Datasets:
metadata
task_categories:
- translation
language:
- en
- kn
tags:
- machine-translation
- nllb
- english
- kannada
- parallel-corpus
- multilingual
- low-resource
pretty_name: English-Kannada NLLB Machine Translation Dataset
size_categories:
- 10K<n<100K
English-Kannada NLLB Machine Translation Dataset
This dataset contains English-Kannada parallel text from NLLB dataset along with new NLLB model translations.
Dataset Structure
- Train: 16,702 examples
- Test: 8,295 examples
- Validation: 4,017 examples
Features
en
: Source English text (from NLLB Dataset)kn
: Human-translated Kannada text (from NLLB Dataset)kn_nllb
: Machine-translated Kannada text using facebook/nllb-200-distilled-600M model
While kn
translations are available in the NLLB dataset, their quality is poor. Therefore, we created kn_nllb
by translating the English source text using NLLB's distilled model to obtain cleaner translations.
Preprocessing
- Filtered: Minimum 5 words in both English and NLLB-translated Kannada texts
- Train-test split: 2:1 ratio
Sample Dataset
en | kn | kn_nllb |
---|---|---|
The weather is beautiful today. | ಇಂದು ಹವಾಮಾನ ಅದ್ಭುತವಾಗಿದೆ. | ಇಂದು ಹವಾಮಾನ ಸುಂದರವಾಗಿದೆ. |
I love reading interesting books. | ನಾನು ಆಸಕ್ತಿದಾಯಕ ಪುಸ್ತಕಗಳನ್ನು ಓದಲು ಇಷ್ಟಪಡುತ್ತೇನೆ. | ನಾನು ಆಸಕ್ತಿದಾಯಕ ಪುಸ್ತಕಗಳನ್ನು ಓದಲು ಪ್ರೀತಿಸುತ್ತೇನೆ. |
Loading the Dataset
Using Pandas
import pandas as pd
splits = {
'train': 'data/train-00000-of-00001.parquet',
'validation': 'data/validation-00000-of-00001.parquet',
'test': 'data/test-00000-of-00001.parquet'
}
# Load all splits into DataFrames
dataframes = {}
for split, path in splits.items():
dataframes[split] = pd.read_parquet(f"hf://datasets/pavan-naik/mt-nllb-en-kn/{path}")
# Access individual splits
train_data = dataframes['train']
test_data = dataframes['test']
validation_data = dataframes['validation']
Using HuggingFace 🤗 Datasets
from datasets import load_dataset
# Load from HuggingFace Hub
dataset = load_dataset("pavan-naik/mt-nllb-en-kn")
# Access splits
train_data = dataset["train"]
test_data = dataset["test"]
validation_data = dataset["validation"]
Use Cases
- Evaluating NLLB translations for English-Kannada
- Training/fine-tuning MT models
- Analyzing translation quality: NLLB Dataset vs NLLB Model outputs
Citation
- NLLB Team et al. "No Language Left Behind: Scaling Human-Centered Machine Translation"
- OPUS parallel corpus
License
Same as NLLB license