHP = np.copy(SH0) SHP[:,1:3] = np.einsum('Ij,ji->Ii', SH0[:,1:3], Jed_inv) Bmat = BmatVoigt2D(SHP) # compute strains / stresses eps = np.einsum('Iij,Ij->i', Bmat, uI) if verbose: print('eps: ') if verbose: print(np.array([[eps[0], eps[3]/2, eps[4]/2], [eps[3]/2, eps[1], eps[5]/2], [eps[4]/2, eps[5]/2, eps[2]]])) ############################################### ############# begin plastic part ############## ############################################### # compute elastic trail stresses eps_el_tr = eps - eps_pl_n if verbose: print('eps_el_tr: ') if verbose: print(np.array([[eps_el_tr[0], eps_el_tr[3]/2, eps_el_tr[4]/2], [eps_el_tr[3]/2, eps_el_tr[1], eps_el_tr[5]/2], [eps_el_tr[4]/2, eps_el_tr[5]/2, eps_el_tr[2]]])) # compute deviatoric trail stresses sig_tr = np.einsum('ij,j->i' , Cmat, eps_el_tr) tr_sig_tr = sig_tr[0] + sig_tr[1] + sig_tr[2] dev_sig_tr = sig_tr - (1.0/3.0) * tr_sig_tr * np.array([1.0, 1.0, 1.0, 0.0, 0.0, 0.0]) # compute norm of deviatoric trail stresses norm_dev_sig_tr = np.sqrt( dev_sig_tr[0]**2 + dev_sig_tr[1]**2 + dev_sig_tr[2]**2 + \ 2.0 * dev_sig_tr[3]**2 + 2.0 * dev_sig_tr[4]**2 + 2.0 * dev_sig_tr[5]**2 ) # compute yield criterion phi_tr = norm_dev_sig_tr - np.sqrt(2.0/3.0) * (y0 + (2.0/3.0)*kh*a_n) if verbose: print('norm_dev_sig_tr: ', norm_dev_sig_tr) if verbose: print('yield: ', np.sqrt(2.0/3.0) * (y0 + (2.0/3.0)*kh*a_n)) if verbose: print('phi_tr: ', phi_tr) # check yield criterion if (phi_tr > 1e-8): # elasto-plastic loading # compute plastic strain increment delta_a = phi_tr/(2.0*mue + (2.0/3.0*kh)) a = a_n + np.sqrt(2.0/3.0) * delta_a if verbose: print('delta_a: ', delta_a) # compute plastic flow director n_tr = dev_sig_tr/norm_dev_sig_tr if verbose: print('n_tr: ') if verbose: print(np.array([[n_tr[0], n_tr[3], n_tr[4]], [n_tr[3], n_tr[1], n_tr[5]], [n_tr[4], n_tr[5], n_tr[2]]])) # compute plastic strain - take care of voigt notation! eps_pl = eps_pl_n + delta_a * n_tr * np.array([1.0, 1.0, 1.0, 2.0, 2.0, 2.0]) if verbose: print('eps_pl: ') if verbose: print(np.array([[eps_pl[0], eps_pl[3]/2, eps_pl[4]/2], [eps_pl[3]/2, eps_pl[1], eps_pl[5]/2], [eps_pl[4]/2, eps_pl[5]/2, eps_pl[2]]])) # compute new elastic strains eps_el = eps - eps_pl if verbose: print('eps_el: ') if verbose: print(np.array([[eps_el[0], eps_el[3]/2, eps_el[4]/2], [eps_el[3]/2, eps_el[1], eps_el[5]/2], [eps_el[4]/2, eps_el[5]/2, eps_el[2]]])) sig = np.einsum('ij,j->i', Cmat, eps_el) # modification of material tangent fact1 = 1.0 - (2.0*mue*delta_a/norm_dev_sig_tr) fact2 = 2.0*mue/(2.0*mue + (2.0/3.0*kh)) - (2.0*mue*delta_a/norm_dev_sig_tr) Cmat += -2.0*mue*PP \ + 2.0*mue*PP*fact1 \ - 2.0*mue*np.einsum('i,j->ij', n_tr, n_tr)*fact2 # export history Ht[ GP*NoHGP : GP*NoHGP+6] = eps_pl Ht[ GP*NoHGP+6] = a else: # elastic loading # old plastic state is stil valid eps_pl = eps_pl_n a = a_n # compute elastic strains eps_el = eps-eps_pl sig = np.einsum('ij,j->i', Cmat, eps_el) ############################################### ############## end plastic part ############### ############################################### # export right hand side | this element has 3 nodes with 2 dofs each for I in range(NoElementNodes): # compute nodal right hand side nodal_rhs_vec = np.einsum('i,ij->j',sig, Bmat[I]) # integrate nodal right hand side and export r_e[I*2+0] += nodal_rhs_vec[0] * wgp * detJ r_e[I*2+1] += nodal_rhs_vec[1] * wgp * detJ for J in range(NoElementNodes): # compute nodal stiffness matrix nodal_stiffness = np.einsum('ki,ko,oj->ij', Bmat[I], Cmat, Bmat[J]) # integrate nodal stiffness matrix and export k_e[I*2+0, J*2+0] += nodal_stiffness[0,0] * wgp * detJ k_e[I*2+0, J*2+1] += nodal_stiffness[0,1] * wgp * detJ k_e[I*2+1, J*2+0] += nodal_stiffness[1,0] * wgp * detJ k_e[I*2+1, J*2+1] += nodal_stiffness[1,1] * wgp * detJ return r_e, k_e def Elmt_Post(XL, UL, Hn, Ht, Mat, dt, PostName): ''' ''' ## NEW post strategy is to return indexes # and contribuzions # 3 nodes r_post = np.zeros(3) # geometry and dofs XI = np.array([[XL[0], XL[1]], [XL[2], XL[3]], [XL[ 4], XL[ 5]]], dtype=np.float64) uI = np.array([[UL[0], UL[1]], [UL[2], UL[3]], [UL[ 4], UL[ 5]]], dtype=np.float64) # Material Parameters Emod, nu, y0, kh = Mat[0], Mat[1], Mat[2], Mat[3] lam , mue = (Emod*nu)/((1.0+nu)*(1.0-2.0*nu)), Emod/(2.0*(1.0+nu)) kappa = lam + (2.0/3.0)*mue # constitutive matrix (hooke) Cmat = HookeMatVoigt(kappa, mue) # provide integration points EGP = np.array([[(1.0/3.0), (1.0/3.0), (1.0/2.0)]]) NoInt = len(EGP) # start integration Loop for GP in range(NoInt): xi, eta, wgp = EGP[GP] # read gp history NoHGP = 7 # number of history at each gp eps_pl = Ht[ GP*NoHGP : GP*NoHGP+6] a = Ht[ GP*NoHGP+6] # compute current shape functions SH0 = SH0_T1(xi, eta) # compute mapping Jed = np.einsum('Ii,Ij->ij', XI ,SH0[:,1:3]) detJ = np.linalg.det(Jed) if (detJ <= 0): raise NameError("Error unphysical mapping detected.") Jed_inv = np.linalg.inv(Jed) # map shape function derivative SHP = np.copy(SH0) SHP[:,1:3] = np.einsum('Ij,ji->Ii', SH0[:,1:3], Jed_inv) Bmat = BmatVoigt2D(SHP) # compute strains eps = np.einsum('Iij,Ij->i', Bmat, uI) # compute elastic strain eps_el = eps - eps_pl # compute stresses sig = np.einsum('ij,j->i' , Cmat, eps_el) tr_sig = sig[0] + sig[1] + sig[2] dev_sig = sig - (1.0/3.0) * tr_sig * np.array([1.0, 1.0, 1.0, 0.0, 0.0, 0.0]) sig_vm = np.sqrt( \ sig[0]**2 + sig[1]**2 + sig[2]**2 \ -sig[0]*sig[1] -sig[0]*sig[2] -sig[1]*sig[2] \ + 3* (sig[3]**2 + sig[4]**2 + sig[5]**2) \ ) if (PostName=="SigMises"): r_post += sig_vm if (PostName=="a"): r_post += a if (PostName=="UX"): r_post = np.array([UL[0], UL[2], UL[4]]) return r_post elif (PostName=="UY"): r_post = np.array([UL[1], UL[3], UL[5]]) return r_post elif (PostName=="SigMises"): return r_post elif (PostName=="a"): return r_post else: print("Waring: PostName "+PostName+" not defined!") return np.array([0.0, 0.0, 0.0]) ```
{ "source": "5AF1/ERC-GUI", "score": 2 }
#### File: 5AF1/ERC-GUI/main.py ```python from test1 import Ui_MainWindow from PyQt5.QtCore import Qt from PyQt5 import QtWidgets, QtCore from PyQt5.QtWidgets import QWidget class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow): def __init__(self, parent=None): QtWidgets.QMainWindow.__init__(self, parent=parent) self.api=str('') self.state=0 self.setupUi(self) self.pushButton_HandUp.clicked.connect(self.buttonExecute_HandUp) self.pushButton_HandDown.clicked.connect(self.buttonExecute_HandDown) self.pushButton_HandLeft.clicked.connect(self.buttonExecute_HandLeft) self.pushButton_HandRight.clicked.connect(self.buttonExecute_HandRight) self.pushButton_BodyUp.clicked.connect(self.buttonExecute_BodyUp) self.pushButton_BodyDown.clicked.connect(self.buttonExecute_BodyDown) self.pushButton_BodyLeft.clicked.connect(self.buttonExecute_BodyLeft) self.pushButton_BodyRight.clicked.connect(self.buttonExecute_BodyRight) self.pushButton_StateSwitch.clicked.connect(self.buttonExecute_StateSwitch) self.pushButton_APIcall.clicked.connect(self.buttonExecute_APIcall) self.setChildrenFocusPolicy(QtCore.Qt.StrongFocus) def setChildrenFocusPolicy(self, policy): def recursiveSetChildFocusPolicy(parentQWidget): for childQWidget in parentQWidget.findChildren(QWidget): childQWidget.setFocusPolicy(policy) recursiveSetChildFocusPolicy(childQWidget) recursiveSetChildFocusPolicy(self) def keyPressEvent(self, e): if e.key() == 96 : #Qt.Key_Escape print("Exit") self.close() elif e.key() == Qt.Key_W: self.buttonExecute_HandUp() elif e.key() == Qt.Key_S: self.buttonExecute_HandDown() elif e.key() == Qt.Key_A: self.buttonExecute_HandLeft() elif e.key() == Qt.Key_D: self.buttonExecute_HandRight() elif e.key() == Qt.Key_Up: self.buttonExecute_BodyUp() elif e.key() == Qt.Key_Down: self.buttonExecute_BodyDown() elif e.key() == Qt.Key_Left: self.buttonExecute_BodyLeft() elif e.key() == Qt.Key_Right: self.buttonExecute_BodyRight() else: print(e.key()) self.showCurrentValues() def func(self): pass def showCurrentValues(self): print("State: %s \nIndex: %d" % (self.comboBox_State.itemText(self.state), self.state)) print("API: %s"%self.api) def buttonExecute_StateSwitch(self): self.state=self.comboBox_State.currentIndex() print("State: %s \nIndex: %d" % (self.comboBox_State.itemText(self.state), self.state)) def buttonExecute_APIcall(self): self.api =self.lineEdit_API.text() print(self.api) def buttonExecute_HandUp(self): print("Key pressed: W\nKey code: " + str(Qt.Key_W)) def buttonExecute_HandDown(self): print("Key pressed: S\nKey code: " + str(Qt.Key_S)) def buttonExecute_HandLeft(self): print("Key pressed: A\nKey code: " + str(Qt.Key_A)) def buttonExecute_HandRight(self): print("Key pressed: D\nKey code: " + str(Qt.Key_D)) def buttonExecute_BodyUp(self): print("Key pressed: Up\nKey code: " + str(Qt.Key_Up)) def buttonExecute_BodyDown(self): print("Key pressed: Down\nKey code: " + str(Qt.Key_Down)) def buttonExecute_BodyLeft(self): print("Key pressed: Left\nKey code: " + str(Qt.Key_Left)) def buttonExecute_BodyRight(self): print("Key pressed: Right\nKey code: " + str(Qt.Key_Right)) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) w = MainWindow() w.show() sys.exit(app.exec_()) ```
{ "source": "5AF1/LabWorksML", "score": 3 }
#### File: LabWorksML/ACC/CVP.py ```python from prettytable import PrettyTable #%% class CVP: def __init__(self, speakers, sales_pu, var_exp_pu, fix_exp, target_profit): self.sales_pu = sales_pu self.speakers = speakers self.var_exp_pu = var_exp_pu self.fix_exp = fix_exp self.target_profit = target_profit def sales(self): return self.sales_pu * self.speakers def var_exp(self): return self.var_exp_pu * self.speakers def contrib_margin_d(self): return self.sales() - self.var_exp() def contrib_margin_pu(self): return self.contrib_margin_d() / self.speakers def contrib_margin_rat(self): return self.contrib_margin_d() / self.sales() def var_exp_rat(self): return self.var_exp() / self.sales() def net_op_income(self): return self.contrib_margin_d() - self.fix_exp def break_even_pt_u(self): return self.fix_exp / self.contrib_margin_pu() def break_even_pt_d(self): return self.fix_exp / self.contrib_margin_rat() def u_sales_target_profit(self): return (self.fix_exp + self.target_profit) / self.contrib_margin_pu() def d_sales_target_profit(self): return (self.fix_exp + self.target_profit) / self.contrib_margin_rat() def marginal_safety(self): return self.sales() - self.break_even_pt_d() def marginal_safety_p(self): return self.marginal_safety() / self.sales() def degree_operating_leverage(self): return self.contrib_margin_d() / self.net_op_income() def expected_inc_in_net_op_inc(self, expected_inc_in_sale): print(f"Expected increase in sales\t{expected_inc_in_sale}") print(f"Degree of operating leverage\t{self.degree_operating_leverage()}") print( f"Expected increase in net operating income \t{self.degree_operating_leverage() * expected_inc_in_sale}" ) return self.degree_operating_leverage() * expected_inc_in_sale def table(self): tab = PrettyTable() tab.field_names = ["", "Total", "Per Unit"] tab.align[""] = "l" tab.add_row( [f"Sales ({self.speakers} Units)", f"${self.sales()}", f"${self.sales_pu}"] ) tab.add_row( [f"Less: Variable Expenses", f"({self.var_exp()})", f"({self.var_exp_pu})"] ) tab.add_row([f"", "-----", "-----"]) tab.add_row( [ f"Contribution Margin", f"{self.contrib_margin_d()}", f"${self.contrib_margin_pu()}", ] ) tab.add_row([f"Less: Fixed Expenses", f"({self.fix_exp})", "====="]) tab.add_row([f"", "-----", ""]) tab.add_row([f"Net Operating Income", f"${self.net_op_income()}", ""]) tab.add_row([f"", "=====", ""]) print(tab) #%% #%% a = CVP(400, 250, 150, 35000, None) a.table() #%% a.degree_operating_leverage() #%% a.speakers = int(a.speakers * 1.1) a.var_exp_pu += 10 a.fix_exp -= 5000 a.table() #%% a = CVP(20000, 60, 45, 240000, 90000) a.table() print(a.contrib_margin_rat(), a.var_exp_rat()) print(a.break_even_pt_d(), a.break_even_pt_u()) print(a.d_sales_target_profit(), a.u_sales_target_profit()) print(a.marginal_safety(), a.marginal_safety_p()) print(a.expected_inc_in_net_op_inc(8)) #%% a = CVP(20000, 60, 45, 240000, 90000) a.table() a.var_exp_pu += 3 a.fix_exp -= 30000 a.speakers *= 1.2 a.table() #%% a = CVP(2000, 90, 63, 30000, None) a.table() a.sales_pu *= 1.05 a.var_exp_pu *= 1.05 a.fix_exp += 5000 a.table() a = CVP(2000, 90, 63, 30000, None) a.var_exp_pu += 2 a.speakers *= 1.1 a.table() #%% if __name__ == "__main__": a = CVP(400, 250, 150, 35000, None) a.table() print(a.degree_operating_leverage()) #%% a = CVP(30000, 50, 35, 300000, None) a.table() # %% ``` #### File: LabWorksML/ML/conv.py ```python import numpy as np #%% def Custom_Convolve2D(image, kernel, padding=0, strides=1): # Cross Correlation # kernel = np.flipud(np.fliplr(kernel)) ## Put your code here. # Gather Shapes of Kernel + Image + Padding xKernShape = kernel.shape[0] yKernShape = kernel.shape[1] xImgShape = image.shape[0] yImgShape = image.shape[1] # Shape of Output Convolution xOutput = int(((xImgShape - xKernShape + 2 * padding) / strides) + 1) yOutput = int(((yImgShape - yKernShape + 2 * padding) / strides) + 1) output = np.zeros((xOutput, yOutput)) # Apply Equal Padding to All Sides if padding != 0: imagePadded = np.zeros((xImgShape + padding * 2, yImgShape + padding * 2)) imagePadded[ int(padding) : int(-1 * padding), int(padding) : int(-1 * padding) ] = image else: imagePadded = image # Iterate through image for y in range(imagePadded.shape[1]): # Exit Convolution if y > imagePadded.shape[1] - yKernShape: break # Only Convolve if y has gone down by the specified Strides if y % strides == 0: for x in range(imagePadded.shape[0]): # Go to next row once kernel is out of bounds if x > imagePadded.shape[0] - xKernShape: break # Only Convolve if x has gone down by the specified Strides if x % strides == 0: output[x // strides, y // strides] = ( kernel * imagePadded[x : x + xKernShape, y : y + yKernShape] ).sum() return output def Custom_MaxPlooling(image, pool_size=(2, 2), padding=0, strides=None): ## Put your code here. # Gather Shapes of pool + Image + Padding xPoolShape = pool_size[0] yPoolShape = pool_size[1] xImgShape = image.shape[0] yImgShape = image.shape[1] # Stride if strides is None: strides = max(yPoolShape, xPoolShape) # Shape of Output Convolution xOutput = int(((xImgShape - xPoolShape + 2 * padding) / strides) + 1) yOutput = int(((yImgShape - yPoolShape + 2 * padding) / strides) + 1) output = np.zeros((xOutput, yOutput)) # Apply Equal Padding to All Sides if padding != 0: imagePadded = np.zeros((xImgShape + padding * 2, yImgShape + padding * 2)) imagePadded[ int(padding) : int(-1 * padding), int(padding) : int(-1 * padding) ] = image else: imagePadded = image # Iterate through image for y in range(imagePadded.shape[1]): # Exit Convolution if y > imagePadded.shape[1] - yPoolShape: break # Only Convolve if y has gone down by the specified Strides if y % strides == 0: for x in range(imagePadded.shape[0]): # Go to next row once kernel is out of bounds if x > imagePadded.shape[0] - xPoolShape: break # Only Convolve if x has gone down by the specified Strides if x % strides == 0: output[x // strides, y // strides] = ( imagePadded[x : x + xPoolShape, y : y + yPoolShape] ).max() return output def Custom_Flatten(img): img = (img - img.min()) / (img.max() - img.min()) return img.flatten() def Custom_Dense(data, units=10): n = data.shape[0] data = np.reshape(data, (n, 1)) # Setting the range from 0 to 0.04 to stop exponent explotion w = np.random.uniform(0, 0.04, [units, n]) b = np.random.uniform(0, 0.04, [units, 1]) return 1 / (1 + np.exp(-1 * (w @ data + b))) def Custom_softmax(data): data = np.exp(data) data = data / data.sum() return data #%% im = np.array( [ [4, 9, 2, 5, 8, 3], [5, 6, 2, 4, 0, 3], [2, 4, 5, 4, 5, 2], [5, 6, 5, 4, 7, 8], [5, 7, 7, 9, 2, 1], [5, 8, 5, 3, 8, 4], ] ) kernel = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]]) ss = np.array([[3.1, 0.3, 1.2]]) # %% print(Custom_Convolve2D(im, kernel, 1, 1)) print(Custom_softmax(ss)) # %% ``` #### File: LabWorksML/ML/tree.py ```python import numpy as np import math #%% X = [[1, 1, 1, 1, 1], [1, 1, 1, 2, 1], []] #%% def e(b): n = sum(b) ans = 0 for i in b: ans += i * math.log(i) ans -= n * math.log(n) return ans / (-n * math.log(2)) def ent(a, b): n = sum(a) ans = 0 for i in range(len(a)): ans += a[i] * e(b[i]) / n return ans def tree(B): for i in B: V = [sum(j) for j in i] a = ent(V, i) print(a) #%% a = [5, 4, 5] b = [[3, 2], [4], [2, 3]] print(ent(a, b)) # %% A = [[5, 4, 5], [4, 6, 4], [7, 7], [8, 6]] B = [ [[3, 2], [4], [2, 3]], [[2, 2], [4, 2], [3, 1]], [[3, 4], [6, 1]], [[6, 2], [3, 3]], ] #%% tree(B) # %% ```
{ "source": "5AF1/travelhacks", "score": 2 }
#### File: travelhacks/users/views.py ```python from django.shortcuts import render,redirect #from django.contrib.auth.forms import UserCreationForm from django.contrib import messages from .forms import UserRegisterForm,UserUpdateForm,ProfileUpdateForm from django.contrib.auth.decorators import login_required # Create your views here. def register(response): if response.method == 'POST': form = UserRegisterForm(response.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') messages.success(response,f'Account created for {username}!\nYou can now log in ☺') return redirect('login') else: form = UserRegisterForm() return render(response,'users/register.html',{'form':form}) @login_required def profile(response): if response.method == 'POST': u_form = UserUpdateForm(response.POST, instance=response.user) p_form = ProfileUpdateForm(response.POST, response.FILES, instance=response.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() username = u_form.cleaned_data.get('username') messages.success(response,f'Ok {username}!\nYour account has been updated ☺') return redirect('profile') else: u_form = UserUpdateForm(instance=response.user) p_form = ProfileUpdateForm(instance=response.user.profile) context = { 'u_form': u_form, 'p_form': p_form, } return render(response,'users/profile.html',context) ```
{ "source": "5agado/conversation-analyzer", "score": 2 }
#### File: conversation-analyzer/src/main.py ```python import argparse import configparser import sys import os import util.io as mio from model.conversation import Conversation from model.conversationDataframe import ConversationDataframe from stats.iConvStats import IConvStats def main(_): parser = argparse.ArgumentParser(description='Conversation Analyzer') parser.add_argument('-p', metavar='conversationFilepath', dest='filepath', required=True) parser.add_argument('-n', metavar='numberOfMessages', type=int, dest='numMsgs', default=0, help='number of conversation messages to be analyzed') baseFolderPath = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) parser.add_argument('--conf', metavar='configFilepath', dest='configFilepath', default= baseFolderPath+'\\config.ini') args = parser.parse_args() filepath = args.filepath numMsgs = args.numMsgs CONFIG_FILEPATH = args.configFilepath STATS_SECTION = "Stats" config = configparser.ConfigParser() config.read(CONFIG_FILEPATH) P_BASIC_LENGTH_STATS = config.getboolean(STATS_SECTION, "P_BASIC_LENGTH_STATS") P_INTERVAL_STATS = config.getboolean(STATS_SECTION, "P_INTERVAL_STATS") P_WORDS_COUNT = config.getboolean(STATS_SECTION, "P_WORDS_COUNT") WORDS_COUNT_LIMIT = config.getint(STATS_SECTION, "WORDS_COUNT_LIMIT") P_WORDS_USEDJUSTBY = config.getboolean(STATS_SECTION, "P_WORDS_USEDJUSTBY") P_DELAY_STATS = config.getboolean(STATS_SECTION, "P_DELAY_STATS") P_EMOTICONS_STATS = config.getboolean(STATS_SECTION, "P_EMOTICONS_STATS") P_LEXICAL_STATS = config.getboolean(STATS_SECTION, "P_LEXICAL_STATS") #conv = Conversation(filepath) conv = ConversationDataframe(filepath) conv.loadMessages(numMsgs) if P_BASIC_LENGTH_STATS: stats = conv.stats.generateStats(IConvStats.STATS_NAME_BASICLENGTH) mio.printBasicLengthStats(stats) if P_INTERVAL_STATS: start, end, interval = conv.stats.getIntervalStats() days = conv.stats.getDaysWithoutMessages() mio.printIntervalStatsFor(start, end, interval, days) if P_LEXICAL_STATS: stats = conv.stats.generateStats(IConvStats.STATS_NAME_LEXICAL) mio.printLexicalStats(stats) if P_WORDS_COUNT: stats = conv.stats.generateStats(IConvStats.STATS_NAME_WORDCOUNT) mio.saveDfToStatsFolder(conv, stats.wordsCount, 'wordCount.csv') if P_EMOTICONS_STATS: stats = conv.stats.generateStats(IConvStats.STATS_NAME_EMOTICONS) mio.printEmoticonsStats(stats) #Not tested #if P_DELAY_STATS: # mio.printDelayStatsFor(conv) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: src/model/conversation.py ```python import logging import os import time import nltk import util.io as mio from stats.convStats import ConvStats #----------------------------# # DEPRECATED # #----------------------------# class Conversation: def __init__(self, filepath): self.sender1 = None self.sender2 = None self.filepath = filepath self.statsFolder = os.path.dirname(filepath) + '\\stats' if not os.path.exists(self.statsFolder): os.makedirs(self.statsFolder) self.messages = None self.sender1Messages = None self.sender2Messages = None self.messagesBySender = {self.sender1:self.sender1Messages, self.sender2:self.sender2Messages} self.stats = None def loadMessages(self, limit=0, startDate=None, endDate=None): logging.info("Start loading messages for conversation " + self.filepath) start = time.time() self.messages, [self.sender1, self.sender2] = \ mio.parseMessagesFromFile(self.filepath, limit, startDate, endDate) if len(self.messages) == 0: raise Exception("No messages found for conversation " + self.filepath) self.sender1Messages = list(filter(lambda m: m.sender == self.sender1, self.messages)) self.sender2Messages = list(filter(lambda m: m.sender == self.sender2, self.messages)) self.messagesBySender[self.sender1] = self.sender1Messages self.messagesBySender[self.sender2] = self.sender2Messages end = time.time() logging.info("Loading completed in {0:.2f}s".format(end-start)) self.stats = ConvStats def getAsNLTKText(self, sender=None): if sender: return nltk.Text(self.getConvTextBySender(sender)) else: return nltk.Text(self.getEntireConvText()) def getEntireConvText(self): text = '' for m in self.messages: text += m.text + '\n' return text def getConvTextBySender(self, sender): text = '' for m in self.messages: if m.sender == sender: text += m.text + '\n' return text ``` #### File: src/model/message.py ```python from datetime import datetime class Message: DATE_FORMAT = '%Y.%m.%d' TIME_FORMAT = '%H:%M:%S' DATE_SEPARATOR = '.' TIME_SEPARATOR = ':' DATETIME_SEPARATOR = ' ' DATE_TIME_FORMAT = DATE_FORMAT + DATETIME_SEPARATOR + TIME_FORMAT def __init__(self, date, time, sender, text): self.date = date self.time = time self.datetime = date + Message.DATETIME_SEPARATOR + time self.sender = sender self.text = text def getMessageLength(self): return len(self.text) def getHour(self): return self.time.split(Message.TIME_SEPARATOR)[0] def getWeekDay(self): return datetime.strptime(self.datetime, Message.DATE_TIME_FORMAT).weekday() def getMonth(self): return self.date.split(Message.DATE_SEPARATOR)[1] def getYear(self): return self.date.split(Message.DATE_SEPARATOR)[0] def __str__(self): return "{} {} {}".format(self.datetime, self.sender, self.text) ``` #### File: src/stats/wordsCountStats.py ```python import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from util import statsUtil class WordsCountStats: def __init__(self, conversation): self.conversation = conversation self.msgs = self.conversation.messages self.wordsCount = None def loadWordsCount(self, groupByColumns=None, ngram_range=(1,1)): """ Generates dataframe with words count for each group-by entry and stores it internally. Successive calls on this method will overwrite the stored data with the new results. :param ngram_range: ngram to use for count vectorization :param groupByColumns: names of features to use to group messages :return: none. Results are stored internally """ if not groupByColumns: groupByColumns = [] groupByColumns = groupByColumns + ['sender'] self.wordsCount = WordsCountStats._computeWordsCount(self.msgs, groupByColumns, ngram_range) def loadWordsCountFromFile(self, filepath, indexCols=None): """ Load previously exported words count in this stats instance. :param indexCols: columns to set as index :param filepath: filepath of the csv words count file :return: none. words-count data is stored in this stats instance """ self.wordsCount = pd.read_csv(filepath, index_col=indexCols) def getWordsCount(self, words=None, sender=None, stopWords=None): """ Returns count for specified words. :param stopWords: words to ignore :param words: lookup words, if none return all present words :param sender: if specified, just consider words occurrences for such sender, otherwise consider all senders (total) :return: a wordsCount dataframe """ if not stopWords: stopWords = [] # if no words have been specified considering all present ones not in stopwords if not words: words = list(filter(lambda x : x not in stopWords, self.wordsCount.columns.values)) # Consider only words that are present and not in stopwords else: words = list(filter(lambda x : ((x not in stopWords)and(x in words)), self.wordsCount.columns.values)) # If no word is present, return None if not words: return None count = WordsCountStats._transformWordsCountBasedOnSender(self.wordsCount[words], sender) return count def getWordsUsedJustBy(self, originSender, referenceSender): # collect words wordsCount = self.wordsCount.ix[:,(self.wordsCount.loc[referenceSender]==0) &(self.wordsCount.loc[originSender]!=0)] #transpose to have sender count as columns, and words as rows words = wordsCount.transpose().rename(columns={'sender':'word'})\ .sort_values(originSender, ascending=False) return words def getWordFirstAndLastOccurences(self, word, sender=None): """ Returns when word has been used (non-zero count) for the first and last time. :param word: target word :param sender: if specified, just consider words used by such sender, otherwise consider all senders :return: two indexes, for which word firstly and lastly appears, or -1 if the word has never been used """ res = WordsCountStats._getFirstAndLastOccurences(self.wordsCount, word, sender) if not res: return -1, -1 else: return res #TODO add total option def getLexicalStats(self, sender=None): wordsCount = self.wordsCount #wordsCount = WordsCountStats._transformWordsCountBasedOnSender(self.wordsCount, sender) res = pd.DataFrame(wordsCount.apply(lambda x : WordsCountStats.lexicalStatsFun(x), axis=1)) if sender: if isinstance(res.index, pd.core.index.MultiIndex): res = res.xs(sender, level='sender') else: res = res.loc[sender] return res @staticmethod # TODO Add options of filter out stopwords def _computeWordsCount(msgs, groupByColumns, ngram_range=(1,1)): """ Generates dataframe with words count for each group-by entry. Grouping is done on passed columns plus the sender one. """ # Group messages by sender and specified feature, concatenating text field grouped_msgs = msgs.groupby(groupByColumns).agg({'text': lambda x: " ".join(x)}) # Count-vectorize msgs, using own defined analyzer (tokenizer) vectorizer = CountVectorizer(tokenizer=lambda x: statsUtil.getWords(x), ngram_range=ngram_range) X = vectorizer.fit_transform(grouped_msgs['text'].values) # Create count matrix using words as columns countMatrix = pd.DataFrame(X.toarray(), index=grouped_msgs.index,columns=vectorizer.get_feature_names()) # Join data while dropping text column wordsCount = grouped_msgs.drop('text', axis=1).join(countMatrix) return wordsCount @staticmethod def _getFirstAndLastOccurences(wordsCount, word, sender=None): """ Returns when word has been used (non-zero count) for the first and last time, based on the provided words counts. :param wordsCount: dataframe with words count for each group-by entry. :param word: target word :param sender: if specified, just consider words used by such sender, otherwise consider all senders :return: tuple with wordsCount indexes for which word firstly and lastly appears, or none if the word has never been used """ # If word not present return -1 if word not in wordsCount.columns: return None wordsCount = WordsCountStats._transformWordsCountBasedOnSender(wordsCount, sender) # (notice word column will still be present, even if sender never used it) count = wordsCount[word] # Being a series nonzero return always a tuple with just one array # collect it and return df indexes using first and last elements of the array, or -1 if array is empty nonZeroIdxs = count.nonzero()[0] if len(nonZeroIdxs) == 0: return None else: return wordsCount.index[nonZeroIdxs[0]], wordsCount.index[nonZeroIdxs[-1]] @staticmethod def _transformWordsCountBasedOnSender(wordsCount, sender=None): """ Transforms wordsCount. If sender extract data only for specified sender, if not sum over all senders. Sender is check both on single and multi-index, if not present None is returned """ # If sender, get words count for the specified sender if sender: try: if isinstance(wordsCount.index, pd.core.index.MultiIndex): res = wordsCount.xs(sender, level='sender') else: res = wordsCount.loc[sender] except KeyError: print("Key error for " + sender) return None # If no sender is specified, regroup by index (ignoring sender) and aggregate by sum else: indexNames = list(wordsCount.index.names) indexNames.remove('sender') # If only index was sender, we simply sum if not indexNames: res = wordsCount.sum() # Otherwise we sum by other indexes else: res = wordsCount.groupby(level=indexNames).sum() return res @staticmethod def _normalizeWordsCount(wordsCount): df = wordsCount.apply(lambda x : x/sum(x), axis=0) return df @staticmethod def _computeWordsTrend(wordsCount, sender=None): wordsCount = WordsCountStats._transformWordsCountBasedOnSender(wordsCount, sender) wordsTrend = wordsCount.apply(lambda x: (x - x.shift(1))).dropna().astype(np.int8) return wordsTrend @staticmethod def lexicalStatsFun(row): tokensCount = sum(row) vocabularyCount = len(row[row>0]) return pd.Series({'tokensCount':tokensCount,'vocabularyCount':vocabularyCount, 'lexicalRichness':vocabularyCount/tokensCount}) ``` #### File: src/test/basicTests.py ```python import argparse import logging import os import sys import numpy as np from matplotlib import pyplot as plt from scipy.stats.stats import pearsonr from model.conversationDataframe import ConversationDataframe from util import conversationGenerator from util import io as mio from util import plotting as mplot from util import statsUtil from matplotlib import animation from stats.iConvStats import IConvStats import pandas as pd import seaborn as sns #from sklearn import datasets, linear_model def initLogger(): logger = logging.getLogger() logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s %(levelname)s - %(message)s", "%Y-%m-%d %H:%M:%S") ch.setFormatter(formatter) logger.addHandler(ch) def init(_): parser = argparse.ArgumentParser(description='Conversation Analyzer') parser.add_argument('-p', metavar='conversationfilePath', dest='filepath') parser.add_argument('-n', metavar='numberOfMessages', type=int, dest='numMsgs', default=0) parser.add_argument('-l', metavar='wordsCountLimit', type=int, dest='wCountLimit', default=20) args = parser.parse_args() filepath = args.filepath numMsgs = args.numMsgs wCountLimit = args.wCountLimit initLogger() #conv = ConversationDataframe(mio.getResourcesPath() + "\\unittest\\test_plotting.txt") conv = ConversationDataframe(filepath) conv.loadMessages(numMsgs) return res = conv.messages.rename(columns={'text':'numMsgs'}) res['lenMsgs'] = res['numMsgs'].apply(lambda x: len(x)) x = pd.to_numeric(res['hour']) testCorrelation(x, res['lenMsgs']) #testAnimation(conv) #sentences = mnlp.sentenceSegmentation(conv.getEntireConvText()) #sentences = mnlp.wordTokenization(conv.getEntireConvText()) #for s in sentences: # print(s) #rawText = conv.getEntireConvText() #mio.displayDispersionPlot(conv, ['sender1', ':D', 'well']) #mio.showConcordance(conv, "phone") #tokens = nltk.word_tokenize(rawText) #words = [w.lower() for w in tokens] def testCorrelation(x, y): print(np.corrcoef(x, y)[0, 1]) sns.regplot(x=x, y=y) plt.show() def saveBunchOfStatsDf(conv): statsList = [IConvStats.STATS_NAME_BASICLENGTH, IConvStats.STATS_NAME_LEXICAL, IConvStats.STATS_NAME_WORDCOUNT, IConvStats.STATS_NAME_EMOTICONS] for stat in statsList: filepath = conv.statsFolder + '\\' + stat + '.txt' df = conv.stats.generateStats(stat) mio.printDataFrameToFile(df, filepath) filepath = conv.statsFolder + '\\' + stat + 'byHour.txt' df = conv.stats.generateStatsByHour(stat) mio.printDataFrameToFile(df, filepath) filepath = conv.statsFolder + '\\' + stat + 'byYearAndHour.txt' df = conv.stats.generateStatsByYearAndHour(stat) mio.printDataFrameToFile(df, filepath) def testAnimation(conv): data = conv.stats.generateStatsByYearMonthHour(IConvStats.STATS_NAME_BASICLENGTH) data = data.groupby('year').get_group('2014') grouped = data.groupby('month') keys = sorted(list(grouped.groups.keys())) print(keys) fig = plt.figure() ax = plt.axes() def animate(i): df = grouped.get_group(keys[i]).sort_values("hour") print(df.head()) ax.clear() sns.barplot(x="hour", y="lenMsgs", hue="sender", data=df, ax=ax) ax.set_title(i) anim = animation.FuncAnimation(fig, animate, frames=len(grouped), interval=2000) plt.show() def testZipfLaw(conv): _, wCount, _ = conv.stats.getWordCountStats() print(wCount) (_, occFirst) = wCount[0] for i, (word, count) in enumerate(wCount[:10], start=1): print(word + " " + str(i) + " = " + str(occFirst/count)) print(word + " " + str(count) + " = " + str(occFirst/i)) words, count = zip(*wCount) mplot.plotZipfLaw(words, count) return def plotDelayByLengthStats(conv): delay, senderDelay = mstats.getDelayStatsByLength(conv) x = np.array([v[0] for v in senderDelay[conv.sender1+ ':' +conv.sender2]]) y = np.array([v[1] for v in senderDelay[conv.sender1+ ':' +conv.sender2]]) print(pearsonr(x, y)) print(np.corrcoef(x, y)[0, 1]) print(x) print(x[:,np.newaxis]) # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(x[:,np.newaxis],y) plt.scatter(x, y, color='red') plt.plot(x, regr.predict(x[:,np.newaxis]), color='blue') plt.show() def testConversationGenerator(): conv = conversationGenerator.generateNewConversation(100, "2014.01.30 06:01:57", "2014.12.30 06:01:57", ["s1", "s2"], 3, 20) mio.printListToFile(conv, os.path.join(mio.getResourcesPath(), "test.txt")) init(sys.argv[1:]) ``` #### File: src/util/io.py ```python import os import sys from datetime import datetime from pandas import read_csv from model.message import Message from os.path import dirname sys.path.append(dirname(__file__)+"\\..") from util import logger def parseMessagesFromFile(filePath, limit=0, startDate=None, endDate=None): messages = [] senders = set([]) if startDate: startDate = datetime.strptime(startDate, Message.DATE_FORMAT) if endDate: endDate = datetime.strptime(endDate, Message.DATE_FORMAT) try: with open(filePath, 'r', encoding="utf8") as f: for line in f: date, time, sender, text = line.split(' ', 3) if startDate or endDate: thisDate = datetime.strptime(date, Message.DATE_FORMAT) if (not startDate or thisDate>=startDate) and (not endDate or thisDate<=endDate): messages.append(Message(date, time, sender, text.strip())) else: messages.append(Message(date, time, sender, text.strip())) senders.add(sender) if limit != 0 and len(messages) >= limit: break except IOError: logger.warning("No such file: " + filePath) return messages, senders def loadDataFromFile(filepath): data = read_csv(filepath) return data def getSetFromFile(filePath): theSet = set([]) try: with open(filePath, 'r') as f: theSet = {line.strip() for line in f} except IOError: logger.warning("No such file " + filePath) return theSet def displayDispersionPlot(conv, words): text = conv.getAsNLTKText() text.dispersion_plot(words) def showConcordance(conv, word): text = conv.getAsNLTKText() text.concordance(word) def printBasicLengthStats(basicLengthStatsDf): logger.info("##BASIC LENGTH STATS") for sender, vals in basicLengthStatsDf.iterrows(): totalNum, totalLength, avgLegth = vals.tolist() logger.info("#" + sender) logger.info("Number of messages: {:.0f}".format(totalNum)) logger.info("Total length: {:.0f}".format(totalLength)) logger.info("Average length: {0:.2f}".format(avgLegth)) logger.info('-'*10) def printLexicalStats(lexicalStatsDf): logger.info("##LEXICAL STATS") for sender, vals in lexicalStatsDf.iterrows(): tokensCount, vocabularyCount, lexicalRichness = vals.tolist() logger.info("#" + sender) logger.info("Tokens count: {:.0f}".format(tokensCount)) logger.info("Distinct tokens count: {:.0f}".format(vocabularyCount)) logger.info("Lexical diversity: {0:.5f}".format(lexicalRichness)) logger.info('-'*10) def printIntervalStatsFor(start, end, interval, days): logger.info("##Conv Interval") logger.info("Conversation started: {}".format(str(start))) logger.info("Conversation ended: {}".format(str(end))) logger.info("Conversation overall duration: {}".format(interval)) logger.info("{:.0f} days without messages".format(len(days))) percentage = (len(days)/(interval.days+1))*100 logger.info("{0:.2f}% out of the conversation overall days-interval".format(percentage)) #logger.info(days) logger.info('-'*10) def printEmoticonsStats(emoticonsStatsDf): logger.info("##EMOTICONS STATS") for sender, vals in emoticonsStatsDf.iterrows(): numEmoticons, emoticonsRatio, lenMsgs = vals.tolist() logger.info("#" + sender) logger.info("Emoticons count: {:.0f}".format(numEmoticons)) logger.info("Messages total length: {:.0f}".format(lenMsgs)) logger.info("Ratio: {0:.5f}".format(emoticonsRatio)) logger.info('-'*10) def saveDfToStatsFolder(conv, df, filename, saveIndex=True): statsFolder = os.path.join(os.path.dirname(conv.filepath), 'stats') if not os.path.exists(statsFolder): os.makedirs(statsFolder) df.to_csv(os.path.join(statsFolder, filename), index=saveIndex) def printDelayStatsFor(conv): delay = conv.stats.getDelayStats() logger.info("##Reply Delay Stats") logger.info("Reply delay by sender: ") for s, d in delay.items(): msg = "Between {} and {}".format(s.split(':')[0], s.split(':')[1]) logger.info('{} : {}'.format(msg, d)) logger.info('-'*10) def printDictToFile(d, title, filepath): with open(filepath, "w+", encoding="utf8") as f: if title: f.write(title + "\n") for k, v in d.items(): f.write('{} : {}\n'.format(k, v)) def printListToFile(l, filepath, title=None): with open(filepath, "w+", encoding="utf8") as f: if title: f.write(title + "\n") for e in l: f.write(str(e)+"\n") def getResourcesPath(): return os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'resources')) ``` #### File: src/util/plotting.py ```python import os from datetime import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import util.io as mio from util import statsUtil from model.message import Message SAVE_PLOT = False def plotBasicLengthStatsByYearAndMonth(data, yearsToShow=None, targetStats=None, targetSenders=None): df = statsUtil.filter_stats(data, {'sender':targetSenders, 'year':yearsToShow, 'stat':targetStats}) g = sns.factorplot(x="month", y="val", row="stat", hue='sender', col='year', data=df, kind="bar", size=3, aspect=2.5, legend_out=False) g.fig.suptitle('Basic Length Stats') sns.plt.show() def plotBasicLengthStatsByHour(data, targetStats=None, targetSenders=None, kind='bar'): df = statsUtil.filter_stats(data, {'sender':targetSenders, 'stat':targetStats}) g = sns.factorplot(x="hour", y="val", row="stat", hue='sender', data=df, kind=kind, size=3, aspect=2.5, legend_out=False) g.fig.suptitle('Basic Length Stats - Hour') #sns.plt.show() def plotRichnessVariation(data, targetLabel, yearsToShow=None, targetSenders=None): df = data.reset_index() df = statsUtil.filter_stats(df, {'year':yearsToShow, 'sender':targetSenders}) g = sns.factorplot(x=targetLabel, y="lexicalRichness", col="year", hue='sender', data=df, kind="point", legend_out=False) g.set(ylabel='lexical richness (%)') g.fig.suptitle('Vocabulary Richness') sns.plt.show() def _genericFactorPlot(data, xTarget, yTarget, filters, title, yLabel, col=None, row=None, kind='point'): df = statsUtil.filter_stats(data, filters) g = sns.factorplot(x=xTarget, y=yTarget, col=col, row=row, hue='sender', data=df, kind=kind, legend_out=False) g.set(ylabel=yLabel) g.fig.suptitle(title) sns.plt.show() # does single year only. Use with animations or to see boxplots def plotSingleBasicLengthStatByYearAndHour(data, stat, yearsToShow=None, targetSenders=None, ax=None): df = statsUtil.filter_stats(data, {'sender':targetSenders, 'year':yearsToShow, 'stat':[stat]}) ax = sns.barplot(x="hour", y='val', hue="sender", data=df, ax=ax) ax.set(ylabel=stat) #sns.plt.show() def plotSingleBasicLengthStatHeatmap(data, stat, targetSender, yearsToShow=None): df = data.xs(targetSender, level='sender') df = df.reset_index() def plot(ax, df, count): df = df.pivot('month', 'day', stat) # TODO share y. Fix it or try factorgrid ax = sns.heatmap(df, mask=df.isnull(), ax=ax, vmin=0, vmax=30000)#cmap=ListedColormap(['red', 'blue']) ax.set(ylabel='month' if count == 1 else '') _plotByYear(df, "{} ({})".format(stat, targetSender), plot, yearsToShow) def plotSentimentStatsByHour(sentimentStats, valueNames): data = statsUtil.transformSentimentStats(sentimentStats, valueNames, ['sender', 'hour']) ax = sns.factorplot(x="hour", y="val", col="emotion", hue='sender', data=data, kind="point", sharey=False, legend_out=False) ax.set(ylabel='mean(val)') sns.plt.show() def plotSentimentStatsByYearAndMonth(sentimentStats, valueNames): data = statsUtil.transformSentimentStats(sentimentStats, valueNames, ['sender', 'year', 'month']) sns.factorplot(x="month", y="val", row="emotion", hue='sender', col='year', data=data, kind="point", sharey=False, legend_out=False) sns.plt.show() # TODO fill all possible values for the index (dates, month, year) # Add sender or total labels def plotWordsCount(wordsCountStats, words, sender=None, yearsToShow=None): data = wordsCountStats.getWordsCount(words, sender) if data is None: return def plot(ax, df, count): df.reset_index(level='year').plot(ax=ax) if 'year' in list(data.index.names): _plotByYear(data, 'Word count', plot, yearsToShow) else: data.plot() sns.plt.show() def plotZipfLaw(words, count): figureAesthetic() #plt.figure(1).suptitle("Zip's Law", fontsize=20) ax = plt.subplot(1,2,1) plt.xlabel("word") plt.ylabel("frequency") numWords = 20 x = np.arange(numWords) y = count[:numWords] plt.xticks(np.arange(len(x)), words[:numWords]) plt.gcf().autofmt_xdate() ax.plot(x, y, c='r', linewidth=2) ax = plt.subplot(1,2,2) plt.xlabel("rank (log scale)") plt.ylabel("frequency (log scale)") x = np.arange(len(words)) plt.xscale('log') plt.yscale('log') ax.plot(x,count, c='r', linewidth=2) plt.show() def figureAesthetic(): sns.set_context("poster") sns.set_style("darkgrid") sns.plt.grid(True) def _plotByYear(data, title, plotFun, yearsToShow=None): plt.title(title) if 'year' in list(data.index.names): grouped = data.groupby(level='year') else: grouped = data.groupby('year') numberOfYears = len(grouped) if not yearsToShow else len(yearsToShow) count = 1 fig = plt.figure(1) ax = None for year, group in grouped: if yearsToShow and year not in yearsToShow: continue if ax: ax = plt.subplot(1, numberOfYears, count, sharey=ax) else: ax = plt.subplot(1,numberOfYears,count) ax.set_title(year) plotFun(ax, group, count) count += 1 fig.suptitle(title) sns.plt.show() def savePlotAsImage(plot, filename): folderPath = os.path.join(mio.getResourcesPath(), 'imgs') if not os.path.exists(folderPath): os.makedirs(folderPath) if SAVE_PLOT: filepath = os.path.join(folderPath, filename) plot.savefig(filepath) else: pass ``` #### File: src/util/watsonUtils.py ```python import json from watson_developer_cloud import ToneAnalyzerV3 def getToneAnalyzerService(username, password): toneAnalyzer = ToneAnalyzerV3( username=username, password=password, version=ToneAnalyzerV3.latest_version, x_watson_learning_opt_out=True) return toneAnalyzer def extractToneFrom(text, toneService): res = toneService.tone(text, tones='emotion') tones = res['document_tone']['tone_categories'][0]['tones'] tones = dict([(t['tone_id'], t['score']) for t in tones]) return tones ```
{ "source": "5agado/face-swap", "score": 3 }
#### File: face-swap/face_swap/autoencoder.py ```python from keras.layers import Input, Dense, Flatten, Reshape from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Conv2D from keras.models import Model from keras.optimizers import Adam from ast import literal_eval from face_swap.PixelShuffler import PixelShuffler def conv(filters, kernel_size=5, strides=2): def block(x): x = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding='same')(x) x = LeakyReLU(0.1)(x) return x return block # deconvolution block used in the decoder def upscale(filters, kernel_size=3): def block(x): x = Conv2D(filters * 4, kernel_size=kernel_size, padding='same')(x) x = LeakyReLU(0.1)(x) x = PixelShuffler()(x) return x return block def Encoder(input_shape, hidden_dim, init_filters=128, num_conv_blocks=4): model_input = Input(shape=input_shape) x = model_input for i in range(num_conv_blocks): x = conv(init_filters * (2 ** i))(x) x = Dense(hidden_dim)(Flatten()(x)) x = Dense(4 * 4 * hidden_dim)(x) x = Reshape((4, 4, hidden_dim))(x) x = upscale(hidden_dim//2)(x) return Model(model_input, x) def Decoder(input_shape, init_filters=256, num_deconv_blocks=3): model_input = Input(shape=input_shape) x = model_input for i in range(num_deconv_blocks): x = upscale(init_filters // (2 ** i))(x) x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x) return Model(model_input, x) def get_autoencoders(cfg): models_path = cfg.get('models_path', None) IMAGE_SHAPE = literal_eval(cfg.get('img_shape')) ENCODER_DIM = cfg.get('encoder_dim') DECODER_INPUT_SHAPE = literal_eval(cfg.get('decoder_input_shape')) encoder_init_filters = cfg.get('encoder_init_filters') encoder_nb_conv_blocks = cfg.get('encoder_nb_conv_blocks') decoder_init_filters = cfg.get('decoder_init_filters') decoder_nb_conv_blocks = cfg.get('decoder_nb_conv_blocks') optimizer = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999) encoder = Encoder(IMAGE_SHAPE, ENCODER_DIM, init_filters=encoder_init_filters, num_conv_blocks=encoder_nb_conv_blocks) decoder_a = Decoder(DECODER_INPUT_SHAPE, init_filters=decoder_init_filters, num_deconv_blocks=decoder_nb_conv_blocks) decoder_b = Decoder(DECODER_INPUT_SHAPE, init_filters=decoder_init_filters, num_deconv_blocks=decoder_nb_conv_blocks) x = Input(shape=IMAGE_SHAPE) autoencoder_a = Model(x, decoder_a(encoder(x))) autoencoder_b = Model(x, decoder_b(encoder(x))) autoencoder_a.compile(optimizer=optimizer, loss='mean_absolute_error') autoencoder_b.compile(optimizer=optimizer, loss='mean_absolute_error') if models_path: print("Loading Autoencoder Models...") encoder.load_weights(models_path + '/encoder.h5') decoder_a.load_weights(models_path + '/decoder_A.h5') decoder_b.load_weights(models_path + '/decoder_B.h5') print("Autoencoder Models Loaded") return autoencoder_a, autoencoder_b ``` #### File: face-swap/face_swap/FaceGenerator.py ```python import cv2 import numpy as np from skimage.transform._geometric import _umeyama from ast import literal_eval import copy import logging from face_swap.Face import Face import face_swap.faceswap_utils as utils class FaceGenerator: def __init__(self, generator_fun, input_size, config, resize_fun=None): """ :param generator_fun: takes a face and return an img plus optional mask :param input_size: target size for the seed face before being fed to the generator fun """ self.generator_fun = generator_fun # whether to realign prediction values to 0-1 scale before move to 256 RGB schema (needed exactly if models output is generated by tanh activation function) self.tanh_fix = config['tanh_fix'] self.input_size = input_size self.align = config['align'] self.border_expand = literal_eval(config['border_expand']) self.resize_fun = resize_fun # TODO fix alignment process def generate(self, seed_face: Face=None, output_size=None): """ Operates pre and post processing around the generation function :param seed_face: :param output_size: :return: """ # pre-process face if self.align: face_img, _ = utils.align_face(seed_face, boundary_resize_factor=self.border_expand) _, reverse_matrix = utils.align_face(seed_face, boundary_resize_factor=self.border_expand, invert=True) else: face_img = seed_face.get_face_img() #old_size = face_img.shape[:2][::-1] face_img = cv2.resize(face_img, self.input_size) face_img = face_img / 255 * 2 - 1 if self.tanh_fix else face_img / 255. # generate face gen_face, face_mask = self.generator_fun(face_img) if self.align: #aligned_face = copy.copy(seed_face) #aligned_face.img = gen_face #gen_face, align_matrix = utils.align_face(seed_face, boundary_resize_factor=self.border_expand, # invert=True, img=cv2.resize(gen_face, old_size)) # Align back mask too #gen_face = cv2.resize(gen_face, old_size) #face_mask = cv2.resize(face_mask, old_size) gen_face = cv2.warpAffine(gen_face, reverse_matrix, self.input_size, borderMode=cv2.BORDER_REPLICATE) face_mask = cv2.warpAffine(face_mask, reverse_matrix, self.input_size, borderMode=cv2.BORDER_REPLICATE) #gen_face = cv2.resize(gen_face, self.input_size) #face_mask = cv2.resize(face_mask, self.input_size) # post-process face gen_face = (gen_face + 1) * 255 / 2 if self.tanh_fix else gen_face * 255 gen_face = np.clip(gen_face, 0, 255).astype(np.uint8) # if not specified we simply output with the same size of seed image if not output_size: output_size = seed_face.get_face_img().shape[:2][::-1] # resizing logic # if not specified just rely on basic resizing if not self.resize_fun: gen_face = cv2.resize(gen_face, output_size, interpolation=cv2.INTER_CUBIC) # otherwise rely on provided resize function else: gen_face = self.resize_fun(gen_face, output_size) if face_mask is not None: face_mask = cv2.resize(face_mask, output_size, interpolation=cv2.INTER_CUBIC) return gen_face, face_mask def aue_generate_face(aue, face_img: np.array): """ :param aue: autoencoder to use for the generation (call predict on it) :param face_img: img to feed to the generator :return: """ gen_img = aue.predict(np.expand_dims(face_img, 0))[0] return gen_img, None def gan_masked_generate_face(generator_fun, face_img: np.array): """ Generated a face from the seed one considering a generator_fun which should output alpha mask and bgr results :param generator_fun: takes an image and returns alpha mask concatenated with bgr results :param face_img: img to feed to the generator :return: """ gen_res = generator_fun(face_img) gen_mask = gen_res[:, :, 0] gen_bgr = gen_res[:, :, 1:] gen_mask = np.clip(gen_mask * 255, 0, 255).astype(np.uint8) # stack mask such as we have three channels gen_mask = np.stack([gen_mask, gen_mask, gen_mask], axis=2) return gen_bgr, gen_mask def random_channel_shift(x, intensity=None, channel_axis=2): x = np.rollaxis(x, channel_axis, 0) min_x, max_x = np.min(x), np.max(x) if intensity is None: intensity = max_x/255*15. channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def random_transform(img, rotation_range=90, zoom_range=0.1, shift_range=0.1, random_flip=0.5, channel_shift_intensity=0): h, w = img.shape[:2] # setup transformation factors rotation = np.random.uniform(-rotation_range, rotation_range) scale = np.random.uniform(1 - zoom_range, 1 + zoom_range) tx = np.random.uniform(-shift_range, shift_range) * w ty = np.random.uniform(-shift_range, shift_range) * h # setup transformation matrix mat = cv2.getRotationMatrix2D((w//2, h//2), rotation, scale) mat[:, 2] += (tx, ty) # warp affine result = cv2.warpAffine(img, mat, (w, h), borderMode=cv2.BORDER_REPLICATE) # optionally flip horizontally if np.random.random() < random_flip: result = result[:, ::-1] # optionally apply random channel shift: if channel_shift_intensity > 0: result = random_channel_shift(result, intensity=channel_shift_intensity) return result def random_warp(img, mult_f=1): """ Get pair of random warped images from aligned face image. For now assumes input image to be 256x256, and base returning size of 64x64 :param img: :param mult_f: determines size of returned images (multiply each dimension, e.g. 2 for 128x128) :return: """ assert img.shape == (256, 256, 3) #range_ = np.linspace(128 - 80, 128 + 80, 5) range_ = np.linspace(128 - 110, 128 + 110, 5) mapx = np.broadcast_to(range_, (5, 5)) mapy = mapx.T mapx = mapx + np.random.normal(size=(5, 5), scale=5) mapy = mapy + np.random.normal(size=(5, 5), scale=5) interp_mapx = cv2.resize(mapx, (80*mult_f, 80*mult_f))[8*mult_f:72*mult_f, 8*mult_f:72*mult_f].astype('float32') interp_mapy = cv2.resize(mapy, (80*mult_f, 80*mult_f))[8*mult_f:72*mult_f, 8*mult_f:72*mult_f].astype('float32') warped_image = cv2.remap(img, interp_mapx, interp_mapy, cv2.INTER_LINEAR) src_points = np.stack([mapx.ravel(), mapy.ravel()], axis=-1) dst_points = np.mgrid[0:65*mult_f:16*mult_f, 0:65*mult_f:16*mult_f].T.reshape(-1, 2) mat = _umeyama(src_points, dst_points, True)[0:2] target_image = cv2.warpAffine(img, mat, (64*mult_f, 64*mult_f)) target_image = cv2.resize(target_image, (64*mult_f, 64*mult_f)) warped_image = cv2.resize(warped_image, (64*mult_f, 64*mult_f)) return warped_image, target_image def super_resolution_resizing(sr_model, lr_img, dest_size): SIZE_DIFF_THRESHOLD = 50 sr_model_out_size = sr_model.output_shape[1:3] lr_img_size = lr_img.shape[0:2] img_to_resize = lr_img # use sr only if necessary # notice that for now sr_model_input_img_size should be the same as lr_img_size if (sum(dest_size) > sum(lr_img_size) and (sum(dest_size) - sum(sr_model_out_size)) > SIZE_DIFF_THRESHOLD): hr_image = sr_model.predict(np.asarray([lr_img / 255.0]))[0] hr_image = np.clip(hr_image * 255, 0, 255).astype(np.uint8) img_to_resize = hr_image else: logging.debug("Not using super res. lr_img_size {} - dst_size {}".format(lr_img_size, dest_size)) res_img = cv2.resize(img_to_resize, dest_size, interpolation=cv2.INTER_CUBIC) return res_img ``` #### File: face-swap/face_swap/faceswap_utils.py ```python from functools import reduce import logging import cv2 import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np from face_swap.Face import Face from skimage.transform._geometric import _umeyama def get_face_mask(face: Face, mask_type, erosion_size=None, dilation_kernel=None, blur_size: int = None): """ Return mask of mask_type for the given face. :param face: :param mask_type: :param erosion_size: :param dilation_kernel: :param blur_size: :return: """ if mask_type == 'hull': # we can rotate the hull mask obtained from original image # or re-detect face from aligned image, and get mask then mask = get_hull_mask(face, 255) elif mask_type == 'rect': face_img = face.get_face_img() mask = np.zeros(face_img.shape, dtype=face_img.dtype)+255 else: logging.error("No such mask type: {}".format(mask_type)) raise Exception("No such mask type: {}".format(mask_type)) # apply mask modifiers if erosion_size: erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, erosion_size) mask = cv2.erode(mask, erosion_kernel, iterations=1) if dilation_kernel: mask = cv2.dilate(mask, dilation_kernel, iterations=1) if blur_size: mask = cv2.blur(mask, (blur_size, blur_size)) return mask def get_hull_mask(from_face: Face, fill_val=1): """ :param from_face: :param fill_val: generally 1 or 255 :return: """ mask = np.zeros(from_face.img.shape, dtype=from_face.img.dtype) hull = cv2.convexHull(np.array(from_face.landmarks).reshape((-1, 2)).astype(int)).flatten().reshape(( -1, 2)) hull = [(p[0], p[1]) for p in hull] cv2.fillConvexPoly(mask, np.int32(hull), (fill_val, fill_val, fill_val)) return mask def seamless_cloning(hull_to, to_face, img_res): # Calculate Mask hull8U = [(p[0], p[1]) for p in hull_to] mask = np.zeros(to_face.img.shape, dtype=to_face.img.dtype) cv2.fillConvexPoly(mask, np.int32(hull8U), (255, 255, 255)) # Actual seamless cloning r = cv2.boundingRect(np.float32([hull_to])) center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)) # Clone seamlessly. output = cv2.seamlessClone(np.uint8(img_res), to_face.img, mask, center, cv2.NORMAL_CLONE) return output def insert_image_in(src_img, target_image, center, mask): """ Insert/superpose source image into target image, matching source with the given center and applying the given mask :param src_img: :param target_image: :param center: :param mask: :return: """ res = target_image.copy() y1 = max(0, center[1] - src_img.shape[0] // 2) y2 = y1 + src_img.shape[0] x1 = max(0, center[0] - src_img.shape[1] // 2) x2 = x1 + src_img.shape[1] # need to check how much I can cover on the destination # and make sure source is same size, otherwise throws # exception dest_shape = res[y1:y2, x1:x2, :].shape[:2] alpha_s = mask[:dest_shape[0], :dest_shape[1], :] / 255.0 alpha_l = 1.0 - alpha_s res[y1:y2, x1:x2, :] = (alpha_s * src_img[:dest_shape[0], :dest_shape[1], :] + alpha_l * res[y1:y2, x1:x2, :]) return res ################################# # ALIGNMENT # ################################# mean_face_x = np.array([ 0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, 0.553364, 0.490127, 0.42689]) mean_face_y = np.array([ 0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, 0.784792, 0.824182, 0.831803, 0.824182]) default_landmarks_2D = np.stack([mean_face_x, mean_face_y], axis=1) # other implementation option see # https://matthewearl.github.io/2015/07/28/switching-eds-with-python/ def align_face(face, boundary_resize_factor=None, invert=False, img=None): if img is None: face_img = face.get_face_img(boundary_resize_factor=boundary_resize_factor) else: face_img = img src_landmarks = np.array([(x - face.rect.left, y - face.rect.top) for (x, y) in face.landmarks]) # need to resize default ones to match given head size (w, h) = face.get_face_size() translation = None if boundary_resize_factor: img_w, img_h = face_img.shape[:2][::-1] translation = (img_w - w, img_h - h) #w += translation[0] #h += translation[1] # w/1.5 h/1.5 scaled_default_landmarks = np.array([(int(x * w), int(y * h)) for (x, y) in default_landmarks_2D]) # default aligned face has only 51 landmarks, so we remove # first 17 from the given one in order to align src_landmarks = src_landmarks[17:] target_landmarks = scaled_default_landmarks if invert: align_matrix = get_align_matrix(target_landmarks, src_landmarks, translation) else: align_matrix = get_align_matrix(src_landmarks, target_landmarks, translation) aligned_img = cv2.warpAffine(face_img, align_matrix, (w, h), borderMode=cv2.BORDER_REPLICATE) return aligned_img, align_matrix def get_align_matrix(src_landmarks, target_landmarks, translation: tuple = None): align_matrix = _umeyama(src_landmarks, target_landmarks, True)[:2] if translation: align_matrix[0, 2] -= translation[0]//2 align_matrix[1, 2] -= translation[1]//2 return align_matrix ################################# # COLOR CORRECTION ################################# def correct_colours(img_1, img_2, blur_amount): blur_amount = int(blur_amount) if blur_amount % 2 == 0: blur_amount += 1 im1_blur = cv2.GaussianBlur(img_1, (blur_amount, blur_amount), 0) im2_blur = cv2.GaussianBlur(img_2, (blur_amount, blur_amount), 0) # Avoid divide-by-zero errors. im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype) return (img_2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)) # See also http://vzaguskin.github.io/histmatching1/ def hist_match(source, template): # Code borrow from: # https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x oldshape = source.shape source = source.ravel() template = template.ravel() s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) def color_hist_match(src_im, tar_im): #src_im = cv2.cvtColor(src_im, cv2.COLOR_BGR2Lab) #tar_im = cv2.cvtColor(tar_im, cv2.COLOR_BGR2Lab) matched_R = hist_match(src_im[:,:,0], tar_im[:,:,0]) matched_G = hist_match(src_im[:,:,1], tar_im[:,:,1]) matched_B = hist_match(src_im[:,:,2], tar_im[:,:,2]) matched = np.stack((matched_R, matched_G, matched_B), axis=2).astype(np.float64) return matched def hist_eq(source, template, nbr_bins=256): imres = source.copy() for d in range(source.shape[2]): imhist, bins = np.histogram(source[:, :, d].flatten(), nbr_bins, normed=True) tinthist, bins = np.histogram(template[:, :, d].flatten(), nbr_bins, normed=True) cdfsrc = imhist.cumsum() #cumulative distribution function cdfsrc = (255 * cdfsrc / cdfsrc[-1]).astype(np.uint8) #normalize cdftint = tinthist.cumsum() #cumulative distribution function cdftint = (255 * cdftint / cdftint[-1]).astype(np.uint8) #normalize im2 = np.interp(source[:, :, d].flatten(), bins[:-1], cdfsrc) im3 = np.interp(im2, cdftint, bins[:-1]) imres[:, :, d] = im3.reshape((source.shape[0], source.shape[1])) return imres ``` #### File: face-swap/face_swap/gan_utils.py ```python import keras.backend as K from keras.layers import concatenate, Lambda import tensorflow as tf from tensorflow.contrib.distributions import Beta from keras.models import Sequential, Model def cycle_variables(gen): """ Return basic generator components (inputs, outputs and generation function) :param gen: generator :return: """ distorted_input = gen.inputs[0] fake_output = gen.outputs[0] fun_generate = K.function([distorted_input], [fake_output]) return distorted_input, fake_output, fun_generate def cycle_variables_masked(gen): """ Return masked generator components (inputs, outputs and generation function) :param gen: generator :return: """ # input and output of the generator distorted_input = gen.inputs[0] fake_output = gen.outputs[0] # in the generator we pre-append an alpha component to the output # we here separate such alpha component from the actual bgr image alpha = Lambda(lambda x: x[:, :, :, :1])(fake_output) rgb = Lambda(lambda x: x[:, :, :, 1:])(fake_output) masked_fake_output = alpha * rgb + (1 - alpha) * distorted_input fun_generate = K.function([distorted_input], [masked_fake_output]) fun_mask = K.function([distorted_input], [concatenate([alpha, alpha, alpha])]) fun_abgr = K.function([distorted_input], [concatenate([alpha, rgb])]) return distorted_input, fake_output, alpha, fun_generate, fun_mask, fun_abgr def define_loss(netD, real, fake, vggface_feat=None, mixup_alpha=None, use_lsgan=True): loss_fn = get_loss_fun(use_lsgan) if mixup_alpha: dist = Beta(mixup_alpha, mixup_alpha) lam = dist.sample() mixup = lam * real + (1 - lam) * fake output_mixup = netD(mixup) loss_D = loss_fn(output_mixup, lam * K.ones_like(output_mixup)) output_fake = netD(fake) # dummy loss_G = .5 * loss_fn(output_mixup, (1 - lam) * K.ones_like(output_mixup)) else: output_real = netD(real) # positive sample output_fake = netD(fake) # negative sample loss_D_real = loss_fn(output_real, K.ones_like(output_real)) loss_D_fake = loss_fn(output_fake, K.zeros_like(output_fake)) loss_D = loss_D_real + loss_D_fake loss_G = .5 * loss_fn(output_fake, K.ones_like(output_fake)) loss_G += K.mean(K.abs(fake - real)) if not vggface_feat is None: loss_G = add_perceptual_loss(loss_G, real=real, fake=fake, vggface_feat=vggface_feat) return loss_D, loss_G def define_loss_masked(netD, real, fake_argb, distorted, vggface_feat=None, mixup_alpha=None, use_lsgan=True): # loss weights w_D = 0.5 # Discriminator contribution to generator loss w_recon = 1. # L1 reconstruction loss w_edge = 1. # edge loss loss_fn = get_loss_fun(use_lsgan) alpha = Lambda(lambda x: x[:, :, :, :1])(fake_argb) fake_rgb = Lambda(lambda x: x[:, :, :, 1:])(fake_argb) fake = alpha * fake_rgb + (1 - alpha) * distorted if mixup_alpha: dist = Beta(mixup_alpha, mixup_alpha) lam = dist.sample() mixup = lam * concatenate([real, distorted]) + (1 - lam) * concatenate([fake, distorted]) output_mixup = netD(mixup) loss_D = loss_fn(output_mixup, lam * K.ones_like(output_mixup)) output_fake = netD(concatenate([fake, distorted])) # dummy loss_G = w_D * loss_fn(output_mixup, (1 - lam) * K.ones_like(output_mixup)) else: output_real = netD(concatenate([real, distorted])) # positive sample output_fake = netD(concatenate([fake, distorted])) # negative sample loss_D_real = loss_fn(output_real, K.ones_like(output_real)) loss_D_fake = loss_fn(output_fake, K.zeros_like(output_fake)) loss_D = loss_D_real + loss_D_fake loss_G = w_D * loss_fn(output_fake, K.ones_like(output_fake)) # Reconstruction loss loss_G += w_recon * K.mean(K.abs(fake_rgb - real)) # Edge loss (similar with total variation loss) loss_G += w_edge * K.mean(K.abs(first_order(fake_rgb, axis=1) - first_order(real, axis=1))) loss_G += w_edge * K.mean(K.abs(first_order(fake_rgb, axis=2) - first_order(real, axis=2))) # Perceptual Loss if not vggface_feat is None: loss_G = add_perceptual_loss_masked(loss_G, real=real, fake=fake, vggface_feat=vggface_feat, fake_rgb=fake_rgb) return loss_D, loss_G # Build a perceptual-loss model from VGG pre-trained model # Via Keras can load VGG model via # vgg = VGG16(include_top=False, model='resnet50', input_shape=HR_IMG_SHAPE) # model can be 'resnet50' or 'vgg16' # of for VGGFace # vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) def perceptual_loss_model(vgg_model=None): if vgg_model: vgg_model.trainable = False out_size55 = vgg_model.layers[36].output out_size28 = vgg_model.layers[78].output out_size7 = vgg_model.layers[-2].output vgg_feat = Model(vgg_model.input, [out_size55, out_size28, out_size7]) vgg_feat.trainable = False else: vgg_feat = None return vgg_feat def add_perceptual_loss(loss_G, real, fake, vggface_feat): pl_params = (0.01, 0.1, 0.1) real_sz224 = tf.image.resize_images(real, [224, 224]) fake_sz224 = tf.image.resize_images(fake, [224, 224]) real_feat55, real_feat28, real_feat7 = vggface_feat(real_sz224) fake_feat55, fake_feat28, fake_feat7 = vggface_feat(fake_sz224) loss_G += pl_params[0] * K.mean(K.abs(fake_feat7 - real_feat7)) loss_G += pl_params[1] * K.mean(K.abs(fake_feat28 - real_feat28)) loss_G += pl_params[2] * K.mean(K.abs(fake_feat55 - real_feat55)) return loss_G def add_perceptual_loss_masked(loss_G, real, fake, vggface_feat, fake_rgb): w_pl1 = (0.01, 0.1, 0.2, 0.02) # perceptual loss 1 w_pl2 = (0.005, 0.05, 0.1, 0.01) # perceptual loss 2 def preprocess_vggface(x): x = (x + 1) / 2 * 255 # channel order: BGR # x[..., 0] -= 93.5940 # x[..., 1] -= 104.7624 # x[..., 2] -= 129. x -= [91.4953, 103.8827, 131.0912] return x pl_params = w_pl1 real_sz224 = tf.image.resize_images(real, [224, 224]) real_sz224 = Lambda(preprocess_vggface)(real_sz224) # Perceptual loss for masked output fake_sz224 = tf.image.resize_images(fake, [224, 224]) fake_sz224 = Lambda(preprocess_vggface)(fake_sz224) real_feat112, real_feat55, real_feat28, real_feat7 = vggface_feat(real_sz224) fake_feat112, fake_feat55, fake_feat28, fake_feat7 = vggface_feat(fake_sz224) loss_G += pl_params[0] * K.mean(K.abs(fake_feat7 - real_feat7)) loss_G += pl_params[1] * K.mean(K.abs(fake_feat28 - real_feat28)) loss_G += pl_params[2] * K.mean(K.abs(fake_feat55 - real_feat55)) loss_G += pl_params[3] * K.mean(K.abs(fake_feat112 - real_feat112)) # Perceptual loss for raw output pl_params = w_pl2 fake_sz224 = tf.image.resize_images(fake_rgb, [224, 224]) fake_sz224 = Lambda(preprocess_vggface)(fake_sz224) fake_feat112, fake_feat55, fake_feat28, fake_feat7 = vggface_feat(fake_sz224) loss_G += pl_params[0] * K.mean(K.abs(fake_feat7 - real_feat7)) loss_G += pl_params[1] * K.mean(K.abs(fake_feat28 - real_feat28)) loss_G += pl_params[2] * K.mean(K.abs(fake_feat55 - real_feat55)) loss_G += pl_params[3] * K.mean(K.abs(fake_feat112 - real_feat112)) return loss_G def first_order(x, axis=1): img_nrows = x.shape[1] img_ncols = x.shape[2] if axis == 1: return K.abs(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) elif axis == 2: return K.abs(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) else: return None def get_loss_fun(use_lsgan=True): # least square loss if use_lsgan: loss_fn = lambda output, target: K.mean(K.abs(K.square(output - target))) else: loss_fn = lambda output, target: -K.mean( K.log(output + 1e-12) * target + K.log(1 - output + 1e-12) * (1 - target)) return loss_fn ```
{ "source": "5agado/fitbit-analyzer", "score": 3 }
#### File: src/stats/stepsStats.py ```python import pandas as pd import numpy as np NAME_VAL_COL = "value" NAME_DT_COL = "datetime" def groupAndSumByDate(stepsData): data = stepsData if isinstance(stepsData, list): data = pd.concat(stepsData, ignore_index=True) res = data.groupby(data[NAME_DT_COL].dt.date)[NAME_VAL_COL].sum() return res ``` #### File: src/util/plotting.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy import stats as scipystats from src.stats import sleepStats, hbStats NAMES={'sleep_inefficiency':'Sleep Inefficiency (%)', 'sleep_efficiency':'Sleep Efficiency (%)', 'restless':'Restless (minutes)', 'awake':'Awake (minutes)', 'total_minutes':'Total Minutes', 'sleep_hours':'Hours of Sleep', 'first_min_asleep':'First Minute Asleep'} dayOfWeek = {0: 'Mon', 1: 'Tue', 2: 'Wed', 3: 'Thur', 4: 'Fri', 5: 'Sat', 6: 'Sun'} dayOfWeekOrder = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun'] months={1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} monthsOrder = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] def plotPreliminaryStats(stats): """ Plot measures distribution using histograms :param stats: data to plot """ columns = ['sleep_efficiency', 'restless', 'awake', 'total_minutes', 'sleep_hours', 'first_min_asleep'] plotStats = stats[columns] plotStats = plotStats.rename(columns=NAMES) return plotStats.hist() #sns.plt.show() def plotWeekdayStatsSleep(stats): columns = ['sleep_efficiency', 'restless', 'sleep_hours', 'first_min_asleep', 'awake', 'total_minutes'] return _plotWeekdayStats(stats, columns, groupBy=True) def plotWeekdayStatsHb(stats): columns = ['count', 'mean', 'std'] return _plotWeekdayStats(stats, columns, groupBy=False) def _plotWeekdayStats(stats, columns, groupBy=True): dataToPlot = stats.copy() # Group by weekday and rename date column if groupBy: dataToPlot = dataToPlot.groupby(stats['date'].dt.weekday).mean() dataToPlot = dataToPlot.reset_index().rename(columns={'date':'weekday'}) # change stats from columns to row attribute dataToPlot = pd.melt(dataToPlot, id_vars=['weekday'], value_vars=columns, var_name='stats', value_name='val') # Rename stats and weekdays dataToPlot['stats'].replace(NAMES, inplace=True) dataToPlot['weekday'].replace(dayOfWeek, inplace=True) # Plot g = sns.factorplot(data=dataToPlot, x="weekday", y="val", col="stats", order=dayOfWeekOrder, kind="point", sharey=False, col_wrap=3) g.set_xticklabels(rotation=45) g.set(xlabel='') return g #sns.plt.show() def plotWeekdayStatsByMonthSleep(stats): stat_name = 'sleep_efficiency' return _plotWeekdayByMonthStats(stats, stat_name) def _plotWeekdayByMonthStats(stats, stat_name): dataToPlot = _prepareWeekdayByMonthStats(stats) # Plot g = sns.pointplot(data=dataToPlot, x="day", y=stat_name, hue="month", order=dayOfWeekOrder) g.set(xlabel='') g.set_ylabel(NAMES[stat_name]) return g #sns.plt.show() def _prepareWeekdayByMonthStats(stats): # Add day and month columns, and groupby stats = stats.copy() stats['day'] = stats['date'].dt.weekday stats['month'] = stats['date'].dt.month dataToPlot = stats.groupby(['day', 'month']).mean() dataToPlot = dataToPlot.reset_index() dataToPlot['day'].replace(dayOfWeek, inplace=True) dataToPlot['month'].replace(months, inplace=True) return dataToPlot # def plotWeekdayStats(stats, columns): # """ # Plot aggregated (mean) stats by dayOfWeek # :param stats: data to plot # :param columns: columns from stats to plot # """ # MEASURE_NAME = 'weekday' # dayOfWeek={0:'Mon', 1:'Tue', 2:'Wed', 3:'Thur', 4:'Fri', 5:'Sat', 6:'Sun'} # order = ['Mon','Tue','Wed','Thur','Fri','Sat','Sun'] # stats[MEASURE_NAME] = stats[MEASURE_NAME].map(dayOfWeek) # # f, axes = getAxes(2,2) # for i, c in enumerate(columns): # if c in NAMES: # c = NAMES[c] # g = sns.barplot(x=MEASURE_NAME, y=c, data=stats, order=order, ax=axes[i]) # g.set_xlabel('') # sns.plt.show() # #plot(stats, columns, MEASURE_NAME, 2, 3, order=order) def plotMonthlyStatsSleep(stats, columns=None): if not columns: columns = ['sleep_inefficiency', 'restless', 'sleep_hours', 'first_min_asleep'] return _plotMonthlyStats(stats, columns, groupBy=True) def plotMonthlyStatsHb(stats): columns = ['count', 'mean', 'max', 'min', 'std'] return _plotMonthlyStats(stats, columns, groupBy=False) def _plotMonthlyStats(stats, columns, groupBy=True): dataToPlot = stats.copy() # Group by month and rename date column if groupBy: dataToPlot = dataToPlot.groupby(stats['date'].dt.month).mean() dataToPlot = dataToPlot.reset_index().rename(columns={'date': 'month'}) # change stats from columns to row attribute dataToPlot = pd.melt(dataToPlot, id_vars=['month'], value_vars=columns, var_name='stats', value_name='val') # Rename stats and weekdays dataToPlot['stats'].replace(NAMES, inplace=True) dataToPlot['month'].replace(months, inplace=True) order = [m for m in monthsOrder if m in dataToPlot['month'].unique()] # Plot g = sns.factorplot(data=dataToPlot, x="month", y="val", col="stats", order=order, kind="bar", sharey=False) g.set_xticklabels(rotation=45) g.set(xlabel='') return g #sns.plt.show() # def _plotMonthlyStats(stats, columns): # """ # Plot aggregated (mean) stats by month # :param stats: data to plot # :param columns: columns from stats to plot # """ # MEASURE_NAME = 'month' # months={1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', # 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} # order = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] # stats[MEASURE_NAME] = stats[MEASURE_NAME].map(months) # # order = [m for m in order if m in stats[MEASURE_NAME].unique()] # # f, axes = getAxes(2,2) # for i, c in enumerate(columns): # if c in NAMES: # c = NAMES[c] # g = sns.barplot(x=MEASURE_NAME, y=c, data=stats, order=order, ax=axes[i]) # g.set_xlabel('') # sns.plt.show() def _prepareYearAndMonthStats(stats, columns): # Group by month and change stats from columns to row attribute dataToPlot = stats.groupby(stats['date'].dt.to_period("M")).mean() dataToPlot = pd.melt(dataToPlot.reset_index(), id_vars=['date'], value_vars=columns, var_name='stats', value_name='val') # Rename stats dataToPlot['stats'].replace(NAMES, inplace=True) return dataToPlot def plotYearAndMonthStatsSleep(stats, columns=None): """ Plot aggregated (mean) stats by year and month. :param stats: data to plot """ if not columns: columns = ['sleep_efficiency', 'sleep_hours'] dataToPlot = _prepareYearAndMonthStats(stats, columns) # Plot g = sns.factorplot(data=dataToPlot, x="date", y="val", row="stats", kind="point", sharey=False) g.set_xticklabels(rotation=45) for ax in g.axes.flat: ax.grid(b=True) return g #sns.plt.show() def _prepareDailyStats(stats, columns): dataToPlot = stats.rename(columns=NAMES) dates = pd.date_range(start=dataToPlot.date.iloc[0].date(), end=dataToPlot.date.iloc[-1].date()) dataToPlot.set_index(['date'], inplace=True) dataToPlot = dataToPlot.reindex(dates) dataToPlot.reset_index(inplace=True) dataToPlot.rename(columns={'index': 'date'}, inplace=True) return dataToPlot def plotDailyStatsSleep(stats, columns=None): """ Plot daily stats. Fill all data range, and put NaN for days without measures :param data: data to plot """ MEASURE_NAME = 'date' if not columns: columns = ['sleep_inefficiency', 'sleep_hours'] dataToPlot = _prepareDailyStats(stats, columns) f, axes = getAxes(2,1) xTicksDiv = min(10, len(dataToPlot)) #xticks = [(x-pd.DateOffset(years=1, day=2)).date() for x in stats.date] xticks = [x.date() for x in dataToPlot.date] keptticks = xticks[::int(len(xticks)/xTicksDiv)] xticks = ['' for _ in xticks] xticks[::int(len(xticks)/xTicksDiv)] = keptticks for i, c in enumerate(columns): g =sns.pointplot(x=MEASURE_NAME, y=NAMES[c], data=dataToPlot, ax=axes[i]) g.set_xticklabels([]) g.set_xlabel('') g.set_xticklabels(xticks, rotation=45) sns.plt.show() def plotDailyStatsHb(data): ax = data.groupby(data[hbStats.NAME_DT_COL].dt.date).mean().plot() #data.groupby(data[hbStats.NAME_DT_COL].dt.date).mean().rolling(30).mean().plot(ax=ax) sns.plt.show() def plotYearMonthStatsHb(data): #pd.groupby(b,by=[b.index.month,b.index.year]) data.groupby(pd.TimeGrouper(freq='M')).mean().plot() sns.plt.show() def plotSleepValueHeatmap(intradayStats, sleepValue=1): sns.set_context("poster") sns.set_style("darkgrid") xTicksDiv = 20 #stepSize = int(len(xticks)/xTicksDiv) stepSize = 60 xticks = [x for x in intradayStats.columns.values] keptticks = xticks[::stepSize] xticks = ['' for _ in xticks] xticks[::stepSize] = keptticks plt.figure(figsize=(16, 4.2)) g = sns.heatmap(intradayStats.loc[sleepValue].reshape(1,-1)) g.set_xticklabels(xticks, rotation=45) g.set_yticklabels([]) g.set_ylabel(sleepStats.SLEEP_VALUES[sleepValue]) plt.tight_layout() sns.plt.show() def plotCorrelation(stats): #columnsToDrop = ['sleep_interval_max_len', 'sleep_interval_min_len', # 'sleep_interval_avg_len', 'sleep_inefficiency', # 'sleep_hours', 'total_hours'] #stats = stats.drop(columnsToDrop, axis=1) g = sns.PairGrid(stats) def corrfunc(x, y, **kws): r, p = scipystats.pearsonr(x, y) ax = plt.gca() ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes) ax.annotate("p = {:.2f}".format(p),xy=(.2, .8), xycoords=ax.transAxes) if p>0.04: ax.patch.set_alpha(0.1) g.map_upper(plt.scatter) g.map_diag(plt.hist) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(corrfunc) sns.plt.show() def getAxes(nrows, ncols): f, axes = plt.subplots(nrows=nrows, ncols=ncols) axes = axes.reshape(-1) return f, axes def plot(data, columns, measureName, nrows, ncols, order=None): f, axes = plt.subplots(nrows=nrows, ncols=ncols) axes = axes.reshape(-1) for i, c in enumerate(columns): sns.barplot(x=measureName, y=c, data=data, order=order, ax=axes[i]) sns.plt.show() ``` #### File: src/util/scraper.py ```python import datetime import json import sys import argparse from pathlib import Path import fitbit from src.util import logger from src.util import gather_keys_oauth2 as Oauth2 def dumpToFile(data_type, dumpDir: Path, date, data): directory = dumpDir / str(date.year) / str(date) directory.mkdir(parents=True, exist_ok=True) with (directory / "{}.json".format(data_type)).open(mode='w') as f: f.write(json.dumps(data, indent=True)) def previouslyDumped(dumpDir: Path, date): return (dumpDir / str(date.year) / str(date)).is_dir() def dumpDay(client, dumpDir: Path, date): steps_data = client.intraday_time_series('activities/steps', date) intradayData = steps_data['activities-steps-intraday']['dataset'] if not intradayData: logger.info("No {} measures for {}. Skipping the rest too".format('steps', date.split('\\')[-1])) return None dumpToFile("steps", dumpDir, date, steps_data) dumpToFile("sleep", dumpDir, date, client.get_sleep(date)) dumpToFile("calories", dumpDir, date, client.intraday_time_series('activities/calories', date)) dumpToFile("distance", dumpDir, date, client.intraday_time_series('activities/distance', date)) dumpToFile("floors", dumpDir, date, client.intraday_time_series('activities/floors', date)) dumpToFile("elevation", dumpDir, date, client.intraday_time_series('activities/elevation', date)) dumpToFile("heartbeat", dumpDir, date, client.intraday_time_series('activities/heart', date)) def scrapeFromDateOnward(startDate, dumpDir: Path, client): date = datetime.datetime.strptime(startDate, "%Y-%m-%d").date() todayDate = datetime.date.today() while previouslyDumped(dumpDir, date): logger.info("Already scraped {}".format(datetime.datetime.strftime(date, "%Y-%m-%d"))) date += datetime.timedelta(days=1) date -= datetime.timedelta(days=1) logger.info("Will RE-Scrape data for {}".format(datetime.datetime.strftime(date, "%Y-%m-%d"))) while date < todayDate: logger.info("Scraping data for {}".format(datetime.datetime.strftime(date, "%Y-%m-%d"))) dumpDay(client, dumpDir, date) date += datetime.timedelta(days=1) def scrapeFromTodayAndBackward(dumpDir: Path, client, limit, stop_if_already_dumped=True): # dumping count = 1 date = datetime.date.today() while count < limit: if previouslyDumped(dumpDir, date): logger.info("Already scraped {}".format(date.isoformat())) if stop_if_already_dumped: print("Stopping the scraping") break date -= datetime.timedelta(days=1) continue logger.info("Scraping data for {}".format(date.isoformat())) dumpDay(client, dumpDir, date) date -= datetime.timedelta(days=1) count += 1 dumpDay(client, dumpDir, date) def main(_=None): parser = argparse.ArgumentParser(description='Fitbit Scraper') parser.add_argument('--id', metavar='clientId', dest='clientId', required=True, help="client-id of your Fitbit app") parser.add_argument('--secret', metavar='clientSecret', dest='clientSecret', required=True, help="client-secret of your Fitbit app") parser.add_argument('--out', metavar='outDir', dest='outDir', required=True, help="output data destination folder") parser.add_argument('--start', dest='startDate', default='2016-01-01', help="Date from which to start the forward scraping. Defaults to 2016-01-01") #parser.add_argument('--limit', type=int, dest='limit', default=400, # help="maximum number of days to scrape") args = parser.parse_args() clientId = args.clientId clientSecret = args.clientSecret dumpDir = Path(args.outDir) startDate = args.startDate #limit = args.limit server = Oauth2.OAuth2Server(clientId, clientSecret) server.browser_authorize() ACCESS_TOKEN = server.oauth.session.token['access_token'] REFRESH_TOKEN = server.oauth.session.token['refresh_token'] client = fitbit.Fitbit(clientId, clientSecret, oauth2=True, access_token=ACCESS_TOKEN, refresh_token=REFRESH_TOKEN) scrapeFromDateOnward(startDate, dumpDir, client) if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "5agado/intro-ai", "score": 3 }
#### File: src/test/basicTest.py ```python from neural_network.perceptron import Perceptron from neural_network.neural_net import NeuralNet from util import utils import os from bitstring import BitArray import random from genetic_algorithm.population import Population def testPerceptron(): p = Perceptron(2) #p.useStepFunction = True p.t_sessions = 2000 t_model = utils.readTrainModel(os.path.join(utils.getResourcesPath(), 'logic_gates/NAND.txt')) p.learn(t_model) print(p.getOutput([0, 0])) print(p.getOutput([0, 1])) print(p.getOutput([1, 0])) print(p.getOutput([1, 1])) def testNeuralNet(): net = NeuralNet(2, 2, 1) net.t_sessions = 20000 t_model = utils.readTrainModel(os.path.join(utils.getResourcesPath(), 'logic_gates/XOR.txt')) net.learn(t_model) print(net.getOutputs([0, 0])) print(net.getOutputs([0, 1])) print(net.getOutputs([1, 0])) print(net.getOutputs([1, 1])) def numberRecognition(): net = NeuralNet(15, 2, 1) t_model = utils.readTrainModel(os.path.join(utils.getResourcesPath(), 'number_grids.txt')) net.learn(t_model) print(net.getOutputs([0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0])) print(net.getOutputs([1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1])) print(net.getOutputs([1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1])) print(net.getOutputs([1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1])) print(net.getOutputs([1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1])) print(net.getOutputs([1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0])) print(net.getOutputs([1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])) def initPopulation(p): for i in range(len(p.chromos)): for j in range(p.chromoSize): p.chromos[i].genes[j] = ( BitArray(int=random.randint(-200000, 200000), length=21)) def evolve(p, net, t_model): for _ in range(300): for chromo in p.chromos: genes = [(a.int)/100000.0 for a in chromo.genes] #print(genes) net.setWeights(genes) perf = net.getError(t_model) chromo.fitness = 1/perf #print(perf) #print(p.getTotalFitness()) p.newGeneration() def testNeuralNetWithGA(): net = NeuralNet(2, 2, 1) t_model = utils.readTrainModel(os.path.join(utils.getResourcesPath(), 'logic_gates/NAND.txt')) Population.initPopulation = initPopulation Population.evolve = evolve p = Population(70, 9) p.initPopulation() p.evolve(net, t_model) print(net.getOutputs([0, 0])) print(net.getOutputs([0, 1])) print(net.getOutputs([1, 0])) print(net.getOutputs([1, 1])) print(net.getError(t_model)) #testPerceptron() #testNeuralNet() #testNeuralNetWithGA() #numberRecognition() ``` #### File: src/test/circleFitting.py ```python import pygame import random import sys import math from genetic_algorithm.population import Population from bitstring import BitArray ''' idea from http://www.ai-junkie.com/ Given an area that has a number of non overlapping circles scattered about its surface find the disk of largest radius which may be placed amongst these disks without overlapping any of them ''' d_width = 640 d_height = 480 min_r = 5 #minimal radius max_r = 50 def intersect(c1, c2): x = math.pow(c1[0][0] - c2[0][0], 2) y = math.pow(c1[0][1] - c2[0][1], 2) res = math.sqrt(x+y) return (res < (c1[1]+c2[1]) or res< math.fabs(c1[1]-c2[1])); def isValid(c): if c[1] < min_r: return False if (c[0][0] + c[1] > d_width) or (c[0][0] - c[1] < 0): return False if (c[0][1] + c[1] > d_height) or (c[0][1] - c[1] < 0): return False return True; def getCircles(): numCircles = 10 circles = [] fail = False while (len(circles) < numCircles): x = random.randint(min_r, d_width - min_r) y = random.randint(min_r, d_height - min_r) if fail: r = random.randint(min_r, max_r//2) else: r = random.randint(min_r, max_r) new = [(x, y), r] valid = True for circle in circles: if intersect(circle, new): valid = False break if valid and isValid(new): circles.append(new) fail = False else: fail = True return circles def initPopulation(p): uint_l = 10 #uint bitarray representation length for i in range(len(p.chromos)): p.chromos[i].genes[0] = (BitArray(uint=random.randint(min_r, d_width - min_r), length=uint_l)) p.chromos[i].genes[1] = (BitArray(uint=random.randint(min_r, d_width - min_r), length=uint_l)) p.chromos[i].genes[2] = (BitArray(uint=random.randint(min_r, max_r), length=uint_l)) def evolve(p, window, circles): for _ in range(200): for i in range(len(p.chromos)): c = [(p.chromos[i].genes[0].uint, p.chromos[i].genes[1].uint), p.chromos[i].genes[2].uint] valid = True for circle in circles: if intersect(circle, c): valid = False break if valid and isValid(c): p.chromos[i].fitness = p.chromos[i].genes[2].uint else: p.chromos[i].fitness = 0 #print(p.chromos[i].fitness) best = p.getBestIndividuals()[0] c = [(best.genes[0].uint, best.genes[1].uint), best.genes[2].uint] #print(c) window.fill((0, 0, 0)) for circle in circles: pygame.draw.circle(window, (255, 255, 255), circle[0], circle[1], 1) pygame.draw.circle(window, (255, 0, 0), c[0], c[1]) p.newGeneration() pygame.display.update() pygame.time.delay(10) def main(): pygame.init() window = pygame.display.set_mode((d_width, d_height)) circles = getCircles() for circle in circles: pygame.draw.circle(window, (255, 255, 255), circle[0], circle[1], 1) Population.initPopulation = initPopulation Population.evolve = evolve p = Population(80, 3) p.initPopulation() p.evolve(window, circles) #pygame.display.flip() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0) main() ``` #### File: src/test/documentClassification.py ```python from util import utils import os import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction.text import HashingVectorizer, TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.svm.classes import LinearSVC from sklearn.linear_model.logistic import LogisticRegression N = None #the number of docs to be categorized. T = None #the number of training examples. def readData(filename): filePath = os.path.join(utils.getResourcesPath(), filename) f = open(filePath, 'r') global N, T N = int(f.readline().strip()) docs = [] for _ in range(0, N): docs.append(f.readline().strip()) #training data filePath = os.path.join(utils.getResourcesPath(), 'hackerrank/trainingdata.txt') f = open(filePath, 'r') T = int(f.readline().strip()) t_docs = [] t_docsCategories = [] for _ in range(0, T): cat, doc = f.readline().strip().split(' ', 1) t_docsCategories.append(cat) t_docs.append(doc) return docs, t_docs, t_docsCategories data = readData('hackerrank/documentClassification.txt') X_train = np.array(data[1]) y_train = np.array(data[2]) X_test = np.array(data[0]) print("Extracting features from the training dataset using a sparse vectorizer") #vectorizer = HashingVectorizer(stop_words='english', non_negative=True) vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='english', strip_accents='unicode', norm='l2') X_train = vectorizer.fit_transform(X_train) #vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, # stop_words='english') #X2_train = vectorizer.fit_transform(data_train.data) X_test = vectorizer.transform(X_test) nb_classifier = MultinomialNB().fit(X_train, y_train) svm_classifier = LinearSVC().fit(X_train, y_train) maxent_classifier = LogisticRegression().fit(X_train, y_train) y_nb_predicted = nb_classifier.predict(X_test) print(y_nb_predicted) y_nb_predicted = svm_classifier.predict(X_test) print(y_nb_predicted) y_nb_predicted = maxent_classifier.predict(X_test) print(y_nb_predicted) ``` #### File: src/test/mazeOfPacman.py ```python import os import random import pygame import sys from util import utils from time import sleep square_l = 10 pacman_r, pacman_c = None, None food_r, food_c = None, None r,c = None, None visited = [] fPath = [] def dfs(grid, start, end, path = []): #print(start) global visited global fPath fPath.append(start) stack = list() path = path + [start] if start == end: #path.append(len(path)) return path up = (start[0]-1, start[1]) left = (start[0], start[1]-1) right = (start[0], start[1]+1) down = (start[0]+1, start[1]) if (grid[up[0]][up[1]] != '%') and (not up in visited): stack.append(up) visited.append(up) if (grid[left[0]][left[1]] != '%') and (not left in visited): stack.append(left) visited.append(left) if (grid[right[0]][right[1]] != '%') and (not right in visited): stack.append(right) visited.append(right) if (grid[down[0]][down[1]] != '%') and (not down in visited): stack.append(down) visited.append(down) while len(stack) > 0: node = stack.pop() newpath = dfs(grid, node, end, path) if newpath: return newpath return None def bfs(grid, start, end, path = []): #print(start) global visited global fPath stack = list() stack.append(start) while len(stack) > 0: node = stack.pop(0) fPath.append((node[0], node[1])) if (node[0], node[1]) == end: while True: path.insert(0, node) node = node[2] #print(node) if ((node[0], node[1]) == start): path.insert(0, start) return path up = (node[0]-1, node[1]) left = (node[0], node[1]-1) right = (node[0], node[1]+1) down = (node[0]+1, node[1]) if (grid[up[0]][up[1]] != '%') and (not up in visited): stack.append((up[0], up[1], node)) visited.append(up) if (grid[left[0]][left[1]] != '%') and (not left in visited): stack.append((left[0], left[1], node)) visited.append(left) if (grid[right[0]][right[1]] != '%') and (not right in visited): stack.append((right[0], right[1], node)) visited.append(right) if (grid[down[0]][down[1]] != '%') and (not down in visited): stack.append((down[0], down[1], node)) visited.append(down) return None def astar(grid, start, end): frontier = list() costs = {} explored = list() path = {} frontier.append(start) costs[start] = manDistance(start, end) while len(frontier) > 0: #take cheapest one. Implement with priority queue index = 0 minv = costs[frontier[index]] for i in range(len(frontier)): if costs[frontier[i]] < minv: minv = costs[frontier[i]] index = i node = frontier.pop(index) if node == end: respath = [node] while True: respath.insert(0, path[node]) node = path[node] if node == start: return respath explored.append(node) stack = [] up = (node[0]-1, node[1]) left = (node[0], node[1]-1) right = (node[0], node[1]+1) down = (node[0]+1, node[1]) if (grid[up[0]][up[1]] != '%'): cost = 1 if (grid[up[0]][up[1]] == '-') else 0 stack.append(((up[0], up[1]), cost)) if (grid[left[0]][left[1]] != '%'): cost = 1 if (grid[left[0]][left[1]] == '-') else 0 stack.append(((left[0], left[1]), cost)) if (grid[right[0]][right[1]] != '%'): cost = 1 if (grid[right[0]][right[1]] == '-') else 0 stack.append(((right[0], right[1]), cost)) if (grid[down[0]][down[1]] != '%'): cost = 1 if (grid[down[0]][down[1]] == '-') else 0 stack.append(((down[0], down[1]), cost)) for child in stack: if not child[0] in explored or not child[0] in frontier: path[child[0]] = node frontier.append(child[0]) costs[child[0]] = (costs[node] + child[1] + abs(manDistance(child[0], end) - manDistance(node, end))) elif costs[child[0]] > (costs[node] + child[1] + abs(manDistance(child[0], end) - manDistance(node, end))): path[child[0]] = node costs[child[0]] = costs[node] + child[1] + abs(manDistance(child[0], end) - manDistance(node, end)) return None def manDistance(node, goal): x = abs(node[0] - goal[0]) y = abs(node[1] - goal[1]) return x+y def readMaze(filename): global pacman_r, pacman_c global food_r, food_c global r,c filePath = os.path.join(utils.getResourcesPath(), filename) f = open(filePath, 'r') pacman_r, pacman_c = [ int(i) for i in f.readline().strip().split() ] food_r, food_c = [ int(i) for i in f.readline().strip().split() ] r,c = [ int(i) for i in f.readline().strip().split() ] grid = [] for i in range(0, r): grid.append(f.readline().strip()) return grid def renderMaze(window, m, pos): window.fill((255, 255, 255)) global r, c for y in range(r): for x in range(c): if m[y][x] == '%': box = pygame.Rect(x*square_l, y*square_l, square_l, square_l) pygame.draw.rect(window, (0, 0, 0), box, 0) box = pygame.Rect(pos[1]*square_l, pos[0]*square_l, square_l, square_l) pygame.draw.rect(window, (255, 0, 0), box, 0) pygame.display.update() pygame.time.delay(10) def main(): #pygame.init() maze = readMaze('hackerrank\pacman.txt') #window = pygame.display.set_mode((c * square_l, r * square_l)) #visited.append((pacman_r, pacman_c)) res = dfs(maze, (pacman_r, pacman_c), (food_r, food_c)) print(len(res)) #renderMaze(window, maze, (pacman_c, pacman_r)) for line in res: #renderMaze(window, maze, line) print(line[0], line[1]) #sleep(0.5) # print(len(fPath)) # for line in fPath: # #renderMaze(window, maze, line) # print(line[0], line[1]) # #sleep(0.5) # while True: # for event in pygame.event.get(): # if event.type == pygame.QUIT: # sys.exit(0) main() ``` #### File: src/test/nPuzzle.py ```python from util import utils import os from queue import PriorityQueue k = None def readGrid(filename): filePath = os.path.join(utils.getResourcesPath(), filename) f = open(filePath, 'r') global k k = int(f.readline().strip()) grid = [] for i in range(0, k): grid.append([]) for _ in range(0, k): grid[i].append(f.readline().strip()) return grid def getValidNextConfigs(grid): k = len(grid) validNextConfigs = [] moves = [] for y in range(0, k): if '0' in grid[y]: x = grid[y].index('0') if y != 0: validNextConfigs.append(getResConfig(grid, 'UP')) moves.append('UP') if y != k-1: validNextConfigs.append(getResConfig(grid, 'DOWN')) moves.append('DOWN') if x != 0: validNextConfigs.append(getResConfig(grid, 'LEFT')) moves.append('LEFT') if x != k-1: validNextConfigs.append(getResConfig(grid, 'RIGHT')) moves.append('RIGHT') return validNextConfigs, moves def getResConfig(grid, move = 'UP'): k = len(grid) x = None y = None resConfig = [] for i in range(0, k): resConfig.append([]) if '0' in grid[i]: y = i x = grid[y].index('0') for j in range(0, k): resConfig[i].append(grid[i][j]) if move == 'UP': resConfig[y][x] = resConfig[y-1][x] resConfig[y-1][x] = '0' elif move == 'DOWN': resConfig[y][x] = resConfig[y+1][x] resConfig[y+1][x] = '0' elif move == 'LEFT': resConfig[y][x] = resConfig[y][x-1] resConfig[y][x-1] = '0' elif move == 'RIGHT': resConfig[y][x] = resConfig[y][x+1] resConfig[y][x+1] = '0' return resConfig #hFunction = ['misplaces', 'manhattan'] def getHeuristicCost(grid, hFunction = 'manhattan'): k = len(grid) cost = 0 for i in range(0, k): for j in range(0, k): if grid[i][j] != '0' and grid[i][j] != str(j + (k*i)): if (hFunction == 'misplaced'): cost += 1 elif (hFunction == 'manhattan'): value = int(grid[i][j]) cost += abs(value//k - i) + abs(value%k - j) return cost def ucs(grid, start, end): frontier = PriorityQueue() costs = {} explored = list() path = {} moves = {} costs[start] = getHeuristicCost(grid) frontier.put((costs[start], start)) while not frontier.empty(): conf = frontier.get()[1] #found solution. Building path via backward visit gridConf = stringToGrid(conf, k) if getHeuristicCost(gridConf) == 0: resmove = [] respath = [conf] while True: resmove.insert(0, moves[conf]) respath.insert(0, path[conf]) conf = path[conf] if conf == start: return resmove explored.append(conf) validNextConfigs, nextMoves = getValidNextConfigs(gridConf) for i in range(len(validNextConfigs)): nextConf = validNextConfigs[i] move = gridToString(nextConf) if not move in explored: #or not move in frontier: path[move] = conf moves[move] = nextMoves[i] costs[move] = costs[conf] + (getHeuristicCost(nextConf) - getHeuristicCost(gridConf)) + 1 frontier.put((costs[move], move)) elif ((costs[move] > (costs[conf] + (getHeuristicCost(nextConf) - getHeuristicCost(gridConf)) + 1))): path[move] = conf moves[move] = nextMoves[i] costs[move] = (costs[conf] + (getHeuristicCost(nextConf) - getHeuristicCost(gridConf)) + 1) return None def stringToGrid(value, k): grid = [] for i in range(0, k): grid.append([]) for j in range(0, k): grid[i].append(value[i*k + j]) return grid def gridToString(grid): k = len(grid) value = '' for i in range(0, k): for j in range(0, k): value += grid[i][j] return value grid = readGrid("hackerrank/8Puzzle.txt") end = readGrid("hackerrank/8PuzzleEnd.txt") print('-'*10) path = ucs(grid, gridToString(grid), gridToString(end)) print(len(path)) # for res in path: # grid = stringToGrid(res, k) # for row in grid: # print(row) # print('-'*10) ``` #### File: src/util/utils.py ```python import os import math def dotProduct(v1, v2): return sum(x * y for x, y in zip(v1, v2)) def sigmoid(x): return 1.0 / (1.0 + math.exp(-x)) def getResourcesPath(): return os.path.abspath(os.path.join(os.path.dirname( __file__ ), os.pardir, 'resources')) def readTrainModel(filePath, numOutputs = 1): f = open(filePath, 'r') res = [] for line in f: sLine = list(map(float, line.strip().split(" "))) res.append(((sLine[:-numOutputs]), sLine[-numOutputs:])) return res def readMatrix(filePath): f = open(filePath, 'r') res = [] for line in f: res.append(list(map(float, line.strip().split(" ")))) return res ```
{ "source": "5AGE-zhang/TocoDecoy", "score": 2 }
#### File: 0_molecular_generation/ddc_pub/ddc_v3_unbiased.py ```python import os os.environ[ "TF_CPP_MIN_LOG_LEVEL" ] = "3" # Suppress UserWarning of TensorFlow while loading the model import numpy as np from datetime import datetime from functools import wraps import shutil, zipfile, tempfile, pickle from tensorflow.keras.layers import ( Input, Concatenate, Dense, TimeDistributed, BatchNormalization, ) from tensorflow.compat.v1.keras.layers import ( CuDNNLSTM as LSTM, ) from tensorflow.keras.models import Model, load_model from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ReduceLROnPlateau, LearningRateScheduler from tensorflow.keras.utils import multi_gpu_model, plot_model # Custom dependencies from molvecgen import SmilesVectorizer from ddc_pub.generators import SmilesGenerator2 from ddc_pub.custom_callbacks import ModelAndHistoryCheckpoint, LearningRateSchedule def timed(func): """ Timer decorator to benchmark functions. """ @wraps(func) def wrapper(*args, **kwargs): tstart = datetime.now() result = func(*args, **kwargs) elapsed = (datetime.now() - tstart).microseconds / 1e6 print("Elapsed time: %.3f seconds." % elapsed) return result return wrapper class DDC: def __init__(self, **kwargs): """ # Arguments kwargs: x : model input - np.ndarray of np.bytes_ or np.float64 y : model output - np.ndarray of np.bytes_ model_name : model filename to load - string dataset_info : dataset information including name, maxlen and charset - hdf5 noise_std : standard deviation of the noise layer in the latent space - float lstm_dim : size of LSTM RNN layers - int dec_layers : number of decoder layers - int td_dense_dim : size of TD Dense layers inbetween the LSTM ones to suppress network size - int batch_size : the network's batch size - int codelayer_dim: dimensionality of the latent space or number of descriptors - int # Examples of __init__ usage To *train* a blank model with encoder (autoencoder): model = ddc.DDC(x = mols, y = mols, dataset_info = info, noise_std = 0.1, lstm_dim = 256, dec_layers = 3, td_dense_dim = 0, batch_size = 128, codelayer_dim = 128) To *train* a blank model without encoder: model = ddc.DDC(x = descriptors, y = mols, dataset_info = info, noise_std = 0.1, lstm_dim = 256, dec_layers = 3, td_dense_dim = 0, batch_size = 128) To *re-train* a saved model with encoder (autoencoder): model = ddc.DDC(x = mols, y = mols, model_name = saved_model_name) To *re-train* a saved model without encoder: model = ddc.DDC(x = descriptors, y = mols, model_name = saved_model_name) To *test* a saved model: model = ddc.DDC(model_name = saved_model_name) """ # Identify the mode to start the model in if "x" in kwargs: x = kwargs.get("x") y = kwargs.get("y") if "model_name" not in kwargs: self.__mode = "train" else: self.__mode = "retrain" elif "model_name" in kwargs: self.__mode = "test" else: raise NameError("Cannot infer mode from arguments.") print("Initializing model in %s mode." % self.__mode) if self.mode == "train": # Infer input type from type(x) if type(x[0]) == np.bytes_: print("Input type is 'binary mols'.") self.__input_type = "mols" # binary RDKit mols else: print("Check input type.") self.__input_type = "other" # other molecular descriptors self.__maxlen = ( kwargs.get("dataset_info")["maxlen"] + 10 ) # Extend maxlen to avoid breaks in training self.__charset = kwargs.get("dataset_info")["charset"] self.__dataset_name = kwargs.get("dataset_info")["name"] self.__lstm_dim = kwargs.get("lstm_dim", 256) self.__h_activation = kwargs.get("h_activation", "relu") self.__bn = kwargs.get("bn", True) self.__bn_momentum = kwargs.get("bn_momentum", 0.9) self.__noise_std = kwargs.get("noise_std", 0.01) self.__td_dense_dim = kwargs.get( "td_dense_dim", 0 ) # >0 squeezes RNN connections with Dense sandwiches self.__batch_size = kwargs.get("batch_size", 256) self.__dec_layers = kwargs.get("dec_layers", 2) self.__codelayer_dim = kwargs.get("codelayer_dim", 128) # Create the left/right-padding vectorizers self.__smilesvec1 = SmilesVectorizer( canonical=False, augment=True, maxlength=self.maxlen, charset=self.charset, binary=True, ) self.__smilesvec2 = SmilesVectorizer( canonical=False, augment=True, maxlength=self.maxlen, charset=self.charset, binary=True, leftpad=False, ) # self.train_gen.next() #This line is needed to set train_gen.dims (to be fixed in HetSmilesGenerator) self.__input_shape = self.smilesvec1.dims self.__dec_dims = list(self.smilesvec1.dims) self.__dec_dims[0] = self.dec_dims[0] - 1 self.__dec_input_shape = self.dec_dims self.__output_len = self.smilesvec1.dims[0] - 1 self.__output_dims = self.smilesvec1.dims[-1] # Build data generators self.__build_generators(x) # Build full model out of the sub-models self.__build_model() # Retrain or Test mode else: self.__model_name = kwargs.get("model_name") # Load the model self.__load(self.model_name) if self.mode == "retrain": # Build data generators self.__build_generators(x) # Show the resulting full model print(self.model.summary()) """ Architecture properties. """ @property def lstm_dim(self): return self.__lstm_dim @property def h_activation(self): return self.__h_activation @property def bn(self): return self.__bn @property def bn_momentum(self): return self.__bn_momentum @property def noise_std(self): return self.__noise_std @property def td_dense_dim(self): return self.__td_dense_dim @property def batch_size(self): return self.__batch_size @property def dec_layers(self): return self.__dec_layers @property def codelayer_dim(self): return self.__codelayer_dim @property def steps_per_epoch(self): return self.__steps_per_epoch @property def validation_steps(self): return self.__validation_steps @property def input_shape(self): return self.__input_shape @property def dec_dims(self): return self.__dec_dims @property def dec_input_shape(self): return self.__dec_input_shape @property def output_len(self): return self.__output_len @property def output_dims(self): return self.__output_dims @property def batch_input_length(self): return self.__batch_input_length #<EMAIL> #def batch_input_length(self, value): # self.__batch_input_length = value # self.__build_sample_model(batch_input_length=value) """ Models. """ @property def sample_model(self): return self.__sample_model @property def multi_sample_model(self): return self.__multi_sample_model @property def model(self): return self.__model """ Train properties. """ @property def epochs(self): return self.__epochs @property def clipvalue(self): return self.__clipvalue @property def lr(self): return self.__lr @property def h(self): return self.__h """ Other properties. """ @property def mode(self): return self.__mode @property def dataset_name(self): return self.__dataset_name @property def model_name(self): return self.__model_name @property def input_type(self): return self.__input_type @property def maxlen(self): return self.__maxlen @property def charset(self): return self.__charset @property def smilesvec1(self): return self.__smilesvec1 @property def smilesvec2(self): return self.__smilesvec2 @property def train_gen(self): return self.__train_gen @property def valid_gen(self): return self.__valid_gen """ Private methods. """ def __build_generators(self, x, split=0.81050343): """ Build data generators to be used in (re)training. """ # Split dataset into train and validation sets cut = int(split * len(x)) x_train = x[:cut] x_valid = x[cut:] self.__train_gen = SmilesGenerator2( x_train, None, self.smilesvec1, self.smilesvec2, batch_size=self.batch_size, shuffle=True, ) self.__valid_gen = SmilesGenerator2( x_valid, None, self.smilesvec1, self.smilesvec2, batch_size=self.batch_size, shuffle=True, ) # Calculate number of batches per training/validation epoch train_samples = len(x_train) valid_samples = len(x_valid) self.__steps_per_epoch = train_samples // self.batch_size self.__validation_steps = valid_samples // self.batch_size print( "Model received %d train samples and %d validation samples." % (train_samples, valid_samples) ) def __build_model(self): """ RNN that generates random SMILES strings. """ # This is the start character padded OHE smiles for teacher forcing decoder_inputs = Input(shape=self.dec_input_shape, name="Decoder_Inputs") # I/O tensor of the LSTM layers x = decoder_inputs for dec_layer in range(self.dec_layers): # RNN layer decoder_lstm = LSTM( self.lstm_dim, return_sequences=True, name="Decoder_LSTM_" + str(dec_layer), ) x = decoder_lstm(x) if self.bn: x = BatchNormalization( momentum=self.bn_momentum, name="BN_Decoder_" + str(dec_layer) )(x) # Squeeze LSTM interconnections using Dense layers if self.td_dense_dim > 0: x = TimeDistributed( Dense(self.td_dense_dim), name="Time_Distributed_" + str(dec_layer) )(x) # Final Dense layer to return soft labels (probabilities) outputs = Dense(self.output_dims, activation="softmax", name="Dense_Decoder")(x) # Define the batch_model self.__model = Model(inputs=[decoder_inputs], outputs=[outputs]) # Name it! self.__model._name = "model" def __build_sample_model(self, batch_input_length) -> dict: """ Model that predicts a single OHE character. This model is generated from the modified config file of the self.batch_model. Returns: The dictionary of the configuration. """ self.__batch_input_length = batch_input_length # Get the configuration of the batch_model config = self.model.get_config() # Keep only the "Decoder_Inputs" as single input to the sample_model config["input_layers"] = [config["input_layers"][0]] # Find decoder states that are used as inputs in batch_model and remove them idx_list = [] for idx, layer in enumerate(config["layers"]): if "Decoder_State_" in layer["name"]: idx_list.append(idx) # Pop the layer from the layer list # Revert indices to avoid re-arranging after deleting elements for idx in sorted(idx_list, reverse=True): config["layers"].pop(idx) # Remove inbound_nodes dependencies of remaining layers on deleted ones for layer in config["layers"]: idx_list = [] try: for idx, inbound_node in enumerate(layer["inbound_nodes"][0]): if "Decoder_State_" in inbound_node[0]: idx_list.append(idx) # Catch the exception for first layer (Decoder_Inputs) that has empty list of inbound_nodes[0] except: pass # Pop the inbound_nodes from the list # Revert indices to avoid re-arranging for idx in sorted(idx_list, reverse=True): layer["inbound_nodes"][0].pop(idx) # Change the batch_shape of input layer config["layers"][0]["config"]["batch_input_shape"] = ( batch_input_length, 1, self.dec_input_shape[-1], ) # Finally, change the statefulness of the RNN layers for layer in config["layers"]: if "Decoder_LSTM_" in layer["name"]: layer["config"]["stateful"] = True # layer["config"]["return_sequences"] = True # Define the sample_model using the modified config file sample_model = Model.from_config(config) # Copy the trained weights from the trained batch_model to the untrained sample_model for layer in sample_model.layers: # Get weights from the batch_model weights = self.model.get_layer(layer.name).get_weights() # Set the weights to the sample_model sample_model.get_layer(layer.name).set_weights(weights) if batch_input_length == 1: self.__sample_model = sample_model elif batch_input_length > 1: self.__multi_sample_model = sample_model return config def __load(self, model_name): """ Load complete model from a zip file. To be called within __init__. """ print("Loading model.") tstart = datetime.now() # Temporary directory to extract the zipped information with tempfile.TemporaryDirectory() as dirpath: # Unzip the directory that contains the saved model(s) with zipfile.ZipFile(model_name + ".zip", "r") as zip_ref: zip_ref.extractall(dirpath) # Load metadata metadata = pickle.load(open(dirpath + "/metadata.pickle", "rb")) # Re-load metadata self.__dict__.update(metadata) # Load the model self.__model = load_model(dirpath + "/model.h5") # Build sample_model out of the trained batch_model self.__build_sample_model(batch_input_length=1) # Single-output model self.__build_sample_model( batch_input_length=256 ) # Multi-output model print("Loading finished in %i seconds." % ((datetime.now() - tstart).seconds)) """ Public methods. """ def fit( self, model_name, epochs, lr, mini_epochs, patience, gpus=1, workers=1, use_multiprocessing=False, verbose=2, max_queue_size=10, clipvalue=0, save_period=5, checkpoint_dir="/", lr_decay=False, lr_warmup=False, sch_epoch_to_start=500, sch_last_epoch=999, sch_lr_init=1e-3, sch_lr_final=1e-6, ): """ Fit the full model to the training data. Supports multi-gpu training if gpus set to >1. # Arguments kwargs: model_name : base name for the checkpoints - string epochs : number of epochs to train in total - int lr : initial learning rate of the training - float mini_epochs : number of dividends of an epoch (==1 means no mini_epochs) - int patience : minimum consecutive mini_epochs of stagnated learning rate to consider before lowering it - int gpus : number of gpus to use for multi-gpu training (==1 means single gpu) - int workers : number of CPU workers - int use_multiprocessing: flag for Keras multiprocessing - boolean verbose : verbosity of the training - int max_queue_size : max size of the generator queue - int clipvalue : value of gradient clipping - float save_period : mini_epochs every which to checkpoint the model - int checkpoint_dir : directory to store the checkpoints - string lr_decay : flag to use exponential decay of learning rate - boolean lr_warmup : flag to use warmup for transfer learning - boolean """ # Get parameter values if specified self.__epochs = epochs self.__lr = lr self.__clipvalue = clipvalue # Optimizer if clipvalue > 0: print("Using gradient clipping %.2f." % clipvalue) opt = Adam(lr=self.lr, clipvalue=self.clipvalue) else: opt = Adam(lr=self.lr) checkpoint_file = ( checkpoint_dir + "%s--{epoch:02d}--{val_loss:.4f}--{lr:.7f}" % model_name ) # If model is untrained, history is blank try: history = self.h # Else, append the history except: history = {} mhcp = ModelAndHistoryCheckpoint( filepath=checkpoint_file, model_dict=self.__dict__, monitor="val_loss", verbose=1, mode="min", period=save_period, history=history ) # Training history self.__h = mhcp.history if lr_decay: lr_schedule = LearningRateSchedule( epoch_to_start=sch_epoch_to_start, last_epoch=sch_last_epoch, lr_init=sch_lr_init, lr_final=sch_lr_final, ) lr_scheduler = LearningRateScheduler( schedule=lr_schedule.exp_decay, verbose=1 ) callbacks = [lr_scheduler, mhcp] elif lr_warmup: lr_schedule = LearningRateSchedule( epoch_to_start=sch_epoch_to_start, last_epoch=sch_last_epoch, lr_init=sch_lr_init, lr_final=sch_lr_final, ) lr_scheduler = LearningRateScheduler( schedule=lr_schedule.warmup, verbose=1 ) callbacks = [lr_scheduler, mhcp] else: rlr = ReduceLROnPlateau( monitor="val_loss", factor=0.5, patience=patience, min_lr=1e-6, verbose=1, min_delta=1e-4, ) callbacks = [rlr, mhcp] # Inspect training parameters at the start of the training self.summary() # Parallel training on multiple GPUs if gpus > 1: parallel_model = multi_gpu_model(self.model, gpus=gpus) parallel_model.compile(loss="categorical_crossentropy", optimizer=opt) # This `fit` call will be distributed on all GPUs. # Each GPU will process (batch_size/gpus) samples per batch. parallel_model.fit_generator( self.train_gen, steps_per_epoch=self.steps_per_epoch / mini_epochs, epochs=mini_epochs * self.epochs, validation_data=self.valid_gen, validation_steps=self.validation_steps / mini_epochs, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose, ) # 1 to show progress bar elif gpus == 1: self.model.compile(loss="categorical_crossentropy", optimizer=opt) self.model.fit_generator( self.train_gen, steps_per_epoch=self.steps_per_epoch / mini_epochs, epochs=mini_epochs * self.epochs, validation_data=self.valid_gen, validation_steps=self.validation_steps / mini_epochs, callbacks=callbacks, max_queue_size=10, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose, ) # 1 to show progress bar # Build sample_model out of the trained batch_model self.__build_sample_model(batch_input_length=1) # Single-output model self.__build_sample_model( batch_input_length=self.batch_size ) # Multi-output model # @timed def predict(self, temp=1, rng_seed=None): """ Generate a single SMILES string. The states of the RNN are set based on the latent input. Careful, "latent" must be: the output of self.transform() or an array of molecular descriptors. If temp>0, multinomial sampling is used instead of selecting the single most probable character at each step. If temp==1, multinomial sampling without temperature scaling is used. Returns: A single SMILES string and its NLL. """ # Pass rng_seed for repeatable sampling if rng_seed is not None: np.random.seed(rng_seed) # Reset the states between predictions because RNN is stateful! self.sample_model.reset_states() # Prepare the input char startidx = self.smilesvec1._char_to_int[self.smilesvec1.startchar] samplevec = np.zeros((1, 1, self.smilesvec1.dims[-1])) samplevec[0, 0, startidx] = 1 smiles = "" # Initialize Negative Log-Likelihood (NLL) NLL = 0 # Loop and predict next char for i in range(1000): o = self.sample_model.predict(samplevec) # Multinomial sampling with temperature scaling if temp: temp = abs(temp) # Handle negative values nextCharProbs = np.log(o) / temp nextCharProbs = np.exp(nextCharProbs) nextCharProbs = ( nextCharProbs / nextCharProbs.sum() - 1e-8 ) # Re-normalize for float64 to make exactly 1.0 for np.random.multinomial sampleidx = np.random.multinomial( 1, nextCharProbs.squeeze(), 1 ).argmax() # Else, select the most probable character else: sampleidx = np.argmax(o) samplechar = self.smilesvec1._int_to_char[sampleidx] if samplechar != self.smilesvec1.endchar: # Append the new character smiles += samplechar samplevec = np.zeros((1, 1, self.smilesvec1.dims[-1])) samplevec[0, 0, sampleidx] = 1 # Calculate negative log likelihood for the selected character given the sequence so far NLL -= np.log(o[0][0][sampleidx]) else: return smiles, NLL # @timed def predict_batch(self, temp=1, rng_seed=None): """ Generate multiple random SMILES strings. If temp>0, multinomial sampling is used instead of selecting the single most probable character at each step. If temp==1, multinomial sampling without temperature scaling is used. Low temp leads to elimination of characters with low conditional probabilities. """ # Pass rng_seed for repeatable sampling if rng_seed is not None: np.random.seed(rng_seed) # Reset the states between predictions because RNN is stateful! self.multi_sample_model.reset_states() # Index of input char "^" startidx = self.smilesvec1._char_to_int[self.smilesvec1.startchar] # Vectorize the input char for all SMILES samplevec = np.zeros((self.batch_input_length, 1, self.smilesvec1.dims[-1])) samplevec[:, 0, startidx] = 1 # Initialize arrays to store SMILES, their NLLs and their status smiles = np.array([""] * self.batch_input_length, dtype=object) NLL = np.zeros((self.batch_input_length,)) finished = np.array([False] * self.batch_input_length) # Loop and predict next char for i in range(1000): o = self.multi_sample_model.predict( samplevec, batch_size=self.batch_input_length ).squeeze() # Multinomial sampling with temperature scaling if temp: temp = abs(temp) # No negative values nextCharProbs = np.log(o) / temp nextCharProbs = np.exp(nextCharProbs) # .squeeze() # Normalize probabilities nextCharProbs = (nextCharProbs.T / nextCharProbs.sum(axis=1) - 1e-8).T sampleidc = np.asarray( [ np.random.multinomial(1, nextCharProb, 1).argmax() for nextCharProb in nextCharProbs ] ) else: sampleidc = np.argmax(o, axis=1) samplechars = [self.smilesvec1._int_to_char[idx] for idx in sampleidc] for idx, samplechar in enumerate(samplechars): if not finished[idx]: if samplechar != self.smilesvec1.endchar: # Append the SMILES with the next character smiles[idx] += self.smilesvec1._int_to_char[sampleidc[idx]] samplevec = np.zeros( (self.batch_input_length, 1, self.smilesvec1.dims[-1]) ) # One-Hot Encode the character # samplevec[:,0,sampleidc] = 1 for count, sampleidx in enumerate(sampleidc): samplevec[count, 0, sampleidx] = 1 # Calculate negative log likelihood for the selected character given the sequence so far NLL[idx] -= np.log(o[idx][sampleidc[idx]]) else: finished[idx] = True # print("SMILES has finished at %i" %i) # If all SMILES are finished, i.e. the endchar "$" has been generated, stop the generation if finished.sum() == len(finished): return smiles, NLL @timed def get_smiles_nll(self, smiles_ref) -> float: """ Calculate the NLL of a given SMILES string if its descriptors are used as RNN states. Returns: The NLL of sampling a given SMILES string. """ # Reset the states between predictions because RNN is stateful! self.sample_model.reset_states() # Prepare the input char startidx = self.smilesvec1._char_to_int[self.smilesvec1.startchar] samplevec = np.zeros((1, 1, self.smilesvec1.dims[-1])) samplevec[0, 0, startidx] = 1 # Initialize Negative Log-Likelihood (NLL) NLL = 0 # Loop and predict next char for i in range(1000): o = self.sample_model.predict(samplevec) samplechar = smiles_ref[i] sampleidx = self.smilesvec1._char_to_int[samplechar] if i != len(smiles_ref) - 1: samplevec = np.zeros((1, 1, self.smilesvec1.dims[-1])) samplevec[0, 0, sampleidx] = 1 # Calculate negative log likelihood for the selected character given the sequence so far NLL -= np.log(o[0][0][sampleidx]) else: return NLL @timed def get_smiles_nll_batch(self, smiles_ref) -> list: """ Calculate the individual NLL for a batch of known SMILES strings. Batch size is equal to self.batch_input_length so reset it if needed. Returns: NLL of sampling all listed SMILES. """ # Reset the states between predictions because RNN is stateful! self.multi_sample_model.reset_states() # Index of input char "^" startidx = self.smilesvec1._char_to_int[self.smilesvec1.startchar] # Vectorize the input char for all SMILES samplevec = np.zeros((self.batch_input_length, 1, self.smilesvec1.dims[-1])) samplevec[:, 0, startidx] = 1 # Initialize arrays to store NLLs and flag if a SMILES is finished NLL = np.zeros((self.batch_input_length,)) finished = np.array([False] * self.batch_input_length) # Loop and predict next char for i in range(1000): o = self.multi_sample_model.predict( samplevec, batch_size=self.batch_input_length ).squeeze() samplechars = [] for smiles in smiles_ref: try: samplechars.append(smiles[i]) except: # This is a finished SMILES, so "i" exceeds dimensions samplechars.append("$") sampleidc = np.asarray( [self.smilesvec1._char_to_int[char] for char in samplechars] ) for idx, samplechar in enumerate(samplechars): if not finished[idx]: if i != len(smiles_ref[idx]) - 1: samplevec = np.zeros( (self.batch_input_length, 1, self.smilesvec1.dims[-1]) ) # One-Hot Encode the character for count, sampleidx in enumerate(sampleidc): samplevec[count, 0, sampleidx] = 1 # Calculate negative log likelihood for the selected character given the sequence so far NLL[idx] -= np.log(o[idx][sampleidc[idx]]) else: finished[idx] = True # If all SMILES are finished, i.e. the endchar "$" has been generated, stop the generation if finished.sum() == len(finished): return NLL def summary(self): """ Echo the training configuration for inspection. """ print( "\nModel trained with dataset %s that has maxlen=%d and charset=%s for %d epochs." % (self.dataset_name, self.maxlen, self.charset, self.epochs) ) print( "noise_std: %.6f, lstm_dim: %d, dec_layers: %d, td_dense_dim: %d, batch_size: %d, codelayer_dim: %d, lr: %.6f." % ( self.noise_std, self.lstm_dim, self.dec_layers, self.td_dense_dim, self.batch_size, self.codelayer_dim, self.lr, ) ) def get_graphs(self): """ Export the graphs of the model and its submodels to png files. Requires "pydot" and "graphviz" to be installed (pip install graphviz && pip install pydot). """ try: from keras.utils import plot_model from keras.utils.vis_utils import model_to_dot # from IPython.display import SVG plot_model(self.model, to_file="model.png") print("Model exported to png.") except: print("Check pydot and graphviz installation.") @timed def save(self, model_name): """ Save model in a zip file. """ with tempfile.TemporaryDirectory() as dirpath: # Save the Keras model self.model.save(dirpath + "/model.h5") # Exclude unpicklable and unwanted attributes excl_attr = [ "_DDC__mode", # excluded because it is always identified within self.__init__() "_DDC__train_gen", # unpicklable "_DDC__valid_gen", # unpicklable "_DDC__sample_model", # unpicklable "_DDC__multi_sample_model", # unpicklable "_DDC__model", ] # unpicklable # Cannot deepcopy self.__dict__ because of Keras' thread lock so this is # bypassed by popping and re-inserting the unpicklable attributes to_add = {} # Remove unpicklable attributes for attr in excl_attr: to_add[attr] = self.__dict__.pop(attr, None) # Pickle metadata, i.e. almost everything but the Keras models and generators pickle.dump(self.__dict__, open(dirpath + "/metadata.pickle", "wb")) # Zip directory with its contents shutil.make_archive(model_name, "zip", dirpath) # Finally, re-load the popped elements for the model to be usable for attr in excl_attr: self.__dict__[attr] = to_add[attr] print("Model saved.") ``` #### File: dataset_generation/0_molecular_generation/my_utils.py ```python import csv import os import numpy as np import h5py from rdkit import Chem from rdkit import DataStructs from rdkit import RDLogger from rdkit.Chem import AllChem, Descriptors, Fragments RDLogger.DisableLog('rdApp.*') class mol_controller(): def __init__(self, smiles=None, mols=None): ''' :param smiles: list of smile :param mols: list of rdkit mol ''' # init if mols and smiles: self.mols = mols self.smiles = smiles self.checkFrommols() elif mols: self.mols = mols self.checkFrommols() elif smiles: self.smiles = smiles self.checkFromsmiles() else: print('initializing filed for None smiles and mols') raise SyntaxError def checkFrommols(self): smiles = [] self.unparsable_smiles_idx = [] for idx, mol in enumerate(self.mols): # 从 smiles 转成 mol 没有报错,但是从 mol 转成 smiles 可能会报错 rdkit.Chem.rdmolfiles.MolToSmiles(NoneType) try: smiles.append(Chem.MolToSmiles(mol)) except: self.unparsable_smiles_idx.append(idx) print(f'unparsable: {len(self.unparsable_smiles_idx)}') print(f'valid smiles: {len(smiles)}') # remove duplicate smiles self.smiles = list(set(smiles)) # self.smiles.sort(key=smiles.index) # sort to make rank united self.mols = [Chem.MolFromSmiles(smile) for smile in self.smiles] self.unique_num = len(self.smiles) print(f'unique smiles: {len(self.smiles)}') def checkFromsmiles(self): self.mols = [] self.unparsable_smiles_idx = [] for idx, smile in enumerate(self.smiles): try: self.mols.append(Chem.MolFromSmiles(smile)) except: self.unparsable_smiles_idx.append(idx) print(f'unparsable: {len(self.unparsable_smiles_idx)}') self.checkFrommols() def cal_similarity(self, seed_mol): # init smis = [] # cal ecfp radius = 2 seed_fp = AllChem.GetMorganFingerprint(seed_mol, radius) # cal smis print('start cal similarity....') # for mol in tqdm(self.mols): self.unparsable_smiles_idx = [] for i, mol in enumerate(self.mols): try: # cal fp fp = AllChem.GetMorganFingerprint(mol, radius) # cal smi smi = DataStructs.DiceSimilarity(seed_fp, fp) # apped smi smis.append(smi) except: self.unparsable_smiles_idx.append(i) # remobe bad smiles for i in reversed(self.unparsable_smiles_idx): self.mols.pop(i) self.smiles.pop(i) # to numpy smis = np.array(smis) # print print(f'similarity: mean {smis.mean():.3f} || min {smis.min():.3f} || max {smis.max():.3f}') return smis def cal_MW(self): # cal molecule weight return [Descriptors.MolWt(mol) for mol in self.mols] def cal_logp(self): # cal molecule logp return [Descriptors.MolLogP(mol) for mol in self.mols] def cal_HB_acceptor(self): # acceptor of hydrogen bond return [Descriptors.NumHAcceptors(mol) for mol in self.mols] def cal_HB_donor(self): # donor of hydrogen bond return [Descriptors.NumHDonors(mol) for mol in self.mols] def cal_halogen(self): # count num of halogen atoms return [Fragments.fr_halogen(mol) for mol in self.mols] def cal_rotable_bonds(self): # count num of rotable bonds return [Descriptors.NumRotatableBonds(mol) for mol in self.mols] def cal_sulfi(self): # count num of S return [Fragments.fr_sulfide(mol) for mol in self.mols] def cal_heavy_atoms(self): # count num of heavy atoms return [Descriptors.HeavyAtomCount(mol) for mol in self.mols] def cal_rings(self): # count ring nums return [Descriptors.RingCount(mol) for mol in self.mols] def cal_properties(self, labels=None): ''' cal properties for mols (MW, logp, rotable_bonds, HBacceptor, HBdonor, halogen) if labels are given, merge labels and mols :param labels: (batch_size, 1) :return: (batch_size, 7) ''' try: if labels is not None: return np.array(list(zip(self.cal_MW(), self.cal_logp(), self.cal_rotable_bonds(), self.cal_HB_acceptor(), self.cal_HB_donor(), self.cal_halogen(), labels))) # return np.concatenate( # [np.array(list(zip(self.cal_MW(), self.cal_logp(), self.cal_rotable_bonds(), self.cal_HB_acceptor(), # self.cal_HB_donor(), self.cal_halogen()))), labels], axis=-1) else: return np.array(list(zip(self.cal_MW(), self.cal_logp(), self.cal_rotable_bonds(), self.cal_HB_acceptor(), self.cal_HB_donor(), self.cal_halogen()))) except: return np.ones((len(self.mols), 7)) class Smiles(): def __init__(self, smile_lis, names=None, save_path='./'): self.smiles = smile_lis self.mols = [Chem.MolFromSmiles(smile) for smile in self.smiles] self.names = names if names else list(range(len(self.smiles))) self.path = save_path self.file_label = { 'sdf': '$$$$', 'mol2': '@<TRIPOS>MOLECULE' } def to3D(self, mol): # add H mol = Chem.AddHs(mol) # to 3D AllChem.EmbedMolecule(mol) # delete H # mol = Chem.RemoveHs(mol) return mol def save_to_file(self, mol, file_name, format='sdf'): # file sdf_file = f'{self.path}/{file_name}.sdf' # write file to sdf Chem.MolToMolFile(mol, sdf_file) if format == 'mol2': mol2_file = f'{self.path}/{file_name}.mol2' # trans2 mol2 cmd = 'module load openbabel && obabel {0} -O {1}'.format(sdf_file, mol2_file) os.system(cmd) def merge_file(self, src_files, dst_file, format='sdf'): # init content = '' # for-loop for src_file in src_files: src_file_full = f'{self.path}/{src_file}.{format}' with open(src_file_full, 'r') as f: content += f'{src_file}{f.read()}\n$$$$\n' # output file dst_file = f'{dst_file}.{format}' with open(dst_file, 'w') as f: f.write(content) def split_file(self, src_file, dst_files, dst_path, format='sdf'): ''' :param src_file: src_path/file.sdf :param dst_files: [file_name, file_name1...] :param dst_path: :param format: :return: ''' # 读取数据,存到con中 with open(src_file, 'r') as f: con = f.read() # 根据@<TRIPOS>MOLECULE分割字符串 con = con.split(f'{self.file_label[format]}\n') for i in range(0, len(con)): if con[i] != '': lig_name = con[i].split('\n')[0].strip() # 获取小分子名字 lig_file = '{}/{}.{}'.format(dst_path, lig_name, format) # 定义输出分子路径 # 递归检查重名在文件 def same_file(lig_file, n=0): if os.path.exists(lig_file): n += 1 lig_file = '{}/{}_{}.{}'.format(dst_path, lig_name, n, format) return same_file(lig_file, n) else: return lig_file lig_file = same_file(lig_file) # 检查是否重名 # 输出文件 with open(lig_file, 'w') as f: if format == 'sdf': f.write(con[i] + f'{self.file_label[format]}\n') else: # format == 'mol2' f.write(f'{self.file_label[format]}\n' + con[i]) def transform(self, src_file, dst_file): cmd = f'module load schrodinger && structconvert {src_file} {dst_file}' os.system(cmd) class Pharmacophore(): def __init__(self, soft='openeye'): if soft == 'openeye': self.load_module = 'module load openeye/applications-2018.11.3 &&' self.phase_screen = 'rocs -dbase {0} -query {1} -cutoff 1.0 -nostructs -prefix {2}' # dbase unscreened file # result file = prefix_1.rpt prefix_hits_1.sdf elif soft =='schrodinger': self.load_module = 'module load schrodinger/2017-4 &&' self.generate_hypo = 'create_hypoFiles {0} {1}' # 0 infile {reference file} 1 hypoID{output file name} self.generate_hypo_mul = 'phase_hypothesis {0} -HOST "localhost:28" ' # phase_hypothesis phase_pharm_8.inp -HOST "localhost:16" self.phase_screen = 'phase_screen {0} {1} {2} -distinct -nosort -report 1 -WAIT -HOST "localhost:28" -TMPLAUNCHDIR -ATTACHED' # 0 unscreened file 1 hypo_file 2 job name Hits will be returned in <jobName>-hits.maegz. -distinct -nosort self.phase_screen_min = 'phase_screen {0} {1} {2} -refine -force_field OPLS3 -nosort -report 1 -match 6 -WAIT -HOST "localhost:28" -TMPLAUNCHDIR -ATTACHED' # Generate conformers on-the-fly for the highest scoring match and search for additional matches. Not subject to the above restrictions on -flex, but not valid in combination with -flex. self.default_def = './phase_pharm.def' self.phase_pharm_inp = '''INPUT_STRUCTURE_FILE {0} # phase_pharm_8.maegz USE_PREALIGNED_LIGANDS False USE_FAST_SCORING False USE_LIGAND_GROUPING True LIGAND_PERCEPTION stereo GENERATE_CONFORMERS True MAX_NUMBER_CONFORMERS 50 USE_CONFORMER_MINIMIZATION True REQUIRED_MATCH_FRACTION {1} # 0.5 NUMBER_FEATURES_PER_HYPOTHESIS {2},{3} # 4, 5 PREFERRED_MIN_SITES {4} # 5 HYPOTHESIS_DIFFERENCE_CRITERIA 0.5 HYPOTHESES_KEPT_PER_FEATURE_SIZE 10 FEATURE_FREQUENCY_A 0, 3 FEATURE_FREQUENCY_D 0, 3 FEATURE_FREQUENCY_H 0, 3 FEATURE_FREQUENCY_R 0, 3 FEATURE_FREQUENCY_P 0, 3 FEATURE_FREQUENCY_N 0, 3 FEATURE_FREQUENCY_X 0, 3 FEATURE_FREQUENCY_Y 0, 3 FEATURE_FREQUENCY_Z 0, 3 FEATURE_DEFINITION_FILE {5} # phase_pharm.def SCORE_WEIGHT_VECTOR 1.0 SCORE_WEIGHT_SITE 1.0 SCORE_WEIGHT_VOLUME 1.0 SCORE_WEIGHT_SELECTIVITY 1.0 SCORE_WEIGHT_LOG_MATCH 1.0 SCORE_WEIGHT_INACTIVE 1.0 SCORE_WEIGHT_SURVIVAL 0.06 SCORE_WEIGHT_BEDROC 1.0 FEATURE_TOLERANCE_A 2.0 FEATURE_TOLERANCE_D 2.0 FEATURE_TOLERANCE_H 2.0 FEATURE_TOLERANCE_R 2.0 FEATURE_TOLERANCE_P 2.0 FEATURE_TOLERANCE_N 2.0 FEATURE_TOLERANCE_X 2.0 FEATURE_TOLERANCE_Y 2.0 FEATURE_TOLERANCE_Z 2.0 APPEND_EXCLUDED_VOLUMES False ''' def generate_hypo_file(self, path, seed_file, hypo_prefix): cmd = f'cd {path} && {self.load_module + self.generate_hypo.format(seed_file, hypo_prefix)}' # print(cmd) os.system(cmd) def phase_screen_file(self, path, unscreened_file, hypo_file, hypo_prefix): cmd = f'cd {path} && {self.load_module + self.phase_screen.format(unscreened_file, hypo_file, hypo_prefix)}' # print(cmd) os.system(cmd) def append2csv(csv_file, new_lis): ''' :param csv_file: csv file :param new_lis: list waited to be added to the end of the csv file :return: ''' csv_ = open(csv_file, 'a') csv_writer = csv.writer(csv_) csv_writer.writerow(new_lis) csv_.close() def append2txt(txt_file, src_file): with open(src_file, 'r') as f: content = f.read() with open(txt_file, 'a') as f: f.write(content) def load_dataset(data_file): dataset = h5py.File(data_file, "r") binary_mols = dataset["mols"][:] dataset.close() mols = [Chem.Mol(binary_mol) for binary_mol in binary_mols] return mols ``` #### File: TocoDecoy/utilities/cal_nn.py ```python import os, sys, glob import pandas as pd import shutil from multiprocessing import Pool from functools import partial from NNScore2module import PDB, binana, command_line_parameters # def nn_score(lig_name, similarity, label, ligand_path, csv_file): def nn_score(zip_lis, ligand_path, csv_file): lig_name, similarity, label = zip_lis[0], zip_lis[1], zip_lis[2] import time ligand_pdbqt = '%s/%s.pdbqt' % (ligand_path, lig_name) ligand_pdbqt_pred = '%s/%s_pre.pdbqt' % (ligand_path, lig_name) # 准备小分子 # log_file = '%s/%s_nn.txt' % (log_dir, lig_name) # 分数文件 if not os.path.exists(ligand_pdbqt): return None # 额外处理 if not os.path.exists(ligand_pdbqt_pred): with open(ligand_pdbqt, 'r')as f: lines = f.readlines() new_lines = [] for line in lines: if line.startswith('ATOM'): new_lines.append(line[:23] + ' ' + line[26:]) else: new_lines.append(line) new_lig = ''.join(new_lines) with open(ligand_pdbqt_pred, 'w')as f: f.write(new_lig) # 计算 cmd = "/home/xujun/Soft/Score_Function/NNscore/NNScore2module.py -receptor %s -ligand %s" % ( protein_pred, ligand_pdbqt_pred) try: params_list = cmd.split() cmd_params = command_line_parameters(params_list) receptor = PDB() receptor.LoadPDB_from_file(protein_pred) receptor.OrigFileName = protein_pred d = binana(ligand_pdbqt_pred, receptor, cmd_params, "", "", "") result = [ lig_name] + d.vina_output + d.ligand_receptor_atom_type_pairs_less_than_two_half.values() + d.ligand_receptor_atom_type_pairs_less_than_four.values() \ + d.ligand_atom_types.values() + d.ligand_receptor_atom_type_pairs_electrostatic.values() + d.rotateable_bonds_count.values() \ + d.active_site_flexibility.values() + d.hbonds.values() + d.hydrophobics.values() + d.stacking.values() + d.pi_cation.values() \ + d.t_shaped.values() + d.salt_bridges.values() + [similarity, label] except: result = [lig_name] # with open(log_file, 'w')as f: # f.write(str(result)) # # 整合结果 # with open(log_file, 'r')as f: # lines = f.readlines() # result = eval(lines[0].strip()) pd.DataFrame(result).T.to_csv(csv_file, index=None, header=None, mode='a') # # 删除分数文件 # if len(result) != 1: # os.remove(ligand_pdbqt_pred) if __name__ == '__main__': # 定义不同原子类型 vina_output_list = ['vina_affinity', 'vina_gauss_1', 'vina_gauss_2', 'vina_repulsion', 'vina_hydrophobic', 'vina_hydrogen'] ligand_receptor_atom_type_pairs_less_than_two_half_list = ['A_MN', 'OA_SA', 'HD_N', 'N_ZN', 'A_MG', 'HD_NA', 'A_CL', 'MG_OA', 'FE_HD', 'A_OA', 'NA_ZN', 'A_N', 'C_OA', 'F_HD', 'C_HD', 'NA_SA', 'A_ZN', 'C_NA', 'N_N', 'MN_N', 'F_N', 'FE_OA', 'HD_I', 'BR_C', 'MG_NA', 'C_ZN', 'CL_MG', 'BR_OA', 'A_FE', 'CL_OA', 'CL_N', 'NA_OA', 'F_ZN', 'HD_P', 'CL_ZN', 'C_C', 'C_CL', 'FE_N', 'HD_S', 'HD_MG', 'C_F', 'A_NA', 'BR_HD', 'HD_OA', 'HD_MN', 'A_SA', 'A_F', 'HD_SA', 'A_C', 'A_A', 'F_SA', 'C_N', 'HD_ZN', 'OA_OA', 'N_SA', 'CL_FE', 'C_MN', 'CL_HD', 'OA_ZN', 'MN_OA', 'C_MG', 'F_OA', 'CD_OA', 'S_ZN', 'N_OA', 'C_SA', 'N_NA', 'A_HD', 'HD_HD', 'SA_ZN'] ligand_receptor_atom_type_pairs_less_than_four_list = ['I_N', 'OA_SA', 'FE_NA', 'HD_NA', 'A_CL', 'MG_SA', 'A_CU', 'P_SA', 'C_NA', 'MN_NA', 'F_N', 'HD_N', 'HD_I', 'CL_MG', 'HD_S', 'CL_MN', 'F_OA', 'HD_OA', 'F_HD', 'A_SA', 'A_BR', 'BR_HD', 'SA_SA', 'A_MN', 'N_ZN', 'A_MG', 'I_OA', 'C_C', 'N_S', 'N_N', 'FE_N', 'NA_SA', 'BR_N', 'MN_N', 'A_P', 'BR_C', 'A_FE', 'MN_P', 'CL_OA', 'CU_HD', 'MN_S', 'A_S', 'FE_OA', 'NA_ZN', 'P_ZN', 'A_F', 'A_C', 'A_A', 'A_N', 'HD_MN', 'A_I', 'N_SA', 'C_OA', 'MG_P', 'BR_SA', 'CU_N', 'MN_OA', 'MG_N', 'HD_HD', 'C_FE', 'CL_NA', 'MG_OA', 'A_OA', 'CL_ZN', 'BR_OA', 'HD_ZN', 'HD_P', 'OA_P', 'OA_S', 'N_P', 'A_NA', 'CL_FE', 'HD_SA', 'C_MN', 'CL_HD', 'C_MG', 'FE_HD', 'MG_S', 'NA_S', 'NA_P', 'FE_SA', 'P_S', 'C_HD', 'A_ZN', 'CL_P', 'S_SA', 'CL_S', 'OA_ZN', 'N_NA', 'MN_SA', 'CL_N', 'NA_OA', 'C_ZN', 'C_CD', 'HD_MG', 'C_F', 'C_I', 'C_CL', 'C_N', 'C_P', 'C_S', 'A_HD', 'F_SA', 'MG_NA', 'OA_OA', 'CL_SA', 'S_ZN', 'N_OA', 'C_SA', 'SA_ZN'] ligand_atom_types_list = ['A', 'C', 'CL', 'I', 'N', 'P', 'S', 'BR', 'HD', 'NA', 'F', 'OA', 'SA'] ligand_receptor_atom_type_pairs_electrostatic_list = ['I_N', 'OA_SA', 'FE_NA', 'HD_NA', 'A_CL', 'MG_SA', 'P_SA', 'C_NA', 'MN_NA', 'F_N', 'HD_N', 'HD_I', 'CL_MG', 'HD_S', 'CL_MN', 'F_OA', 'HD_OA', 'F_HD', 'A_SA', 'A_BR', 'BR_HD', 'SA_SA', 'A_MN', 'N_ZN', 'A_MG', 'I_OA', 'C_C', 'N_S', 'N_N', 'FE_N', 'NA_SA', 'BR_N', 'MN_N', 'A_P', 'BR_C', 'A_FE', 'MN_P', 'CL_OA', 'CU_HD', 'MN_S', 'A_S', 'FE_OA', 'NA_ZN', 'P_ZN', 'A_F', 'A_C', 'A_A', 'A_N', 'HD_MN', 'A_I', 'N_SA', 'C_OA', 'MG_P', 'BR_SA', 'CU_N', 'MN_OA', 'MG_N', 'HD_HD', 'C_FE', 'CL_NA', 'MG_OA', 'A_OA', 'CL_ZN', 'BR_OA', 'HD_ZN', 'HD_P', 'OA_P', 'OA_S', 'N_P', 'A_NA', 'CL_FE', 'HD_SA', 'C_MN', 'CL_HD', 'C_MG', 'FE_HD', 'MG_S', 'NA_S', 'NA_P', 'FE_SA', 'P_S', 'C_HD', 'A_ZN', 'CL_P', 'S_SA', 'CL_S', 'OA_ZN', 'N_NA', 'MN_SA', 'CL_N', 'NA_OA', 'F_ZN', 'C_ZN', 'HD_MG', 'C_F', 'C_I', 'C_CL', 'C_N', 'C_P', 'C_S', 'A_HD', 'F_SA', 'MG_NA', 'OA_OA', 'CL_SA', 'S_ZN', 'N_OA', 'C_SA', 'SA_ZN'] rotateable_bonds_count_list = ['rot_bonds'] active_site_flexibility_list = ['SIDECHAIN_OTHER', 'SIDECHAIN_ALPHA', 'BACKBONE_ALPHA', 'SIDECHAIN_BETA', 'BACKBONE_BETA', 'BACKBONE_OTHER'] hbonds_list = ['HDONOR-LIGAND_SIDECHAIN_BETA', 'HDONOR-LIGAND_BACKBONE_OTHER', 'HDONOR-LIGAND_SIDECHAIN_ALPHA', 'HDONOR-RECEPTOR_SIDECHAIN_OTHER', 'HDONOR-RECEPTOR_BACKBONE_ALPHA', 'HDONOR-RECEPTOR_SIDECHAIN_BETA', 'HDONOR-RECEPTOR_SIDECHAIN_ALPHA', 'HDONOR-LIGAND_SIDECHAIN_OTHER', 'HDONOR-LIGAND_BACKBONE_BETA', 'HDONOR-RECEPTOR_BACKBONE_BETA', 'HDONOR-RECEPTOR_BACKBONE_OTHER', 'HDONOR-LIGAND_BACKBONE_ALPHA'] hydrophobics_list = ['SIDECHAIN_OTHER', 'SIDECHAIN_ALPHA', 'BACKBONE_ALPHA', 'SIDECHAIN_BETA', 'BACKBONE_BETA', 'BACKBONE_OTHER'] stacking_list = ['ALPHA', 'BETA', 'OTHER'] pi_cation_list = ['LIGAND-CHARGED_BETA', 'LIGAND-CHARGED_ALPHA', 'RECEPTOR-CHARGED_BETA', 'RECEPTOR-CHARGED_OTHER', 'RECEPTOR-CHARGED_ALPHA', 'LIGAND-CHARGED_OTHER'] t_shaped_list = ['ALPHA', 'BETA', 'OTHER'] salt_bridges_list = ['ALPHA', 'BETA', 'OTHER'] # 将不同原子类型组合成列名 header_list = ['name'] + vina_output_list + ['atp2_%s' % it for it in ligand_receptor_atom_type_pairs_less_than_two_half_list] \ + ['atp4_%s' % it for it in ligand_receptor_atom_type_pairs_less_than_four_list] + ['lat_%s' % it for it in ligand_atom_types_list] \ + ['ele_%s' % it for it in ligand_receptor_atom_type_pairs_electrostatic_list] + rotateable_bonds_count_list + [ 'siteflex_%s' % it for it in active_site_flexibility_list] \ + ['hbond_%s' % it for it in hbonds_list] + ['hydrophobic_%s' % it for it in hydrophobics_list] + [ 'stacking_%s' % it for it in stacking_list] \ + ['pi_cation_%s' % it for it in pi_cation_list] + ['t_shaped_%s' % it for it in t_shaped_list] + [ 'salt_bridges_%s' % it for it in salt_bridges_list] + ['similarity', 'label'] # 定义文件 job_type = 'aldh1' # fpb pcb path = '/home/xujun/Project_5' # protein and ligand path src_path = '{0}/mix/{1}'.format(path, job_type) src_pro_path = '{0}/docked'.format(src_path) protein_pred = '{0}/5l2n_smina_p.pdbqt'.format(src_pro_path) crystal_pdbqt = '{0}/5l2n_crystal_ligand.pdbqt'.format(src_pro_path) lig_path = '{0}/ligands_mol2'.format(src_path) log_dir = '{0}/nn_log'.format(src_path) # 分数日志文件夹 # descriptors dir dst_path = '/home/xujun/Project_5/cal_descriptors/v_1/{}'.format(job_type) pdbqt_dir = '{0}/pdbqt'.format(src_path) # pdbqt文件夹 csv_file = '{0}/nn.csv'.format(dst_path) # get lig_names src_csv = '{0}/{1}_filtered.csv'.format(dst_path, job_type) docked_csv = '{0}/SP.csv'.format(dst_path) df_sp = pd.read_csv(docked_csv, encoding='utf-8').dropna() names = df_sp.iloc[:, 0].values df = pd.read_csv(src_csv, encoding='utf-8') df.index = df.iloc[:, 0].values similarities = df.loc[names, 'train'].values # similarity labels = df.loc[names, 'label'].values # mkdir if not os.path.exists(log_dir): os.mkdir(log_dir) # write csv if not os.path.exists(csv_file): pd.DataFrame(header_list).T.to_csv(csv_file, index=False, header=False) # partial nn_ = partial(nn_score, ligand_path=pdbqt_dir, csv_file=csv_file) # multiprocessing pool = Pool(28) pool.map(nn_, zip(names, similarities, labels)) pool.close() pool.join() ``` #### File: utilities/interaction_frequency/interaction_base.py ```python import os import pandas as pd from oddt.interactions import hbond_acceptor_donor, halogenbond_acceptor_halogen, salt_bridges, hydrophobic_contacts, \ acceptor_metal from oddt.toolkits.rdk import readfile class oddt_interaction(): def __init__(self, protein_file, path_for_lig, path_for_complex, interaction_csv, data_collect_csv): self.protein = protein_file self.path_for_lig = path_for_lig self.path_for_complex = path_for_complex self.interaction_csv = interaction_csv self.data_collect_csv = data_collect_csv # 蛋白质mol对象 self.protein_mol = readfile(format='pdb', filename=self.protein).__next__() # 蛋白质文本对象 self.protein_data = self.get_protein_data() # 金属元素类型 self.metal_atoms = ['FE', 'MG', 'MN', 'ZN', 'CA', 'NA'] # 不同的相互作用 self.interactions = { 'hb': hbond_acceptor_donor, # 有cutoff参数,可以设置判定的阈值 'qq': salt_bridges, 'clb': halogenbond_acceptor_halogen, 'lipo': hydrophobic_contacts, 'metal': acceptor_metal } # 不同相互作用到列的映射 self.interactions2col = { 'hb': 1, # 有cutoff参数,可以设置判定的阈值 'clb': 2, 'qq': 3, 'lipo': 4, 'metal': 5 } # 获取配体mol对象 def get_mol(self, ligand_file): return readfile(format='mol', filename=ligand_file).__next__() # 获取蛋白质文件字符串信息 def get_protein_data(self): # 打开pdb文件 with open(self.protein, 'r') as f: protein_data = f.readlines() # 返回 return protein_data # 获取残基信息 def get_rec(self, atm_num): # 按行读取数据 for i in range(0, len(self.protein_data)): # 获取对应行数据 if self.protein_data[i].startswith(f'ATOM{atm_num:>7d}'): # 对行数据按空格分割 rec_data = self.protein_data[i].split() # 残基元素 rec_element = rec_data[-1] # 残基名称 rec_name = rec_data[3] # 残基编号 rec_id = rec_data[5] return str([rec_name, rec_id, rec_element]) return None def has_metal(self, ligandorprotein): # 读取数据 with open(ligandorprotein, 'r') as f: content = f.read() # 逐行判断 for metal in self.metal_atoms: if metal in content: # 若蛋白中存在金属元素,返回True return True # 否则返回False return False # 计算蛋白配体氢键,并获取蛋白上形成氢键的原子编号 def interaction2recNum(self, ligand, interaction_type, out_lis): # 定义空字典存放残基信息 rec_infos = {} # 获取对象 mols = [[self.protein_mol, self.get_mol(ligand)], [self.get_mol(ligand), self.protein_mol]] # 定义是否只计算一次 cal_once = False # 分别计算 蛋白做受体和供体时的残基情况 for i in [0, 1]: # 若为金属作用 if interaction_type == 'metal': # 若蛋白和小分子都有金属 if self.has_metal(ligand) and self.has_metal(self.protein): data_array = self.interactions[interaction_type](mols[i][0], mols[i][1]) # 交替次序 # 小分子含有金属 elif self.has_metal(ligand): data_array = self.interactions[interaction_type](mols[0][0], mols[0][1]) # 小分子在后 cal_once = True # 蛋白含有金属或者都没有金属 else: data_array = self.interactions[interaction_type](mols[1][0], mols[1][1]) # 蛋白在后 cal_once = True # 除金属外的其他作用 else: data_array = self.interactions[interaction_type](mols[i][0], mols[i][1]) protein_infos = data_array[i] # 获取供体列表 # 判断是否含有该相互作用 if len(protein_infos) == 0: # 不含相互作用 pass else: # 含有相互作用 protein_infos = set([i[0] for i in protein_infos]) # 获取残基信息 for atm_num in protein_infos: # 获取原子的编号 atm_num = self.get_rec(atm_num) # 获得残基信息 [MET, 86, O] rec_infos[atm_num] = rec_infos.get(atm_num, 0) + 1 # 统计次数 dic[None] = {} # 判断是否只计算一次 if cal_once: break # 数据样式 {"['MET', '86', 'O']": 1, "['MET', '86', 'N']": 1} # 判断是否整理成list的格式 if out_lis: # 空列表暂存 tmp_lis = [] # 循环 for rec_info, rec_fre in rec_infos.items(): # 把残基信息由字符串变为字典 rec_info = eval(rec_info) # , 并加入频率 rec_info.append(rec_fre) # 汇总加入新列表 tmp_lis.append(rec_info) # 判断该相互作用残基是否全为空 if len(tmp_lis) != 0: tmp_lis.sort(key=lambda x: x[-1], reverse=True) # 排序 # 变量 rec_infos = tmp_lis # 返回数据 return rec_infos def get_rec_frequence(self, interaction_type): # 初始化字典存放变量 frequencies = {} # 读数据 df = pd.read_csv(self.interaction_csv, encoding='utf-8').dropna() # 获取列 interactions = df.iloc[:, self.interactions2col[interaction_type]].values # 取出每个分子的相互作用 for lig_interaction in interactions: lig_interaction = eval(lig_interaction) # 由字符串变回字典 # 取出字典中的每个残基 for rec in lig_interaction: frequencies[rec] = lig_interaction.get(rec, 0) + frequencies.get(rec, 0) # 增加次数 # 由字典变成列表 # 获取残基信息和频率 frequency_lis = [] for rec_info, rec_fre in frequencies.items(): # 把残基信息由字符串变为字典 rec_info = eval(rec_info) # , 并加入频率 rec_info.append(rec_fre) # 汇总加入新列表 frequency_lis.append(rec_info) # 判断该相互作用残基是否全为空 if len(frequency_lis) != 0: frequency_lis.sort(key=lambda x: x[-1], reverse=True) # 排序 # 写入csv pd.DataFrame([interaction_type, frequency_lis]).T.to_csv(self.data_collect_csv, header=False, index=False, mode='a') # con = '{}\n{}\n'.format('hb', frequency_lis) # 定义文本内容 # with open(self.data_collect_csv, 'a') as f: # 写入文件 # f.write(con) else: # 若全空,返回空列表 pd.DataFrame([interaction_type, []]).T.to_csv(self.data_collect_csv, index=False, header=False, mode='a') # 写入CSV def openbabel_transform(self, src_file, dst_file): cmd = f'module load openbabel && obabel {src_file} -O {dst_file}' os.system(cmd) # 读取含有某个关键字的最后一行,用于生成复合物 def get_final_index(self, data, key_word='ATOM'): for final_index in range(len(data)): # 若此行不包含关键字,上一行包含,则输出该行索引 if key_word not in data[final_index]: if key_word in data[final_index - 1]: return final_index # 若没有找到符合条件的索引,输出所有行数 return len(data) # 生成复合物 def generate_complex(self, active_ligand): # 定义分子 active_file = '{}/{}.sdf'.format(self.path_for_lig, active_ligand) # 活性mol2分子 ligand_file = '{}/{}.pdb'.format(self.path_for_complex, active_ligand) # 活性pdb分子 complex_file = '{}/{}.pdb'.format(self.path_for_complex, active_ligand) # 复合物分子 # 转换配体到pdb self.openbabel_transform(src_file=active_file, dst_file=ligand_file) # 打开蛋白文件 with open(self.protein, 'r') as f: protein = f.readlines() # 读取对应数据 protein = [line for line in protein if line.startswith('ATOM')] # 打开小分子文件 with open(ligand_file, 'r') as f: ligand = f.readlines() # 读取对应数据 ligand = [line for line in ligand if line.startswith('HETATM')] # 替换'ATOM '为HETATM 要多加两个空格,否则替换后 原子序号会后移两位导致PDB格式不标准,3Dmoljs识别不了 ligand = [i.replace('ATOM ', 'HETATM') if i.startswith('ATOM') else i for i in ligand] # 合并字符串 complex_content = f'HEADER {active_ligand}\nMODEL 1\n' + ''.join(protein) + f'COMPND {active_ligand}\n'\ + ''.join(ligand) + 'ENDMDL\nEND\n' # 写复合物 with open(complex_file, 'w') as f: f.write(complex_content) ```
{ "source": "5akusei/test-project-django", "score": 3 }
#### File: test-project-django/animal_size/models.py ```python from django.db import models class AnimalSize(models.Model): name = models.CharField(max_length=7, null=False, blank=False, unique=True) description = models.CharField(max_length=250, null=False, blank=False) class Meta: db_table = 'animal_size' def __str__(self): return self.name ``` #### File: test-project-django/zoo/forms.py ```python from django import forms from zoo.models import Animal class AnimalForm(forms.ModelForm): class Meta: model = Animal exclude = ['type_of_bird'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['name'].widget.attrs.update({'class': 'form-control'}) self.fields['description'].widget.attrs.update({'class': 'form-control'}) self.fields['gender'].widget.attrs.update({'class': 'form-control'}) self.fields['size'].widget.attrs.update({'class': "form-control form-select"}) self.fields['size'].empty_label = 'Escoja un tamaño' self.fields['life_span'].widget.attrs.update({'class': 'form-control', 'max':'150', 'min':'1'}) self.fields['family'].widget.attrs.update({'class': 'form-control'}) ```
{ "source": "5aledBos/python-for-android", "score": 2 }
#### File: recipes/jpeg/__init__.py ```python from pythonforandroid.recipe import NDKRecipe from pythonforandroid.logger import shprint from pythonforandroid.util import current_directory from os.path import join, exists import sh class JpegRecipe(NDKRecipe): name = 'jpeg' version = 'linaro-android' url = 'git://git.linaro.org/people/tomgall/libjpeg-turbo/libjpeg-turbo.git' patches = ['build-static.patch'] generated_libraries = ['libjpeg.a'] def prebuild_arch(self, arch): super(JpegRecipe, self).prebuild_arch(arch) build_dir = self.get_build_dir(arch.arch) app_mk = join(build_dir, 'Application.mk') if not exists(app_mk): shprint(sh.cp, join(self.get_recipe_dir(), 'Application.mk'), app_mk) jni_ln = join(build_dir, 'jni') if not exists(jni_ln): shprint(sh.ln, '-s', build_dir, jni_ln) def build_arch(self, arch): super(JpegRecipe, self).build_arch(arch) with current_directory(self.get_lib_dir(arch)): shprint(sh.mv, 'libjpeg.a', 'libjpeg-orig.a') shprint(sh.ar, '-rcT', 'libjpeg.a', 'libjpeg-orig.a', 'libsimd.a') recipe = JpegRecipe() ``` #### File: recipes/libgeos/__init__.py ```python from pythonforandroid.toolchain import Recipe, shprint, shutil, current_directory from os.path import exists, join import sh from multiprocessing import cpu_count class LibgeosRecipe(Recipe): version = '3.5' #url = 'http://download.osgeo.org/geos/geos-{version}.tar.bz2' url = 'https://github.com/libgeos/libgeos/archive/svn-{version}.zip' depends = ['python2'] def should_build(self, arch): super(LibgeosRecipe, self).should_build(arch) return not exists(join(self.ctx.get_libs_dir(arch.arch), 'libgeos_c.so')) def build_arch(self, arch): super(LibgeosRecipe, self).build_arch(arch) env = self.get_recipe_env(arch) with current_directory(self.get_build_dir(arch.arch)): dst_dir = join(self.get_build_dir(arch.arch), 'dist') bash = sh.Command('bash') print("If this fails make sure you have autoconf and libtool installed") shprint(bash, 'autogen.sh') # Requires autoconf and libtool shprint(bash, 'configure', '--host=arm-linux-androideabi', '--enable-shared', '--prefix={}'.format(dst_dir), _env=env) shprint(sh.make, '-j', str(cpu_count()), _env=env) shprint(sh.make, 'install', _env=env) shutil.copyfile('{}/lib/libgeos_c.so'.format(dst_dir), join(self.ctx.get_libs_dir(arch.arch), 'libgeos_c.so')) def get_recipe_env(self, arch): env = super(LibgeosRecipe, self).get_recipe_env(arch) env['CXXFLAGS'] += ' -I{}/sources/cxx-stl/gnu-libstdc++/4.8/include'.format(self.ctx.ndk_dir) env['CXXFLAGS'] += ' -I{}/sources/cxx-stl/gnu-libstdc++/4.8/libs/{}/include'.format( self.ctx.ndk_dir, arch) env['CXXFLAGS'] += ' -L{}/sources/cxx-stl/gnu-libstdc++/4.8/libs/{}'.format( self.ctx.ndk_dir, arch) env['CXXFLAGS'] += ' -lgnustl_shared' env['LDFLAGS'] += ' -L{}/sources/cxx-stl/gnu-libstdc++/4.8/libs/{}'.format( self.ctx.ndk_dir, arch) return env recipe = LibgeosRecipe() ```
{ "source": "5aledmaged/The-Mutex-Hash-Code-2018-Sol.", "score": 3 }
#### File: 5aledmaged/The-Mutex-Hash-Code-2018-Sol./main.py ```python import heapq as heap filename = 'e_high_bonus' class Ride: def __init__(self, start_row, start_col, finish_row, finish_col, early_start, late_finish, bonus, i): self.start_row = start_row self.start_col = start_col self.finish_row = finish_row self.finish_col = finish_col self.early_start = early_start self.late_finish = late_finish self.id = i self.score = 0 self.distance = abs(finish_row - start_row) + abs(finish_col - start_col) self.init_dist = 0 self.bonus = bonus self.calculate_score() def calculate_score(self, next_start=0, row=0, col=0): self.init_dist = abs(self.start_col - col) + abs(self.start_row - row) if self.init_dist + next_start <= self.early_start: self.score = self.bonus + self.distance elif self.init_dist + next_start + self.distance <= self.late_finish: self.score = self.distance def __repr__(self): return '(' + str(self.id) + ', ' + str(self.score) + ')' def __lt__(self, other): return self.score > other.score class Vehicle: def __init__(self): self.rides = [] self.row = 0 self.col = 0 self.busy = False self.finished_rides = 0 self.rides_order = [] self.next = 0 def update_rides(self): this_ride = heap.heappop(self.rides) heap.heappush(self.rides, this_ride) def move(self, row, col): row_dist = abs(row - self.row) col_dist = abs(col - self.col) self.row = row self.col = col return [row_dist, col_dist] def assign_ride(self, ride): self.finished_rides += 1 self.rides_order.append(ride.id) self.next += ride.init_dist + ride.distance self.row = ride.finish_row self.col = ride.finish_col return self def __lt__(self, other): return self.next < other.next def start_process(ride, vehicle, grid_rows, grid_cols, bonus, sim_steps): pass def init_tasks(vehicles, ride_queue): for i in range(len(vehicles)): next_vehicle = heap.heappop(vehicles) next_ride = heap.heappop(ride_queue) next_vehicle = next_vehicle.assign_ride(next_ride) heap.heappush(vehicles, next_vehicle) def simulate(vehicles, ride_queue, t): time = 0 while True: if (len(ride_queue) == 0) or time > t: break print(time) next_vehicle = heap.heappop(vehicles) time = next_vehicle.next new_scores = [] for ride in ride_queue: ride.calculate_score(next_vehicle.next, next_vehicle.row, next_vehicle.col) heap.heappush(new_scores, ride) ride_queue = new_scores next_ride = heap.heappop(new_scores) next_vehicle = next_vehicle.assign_ride(next_ride) heap.heappush(vehicles, next_vehicle) def main(): with open(filename + '.in') as input_file: input_data = input_file.read() input_lines = input_data.splitlines() grid_rows, grid_cols, vehicle_no, rides_no, bonus, sim_steps = [int(i) for i in input_lines[0].split(' ')] ride_data = input_lines[1:] ride_queue = [] for i in range(rides_no): ride = Ride(*[int(i) for i in ride_data[i].split(' ')], bonus, i) heap.heappush(ride_queue, ride) vehicle = [] for i in range(vehicle_no): vehicle.append(Vehicle()) # print(vehicle) # print(ride_queue) init_tasks(vehicle, ride_queue) simulate(vehicle, ride_queue, sim_steps) # start_process(ride, vehicle, grid_rows, grid_cols, bonus, sim_steps) write_file(vehicle) def write_file(vehicle): with open(filename + '.out', 'w') as f: for car in vehicle: # rides = ' '.joincar.rides_order f.write(str(car.finished_rides) + ' ' + ' '.join([str(i) for i in car.rides_order]) + '\n') main() ```
{ "source": "5alt/VulHint", "score": 2 }
#### File: 5alt/VulHint/VulHint.py ```python import sublime import sublime_plugin import re g_regions = [] g_region_lines = [] g_jump_index = 0 g_line_regions = {} class VulHint(sublime_plugin.EventListener): lang = None data = {} def on_load_async(self, view): if not sublime.load_settings("plugin.sublime-settings").get("enable", 1): return self.init(view) self.mark_vul(view) get_lines(view) def on_post_save_async(self, view): if not sublime.load_settings("plugin.sublime-settings").get("enable", 1): return global g_regions self.init(view) self.mark_vul(view) get_lines(view) def on_hover(self, view, point, hover_zone): if not sublime.load_settings("plugin.sublime-settings").get("enable", 1): return global g_regions global g_region_lines global g_jump_index global g_line_regions if not self.lang or not self.data: return #self.init(view) # locate smiles in the string. smiles string should be at the beginning and followed by tab (cxsmiles) # hovered_line_text = view.substr(view.word(point)).strip() #hovered_line_text = view.substr(view.line(point)).strip() if (hover_zone == sublime.HOVER_TEXT): word = view.substr(view.word(point)).strip() for key in g_regions: val = self.data[key] if word in val["keyword"]: hovered_text = '<p>%s</p>'%(val["discription"]) view.show_popup(hovered_text, flags=sublime.HIDE_ON_MOUSE_MOVE_AWAY, location=point) g_jump_index = g_region_lines.index(view.rowcol(point)[0]) return line = view.rowcol(point)[0] if g_line_regions.get(line): hovered_text = '' for key in g_line_regions.get(line): val = self.data[key] hovered_text += '<p>%s</p><br>'%(val["discription"]) view.show_popup(hovered_text, flags=sublime.HIDE_ON_MOUSE_MOVE_AWAY, location=point) g_jump_index = g_region_lines.index(view.rowcol(point)[0]) return def init(self, view): global g_regions clear_mark(view) g_regions = [] self.lang = self.guess_lang(view) if self.lang in ['html', 'htm']: self.lang = 'js' self.data = sublime.load_settings("VulData.sublime-settings").get(self.lang, {}) def mark_vul(self, view): global g_regions #print([self.data[i]["discription"] for i in self.data]) if not self.lang or not self.data: return for key,val in self.data.items(): if not val['enable']: continue vul = view.find_all(val['pattern']) if not vul: continue for i in vul: i.a += val["abais"] i.b += val["bbais"] view.add_regions(key, vul, "string", "cross", sublime.DRAW_OUTLINED|sublime.DRAW_STIPPLED_UNDERLINE) g_regions.append(key) def guess_lang(self, view=None, path=None, sublime_scope=None): if not view: return None filename = view.file_name() return filename.split('.')[-1].lower() def clear_mark(view): global g_regions if not g_regions: return for i in g_regions: view.erase_regions(i) def get_lines(view): global g_regions global g_region_lines global g_line_regions g_line_regions = {} g_region_lines = set() for region in g_regions: for i in view.get_regions(region): line = view.rowcol(i.a)[0] g_region_lines.add(line) if g_line_regions.get(line, None): g_line_regions[view.rowcol(i.a)[0]].add(region) else: g_line_regions[view.rowcol(i.a)[0]] = set([region]) g_region_lines = sorted(g_region_lines) class GotoNextCommand(sublime_plugin.TextCommand): def run(self, edit): global g_jump_index, g_region_lines # Convert from 1 based to a 0 based line number line = g_region_lines[g_jump_index] g_jump_index = (g_jump_index + 1)%len(g_region_lines) # Negative line numbers count from the end of the buffer if line < 0: lines, _ = self.view.rowcol(self.view.size()) line = lines + line + 1 pt = self.view.text_point(line, 0) self.view.sel().clear() self.view.sel().add(sublime.Region(pt)) self.view.show(pt) class EnableCommand(sublime_plugin.TextCommand): def run(self, edit): sublime.load_settings("plugin.sublime-settings").set("enable", 1) sublime.save_settings("plugin.sublime-settings") class DisableCommand(sublime_plugin.TextCommand): def run(self, edit): sublime.load_settings("plugin.sublime-settings").set("enable", 0) sublime.save_settings("plugin.sublime-settings") class ClearCommand(sublime_plugin.TextCommand): def run(self, edit): clear_mark(self.view) ```
{ "source": "5alt/ZeroExploit", "score": 2 }
#### File: ZeroExploit/exploits/PUT.py ```python import requests import os import config author = 'md5_salt' # 可选 timeout = 5 # 建议 vtype = 'all' #value type: all/int/float/str/url/json/special stype = 'java|asp|aspx' # https://paper.seebug.org/403/ # https://mp.weixin.qq.com/s/uTiWDsPKEjTkN6z9QNLtSA # https://pivotal.io/security/cve-2017-8046 def exploit(request, response, method, key, is_array=False): if config.dbconn().fetch_rows('result', condition="exploit='%s' and result != 'continue' and `host`='%s'" % (os.path.basename(__file__)[:-3], request['host']), order="id asc", limit="1", fetchone=True): return allow = requests.options(request['uri']).headers.get('Allow', '') if allow.find('PUT') != -1 or allow.find('PATCH') != -1: return {'result': 'vul', 'info': "Server support put/patch method", 'hash': None, 'level': "middle"} else: return {'result': 'safe', 'info': "Server does not support put/patch method", 'hash': None, 'level': "middle"} if __name__ == '__main__': pass ``` #### File: 5alt/ZeroExploit/zoneresolver.py ```python import os import copy import re from dnslib import RR, QTYPE, RCODE from dnslib.server import DNSServer, DNSHandler, BaseResolver, DNSLogger import config class MysqlLogger(): def log_data(self, dnsobj): pass def log_error(self, handler, e): pass def log_pass(self, *args): pass def log_prefix(self, handler): pass def log_recv(self, handler, data): pass def log_reply(self, handler, reply): pass def log_request(self, handler, request): domain = request.q.qname.__str__() h = domain.split('.')[0] if domain.endswith(config.DNS_DOMAIN + '.'): if h and re.match(config.hash_pattern, h): #update database config.dbconn().update('result', {'result': "vul"}, {'hash':h}) config.dbconn().insert('hashlog', {'hash':h}) def log_send(self, handler, data): pass def log_truncated(self, handler, reply): pass class ZoneResolver(BaseResolver): """ Simple fixed zone file resolver. """ def __init__(self, zone, glob=False): """ Initialise resolver from zone file. Stores RRs as a list of (label,type,rr) tuples If 'glob' is True use glob match against zone file """ self.zone = [(rr.rname, QTYPE[rr.rtype], rr) for rr in RR.fromZone(zone)] self.glob = glob self.eq = 'matchGlob' if glob else '__eq__' def resolve(self, request, handler): """ Respond to DNS request - parameters are request packet & handler. Method is expected to return DNS response """ reply = request.reply() qname = request.q.qname qtype = QTYPE[request.q.qtype] for name, rtype, rr in self.zone: # Check if label & type match if getattr(qname, self.eq)(name) and ( qtype == rtype or qtype == 'ANY' or rtype == 'CNAME'): # If we have a glob match fix reply label if self.glob: a = copy.copy(rr) a.rname = qname reply.add_answer(a) else: reply.add_answer(rr) # Check for A/AAAA records associated with reply and # add in additional section if rtype in ['CNAME', 'NS', 'MX', 'PTR']: for a_name, a_rtype, a_rr in self.zone: if a_name == rr.rdata.label and a_rtype in ['A', 'AAAA']: reply.add_ar(a_rr) if not reply.rr: reply.header.rcode = RCODE.NXDOMAIN return reply def main(): zone = ''' *.{dnsdomain}. IN A {serverip} {dnsdomain}. IN A {serverip} '''.format( dnsdomain=config.DNS_DOMAIN, serverip=config.SERVER_IP) resolver = ZoneResolver(zone, True) logger = MysqlLogger() print("Starting Zone Resolver (%s:%d) [%s]" % ("*", 53, "UDP")) udp_server = DNSServer(resolver, port=53, address='', logger=logger) udp_server.start() if __name__ == '__main__': main() ```
{ "source": "5alt/ZeroScan", "score": 3 }
#### File: 5alt/ZeroScan/helper.py ```python import config import sqlite3 as db import os import requests def load_domain_from_file(): with open(config.INPUT_DOMAIN_FILE, 'r') as f: data = f.read().strip() return set(data.split('\n')) def load_alldomains_from_file(): with open(config.INPUT_ALL_DOMAINS_FILE, 'r') as f: data = f.read().strip() return set(data.split('\n')) def load_ips_from_file(): with open(os.path.join(config.OUTPUT_DIR,config.IPS), 'r') as f: data = f.read().strip() return set(data.split('\n')) def parse_domains_brute(domain, extip=None): ''' 如果域名泛解析,则通过HTTP请求的Host来判断是否真的绑定在webserver上 在检查响应的时候,一般同一个错误页面的响应长度是一样的,除非响应中包含 host,所以需要在替换掉host之后再比较长度 ''' def get_error_page(extip, fhost): error_page = '' try: error_page = requests.get('https://%s' % extip, headers={'host': fhost}, verify=True).text.replace(fhost, "") except Exception as e: pass if not error_page: try: fhost = 'salt66666666.'+domain error_page = requests.get('http://%s' % extip, headers={'host': fhost}).text.replace(fhost, "") except Exception as e: pass return len(error_page) with open(os.path.join(config.OUTPUT_DIR, '%s.txt'%domain), 'r') as f: data = f.read().strip() ret = {} if extip: fhost = 'salt66666666.'+domain error_page = get_error_page(extip, fhost) for line in data.split('\n'): if not line.strip(): continue line = line.replace(' ', '').replace('\t', '') parts = line.split(domain) if extip and extip in line: if not error_page: continue else: page = get_error_page(extip, parts[0]+domain) if page == error_page: continue ret[parts[0]+domain] = parts[1] return ret def get_domains_conn(): sqlitepath = os.path.join(config.OUTPUT_DIR, "domains.db") conn = db.connect(sqlitepath) conn.text_factory = str return conn def get_ports_conn(): sqlitepath = os.path.join(config.OUTPUT_DIR, "ports.db") conn = db.connect(sqlitepath) conn.text_factory = str return conn def insert_port(ip, port, service=None): conn = get_ports_conn() cursor = conn.cursor() sql = "INSERT INTO open(ip, port, service) VALUES(?, ?, ?)" try: status = cursor.execute(sql, (ip, port, service)) conn.commit() except Exception as e: print e conn.close() def check_port_scanned(ip, port): conn = get_ports_conn() cursor = conn.cursor() sql = "SELECT * FROM open WHERE ip=? and port=?" cursor.execute(sql, (ip, port)) rows = cursor.fetchall() if rows: return True else: return False def install_ports(): sqlitepath = os.path.join(config.OUTPUT_DIR, "ports.db") install = '' if not os.path.exists(sqlitepath): install = ''' CREATE TABLE open( `ip` VARCHAR(64) NOT NULL, `port` INTEGER, `service` varchar(64), `comment` TEXT, PRIMARY KEY(`ip`, `port`) ); ''' if install: conn = conn = get_ports_conn() cursor = conn.cursor() cursor.execute(install) conn.commit() conn.close() def install_domains(): sqlitepath = os.path.join(config.OUTPUT_DIR, "domains.db") install = '' if not os.path.exists(sqlitepath): install = ''' CREATE TABLE `domains`( `domain` varchar(255) NOT NULL, `ip` TEXT NOT NULL, `cname` varchar(255), `cdn` INTEGER, `internal` INTEGER, PRIMARY KEY(`domain`, `ip`) ); ''' if install: conn = get_domains_conn() cursor = conn.cursor() cursor.execute(install) conn.commit() conn.close() if __name__ == '__main__': conn = get_domains_conn() cur = conn.cursor() cur.execute("SELECT * FROM domains") rows = cur.fetchall() for row in rows: print row ``` #### File: ZeroScan/passive/crtsh.py ```python import requests import json def certsh_api(domain): data_set = set() url = "https://crt.sh/?q=%25.{0}&output=json".format(domain) resp = requests.get(url) if resp.status_code != 200: return [] #fixed_raw = '[%s]' % str(resp.text).replace('}{', '},{') for cert in json.loads(resp.text): data_set.update([cert.get('name_value')]) return data_set def passive_search(domain): return certsh_api(domain) if __name__ == '__main__': print passive_search('5alt.me') ``` #### File: ZeroScan/passive/fofa.py ```python import os import requests import base64 import re # from urllib.parse import urlparse from urlparse import urlparse def fofa_search(domain): if not os.environ.get('fofa_username') or not os.environ.get('fofa_password'): return [] data_set = set() # get访问登录页面,获取到token,session,It,这三个数据时页面随机生成的,请求数据时需要加上 loginurl='https://i.nosec.org/login' getlogin=requests.get(loginurl) token0=re.findall('<input type="hidden" name="authenticity_token" value="(.*)" />',getlogin.text) session0=re.findall('(_nosec_cas_session=.*); path=/',getlogin.headers['Set-Cookie']) It0=re.findall('<input type="hidden" name="lt" id="lt" value="(.*)" />',getlogin.text) token=token0[0] session1=session0[0] It=It0[0] # 设置data数据和header头,将我们获取的数据加到里面 datas={ 'utf8':'%E2%9C%93', 'authenticity_token': token, 'lt': It, 'username': os.environ.get('fofa_username'), 'password': os.<PASSWORD>('fofa_password'), 'rememberMe':'1', 'button': '' } headers={ 'Host': 'i.nosec.org', 'Connection': 'close', 'Content-Length': '302', 'Cache-Control': 'max-age=0', 'Origin': 'https://i.nosec.org', 'Upgrade-Insecure-Requests': '1', 'Content-Type': 'application/x-www-form-urlencoded', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Referer': 'https://i.nosec.org/login', 'Accept-Encoding': 'gzip, deflate, br', 'Cookie': '__lnkrntdmcvrd=-1; '+session1, 'Accept-Language': 'zh-CN,zh;q=0.9' } # 使用session登录,可以保证在之后的访问中保持登录信息 session=requests.Session() postlogin=session.post(loginurl,headers=headers,data=datas) sess_headers={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest', 'Accept': 'text/javascript' } # fofa的登陆界面和一般网站不同,他是类似于一个第三方的登录界面,在nosec登录成功后,你直接访问fofa是出于未登录状态,因为只是存在nosec的cookie,并没有fofa的cookie, # 需要访问该链接才会生成fofa的cookie signlogin=session.get('https://fofa.so/users/sign_in',headers=sess_headers) search='domain="%s"' % domain #searchbs64=(str(base64.b64encode(search.encode('utf-8')),'utf-8')) searchbs64=str(base64.b64encode(search.encode('utf-8'))) pageurl=session.get('https://fofa.so/result?full=true&qbase64='+searchbs64) pagenum=re.findall('>(\d*)</a> <a class="next_page" rel="next"',pageurl.text) pagenum=int(pagenum[0]) if pagenum else 1 session.headers.update(sess_headers) for i in range(1, pagenum+1): finurl=session.get('https://fofa.so/result?full=true&page='+str(i)+'&qbase64='+searchbs64) finurl=re.findall(r'<a target=\\\"_blank\\\" href=\\\"(.*?)\\\">.*?<i class=\\\"fa fa-link\\\"><\\/i>',finurl.text) for j in finurl: data_set.add(urlparse(j).hostname) return data_set def passive_search(domain): return fofa_search(domain) if __name__ == '__main__': print(fofa_search('5alt.me')) ``` #### File: 5alt/ZeroScan/recv.py ```python from scapy.all import * import config import helper from tools import check_port_service # http://biot.com/capstats/bpf.html # http://www.freebuf.com/sectool/94507.html helper.install_ports() whitelist = helper.load_ips_from_file() f="tcp[tcpflags] & tcp-syn != 0 and tcp[tcpflags] & tcp-ack != 0" def callback(pkt): #pkt.show() if pkt[IP].src in whitelist: print "%s:%s"%(pkt[IP].src, pkt[TCP].sport) if helper.check_port_scanned(pkt[IP].src, pkt[TCP].sport): return service = check_port_service(pkt[IP].src, pkt[TCP].sport) helper.insert_port(pkt[IP].src, pkt[TCP].sport, service) sniff(prn=callback, filter=f, store=0) ``` #### File: ZeroScan/takeover/github_pages.py ```python import requests APEX_VALUES = ['172.16.31.10', '192.168.3.11', '192.168.3.11', '192.168.127.12', '192.168.3.11', '172.16.17.32'] CNAME_VALUE = [".github.io"] RESPONSE_FINGERPRINT = "There isn't a GitHub Pages site here." def detector(domain, ip, cname): if APEX_VALUES: if ip in APEX_VALUES: return True if filter(lambda x: x in cname, CNAME_VALUE): return True try: if RESPONSE_FINGERPRINT in requests.get('http://%s' % domain).text: return True except Exception as e: pass return False ``` #### File: ZeroScan/takeover/instapage.py ```python import requests APEX_VALUES = None CNAME_VALUE = ["pageserve.co", "secure.pageserve.co"] RESPONSE_FINGERPRINT = "You've Discovered A Missing Link. Our Apologies!" def detector(domain, ip, cname): if APEX_VALUES: if ip in APEX_VALUES: return True if filter(lambda x: x in cname, CNAME_VALUE): return True try: if RESPONSE_FINGERPRINT in requests.get('http://%s' % domain).text: return True except Exception as e: pass return False ``` #### File: ZeroScan/takeover/tumblr.py ```python import requests APEX_VALUES = ['172.16.31.10'] CNAME_VALUE = ["domains.tumblr.com"] RESPONSE_FINGERPRINT = "Whatever you were looking for doesn't currently exist at this address." def detector(domain, ip, cname): if APEX_VALUES: if ip in APEX_VALUES: return True if filter(lambda x: x in cname, CNAME_VALUE): return True try: if RESPONSE_FINGERPRINT in requests.get('http://%s' % domain).text: return True except Exception as e: pass return False ```
{ "source": "5amessi/camel_tools", "score": 2 }
#### File: camel_tools/cli/camel_morphology.py ```python from __future__ import absolute_import import collections import sys import re from docopt import docopt import six import camel_tools as camelt from camel_tools.utils.charsets import AR_DIAC_CHARSET from camel_tools.utils.stringutils import force_unicode, force_encoding from camel_tools.morphology.database import MorphologyDB from camel_tools.morphology.analyzer import Analyzer from camel_tools.morphology.generator import Generator from camel_tools.morphology.reinflector import Reinflector from camel_tools.morphology.errors import DatabaseError, AnalyzerError from camel_tools.morphology.errors import GeneratorError, MorphologyError __version__ = camelt.__version__ _ANALYSIS_BACKOFFS = frozenset(('NONE', 'NOAN_ALL', 'NOAN_PROP', 'ADD_ALL', 'ADD_PROP')) _GENARATION_BACKOFFS = frozenset(('NONE', 'REINFLECT')) _BUILTIN_DBS = frozenset([db.name for db in MorphologyDB.list_builtin_dbs()]) _DEFAULT_DB = 'calima-msa-r13' _DIAC_RE = re.compile(r'[' + re.escape(u''.join(AR_DIAC_CHARSET)) + r']') def _tokenize(s): return s.split() def _dediac(word): return _DIAC_RE.sub('', word) def _to_int(s): s = str(s) try: if not s.isdigit(): return None return int(s) except Exception: return None def _open_files(finpath, foutpath): if finpath is None: fin = sys.stdin else: try: fin = open(finpath, 'r', encoding='utf-8') except IOError: sys.stderr.write('Error: Couldn\'t open input file {}.' '\n'.format(repr(finpath))) sys.exit(1) if foutpath is None: fout = sys.stdout else: try: fout = open(foutpath, 'w', encoding='utf-8') except IOError: sys.stderr.write('Error: Couldn\'t open output file {}.' '\n'.format(repr(foutpath))) if finpath is not None: fin.close() sys.exit(1) return fin, fout def _list_dbs(): for db in sorted(MorphologyDB.list_builtin_dbs()): sys.stdout.write('{}\t{}\n'.format(db.name, db.version)) def _serialize_analyses(fout, word, analyses, order, generation=False): buff = collections.deque() buff.append(u'#{}: {}'.format(u'LEMMA' if generation else u'WORD', force_unicode(word))) if len(analyses) == 0: buff.append(u'NO_ANALYSIS') else: sub_buff = collections.OrderedDict() for a in analyses: output = u' '.join([u'{}:{}'.format(force_unicode(f), force_unicode(str(a[f]))) for f in order if f in a]) if output not in sub_buff: sub_buff[output] = True buff.extend(sub_buff.keys()) return u'\n'.join(buff) def _parse_generator_line(line): lemma = None feats = {} tokens = line.strip().split() if len(tokens) < 1: return None lemma = tokens[0] for token in tokens[1:]: subtokens = token.split(':') if len(subtokens) < 2: return None else: feat = subtokens[0] val = ':'.join(subtokens[1:]) feats[feat] = val return (lemma, feats) def _parse_reinflector_line(line): word = None feats = {} tokens = line.strip().split() if len(tokens) < 1: return None word = tokens[0] for token in tokens[1:]: subtokens = token.split(':') if len(subtokens) < 2: return None else: feat = subtokens[0] val = ':'.join(subtokens[1:]) feats[feat] = val return (word, feats) def _analyze(db, fin, fout, backoff, cache): if cache: analyzer = Analyzer(db, backoff, cache_size=1024) else: analyzer = Analyzer(db, backoff) line = force_unicode(fin.readline()) while line: if len(line) == 0: line = force_unicode(fin.readline()) continue line = line.strip() tokens = _tokenize(line) for token in tokens: analyses = analyzer.analyze(token) serialized = _serialize_analyses(fout, token, analyses, db.order) if six.PY3: fout.write(serialized) else: fout.write(force_encoding(serialized)) fout.write('\n\n') line = force_unicode(fin.readline()) def _generate(db, fin, fout, backoff): generator = Generator(db) reinflector = Reinflector(db) if backoff == 'REINFLECT' else None line = force_unicode(fin.readline()) line_num = 1 while line: line = line.strip() if len(line) == 0: line = force_unicode(fin.readline()) line_num += 1 continue parsed = _parse_generator_line(line) if parsed is None: if fin is sys.stdin: sys.stderr.write('Error: Invalid input line.\n') else: sys.stderr.write( 'Error: Invalid input line ({}).\n'.format(line_num)) else: lemma = parsed[0] feats = parsed[1] # Make sure lemma and pos are specified first if lemma is None: if fin is sys.stdin: sys.stderr.write('Error: Missing lex/lemma feature.\n') else: sys.stderr.write( 'Error: Missing lex/lemma feature. [{}].\n'.format( line_num)) elif 'pos' not in feats: if fin is sys.stdin: sys.stderr.write('Error: Missing pos feature.\n') else: sys.stderr.write( 'Error: Missing pos feature. [{}]\n'.format( line_num)) else: try: analyses = generator.generate(lemma, feats) if len(analyses) == 0 and backoff == 'REINFLECT': word = _dediac(lemma) analyses = reinflector.reinflect(word, feats) serialized = _serialize_analyses(fout, lemma, analyses, db.order, True) if six.PY3: fout.write(serialized) else: fout.write(force_encoding(serialized)) fout.write('\n\n') except GeneratorError as error: if fin is sys.stdin: sys.stderr.write('Error: {}.\n'.format(error.msg)) else: sys.stderr.write('Error: {}. [{}]\n'.format(error.msg, line_num)) line = force_encoding(fin.readline()) line_num += 1 def _reinflect(db, fin, fout): reinflector = Reinflector(db) line = force_unicode(fin.readline()) line_num = 1 while line: line = line.strip() if len(line) == 0: line = force_unicode(fin.readline()) line_num += 1 continue parsed = _parse_reinflector_line(line) if parsed is None: if fin is sys.stdin: sys.stderr.write('Error: Invalid input line.\n') else: sys.stderr.write( 'Error: Invalid input line. [{}]\n'.format(line_num)) else: word = parsed[0] feats = parsed[1] try: analyses = reinflector.reinflect(word, feats) serialized = _serialize_analyses(fout, word, analyses, db.order) if six.PY3: fout.write(serialized) else: fout.write(force_encoding(serialized)) fout.write('\n\n') except MorphologyError as error: # This could be thrown by the analyzer, generator, or # reinflector. if fin is sys.stdin: sys.stderr.write('Error: {}.\n'.format(error.msg)) else: sys.stderr.write('Error: {}. [{}]\n'.format(error.msg, line_num)) line = force_unicode(fin.readline()) line_num += 1 def main(): # pragma: no cover try: version = ('CAMeL Tools v{}'.format(__version__)) arguments = docopt(__doc__, version=version) if arguments.get('--list', False): _list_dbs() sys.exit(1) analyze = arguments.get('analyze', False) generate = arguments.get('generate', False) reinflect = arguments.get('reinflect', False) cache = arguments.get('--cache', False) backoff = arguments.get('--backoff', 'NONE') # Make sure we have a valid backoff mode if backoff is None: backoff = 'NONE' if analyze and backoff not in _ANALYSIS_BACKOFFS: sys.stderr.write('Error: invalid backoff mode.\n') sys.exit(1) if generate and backoff not in _GENARATION_BACKOFFS: sys.stderr.write('Error: invalid backoff mode.\n') sys.exit(1) # Open files (or just use stdin and stdout) fin, fout = _open_files(arguments['FILE'], arguments['--output']) # Determine required DB flags if analyze: dbflags = 'a' elif generate and backoff == 'NONE': dbflags = 'g' else: dbflags = 'r' # Load DB try: dbname = arguments.get('--db', _DEFAULT_DB) if dbname in _BUILTIN_DBS: db = MorphologyDB.builtin_db(dbname, dbflags) else: db = MorphologyDB(dbname, dbflags) except DatabaseError: sys.stderr.write('Error: Couldn\'t parse database.\n') sys.exit(1) except IOError: sys.stderr.write('Error: Database file could not be read.\n') sys.exit(1) # Continue execution in requested mode if analyze: try: _analyze(db, fin, fout, backoff, cache) except AnalyzerError as error: sys.stderr.write('Error: {}\n'.format(error.msg)) sys.exit(1) except IOError: sys.stderr.write('Error: An IO error occurred.\n') sys.exit(1) elif generate: try: _generate(db, fin, fout, backoff) except IOError: sys.stderr.write('Error: An IO error occurred.\n') sys.exit(1) elif reinflect: try: _reinflect(db, fin, fout) except IOError: sys.stderr.write('Error: An IO error occurred.\n') sys.exit(1) sys.exit(0) except KeyboardInterrupt: sys.stderr.write('Exiting...\n') sys.exit(1) except Exception: sys.stderr.write('Error: An unknown error occurred.\n') sys.exit(1) if __name__ == '__main__': main() ``` #### File: camel_tools/utils/transliterate.py ```python from __future__ import absolute_import from collections import deque import re import six from camel_tools.utils.charmap import CharMapper _WHITESPACE_RE = re.compile(r'\s') class Transliterator(object): """A class for transliterating text using a :obj:`~camel_tools.utils.charmap.CharMapper`. This class adds the extra utility of marking individual tokens to not be transliterated. It assumes that tokens are whitespace seperated. Args: mapper (:obj:`~camel_tools.utils.charmap.CharMapper`): The :obj:`~camel_tools.utils.charmap.CharMapper` instance to be used for transliteration. marker (:obj:`str`, optional): A string that is prefixed to all tokens that shouldn't be transliterated. Should not contain any whitespace characters. Defaults to '@@IGNORE@@'. Raises: :obj:`TypeError`: If mapper is not a :obj:`~camel_tools.utils.charmap.CharMapper` instance or marker is not a string. :obj:`ValueError`: If marker contains whitespace or is an empty string. """ def __init__(self, mapper, marker='@@IGNORE@@'): self._mapper = mapper if not isinstance(mapper, CharMapper): raise TypeError('Mapper is not a CharMapper instance.') if not isinstance(marker, six.string_types): raise TypeError('Marker is not a string.') if not marker: raise ValueError('Marker is empty.') elif _WHITESPACE_RE.search(marker) is None: self._marker = marker else: raise ValueError('Marker contains whitespace.') self._markerre = re.compile( r'({}\S+)'.format(re.escape(marker)), re.UNICODE | re.MULTILINE ) def transliterate(self, s, strip_markers=False, ignore_markers=False): """Transliterate a given string. Args: s (:obj:`str`): The string to transliterate. strip_markers (:obj:`bool`, optional): Output is stripped of markers if `True`, otherwise markers are kept in the output. Defaults to `False`. ignore_markers (:obj:`bool`, optional): If set to `True`, all text, including marked tokens are transliterated as well excluding the markers. If you would like to transliterate the markers as well, use :obj:`~camel_tools.utils.charmap.CharMapper` directly instead. Defaults to `False`. Returns: :obj:`str`: The transliteration of **s** with the exception of marked words. """ buff = deque() splits = self._markerre.split(s) for spl in splits: if spl.startswith(self._marker): if ignore_markers: if not strip_markers: buff.append(self._marker) buff.append( self._mapper.map_string(spl[len(self._marker):]) ) else: if strip_markers: buff.append(spl[len(self._marker):]) else: buff.append(spl) else: buff.append(self._mapper.map_string(spl)) return u''.join(buff) ```
{ "source": "5amron/pre-ml", "score": 2 }
#### File: preml/feature_select/baco.py ```python import numpy as np import random from sklearn.neighbors import KNeighborsClassifier import timeit from . import heuristics from ..io import portie import sys def baco(x_data, y_data, t_percent=40, heu_meth="method_1", ml_alg="knn1", iter_num=10): (my_bool, msg_err) = check_baco_args(t_percent, heu_meth, ml_alg, iter_num) if(not my_bool): print("problem with arguments for abaco()!!!") print(msg_err) exit() ############# check = portie.CheckDataset(x_data, y_data) (state, msg) = check.get_state() if(not state): # data had problems print("+++ " + msg + " +++") exit() ############# train_percentage = 100 - int(t_percent) time_temp = 0 start = timeit.default_timer() (best_fitnesses_each_iter, average_fitnesses_each_iter, num_of_features_selected_by_best_ant_each_iter, best_fit_so_far, best_ant_road) = run_feature_selection(generations = iter_num, alpha = 1, beta = 0.5, T0 = 0.1, Min_T = 0.1, Max_T = 6, q = 0.95, Q = 0.3, heu_meth = heu_meth, ant_num = 50, feature_num = len(x_data[1]), dataset=x_data, targets=y_data, train_percentage=train_percentage) end = timeit.default_timer() time_temp = time_temp + (end - start) # making new dataset : new_dataset = make_new_dataset(best_ant_road, x_data) acc_before_run = get_single_fit(x_data, y_data, train_percentage) total_feature_num = len(x_data[1]) sample_num = len(x_data[:,1]) best_selected_features_num = np.sum(best_ant_road) return (new_dataset, best_ant_road, acc_before_run, best_fit_so_far, total_feature_num, best_selected_features_num, best_fitnesses_each_iter, average_fitnesses_each_iter ,num_of_features_selected_by_best_ant_each_iter, time_temp, sample_num) def check_baco_args(t_percent, heu_meth, ml_alg, iter_num): msg_err = "" try: int(t_percent) except Exception as e: msg_err = "t_percent should be integer!" return (False, msg_err) try: int(iter_num) except Exception as e: msg_err = "iter_num should be integer!" return (False, msg_err) if(iter_num > 100): msg_err = "iter_num should be less than 100!" return (False, msg_err) if(iter_num < 5): msg_err = "iter_num should be more than 5!" return (False, msg_err) # if(type(heu_meth) != "str" or "str" != type(ml_alg)): if(heu_meth != "method_1" and heu_meth != "method_2" and heu_meth != "method_3" and heu_meth != "method_4" and heu_meth != "method_5"): msg_err = "heu_meth isn't write, please check the docs!" return (False, msg_err) # should check the ml_alg tooooooooo return (True, msg_err) def run_feature_selection(generations, alpha, beta , T0, Min_T, Max_T, q, Q, heu_meth, ant_num, feature_num, dataset, targets, train_percentage): best_fitnesses_each_iter = [] average_fitnesses_each_iter = [] num_of_features_selected_by_best_ant_each_iter = [] road_map = np.random.randint(2, size=ant_num*feature_num).reshape((ant_num, feature_num)) road_maps = np.zeros(ant_num*feature_num*generations, dtype="int64").reshape(generations, ant_num, feature_num) best_roads_list = [] best_fit_so_far = 0 best_road_so_far = np.zeros(feature_num, dtype="int64") np.set_printoptions(suppress=True, threshold=1000) roads_T = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) + T0 for i in range(0, generations): # print("+++++++++ run : ("+ str(heu_meth) +") Iteration : (" + str(i+1) + ")+++++++++") if(heu_meth == "method_1"): roads_E = heuristics.hueristic_value_fscore(feature_num, dataset, targets) elif(heu_meth == "method_2"): roads_E = heuristics.heuristic_value_min_redundency(feature_num, dataset) elif(heu_meth == "method_3"): roads_E = heuristics.heuristic_value_min_redundency_max_relevence(feature_num, dataset) elif(heu_meth == "method_4"): roads_E = heuristics.heuristic_value_method_4(feature_num, dataset) elif(heu_meth == "method_5"): roads_E = heuristics.heuristic_value_mutual_info(feature_num, dataset) (road_map, pointer) = baco_road_selection(roads_T, roads_E, alpha, beta, ant_num, feature_num) (iter_best_fit, best_road_so_far, best_fit_so_far, iter_best_road, fitnesses, iter_average_fit, ants_num_of_features_selected) = do_calculations(road_map, dataset, targets, best_fit_so_far, best_road_so_far, train_percentage) roads_T = trial_update(fitnesses, roads_T, Min_T, Max_T, Q, q, iter_best_road, feature_num) road_maps[i] = road_map best_fitnesses_each_iter.append(iter_best_fit) average_fitnesses_each_iter.append(iter_average_fit) num_of_features_selected_by_best_ant_each_iter.append(sum(best_road_so_far)) best_roads_list.append(best_road_so_far) ccc = 0 maxx = max(best_fitnesses_each_iter) for each in best_fitnesses_each_iter: if(each == maxx): my_indx = ccc ccc = ccc + 1 return (best_fitnesses_each_iter, average_fitnesses_each_iter, num_of_features_selected_by_best_ant_each_iter, best_fit_so_far, best_roads_list[my_indx]) def get_accuracy_for_this_solution(train_dataset, train_targets, test_dataset, test_targets): K = 1 knn = KNeighborsClassifier(n_neighbors=K) knn.fit(train_dataset, train_targets) # X, Y # evaluating our trained model predicted_targets = knn.predict(test_dataset) l = len(test_targets) num_of_correct = 0 for i in range(l): if(test_targets[i] == predicted_targets[i]): num_of_correct = num_of_correct + 1 return num_of_correct/l def separate_datasets(dataset, targets, train_percentage): # in case you wanted the data to be random every single time you wanted get fitnesses leng = len(dataset[:, 0]) s = int(leng*(train_percentage/100)) samples_list = random.sample(range(0, leng), s) mask = np.zeros((leng), dtype=bool) mask[samples_list] = True train_dataset = dataset[mask, :] test_dataset = dataset[~mask, :] train_targets = targets[mask] test_targets = targets[~mask] return (train_dataset, test_dataset, train_targets, test_targets) def get_fitnesses(road_map, dataset, targets, train_percentage): total_feature_num = len(road_map[1]) total_sample_num = len(dataset[:,0]) num_of_features_selected = list() fitnesses = list() count = 0 for ant_solution in road_map: count = count + 1 if np.sum(ant_solution) == 0: print("all of row "+ str(count) +" was 0!!!") fitnesses.append(0) # print(np.sum(ant_solution)) ##### problemmmmmm else: new_dataset = np.zeros(total_sample_num, dtype="float64").reshape(total_sample_num, 1) for i in range(0, len(ant_solution)): if(ant_solution[i] == 1): new_dataset = np.append(new_dataset, dataset[:, i].reshape(total_sample_num, 1), axis=1) new_dataset = np.delete(new_dataset, 0, axis=1) # removing first column num_of_features_selected.append(new_dataset.shape[1]) (train_dataset, test_dataset, train_targets, test_targets) = separate_datasets(new_dataset, targets, train_percentage) fitnesses.append(get_accuracy_for_this_solution(train_dataset, train_targets, test_dataset, test_targets)) return num_of_features_selected, fitnesses def make_new_dataset(solution_road, dataset): total_sample_num = len(dataset[:,0]) new_dataset = np.zeros(total_sample_num, dtype="float64").reshape(total_sample_num, 1) if np.sum(solution_road) == 0: print("allll of it was 0!!!!") return new_dataset else: for i in range(0, len(solution_road)): if(solution_road[i] == 1): new_dataset = np.append(new_dataset, dataset[:, i].reshape(total_sample_num, 1), axis=1) new_dataset = np.delete(new_dataset, 0, axis=1) # removing first column return new_dataset def get_single_fit(dataset, targets, train_percentage): (train_dataset, test_dataset, train_targets, test_targets) = separate_datasets(dataset, targets, train_percentage) return get_accuracy_for_this_solution(train_dataset, train_targets, test_dataset, test_targets) def roulette_wheel(probs, feature_num): # picking one item's index randomly but with considering probabilities. sum = 0 zero_or_one = 1 r = np.random.random_sample() for x in range(len(probs)): sum = sum + probs[x] if(r < sum): index = x # because it is now (feature_num + feature_num) long, we should correct it : if(index >= feature_num): index = index - feature_num zero_or_one = 1 else: zero_or_one = 0 return (index, zero_or_one) def baco_road_selection(roads_T, roads_E, alpha, beta, ant_num, feature_num): road_map = np.zeros(ant_num*feature_num, dtype="int64").reshape(ant_num, feature_num) pointer = np.zeros(ant_num*feature_num, dtype="int64").reshape(ant_num, feature_num) for k in range(0, ant_num): indx = np.multiply(np.power(roads_T, alpha), np.power(roads_E, beta)) for j in range(0, feature_num): # for the first feature : if(j == 0): cur_feature = np.random.randint(0, feature_num, 1)[0] pointer[k,j] = cur_feature # this is just for selection of 0 or 1 for the first feature (if it's more interesting the likelihood is higher) temp = np.sum(roads_T[0, :, cur_feature] + roads_T[2, :, cur_feature]) / np.sum(roads_T[0, :, cur_feature] + roads_T[1, :, cur_feature] + roads_T[2, :, cur_feature] + roads_T[3, :, cur_feature]) rand = np.random.random_sample() if (rand < temp): road_map[k, cur_feature] = 0 else: road_map[k, cur_feature] = 1 else: if(road_map[k, pointer[k,j-1]] == 1): nominator = np.hstack((indx[2, pointer[k,j-1], :], indx[3, pointer[k,j-1], :])) denominator = sum(nominator) ##################################### should be right!!!!! probability = np.divide(nominator, denominator) # total=total/sum(total) # should be editted.it is not (selected_feature_indx, zero_or_one) = roulette_wheel(probability, feature_num) pointer[k,j] = selected_feature_indx if(zero_or_one == 0): road_map[k, pointer[k,j]] = 0 else: road_map[k, pointer[k,j]] = 1 else: # == 0 nominator = np.hstack((indx[0, pointer[k,j-1], :], indx[1, pointer[k,j-1], :])) denominator = sum(nominator) probability = np.divide(nominator, denominator) (selected_feature_indx, zero_or_one) = roulette_wheel(probability, feature_num) pointer[k,j] = selected_feature_indx if(zero_or_one == 0): road_map[k, pointer[k,j]] = 0 else: road_map[k, pointer[k,j]] = 1 # update indx (so by doing this, the probability of selection in roulette wheel for this feature, is gonna be zero!) indx[:, :, pointer[k, j]] = 0 return (road_map, pointer) def do_calculations(road_map, dataset, targets, best_fit_so_far, best_road_so_far, train_percentage): ants_num_of_features_selected, fitnesses = get_fitnesses(road_map, dataset, targets, train_percentage) iter_average_fit = np.mean(fitnesses, axis=0) iter_best_fit = max(fitnesses) iter_best_ant = fitnesses.index(iter_best_fit) iter_best_road = road_map[iter_best_ant, :] if(iter_best_fit > best_fit_so_far): best_fit_so_far = iter_best_fit best_road_so_far = iter_best_road return (iter_best_fit, best_road_so_far, best_fit_so_far, iter_best_road, fitnesses, iter_average_fit, ants_num_of_features_selected) def trial_update(fitnesses, roads_T, Min_T, Max_T, Q, q, iter_best_road, feature_num): roads_T = roads_T * q # i think this is pheromone evaporation # class_err = 1 - fitnesses # not this because fitnesses is a list and doesn't work this way class_err = np.array([1-i for i in fitnesses]) min_err = min(class_err) min_err_indx = np.where(class_err == min_err)[0][0] roads_T_temp = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) # here we assign one to best road edges in roads_T_temp. for i in range(0, len(iter_best_road)): if(iter_best_road[i] == 0): roads_T_temp[0, :, i] = 1 roads_T_temp[2, :, i] = 1 else: roads_T_temp[1, :, i] = 1 roads_T_temp[3, :, i] = 1 if(class_err[min_err_indx] == 0): roads_T_temp = (Q/(class_err[min_err_indx] + 0.001)) * roads_T_temp else: roads_T_temp = (Q/(class_err[min_err_indx])) * roads_T_temp roads_T = roads_T + roads_T_temp # now we make sure all of them are in interval : for each in np.nditer(roads_T, op_flags=['readwrite']): if(each > Max_T): each[...] = Max_T else: if(each < Min_T): each[...] = Min_T # print(roads_T) # roads_T = np.add(roads_T[roads_T < Min_T] * Min_T , roads_T * roads_T[roads_T > Min_T]) +++++++++++! # roads_T = np.add(roads_T[roads_T > Max_T] * Max_T , roads_T * roads_T[roads_T < Max_T]) +++++++++++! return roads_T def get_Fr(feature_num, selected): return (feature_num-selected)/feature_num ``` #### File: preml/feature_select/heuristics.py ```python import numpy as np import sklearn def hueristic_value_fscore(feature_num, dataset, targets): roads_E = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) # arr = np.corrcoef(dataset) # R = abs(arr) ## F-score : classes = np.unique(targets) class_num = len(classes) total_mean_f = dataset.mean(0) nominator = 0 denominator = 0 # nominator = np.zeros(feature_num, dtype="int64") # denominator = np.zeros(feature_num, dtype="int64") sample_num_of_this_tag = np.zeros(class_num, dtype="int64") for i in range(0, class_num): tags = np.zeros((len(targets)), dtype="int64") bool_arr = np.equal(targets, classes[i]) tags[bool_arr] = 1 sample_num_of_this_tag[i] = np.sum(tags) dataset_only_class = dataset[bool_arr, :] class_mean_f = dataset_only_class.mean(0) class_mean_f = np.round(class_mean_f, decimals=4) nominator = nominator + np.power(np.subtract(class_mean_f, total_mean_f), 2) denominator = denominator + sum(np.power(np.subtract(dataset_only_class, np.matlib.repmat(total_mean_f, dataset_only_class.shape[0],1)), 2)) / (sample_num_of_this_tag[i]-1) F_score = np.divide(nominator, denominator) roads_E[0, :, :] = (0.5/feature_num) * sum(F_score) roads_E[1, :, :] = np.matlib.repmat(F_score, feature_num, 1) roads_E[2, :, :] = (0.5/feature_num) * sum(F_score) roads_E[3, :, :] = np.matlib.repmat(F_score, feature_num, 1) return roads_E def heuristic_value_min_redundency(feature_num, dataset): roads_E = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) arr = np.corrcoef(dataset.T) R = abs(arr) roads_E[0, :, :] = R roads_E[1, :, :] = 1 - R roads_E[2, :, :] = R roads_E[3, :, :] = 1 - R return roads_E def heuristic_value_min_redundency_max_relevence(feature_num, dataset): roads_E = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) class_corrs = np.zeros(feature_num, dtype="float64") arr = np.corrcoef(dataset.T) R = abs(arr) for i in range(0, feature_num): class_corrs[i] = abs(np.corrcoef(dataset.T[i, :], targets)[0, 1]) class_corr_sel = np.matlib.repmat(class_corrs, feature_num, 1) class_corr_desel = np.matlib.repmat(1-class_corrs, feature_num, 1) roads_E[0, :, :] = np.sqrt(np.multiply(R, class_corr_desel)) roads_E[1, :, :] = np.sqrt(np.multiply(1-R, class_corr_sel)) roads_E[2, :, :] = np.sqrt(np.multiply(R, class_corr_desel)) roads_E[3, :, :] = np.sqrt(np.multiply(1-R, class_corr_sel)) return roads_E def heuristic_value_method_4(feature_num, dataset): roads_E = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) class_corrs = np.zeros(feature_num, dtype="float64") arr = np.corrcoef(dataset.T) R = abs(arr) # has problem (i don know MI and it's getting values bigger than 1 ...) for i in range(0, feature_num): class_corrs[i] = abs(np.corrcoef(dataset.T[i, :], targets)[0, 1]) class_corr_sel = np.matlib.repmat(class_corrs, feature_num, 1) class_corr_desel = np.matlib.repmat(1-class_corrs, feature_num, 1) roads_E[0, :, :] = class_corr_desel roads_E[1, :, :] = class_corr_sel roads_E[2, :, :] = R roads_E[3, :, :] = 1 - R return roads_E def heuristic_value_mutual_info(feature_num, dataset): roads_E = np.zeros(feature_num*feature_num*4, dtype="float64").reshape(4, feature_num, feature_num) mutual_f_f = np.zeros(feature_num*feature_num, dtype="float64").reshape(feature_num, feature_num) for i in range(0, feature_num): for j in range(0, feature_num): if(i == j): mutual_f_f[i, j] = 1 else: mutual_f_f[i, j] = sklearn.metrics.normalized_mutual_info_score(dataset[:, i], dataset[:, j]) # print(mutual_f_f) roads_E[0, :, :] = mutual_f_f roads_E[1, :, :] = 1 - mutual_f_f roads_E[2, :, :] = mutual_f_f roads_E[3, :, :] = 1 - mutual_f_f return roads_E ``` #### File: preml/showtime/showie.py ```python from . import baco_show # solution === (new_dataset, best_ant_road, acc_before_run, best_fit_so_far, total_feature_num, best_selected_features_num, best_fitnesses_each_iter, average_fitnesses_each_iter ,num_of_features_selected_by_best_ant_each_iter, time_temp, sample_num) def draw_baco(solution): if(len(solution) != 11): print("+++ can't draw the solution due to problem with it! +++") return (new_dataset, best_ant_road, acc_before_run, best_fit_so_far, total_feature_num, best_selected_features_num, best_fitnesses_each_iter, average_fitnesses_each_iter ,num_of_features_selected_by_best_ant_each_iter, time_temp, sample_num) = solution baco_show.show_res_for_this_run(best_fitnesses_each_iter, average_fitnesses_each_iter, num_of_features_selected_by_best_ant_each_iter, total_feature_num) ``` #### File: 5amron/pre-ml/test.py ```python import pre_ml import numpy as np import re def import_data(data_name): with open("samples/datasets/"+data_name+"_data.csv","r", encoding="utf-8") as f_data_in: #waveform_data lines = f_data_in.readlines() # print(type(lines)) dataset = list() for line in lines: line = re.sub("\s+", ",", line.strip()) parts = line.split(",") dataset.append(parts) dataset = np.array(dataset, dtype=np.float64) # print("dataset :") # dataset = dataset.T # print(dataset.shape) # print(dataset) with open("samples/datasets/"+data_name+"_targets.csv","r", encoding="utf-8") as f_target_in: lines = f_target_in.readlines() targets = list() for line in lines: targets.append(line) targets = np.array(targets, dtype=np.int64) # print("targets :") # targets = targets.reshape(len(targets), 1) # to make it vertical if it is needed # print(targets.shape) # print(targets) return (dataset, targets) def run_sample(): (x, y) = import_data("waveform") solution = pre_ml.baco(x, y, t_percent=40, heu_meth="method_1", ml_alg="knn1", iter_num=10) pre_ml.draw_baco(solution) if __name__ == "__main__": # execute only if run as a script run_sample() ```
{ "source": "5atouristspot/sql_audit", "score": 3 }
#### File: botasky/api_0_1/register_verify_user.py ```python from users_model import User, Init from . import api from flask import request, jsonify import ConfigParser from botasky.utils.MyCONN import MySQL from botasky.utils.MyFILE import project_abdir, recursiveSearchFile from botasky.utils.MyLOG import MyLog logConfig = recursiveSearchFile(project_abdir, '*logConfig.ini')[0] mylog = MyLog(logConfig, 'register_verify_user.py') logger = mylog.outputLog() __all__ = ['register_user', 'verify_user'] __author__ = 'zhihao' @api.route('/register', methods=['GET', 'POST']) def register_user(): '''API users register''' username = request.args.get('username', type=str, default=None) password = request.args.get('password', type=str, default=None) config = ConfigParser.ConfigParser() metaConfig = recursiveSearchFile(project_abdir, '*metaConfig.ini')[0] config.read(metaConfig) engine = Init.Engine(config.get('META', 'user'), config.get('META', 'pwd'), config.get('META', 'host'), config.get('META', 'port'), config.get('META', 'db')) session = Init.Session(engine) try: Init.Insert_User(session, username, password) exec_info = "[action]:register user" \ "[status]:OK" \ "[username]:{username}".format(username=username) logger.info(exec_info) except Exception, e: error_msg = "[action]:register user" \ "[status]:FAIL" \ "[username]:{username}" \ "[Errorcode]:{e}".format(username=username, e=e) logger.error(error_msg) return jsonify({'status': '[FAIL]', 'msg': 'register fail, may be repeated because of username or password', 'data': {'username': username, 'password': password}}) return jsonify({'status': '[OK]', 'msg': 'register OK', 'data': {'username': username, 'password': password}}) from flask_httpauth import HTTPBasicAuth auth = HTTPBasicAuth() @auth.verify_password def verify_user(username, password): '''API users verify decorator''' config = ConfigParser.ConfigParser() metaConfig = recursiveSearchFile(project_abdir, '*metaConfig.ini')[0] config.read(metaConfig) dbconfig = {'host': config.get('META', 'host'), 'port': int(config.get('META', 'port')), 'user': config.get('META', 'user'), 'passwd': config.get('META', 'pwd'), 'db': config.get('META', 'db'), 'charset': 'utf8'} db = MySQL(dbconfig) sql = "select id,name,password_hash from users where name = '{username}'".format(username=username) db.query(sql) info = db.fetchOneRow() db.close() check_user = User(id=info[0], name=info[1], password_hash=info[2]) if not check_user or not check_user.verify_password(password): error_msg = "[action]:verify user" \ "[status]:FAIL" \ "[username]:{username}" \ "[verify status]:{status}".format(username=check_user.name, status=check_user.verify_password(password)) logger.error(error_msg) return False exec_info = "[action]:verify user" \ "[status]:OK" \ "[username]:{username}".format(username=username) logger.info(exec_info) return True ''' @auth.verify_password def verify_user(username, password): #API users verify decorator config = ConfigParser.ConfigParser() metaConfig = recursiveSearchFile(project_abdir, '*metaConfig.ini')[0] config.read(metaConfig) engine = Init.Engine(config.get('META', 'user'), config.get('META', 'pwd'), config.get('META', 'host'), config.get('META', 'port'), config.get('META', 'db')) session = Init.Session(engine) info = session.execute("select id,name,password_hash from users where name = '{username}'".format(username=username)).first() session.close() check_user = User(id=info[0], name=info[1], password_hash=info[2]) if not check_user or not check_user.verify_password(password): error_msg = "[action]:verify user" \ "[status]:FAIL" \ "[username]:{username}" \ "[verify status]:{status}".format(username=check_user.name, status=check_user.verify_password(password)) logger.error(error_msg) return False exec_info = "[action]:verify user" \ "[status]:OK" \ "[username]:{username}".format(username=username) logger.info(exec_info) return True ''' @api.route('/resource') @auth.login_required def get_resource(): '''verify example''' return jsonify({'data': 'Hello'}) """ @api.route('/verify', methods=['GET', 'POST']) def verify_user(): '''API users verify''' username = request.args.get('username', type=str, default=None) password = request.args.get('password', type=str, default=None) engine = Init.Engine('admin', 'tfkj705', '192.168.41.40', 3306, 'zhihao_test') session = Init.Session(engine) info = session.execute("select * from users where name = '{username}'".format(username=username)).first() check_user = User(id=info[0], name=info[1], password_hash=info[2]) verify_status = check_user.verify_password(password) return jsonify({'username': username, 'password': password, 'verify_status': verify_status}) """ ``` #### File: botasky/api_0_1/users_model.py ```python from sqlalchemy import String, Integer, UniqueConstraint, Index, create_engine from sqlalchemy import Column from sqlalchemy.orm import sessionmaker import pymysql from werkzeug.security import generate_password_hash, check_password_hash from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() __all__ = ['User', 'Init'] __author__ = 'zhihao' class User(Base): '''users model''' __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(20)) password_hash = Column(String(128)) __table_args__ = ( UniqueConstraint('name', 'password_hash', name='uix_name_pwd'), Index('ix_name', 'name'), ) @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) class Init(): '''init users model''' @staticmethod def Engine(usr, pwd, host, port, db): dbconn = "mysql+pymysql://{usr}:{pwd}@{host}:{port}/{db}".format(usr=usr, pwd=pwd, host=host, port=port, db=db) engine = create_engine(dbconn, echo=True) return engine @staticmethod def Session(engine): # init session DBSession = sessionmaker(bind=engine) session = DBSession() return session @staticmethod def Insert_User(session, username, password): u = User() u.password = password new_user = User(name=username, password_hash=u.password_hash) session.add(new_user) session.commit() session.close() ``` #### File: sql_audit/botasky/run.py ```python import os from flask import Flask from gevent import monkey from gevent.pywsgi import WSGIServer monkey.patch_all() from botasky.utils.MyDAEMON import daemonize __all__ = ['create_app', 'main'] __author__ = 'zhihao' #used of running gunicorn #apt-get install figlet #os.system('figlet botasky') app = Flask(__name__) from api_0_1 import api as api_1_0_blueprint app.register_blueprint(api_1_0_blueprint, url_prefix='/api/v1000') from api_0_1.audit import api as api_1_0_audit_blueprint app.register_blueprint(api_1_0_audit_blueprint, url_prefix='/api/v1000/audit') from api_0_1.execute import api as api_1_0_execute_blueprint app.register_blueprint(api_1_0_execute_blueprint, url_prefix='/api/v1000/execute') from api_0_1.add import api as api_1_0_add_blueprint app.register_blueprint(api_1_0_add_blueprint, url_prefix='/api/v1000/add') def create_app(): app = Flask(__name__) from api_0_1.audit import api as api_1_0_audit_blueprint app.register_blueprint(api_1_0_audit_blueprint, url_prefix='/api/v1000/audit') from api_0_1.execute import api as api_1_0_execute_blueprint app.register_blueprint(api_1_0_execute_blueprint, url_prefix='/api/v1000/execute') return app def main(): #apt-get install figlet os.system('figlet botasky') daemonize('/dev/null', '/tmp/botasky_stdout.log', '/tmp/botasky_stdout.log') app = create_app() server = WSGIServer(('10.20.4.47', 3621), app) server.serve_forever() if __name__ == '__main__': #curl -u da:xinxin -i -X GET http://192.168.41.12:3621/api/v1000/ app.run(debug=False, host='192.168.74.95', port=3621) ``` #### File: botasky/utils/MyLOG.py ```python from logging.handlers import RotatingFileHandler import time import logging import threading import ConfigParser import sys reload(sys) __all__ = ['MyLog'] __author__ = 'zhihao' class MyLog: file_handler = '' def __init__(self, log_config, name): """ used : init config and get value :param name : name of local file :param log_config : name of log config file """ self.name = name self.logger = logging.getLogger(self.name) config = ConfigParser.ConfigParser() config.read(log_config) mythread = threading.Lock() mythread.acquire() # thread lock self.log_file_path = config.get('LOGGING', 'log_file_path') self.maxBytes = config.get('LOGGING', 'maxBytes') self.backupCount = int(config.get('LOGGING', 'backupCount')) self.outputConsole_level = int(config.get('LOGGING', 'outputConsole_level')) self.outputFile_level = int(config.get('LOGGING', 'outputFile_level')) self.outputConsole = int(config.get('LOGGING', 'outputConsole')) self.outputFile = int(config.get('LOGGING', 'outputFile')) self.formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') self.console_handler = '' self.file_handler = '' mythread.release() # thread lock relax def outputLog(self): """ used : output log to console and file """ if self.outputConsole == 1: # if true ,it should output log in console self.console_handler = logging.StreamHandler() self.console_handler.setFormatter(self.formatter) self.logger.setLevel(self.outputConsole_level) self.logger.addHandler(self.console_handler) else: pass if self.outputFile == 1: self.file_handler = RotatingFileHandler(self.log_file_path, maxBytes=10*1024*1024, backupCount=10) # define RotatingFileHandler, file output path, one file max byte, max backup number self.file_handler.setFormatter(self.formatter) self.logger.setLevel(self.outputFile_level) self.logger.addHandler(self.file_handler) else: pass return self.logger if __name__ == '__main__': ''' mylog = MyLog('logConfig.ini','jjjjj') logger = mylog.outputLog() logger.error("jjjjjjjjjjjjjjj") ''' import MyLOG help(MyLOG) ``` #### File: botasky/utils/MyMAIL.py ```python import smtplib import mimetypes from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.image import MIMEImage from MyLOG import MyLog from botasky.utils.MyFILE import project_abdir, recursiveSearchFile logConfig = recursiveSearchFile(project_abdir, '*logConfig.ini')[0] mylog = MyLog(logConfig, 'MyMAIL.py') logger = mylog.outputLog() __all__ = ['MyMail'] __author__ = 'zhihao' mail_info = {'mail_host': 'smtp.163.com', 'mail_user': '15895890858', 'mail_pass': '<PASSWORD>', 'mail_postfix': '163.com'} class MyMail(): ''' used : send mail ''' def __init__(self, mail_info): ''' used : init mail :param mail_info: smtp server config ''' self.mail_info = mail_info def send_mail(self, to_list, mail_type, subject, content, attachment_list, img_list): ''' used : send mail :param to_list: target mail adresses :param mail_type: plain or html :param subject: title :param content: main body :param attachment_list: attachment :param img_list: picture :return: ''' my_adress = "0905zhihao" + "<" + self.mail_info['mail_user'] + "@" + self.mail_info['mail_postfix'] + ">" msg = MIMEMultipart() msg['Subject'] = subject msg['From'] = my_adress msg['To'] = ";".join(to_list) #main text if mail_type == 'plain' or mail_type == 'html': try: body_msg = MIMEText(content, _subtype=mail_type, _charset='gb2312') msg.attach(body_msg) exec_info = "[action]:init msg" \ "[status]:OK" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], To=msg['To']) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:init msg" \ "[status]:FAIL" \ "[Errorcode]:{e}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], To=msg['To'], e=e) logger.error(error_msg) else: error_msg = "[action]:send mail_type" \ "[status]:FAIL" \ "[Errorcode]mail_type is not format" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], To=msg['To']) print error_msg logger.info(error_msg) #attachment if attachment_list == '' or len(attachment_list) == 0: pass else: for attachment in attachment_list: try: att = MIMEText(open(attachment, 'rb').read(), 'base64', 'gb2312') att["Content-Type"] = 'application/octet-stream' #display name att["Content-Disposition"] = 'attachment; filename="'+attachment+'\"\'' msg.attach(att) exec_info = "[action]:add attachment" \ "[status]:OK" \ "[attachment]:{attachment}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(attachment=attachment, Subject=msg['Subject'], From=msg['From'], To=msg['To']) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:add attachment" \ "[status]:FAIL" \ "[Errorcode]:{e}" \ "[attachment]={attachment}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], attachment=attachment, To=msg['To'], e=e) logger.error(error_msg) #img if img_list == '' or len(img_list) == 0: pass else: for image_adress in img_list: try: image = MIMEImage(open(image_adress, 'rb').read()) image.add_header('Content-ID', '<image1>') msg.attach(image) exec_info = "[action]:add image" \ "[status]:OK" \ "[image]:{image}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(image=image_adress, Subject=msg['Subject'], From=msg['From'], To=msg['To']) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:add image" \ "[status]:FAIL" \ "[Errorcode]:{e}" \ "[image]:{image}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], image=image_adress, To=msg['To'], e=e) logger.error(error_msg) #send mail try: server = smtplib.SMTP() server.connect(self.mail_info['mail_host']) server.login(self.mail_info['mail_user'], self.mail_info['mail_pass']) server.sendmail(msg['from'], msg['to'], msg.as_string()) server.quit() exec_info = "[action]:send mail" \ "[status]:OK" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'],To=msg['To']) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:send mail" \ "[status]:FAIL" \ "[Errorcode]:{e}" \ "[Subject]:{Subject}" \ "[From]:{From}" \ "[To]:{To}".format(Subject=msg['Subject'], From=msg['From'], To=msg['To'], e=e) logger.error(error_msg) if __name__ == '__main__': ''' mail_info = {'mail_host': 'smtp.163.com', 'mail_user': '15002283621', 'mail_pass': '<PASSWORD>', 'mail_postfix': '163.com'} #to_list = ['<EMAIL>'] to_list = ['<EMAIL>'] subject = 'xxxxxxxxxxxxx' content = 'xxxxxxxxxxxxx' #attachment_list = ['F:\img\img.rar', 'F:\img\img2.rar'] attachment_list = [] #img_list = ['F:\img\\1025.jpg', 'F:\img\\1041.jpg'] img_list = [] mail = MyMail(mail_info) mail.send_mail(to_list, 'plain', subject, content, attachment_list, img_list) ''' import MyMAIL help(MyMAIL) ``` #### File: botasky/utils/MyPROC.py ```python from multiprocessing import Pool from MyLOG import MyLog from botasky.utils.MyFILE import project_abdir, recursiveSearchFile logConfig = recursiveSearchFile(project_abdir, '*logConfig.ini')[0] mylog = MyLog(logConfig, 'MyPROC.py') logger = mylog.outputLog() __all__ = ['MyProc'] __author__ = 'zhihao' ''' from time import sleep def f(x): for i in range(10): print '%s --- %s ' % (i, x) sleep(1) return "tttttttt" def k(): print "wwwwwwwww" sleep(1) return "eeeeeeee" ''' class MyProc(): """ used : multiprocessing """ def __init__(self): pass @staticmethod def run(pitch_num, func_name, *args): """ used : multiprocessing :param pitch_num : the number of max processing :param func_name : function name :param *args : function parameter """ try: # set the processes max number pool = Pool(pitch_num) #have no args if len(*args) == 0: result = pool.apply_async(func_name) exec_info = "[action]:mutliprocessing task distribution" \ "[status]:OK" \ "[funtion]:{funtion}" \ "[args]:NULL".format(funtion=func_name) logger.info(exec_info) pool.close() pool.join() exec_tasks_status = result.successful() # task join if exec_tasks_status: exec_info = "[action]:mutliprocessing task join" \ "[status]:OK" \ "[exec_tasks_status]:{exec_tasks_status}".format(exec_tasks_status=exec_tasks_status) logger.info(exec_info) # or not else: error_msg = "[action]:mutliprocessing task join" \ "[status]:FAIL" \ "[exec_tasks_status]:{exec_tasks_status}".format(exec_tasks_status=exec_tasks_status) logger.error(error_msg) return result.get() #have args else: result = [] for i in range(len(*args)): # print args[0][i] # get each element of tuple result.append(pool.apply_async(func_name, args[0][i])) exec_info = "[action]:mutliprocessing task distribution" \ "[status]:OK" \ "[funtion]:{funtion}" \ "[args]:{args}".format(funtion=func_name, args=args[0][i]) logger.info(exec_info) pool.close() pool.join() ret_info = [] for j in range(len(result)): # task join if result[j].successful(): exec_info = "[action]:mutliprocessing task join" \ "[status]:OK" \ "[funtion]:{funtion}" \ "[args]:{args}" \ "[tasks_done_status]:{exec_tasks_status}".format(funtion=func_name, args=args[0][j], exec_tasks_status=result[j].successful() ) logger.info(exec_info) ret_info.append(result[j].get()) #or not else: exec_info = "[action]:mutliprocessing task join" \ "[status]:FAIL" \ "[funtion]:{funtion}" \ "[args]:{args}" \ "[tasks_done_status]:{exec_tasks_status}".format(funtion=func_name, args=args[0][j], exec_tasks_status=result[j].successful()) logger.error(exec_info) ret_info.append("join FAIL") return ret_info except Exception, e: print Exception, ":", e error_msg = "[action]:mutliprocessing task" \ "[status]:FAIL" \ "[Errorcode]:{e}".format(e=e) logger.error(error_msg) if __name__ == '__main__': import MyPROC help(MyPROC) """ '''aaa is args tuple of function f''' myproc = MyProc() aaa = ((1,), (2,), (3,), (4,), (5,)) ss = myproc.run(16, f, aaa) print ss """ """ aaa = () ss = myproc.run(16, k, aaa) print ss """ ``` #### File: botasky/utils/MyTHREAD.py ```python from time import sleep import threading import threadpool from MyLOG import MyLog from botasky.utils.MyFILE import project_abdir, recursiveSearchFile logConfig = recursiveSearchFile(project_abdir, '*logConfig.ini')[0] mylog = MyLog(logConfig, 'MyTHREAD.py') logger = mylog.outputLog() __all__ = ['MyThread','MyThread_ns', 'run', 'call', 'results'] __author__ = 'zhihao' #thread safe class MyThread(): def __init__(self): ''' used: init args : func_list ,threads ''' self.func_list = None self.threads = [] def set_thread_func_list(self, func_list): ''' :param func_list: used: get function ''' self.func_list = func_list def start(self): ''' used: start treading ''' #init treading for func_dict in self.func_list: try: if func_dict["args"]: t = threading.Thread(target=func_dict["func"], args=func_dict["args"]) t.setDaemon(True) exec_info = "[action]:init mutlithreading task" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:{args}".format(thread_name=t.name, funtion=func_dict["func"], args=func_dict["args"]) logger.info(exec_info) else: t = threading.Thread(target=func_dict["func"]) t.setDaemon(True) exec_info = "[action]:init mutlithreading task" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:NULL".format(thread_name=t.name, funtion=func_dict["func"]) logger.info(exec_info) self.threads.append(t) except Exception, e: print Exception, ":", e error_msg = "[action]:init mutlithreading task" \ "[status]:FAIL" \ "[funtion]:{funtion}" \ "[Errorcode]:{e}".format(funtion=func_dict["func"],e=e) logger.error(error_msg) for thread_obj in self.threads: try: thread_obj.start() exec_info = "[action]:mutlithreading task distribution" \ "[status]:OK" \ "[thread name]:{thread_name}" .format(thread_name=thread_obj.name) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task distribution" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[Errorcode]:{e}".format(thread_name=thread_obj.name,e=e) logger.error(error_msg) for thread_obj in self.threads: try: thread_obj.join() if thread_obj.isAlive() == False: exec_info = "[action]:mutlithreading task join" \ "[status]:OK" \ "[thread name]:{thread_name}" .format(thread_name=thread_obj.name) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task join" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[Errorcode]:{e}".format(thread_name=thread_obj.name,e=e) logger.error(error_msg) ''' def run(func_name, *args): # init a mutex #mutex = threading.RLock() try: # have no args if len(*args) == 0: #mutex.acquire() t = threading.Thread(target=func_name) t.setDaemon(True) t.start() try: if t.isAlive() == True: exec_info = "[action]:mutlithreading task distribution" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:NULL".format(thread_name=t.name,funtion=func_name) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task distribution" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:NULL" \ "[Errorcode]:{e}".format(thread_name=t.name,funtion=func_name,e=e) logger.error(error_msg) t.join() try: if t.isAlive() == False: exec_info = "[action]:mutlithreading task join" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:NULL".format(thread_name=t.name,funtion=func_name) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task join" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:NULL" \ "[Errorcode]:{e}".format(thread_name=t.name,funtion=func_name,e=e) logger.error(error_msg) #mutex.release() # have args else: threads = [] for i in range(len(*args)): # print args[0][i] # get each element of tuple threads.append(threading.Thread(target=func_name, args=args[0][i])) for t in threads: t.setDaemon(True) try: t.start() if t.isAlive() == True: exec_info = "[action]:mutlithreading task distribution" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:{args}".format(thread_name=t.name, funtion=func_name, args=args[0][i]) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task distribution" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:{args}" \ "[Errorcode]:{e}".format(thread_name=t.name, funtion=func_name, args=args[0][i],e=e) logger.error(error_msg) for t in threads: t.join() try: if t.isAlive() == False: exec_info = "[action]:mutlithreading task join" \ "[status]:OK" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:{args}".format(thread_name=t.name,funtion=func_name, args=args[0][i]) logger.info(exec_info) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task join" \ "[status]:FAIL" \ "[thread name]:{thread_name}" \ "[funtion]:{funtion}" \ "[args]:{args}" \ "[Errorcode]:{e}".format(thread_name=t.name,funtion=func_name, args=args[0][i],e=e) logger.error(error_msg) except Exception, e: print Exception, ":", e error_msg = "[action]:mutlithreading task" \ "[status]:FAIL" \ "[Errorcode]:{e}".format(e=e) logger.error(error_msg) ''' class MyThread_ns(): #used: not thread safe def __init__(self): pass tt = [] @staticmethod def fff(request,result): global tt tt.append(result) @staticmethod def run(pitch_num, func_name, *args): pool = threadpool.ThreadPool(pitch_num) requests = threadpool.makeRequests(func_name, *args) [pool.putRequest(req) for req in requests] pool.wait() ''' results = [] from botasky.utils.MyQUEUE import MyQueue myqueque = MyQueue(200, 'FIFO') myq,myloc = myqueque.build_queue_lock() def call(request, result): #results.append(result) MyQueue.write(myq, myloc, result) results = MyQueue.read(myq, 3) def run(pitch_num, func_name, func_var): pool = threadpool.ThreadPool(pitch_num) requests = threadpool.makeRequests(func_name, func_var, call) [pool.putRequest(req) for req in requests] pool.wait() ''' ''' def bb(x): sleep(2) print x return x def aa(): print 'aaaaaaa' def func1(ret_num): sleep(2) print "func1 ret:%d" % ret_num return ret_num def func2(ret_num): sleep(8) print "func2 ret:%d" % ret_num return ret_num def func3(): sleep(2) print "func3 ret:100" return 100 ''' if __name__ == '__main__': #import MyTHREAD #help(MyTHREAD) #myth = MyThread() #a = [[1,],[2,],[3,],[4,],[5,],[6,],[7,],[8,],[9,],[10,],[11,],[12,],[13,],[14,],[15,],[16,],[17,],[18,]] #myth.run(bb,a) ''' #MyThread() mt = MyThread() g_func_list = [] g_func_list.append({"func": func1, "args": (1,)}) g_func_list.append({"func": func2, "args": (2,)}) g_func_list.append({"func": func3, "args": None}) mt.set_thread_func_list(g_func_list) mt.start() ''' ''' #MyThread_ns() a=['1','2','3','4','5'] mythns = MyThread_ns() mythns.run(2,bb,a) ''' paramikoconfig = {'username': 'root', 'password': '<PASSWORD>', 'key_file': ''} host = '192.168.71.142' port = 22 from MyGO import MyMiko miko = MyMiko(host, port, paramikoconfig) #mfsmaster_exist_info = miko.exec_cmd(miko.go(), 'killall -0 mfsmaster && echo $?') lst_vars_1 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_2 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_3 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_4 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_5 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_6 = [miko.go(), 'killall -0 mfsmaster && echo $?'] lst_vars_7 = [miko.go(), 'killall -0 mfsmaster && echo $?'] func_var = [(lst_vars_1, None), (lst_vars_2, None), (lst_vars_3, None), (lst_vars_4, None), (lst_vars_5, None), (lst_vars_6, None)] #run(8, miko.exec_cmd, func_var) #print results ```
{ "source": "5aumy4/greenBerry", "score": 3 }
#### File: greenberry/gb_utils/greenberry_plot.py ```python from collections import OrderedDict import inspect from symbols import * from debug_cp import * from gb_utils.greenberry_search import GreenBerrySearch L_USER = "<NAME>" # another lex would be to identify blobks first this is a side effect MATH_OPS = ["+", "-", "*", "/"] BOOLS = [S.TRUE, S.FALSE] BOOL_OPS = [S.GREATER, S.LESS] EOS = [S.NL, S.EOF] class GreenBerryPlot(object): def __init__(self): print(self, "does not have an initialiser") def linear_plot(self, dataX, labelX, dataY, labelY): """simple line plot""" try: import matplotlib.pyplot as plt plt.plot(dataX, dataY) plt.xlabel(labelX) plt.ylabel(labelY) plt.show() except ImportError: print("matplotlib unimported") def plot_handling(self, i, words, line): """ handles plotting of points """ try: comma_i = GreenBerrySearch.search_symbol(i, 1, words, S.COMMA)[1] if words[i + 1][0] != "'" and words[i + 1][0] != '"': dataX = list(map(float, words[i + 1].split("-"))) else: file_name = words[i + 1][1:-1] with open(file_name, "r") as file: dataX = list(map(float, file.read().split("-"))) if words[comma_i + 1][0] != "'" and words[comma_i + 1][0] != '"': dataY = list(map(float, words[comma_i + 1].split("-"))) else: file_name = words[comma_i + 1][1:-1] with open(file_name, "r") as file: dataY = list(map(float, file.read().split("-"))) labelX = GreenBerrySearch.search(i, 1, words, S.COMMA) labelY = GreenBerrySearch.search(comma_i, 1, words, [S.NL, S.EOF]) self.linear_plot(dataX, labelX, dataY, labelY) except: print(E.PLOT, line) ``` #### File: greenBerry/greenberry/greenBerry.py ```python from collections import OrderedDict import inspect from symbols import * from debug_cp import * from gb_utils.greenberry_print import GreenBerryPrint from gb_utils.greenberry_lex import GreenBerryLex from gb_utils.greenberry_parse import GreenBerryParse from gb_utils.greenberry_plot import GreenBerryPlot from gb_utils.greenberry_search import GreenBerrySearch from gb_utils.greenberry_var_type import GreenBerryVarType L_USER = "<NAME>" # another lex would be to identify blobks first this is a side effect MATH_OPS = ["+", "-", "*", "/"] BOOLS = [S.TRUE, S.FALSE] BOOL_OPS = [S.GREATER, S.LESS] EOS = [S.NL, S.EOF] """ Function with nested functions with different core greenberry functionalities """ def greenBerry_eval(x): global L_USER ### # program starts here ### M.g_vars = {} M.g_fs = {} M.g_cls = {} F.bStart = 100 F.bEnd = 0 F.isDebugOn = 0 # this is a reset needed for gb_ide KWDs = [ getattr(S, i) for i in [ b[0] for b in [ a for a in inspect.getmembers(S, lambda a: not inspect.isroutine(a)) if not (a[0].startswith("__") and a[0].endswith("__")) ] ] ] g_vars = M.g_vars g_fs = M.g_fs g_cls = M.g_cls words = GreenBerryLex.lex(x, KWDs, add_eof=1) GreenBerryPrint.printd(words) line = 1 """ if elem.value == S.NL error : elem.line """ for i, elem in enumerate(words): # mainloop for complex parsing # printd(elem) # # newline # if elem == S.NL: line += 1 # # minified for loop # elif elem == S.FOR: try: F.bStart = i times_by = int(words[i + 1]) string = GreenBerrySearch.search(i, 3, words, [S.NL, S.EOF]) wds = GreenBerryLex.lex(string, KWDs) GreenBerryPrint.printd(wds) for d in range(times_by): GreenBerryParse.simple_parse(g_vars, wds, line) # colon_i = search_symbol(i, 1, words, [S.COLON])[1] F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] except: print(E.FOR, line) # # if statement # elif elem == S.IF: # to be rededefined try: F.bStart = i L, R = 0, 0 raw = GreenBerrySearch.search_symbol( i, 1, words, [S.EQUAL, S.LESS, S.GREATER, S.EQUAL_GREATER, S.EQUAL_LESS], ) symbol = raw[0] symbol_i = raw[1] colon_i = GreenBerrySearch.search_symbol(i, 1, words, S.COLON)[1] to_do = GreenBerrySearch.search(colon_i, 0, words, [S.NL, S.EOF]) wds = GreenBerryLex.lex(to_do, KWDs) if words[i + 1] == S.VAR_REF: # print('L @ detected') L = g_vars[words[i + 2]][0] elif words[i + 1].isdigit(): # print('L int detected') L = int(words[i + 1]) else: # print('L str detected') L = GreenBerrySearch.search(i, 0, words, [symbol, S.COLON]) if words[symbol_i + 1] == S.VAR_REF: # print('R @ detected') R = g_vars[words[symbol_i + 2]][0] elif words[symbol_i + 1].isdigit(): # print("R", words[symbol_i+1]) R = int(words[symbol_i + 1]) else: # print('R str detected') R = GreenBerrySearch.search(symbol_i, 0, words, [S.COLON]) # print(L, R, symbol) if symbol == S.EQUAL: if L == R: GreenBerryParse.simple_parse(g_vars, wds, line) elif symbol == S.GREATER: if L > R: GreenBerryParse.simple_parse(g_vars, wds, line) elif symbol == S.LESS: if L < R: GreenBerryParse.simple_parse(g_vars, wds, line) elif symbol == S.EQUAL_GREATER: if L >= R: GreenBerryParse.simple_parse(g_vars, wds, line) elif symbol == S.EQUAL_LESS: if L <= R: GreenBerryParse.simple_parse(g_vars, wds, line) # colon_i = search_symbol(i, 1, words, [S.COLON])[1] F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] except: print(E.IF, line) # resolve flag # # function definition # elif elem == S.FUNCDEF: # func vector : print aaa #func vector x : print @x params = [] try: F.bStart = i func_name = words[i + 1] if words[i + 2] == S.COLON: body = GreenBerrySearch.search(i, 2, words, [S.NL, S.EOF]) g_fs[func_name] = {"params": None, "body": body} else: params = GreenBerrySearch.search_toks(i, 1, words, [S.COLON]) col_i = GreenBerrySearch.search_symbol(i, 1, words, [S.COLON])[1] body = GreenBerrySearch.search(col_i, 0, words, [S.NL, S.EOF]) registry = OrderedDict() for param in params: registry[param] = None g_fs[func_name] = {"params": registry, "body": body} # colon_i = search_symbol(i, 1, words, [S.COLON])[1] F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] except: print(E.FUNCDEF, line) # # function call # elif elem == S.FUNCCALL: # call vector try: func_name = words[i + 1] if g_fs[func_name]["params"] is None: # print(g_fs) # print(func_name) wds = GreenBerryLex.lex(g_fs[func_name]["body"], KWDs) GreenBerryParse.simple_parse(g_vars, wds, line) else: param_vals = GreenBerrySearch.search_toks( i, 1, words, [S.NL, S.EOF] ) registry = g_fs[func_name]["params"] i = 0 for key in registry: registry[key] = [ param_vals[i], GreenBerryVarType.var_type(param_vals[i]), ] # data i += 1 wds = lex(g_fs[func_name]["body"], KWDs) GreenBerryParse.simple_parse(registry, wds, line) except: print(E.FUNCCALL, line) # # class definition # elif elem == S.CLASS: # class Man : power = 10 action walk : print a # attrs = {} future try: F.bStart = i class_name = words[ i + 1 ] # subsequent changed to action for mult attribs attr_name = words[ i + 3 ] # search_symbol var_data(i+4, words, [S.NL, S.EOF]) attr_val = GreenBerryVarType.var_data(i + 4, words, [S.ACTION]) action_name = words[i + 7] action_body = GreenBerrySearch.search(i + 7, 1, words, [S.NL, S.EOF]) g_cls[class_name] = { "attributes": {attr_name: attr_val}, "actions": {action_name: action_body}, } # colon_i = search_symbol(i, 1, words, [S.COLON])[1] F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] """ class_name = { name = name, attributes = { x = 1, y = 2 } methods = { walk = string here, raise hand = string here } } """ except: print(E.CLASSDEC, line) # # call class method. # elif elem == S.MAKE: # make Man walk try: class_name = words[i + 1] if class_name not in g_cls: print("wrong class name berry") action_name = words[i + 2] raw_text = g_cls[class_name]["actions"][action_name] wds = GreenBerryLex.lex(raw_text, KWDs) GreenBerryParse.simple_parse(g_vars, wds, line) except: print(E.CLASSACT, line) # # attribute viewing # elif elem == S.SEE: # see power of Man try: attr = words[i + 1] class_name = words[i + 2] print(g_cls[class_name]["attributes"][attr][0]) except: print(E.CLASSATT, line) # # add attribute to class # elif elem == S.ADD: # add to Man attribute name = string i am me try: F.bStart = i if words[i + 1] in g_cls: if words[i + 2] == S.ATTRIB: if words[i + 4] == S.EQUAL: value = GreenBerryVarType.var_data( i + 4, words, [S.NL, S.EOF] ) g_cls[words[i + 1]]["attributes"][words[i + 3]] = value else: print(E.EQUAL, line) elif ( words[i + 2] == S.ACTION ): # add to Man action run : print running... if words[i + 4] == S.COLON: g_cls[words[i + 1]]["actions"][ words[i + 3] ] = GreenBerrySearch.search(i, 4, words, [S.NL, S.EOF]) else: print(E.COLON, line) else: print(E.CLASSNAME, line) F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] except: print(E.ADD, line) # # debug on or off # elif elem == S.SET: # set debug on - set debug off try: if words[i + 1] == "debug": if words[i + 2] == "on": F.isDebugOn = 1 elif words[i + 2] == "off": F.isDebugOn = 0 except: print(E.DEBUG, line) else: if i < F.bStart or i > F.bEnd and elem != S.EOF: F.bStart = i F.bEnd = GreenBerrySearch.search_symbol(i, 1, words, [S.NL, S.EOF])[1] to_do = GreenBerrySearch.search(i - 1, 0, words, [S.NL, S.EOF]) wds = GreenBerryLex.lex(to_do, KWDs) GreenBerryParse.simple_parse(g_vars, wds, line) GreenBerryPrint.printd(g_vars) GreenBerryPrint.printd(g_fs) GreenBerryPrint.printd(g_cls) # python greenBerry_REPL.py ```
{ "source": "5aurabhpathak/all-I-ve-done", "score": 3 }
#### File: machine_learning/ann/irissupervised.py ```python from matplotlib import pyplot as pl from mpl_toolkits.mplot3d import Axes3D from numpy import genfromtxt, matrix, zeros, exp, tanh from ann import ANN cols = {0, 1, 4} data = genfromtxt('data/iris.data.train', delimiter=',', converters={4: lambda x: 0. if x == b'Iris-setosa' else 1. if x == b'Iris-versicolor' else 2.}, usecols=cols) dataset, y = matrix(data[:,:2]), data[:,2] def bitmapper(): y_new = matrix(zeros((y.shape[0], 3), 'float64')) for i in range(y.size): y_new[i, y[i]] = 1 return y_new.T y = bitmapper() print(y) #nn = ANN(lambda x: 1 / (1 + exp(-x)), (dataset.shape[1], 4, 5, 4, 3)) nn = ANN(tanh, (dataset.shape[1], 7, 3)) nn.learn(dataset, y) ```
{ "source": "5aurabhpathak/src", "score": 3 }
#### File: masters_courses/image_and_vision_processing/cameramansplit.py ```python from matplotlib import pyplot as pl from numpy import matrix, vsplit, hsplit c = pl.imread('data/cameraman.tif') c1, c2 = vsplit(c, 2) (c11, c12), (c21, c22) = hsplit(c1, 2), hsplit(c2, 2) def subpl(im, subfig): pl.subplot(220 + subfig) pl.axis('off') pl.imshow(im, cmap=pl.get_cmap('Greys_r'), interpolation='none') subpl(c11, 1) subpl(c12, 2) subpl(c21, 3) subpl(c22, 4) pl.figure() subpl(c22, 1) subpl(c21, 2) subpl(c12, 3) subpl(c11, 4) pl.show() ``` #### File: masters_courses/image_and_vision_processing/intensityscale.py ```python from matplotlib import pyplot as pl from numpy import max, min def disp(im, n, t): pl.subplot(120 + n) pl.title(t) pl.axis('off') pl.imshow(im, pl.get_cmap('Greys_r')) im = pl.imread('data/cameraman.tif').astype('uint16') print('In=\n',im) disp(im,1, 'input') out = (30 + im * 150/(max(im) - min(im))).astype('uint8') print('out=\n', out,'\nMaximum intensity',max(out),'\nMinimum intensity', min(out)) disp(out,2,'output') pl.show() ``` #### File: image_and_vision_processing/morph/morph.py ```python from matplotlib import pyplot as pl from numpy import matrix, vstack, hstack, zeros, any, logical_and, array_equal, ogrid from numpy.ma import masked_equal def move_mask(im, mask, op): x = mask.shape[0] // 2 def pad(im): padvert, padhoriz = zeros((im.shape[0], x)), zeros((x, im.shape[1]+2*x)) return vstack((padhoriz, hstack((padvert, im, padvert)), padhoriz)) im = pad(im) out = zeros((im.shape[0], im.shape[1])) for i in range(x, im.shape[0] - x): for j in range(x, im.shape[1] - x): out[i,j] = op(mask, im[i-x:i+x+1, j-x:j+x+1]) return out[x:out.shape[0]-x, x:out.shape[1]-x] def work(im, mask, s): pl.figure('SE size: '+s) im = pl.imread(im) outdilate, outerode = move_mask(im, mask, dilation), move_mask(im, mask, erosion) outopen, outclose = move_mask(outerode, mask, dilation), move_mask(outdilate, mask, erosion) def show(im, n, t): pl.subplot(230+n) pl.imshow(im, 'binary_r') pl.title(t) pl.axis('off') show(im, 1, 'Input') show(outerode, 2, 'Eroded') show(outdilate, 3, 'Dilated') show(outopen, 4, 'Opened') show(outclose, 5, 'Closed') pl.show() def se(size): s = size // 2 x, y = ogrid[-s:s+1, -s:s+1] return x * x + y * y <= s * s im = 'data/blobs.png' erosion, dilation = lambda x,y: array_equal(x, logical_and(x,y)), lambda x,y: any(logical_and(x,y)) work(im, se(3), '3X3') work(im, se(5), '5X5') work(im, se(7), '7X7') ``` #### File: masters_courses/image_and_vision_processing/rampcircledisc.py ```python from matplotlib import pyplot as pl from numpy import zeros, sqrt, around def display(im, cmap='Greys_r'): pl.imshow(im, cmap=pl.get_cmap(cmap)) pl.axis('off') pl.show() im = [] for i in range(256): im += [i]*256, display(im) def draw_circle(im, centre, radius): '''Bresenham's circle drawing algorithm''' for i in range(int(around(radius / sqrt(2), decimals=0) + 1)): k = int(around(sqrt(radius**2 - i**2), decimals=0)) im[centre[0] + i, centre[1] + k] = im[centre[0] - i, centre[1] - k] = im[centre[0] + k, centre[1] +i] = im[centre[0] - k, centre[1] - i] = im[centre[0] +i, centre[1] - k] = im[centre[0] - i, centre[1] + k] = im[centre[1] - k , centre[0] + i] = im[centre[1] + k, centre[0] - i] = True im = zeros((256, 256), bool) draw_circle(im, (128, 128), 50) display(im, 'binary_r') cam = pl.imread('data/cameraman.tif') croppedcam = zeros((256,256)) for i in range(cam.shape[0]): for j in range(cam.shape[1]): if im[i,j] or (any(im[i, :j]) and any(im[i, j:])): croppedcam[i,j] = cam[i,j] display(croppedcam) draw_circle(im, (128, 128), 100) for i in range(im.shape[0]): boundary = False x = [] for j in range(im.shape[1]): if not boundary and im[i,j]: boundary = True x += j, elif boundary and not im[i,j]: boundary = False if len(x) > 1: im[i, x[0]:x[1]] = True if len(x) == 3: im[i, x[1]:x[2]] = True elif len(x) > 3: im[i, x[2]:x[3]] = True display(im, 'binary_r') ``` #### File: pca/singleeigenface/singleface.py ```python from matplotlib import pyplot as pl from cv2 import cvtColor, COLOR_RGB2GRAY from numpy import cov, matrix, argsort, abs, around from numpy.linalg import eig from sys import argv n = 30 if len(argv) == 1 else int(argv[1]) dataset = matrix(cvtColor(pl.imread('me.jpg'), COLOR_RGB2GRAY), 'float64') if (n > dataset.shape[1]): print('Wrong parameter.') exit(1) e, v = eig(cov(dataset, rowvar=0)) v = v[:, argsort(abs(e))[::-1]][:,:n] def disp(n, string, im): pl.subplot(120 + n) pl.title(string) pl.imshow(im, 'Greys_r') pl.axis('off') disp(1, 'Input', dataset) reduced = around(dataset * v * v.T).astype('uint8') disp(2, 'Output with '+str(n)+' Principal components', reduced) pl.show() ``` #### File: machine_learning/svm/svm.py ```python from matplotlib import pyplot as pl, patches from mpl_toolkits.mplot3d import Axes3D from numpy import genfromtxt, multiply, ones, zeros, identity, around, meshgrid, amin, argsort, vstack, matrix as mat, array, hstack from numpy.random import random_integers from scipy.spatial.distance import cdist, pdist, squareform from cvxopt.solvers import qp, options from cvxopt import matrix cols, condition, s_size, test = {0, 1, 2, 4}, b'Iris-setosa', 3, False data = genfromtxt('data/iris.data.train', delimiter=',', converters={4: lambda x: 1.0 if x == condition else -1.0}, usecols=cols) dataset_primal, y_primal = data[:,:3], data[:,3] #training data selection - begin def selectfromtrainset(s): dataset_1, dataset_2, y1, y2 = [], [], [], [] for i in range(dataset_primal.shape[0]): if y_primal[i] == -1: dataset_1 += dataset_primal[i], y1 += y_primal[i], else: dataset_2 += dataset_primal[i], y2 += y_primal[i], dataset_1, dataset_2, y1, y2 = mat(dataset_1), mat(dataset_2), array(y1), array(y2) def choosemetric(): crossdist = cdist(dataset_1, dataset_2, 'euclidean') m_1, m_2 = amin(crossdist, 1), amin(crossdist, 0) s1, s2 = 2 * s_size // 3, s_size // 3 if s == 'hausdorff': samples_1, samples_2 = argsort(m_1)[:s1], argsort(m_2)[:s2] if s == 'confidence': withindist_1, withindist_2 = squareform(pdist(dataset_1, 'euclidean')), squareform(pdist(dataset_2, 'cityblock')) def radius(w, m): ni = zeros(w.shape[0]) for i in range(w.shape[0]): for j in range(w.shape[1]): if w[i,j] > ni[i] and w[i,j] < m[i]: ni[i] = w[i,j] return ni ni_1, ni_2 = radius(withindist_1, m_1), radius(withindist_2, m_2) samples_1, samples_2 = argsort(ni_1)[:s1], argsort(ni_2)[:s2] elif s == 'random': samples_1, samples_2 = random_integers(0, dataset_1.shape[0] - 1, s1), random_integers(0, dataset_2.shape[0] - 1, s2) return dataset_1[samples_1], dataset_2[samples_2], y1[samples_1], y2[samples_2] dataset_1, dataset_2, y1, y2 = choosemetric() return matrix(vstack((dataset_1, dataset_2))), matrix(hstack((y1, y2))) def plotsurface(w, b, maxrange, ax, color): surface_x, surface_y = meshgrid(range(maxrange), range(maxrange)) surface_z = (-w[0] * surface_x - w[1] * surface_y - b) / w[2] ax.plot_surface(surface_x, surface_y, surface_z, color=color, alpha=0.5) def applysvm(selection_metric, test): if selection_metric == 'none': dataset, y = matrix(dataset_primal), matrix(y_primal) else: dataset, y = selectfromtrainset(selection_metric) innerproducts = matrix(multiply(y * y.T, dataset * dataset.T)) options['show_progress'] = False solution = qp(innerproducts, matrix(-ones(dataset.size[0])), matrix(-identity(dataset.size[0])), matrix(zeros(dataset.size[0])), y.T, matrix(0.0)) alpha = matrix(around(solution['x'], 5)) params = [(alpha[i], y[i], dataset[i,:]) for i in range(dataset.size[0]) if alpha[i] != 0.0] w = sum([params[i][0] * params[i][1] * params[i][2] for i in range(len(params))]) b = 1 / params[0][1] - w * params[0][2].T #training complete. Rest is plotting and test maxrange = None def plot(ax, s): nonlocal maxrange for i in range(dataset.size[0]): if y[i] == -1: if alpha[i] == 0.0: ax.scatter(dataset[i, 0], dataset[i,1], dataset[i,2], s=30, c='b') else: ax.scatter(dataset[i, 0], dataset[i,1], dataset[i,2], s=40, c='b', marker='D') else: if alpha[i] == 0.0: ax.scatter(dataset[i, 0], dataset[i,1], dataset[i,2], s=30, c='r') else: ax.scatter(dataset[i, 0], dataset[i,1], dataset[i,2], s=40, c='r', marker='D') pl.title('Linear SVM - Hard Margin - ' + s) maxrange = int(max(dataset[:,:2])) + 1 plotsurface(w, b, maxrange, ax, 'g') if not test: pl.figure('Using selection method: ' + selection_metric) ax = pl.subplot(111, projection='3d') plot(ax, 'Train') return w, b, maxrange #begin testing pl.figure('Using selection method: ' + selection_metric) ax = pl.subplot(111, projection='3d') data = genfromtxt('data/iris.data.test', delimiter=',', converters={4: lambda x: 1.0 if x == condition else -1.0}, usecols=cols) testset, y_actual= matrix(data[:,:3]), matrix(data[:,3]) y_obs, numerrors = zeros(testset.size[0]), 0 for i in range(testset.size[0]): y_obs[i] = 1 if (w * testset[i,:].T + b)[0] > 0.0 else -1 if y_actual[i] != y_obs[i]: numerrors += 1 if y_actual[i] == -1: ax.scatter(testset[i,0], testset[i,1], testset[i,2], c='aqua') else: ax.scatter(testset[i,0], testset[i,1], testset[i,2], c='plum') plot(ax, 'Test') print('% Error using {}:'.format(selection_metric), 100.0 * numerrors / testset.size[0]) return w, b, maxrange pl.figure('Comparison') handles = [] ax = pl.subplot(111, projection='3d') def compare(t, c): global handles plotsurface(*applysvm(t, test), ax, c) handles += patches.Patch(color=c, label=t), compare('none', 'r') compare('hausdorff', 'g') compare('confidence', 'b') compare('random', 'y') pl.figure('Comparison') pl.figlegend(handles, ('none', 'hausdorff', 'confidence', 'random'), 'upper right') pl.show() ``` #### File: masters_courses/nlp/hobbs.py ```python from collections import deque from nltk.tree import ParentedTree from classes import NounPhrase, ispleonastic def findX(np): x = np.parent() p = [np] while x.label() not in {'S', 'NP'}: p += x, x = x.parent() p += x, return x, p[::-1] def breadth_first(tree): queue = deque([(tree,0)]) while queue: node, depth = queue.popleft() if isinstance(node, ParentedTree): queue.extend((c, depth + 1) for c in iter(node)) yield node def breadth_first_left(tree, p): queue = deque([(tree,0)]) while queue: node, depth = queue.popleft() if isinstance(node, ParentedTree): if node in p: flag = True try: for c in iter(node): if c is p[p.index(node) + 1]: flag = False queue.append((c, depth + 1)) if flag: queue.append((c, depth + 1)) except IndexError: pass else: queue.extend((c, depth + 1) for c in iter(node)) yield node def breadth_first_no_np(tree, p): queue = deque([(tree,0)]) while queue: node, depth = queue.popleft() if isinstance(node, ParentedTree) and node.label() != 'NP': if node in p: flag = False try: for c in iter(node): if c is p[p.index(node) + 1]: flag = True except IndexError: pass else: queue.extend((c, depth + 1) for c in iter(node)) yield node def bfs(x, p, np, direction='left'): func = breadth_first_no_np if direction == 'right' else breadth_first_left for node in func(x, p): if node.label() == 'NP' and consider(node, np): return node return None def consider(node, np): if NounPhrase(np).agreeswith(NounPhrase(node)): return True # print('rejected', NounPhrase(node).name) return False def bfsresolve(np, i): if i < 0: return None for node in breadth_first(ptlist[i]): if isinstance(node, ParentedTree) and node.label() == 'NP' and consider(node, np): return node return bfsresolve(np, i-1) def hobbsresolve(np, i): x, p = findX(np) node = bfs(x, p, np) if node: return node if x.parent().label() == 'ROOT': return bfsresolve(np, i-1) x, p= findX(x) if x.label() == 'NP' and x[0].label() not in {'NNS', 'NNP', 'NNPS', 'NN', 'CD'} and consider(x, np): return x node = bfs(x, p, np) if node: return node if x.label() == 'S': return bfs(x, p, np, 'riht') return hobbsresolve(x, i) ptlist = None def hobbs(parsetree, i, l): global ptlist ptlist = l for np in parsetree.subtrees(lambda x: x.label() == 'NP'): if 'PRP' in np[0].label(): if np[0,0].lower() == 'it' and ispleonastic(np, parsetree): continue referent = hobbsresolve(np, i) if not referent: continue referent = NounPhrase(referent) orig = np[0,0] if np[0].label() == 'PRP$': np[0] = ParentedTree.fromstring('(PRP$ <'+ referent.name + "'s>)") print('PRP$ substitution', orig, '-->', referent.name) else: np[0] = ParentedTree.fromstring('(PRP <' + referent.name + '>)') print('PRP substitution', orig, '-->', referent.name) ``` #### File: competitive_coding/dynamic_programming/knapsack01td.py ```python (w, n), wt, v = (map(int, input().split())), [], [] for _ in range(n): a,b = map(int, input().split()) wt += a, v += b, mem = [[0 for _ in range(w+1)] for _ in range(n+1)] def knapsack(n, w, wt, v): if n == 0 or w == 0: return 0 if mem[n][w] != 0: return mem[n][w] if wt[n-1] > w: mem[n][w] = knapsack(n-1, w, wt, v) else: mem[n][w] = max(v[n-1] + knapsack(n-1, w - wt[n-1], wt, v), knapsack(n-1, w, wt, v)) return mem[n][w] print(knapsack(n, w, wt, v)) ```
{ "source": "5boon/backend", "score": 2 }
#### File: api/users/serializers.py ```python import re from django.conf import settings from rest_framework import serializers from apps.users.models import User class SimpleUserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['id', 'name', 'email'] class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['id', 'date_joined', 'name', 'username', 'email'] class UserRegisterSerializer(serializers.ModelSerializer): password = serializers.CharField(min_length=6, write_only=True) email = serializers.EmailField(allow_blank=False, required=True) class Meta: model = User fields = ('username', 'name', 'password', 'email') def validate_username(self, username): code_regex = re.compile('[a-zA-Z|0-9|\-_]') # 영어 + 숫자 + -,_ if code_regex.sub('', username): raise serializers.ValidationError('유효하지 않은 정규식입니다.', 'regex_error') return username def validate(self, data): try: user = User.objects.filter(username=data.get('username')) if len(user) > 0: raise serializers.ValidationError("Username already exists") except User.DoesNotExist: pass if User.objects.filter(email=data.get('email')).exists(): raise serializers.ValidationError("email already exists") return data def create(self, validated_data): instance = User.objects.create_user(**validated_data) return instance class PasswordFindSerializer(serializers.Serializer): email = serializers.EmailField(allow_null=False, allow_blank=False, required=True) username = serializers.CharField(max_length=150, required=True) class Meta: fields = ('email', 'username') class IDFindSerializer(serializers.Serializer): email = serializers.EmailField(allow_null=False, allow_blank=False, required=True) name = serializers.CharField(max_length=50, required=True) class Meta: fields = ('email', 'name') class SNSLoginSerializer(serializers.Serializer): type = serializers.ChoiceField(choices=['apple', 'kakao'], required=True) email = serializers.EmailField(allow_null=False, allow_blank=False, required=True) name = serializers.CharField(max_length=50, required=True) class Meta: fields = ['type', 'unique_id', 'email', 'name'] class SNSUserPasswordSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['id', 'username', 'email', 'date_joined'] def to_representation(self, user): new_password = '{}{}{}'.format( user.email.split('@')[0], settings.SNS_AUTH_USER_KEY, user.date_joined.strftime('%y%m%d') ) ret = { 'username': user.username, 'password': <PASSWORD> } return ret ``` #### File: users/tests/test_users.py ```python import mock import pytest from rest_framework import status from rest_framework.reverse import reverse from apps.users.models import User # Oauth2 인증 Mock 처리 ( TODO: Oauth2.0 도 테스트 될 수 있게 로직 추가해야함 ) from tests.request_helper import pytest_request @pytest.fixture(scope='function') def mock_is_authenticated(): with mock.patch('rest_framework.permissions.IsAuthenticated') as patch: yield patch @pytest.fixture(scope='function') def mock_update_employment_center_name(): with mock.patch('api.users.views.slack_notify_new_user') as patch: yield patch @pytest.fixture(scope='function') def mock_send_pw_email(): with mock.patch('api.users.views.send_pw_email') as patch: yield patch @pytest.mark.urls(urls='urls') @pytest.mark.django_db def test_user_register(rf, client, mock_update_employment_center_name): url = reverse(viewname="users:user_register") data = { 'username': 'test', 'password': '<PASSWORD>', 'name': 'name', 'email': '<EMAIL>' } response = pytest_request(rf, method='post', url=url, user=None, data=data) assert response.status_code == status.HTTP_201_CREATED assert response.data.get('username') == data.get('username') assert response.data.get('name') == data.get('name') @pytest.mark.urls(urls='urls') @pytest.mark.django_db def test_user_password_find(rf, client, user_context, mock_send_pw_email): url = reverse(viewname="users:user_password") user = user_context.init.create_user() data = { 'username': user.username, 'email': user.email } response = pytest_request(rf, method='post', url=url, user=user, data=data) assert response.status_code == status.HTTP_200_OK @pytest.mark.urls(urls='urls') @pytest.mark.django_db def test_user_password_update(rf, client, user_context, mock_is_authenticated): user = user_context.init.create_user() data = { 'new_password': '<PASSWORD>' } url = reverse(viewname="users:user_password") response = pytest_request(rf, method='patch', url=url, data=data, user=user) assert response.status_code == status.HTTP_200_OK @pytest.mark.urls(urls='urls') @pytest.mark.django_db def test_user_id_find(rf, client, user_context, mock_send_pw_email): url = reverse(viewname="users:user_id") user = user_context.init.create_user() data = { 'name': user.name, 'email': user.email } response = pytest_request(rf, method='post', url=url, user=user, data=data) assert response.status_code == status.HTTP_200_OK @pytest.mark.urls(urls='urls') @pytest.mark.django_db def test_user_email_check(rf, client, user_context, mock_send_pw_email): url = reverse(viewname="users:user_check") user = user_context.init.create_user() data = { 'email': user.email } response = pytest_request(rf, method='get', url=url, user=user, data=data) assert response.status_code == status.HTTP_200_OK @pytest.mark.urls(urls='urls') @pytest.mark.django_db @pytest.mark.parametrize( 'social_type', ['kakao', 'apple'] ) def test_sns_first_login(rf, client, user_context, social_type): """ data 는 클라이언트에서 소셜인증으로 받아온 데이터를 가져온다. 첫 로그인시 user 생성 """ url = reverse(viewname="users:user_sns") data = { 'type': social_type, 'email': '<EMAIL>', 'name': '5boon_user' } response = pytest_request(rf, method='post', url=url, data=data) assert response.status_code == status.HTTP_201_CREATED @pytest.mark.urls(urls='urls') @pytest.mark.django_db @pytest.mark.parametrize( 'social_type', ['kakao', 'apple'] ) def test_sns_login(rf, client, user_context, social_type): """ data 는 클라이언트에서 소셜인증으로 받아온 데이터를 가져온다. """ url = reverse(viewname="users:user_sns") data = { 'type': social_type, 'email': '<EMAIL>', 'name': '5boon_user' } User.objects.create( username='{}-{}'.format(data.get('type'), data.get('email').split('@')[0]), name=data.get('name'), password="<PASSWORD>", email=data.get('email'), ) response = pytest_request(rf, method='post', url=url, data=data) assert response.status_code == status.HTTP_200_OK ``` #### File: apps/mood_groups/signals.py ```python from django.db.models.signals import post_delete from django.dispatch import receiver from apps.mood_groups.models import UserMoodGroup, MoodGroup @receiver(post_delete, sender=UserMoodGroup) def delete_user_mood_group(sender, instance, **kwargs): if not UserMoodGroup.objects.filter(mood_group_id=instance.mood_group.id).exists(): MoodGroup.objects.filter(id=instance.mood_group.id).delete() ```
{ "source": "5cs/spdk", "score": 2 }
#### File: scripts/rpc/cmd_parser.py ```python args_global = ['server_addr', 'port', 'timeout', 'verbose', 'dry_run', 'conn_retries', 'is_server', 'rpc_plugin', 'called_rpc_name', 'func', 'client'] def strip_globals(kwargs): for arg in args_global: kwargs.pop(arg, None) def remove_null(kwargs): keys = [] for key, value in kwargs.items(): if value is None: keys.append(key) for key in keys: kwargs.pop(key, None) def apply_defaults(kwargs, **defaults): for key, value in defaults.items(): if key not in kwargs: kwargs[key] = value def group_as(kwargs, name, values): group = {} for arg in values: if arg in kwargs and kwargs[arg] is not None: group[arg] = kwargs.pop(arg, None) kwargs[name] = group ``` #### File: scripts/rpc/subsystem.py ```python from .helpers import deprecated_alias @deprecated_alias('get_subsystems') def framework_get_subsystems(client): return client.call('framework_get_subsystems') @deprecated_alias('get_subsystem_config') def framework_get_config(client, name): params = {'name': name} return client.call('framework_get_config', params) def framework_get_pci_devices(client): return client.call('framework_get_pci_devices') ```
{ "source": "5d-jh/circruit", "score": 3 }
#### File: app/blueprints/user.py ```python import os, sys sys.path.append(os.path.dirname(__file__)) from flask import Blueprint, request, render_template, redirect, url_for from flask_dance.contrib.github import github from modules.api_func import get_gh_user_info from modules import db_required blueprint = Blueprint('user', __name__) @blueprint.route("/create", methods=['GET', 'POST']) @db_required def create_user(db): user = get_gh_user_info() if request.method == "GET": return render_template( "user/create_user.html", username=user["login"], dev_stacks=db.devstacks.find() ) elif request.method == "POST": db.users.insert_one({ "username": user["login"], "avatar_url": user["avatar_url"], "bio": user['bio'], "rank": 0, "dev_stacks": request.form["dev_stacks"].split(" ")[1:], "contacts": request.form["contacts"], "joined_projects": [] }) return redirect("/mypage") @blueprint.route("/authorize") @db_required def authorize(db): if not github.authorized: #깃허브 승인 페이지로 이동 return redirect(url_for("github.login")) #승인 후 다시 이 페이지로 돌아와서 깃허브 유저 정보 획득 user = get_gh_user_info() users_collection = db.users #이미 회원가입된 사람인지 확인 result = users_collection.find_one({ "username": user["login"] }) #신규 사용자라면 도큐먼트 생성 후 회원가입 페이지로 이동 if not result: return redirect(f"/user/create") #기존 사용자라면 피드로 이동 return redirect("/") @blueprint.route("/login") def user_login_view(): return render_template("user/login.html") ```
{ "source": "5ebec/Ameyadar", "score": 3 }
#### File: src/accounts/AccountEditor.py ```python import json from pathlib import Path from decouple import config from mastodon import Mastodon from requests_oauthlib import OAuth1Session class AccountEditor: def __init__(self): self.name = "default" def get_name(self): return self.name def post_name(self, name): self.name = name print(name) return True class TwitterAccountEditor(AccountEditor): def __init__(self): super().__init__() self.account = OAuth1Session(config("CONSUMER_KEY"), config("CONSUMER_SECRET"), config("ACCESS_TOKEN"), config("ACCESS_TOKEN_SECRET")) get_url = 'https://api.twitter.com/1.1/account/verify_credentials.json' self.name = json.loads(self.account.get(get_url).text)['name'] def post_name(self, name): super().post_name(name) post_url = 'https://api.twitter.com/1.1/account/' \ 'update_profile.json?name=%s' % name try: self.account.post(post_url) except Exception: raise Exception return True class MastodonAccountEditor(AccountEditor): def __init__(self): super().__init__() self.server_url = config("MASTODON_SERVER") mastodon_data_path = Path(__file__).parents[ 2] / "data" / "mastodon" self.mastodon = Mastodon( client_id=(mastodon_data_path / "my_clientcred.txt").as_posix(), access_token=(mastodon_data_path / "my_usercred.txt").as_posix(), api_base_url=self.server_url ) self.name = self.mastodon.account_verify_credentials()['username'] def post_name(self, name): super().post_name(name) self.mastodon.account_update_credentials(display_name=name) ```
{ "source": "5elenay/hyaline", "score": 3 }
#### File: hyaline/models/Activity.py ```python from dataclasses import dataclass from datetime import datetime from typing import Union @dataclass class Activity: # Attrs def __init__(self, json) -> None: self.name: str = json['name'] self.type: int = json['type'] self.url: Union[str, None] = json['url'] if 'url' in json else None self.created_at: datetime = datetime.fromtimestamp(json['created_at']) ``` #### File: hyaline/models/AuditLog.py ```python from dataclasses import dataclass @dataclass class AuditLog: # Attrs def __init__(self, json, token) -> None: self.__token: str = token from .Webhook import Webhook from .User import User for key in json: if key == "webhooks": setattr(self, key, [Webhook(i, self.__token) for i in json[key]]) elif key == "users": setattr(self, key, [User(i, self.__token) for i in json[key]]) else: setattr(self, key, json[key]) ``` #### File: hyaline/models/Member.py ```python from dataclasses import dataclass from dateutil.parser import parse @dataclass class Member: # Attrs def __init__(self, json, token) -> None: self.__token: str = token from .User import User for key in json: if key == "user": setattr(self, key, User(json[key], self.__token)) elif key in ("joined_at", "premium_since"): setattr(self, key, parse(json[key]) if json[key] else None) else: setattr(self, key, json[key]) ``` #### File: hyaline/models/MessageReference.py ```python from dataclasses import dataclass from typing import Union @dataclass class MessageReference: # Attrs def __init__(self, json) -> None: self.message_id: Union[str, None] = json['message_id'] if 'message_id' in json else None self.channel_id: Union[str, None] = json['channel_id'] if 'channel_id' in json else None self.guild_id: Union[str, None] = json['guild_id'] if 'guild_id' in json else None self.fail_if_not_exists: Union[bool, None] = json['fail_if_not_exists'] if 'fail_if_not_exists' in json else None ``` #### File: hyaline/models/Reaction.py ```python from dataclasses import dataclass @dataclass class Reaction: # Attrs def __init__(self, json, token) -> None: self.__token: str = token from .Emoji import Emoji self.count: int = json['count'] self.reacted: bool = json['me'] self.emoji: Emoji = Emoji(json['emoji'], self.__token) ``` #### File: hyaline/models/RoleTags.py ```python from dataclasses import dataclass from typing import Union @dataclass class RoleTags: # Attrs def __init__(self, json) -> None: self.bot_id: Union[str, None] = json['bot_id'] if 'bot_id' in json else None self.integration_id: Union[str, None] = json['integration_id'] if 'integration_id' in json else None self.premium_subscriber: None = json['premium_subscriber'] if 'premium_subscriber' in json else None ```
{ "source": "5elenay/pewn", "score": 3 }
#### File: pewn/pewn/http.py ```python from typing import Union from pewn.classes import Option, NotSavedData from pewn.utils import raise_error from aiohttp import ClientSession from aiofiles import open as aiopen from os import makedirs, path from asyncio import gather async def download(url: str, option: Option = None, **kwargs) -> Union[str, NotSavedData]: """Download data from URL. Parameters: url (str): URL for fetch and download. option (Option): Option object. [Optional] **kwargs: Settings for aiohttp request. Returns: str: Saved path. NotSavedData: NotSavedData object if you don't add option parameter. """ raise_error(url, "url", str) write_file = False full_path = None if option is not None: raise_error(option, "option", Option) write_file = True async with ClientSession(trust_env=True) as session: async with session.get(url, **kwargs) as response: data = await response.read() if write_file: if not path.isdir(option.folder): makedirs(option.folder) full_path = f"{option.folder}/{option.file_name}" async with aiopen(full_path, mode="wb") as file: await file.write(data) return full_path or NotSavedData(data, url) async def download_multiple(urls: tuple, options: Union[tuple, Option] = None, **kwargs): """Download multiple file. Parameters: urls (tuple): List of URL that will be downloaded. options (tuple, Option): List of Option or only one Option object. [Optional] **kwargs: Settings for aiohttp request. Returns: list (str): Saved paths. list (NotSavedData): List of NotSavedData object if you don't add options parameter. """ raise_error(urls, "urls", tuple) results = () if options is not None: raise_error(options, "option", (tuple, Option)) if isinstance(options, tuple): results = await gather(*[ download(url, opt, **kwargs) for url, opt in zip(urls, options) ]) elif isinstance(options, Option): def change_file_name(option: Option, number: int): splitted_name = option.file_name.split('.') real_file_name = splitted_name[-2] real_file_name += f"_{number}" splitted_name[-2] = real_file_name return ".".join(splitted_name) results = await gather(*[ download(url, opt, **kwargs) for url, opt in zip(urls, [Option(file_name=change_file_name(options, i + 1), folder=options.folder) for i, _ in enumerate(urls)]) ]) else: results = await gather(*[ download(url, **kwargs) for url in urls ]) return results ```
{ "source": "5elenay/postgrey", "score": 3 }
#### File: postgrey/postgrey/utils.py ```python def raise_error(variable, name, check) -> None: if isinstance(check, tuple): if not type(variable) in check: raise TypeError( f"Argument '{name}' type must be {' / '.join([i.__name__ if i != None else 'None' for i in check])}, not {type(variable).__name__}.") else: if not isinstance(variable, check): raise TypeError( f"Argument '{name}' type must be {check.__name__ if check != None else 'None'}, not {type(variable).__name__}.") def parse_data(data) -> tuple: d_keys, d_values, d_count = [], [], 1 for key in data.keys(): if not key.startswith("__") and not key.endswith("__"): d_keys.append( f"{key} {data.get(f'__{key}__') or '='} ${d_count}") d_values.append(data.get(key)) d_count += 1 return d_keys, d_values, d_count ```
{ "source": "5emu7/roadtofreelancer", "score": 3 }
#### File: 5emu7/roadtofreelancer/capture_image.py ```python import pyscreenshot as ImageGrab import os import time class ScreenGrab: def __init__(self): self.name = "sample_{}.png".format(str(int(time.time()))) def screenGrab(self): self.im = ImageGrab.grab() self.im.save(os.getcwd() + "\\"+self.name) if __name__ =='__main__': m = ScreenGrab() print(m.name) m.screenGrab() ```
{ "source": "5enxia/parallel-krylov", "score": 2 }
#### File: v1/processes/common.py ```python import numpy as np import scipy from numpy.linalg import norm from mpi4py import MPI from ..common import _start, _end def start(method_name='', k=None): _start(method_name, k) return MPI.Wtime() def end(start_time, isConverged, num_of_iter, final_residual, final_k=None): elapsed_time = MPI.Wtime() - start_time _end(elapsed_time, isConverged, num_of_iter, final_residual, final_k) return elapsed_time def krylov_base_start(): return MPI.Wtime() def krylov_base_finish(start_time): return MPI.Wtime() - start_time def init_mpi(): comm = MPI.COMM_WORLD return comm, comm.Get_rank(), comm.Get_size() def init_gpu(rank): import cupy as cp num_of_gpu = cp.cuda.runtime.getDeviceCount() cp.cuda.Device(rank % num_of_gpu).use() pool = cp.cuda.MemoryPool(cp.cuda.malloc_managed) cp.cuda.set_allocator(pool.malloc) return num_of_gpu def init(A, b, num_of_process, T, pu): """[summary] Args: A( numpy.ndarray, cupy.ndarray, scipy.sparse.csr.csr_matrix, cupyx.scipy.sparse.csr.csr_matrix ): [係数行列] b( numpy.ndarray, cupy.ndarray, ): [右辺ベクトル] num_of_process(int): [mpiプロセス数] T ([type]): [精度] """ old_N = b.size num_of_append = num_of_process - (old_N % num_of_process) # 足りない行を計算 num_of_append = 0 if num_of_append == num_of_process else num_of_append N = old_N + num_of_append local_N = N // num_of_process x = None b_norm = None if pu == 'cpu': if isinstance(A, np.ndarray): if num_of_append: A = np.append(A, np.zeros((old_N, num_of_append)), axis=1) # 右に0を追加 A = np.append(A, np.zeros((num_of_append, N)), axis=0) # 下に0を追加 elif isinstance(A, scipy.sparse.csr.csr_matrix): from scipy.sparse import hstack, vstack, csr_matrix if num_of_append: A = hstack([A, csr_matrix((old_N, num_of_append))], 'csr') # 右にemptyを追加 A = vstack([A, csr_matrix((num_of_append, N))], 'csr') # 下にemptyを追加 if num_of_append: b = np.append(b, np.zeros(num_of_append)) # 0を追加 x = np.zeros(N, T) b_norm = np.linalg.norm(b) else: import cupy as cp import cupyx if isinstance(A, np.ndarray): if num_of_append: A = cp.array(A) A = cp.append(A, cp.zeros((old_N, num_of_append)), axis=1) # 右に0を追加 A = cp.append(A, cp.zeros((num_of_append, N)), axis=0) # 下に0を追加 elif isinstance(A, scipy.sparse.csr.csr_matrix): from cupyx.scipy.sparse import hstack, vstack, csr_matrix if num_of_append: A = csr_matrix(A) A = hstack([A, csr_matrix((old_N, num_of_append))], 'csr') # 右にemptyを追加 A = vstack([A, csr_matrix((num_of_append, N))], 'csr') # 下にemptyを追加 if num_of_append: b = cp.append(b, cp.zeros(num_of_append)) # 0を追加 x = cp.zeros(N, T) b_norm = cp.linalg.norm(b) max_iter = old_N * 2 residual = np.zeros(max_iter+1, T) num_of_solution_updates = np.zeros(max_iter+1, np.int) num_of_solution_updates[0] = 0 return A, b, x,\ b_norm, N, local_N, max_iter, residual, num_of_solution_updates ``` #### File: v2/gpu/common.py ```python import time import numpy as np import scipy import cupy as cp from cupy.cuda import Device from ..common import _start, _finish # 計測開始 def start(method_name: str = '', k: int = None) -> float: _start(method_name, k) return time.perf_counter() # 計測終了 def finish(start_time: float, isConverged: bool, num_of_iter: int, final_residual: float, final_k: int = None) -> float: elapsed_time = time.perf_counter() - start_time _finish(elapsed_time, isConverged, num_of_iter, final_residual, final_k) return elapsed_time # パラメータの初期化 def init(A, b, T, num_of_thread): # 追加する要素数を算出 old_N = b.size num_of_append: int = num_of_thread - (old_N % num_of_thread) # 足りない行を計算 num_of_append = 0 if num_of_append == num_of_thread else num_of_append N: int = old_N + num_of_append # A if num_of_append: # データをパディングする if isinstance(A, np.ndarray): if num_of_append: A = np.append(A, np.zeros((old_N, num_of_append)), axis=1) # 右に0を追加 A = np.append(A, np.zeros((num_of_append, N)), axis=0) # 下に0を追加 elif isinstance(A, scipy.sparse.csr.csr_matrix): from scipy.sparse import hstack, vstack, csr_matrix if num_of_append: A = hstack([A, csr_matrix((old_N, num_of_append))], 'csr') # 右にemptyを追加 A = vstack([A, csr_matrix((num_of_append, N))], 'csr') # 下にemptyを追加 # b b = cp.array(b, T) if num_of_append: b = cp.append(b, cp.zeros(num_of_append)) # 0を追加 b_norm = cp.linalg.norm(b) # x x = cp.zeros(N, T) # その他パラメータ max_iter = old_N residual = cp.zeros(max_iter+16, T) num_of_solution_updates = cp.zeros(max_iter+16, np.int) num_of_solution_updates[0] = 0 return A, b, x, b_norm, N, max_iter, residual, num_of_solution_updates class MultiGpu(object): # numbers begin: int = 0 end: int = 0 num_of_gpu: int = 0 # dimentinal size N: int = 0 local_N: int = 0 # matrix A: list = [] # vector x: list = [] y: list = [] out: np.ndarray = None # byte size nbytes: int = 0 local_nbytes: int = 0 # gpu stream streams = None # GPUの初期化 @classmethod def init_gpu(cls, begin: int, end: int): cls.begin = begin cls.end = end cls.num_of_gpu = end - begin + 1 cls.streams = [None] * cls.num_of_gpu # init memory allocator for i in range(cls.begin, cls.end+1): Device(i).use() pool = cp.cuda.MemoryPool(cp.cuda.malloc_managed) cp.cuda.set_allocator(pool.malloc) cls.streams[i-begin] = cp.cuda.Stream() # Enable P2P for j in range(4): if i == j: continue cp.cuda.runtime.deviceEnablePeerAccess(j) # メモリー領域を確保 @classmethod def alloc(cls, A, b, T): # dimentional size cls.N = b.size cls.local_N = cls.N // cls.num_of_gpu # byte size cls.nbytes = b.nbytes cls.local_nbytes = b.nbytes // cls.num_of_gpu # init list cls.A = [None] * cls.num_of_gpu cls.x = [None] * cls.num_of_gpu cls.y = [None] * cls.num_of_gpu # divide single A -> multi local_A # allocate x, y for i in range(cls.begin, cls.end+1): Device(i).use() index = i-cls.begin # npy if isinstance(A, np.ndarray): cls.A[index] = cp.array(A[i*cls.local_N:(i+1)*cls.local_N], T) # npz elif isinstance(A, scipy.sparse.csr.csr_matrix): from cupyx.scipy.sparse import csr_matrix cls.A[index] = csr_matrix(A[i*cls.local_N:(i+1)*cls.local_N]) cls.x[index] = cp.zeros(cls.N, T) cls.y[index] = cp.zeros(cls.local_N, T) # init out vector cls.out = cp.zeros(cls.N, T) # マルチGPUを用いた行列ベクトル積 @classmethod def dot(cls, A, x): # Copy vector data to All devices for i in range(cls.begin, cls.end+1): Device(i).use() index = i-cls.begin # cp.cuda.runtime.memcpyPeer(cls.x[index].data.ptr, i, x.data.ptr, cls.begin, cls.nbytes) cp.cuda.runtime.memcpyPeerAsync(cls.x[index].data.ptr, i, x.data.ptr, cls.end, cls.nbytes, cls.streams[index].ptr) # dot cls.y[index] = cls.A[index].dot(cls.x[index]) # Gather caculated element from All devices for i in range(cls.begin, cls.end+1): index = i-cls.begin # cp.cuda.runtime.memcpyPeer(cls.out[index*cls.local_N].data.ptr, cls.begin, cls.y[index].data.ptr, i, cls.y[index].nbytes) cp.cuda.runtime.memcpyPeerAsync(cls.out[index*cls.local_N].data.ptr, cls.end, cls.y[index].data.ptr, i, cls.y[index].nbytes, cls.streams[index].ptr) # sync for i in range(cls.begin, cls.end+1): index = i-cls.begin cls.streams[index].synchronize() # Device(i).synchronize() # return return cls.out ``` #### File: gpu/mpi/cg.py ```python import cupy as cp from cupy import dot from cupy.linalg import norm from mpi4py import MPI from .common import start, finish, init, MultiGpu, init_mpi, calc_alloc_gpu def cg(A, b, epsilon, T): # MPI # rank 0-7 # num_of_process = 8 comm, rank, num_of_process = init_mpi() # GPU初期化 begin, end = calc_alloc_gpu(rank, num_of_process) MultiGpu.init_gpu(begin, end, num_of_process) # 初期化 local_A, b, x, b_norm, N, max_iter, residual, num_of_solution_updates = init(A, b, T, rank, num_of_process, 16) MultiGpu.alloc(local_A, b, T) Ax = cp.zeros(N, T) v = cp.zeros(N, T) # 初期残差 comm.Allgather(MultiGpu.dot(local_A, x), Ax) r = b - Ax p = r.copy() gamma = dot(r, r) # 反復計算 i = 0 if rank == 0: start_time = start(method_name='cg + gpu + mpi') while i < max_iter: # 収束判定 residual[i] = norm(r) / b_norm if residual[i] < epsilon: isConverged = True break # 解の更新 comm.Allgather(MultiGpu.dot(local_A, p), v) sigma = dot(p, v) alpha = gamma / sigma x += alpha * p r -= alpha * v old_gamma = gamma.copy() gamma = dot(r, r) beta = gamma / old_gamma p = r + beta * p i += 1 num_of_solution_updates[i] = i else: isConverged = False if rank == 0: elapsed_time = finish(start_time, isConverged, i, residual[i]) return elapsed_time, num_of_solution_updates[:i+1], residual[:i+1] else: exit(0) ``` #### File: cpu/mpi/kskipcg.py ```python import numpy as np from numpy import float64, dot from numpy.linalg import norm from .common import start, finish, init, MultiCpu def kskipcg(comm, local_A, b, x=None, tol=1e-05, maxiter=None, k=0, M=None, callback=None, atol=None) -> tuple: # MPI初期化 rank = comm.Get_rank() MultiCpu.joint_mpi(comm) # 初期化 T = float64 x, maxiter, b_norm, N, residual, num_of_solution_updates = init( b, x, maxiter) MultiCpu.alloc(local_A, T) Ax = np.zeros(N, T) Ar = np.zeros((k + 2, N), T) Ap = np.zeros((k + 3, N), T) a = np.zeros(2*k + 2, T) f = np.zeros(2*k + 4, T) c = np.zeros(2*k + 2, T) # 初期残差 MultiCpu.dot(local_A, x, out=Ax) Ar[0] = b - Ax Ap[0] = Ar[0].copy() # 反復計算 i = 0 index = 0 if rank == 0: start_time = start(method_name='k-skip CG + MPI', k=k) while i < maxiter: # 収束判定 residual[index] = norm(Ar[0]) / b_norm if residual[index] < tol: isConverged = True break # 基底計算 for j in range(1, k + 1): MultiCpu.dot(local_A, Ar[j-1], out=Ar[j]) for j in range(1, k + 2): MultiCpu.dot(local_A, Ap[j-1], out=Ap[j]) # 係数計算 for j in range(2 * k + 1): jj = j // 2 a[j] = dot(Ar[jj], Ar[jj + j % 2]) for j in range(2 * k + 4): jj = j // 2 f[j] = dot(Ap[jj], Ap[jj + j % 2]) for j in range(2 * k + 2): jj = j // 2 c[j] = dot(Ar[jj], Ap[jj + j % 2]) # CGでの1反復 # 解の更新 alpha = a[0] / f[1] beta = alpha ** 2 * f[2] / a[0] - 1 x += alpha * Ap[0] Ar[0] -= alpha * Ap[1] Ap[0] = Ar[0] + beta * Ap[0] MultiCpu.dot(local_A, Ap[0], out=Ap[1]) # CGでのk反復 for j in range(k): for l in range(0, 2*(k-j)+1): a[l] += alpha*(alpha*f[l+2] - 2*c[l+1]) d = c[l] - alpha*f[l+1] c[l] = a[l] + d*beta f[l] = c[l] + beta*(d + beta*f[l]) # 解の更新 alpha = a[0] / f[1] beta = alpha ** 2 * f[2] / a[0] - 1 x += alpha * Ap[0] Ar[0] -= alpha * Ap[1] Ap[0] = Ar[0] + beta * Ap[0] MultiCpu.dot(local_A, Ap[0], out=Ap[1]) i += (k + 1) index += 1 num_of_solution_updates[index] = i else: isConverged = False residual[index] = norm(Ar[0]) / b_norm if rank == 0: elapsed_time = finish(start_time, isConverged, i, residual[index]) info = { 'time': elapsed_time, 'nosl': num_of_solution_updates[:index+1], 'residual': residual[:index+1], } return x, info else: exit(0) ``` #### File: gpu/mpi/common.py ```python import os import numpy as np import scipy import cupy as cp from cupy.cuda import Device from cupy.cuda.runtime import getDeviceCount from mpi4py import MPI # import socket from ..common import _start, _finish # 計測開始 def start(method_name='', k=None): _start(method_name, k) return MPI.Wtime() # 計測終了 def finish(start_time, isConverged, num_of_iter, final_residual, final_k=None): elapsed_time = MPI.Wtime() - start_time _finish(elapsed_time, isConverged, num_of_iter, final_residual, final_k) return elapsed_time # パラメータの初期化 def init(b, x=None, maxiter=None) -> tuple: T = np.float64 b = cp.array(b) b_norm = cp.linalg.norm(b) N = b.size if isinstance(x, np.ndarray): x = cp.array(x) else: x = cp.zeros(N, dtype=T) if maxiter == None: maxiter = N residual = cp.zeros(maxiter+1, T) num_of_solution_updates = cp.zeros(maxiter+1, np.int) return b, x, maxiter, b_norm, N, residual, num_of_solution_updates class MultiGpu(object): # numbers begin: int = 0 end: int = 0 num_of_gpu: int = 0 num_of_process: int = 0 # dimentinal size N: int = 0 local_N: int = 0 local_local_N: int = 0 # matrix A: list = [] # vector x: list = [] y: list = [] out: np.ndarray = None # byte size nbytes: int = 0 local_nbytes: int = 0 local_local_nbytes: int = 0 # mpi comm = None # gpu stream streams = None # GPUの初期化 @classmethod def init(cls): # ip = socket.gethostbyname(socket.gethostname()) # rank = os.environ['MV2_COMM_WORLD_RANK'] # local_rank = os.environ['MV2_COMM_WORLD_LOCAL_RANK'] if os.environ.get('GPU_IDS') != None: ids = os.environ['GPU_IDS'].split(',') cls.begin = int(ids[0]) cls.end = int(ids[-1]) else: cls.begin = 0 cls.end = getDeviceCount() - 1 cls.num_of_gpu = cls.end - cls.begin + 1 cls.streams = [None] * cls.num_of_gpu # init memory allocator for i in range(cls.begin, cls.end+1): Device(i).use() pool = cp.cuda.MemoryPool(cp.cuda.malloc_managed) cp.cuda.set_allocator(pool.malloc) cls.streams[i-cls.begin] = cp.cuda.Stream(non_blocking=False) # Enable P2P for j in range(4): if i == j: continue cp.cuda.runtime.deviceEnablePeerAccess(j) # メモリー領域を確保 @classmethod def alloc(cls, local_A, b, T): # dimentional size cls.local_N, cls.N = local_A.shape cls.local_local_N = cls.local_N // cls.num_of_gpu # byte size cls.nbytes = b.nbytes cls.local_nbytes = cls.nbytes // cls.num_of_process cls.local_local_nbytes = cls.local_nbytes // cls.num_of_gpu # init list cls.A = [None] * cls.num_of_gpu cls.x = [None] * cls.num_of_gpu cls.y = [None] * cls.num_of_gpu # divide single A -> multi local_A # allocate x, y for i in range(cls.begin, cls.end+1): Device(i).use() index = i-cls.begin # local_Aは1/8 begin, end = index*cls.local_local_N, (index+1)*cls.local_local_N # npy if isinstance(local_A, np.ndarray): cls.A[index] = cp.array(local_A[begin:end], T) # npz elif isinstance(local_A, scipy.sparse.csr.csr_matrix): from cupyx.scipy.sparse import csr_matrix cls.A[index] = csr_matrix(local_A[begin:end]) cls.x[index] = cp.zeros(cls.N, T) cls.y[index] = cp.zeros(cls.local_local_N, T) # init out vector cls.out = cp.zeros(cls.local_N, T) # マルチGPUを用いた行列ベクトル積 @classmethod def dot(cls, local_A, x, out): # Copy vector data to All devices for i in range(cls.begin, cls.end+1): # Device(i).use() index = i-cls.begin # cp.cuda.runtime.memcpyPeerAsync(cls.x[index].data.ptr, i, x.data.ptr, cls.end, cls.nbytes, cls.streams[index].ptr) cp.cuda.runtime.memcpyPeer(cls.x[index].data.ptr, i, x.data.ptr, cls.end, cls.nbytes) # dot for i in range(cls.begin, cls.end+1): index = i-cls.begin Device(i).use() # cls.streams[index].synchronize() cls.y[index] = cls.A[index].dot(cls.x[index]) # Gather caculated element from All devices for i in range(cls.begin, cls.end+1): Device(i).synchronize() index = i-cls.begin # cp.cuda.runtime.memcpyPeerAsync(cls.out[index*cls.local_local_N].data.ptr, cls.end, cls.y[index].data.ptr, i, cls.local_local_nbytes, cls.streams[index].ptr) cp.cuda.runtime.memcpyPeer(cls.out[index*cls.local_local_N].data.ptr, cls.end, cls.y[index].data.ptr, i, cls.y[index].nbytes) # # sync # for i in range(cls.begin, cls.end+1): # index = i-cls.begin # cls.streams[index].synchronize() cls.comm.Allgather(cls.out, out) # return return out # joint comm @classmethod def joint_mpi(cls, comm): cls.comm = comm cls.num_of_process = comm.Get_size() ```
{ "source": "5fcgdaeb/hexagonal_python", "score": 3 }
#### File: secondary_ports/rawforecastrepository/RawForecastRepository.py ```python import abc class RawForecastRepository(object): @abc.abstractmethod def upload_raw_reading_list(self, for_run): raise NotImplementedError(f"Class {self.__class__.__name__} doesnt implement upload_raw_reading_list method.") @abc.abstractmethod def upload_compiled_forecast_file_of_location_id_and_day_id(self, forecast_file, measurement_location_id, day_id): raise NotImplementedError(f"Class {self.__class__.__name__} doesnt implement upload_compiled_forecast_file_of_location_id_and_day_id method.") @abc.abstractmethod def prepare_raw_forecasts_of_locations_for_base_hour(self, measurement_location_ids, targetedCrawlIDOfBaseHour): raise NotImplementedError(f"Class {self.__class__.__name__} doesnt implement prepare_raw_forecasts_of_locations_for_base_hour method.") @abc.abstractmethod def prepare_forecasts_of_location_id_and_crawl_id_and_distance(self, measurement_location_id, crawlID, distance): raise NotImplementedError(f"Class {self.__class__.__name__} doesnt implement prepare_forecasts_of_location_id_and_crawl_id_and_distance method.") @abc.abstractmethod def prepare_forecasts_for_all_possible_distances_of_location_id_and_crawl_id(self, measurement_location_id, crawl_id): raise NotImplementedError(f"Class {self.__class__.__name__} doesnt implement prepare_forecasts_for_all_possible_distances_of_location_id_and_crawl_id method.") ```
{ "source": "5foot8/maho-contrail", "score": 3 }
#### File: maho-contrail/maho/cli.py ```python import argparse import multiprocessing import queue import time import threading from maho.camera import IPCamera from maho.adsb import Dump1090 from maho.util import AzimuthAltitudeDistance from time import sleep from metar import Metar #from hanging_threads import start_monitoring import numpy as np import cv2 #import subprocess import pylab import os import sys import math #import faulthandler #faulthandler.enable() #start_monitoring(seconds_frozen=10, test_interval=100) timeNow = time.strftime("%Y%m%d-%H%M%S") def restart_program(): print("Restarting") time.sleep(0) python = sys.executable os.execl(sys.executable, 'python', __file__, *sys.argv[1:]) min_height = 1000 def camera_control(camera_host, camera_port, camera_user, camera_pass, q): """Control a maho.Camera based on inputs from a multiprocessing queue" On startup this function will place the stream_url in the queue if camera communication works. If it fails the exception for why will be placed in the queue before exiting """ try: camera = IPCamera(camera_host, camera_port, camera_user, camera_pass) q.put(camera.get_rtsp_url()) except RuntimeError as exc: q.put(exc) try: while True: camera.move_to(*q.get()) except KeyboardInterrupt: pass def track_closest_aircraft(latitude, longitude, elevation, host, port, q): """Forward adsb messages to a Queue Args: host (str): The dump1090 host port (int): The dump1090 port q (queue): Messages will be placed in this queue On startup this function will place True in the queue if dump1090 starts properly If it fails the exception will be placed in the queue before exiting """ try: d = Dump1090(host, port) q.put(True) except IOError as exc: q.put(exc) return target = None target_distance = None frame_count = 0 aad = AzimuthAltitudeDistance(latitude, longitude, elevation) try: for aircraft in d.updates(): lat, lng = aircraft.position azimuth, altitude, distance = aad.calculate( lat, lng, aircraft.altitude ) if aircraft.position[0] and lat > latitude: northSouth = ('N') else: northSouth = ('S') # if we don't have a target we do now # or target is old, then use this new aircraft # or new aircraft isn't the target, but it is closer, so we switch! # make sure aircraft swaps between cameras as it passes over # so the correct camera is pointing at the aircraft, if this is not # here the camera continues to follow until an aircraft is closer. # if you are using only one camera you dont require this section my_lat = 53.43450 timeNow = time.strftime("%Y%m%d-%H%M%S") if latitude >= my_lat and target is None: pass elif latitude >= my_lat > lat and target.icao == aircraft.icao: target = None else: pass if latitude <= my_lat and target is None: pass elif latitude <= my_lat < lat and target.icao == aircraft.icao: target = None else: pass # Mondified code to split between the North and South facing cameras. #North facing camera: above = (min_height * 0.3048) if (latitude >= my_lat) and (aircraft.altitude >= (30000 * 0.3048)) or (aircraft.position[0] < latitude): if (target is None or target.age > 20 or target.icao != aircraft.icao and distance < target_distance) \ and northSouth is ('N') and (altitude > 15): target = aircraft elif aircraft and target is None: pass else: #print('.', end='') #print ((timeNow), end='\r', flush=True)) #print(min_height * 0.3048) print(time.ctime(), (above), end="\r", flush=True) pass #South facing camera: frame_count = 0 if (latitude <= my_lat) and (aircraft.altitude >= (30000 * 0.3048)) or (aircraft.position[0] > latitude): if (target is None or target.age > 20 or target.icao != aircraft.icao and distance < target_distance) \ and northSouth is ('S') and (altitude > 15): target = aircraft elif aircraft and target is None: pass else: #print (timeNow(), end='\r', flush=True) print(time.ctime(), (above), end="\r", flush=True) #pass#''' '''tracker.terminate() tracker.join() camera.terminate() camera.join() cap.release() cv2.destroyAllWindows()''' pass #if frame_count > 50: # restart_program() else: pass # if we aren't the target at this point then bail old_distance = 0 if target != aircraft: continue target = aircraft target_distance = distance if old_distance == distance or altitude < 10: pass else: old_distance = distance q.put((target, azimuth, altitude, distance)) except KeyboardInterrupt: pass def go_maho( latitude, longitude, elevation, camera_host, camera_port, camera_user, camera_pass, adsb_host, adsb_port, min_height ): # fork a process to communicate with dump1090 targets = multiprocessing.Queue() tracker = multiprocessing.Process( target=track_closest_aircraft, args=(latitude, longitude, elevation, adsb_host, adsb_port, targets,) ) tracker.start() # fist thing in the queue will be startup status # True if good # an Exception if bad status = targets.get() if isinstance(status, Exception): raise RuntimeError("Unable to connect to dump1090 on {}:{}: {}".format( adsb_host, adsb_port, status )) # run camera control in own process as moving the camera can block for seconds camera_queue = multiprocessing.Queue() camera = multiprocessing.Process( target=camera_control, args=(camera_host, camera_port, camera_user, camera_pass, camera_queue,) ) camera.start() # fist thing in the queue will be startup status # Stream URL if good # an Exception if bad stream_url = camera_queue.get() if isinstance(stream_url, Exception): raise RuntimeError("Unable to connect to camera on {}:{}: {}".format( camera_host, camera_port, stream_url )) cap = cv2.VideoCapture(stream_url) ret, frame = cap.read() #cv2.namedWindow("maho") #orb = cv2.ORB_create() # build a mask that's the center of the frame # we'll focus searching for aircraft in this region search_mask = np.zeros((frame.shape[0], frame.shape[1], 1), dtype=np.uint8) cx = frame.shape[1] / 2 cy = frame.shape[0] / 2 size = 0.3 search_rect = ( (int(cy - (cy * size)), int(cx - (cx * size))), (int(cy + (cy * size)), int(cx + (cx * size))) ) # openCV UI main loops start = None end = None fps = 0 elapsed = 0 target = None last_target = None try: while True: start = time.time() #''' # fill our mask back to full, we may have chopped it smaller on the last frame search_mask[ search_rect[0][0]:search_rect[0][1], search_rect[1][0]:search_rect[1][1] ] = 255#''' # grab a frame from the camera ret, frame = cap.read() #gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # check for new / updated target info try: target, azimuth, altitude, distance = targets.get(False) if last_target is None or target.icao != last_target.icao: last_target = target print("Now tracking {} / {} - Distance: {}m Time: {}".format( target.icao, target.callsign, int(distance), time.strftime("%Y%m%d-%H%M%S") )) print("{} | azi: {:.3f}, alt: {:.3f}".format( target, azimuth, altitude, #int(distance) )) '''print("{} | azi: {:.3f}, alt: {:.3f}, dist: {}m.".format(''' camera_queue.put((azimuth, altitude)) except queue.Empty: if target is None: camera_queue.put((0,0)) else: pass # annotate the frame if target: cv2.putText( frame, target.callsign or target.icao, (0, 50), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 4, cv2.LINE_AA ) txt = "{0:.3f}, {1:.3f} @ {2:.0f}m (dist: {3:.0f}m)".format( target.position[0], target.position[1], target.altitude, distance ) cv2.putText( frame, txt, (10, 75), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1, cv2.LINE_AA ) cv2.rectangle(frame, search_rect[0][::-1], search_rect[1][::-1], (0, 0, 255), 2) ''' kp = orb.detect(gray, search_mask) kp, des = orb.compute(gray, kp) cv2.drawKeypoints(frame, kp, frame, color=(0, 255, 0), flags=0)#''' cv2.putText( frame, "Camera Position: Az: {:.0f}, Alt: {:.0f}".format(azimuth, altitude), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1, cv2.LINE_AA ) # different ways of displaying the final output. # uncomment to activate, not sure if you cannot have more than three active. my_lat = 53.43450 if latitude >= my_lat: window_name = ('<NAME>') else: window_name = ('<NAME>') # display it # small = cv2.resize(frame, (0,0), fx=1, fy=1) # small = frame # small = cv2.resize(frame, (0,0), width, height) # cv2.imshow('maho', frame) cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) # cv2.setWindowProperty('Maho', cv2.WINDOW_FULLSCREEN) # cv2.setWindowProperty('Maho', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) # cv2.setWindowProperty('Maho', cv2.WINDOW_AUTOSIZE, cv2.WINDOW_FULLSCREEN) cv2.setWindowProperty(window_name, cv2.WINDOW_AUTOSIZE, cv2.WND_PROP_FULLSCREEN) # cv2.namedWindow('Maho', cv2.WND_PROP_FULLSCREEN) # cv2.resizeWindow('Maho', 1000, 700) cv2.imshow(window_name, frame) # handle input keypress = cv2.waitKey(1) & 0xFF end = time.time() elapsed = int((end - start) * 1000) if elapsed == 0: pass else: fps = int(1000 / elapsed) if keypress == ord('q'): raise KeyboardInterrupt def saveScreen(): timestr = time.strftime("%Y%m%d-%H%M%S") cv2.imwrite('MC' + timestr + '-' + target.icao + '.png', frame) # cv2.imwrite('MC' + timestr + '.png', frame) print("Image saved MC" + timestr) if keypress == ord('s'): saveScreen() if keypress == ord('r'): restart_program() if keypress == ord('+'): min_height += 1000 elif keypress == ord('-'): min_height -= 1000 except KeyboardInterrupt: tracker.terminate() tracker.join() camera.terminate() camera.join() cap.release() cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser( prog='maho', description='ADS-B asdisted aircraft spotting', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--latitude', type=float, required=True, help='Latitude of the camera') parser.add_argument('--longitude', type=float, required=True, help='Longitude of the camera') parser.add_argument('--elevation', type=float, required=True, help='Elevation of the camera') parser.add_argument('--camera-host', type=str, required=True, help='Camera hostname/ip') parser.add_argument('--camera-port', type=int, default=80, help='Camera port') parser.add_argument('--camera-user', type=str, required=True, help='Camera username') parser.add_argument('--camera-pass', type=str, required=True, help='Camera password') parser.add_argument('--adsb-host', type=str, default='localhost', help='dump1090 hostname/ip') parser.add_argument('--adsb-port', type=int, default=30002, help='dump1090 TCP raw output port') parser.add_argument('--min-height', type=float, default=30000, help='Minimum Altitude ft') args = parser.parse_args() try: go_maho( args.latitude, args.longitude, args.elevation, args.camera_host, args.camera_port, args.camera_user, args.camera_pass, args.adsb_host, args.adsb_port, args.min_height ) except KeyboardInterrupt: pass except RuntimeError as exc: parser.error(exc) raise SystemExit if __name__ == "__main__": main() ```
{ "source": "5G-Center-Chinatelecom/vpp", "score": 2 }
#### File: urpf/test/test_urpf.py ```python import unittest from framework import VppTestCase, VppTestRunner from scapy.packet import Raw from scapy.layers.l2 import Ether from scapy.layers.inet import IP, UDP, ICMP from scapy.layers.inet6 import IPv6 from vpp_papi import VppEnum N_PKTS = 63 class TestURPF(VppTestCase): """ Unicast Reverse Path Forwarding Test Case """ @classmethod def setUpClass(cls): super(TestURPF, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestURPF, cls).tearDownClass() def setUp(self): super(TestURPF, self).setUp() # create 4 pg interfaces so there are a few addresses # in the FIB self.create_pg_interfaces(range(4)) for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.resolve_arp() i.config_ip6() i.resolve_ndp() def tearDown(self): for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() super(TestURPF, self).tearDown() def test_urpf4(self): """ uRPF IP4 """ e = VppEnum p_spoof_loose = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src="3.3.3.3", dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) * N_PKTS p_spoof_strict = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg2.remote_ip4, dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) * N_PKTS p_good = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) * N_PKTS # # before adding the uRPF, ensure all packets are forwarded # self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_expect(self.pg0, p_spoof_loose, self.pg1) # # apply loose uRPF check on pg0 rx # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_LOOSE, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg0.sw_if_index) # good packets still pass self.send_and_expect(self.pg0, p_good, self.pg1) # packets from address for which there is a route are forwarded self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) # packets from address to which there is no route are dropped self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip4-rx-urpf-loose", N_PKTS) # # crank it up to strict mode # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_STRICT, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg0.sw_if_index) # good packets still pass self.send_and_expect(self.pg0, p_good, self.pg1) # packets that would not be routed back thru pg0 are dropped self.send_and_assert_no_replies(self.pg0, p_spoof_strict) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip4-rx-urpf-strict", 2 * N_PKTS) # # disable uRPF, all traffic should pass # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_OFF, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg0.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_expect(self.pg0, p_spoof_loose, self.pg1) # # Now apply in the TX direction # for loose it is the same deal, they should not be forwarded # if there's no route # for strict they should not be forwarded if they would be # forwarded thru that interface. # self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_LOOSE, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg1.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip4-tx-urpf-loose", N_PKTS) self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_STRICT, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg1.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) # the strict packet, from a peer is allowed, since it does # not forward via pg1 self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip4-tx-urpf-strict", N_PKTS) # change the strict packet so that it would forward through pg1 p_spoof_strict = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg1.remote_ip4, dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) * N_PKTS self.send_and_assert_no_replies(self.pg0, p_spoof_strict) self.assert_error_counter_equal("ip4-tx-urpf-strict", 2 * N_PKTS) # cleanup self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_OFF, af=e.vl_api_address_family_t.ADDRESS_IP4, sw_if_index=self.pg1.sw_if_index) def test_urpf6(self): """ uRPF IP6 """ e = VppEnum p_spoof_loose = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IPv6(src="fc00:e968:6179::de52:7100", dst=self.pg1.remote_ip6) / UDP(sport=1236, dport=1236) / Raw(b'\xa5' * 100)) * N_PKTS p_spoof_strict = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IPv6(src=self.pg2.remote_ip6, dst=self.pg1.remote_ip6) / UDP(sport=1236, dport=1236) / Raw(b'\xa5' * 100)) * N_PKTS p_good = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IPv6(src=self.pg0.remote_ip6, dst=self.pg1.remote_ip6) / UDP(sport=1236, dport=1236) / Raw(b'\xa5' * 100)) * N_PKTS # # before adding the uRPF, ensure all packets are forwarded # self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_expect(self.pg0, p_spoof_loose, self.pg1) # # apply loose uRPF check on pg0 rx # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_LOOSE, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg0.sw_if_index) # good packets still pass self.send_and_expect(self.pg0, p_good, self.pg1) # packets from address for which there is a route are forwarded self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) # packets from address to which there is no route are dropped self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip6-rx-urpf-loose", N_PKTS) # # crank it up to strict mode # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_STRICT, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg0.sw_if_index) # good packets still pass self.send_and_expect(self.pg0, p_good, self.pg1) # packets that would not be routed back thru pg0 are dropped self.send_and_assert_no_replies(self.pg0, p_spoof_strict) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip6-rx-urpf-strict", 2 * N_PKTS) # # disable uRPF, all traffic should pass # self.vapi.urpf_update(is_input=True, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_OFF, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg0.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_expect(self.pg0, p_spoof_loose, self.pg1) # # Now apply in the TX direction # for loose it is the same deal, they should not be forwarded # if there's no route # for strict they should not be forwarded if they would be # forwarded thru that interface. # self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_LOOSE, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg1.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip6-tx-urpf-loose", N_PKTS) self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_STRICT, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg1.sw_if_index) self.send_and_expect(self.pg0, p_good, self.pg1) # the strict packet, from a peer is allowed, since it does # not forward via pg1 self.send_and_expect(self.pg0, p_spoof_strict, self.pg1) self.send_and_assert_no_replies(self.pg0, p_spoof_loose) self.assert_error_counter_equal("ip6-tx-urpf-strict", N_PKTS) # change the strict packet so that it would forward through pg1 p_spoof_strict = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst=self.pg1.remote_ip6) / UDP(sport=1236, dport=1236) / Raw(b'\xa5' * 100)) * N_PKTS self.send_and_assert_no_replies(self.pg0, p_spoof_strict) self.assert_error_counter_equal("ip6-tx-urpf-strict", 2 * N_PKTS) # cleanup self.vapi.urpf_update(is_input=False, mode=e.vl_api_urpf_mode_t.URPF_API_MODE_OFF, af=e.vl_api_address_family_t.ADDRESS_IP6, sw_if_index=self.pg1.sw_if_index) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner) ``` #### File: src/scripts/fts.py ```python import sys import os import ipaddress import yaml from pprint import pprint import re from jsonschema import validate, exceptions import argparse from subprocess import run, PIPE from io import StringIO # VPP feature JSON schema schema = { "$schema": "http://json-schema.org/schema#", "type": "object", "properties": { "name": {"type": "string"}, "description": {"type": "string"}, "maintainer": {"$ref": "#/definitions/maintainers"}, "state": {"type": "string", "enum": ["production", "experimental", "development"]}, "features": {"$ref": "#/definitions/features"}, "missing": {"$ref": "#/definitions/features"}, "properties": {"type": "array", "items": {"type": "string", "enum": ["API", "CLI", "STATS", "MULTITHREAD"]}, }, }, "additionalProperties": False, "definitions": { "maintainers": { "anyof": [{ "type": "array", "items": {"type": "string"}, "minItems": 1, }, {"type": "string"}], }, "featureobject": { "type": "object", "patternProperties": { "^.*$": {"$ref": "#/definitions/features"}, }, }, "features": { "type": "array", "items": {"anyOf": [{"$ref": "#/definitions/featureobject"}, {"type": "string"}, ]}, "minItems": 1, }, }, } def filelist_from_git_status(): filelist = [] git_status = 'git status --porcelain */FEATURE.yaml' rv = run(git_status.split(), stdout=PIPE, stderr=PIPE) if rv.returncode != 0: sys.exit(rv.returncode) for l in rv.stdout.decode('ascii').split('\n'): if len(l): filelist.append(l.split()[1]) return filelist def filelist_from_git_ls(): filelist = [] git_ls = 'git ls-files :(top)*/FEATURE.yaml' rv = run(git_ls.split(), stdout=PIPE, stderr=PIPE) if rv.returncode != 0: sys.exit(rv.returncode) for l in rv.stdout.decode('ascii').split('\n'): if len(l): filelist.append(l) return filelist def version_from_git(): git_describe = 'git describe' rv = run(git_describe.split(), stdout=PIPE, stderr=PIPE) if rv.returncode != 0: sys.exit(rv.returncode) return rv.stdout.decode('ascii').split('\n')[0] class MarkDown(): _dispatch = {} def __init__(self, stream): self.stream = stream self.toc = [] def print_maintainer(self, o): write = self.stream.write if type(o) is list: write('Maintainers: ' + ', '.join(f'{m}' for m in o) + ' \n') else: write(f'Maintainer: {o} \n') _dispatch['maintainer'] = print_maintainer def print_features(self, o, indent=0): write = self.stream.write for f in o: indentstr = ' ' * indent if type(f) is dict: for k, v in f.items(): write(f'{indentstr}- {k}\n') self.print_features(v, indent + 2) else: write(f'{indentstr}- {f}\n') write('\n') _dispatch['features'] = print_features def print_markdown_header(self, o): write = self.stream.write write(f'## {o}\n') version = version_from_git() write(f'VPP version: {version}\n\n') _dispatch['markdown_header'] = print_markdown_header def print_name(self, o): write = self.stream.write write(f'### {o}\n') self.toc.append(o) _dispatch['name'] = print_name def print_description(self, o): write = self.stream.write write(f'\n{o}\n\n') _dispatch['description'] = print_description def print_state(self, o): write = self.stream.write write(f'Feature maturity level: {o} \n') _dispatch['state'] = print_state def print_properties(self, o): write = self.stream.write write(f'Supports: {" ".join(o)} \n') _dispatch['properties'] = print_properties def print_missing(self, o): write = self.stream.write write('\nNot yet implemented: \n') self.print_features(o) _dispatch['missing'] = print_missing def print_code(self, o): write = self.stream.write write(f'Source Code: [{o}]({o}) \n') _dispatch['code'] = print_code def print(self, t, o): write = self.stream.write if t in self._dispatch: self._dispatch[t](self, o,) else: write('NOT IMPLEMENTED: {t}\n') def output_toc(toc, stream): write = stream.write write('## VPP Feature list:\n') for t in toc: ref = t.lower().replace(' ', '-') write(f'[{t}](#{ref}) \n') def featuresort(k): return k[1]['name'] def featurelistsort(k): orderedfields = { 'name': 0, 'maintainer': 1, 'description': 2, 'features': 3, 'state': 4, 'properties': 5, 'missing': 6, 'code': 7, } return orderedfields[k[0]] def output_markdown(features, fields, notfields): stream = StringIO() m = MarkDown(stream) m.print('markdown_header', 'Feature Details:') for path, featuredef in sorted(features.items(), key=featuresort): codeurl = 'https://git.fd.io/vpp/tree/src/' + '/'.join(os.path.normpath(path).split('/')[1:-1]) featuredef['code'] = codeurl for k, v in sorted(featuredef.items(), key=featurelistsort): if notfields: if k not in notfields: m.print(k, v) elif fields: if k in fields: m.print(k, v) else: m.print(k, v) tocstream = StringIO() output_toc(m.toc, tocstream) return tocstream, stream def main(): parser = argparse.ArgumentParser(description='VPP Feature List.') parser.add_argument('--validate', dest='validate', action='store_true', help='validate the FEATURE.yaml file') parser.add_argument('--git-status', dest='git_status', action='store_true', help='Get filelist from git status') parser.add_argument('--all', dest='all', action='store_true', help='Validate all files in repository') parser.add_argument('--markdown', dest='markdown', action='store_true', help='Output feature table in markdown') parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin) group = parser.add_mutually_exclusive_group() group.add_argument('--include', help='List of fields to include') group.add_argument('--exclude', help='List of fields to exclude') args = parser.parse_args() features = {} if args.git_status: filelist = filelist_from_git_status() elif args.all: filelist = filelist_from_git_ls() else: filelist = args.infile if args.include: fields = args.include.split(',') else: fields = [] if args.exclude: notfields = args.exclude.split(',') else: notfields = [] for featurefile in filelist: featurefile = featurefile.rstrip() # Load configuration file with open(featurefile, encoding='utf-8') as f: cfg = yaml.load(f, Loader=yaml.SafeLoader) try: validate(instance=cfg, schema=schema) except exceptions.ValidationError: print(f'File does not validate: {featurefile}', file=sys.stderr) raise features[featurefile] = cfg if args.markdown: stream = StringIO() tocstream, stream = output_markdown(features, fields, notfields) print(tocstream.getvalue()) print(stream.getvalue()) stream.close() if __name__ == '__main__': main() ``` #### File: vpp/test/test_node_variants.py ```python import re import unittest import platform from framework import VppTestCase def checkX86(): return platform.machine() in ["x86_64", "AMD64"] def skipVariant(variant): with open("/proc/cpuinfo") as f: cpuinfo = f.read() exp = re.compile( r'(?:flags\s+:)(?:\s\w+)+(?:\s(' + variant + r'))(?:\s\w+)+') match = exp.search(cpuinfo, re.DOTALL | re.MULTILINE) return checkX86() and match is not None class TestNodeVariant(VppTestCase): """ Test Node Variants """ @classmethod def setUpConstants(cls, variant): super(TestNodeVariant, cls).setUpConstants() # find the position of node_variants in the cmdline args. if checkX86(): node_variants = cls.vpp_cmdline.index("node { ") + 1 cls.vpp_cmdline[node_variants] = ("default { variant default } " "ip4-rewrite { variant " + variant + " } ") @classmethod def setUpClass(cls): super(TestNodeVariant, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestNodeVariant, cls).tearDownClass() def setUp(self): super(TestNodeVariant, self).setUp() def tearDown(self): super(TestNodeVariant, self).tearDown() def getActiveVariant(self, node): node_desc = self.vapi.cli("show node " + node) self.logger.info(node_desc) match = re.search(r'\s+(\S+)\s+(\d+)\s+(:?yes)', node_desc, re.DOTALL | re.MULTILINE) return match.groups(0) def checkVariant(self, variant): """ Test node variants defaults """ variant_info = self.getActiveVariant("ip4-lookup") self.assertEqual(variant_info[0], "default") variant_info = self.getActiveVariant("ip4-rewrite") self.assertEqual(variant_info[0], variant) class TestICLVariant(TestNodeVariant): """ Test icl Node Variants """ VARIANT = "icl" LINUX_VARIANT = "avx512_bitalg" @classmethod def setUpConstants(cls): super(TestICLVariant, cls).setUpConstants(cls.VARIANT) @classmethod def setUpClass(cls): super(TestICLVariant, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestICLVariant, cls).tearDownClass() @unittest.skipUnless(skipVariant(LINUX_VARIANT), VARIANT + " not a supported variant, skip.") def test_icl(self): self.checkVariant(self.VARIANT) class TestSKXVariant(TestNodeVariant): """ Test skx Node Variants """ VARIANT = "skx" LINUX_VARIANT = "avx512f" @classmethod def setUpConstants(cls): super(TestSKXVariant, cls).setUpConstants(cls.VARIANT) @classmethod def setUpClass(cls): super(TestSKXVariant, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestSKXVariant, cls).tearDownClass() @unittest.skipUnless(skipVariant(LINUX_VARIANT), VARIANT + " not a supported variant, skip.") def test_skx(self): self.checkVariant(self.VARIANT) class TestHSWVariant(TestNodeVariant): """ Test avx2 Node Variants """ VARIANT = "hsw" LINUX_VARIANT = "avx2" @classmethod def setUpConstants(cls): super(TestHSWVariant, cls).setUpConstants(cls.VARIANT) @classmethod def setUpClass(cls): super(TestHSWVariant, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestHSWVariant, cls).tearDownClass() @unittest.skipUnless(skipVariant(LINUX_VARIANT), VARIANT + " not a supported variant, skip.") def test_hsw(self): self.checkVariant(self.VARIANT) ``` #### File: vpp/test/test_offload.py ```python import unittest from framework import VppTestCase, VppTestRunner, running_gcov_tests from vpp_ip_route import VppIpTable, VppIpRoute, VppRoutePath class TestOffload(VppTestCase): """ Offload Unit Test Cases """ @classmethod def setUpClass(cls): super(TestOffload, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestOffload, cls).tearDownClass() def setUp(self): super(TestOffload, self).setUp() def tearDown(self): super(TestOffload, self).tearDown() def test_offload_unittest(self): """ Checksum Offload Test """ cmds = ["loop create", "set int ip address loop0 11.22.33.1/24", "set int state loop0 up", "loop create", "set int ip address loop1 11.22.34.1/24", "set int state loop1 up", "set ip neighbor loop1 11.22.34.44 03:00:11:22:34:44", "packet-generator new {\n" " name s0\n" " limit 100\n" " size 128-128\n" " interface loop0\n" " tx-interface loop1\n" " node loop1-output\n" " buffer-flags ip4 offload-ip-cksum offload-udp-cksum\n" " data {\n" " IP4: 1.2.3 -> dead.0000.0001\n" " UDP: 11.22.33.44 -> 11.22.34.44\n" " ttl 2 checksum 13\n" " UDP: 1234 -> 2345\n" " checksum 11\n" " incrementing 114\n" " }\n" "}", "trace add pg-input 1", "pa en", "show error"] for cmd in cmds: r = self.vapi.cli_return_response(cmd) if r.retval != 0: if hasattr(r, 'reply'): self.logger.info(cmd + " FAIL reply " + r.reply) else: self.logger.info(cmd + " FAIL retval " + str(r.retval)) r = self.vapi.cli_return_response("show trace") self.assertTrue(r.retval == 0) self.assertTrue(hasattr(r, 'reply')) rv = r.reply look_here = rv.find('ethernet-input') self.assertFalse(look_here == -1) bad_checksum_index = rv[look_here:].find('should be') self.assertTrue(bad_checksum_index == -1) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner) ```
{ "source": "5GCity/5GCity-AAA", "score": 2 }
#### File: 5GCity-AAA/commands/configuration.py ```python import os import subprocess import sys from getpass import getpass import bcrypt from commands import Command from commands.docker import DockerBuilder from config import YamlLoader class Configuration(Command): VALUES = {} @classmethod def build_parser(mcs, parser): pass @classmethod def execute(mcs, args): base = YamlLoader.load(f'{mcs.COMPOSE_DIR}/compose-aaa-base.yml') mcs.common_config(base) mcs.nginx(base) mcs.gravitee(base) YamlLoader.save(base, f'{mcs.COMPOSE_DIR}/compose-aaa.yml') # Ensure Compose ENVs are enforced subprocess.run(DockerBuilder.COMMAND_MAPPER["start"].split(' ')) @classmethod def common_config(mcs, base): parameters = { "SERVER_NAME": "Insert the Dashboard server name to be used with the http protocol." "E.g. IP: http://192.168.1.1 or FQDN: http://5g-dashboard.i2cat.net: ", "MONITORING_GRAFANA": "Insert the Grafana monitoring UI server to be used." "E.g., http://192.168.1.1 or FQDN: http://monitoring.5gcity.com: " } for key, value in parameters.items(): val = input(value) mcs.VALUES[key] = val mcs.dashboard_config(base) @classmethod def dashboard_config(mcs, base): dash_path = input("Insert the Dashboard's full path (e.g. /home/5GCITY/dev/5GCity-Dashboard-new): ") if dash_path.endswith("/"): dash_path = dash_path[:-1] # Validate the folder if not os.path.exists(dash_path): sys.exit("The provided path don't exist.") if not os.path.isdir(dash_path): sys.exit("The provided path is not a dir.") dockerfile = os.path.join(dash_path, "Dockerfile") keycloak_json = os.path.join(dash_path, "public", "keycloak_base.json") if not os.path.exists(dockerfile) or not os.path.exists(keycloak_json): sys.exit("Dockerfile or public/keycloak_base.json are missing don't exist.") with open(keycloak_json, "r") as file: kj = file.read() with open(os.path.join(dash_path, "public", "keycloak.json"), "w") as file: kj = kj.replace("<AUTH_SERVER_URL>", f"{mcs.VALUES['SERVER_NAME']}/auth") file.write(kj) base["services"]["dashboard"]["build"]["context"] = dash_path for enum, _ in enumerate(base["services"]["dashboard"]["build"]["args"]): for key in mcs.VALUES.keys(): if key in base["services"]["dashboard"]["build"]["args"][enum]: base["services"]["dashboard"]["build"]["args"][enum] = \ base["services"]["dashboard"]["build"]["args"][ enum].replace(key, mcs.VALUES[key], 1) for enum, _ in enumerate(base["services"]["dashboard"]["volumes"]): base["services"]["dashboard"]["volumes"][enum] = base["services"]["dashboard"]["volumes"][enum].replace( "DASH_PATH", dash_path) @classmethod def gravitee(mcs, base): def load_base_yml(): return YamlLoader.load(f'{mcs.COMPOSE_DIR}/gravitee/api/gravitee_base.yml') def save_yaml(): YamlLoader.save(gravitee_base, f'{mcs.COMPOSE_DIR}/gravitee/api/gravitee.yml') def set_pwd(): username = input("Please provide the admin's username: ") while True: pwd = getpass(prompt="Please set admin password: ") pwd_confirm = getpass(prompt="Please confirm your password: ") if pwd != pwd_confirm: print("The password and password confirmation don't match.") elif len(pwd) < 5: print("Please provide a password with 5 characters at least") else: break # Encrypt new password hashed = bcrypt.hashpw(pwd.encode("UTF-8"), bcrypt.gensalt(prefix=b"2a")).decode("utf-8") users = gravitee_base.get("security").get("providers")[0] users["username"] = username users["password"] = str(<PASSWORD>) users["users"][0]["username"] = username def set_mng_uri(): env = base["services"]["management_ui"]["environment"][0] base["services"]["management_ui"]["environment"][0] = env.replace("SERVER_NAME", mcs.VALUES["SERVER_NAME"]) print("***Gravitee configuration***") gravitee_base = load_base_yml() set_pwd() save_yaml() set_mng_uri() @classmethod def nginx(mcs, base): print("***NGINX configuration***") ssl = None while ssl not in ["y", "n"]: ssl = input("Are you going to use SSL (y/n): ") ssl = ssl == "y" # Convert variable to bool folder = 'https' if ssl else 'http' # Configure nginx Files mcs.nginx_conf(f'{mcs.COMPOSE_DIR}/nginx/{folder}/') if ssl == "y": print(f"Please put the cert file and private key file on {mcs.COMPOSE_DIR}/nginx/{folder}/cert") print("With the names bundle.cert and privatekey.key") # Configure compose file mcs.nginx_compose(base, ssl) @classmethod def nginx_conf(mcs, config_folder): with open(config_folder + "nginx_base.conf", "r") as file: conf = file.read() value = mcs.VALUES["SERVER_NAME"].split("//")[1] conf = conf.replace(f"@SERVER_NAME", value) with open(config_folder + 'nginx.conf', "w") as file: file.write(conf) @classmethod def nginx_compose(mcs, base, ssl): nginx = base.get("services").get("nginx-service") folder = "./nginx/https/" if ssl else "./nginx/http/" nginx["volumes"] = [] nginx.get("volumes").append(f"{folder}nginx.conf:/etc/nginx/conf.d/aaa.conf") if ssl: nginx.get("ports").append("443:443") nginx.get("volumes").append(f"{folder}cert:/etc/nginx/ssl/cert/") nginx.get("volumes").append( f"{folder}server_names_hash_bucket_size.conf:/etc/nginx/conf.d/server_names_hash_bucket_size.conf") ``` #### File: 5GCity-AAA/gravitee/gravitee.py ```python import json import os import re import sys from dataclasses import dataclass from getpass import getpass from typing import ClassVar, Dict import requests from requests.auth import HTTPBasicAuth # TODO: Handle Errors @dataclass class Gravitee: ENDPOINTS: ClassVar[Dict[str, str]] = { 'apis': 'apis', 'apis_deploy': 'apis/{}/deploy', 'apis_lifecycle': 'apis/{}', 'export_api': 'apis/{}/export', 'export_subscriptions': 'apis/{}/subscriptions', 'export_applications': 'applications/{}', 'import_api': 'apis/import', 'import_applications': 'applications', 'import_subscriptions': 'apis/{}/subscriptions', 'plans': 'apis/{}/plans' } username: str password: str base_url: str @classmethod def build(cls, base_url): _args = [input("Gravitee username: "), getpass(prompt="Gravitee password: "), base_url] instance = Gravitee(*_args) for key in instance.ENDPOINTS.keys(): instance.ENDPOINTS[key] = instance.base_url + instance.ENDPOINTS[key] return instance @property def authentication(self): return HTTPBasicAuth(self.username, self.password) @staticmethod def write_directory(api, create_dir=True): path = os.path.join(os.getcwd(), 'gravitee', 'data', api) if not os.path.exists(path) and create_dir: os.makedirs(path) elif not os.path.exists(path): raise ValueError("Provided API don't exist") return path @staticmethod def __validate_response__(response): if response.status_code <= 299: return exit_message = f"Command error with code {response.status_code} " if response.text: exit_message += f"and message {response.text}" sys.exit(exit_message) def export_api(self, name): def __api_id__(): # Collect API id r = requests.get(self.ENDPOINTS['apis'], params={'name': name}, auth=self.authentication) Gravitee.__validate_response__(r) data = r.json() if not data: raise ValueError("The provided name don't exist") return data[0]['id'] def __api__(): # Export the API r = requests.get(self.ENDPOINTS['export_api'].format(api_id), auth=self.authentication) Gravitee.__validate_response__(r) with open(os.path.join(self.write_directory(name), "api.json"), 'w') as f: f.write(json.dumps(r.json(), indent=4)) def __subscriptions__(): # Export Subscriptions r = requests.get(self.ENDPOINTS['export_subscriptions'].format(api_id), auth=self.authentication) Gravitee.__validate_response__(r) data = r.json() with open(os.path.join(self.write_directory(name), "subscriptions.json"), 'w') as f: f.write(json.dumps(data, indent=4)) return [subscription['application'] for subscription in data['data']] def __application__(): # Export applications data = [] for app in applications: r = requests.get(self.ENDPOINTS['export_applications'].format(app), auth=self.authentication) Gravitee.__validate_response__(r) to_remove = ('id', 'status', 'created_at', 'updated_at', 'owner') app_data = r.json() for k in to_remove: app_data.pop(k, None) data.append(app_data) with open(os.path.join(self.write_directory(name), "applications.json"), 'w') as f: f.write(json.dumps(data, indent=4)) api_id = __api_id__() __api__() applications = __subscriptions__() __application__() def import_api(self, name, dev=False): def change_values(data): if not dev: params = re.findall("@.*?@", data) for param in set(params): if '_ip' in param.lower(): print("\nPlease provide the protocol, e.g., http://192.168.1.1") val = input(f"{param.replace('@', '')} value: ") if val.endswith("/"): val = val[:-1] data = data.replace(param, val) return json.loads(data) def __api__(): with open(os.path.join(reading_directory, 'api.json'), 'r') as f: data = f.read() data = change_values(data) r = requests.post(self.ENDPOINTS['import_api'], auth=self.authentication, json=data) Gravitee.__validate_response__(r) r = requests.get(self.ENDPOINTS['apis'], params={'name': name}, auth=self.authentication) Gravitee.__validate_response__(r) data = r.json() if not data: raise ValueError("The provided name don't exist") return data[0]['id'] def __application__(): with open(os.path.join(reading_directory, 'applications.json'), 'r') as f: data = json.load(f) for app in data: requests.post(self.ENDPOINTS['import_applications'], auth=self.authentication, json=app) # Ignore response validation # Gravitee.__validate_response__(r) def __subscriptions__(): with open(os.path.join(reading_directory, 'subscriptions.json'), 'r') as f: data = json.load(f) for sub in data['data']: payload = { 'application': self.get_app_by_name(data['metadata'][sub['application']]), 'plan': self.get_plan_by_name(api_id, data['metadata'][sub['plan']]) } r = requests.post(self.ENDPOINTS['import_subscriptions'].format(api_id), auth=self.authentication, params=payload) Gravitee.__validate_response__(r) def __start_api__(): r = requests.post(self.ENDPOINTS['apis_deploy'].format(api_id), auth=self.authentication) Gravitee.__validate_response__(r) r = requests.post(self.ENDPOINTS['apis_lifecycle'].format(api_id), auth=self.authentication, params={'action': 'START'}) Gravitee.__validate_response__(r) reading_directory = self.write_directory(name) api_id = __api__() __application__() __subscriptions__() __start_api__() def get_plan_by_name(self, api, name): r = requests.get(self.ENDPOINTS['plans'].format(api), auth=self.authentication, params={'name': name}) Gravitee.__validate_response__(r) for plan in r.json(): if plan['name'] == name['name']: return plan['id'] def get_app_by_name(self, name): r = requests.get(self.ENDPOINTS['import_applications'], auth=self.authentication) Gravitee.__validate_response__(r) for app in r.json(): if app['name'] == name['name']: return app['id'] ``` #### File: 5GCity-AAA/keycloak/keycloak.py ```python import json import os from dataclasses import dataclass, field from datetime import datetime, timedelta from typing import Dict, Any, ClassVar import requests from config import DockerParser @dataclass class KeyCloak: ENDPOINTS: ClassVar[Dict[str, str]] = { 'open_id': '/realms/master/protocol/openid-connect/token', 'realm': '/admin/realms' } username: str password: str client_id: str base_url: str _access_token: Dict[str, Any] = field(init=False, default=None) @classmethod def build(cls): _args = [ DockerParser().get_docker_service('keycloak', 'KEYCLOAK_USER'), DockerParser().get_docker_service('keycloak', 'KEYCLOAK_PASSWORD'), 'admin-cli', DockerParser().get_docker_service('keycloak', 'AAA_AUTH_BASE_URL') ] instance = KeyCloak(*_args) for key in instance.ENDPOINTS.keys(): instance.ENDPOINTS[key] = instance.base_url + instance.ENDPOINTS[key] return instance # === Auth methods === @property def access_token(self): if self._is_token_valid(): return self._access_token['access_token'] elif self._is_token_valid(refresh=True): self._renew_token() return self._access_token['access_token'] payload = { 'username': self.username, 'password': <PASSWORD>, 'client_id': self.client_id, 'grant_type': 'password' } r = requests.post(self.ENDPOINTS['open_id'], data=payload) if r.status_code > 299: raise BaseException(f'Invalid return code {r.status_code} with message: {r.text}') self._access_token = r.json() self._set_token_expiration_dates() return self._access_token @property def auth_header(self): return {'Authorization': f'bearer {self.access_token["access_token"]}'} def _is_token_valid(self, refresh=False): if not self._access_token: return False token = '<PASSWORD>' if refresh else 'expires_in' return datetime.now() > self._access_token[token] def _renew_token(self): if not self._is_token_valid(refresh=True): return self.access_token headers = {'Content-Type': 'application/x-www-form-urlencoded'} data = { 'username': self.username, 'password': <PASSWORD>, 'client_id': self.client_id, 'grant_type': 'refresh_token', 'refresh_token': self._access_token['refresh_token'] } r = requests.get(self.ENDPOINTS['open_id'], headers=headers, data=data) if r.status_code > 299: raise BaseException(f'Invalid return code {r.status_code} with message: {r.text}') self._access_token = r.json() self._set_token_expiration_dates() def _set_token_expiration_dates(self): # Set expiration to python datetime objects self._access_token['expires_in'] = datetime.now() + timedelta(seconds=self._access_token['expires_in']) self._access_token['refresh_expires_in'] = datetime.now() + timedelta( seconds=self._access_token['refresh_expires_in']) # === Getters === def get_realms(self): r = requests.get(self.ENDPOINTS['realm'], headers=self.auth_header) if r.status_code > 299: raise BaseException(f'Invalid return code {r.status_code} with message: {r.text}') return r.json() # === Import Methods === def import_realm(self, file): with open(file, 'r') as file: realm = json.load(file) r = requests.post(self.ENDPOINTS['realm'], headers=self.auth_header, json=realm) if r.status_code > 299: raise BaseException(f'Invalid return code {r.status_code} with message: {r.text}') else: print(f'Successfully imported realm {realm["realm"]}') # === Export Methods === def export_realm(self, folder=None): write_directory = os.path.join(folder, 'realms') if folder else 'realms' realms = self.get_realms() if not os.path.exists(write_directory): os.makedirs(write_directory) for realm in realms: with open(os.path.join(write_directory, f"{realm['realm']}.json"), 'w') as f: f.write(json.dumps(realm, indent=4)) ```
{ "source": "5GCity/5GCity-infrastructure-abstraction", "score": 2 }
#### File: lib/adapters/ruckus.py ```python import json, requests import uuid from urllib3.exceptions import InsecureRequestWarning from copy import deepcopy _headers = { 'Content-type': 'application/json;charset=UTF-8', } EMPTY_TOPOLOGY = { "boxes": [], "links": [] } class RuckusWiFi(object): """Integration for Ruckus Controller Arguments: Wireless {[type]} -- [description] """ def __init__(self, controller_id=None, ip='127.0.0.1', port=8080, url="http://{}:{}/", topology=EMPTY_TOPOLOGY, chunks=[], phy_id_mapping=None, username=None, password=<PASSWORD>): self.id = controller_id self._ip = ip self._port = port self._url = url.format(ip,port) self._topology = topology self._phy_id_mapping = phy_id_mapping self._username = username self._password = password self._chunks = {} for chunk in chunks: self._chunks[chunk["id"]] = chunk # Disable Warnings about insecure SSL being used requests.packages.urllib3.disable_warnings( category=InsecureRequestWarning) # GET WIRELESS CONFIG FROM RUCKUS CONTROLLER # { # "channelNumber": 36, # "channelBandwidth": 40, # "txPower": 2000 # } ticket = self.__login() # TODO: Implement GET tx Power, by default now is "Full" for box in self._topology["boxes"]: for phy in box["phys"]: if self._phy_id_mapping[phy["id"]]["type"] == "2.4GHZ": u_path = '/v7_0/rkszones/{p[zone_id]}/apgroups/{p[apgroup_id]}?serviceTicket={t}'.\ format(p=self._phy_id_mapping[phy["id"]],t=ticket) url = self._url + u_path resp = requests.get( url, headers=_headers, verify = False ) if resp.status_code == 200: ap_group = json.loads(resp.text) phy["config"] = { "channelNumber": ap_group["wifi24"]["channel"], "channelBandwidth": ap_group["wifi24"]["channelWidth"], "txPower": 3600 } if self._phy_id_mapping[phy["id"]]["type"] == "5GHZ": u_path = '/v7_0/rkszones/{p[zone_id]}/apgroups/{p[apgroup_id]}?serviceTicket={t}'.\ format(p=self._phy_id_mapping[phy["id"]],t=ticket) url = self._url + u_path resp = requests.get( url, headers=_headers, verify = False ) if resp.status_code == 200: ap_group = json.loads(resp.text) phy["config"] = { "channelNumber": ap_group["wifi50"]["indoorChannel"], "channelBandwidth": ap_group["wifi50"]["channelWidth"], "txPower": 3600 } self.__logoff(ticket) # chunkete-topology-controller implementation def getChunketeTopology(self): return deepcopy(self._topology), 200 def putInterfaceLTEConfig(self, phy_id, parameters): return '',401 def putInterfaceType(self, phy_id, phy_type): for box in self._topology["boxes"]: for phy in box["phys"]: if phy["id"] == phy_id: if phy["type"] != phy_type: return '', 401 else: return '', 200 def putInterfaceWiredConfig(self, phy_id, parameters): for box in self._topology["boxes"]: for phy in box["phys"]: if phy["id"] == phy_id: if phy["config"] != json.loads(parameters): return '',401 else: return '',200 def putInterfaceWirelessConfig(self, phy_id, parameters): # Create a session on Ruckus controller ticket = self.__login() # TODO: Implement tx Power, by default now is "Full" for box in self._topology["boxes"]: for phy in box["phys"]: if phy["id"] == phy_id: if self._phy_id_mapping[phy_id]["type"] == "2.4GHZ": config = { "wifi24": { "channelWidth": json.loads( parameters)["channelBandwidth"], "channel": json.loads( parameters)["channelNumber"], } } u_path = '/v7_0/rkszones/{p[zone_id]}/'.format( p=self._phy_id_mapping[phy_id]) u_path += '/apgroups/{p[apgroup_id]}'.format( p=self._phy_id_mapping[phy_id]) u_path += '?serviceTicket={t}'.format( p=self._phy_id_mapping[phy_id], t=ticket) url = self._url + u_path resp = requests.patch( url, data=json.dumps(config), headers=_headers, verify = False ) self.__logoff(ticket) if resp.status_code == 204: phy["config"] = json.loads(parameters) return '', 201 else: return '', 401 elif self._phy_id_mapping[phy_id]["type"] == "5GHZ": config = { "wifi50": { "channelWidth": json.loads( parameters)["channelBandwidth"], "indoorChannel": json.loads( parameters)["channelNumber"], "outdoorChannel": json.loads( parameters)["channelNumber"] } } u_path = '/v7_0/rkszones/{p[zone_id]}/'.format( p=self._phy_id_mapping[phy_id]) u_path += '/apgroups/{p[apgroup_id]}'.format( p=self._phy_id_mapping[phy_id]) u_path += '?serviceTicket={t}'.format( p=self._phy_id_mapping[phy_id], t=ticket) url = self._url + u_path resp = requests.patch( url, data=json.dumps(config), headers=_headers, verify = False ) self.__logoff(ticket) if resp.status_code == 204: phy["config"] = json.loads(parameters) return '', 201 else: return '', 401 elif self._phy_id_mapping[phy_id]["type"] == "WIRED": # TODO: Wired interface config implied return '', 201 # chunkete-chunk-controller implementation def getAllChunks(self): return [self._chunks[key] for key in self._chunks.keys()], 200 def registerNewChunk(self, content): chunk = json.loads(content) id = str(uuid.uuid4()) self._chunks[id] = chunk self._chunks[id]["id"]=id data = { "id": id } return data, 201 def getChunkById(self, chunk_id): return self._chunks[chunk_id] def removeExistingChunk(self, chunk_id): del self._chunks[chunk_id] return '', 200 # chunkete-swam-controller implementation def getAllSWAMServices(self, chunk_id): return [ service for service in self._chunks[chunk_id]["serviceList"] ] def registerNewSWAMService(self, chunk_id, content): service = json.loads(content) if service["wirelessConfig"]["encryption"] == "NONE": encryption = { "method": "None", } elif service["wirelessConfig"]["encryption"] == "WPA": encryption = { "method": "WPA_Mixed", "algorithm": "TKIP_AES", "passphrase": service["wirelessConfig"]["password"], } elif service["wirelessConfig"]["encryption"] == "WPA2": encryption = { "method": "WPA2", "algorithm": "AES", "mfp": "disabled", "passphrase": service["wirelessConfig"]["password"], } elif service["wirelessConfig"]["encryption"] == "WEP": encryption = { "method": "WEP_64", "keyIndex": 1, "keyInHex": service["wirelessConfig"]["password"], } else: return '',401 # Create WLAN ticket = self.__login() u_path = '/v7_0/rkszones/{p[zone_id]}/wlans?serviceTicket={t}'.format( p=self._phy_id_mapping, t=ticket) url = self._url + u_path wlan = { "name": service["wirelessConfig"]["ssid"], "ssid": service["wirelessConfig"]["ssid"], "description": "Created by 5GCity Slice Manager", "encryption": encryption, "vlan": { "accessVlan": service["vlanId"], } } resp = requests.post( url, data= json.dumps(wlan), headers=_headers, verify= False ) # If WLAN Created OK, raise it up on each of the interfaces if resp.status_code == 201: service["id"] = json.loads(resp.text)["id"] return_data = { "id": service["id"] } data = { "id": service["id"] } for phy in service["selectedPhys"]: if self._phy_id_mapping[phy]["type"] in ["2.4GHZ","5GHZ"]: u_path = '/v7_0/rkszones/{p[zone_id]}/'.format( p=self._phy_id_mapping[phy]) u_path += 'wlangroups/{p[wlangroup_id]}/'.format( p=self._phy_id_mapping[phy] ) u_path += 'members?serviceTicket={t}'.format( t=ticket) url = self._url + u_path resp = requests.post( url, data= json.dumps(data), headers=_headers, verify= False ) if resp.status_code != 201: u_path = '/v7_0/rkszones/{}/wlangroups/{}/members?serviceTicket={}'.format( self._phy_id_mapping["zone_id"], data["id"],ticket) url = self._url + u_path resp = requests.delete( url, headers=_headers, verify = False ) return resp.text, 401 self._chunks[chunk_id]["serviceList"].append(service) self.__logoff(ticket) return return_data, 201 else: return resp.text, 401 def getSWAMServiceById(self, chunk_id, service_id): for service in self._chunks[chunk_id]["serviceList"]: if service["id"] == service_id: return service return '', 404 def removeExistingSWAMService(self, chunk_id, service_id): service_list = self._chunks[chunk_id]["serviceList"] for index in range(len(service_list)): if service_list[index]["id"] == service_id: # Remove WLAN ticket = self.__login() u_path = '/v7_0/rkszones/{}/wlans/{}?serviceTicket={}'.format( self._phy_id_mapping["zone_id"], service_id, ticket) url = self._url + u_path resp = requests.delete( url, headers=_headers, verify= False ) if resp.status_code == 204: self._chunks[chunk_id]["serviceList"].pop(index) self.__logoff(ticket) return '', 200 else: self.__logoff(ticket) return resp.text, 401 return resp.text, 404 # Session management on Ruckus controller def __login(self): url = (self._url + "/v7_0/serviceTicket") ticket_request = { "username": self._username, "password": self._password, } resp = requests.post( url, data= json.dumps(ticket_request), headers=_headers, verify=False ) return json.loads(resp.text)["serviceTicket"] def __logoff(self, ticket): url = self._url url += "/v7_0/serviceTicket?serviceTicket={}".format(ticket) requests.delete( url, headers=_headers, verify=False) ``` #### File: proxy/web/app_web.py ```python from sqlalchemy.exc import IntegrityError from sqlalchemy.orm.exc import NoResultFound from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy import Column, ForeignKey, Integer, String from datetime import datetime from werkzeug.middleware.proxy_fix import ProxyFix from flask import Flask, Response, jsonify, render_template, request import logging import os import sys import json import uuid sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib.adapters.ruckus import RuckusWiFi from lib.adapters.i2cat import I2catController from conf.config import CONTROLLERS, RUCKUS_ID_MAPPING, RUCKUS_INIT_TOPOLOGY # Logger configuration log_filename = "logs/output.log" os.makedirs(os.path.dirname(log_filename), exist_ok=True) logging.basicConfig( format="%(asctime)s [%(levelname)s] %(funcName)s %(message)s", datefmt='%Y-%m-%d %H:%M:%S', filename=log_filename, level=logging.INFO) logging.getLogger('requests').setLevel(logging.ERROR) logger = logging.getLogger() log_base = "{}:{}:{}" # INTERFACE,endpoint,REQ/RESP,content # Flask app app = Flask(__name__) app.config.from_object(__name__) # Define database Base = declarative_base() engine = create_engine('sqlite:///file.db', echo=False) def generate_uuid(): return str(uuid.uuid4()) class Chunk(Base): __tablename__ = 'chunks' id = Column(String, primary_key=True, default=generate_uuid) # controllers_chunk is a dictionary where the keys are the ids of the # controller and the value is a list of the chunk in that controller # in the form "{controllerid1:[chunkid,...],controllerid2:...}" controllers_chunk = Column(String) # controllers_phys is a dictionary where the keys are the ids of the # controller and the value is a list of the chunk in that controller # in the form "{controllerid1:[chunkid,...],controllerid2:...}" controllers_phys = Column(String) phyList = Column(String) name = Column(String) assignedQuota = Column(String) serviceList = Column(String) linkList = Column(String) chunk_json = Column(String) def __repr__(self): return "{}, {}, {}, {}, {}, {}, {}, {}, {}".format( self.id, self._controllers_chunk, self.controllers_phys, self.phyList, self.name, self.assignedQuota, self.serviceList, self.linkList, self.chunk_json ) class Box(Base): __tablename__ = 'boxes' id = Column(String, primary_key=True, default=generate_uuid) controller_id = Column(Integer) box_id_controller = Column(String) name = Column(String) location = Column(String) phys = Column(String) box_json = Column(String) def __repr__(self): return "{}, {}, {}, {}, {}, {}, {}".format( self.id, self.controller_id, self.box_id_controller, self.name, self.location, self.phys, self.box_json ) class Phy(Base): __tablename__ = 'phys' id = Column(String, primary_key=True, default=generate_uuid) controller_id = Column(Integer) phy_id_controller = Column(String) type = Column(String) name = Column(String) config = Column(String) virtualInterfaceList = Column(String) phy_json = Column(String) def __repr__(self): return "{}, {}, {}, {}, {}, {}, {}, {}".format( self.id, self.controller_id, self.phy_id_controller, self.type, self.name, self.config, self.virtualInterfaceList, self.phy_json ) class Vif(Base): __tablename__ = 'vifs' id = Column(String, primary_key=True, default=generate_uuid) service_id = Column(String) controller_id = Column(Integer) phy_id = Column(String) name = Column(String) vif_json = Column(String) def __repr__(self): return "{}, {}, {}, {}, {}, {}".format( self.id, self.service_id, self.controller_id, self.phy_id, self.name, self.vif_json ) class Vlan(Base): __tablename__ = 'vlans' id = Column(String, primary_key=True, default=generate_uuid) service_id = Column(String) tag = Column(Integer) controllers_vlans_id = Column(String) def __repr__(self): return "{}, {}, {}".format( self.id, self.service_id, self.tag, self.controller_vlans_id, ) class Service(Base): __tablename__ = 'services' id = Column(String, primary_key=True, default=generate_uuid) # controllers_services is a dictionary where the keys are the ids of the # controller and the value is a list of the chunk in that controller # in the form "{controllerid1:[serviceid,...],controllerid2:...}" controllers_services = Column(String) # controllers_phys is a dictionary where the keys are the ids of the # controller and the value is a list of the chunk in that controller # in the form "{controllerid1:[chunkid,...],controllerid2:...}" controllers_phys = Column(String) lteConfigCellReserved = Column(String) lteConfigMMEAddress = Column(String) lteConfigMMEPort = Column(Integer) lteConfigPLMNId = Column(String) selectedPhys = Column(String) selectedVifs = Column(String) wirelessConfigEncryption = Column(String) wirelessConfigPassword = Column(String) wirelessConfigSSID = Column(String) vlanId = Column(String) service_json = Column(String) def __repr__(self): return "{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}".format( self.id, self.controllers_services, self.controllers_phys, self.lteConfigCellReserved, self.lteConfigMMEAddress, self.lteConfigMMEPort, self.lteConfigPLMNId, self.selectedPhys, self.selectedVifs, self.wirelessConfigSSID, self.wirelessConfigEncryption, self.wirelessConfigPassword, self.vlanId, self.service_json ) # helpers to translate dabatase type class objects into dictionaries def _dictService(service): vlan = session.query(Vlan).filter(Vlan.service_id == service.id).one() if service.wirelessConfigSSID: wirelessConfig = { "ssid": service.wirelessConfigSSID, "encryption": service.wirelessConfigEncryption, "password": service.wirelessConfigPassword } else: wirelessConfig = None if service.lteConfigPLMNId: lteConfig = { "plmnId": service.lteConfigPLMNId, "cellReserved": service.lteConfigCellReserved, "mmeAddress": service.lteConfigMMEAddress, "mmePort": service.lteConfigMMEPort } else: lteConfig = None response_data = { "id": service.id, "serviceType": "SWAM_SERVICE", "selectedRoot": 0, "vlanId": { "id": vlan.id, "vlanId": vlan.tag }, "selectedVifs": [{"id": x} for x in eval(service.selectedVifs)], "wirelessConfig": wirelessConfig, "lteConfig": lteConfig } return response_data def _dictChunk(chunk): services = session.query(Service).filter( Service.id.in_(eval(chunk.serviceList))).all() phys = session.query(Phy).filter(Phy.id.in_(eval(chunk.phyList))).all() response_data = { "id": chunk.id, "name": chunk.name, "assignedQuota": 0, "serviceList": [_dictService(service) for service in services], "physicalInterfaceList": [_dictPhy(phy) for phy in phys], "linkList": [] } return response_data def _dictPhy(phy): vifs = session.query(Vif).filter( Vif.id.in_(eval(phy.virtualInterfaceList))).all() if phy.config: config = eval(phy.config) else: config = phy.config response_data = { "id": phy.id, "name": phy.name, "type": phy.type, "virtualInterfaceList": [_dictVif(vif) for vif in vifs], "config": config } return response_data def _dictVif(vif): response_data = { "id": vif.id, "name": vif.name, "toRootVlan": 0, "toAccessVlan": 0, "toAccessPort": 0, "toRootPort": 0, "openFlowPortList": [] } return response_data # Create database session Base.metadata.create_all(engine) DBSession = sessionmaker(bind=engine) session = DBSession() # Initialize controller list controllers = [] # controllers = {} # formatter for the returned errors API_RESPONSE = { "OK": { "content": '', "code": 200 }, "CREATED": { "content": '', "code": 201 }, "CONTROLLER": { "content": 'Controller Error', "code": 503 }, "NOTFOUND": { "content": 'Not Found', "code": 404 }, "DB_INTEGRITY": { "content": 'DB Integrity', "code": 401 }, "VERIFICATION_ERROR": { "content": 'Verification Error', "code": 401 } } def errorResponder(error, message): # TODO: implement timestamp dt = datetime.today() return json.dumps({ "timestamp": dt.isoformat(sep='T'), "status": API_RESPONSE[error]["code"], "error": API_RESPONSE[error]["content"], "message": message, "path": request.path }), API_RESPONSE[error]["code"] NORTHBOUND = "NORTHBOUND" SOUTHBOUND = "SOUTHBOUND" INTERNAL = "INTERNAL" REQUEST = "REQUEST" RESPONSE = "RESPONSE" REQRESP = "REQ/RESP" ROLLBACK = "ROLLBACK" # Load controllers info from config.py and register topologies # Look for first phy_id free in database db_id_phy_id_list = session.query(Phy.id, Phy.phy_id_controller).all() # db_id_list = [r for (r, a) in db_id_phy_id_list] # db_id_list.sort() # if len(db_id_list) == 0: # new_phy_id = 1 # else: # new_phy_id = db_id_list[len(db_id_list)-1]+1 # # Look for first box_id free in database db_id_box_id_list = session.query(Box.id, Box.box_id_controller).all() # db_id_list = [r for (r, a) in db_id_box_id_list] # db_id_list.sort() # if len(db_id_list) == 0: # new_box_id = 1 # else: # new_box_id = db_id_list[len(db_id_list)-1]+1 new_box_id = str(uuid.uuid4()) # ******************************* # Initialize proxy runtime status # ******************************* # # INITIAL TOPOLOGY RECOVERY (Boxes, Phys): # ========================= # -RUCKUS type controller initial topology recovered from config.py # -I2CAT type controller initial topology recovered from live # SOUTHBOUND REQUEST to controller # # CURRENT STATE (Chunks, Services, VirtualInterfaces): # ============== # -RUCKUS type controller current state recovered from database and # controllers runtime status # -I2CAT type controller current state kept on controller # for item in CONTROLLERS: if item['type'] == 'ruckus': # Recover the list of chunks from the database db_chunks = session.query(Chunk).all() chunks = [] for db_chunk in db_chunks: if eval(db_chunk.controllers_chunk)[len(controllers)]: chunk = _dictChunk(db_chunk) phys_to_pop = [] services_to_pop = [] for service in chunk["serviceList"]: db_service = session.query(Service).filter( Service.id == service["id"]).one() if len(controllers) in \ eval(db_service.controllers_services).keys(): service["id"] = eval(db_service.controllers_services)[ len(controllers)] else: services_to_pop.append(service) [chunk["serviceList"].remove(service) for service in services_to_pop] for phy in chunk["physicalInterfaceList"]: try: db_phy = session.query(Phy).filter( Phy.id == phy["id"], Phy.controller_id == len(controllers)).one() phy = db_phy.phy_id_controller except NoResultFound: phys_to_pop.append(phy) [chunk["physicalInterfaceList"].remove( phy) for phy in phys_to_pop] chunk["id"] = eval(db_chunk.controllers_chunk)[ len(controllers)] chunks.append(chunk) phy_id_mapping = RUCKUS_ID_MAPPING controller = RuckusWiFi( controller_id=item['id'], ip=item['ip'], port=item['port'], url=item['url'], topology=item['topology'], chunks=chunks, phy_id_mapping=phy_id_mapping, username=item['username'], password=item['password'] ) controllers.append(controller) # controllers[controller.controller_id] = controller elif item['type'] == 'i2cat': controller = I2catController( controller_id=item['id'], ip=item['ip'], port=item['port'], url=item['url'] ) controllers.append(controller) # controllers[controller.controller_id] = controller for box in controller.getChunketeTopology()[0]["boxes"]: if box['id'] not in [r for (a, r) in db_id_box_id_list]: try: # initial_topology["boxes"].append(box) new_box = Box( name=box["name"], location=json.dumps(box["location"]), controller_id=item['id'], box_id_controller=box['id'], phys=json.dumps(box["phys"]), box_json=json.dumps(box)) session.add(new_box) # count_phys = 0 for phy in box["phys"]: if phy['id'] not in [r for (a, r) in db_id_phy_id_list]: new_phy = Phy( name=phy["name"], type=phy["type"], controller_id=item['id'], phy_id_controller=phy['id'], config=str(phy["config"]), virtualInterfaceList=json.dumps([]), phy_json=json.dumps(phy)) session.add(new_phy) # count_phys += 1 session.commit() # new_phy_id += count_phys # new_box_id += 1 except IntegrityError as ex: session.rollback() session.close() def root_dir(): return os.path.abspath(os.path.dirname(__file__)) def get_file(filename): try: src = os.path.join(root_dir(), filename) # Figure out how flask returns static files # Tried: # - render_template # - send_file # This should not be so non-obvious return open(src).read() except IOError as exc: logger.error("Impossible to read file", exc_info=True) return str(exc) @app.route('/') def root_page(): # return render_template('proxy.html') return API_RESPONSE["OK"]["content"], API_RESPONSE["OK"]["code"] @app.after_request def flaskResponse(response): body = "" if response.get_data(): response.headers["Content-Type"] = "application/json;charset=UTF-8" body = json.loads(response.get_data()) log_content = " '{}' {} :code:{}:body:{}".format( request.method, request.path, response.status_code, body) logger.info(log_base.format(NORTHBOUND, RESPONSE, log_content)) return response @app.before_request def before(): # todo with request # e.g. print request.headers pass # Topology API implementation @app.route('/chunkete/topology', methods=['GET']) def getChunketeTopology(): resp = { "boxes": [], "links": [] } log_content = "" logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) for index_controller in range(len(controllers)): try: boxes = session.query(Box).filter( Box.controller_id == index_controller).all() (controller_resp, code) = controllers[index_controller].getChunketeTopology() log_content = "controller:{}:response:{}/{}".format( index_controller, code, controller_resp) logger.info(log_base.format(SOUTHBOUND, REQRESP, log_content)) if code == API_RESPONSE["OK"]["code"]: for box in controller_resp["boxes"]: for index_phy in range(len(box["phys"])): phy = session.query(Phy).filter( Phy.controller_id == index_controller).filter( Phy.phy_id_controller == box["phys"][index_phy]["id"] ).one() box["phys"][index_phy]["id"] = phy.id for db_box in boxes: if db_box.box_id_controller == box["id"]: box["id"] = db_box.id break resp["boxes"].append(box) else: return controller_resp, code except NoResultFound: return json.dumps({ "timestamp": "2019-09-10T14:18:24.866+0000", "status": API_RESPONSE["NOTFOUND"]["code"], "error": API_RESPONSE["NOTFOUND"]["content"], "message": "No Result Found for the request", "path": request.path }), API_RESPONSE["NOTFOUND"]["code"] except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() response = jsonify(resp) return response, API_RESPONSE["OK"]["code"] @app.route( '/chunkete/topology/physicalInterface/<phy_id>/LTEConfig', methods=['PUT']) def putInterfaceLTEConfig(phy_id): # { # "cellIdentity": 256, # "earfcndl": 41690, # "phyCellId": 5, # "prachrootseqindex": 100, # "primaryMMEAddress": "192.168.100.25", # "primaryMMEPort": 333, # "primaryPlmnId": "00101", # "refSignalPower": -40, # "reservedForOperatorUse": "not-reserved", # "trackingAreaCode": 67 # } try: content = request.data content_dict = json.loads(content) log_content = "phy_id:{}:content:{}".format(phy_id, content_dict) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) if 0 > content_dict["cellIdentity"] > 256: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if content_dict["earfcndl"] not in [i for j in ( range(2750, 3449), range(41690, 43489), range(37750, 38249)) for i in j]: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if 0 > content_dict["phyCellId"] > 500: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if 0 > content_dict["prachrootseqindex"] > 1023: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if "primaryMMEAddress" not in content_dict.keys(): return errorResponder( "VERIFICATION_ERROR", "Malformed request") if "primaryMMEPort" not in content_dict.keys(): return errorResponder( "VERIFICATION_ERROR", "Malformed request") if "primaryPlmnId" not in content_dict.keys(): return errorResponder( "VERIFICATION_ERROR", "Malformed request") if -40 > content_dict["refSignalPower"] > -10: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if content_dict["reservedForOperatorUse"] != "not-reserved": return errorResponder( "VERIFICATION_ERROR", "Malformed request") if 0 > content_dict["trackingAreaCode"] > 65535: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if content: phy = session.query(Phy).filter(Phy.id == phy_id).one() response, code = controllers[phy.controller_id].\ putInterfaceLTEConfig( phy.phy_id_controller, content) log_content = "controller:{}:phy_id_controller:{}:phy_id:{}" log_content += ":content:{}:response:{}/{}".\ format( phy.controller_id, phy.phy_id_controller, phy_id, content, code, response) logger.info(log_base.format(SOUTHBOUND, REQRESP, log_content)) return jsonify(response), code else: return errorResponder( "VERIFICATION_ERROR", "Malformed request") except KeyError: return errorResponder( "VERIFICATION_ERROR", "Malformed request") except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route( '/chunkete/topology/physicalInterface/<phy_id>/type/<phy_type>', methods=['PUT']) def putInterfaceType(phy_id, phy_type): try: log_content = "phy_id:{}:phy_type:{}".format(phy_id, phy_type) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) phy = session.query(Phy).filter(Phy.id == phy_id).one() response, code = controllers[phy.controller_id].putInterfaceType( phy.phy_id_controller, phy_type) log_content = "controller:{}:phy_id_controller:{}:phy_id:{}" log_content += ":phy_type:{}:response:{}/{}".\ format( phy.controller_id, phy.phyid_controller, phy_id, phy_type, code, response) logger.info( log_base.format(SOUTHBOUND, REQRESP, log_content)) return response, code except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route( '/chunkete/topology/physicalInterface/<phy_id>/wiredConfig', methods=['PUT']) def putInterfaceWiredConfig(phy_id): try: content = request.data log_content = "phy_id:{}:content:{}".format( phy_id, json.loads(content)) logger.info( log_base.format(NORTHBOUND, REQUEST, log_content)) if content: phy = session.query(Phy).filter(Phy.id == phy_id).one() response, code = controllers[phy.controller_id].\ putInterfaceWiredConfig( phy.phy_id_controller, content) log_content = "controller:{}:phy_id_controller:{}:phy_id:{}" log_content += ":response:{}/{}".\ format( phy.controller_id, phy.phy_id_controller, phy_id, code, response) logger.info( log_base.format(SOUTHBOUND, REQRESP, log_content)) return response, code except KeyError: return errorResponder( "VERIFICATION_ERROR", "Malformed request") except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route( '/chunkete/topology/physicalInterface/<phy_id>/wirelessConfig', methods=['PUT']) def putInterfaceWirelessConfig(phy_id): # Verify content # { # "channelBandwidth": 20, # (Se aceptan 20, 40 y 80) # "channelNumber": 36, # (Se acepta cualquier canal de la banda de 2.4 y/o de la banda de 5GHz; # según el nodo puede o no sopotar DFS así que no está restringido # a canales "normales") # "txPower": 2000 # (Valor en mBm; se acepta desde 0 hasta 3500 aunque lo # normal suelen ser 2300) # } try: content = request.data log_content = "phy_id:{}:content:{}".format( phy_id, json.loads(content)) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) content_dict = json.loads(content) if content_dict["channelBandwidth"] not in [20, 40, 80]: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if content_dict["channelNumber"] not in [i for j in ( range(1, 11), range(36, 68, 4), range(100, 140, 4)) for i in j]: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if 0 >= content_dict["txPower"] > 3500: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if content: phy = session.query(Phy).filter(Phy.id == phy_id).one() response, code = controllers[phy.controller_id].\ putInterfaceWirelessConfig(phy.phy_id_controller, content) log_content = "controller:{}:phy_id_controller:{}:phy_id:{}" log_content += ":content:{}:response:{}/{}".\ format( phy.controller_id, phy.phy_id_controller, phy_id, content, code, response) logger.info( log_base.format(SOUTHBOUND, REQRESP, log_content)) return jsonify(response), code else: return errorResponder( "VERIFICATION_ERROR", "Malformed request") return (API_RESPONSE["CREATED"]["content"], API_RESPONSE["CREATED"]["code"]) except KeyError: logger.error("Malformed request") return errorResponder( "VERIFICATION_ERROR", "Malformed request") except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() # Chunk API implementation @app.route('/chunkete/chunk', methods=['GET']) def getAllChunks(): log_content = "" logger.info( log_base.format(NORTHBOUND, REQUEST, log_content)) # chunks = {} # chunk_id_list =[] response = [] try: db_chunks = session.query(Chunk).all() for db_chunk in db_chunks: response.append(_dictChunk(db_chunk)) return jsonify(response), API_RESPONSE["OK"]["code"] except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route('/chunkete/chunk', methods=['POST']) def registerNewChunk(): try: content = request.data log_content = "content:{}".format(json.loads(content)) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) if content: chunk_dict = json.loads(content) controllers_phys = {} controllers_content = {} # Split the phys included in the chunk per controller for phy in chunk_dict["physicalInterfaceList"]: phy = session.query(Phy).filter(Phy.id == phy["id"]).one() phy_dict = json.loads(phy.phy_json) phy_id_dict = {"id": phy_dict["id"]} if phy.controller_id in controllers_phys.keys(): controllers_phys[phy.controller_id].append( phy.phy_id_controller) controllers_content[ phy.controller_id][ "physicalInterfaceList"].append(phy_id_dict) else: controllers_phys[phy.controller_id] = [phy.phy_id_controller] controllers_content[phy.controller_id] = { "name": chunk_dict["name"], "physicalInterfaceList": [phy_id_dict], } if "assignedQuota" in chunk_dict.keys(): controllers_content[phy.controller_id]["assignedQuota"] = \ chunk_dict["assignedQuota"] else: chunk_dict["assignedQuota"] = 0 controllers_content[phy.controller_id]["assignedQuota"] = 0 if "linkList" in chunk_dict.keys(): controllers_content[phy.controller_id]["linkList"] = \ chunk_dict["linkList"] else: chunk_dict["linkList"] = [] controllers_content[phy.controller_id]["linkList"] = [] if "serviceList" in chunk_dict.keys(): controllers_content[phy.controller_id]["serviceList"] = \ chunk_dict["serviceList"] else: chunk_dict["serviceList"] = [] controllers_content[phy.controller_id]["serviceList"] = [] # # Create a new chunk and add to database # # Get the next free ID in db # db_id_list = session.query(Chunk.id).all() # db_id_list = [r for (r, ) in db_id_list] # db_id_list.sort() # if len(db_id_list) == 0: # new_chunk_id = 1 # else: # new_chunk_id = db_id_list[len(db_id_list)-1]+1 # Add the chunk in the database chunk = Chunk( name=chunk_dict["name"], serviceList=json.dumps([]), assignedQuota=chunk_dict["assignedQuota"], controllers_phys=str(controllers_phys), phyList=str( [phy["id"] for phy in chunk_dict["physicalInterfaceList"]] ), linkList=json.dumps([]), chunk_json=json.dumps(chunk_dict)) session.add(chunk) # Register the chunk on each of the controllers controllers_chunk_dict = {} for controller_id in controllers_content.keys(): response, code = controllers[controller_id].registerNewChunk( json.dumps(controllers_content[controller_id])) log_content = "controller:{}:content:{}" log_content += ":response:{}/{}".\ format( controller_id, json.dumps( controllers_content[controller_id]), code, response) logger.info(log_base.format(SOUTHBOUND, REQRESP, log_content)) if code == API_RESPONSE["CREATED"]["code"]: controllers_chunk_dict[controller_id] = response["id"] else: return errorResponder( "CONTROLLER", "Managed Controller returned an error") # Update Service in Database chunk_dict["id"] = chunk.id chunk.chunk_json = json.dumps(chunk_dict) chunk.controllers_chunk = str(controllers_chunk_dict) session.commit() return json.dumps( {'id': chunk.id}), API_RESPONSE["CREATED"]["code"] except KeyError: return errorResponder( "VERIFICATION_ERROR", "Malformed request") except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route('/chunkete/chunk/<chunk_id>', methods=['GET']) def getChunkById(chunk_id): log_content = "chunk_id:{}".format(chunk_id) logger.info( log_base.format(NORTHBOUND, REQUEST, log_content)) try: chunk = session.query(Chunk).filter(Chunk.id == chunk_id).one() response_data = _dictChunk(chunk) return jsonify( response_data), API_RESPONSE["OK"]["code"] except NoResultFound: return errorResponder( "NOTFOUND", "Object not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route('/chunkete/chunk/<chunk_id>', methods=['DELETE']) def removeExistingChunk(chunk_id): log_content = "chunk_id:{}".format(chunk_id) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) try: chunk = session.query(Chunk).filter(Chunk.id == chunk_id).one() session.close() controllers_phys = eval(chunk.controllers_phys) serviceList = eval(chunk.serviceList) # Remove the Services from the chunk while serviceList: removeExistingSWAMService( chunk_id, serviceList[0], interface=INTERNAL) serviceList.pop(0) for controller_id in controllers_phys.keys(): response, code = controllers[controller_id].removeExistingChunk( eval(chunk.controllers_chunk)[controller_id]) log_content = "controller:{}:chunk_id:{}" log_content += ":response:{}/{}".\ format(controller_id, chunk_id, code, response) logger.info(log_base.format(SOUTHBOUND, REQRESP, log_content)) # Remove the chunk from the database session.delete(chunk) session.commit() return API_RESPONSE["OK"]["content"], API_RESPONSE["OK"]["code"] except NoResultFound: return errorResponder("NOTFOUND", "Item not found") except IntegrityError: return errorResponder("DB_INTEGRITY", "Database integrity error") finally: session.close() # Service API implementation @app.route('/chunkete/chunk/<chunk_id>/service/SWAM', methods=['GET']) def getAllSWAMServices(chunk_id): log_content = "chunk_id:{}".format(chunk_id) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) response = [] try: db_chunk = session.query(Chunk).filter(Chunk.id == chunk_id).one() for service_id in eval(db_chunk.serviceList): db_service = session.query(Service).filter( Service.id == service_id).one() response.append(_dictService(db_service)) return jsonify(response), API_RESPONSE["OK"]["code"] except NoResultFound: return errorResponder("NOTFOUND", "Item not found") finally: session.close() @app.route('/chunkete/chunk/<chunk_id>/service/SWAM', methods=['POST']) def registerNewSWAMService(chunk_id): # VERIFY CONTENT # { # "lteConfig": { (Más info en los mails que te he pasado de accelleran) # "cellReserved": "not-reserved", # "mmeAddress": "192.168.50.2", # "mmePort": 333, # "plmnId": "00101" # }, # "selectedPhys": [ # (Sólo se aceptan interfaces de tipo SUB6_ACCESS, # LTE_PRIMARY_PLMN y WIRED_TUNNEL) # 14, 23 # ], # "vlanId": 201, (1-4095) # "wirelessConfig": { # "encryption": "WPA", (NONE, WPA, WPA2, WEP aceptados) # "password": "<PASSWORD>", # (No se aceptan espacios. Debe contener un mínimo de # 8 caracteres o estar vacia en caso de encryption == "NONE") # "ssid": "Test" (No se aceptan espacios) # } # } PHY_TYPES = ["SUB6_ACCESS", "LTE_PRIMARY_PLMN", "WIRED_TUNNEL"] ENCRYPTION_TYPES = ["NONE", "WPA", "WPA2", "WEP"] # Action record for rollback in case something fails # { # <controller>:{ # "chunk_id": <service_id> # "service_id": <service_id> # } # } rollback_flag = True rollback = {} try: content = request.data log_content = "chunk_id:{}:content:{}".format( chunk_id, json.loads(content)) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) if content: service_dict = json.loads(content) # if "lteConfig" in service_dict.keys(): if "lteConfig" in service_dict.keys(): if service_dict["lteConfig"]: pass # if service_dict["lteConfig"]["encryption"] not in \ # ENCRYPTION_TYPES: # return errorResponder( # "VERIFICATION_ERROR", "Malformed request") # elif len(service_dict["lteConfig"]["password"]) < 8: # if service_dict[ # "wirelessConfig"]["encryption"] != "NONE": # return errorResponder( # "VERIFICATION_ERROR", "Malformed request") # elif ' ' in service_dict["lteConfig"]["ssid"]: # return errorResponder( # "VERIFICATION_ERROR", "Malformed request") else: service_dict["lteConfig"] = { "cellReserved": None, "mmeAddress": None, "mmePort": None, "plmnId": None } if "wirelessConfig" in service_dict.keys(): if service_dict["wirelessConfig"]: if service_dict["wirelessConfig"]["encryption"] not in \ ENCRYPTION_TYPES: return errorResponder( "VERIFICATION_ERROR", "Malformed request") elif len(service_dict["wirelessConfig"]["password"]) < 8: if service_dict[ "wirelessConfig"]["encryption"] != "NONE": return errorResponder( "VERIFICATION_ERROR", "Malformed request") elif ' ' in service_dict["wirelessConfig"]["ssid"]: return errorResponder( "VERIFICATION_ERROR", "Malformed request") else: service_dict["wirelessConfig"] = { "encryption": None, "password": None, "ssid": None } if 1 > service_dict["vlanId"] > 4095: return errorResponder( "VERIFICATION_ERROR", "Malformed request") controllers_phys = {} controllers_content = {} controllers_xref = {} selected_vifs = [] db_vifs = [] chunk = session.query(Chunk).filter(Chunk.id == chunk_id).one() for phy_id in service_dict["selectedPhys"]: if phy_id not in eval(chunk.phyList): return errorResponder( "VERIFICATION_ERROR", "Malformed request") phy = session.query(Phy).filter(Phy.id == phy_id).one() if phy.type not in PHY_TYPES: return errorResponder( "VERIFICATION_ERROR", "Malformed request") if phy.controller_id in controllers_phys.keys(): controllers_phys[phy.controller_id].append(phy.id) controllers_xref[phy.controller_id].append( phy.phy_id_controller) controllers_content[phy.controller_id]["selectedPhys"].\ append(phy.phy_id_controller) else: controllers_phys[phy.controller_id] = [phy.id] controllers_xref[phy.controller_id] = [ phy.phy_id_controller] controllers_content[phy.controller_id] = { "selectedPhys": [phy.phy_id_controller], "vlanId": service_dict["vlanId"] } if "lteConfig" in service_dict.keys(): controllers_content[phy.controller_id]["lteConfig"] = \ service_dict["lteConfig"] if "wirelessConfig" in service_dict.keys(): controllers_content[phy.controller_id][ "wirelessConfig"] = service_dict["wirelessConfig"] # Create a new vif and add to database # Get the next free ID in db # db_id_list = session.query(Vif.id).all() # db_id_list = [r for (r, ) in db_id_list] # db_id_list.sort() # if len(db_id_list) == 0: # new_vif_id = 1 # else: # new_vif_id = db_id_list[len(db_id_list)-1]+1 # Create a new service and add to database # Get the next free ID in db # db_id_list = session.query(Service.id).all() # db_id_list = [r for (r, ) in db_id_list] # db_id_list.sort() # if len(db_id_list) == 0: # new_service_id = 1 # else: # new_service_id = db_id_list[len(db_id_list)-1]+1 # TODO: Name the new vif. At the moment, it just takes the # phy name followed by the new_vif_id new_vif_dict = { 'id': str(uuid.uuid4()), 'name': "", "toRootVlan": 0, "toAccessVlan": 0, "toAccessPort": 0, "toRootPort": 0, "openFlowPortList": [] } new_vif_dict['name'] = "{}_{}".\ format(phy.name, new_vif_dict['id']) vif = Vif( id=new_vif_dict['id'], service_id="", phy_id=phy.id, controller_id=phy.controller_id, vif_json=json.dumps(new_vif_dict)) session.add(vif) db_vifs.append(vif) selected_vifs.append(new_vif_dict['id']) phy = session.query(Phy).filter(Phy.id == phy.id).one() virtualInterfaceList = json.loads(phy.virtualInterfaceList) virtualInterfaceList.append(vif.id) phy.virtualInterfaceList = json.dumps(virtualInterfaceList) phy_dict = json.loads(phy.phy_json) if "virtualInterfaceList" in phy_dict: phy_dict["virtualInterfaceList"].append(new_vif_dict) else: phy_dict["virtualInterfaceList"] = [new_vif_dict] phy.phy_json = json.dumps(phy_dict) # Add the service in the database service = Service( controllers_services=str({}), controllers_phys=str(controllers_xref), lteConfigCellReserved=service_dict[ "lteConfig"]["cellReserved"], lteConfigMMEAddress=service_dict["lteConfig"]["mmeAddress"], lteConfigMMEPort=service_dict["lteConfig"]["mmePort"], lteConfigPLMNId=service_dict["lteConfig"]["plmnId"], selectedPhys=str(service_dict["selectedPhys"]), selectedVifs=str(selected_vifs), wirelessConfigEncryption=service_dict[ "wirelessConfig"]["encryption"], wirelessConfigPassword=service_dict[ "wirelessConfig"]["password"], wirelessConfigSSID=service_dict["wirelessConfig"]["ssid"], vlanId=service_dict["vlanId"], service_json=json.dumps(service_dict) ) vlan = Vlan( tag=service_dict["vlanId"], service_id="", controllers_vlans_id="") session.add(vlan) session.add(service) session.flush() # Update Chunk in database # update serviceList serviceList = json.loads(chunk.serviceList) serviceList.append(service.id) chunk.serviceList = json.dumps(serviceList) # update chunk json service_dict["id"] = service.id vlan.service_id = service.id for db_vif in db_vifs: db_vif.service_id = service.id updated_chunk = json.loads(chunk.chunk_json) updated_chunk["serviceList"].append(service_dict) chunk.chunk_json = json.dumps(updated_chunk) service.service_json = json.dumps(service_dict) session.flush() # Register the service on each controller controllers_services_dict = {} for controller_id in controllers_phys.keys(): data, code = controllers[controller_id].\ registerNewSWAMService( eval(chunk.controllers_chunk)[controller_id], json.dumps(controllers_content[controller_id])) log_content = "controller:{}:chunk_id:{}:content:{}" log_content += ":response:{}/{}".\ format( controller_id, chunk_id, json.dumps(controllers_content[controller_id]), code, data) logger.info(log_base.format( SOUTHBOUND, REQRESP, log_content)) if code == API_RESPONSE["CREATED"]["code"]: rollback[controller_id] = { 'chunk_id': eval( chunk.controllers_chunk)[controller_id], 'service_id': data["id"] } controllers_services_dict[controller_id] = data["id"] else: return errorResponder( "CONTROLLER", "Managed Controller returned an error") # Update and add vlan object # vlan.service_id = service.id # vlan.controllers_vlans_id = controllers_services_dict['vlanId'] # Update Service in Database service.controllers_services = str(controllers_services_dict) session.commit() rollback_flag = False return json.dumps( {'id': service.id}), API_RESPONSE["CREATED"]["code"] except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: if rollback_flag: if rollback: for controller_id in rollback.keys(): data, code = controllers[controller_id].\ removeExistingSWAMService( rollback[controller_id]["chunk_id"], rollback[controller_id]["service_id"]) log_content = "controller:{}:chunk_id:{}:service_id:{}" log_content += ":response:{}/{}".\ format( controller_id, rollback[controller_id]["chunk_id"], rollback[controller_id]["service_id"], code, data) logger.info(log_base.format( SOUTHBOUND, ROLLBACK, log_content)) session.close() @app.route( '/chunkete/chunk/<chunk_id>/service/SWAM/<service_id>', methods=['GET']) def getSWAMServiceById(chunk_id, service_id): log_content = "chunk_id:{}:service_id:{}".format(chunk_id, service_id) logger.info(log_base.format(NORTHBOUND, REQUEST, log_content)) try: service = session.query(Service).filter(Service.id == service_id).one() response_data = _dictService(service) return jsonify(response_data), API_RESPONSE["OK"]["code"] except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() @app.route( '/chunkete/chunk/<chunk_id>/service/SWAM/<service_id>', methods=['DELETE']) def removeExistingSWAMService(chunk_id, service_id, interface=NORTHBOUND): log_content = "chunk_id:{}:service_id:{}".format(chunk_id, service_id) logger.info(log_base.format(interface, REQUEST, log_content)) controllers_phys = {} try: # Update Chunk in database chunk = session.query(Chunk).filter(Chunk.id == chunk_id).one() vifs = session.query(Vif).filter( Vif.service_id == service_id).all() for vif in vifs: phy = session.query(Phy).filter(Phy.id == vif.phy_id).one() if phy.controller_id in controllers_phys.keys(): controllers_phys[phy.controller_id].append(phy.id) else: controllers_phys[phy.controller_id] = [phy.id] virtualInterfaceList = eval(phy.virtualInterfaceList) virtualInterfaceList.remove(vif.id) phy.virtualInterfaceList = json.dumps(virtualInterfaceList) session.delete(vif) chunk_dict = json.loads(chunk.chunk_json) serviceList = json.loads(chunk.serviceList) for index in range(len(serviceList)): if serviceList[index] == service_id: service = session.query(Service).filter( Service.id == service_id).one() controllers_services_dict = eval(service.controllers_services) for controller_id in controllers_phys.keys(): response, code = controllers[controller_id].\ removeExistingSWAMService( eval(chunk.controllers_chunk)[controller_id], controllers_services_dict[controller_id]) log_content = "controller:{}:chunk_id:{}:service_id:{}" log_content += ":service_id_controller:{}:response:{}/{}".\ format( controller_id, chunk_id, service_id, controllers_services_dict[controller_id], code, response) logger.info(log_base.format( SOUTHBOUND, REQRESP, log_content)) chunk_dict["serviceList"].pop(index) serviceList.pop(serviceList.index(service_id)) chunk.serviceList = json.dumps(serviceList) chunk.chunk_json = json.dumps(chunk_dict) vlan = session.query(Vlan).filter( Vlan.service_id == service_id).one() session.delete(vlan) session.delete(service) session.commit() return (API_RESPONSE["OK"]["content"], API_RESPONSE["OK"]["code"]) return errorResponder( "NOTFOUND", "Item not found") except NoResultFound: return errorResponder( "NOTFOUND", "Item not found") except IntegrityError: return errorResponder( "DB_INTEGRITY", "Database integrity error") finally: session.close() app.wsgi_app = ProxyFix(app.wsgi_app) if __name__ == '__main__': """main function Default host: 0.0.0.0 Default port: 8080 Default debug: False """ try: app.run( host='0.0.0.0', port=8008, debug=False) except Exception: logging.critical( 'server: CRASHED: Got exception on main handler') raise ```