file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/thread/reduce.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines basic thread level reduction with specializations for Array<T, N>. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/array.h" #include "cutlass/half.h" #include "cutlass/functional.h" namespace cutlass { namespace reduction { namespace thread { /// Structure to compute the thread level reduction template <typename Op, typename T> struct Reduce; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial Specialization of Reduce for "plus" (a functional operator) template <typename T> struct Reduce< plus<T>, T > { CUTLASS_HOST_DEVICE T operator()(T lhs, T const &rhs) const { plus<T> _op; return _op(lhs, rhs); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization of Reduce for Array<T, N> template <typename T, int N> struct Reduce < plus<T>, Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, 1> operator()(Array<T, N> const &in) const { Array<T, 1> result; Reduce< plus<T>, T > scalar_reduce; result.clear(); CUTLASS_PRAGMA_UNROLL for (auto i = 0; i < N; ++i) { result[0] = scalar_reduce(result[0], in[i]); } return result; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specializations of Reduce for Array<half_t, N> template <int N> struct Reduce < plus<half_t>, Array<half_t, N> > { CUTLASS_HOST_DEVICE Array<half_t, 1> operator()(Array<half_t, N> const &input) { Array<half_t, 1> result; // If there is only 1 element - there is nothing to reduce if( N ==1 ){ result[0] = input.front(); } else { #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600) __half result_d; Array<half_t, 1> const *in_ptr_half = reinterpret_cast<Array<half_t, 1> const *>(&input); Array<half_t, 2> const *in_ptr_half2 = reinterpret_cast<Array<half_t, 2> const *>(&input); __half2 const *x_in_half2 = reinterpret_cast<__half2 const *>(in_ptr_half2); // Set initial result = first half2, in case N==2 __half2 tmp_result = x_in_half2[0]; CUTLASS_PRAGMA_UNROLL for (int i = 1; i < N/2; ++i) { tmp_result = __hadd2(x_in_half2[i], tmp_result); } result_d = __hadd(__low2half(tmp_result), __high2half(tmp_result)); // One final step is needed for odd "N" (to add the (N-1)th element) if( N%2 ){ __half last_element; Array<half_t, 1> tmp_last; Array<half_t, 1> *tmp_last_ptr = &tmp_last; tmp_last_ptr[0] = in_ptr_half[N-1]; last_element = reinterpret_cast<__half const &>(tmp_last); result_d = __hadd(result_d, last_element); } Array<half_t, 1> *result_ptr = &result; *result_ptr = reinterpret_cast<Array<half_t, 1> &>(result_d); #else Reduce< plus<half_t>, half_t > scalar_reduce; result.clear(); CUTLASS_PRAGMA_UNROLL for (auto i = 0; i < N; ++i) { result[0] = scalar_reduce(result[0], input[i]); } #endif } return result; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specializations of Reduce for AlignedArray<half_t, N> template <int N> struct Reduce < plus<half_t>, AlignedArray<half_t, N> > { CUTLASS_HOST_DEVICE Array<half_t, 1> operator()(AlignedArray<half_t, N> const &input) { Array<half_t, 1> result; // If there is only 1 element - there is nothing to reduce if( N ==1 ){ result[0] = input.front(); } else { #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600) __half result_d; AlignedArray<half_t, 1> const *in_ptr_half = reinterpret_cast<AlignedArray<half_t, 1> const *>(&input); AlignedArray<half_t, 2> const *in_ptr_half2 = reinterpret_cast<AlignedArray<half_t, 2> const *>(&input); __half2 const *x_in_half2 = reinterpret_cast<__half2 const *>(in_ptr_half2); // Set initial result = first half2, in case N==2 __half2 tmp_result = x_in_half2[0]; CUTLASS_PRAGMA_UNROLL for (int i = 1; i < N/2; ++i) { tmp_result = __hadd2(x_in_half2[i], tmp_result); } result_d = __hadd(__low2half(tmp_result), __high2half(tmp_result)); // One final step is needed for odd "N" (to add the (N-1)th element) if( N%2 ){ __half last_element; AlignedArray<half_t, 1> tmp_last; AlignedArray<half_t, 1> *tmp_last_ptr = &tmp_last; tmp_last_ptr[0] = in_ptr_half[N-1]; last_element = reinterpret_cast<__half const &>(tmp_last); result_d = __hadd(result_d, last_element); } Array<half_t, 1> *result_ptr = &result; *result_ptr = reinterpret_cast<Array<half_t, 1> &>(result_d); #else Reduce< plus<half_t>, half_t > scalar_reduce; result.clear(); CUTLASS_PRAGMA_UNROLL for (auto i = 0; i < N; ++i) { result[0] = scalar_reduce(result[0], input[i]); } #endif } return result; } }; } } }
7,208
C
29.676596
112
0.56576
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/device/tensor_reduce_affine_strided.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a reduction over one or more ranks of an affine tensor */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/fast_math.h" #include "cutlass/numeric_types.h" #include "cutlass/numeric_conversion.h" #include "cutlass/device_kernel.h" #include "cutlass/reduction/kernel/tensor_reduce_affine_strided.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Tensor reduction operator on layouts which are affine template < int Rank, ///< Rank of source tensor (e.g. NDHWC => 5) int ReducedRank, ///< Rank of reduced tensor (includes contiguous, e.g. NC => 2) typename ElementOutput_, typename ElementSource_, typename ReductionOp_, int VectorLength = 1, typename ElementCompute_ = ElementOutput_, int Threads = 256, ///< Number of participating threads int BatchSize = 4 ///< Number of elements to load per batch > struct TensorReductionAffineStrided { static int const kRank = Rank; static int const kReducedRank = ReducedRank; static int const kVectorLength = VectorLength; static int const kInnerRank = kRank - kReducedRank; static int const kThreads = Threads; static int const kBatchSize = BatchSize; using ElementOutput = ElementOutput_; using ElementSource = ElementSource_; using ReductionOp = ReductionOp_; using ElementCompute = ElementCompute_; // // Data members // /// Internal status field Status status; /// Extent of tensor in source layout Coord<kRank> extent; /// Number of points in the outer index space int64_t outer_count; /// Number of elements in the inner index space int64_t inner_count; /// Number of workspaces needed int workspace_count; /// CUDA Grid shape (.x => contiguous, .y => outer, .z => inner) dim3 grid_shape; /// CUDA Threadblock shape (.x => contiguous, .y => outer, .z => inner) dim3 threadblock_shape; /// CUDA grid shape for the final reduction step if needed dim3 grid_final; /// CUDA threadblock shape for the final reduction step if needed dim3 threadblock_final; private: // // Methods // /// Helper to reshape 'count' such that it is less than 2 x 'ext' static int reshape_pow2(int ext, int count) { if (ext > count) { return 1; } int x = 1; for (; count >= ext * 2; ) { count >>= 1; x <<= 1; } return x; } public: /// Default ctor TensorReductionAffineStrided(): status(Status::kErrorInvalidProblem), extent(), outer_count(0), inner_count(0), workspace_count(0), grid_shape(0, 0, 0), threadblock_shape(0, 0, 0) { } /// Constructor TensorReductionAffineStrided( Coord<kRank> extent_, int target_threadblock_count = 128 ): status(Status::kSuccess), extent(extent_), outer_count(0), inner_count(0), workspace_count(0) { // // Plan the parallel mapping strategy. // outer_count = 1; inner_count = 1; // Compute number of elements in strided ranks for (int p = 0; p < kReducedRank - 1; ++p) { outer_count *= extent[p]; } for (int p = 0; p < kInnerRank; ++p) { inner_count *= extent[kReducedRank + p - 1]; } // Compute plan for the reduction int extent_c = extent[kRank - 1]; int vectors_c = (extent_c -1 + kVectorLength) / kVectorLength; // Determine CTA shape int cta_width = kThreads * kVectorLength; int cta_ways = reshape_pow2(extent_c, cta_width); int cta_threads_x = kThreads / cta_ways; threadblock_shape = dim3(cta_threads_x, 1, std::min(cta_ways, 64)); // This leads to an error. if (threadblock_shape.z > 1) { if (threadblock_shape.y != 1) { status = Status::kErrorInternal; return; } } // Determine grid shape int cta_count_x = (vectors_c + cta_threads_x - 1) / cta_threads_x; int cta_count_y = std::max(1, target_threadblock_count / cta_count_x); // Limit the number of CTAs assigned to outer dimension if (int64_t(cta_count_y * threadblock_shape.y) > outer_count) { cta_count_y = int(outer_count + threadblock_shape.y - 1) / threadblock_shape.y; } // Limit the number of CTAs assigned to inner dimension int cta_count_z = std::max(1, target_threadblock_count / cta_count_y); if (int64_t(cta_count_z * threadblock_shape.z) > inner_count) { cta_count_z = int(inner_count + threadblock_shape.z - 1) / threadblock_shape.z; } grid_shape = dim3(cta_count_x, cta_count_y, cta_count_z); workspace_count = (cta_count_z > 1 ? cta_count_z : 0); // Determine shape of final reduction kernel if needed grid_final = dim3(cta_count_x, int(outer_count)); threadblock_final = dim3(cta_threads_x, 1, 1); } /// Simple check to verify the object is initialized correctly bool good() const { return status == Status::kSuccess; } /// Size of one CTA's workspace int64_t workspace_stride() const { // Error condition if (!good()) { return 0; } int vector_size_bytes = kVectorLength * sizeof_bits<ElementCompute>::value / 8; return extent[kRank - 1] * vector_size_bytes; } /// Returns the size (in bytes) of a temporary workspace needed for reduction across CTAs int64_t workspace_size() const { // Error condition if (!good()) { return 0; } // No reduction across CTAs if (grid_shape.z == 1) { return 0; } return workspace_stride() * outer_count * grid_shape.z; } /// Performs a reduction Status reduce( ElementOutput *dst_ptr, ///< Pointer to destination tensor int64_t dst_stride[], ///< Stride vector (of length kReducedRank - 1) ElementSource const *src_ptr, ///< Pointer to source tensor int64_t src_stride[], ///< Stride vector (of length kRank - 1) void *device_workspace_ptr = nullptr, ///< Device workspace ElementCompute reduction_identity = ElementCompute(), ///< Reduciton identity ReductionOp reduction_op = ReductionOp(), ///< Reduction operator cudaStream_t stream = nullptr) { ///< CUDA Stream into which all kernels are launched // Initial status check if (!good()) { return status; } // Guard against null workspace if (workspace_count > 1 && device_workspace_ptr == nullptr) { return Status::kErrorWorkspaceNull; } // Define reduction kernel using ReductionKernel = kernel::TensorReductionAffineStrided< kRank, kReducedRank, ElementOutput, ElementSource, ReductionOp, kVectorLength, ElementCompute, kThreads>; using FinalReductionKernel = kernel::TensorReductionAffineStridedFinal< kRank, kReducedRank, ElementOutput, ElementSource, ReductionOp, kVectorLength, ElementCompute, kThreads>; using Params = typename ReductionKernel::Params; // Construct the parameters Params params( extent, dst_ptr, dst_stride, src_ptr, src_stride, static_cast<ElementCompute *>(device_workspace_ptr), workspace_stride(), workspace_count, reduction_op, reduction_identity); // Shared memory size int shared_mem_bytes = sizeof(typename ReductionKernel::SharedStorage); // Launch the kernel Kernel<ReductionKernel><<< grid_shape, threadblock_shape, shared_mem_bytes, stream >>>(params); // Check error condition if (cudaPeekAtLastError() == cudaSuccess) { status = Status::kSuccess; } else { status = Status::kErrorInternal; } // Final reduction kernel if (workspace_count) { Kernel<FinalReductionKernel><<< grid_final, threadblock_final, 0, stream >>>(params); // Check error condition if (cudaPeekAtLastError() == cudaSuccess) { status = Status::kSuccess; } else { status = Status::kErrorInternal; } } return status; } /// Helper to use overloaded function call operator Status operator()( ElementOutput *dst_ptr, ///< Pointer to destination tensor int64_t dst_stride[], ///< Stride vector (of length kReducedRank - 1) ElementSource const *src_ptr, ///< Pointer to source tensor int64_t src_stride[], ///< Stride vector (of length kRank - 1) void *device_workspace_ptr = nullptr, ///< Pointer to device workspace ElementCompute reduction_identity = ElementCompute(), ///< Reduciton identity ReductionOp reduction_op = ReductionOp(), ///< Reduction operator cudaStream_t stream = nullptr) { ///< CUDA Stream into which all kernels are launched return reduce( dst_ptr, dst_stride, src_ptr, src_stride, device_workspace_ptr, reduction_identity, reduction_op, stream); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace reduction } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
11,448
C
30.627072
109
0.611635
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/device/reduce_split_k.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a reduction over densely packed tensors in global memory */ #pragma once #include "cutlass/device_kernel.h" #include "cutlass/reduction/kernel/reduce_split_k.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ReductionKernel_ > class ReduceSplitK { public: using ReductionKernel = ReductionKernel_; using Shape = typename ReductionKernel::Shape; using ReductionOp = typename ReductionKernel::ReductionOp; using OutputOp = typename ReductionKernel::OutputOp; using ElementWorkspace = typename ReductionKernel::ElementWorkspace; using ElementAccumulator = typename ReductionKernel::ElementAccumulator; using ElementOutput = typename ReductionKernel::ElementOutput; using WorkspaceTensorRef = typename ReductionKernel::WorkspaceTensorRef; using OutputTensorRef = typename ReductionKernel::OutputTensorRef; using StrideIndex = typename ReductionKernel::StrideIndex; /// Argument structure struct Arguments { // // Data members // MatrixCoord problem_size; int partitions; size_t partition_stride; WorkspaceTensorRef workspace; OutputTensorRef destination; OutputTensorRef source; typename OutputOp::Params output; typename ReductionOp::Params reduction; // // Methods // /// Default ctor CUTLASS_HOST_DEVICE Arguments() : problem_size(0, 0), partitions(1), partition_stride(0) { } CUTLASS_HOST_DEVICE Arguments( MatrixCoord const & problem_size ): problem_size(problem_size) { } CUTLASS_HOST_DEVICE Arguments( MatrixCoord problem_size_, int partitions_, size_t partition_stride_, WorkspaceTensorRef workspace_, OutputTensorRef destination_, OutputTensorRef source_, typename OutputOp::Params output_ = typename OutputOp::Params(), typename ReductionOp::Params reduction_ = typename ReductionOp::Params() ): problem_size(problem_size_), partitions(partitions_), partition_stride(partition_stride_), workspace(workspace_), destination(destination_), source(source_), output(output_), reduction(reduction_) { } }; private: /// Kernel parameters object typename ReductionKernel::Params params_; public: /// Constructs Reduction SplitK ReduceSplitK() { } /// Determines whether the ReduceSplitK can execute the given problem. static Status can_implement(Arguments const &args) { return Status::kSuccess; } /// Gets the workspace size static size_t get_workspace_size(Arguments const &args) { // needs no additional workspace return 0; } /// Initializes Reduction state from arguments. Status initialize( Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) { // initialize the params structure from the arguments params_ = typename ReductionKernel::Params( args.problem_size, args.partitions, args.partition_stride, args.workspace, args.destination, args.source, args.output, args.reduction ); return Status::kSuccess; } /// Initializes Reduction kernel state from arguments. Status update(Arguments const &args, void *workspace = nullptr) { // update the params structure from the arguments params_.workspace.reset(args.workspace.non_const_ref().data()); params_.destination.reset(args.destination.non_const_ref().data()); params_.source.reset(args.source.non_const_ref().data()); params_.output = args.output; params_.reduction = args.reduction; return Status::kSuccess; } /// Runs the kernel using initialized state. Status run(cudaStream_t stream = nullptr) { // // Launch reduction kernel // dim3 block = ReductionKernel::block_shape(); dim3 grid = ReductionKernel::grid_shape(params_.problem_size); Kernel<ReductionKernel><<< grid, block, 0, stream >>>(params_); cudaError_t result = cudaGetLastError(); return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal; } /// Runs the kernel using initialized state. Status operator()(cudaStream_t stream = nullptr) { return run(stream); } /// Runs the kernel using initialized state. Status operator()( Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) { Status status = initialize(args, workspace, stream); if (status == Status::kSuccess) { status = run(stream); } return status; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace reduction } // namespace cutlass
6,823
C
29.464286
100
0.656456
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/device/tensor_reduce.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a reduction over one or more ranks of an affine tensor */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/fast_math.h" #include "cutlass/numeric_types.h" #include "cutlass/numeric_conversion.h" #include "cutlass/device_kernel.h" #include "cutlass/reduction/device/tensor_reduce_affine_strided.h" #include "cutlass/reduction/device/tensor_reduce_affine_contiguous.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Tensor reduction operator on specific CUTLASS layouts over exactly one index template < typename ElementOutput_, typename ElementSource_, typename Layout_, typename ReductionOp_, int VectorLength_ = 1, typename ElementCompute_ = ElementOutput_ > struct TensorReduction { using ElementOutput = ElementOutput_; using ElementSource = ElementSource_; using Layout = Layout_; using ReductionOp = ReductionOp_; static int const kVectorLength = VectorLength_; using ElementCompute = ElementCompute_; using TensorCoord = typename Layout::TensorCoord; /// Reduction operator using ReductionDeviceStridedOperator = TensorReductionAffineStrided< 4, 3, ElementOutput, ElementSource, ReductionOp, kVectorLength, ElementCompute >; using ReductionDeviceContiguousOperator = TensorReductionAffineContiguous< 4, 3, ElementOutput, ElementSource, ReductionOp, kVectorLength, ElementCompute >; // // Data members // ReductionDeviceStridedOperator reduction_strided; ReductionDeviceContiguousOperator reduction_contiguous; int reduction_index; // // Methods // /// TensorReduction( TensorCoord extent, int reduction_index_ ): reduction_index(reduction_index_) { Coord<4> extent_affine; switch (reduction_index) { case 0: extent_affine[0] = extent[1]; extent_affine[1] = extent[2]; extent_affine[2] = extent[0]; extent_affine[3] = extent[3]; break; case 1: extent_affine[0] = extent[0]; extent_affine[1] = extent[2]; extent_affine[2] = extent[1]; extent_affine[3] = extent[3]; break; case 2: extent_affine[0] = extent[0]; extent_affine[1] = extent[1]; extent_affine[2] = extent[2]; extent_affine[3] = extent[3]; break; case 3: extent_affine[0] = extent[0]; extent_affine[1] = extent[1]; extent_affine[2] = extent[2]; extent_affine[3] = extent[3]; break; default: break; } if (reduction_index == 3) { reduction_contiguous = ReductionDeviceContiguousOperator(extent_affine); } else { reduction_strided = ReductionDeviceStridedOperator(extent_affine); } } /// Simple check to verify the object is initialized correctly bool good() const { if (reduction_index == 3) { return reduction_contiguous.good(); } return reduction_strided.good(); } /// Size of one workspace int64_t workspace_stride() const { if (reduction_index == 3) { return reduction_contiguous.workspace_stride(); } else { return reduction_strided.workspace_stride(); } } /// Returns the size (in bytes) of a temporary workspace needed for reduction across CTAs int64_t workspace_size() const { if (reduction_index == 3) { return reduction_contiguous.workspace_size(); } else { return reduction_strided.workspace_size(); } } /// Helper to use overloaded function call operator Status reduce( TensorRef<ElementOutput, Layout> dst_ref, TensorRef<ElementSource, Layout> src_ref, void *device_workspace_ptr = nullptr, ElementCompute reduction_identity = ElementCompute(), ReductionOp reduction_op = ReductionOp(), cudaStream_t stream = nullptr) { int64_t src_stride[3]; int64_t dst_stride[3]; switch (reduction_index) { case 0: src_stride[0] = src_ref.stride()[1]; src_stride[1] = src_ref.stride()[0]; src_stride[2] = src_ref.stride()[2]; dst_stride[0] = dst_ref.stride()[1]; dst_stride[1] = dst_ref.stride()[0]; break; case 1: src_stride[0] = src_ref.stride()[2]; src_stride[1] = src_ref.stride()[0]; src_stride[2] = src_ref.stride()[1]; dst_stride[0] = dst_ref.stride()[2]; dst_stride[1] = dst_ref.stride()[0]; break; case 2: src_stride[0] = src_ref.stride()[2]; src_stride[1] = src_ref.stride()[1]; src_stride[2] = src_ref.stride()[0]; dst_stride[0] = dst_ref.stride()[2]; dst_stride[1] = dst_ref.stride()[1]; break; case 3: src_stride[0] = src_ref.stride()[2]; src_stride[1] = src_ref.stride()[1]; src_stride[2] = src_ref.stride()[0]; dst_stride[0] = dst_ref.stride()[2]; dst_stride[1] = dst_ref.stride()[1]; dst_stride[2] = dst_ref.stride()[0]; default: break; } if (reduction_index == 3) { return reduction_contiguous( dst_ref.data(), dst_stride, src_ref.data(), src_stride, device_workspace_ptr, reduction_identity, reduction_op, stream); } else { return reduction_strided( dst_ref.data(), dst_stride, src_ref.data(), src_stride, device_workspace_ptr, reduction_identity, reduction_op, stream); } } Status operator()( TensorRef<ElementOutput, Layout> dst_ref, TensorRef<ElementSource, Layout> src_ref, void *device_workspace_ptr = nullptr, ElementCompute reduction_identity = ElementCompute(), ReductionOp reduction_op = ReductionOp(), cudaStream_t stream = nullptr) { return reduce( dst_ref, src_ref, device_workspace_ptr, reduction_identity, reduction_op, stream); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace reduction } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
8,152
C
29.766038
100
0.61629
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/kernel/tensor_reduce_affine_strided.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a reduction over one or more ranks of an affine tensor */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/fast_math.h" #include "cutlass/numeric_types.h" #include "cutlass/numeric_conversion.h" #include "cutlass/device_kernel.h" #include "cutlass/reduction/thread/reduction_operators.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { ///////////////////////////////////////////////////////////////////////////////////////////////// namespace kernel { /// Parameters structure template < int Rank, ///< Rank of source tensor (e.g. NDHWC => 5) int ReducedRank, ///< Rank of reduced tensor (includes contiguous, e.g. NC => 2) typename ElementOutput, ///< Data type of output tensor typename ElementSource, ///< Data type of source tensor typename ReductionOp, ///< Reduction operator int VectorLength = 1, ///< Vector length for memory typename ElementCompute = ElementOutput, ///< Internal compute type - input type of reduction operation int Threads = 256, ///< Number of participating threads int BatchSize = 4 ///< Number of elements to load per batch > struct TensorReductionAffineStridedParams { static int const kRank = Rank; static int const kReducedRank = ReducedRank; static int const kVectorLength = VectorLength; static int const kInnerRank = kRank - kReducedRank; static int const kThreads = Threads; static int const kBatchSize = BatchSize; Coord<kRank> extent; /// Extent of source tensor FastDivmodU64 divmod[kRank - 1]; /// FastDivmod by each strided rank int64_t dst_stride[kReducedRank - 1]; /// stride (units of bytes) - I, J int64_t src_stride[kRank - 1]; /// stride (units of bytes) - I, J, K int64_t workspace_stride; /// stride (units of bytes) between workspace int64_t workspace_outer_stride; /// stride (units of bytes) between 'rows' of the workspace int workspace_count; /// number of workspaces uint64_t inner_count; /// Number of elements in reduced index space uint64_t outer_count; /// Number of elements in outer index space ElementOutput * destination; /// Pointer to output tensor of rank kReducedRank ElementSource const * source; /// Poitner to source pointer of rank kRank ReductionOp reduction_op; /// Reduction operator ElementCompute reduction_identity; /// Identity element for reduction operator ElementCompute *device_workspace; /// Pointer to device workspace for inter-CTA reductions // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorReductionAffineStridedParams() { } /// Ctor TensorReductionAffineStridedParams( Coord<kRank> extent_, ///< Extent of source tensor ElementOutput * dst_ptr_, ///< Output tensor data int64_t dst_stride_[], ///< Stride (units of elements) ElementSource const * src_ptr_, ///< Source tensor data int64_t src_stride_[], ///< Stride (units of elements) ElementCompute *device_workspace_, ///< Pointer to device workspace for inter-CTA reductions int64_t workspace_stride_, ///< Stride between workspaces int workspace_count_, ///< Number of workspaces ReductionOp reduction_op_, ///< Reduction operator ElementCompute reduction_identity_ = ElementCompute() ///< Identity element for reduction operator ): extent(extent_), inner_count(1), outer_count(1), destination(dst_ptr_), source(src_ptr_), device_workspace(device_workspace_), workspace_outer_stride(0), workspace_stride(workspace_stride_), workspace_count(workspace_count_), reduction_op(reduction_op_), reduction_identity(reduction_identity_) { // Initialize divisors for fast div-mod for (int p = 1; p < kRank; ++p) { divmod[p - 1] = FastDivmodU64(uint64_t(extent[p])); } int input_size_bits = sizeof_bits<ElementSource>::value; int output_size_bits = sizeof_bits<ElementOutput>::value; workspace_outer_stride = workspace_stride * workspace_count; // Compute strides in units of bytes for (int p = 0; p < kReducedRank - 1; ++p) { dst_stride[p] = dst_stride_[p] * output_size_bits / 8; } for (int p = 0; p < kRank - 1; ++p) { src_stride[p] = src_stride_[p] * input_size_bits / 8; } // Compute number of elements in strided ranks for (int p = 0; p < kReducedRank - 1; ++p) { outer_count *= uint64_t(extent[p]); } for (int p = 0; p < kInnerRank; ++p) { inner_count *= uint64_t(extent[kReducedRank + p - 1]); } } }; /// Kernel to reduce a tensor with affine layout over a set of ranks *EXCLUDING* the contiguous /// rank. This leads to favorable vectorized memory accesses over the contiguous rank. template < int Rank, ///< Rank of source tensor (e.g. NDHWC => 5) int ReducedRank, ///< Rank of reduced tensor (includes contiguous, e.g. NC => 2) typename ElementOutput, ///< Data type of output tensor typename ElementSource, ///< Data type of source tensor typename ReductionOp, ///< Reduction operator int VectorLength = 1, ///< Vector length for memory typename ElementCompute = ElementOutput, ///< Internal compute type - input type of reduction operation int Threads = 256, ///< Number of participating threads int BatchSize = 4 ///< Number of elements to load per batch > class TensorReductionAffineStrided { public: static int const kRank = Rank; static int const kReducedRank = ReducedRank; static int const kVectorLength = VectorLength; static int const kInnerRank = kRank - kReducedRank; static int const kThreads = Threads; static int const kBatchSize = BatchSize; using ComputeFragment = Array<ElementCompute, VectorLength>; using SourceFragment = AlignedArray<ElementSource, VectorLength>; using OutputFragment = AlignedArray<ElementOutput, VectorLength>; /// Shared memory allocation used for reduction within the CTA struct SharedStorage { Array<ElementCompute, kThreads * kVectorLength> workspace; }; /// Parameters structure using Params = TensorReductionAffineStridedParams< Rank, ReducedRank, ElementOutput, ElementSource, ReductionOp, VectorLength, ElementCompute, Threads, BatchSize >; private: /// Computes the coordinate and offset of a given linear index CUTLASS_DEVICE void compute_inner_coord_and_offset_( Params const &params, Coord<kInnerRank> & coord, int64_t &src_offset, uint64_t linear_idx) const { // Decompose into coordinate coord = CoordinateDecomposition<kInnerRank>(linear_idx, &params.divmod[kReducedRank - 1]); // Compute linear offset src_offset = 0; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kInnerRank; ++i) { src_offset += params.src_stride[kReducedRank + i - 1] * coord[i]; } } /// Computes the coordinate and offset of a given linear index CUTLASS_DEVICE void compute_outer_coord_and_offset_( Params const &params, Coord<kReducedRank - 1> & coord, int64_t &dst_offset, int64_t &src_offset, uint64_t linear_idx) const { // Decompose linear coordinate coord = CoordinateDecomposition<kReducedRank - 1>(linear_idx, params.divmod); // Compute offset into tensors dst_offset = 0; src_offset = 0; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kReducedRank - 1; ++i) { dst_offset += params.dst_stride[i] * coord[i]; src_offset += params.src_stride[i] * coord[i]; } } /// Reduces over the reduction indices CUTLASS_DEVICE ComputeFragment reduce_indices_( Params const &params, ElementCompute *threadblock_workspace, char const *src_byte_ptr) { NumericArrayConverter<ElementCompute, ElementSource, VectorLength> convert_source; ReductionOp reduction_op(params.reduction_op); // Accumulated output ComputeFragment identity_frag; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < identity_frag.size(); ++i) { identity_frag[i] = params.reduction_identity; } if (!params.inner_count) { return identity_frag; } ComputeFragment accumulator = identity_frag; // Compute the coordinate of the first access int64_t src_byte_offset = 0; Coord<kInnerRank> coord; uint64_t linear_idx = threadIdx.z + blockIdx.z * blockDim.z; compute_inner_coord_and_offset_(params, coord, src_byte_offset, linear_idx); // Load the first vector SourceFragment source_fragment[kBatchSize]; bool not_done = true; // Iterate over vectors in a linearized reduction index space while (not_done) { bool guards[kBatchSize]; // Issue a batch of loads CUTLASS_PRAGMA_UNROLL for (int b = 0; b < kBatchSize; ++b) { if (linear_idx < params.inner_count) { source_fragment[b] = *reinterpret_cast<SourceFragment const *>(src_byte_ptr + src_byte_offset); guards[b] = true; } else { guards[b] = false; not_done = false; } linear_idx += blockDim.z * gridDim.z; compute_inner_coord_and_offset_(params, coord, src_byte_offset, linear_idx); } // Perform a batch of reduction operations CUTLASS_PRAGMA_UNROLL for (int b = 0; b < kBatchSize; ++b) { if (guards[b]) { auto cvt = convert_source(source_fragment[b]); accumulator = cutlass::reduction::thread::detail::ApplyArrayOperator( reduction_op, accumulator, cvt); } } }; // Optional reduction within a CTA if (blockDim.z > 1) { // Linearized thread ID int thread_idx = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z); // all threads store to workspace ComputeFragment *frag_ptr = reinterpret_cast<ComputeFragment *>(threadblock_workspace); frag_ptr[thread_idx] = accumulator; __syncthreads(); if (threadIdx.z == 0) { // Load all additional block indices for (int z = 1; z < blockDim.z; ++z) { ComputeFragment frag = frag_ptr[thread_idx + z * blockDim.x * blockDim.y]; accumulator = cutlass::reduction::thread::detail::ApplyArrayOperator( reduction_op, accumulator, frag); } } __syncthreads(); } return accumulator; } public: /// Perform a reduction CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &shared_storage) { int coord_c = (blockIdx.x * blockDim.x + threadIdx.x) * kVectorLength; char const * src_byte_ptr = reinterpret_cast<char const *>(params.source + coord_c); char * dst_byte_ptr = nullptr; // If performing a reduction across CTAs, redirect output to device workspace if (gridDim.z == 1) { dst_byte_ptr = reinterpret_cast<char *>(params.destination + coord_c); } else { dst_byte_ptr = reinterpret_cast<char *>(params.device_workspace + coord_c); } // If the C index is out of bounds, exit if (coord_c >= params.extent[kRank - 1]) { return; } int64_t idx_linear = blockIdx.y * blockDim.y + threadIdx.y; // Use modulo division to compute location Coord<kReducedRank - 1> outer_coord; int64_t dst_byte_offset; int64_t src_byte_offset; compute_outer_coord_and_offset_( params, outer_coord, dst_byte_offset, src_byte_offset, idx_linear); if (gridDim.z == 1) { /// Complete the reduction with no workspace while (idx_linear < params.outer_count) { ComputeFragment result; result = reduce_indices_( params, shared_storage.workspace.data(), src_byte_ptr + src_byte_offset); // Store the result after possible final reduction within the CTA if (threadIdx.z == 0) { // Convert to output type and store NumericArrayConverter<ElementOutput, ElementCompute, VectorLength> convert_output; auto cvt = convert_output(result); *reinterpret_cast<OutputFragment *>(dst_byte_ptr + dst_byte_offset) = reinterpret_cast<OutputFragment const &>(cvt); } // Update indices and pointers idx_linear += gridDim.y * blockDim.y; compute_outer_coord_and_offset_( params, outer_coord, dst_byte_offset, src_byte_offset, idx_linear); } // while } else { /// Complete the reduction with a device workspace while (idx_linear < params.outer_count) { ComputeFragment result; result = reduce_indices_( params, shared_storage.workspace.data(), src_byte_ptr + src_byte_offset); // Store the result after possible final reduction within the CTA if (threadIdx.z == 0) { int64_t byte_offset = blockIdx.z * params.workspace_stride + idx_linear * params.workspace_outer_stride; // No conversion - store in compute type *reinterpret_cast<ComputeFragment *>(dst_byte_ptr + byte_offset) = reinterpret_cast<ComputeFragment const &>(result); } // Update indices and pointers idx_linear += gridDim.y * blockDim.y; compute_outer_coord_and_offset_( params, outer_coord, dst_byte_offset, src_byte_offset, idx_linear); } // while (outer index) } // if () } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Kernel to perform final reduction template < int Rank, ///< Rank of source tensor (e.g. NDHWC => 5) int ReducedRank, ///< Rank of reduced tensor (includes contiguous, e.g. NC => 2) typename ElementOutput, ///< Data type of output tensor typename ElementSource, ///< Data type of source tensor typename ReductionOp, ///< Reduction operator int VectorLength = 1, ///< Vector length for memory typename ElementCompute = ElementOutput, ///< Internal compute type - input type of reduction operation int Threads = 256, ///< Number of participating threads int BatchSize = 4 ///< Number of elements to load per batch > class TensorReductionAffineStridedFinal { public: static int const kRank = Rank; static int const kReducedRank = ReducedRank; static int const kVectorLength = VectorLength; static int const kInnerRank = kRank - kReducedRank; static int const kThreads = Threads; static int const kBatchSize = BatchSize; using ComputeFragment = Array<ElementCompute, VectorLength>; using SourceFragment = AlignedArray<ElementSource, VectorLength>; using OutputFragment = AlignedArray<ElementOutput, VectorLength>; /// Shared memory struct SharedStorage { }; /// Parameters structure using Params = TensorReductionAffineStridedParams< Rank, ReducedRank, ElementOutput, ElementSource, ReductionOp, VectorLength, ElementCompute, Threads, BatchSize >; private: /// Computes the coordinate and offset of a given linear index CUTLASS_DEVICE void compute_outer_coord_and_offset_( Params const &params, Coord<kReducedRank - 1> & coord, int64_t &dst_offset, uint64_t linear_idx) const { // Decompose linear index coord = CoordinateDecomposition<kReducedRank - 1>(linear_idx, params.divmod); // Compute tensor offset dst_offset = 0; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kReducedRank - 1; ++i) { dst_offset += params.dst_stride[i] * coord[i]; } } /// Reduces over the reduction indices CUTLASS_DEVICE ComputeFragment reduce_indices_( Params const &params, char *src_byte_ptr) { ReductionOp reduction_op(params.reduction_op); // Accumulated output ComputeFragment identity_frag; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < identity_frag.size(); ++i) { identity_frag[i] = params.reduction_identity; } ComputeFragment accumulator = identity_frag; ComputeFragment workspace_fragments[kBatchSize]; // Partially unrolled loop for (int idx = 0; idx < params.workspace_count; idx += kBatchSize) { // Issue a batch of loads CUTLASS_PRAGMA_UNROLL for (int b = 0; b < kBatchSize; ++b) { if (idx + b < params.workspace_count) { workspace_fragments[b] = *reinterpret_cast<ComputeFragment *>(src_byte_ptr); } else { workspace_fragments[b] = identity_frag; } src_byte_ptr += + params.workspace_stride; } // Perform a reduction CUTLASS_PRAGMA_UNROLL for (int b = 0; b < kBatchSize; ++b) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kVectorLength; ++i) { accumulator[i] = reduction_op(accumulator[i], workspace_fragments[b][i]); } } } return accumulator; } public: // // Methods // /// Perform a reduction CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &shared_storage) { int coord_c = (blockIdx.x * blockDim.x + threadIdx.x) * kVectorLength; char * src_byte_ptr = reinterpret_cast<char *>(params.device_workspace + coord_c); char * dst_byte_ptr = reinterpret_cast<char *>(params.destination + coord_c); // If the C index is out of bounds, exit if (coord_c >= params.extent[kRank - 1]) { return; } int64_t idx_linear = blockIdx.y * blockDim.y + threadIdx.y; // Use modulo division to compute location Coord<kReducedRank - 1> outer_coord; int64_t dst_byte_offset; compute_outer_coord_and_offset_( params, outer_coord, dst_byte_offset, idx_linear); /// Complete the reduction while (idx_linear < params.outer_count) { int64_t src_byte_offset = idx_linear * params.workspace_outer_stride; ComputeFragment result = reduce_indices_( params, src_byte_ptr + src_byte_offset); // Convert to output type and store NumericArrayConverter<ElementOutput, ElementCompute, VectorLength> convert_output; auto cvt = convert_output(result); *reinterpret_cast<OutputFragment *>(dst_byte_ptr + dst_byte_offset) = reinterpret_cast<OutputFragment const &>(cvt); // Update indices and pointers idx_linear += gridDim.y * blockDim.y; compute_outer_coord_and_offset_( params, outer_coord, dst_byte_offset, idx_linear); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace reduction } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
21,662
C
32.742991
109
0.608808
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/kernel/reduce_split_k.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a reduction over densely packed tensors in global memory */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/tensor_ref.h" #include "cutlass/numeric_types.h" #include "cutlass/array.h" #include "cutlass/functional.h" #include "cutlass/matrix_shape.h" #include "cutlass/numeric_conversion.h" #include "cutlass/layout/matrix.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Shape_, ///< shape of CTA (concept: MatrixShape) typename OutputOp_ , ///< output operator (concept: epilogue::thread operator) typename ReductionOp_, ///< reduction operator (concept: ReductionOperator) int PartitionsPerStage = 4 ///< number of partitions to issue > class ReduceSplitK { public: using Shape = Shape_; using ReductionOp = ReductionOp_; using OutputOp = OutputOp_; static int const kElementsPerAccess = OutputOp::kCount; static int const kPartitionsPerStage = PartitionsPerStage; using ElementWorkspace = typename ReductionOp::Element; using ElementAccumulator = typename ReductionOp::ElementAccumulator; using ElementOutput = typename OutputOp::ElementOutput; using WorkspaceTensorRef = TensorRef<ElementWorkspace, layout::RowMajor>; using OutputTensorRef = TensorRef<ElementOutput, layout::RowMajor>; using StrideIndex = typename WorkspaceTensorRef::Layout::Stride::Index; using FragmentWorkspace = AlignedArray<ElementWorkspace, kElementsPerAccess>; using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>; using FragmentOutput = AlignedArray<ElementOutput, kElementsPerAccess>; // // Types // /// Params structure struct Params { MatrixCoord problem_size; int partitions; size_t partition_stride; WorkspaceTensorRef workspace; OutputTensorRef destination; OutputTensorRef source; typename OutputOp::Params output; typename ReductionOp::Params reduction; // // Methods // CUTLASS_HOST_DEVICE Params() { } CUTLASS_HOST_DEVICE Params( MatrixCoord problem_size_, int partitions_, size_t partition_stride_, WorkspaceTensorRef workspace_, OutputTensorRef destination_, OutputTensorRef source_, typename OutputOp::Params output_ = typename OutputOp::Params(), typename ReductionOp::Params reduction_ = typename ReductionOp::Params() ): problem_size(problem_size_), partitions(partitions_), partition_stride(sizeof(FragmentWorkspace) * partition_stride_ / kElementsPerAccess), workspace(workspace_), destination(destination_), source(source_), output(output_), reduction(reduction_) { } }; struct SharedStorage { }; public: /// Computes the grid size given a chosen threadblock shape CUTLASS_HOST_DEVICE static dim3 grid_shape( cutlass::MatrixCoord problem_size) { return dim3( (problem_size.row() + Shape::kRow - 1) / Shape::kRow, (problem_size.column() + Shape::kColumn - 1) / Shape::kColumn); } /// Determines the threadblock shape CUTLASS_HOST_DEVICE static dim3 block_shape() { return dim3(Shape::kColumn / kElementsPerAccess, Shape::kRow); } /// Perform a reduction CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &storage) { // Determine CTA position MatrixCoord thread_offset( MatrixCoord::Index(int(blockIdx.x) * Shape::kRow + threadIdx.y), MatrixCoord::Index(int(blockIdx.y) * Shape::kColumn + threadIdx.x * kElementsPerAccess) ); // One guard conditional if (!(thread_offset.row() < params.problem_size.row() && thread_offset.column() < params.problem_size.column())) { return; } ReductionOp reduction_op(params.reduction); FragmentAccumulator accumulator; accumulator.clear(); // // Load the first slice // char const *workspace_ptr = reinterpret_cast<char const *>( params.workspace.data() + params.workspace.offset(thread_offset)); FragmentWorkspace workspace_frag[kPartitionsPerStage]; // // Construct the output operator // OutputOp output_op(params.output); // // Load and accumulate with a simple batched loading sequence. // CUTLASS_PRAGMA_NO_UNROLL for (int k = 0; k < params.partitions; k += kPartitionsPerStage) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPartitionsPerStage; ++i) { if (k + i < params.partitions) { workspace_frag[i] = *reinterpret_cast<FragmentWorkspace const *>(workspace_ptr); workspace_ptr += params.partition_stride; } } CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPartitionsPerStage; ++i) { if (k + i < params.partitions) { accumulator = reduction_op(accumulator, workspace_frag[i]); } } } // // Conditionally load the source // FragmentOutput source_frag; source_frag.clear(); FragmentOutput const *source_ptr = reinterpret_cast<FragmentOutput const *>( params.source.data() + params.source.offset(thread_offset)); if (output_op.is_source_needed()) { reinterpret_cast<FragmentOutput &>(source_frag) = *source_ptr; } // // Compute the output // typename OutputOp::FragmentOutput output_frag = output_op(accumulator, source_frag); // // Store // FragmentOutput *dest_ptr = reinterpret_cast<FragmentOutput *>( params.destination.data() + params.destination.offset(thread_offset)); *dest_ptr = reinterpret_cast<FragmentOutput const &>(output_frag); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace reduction } // namespace cutlass
7,897
C
30.718875
100
0.651387
NVIDIA/warp/warp/native/cutlass/include/cutlass/reduction/kernel/reduce_softmax_final.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Kernel performing a final reduction for softmax */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/array.h" #include "cutlass/functional.h" #include "cutlass/matrix_shape.h" #include "cutlass/numeric_conversion.h" #include "cutlass/arch/memory.h" #include "cutlass/arch/memory_sm75.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace reduction { namespace kernel { template < typename ElementNorm_, typename ElementSum_, typename ElementSoftmaxCompute_, typename ThreadblockShape_, bool GroupedProblem = false > class ApplySoftmaxFinalReduction { public: using ElementNorm = ElementNorm_; using ElementSum = ElementSum_; using ElementSoftmaxCompute = ElementSoftmaxCompute_; using ThreadblockShape = ThreadblockShape_; static const bool isGroupedProblem = GroupedProblem; // // Arguments // struct Arguments { cutlass::gemm::GemmCoord* problem_sizes; cutlass::gemm::GemmCoord problem_size; ElementNorm* block_Norm; ElementSum* block_Sum; int64_t* offset_Norm_Device; int64_t* offset_Sum_Device; int64_t batch_stride_Max; int64_t batch_stride_Sum; // // Methods // Arguments() { } // Non-grouped constructor without batching Arguments( cutlass::gemm::GemmCoord problem_size, ElementNorm* block_Norm, ElementSum* block_Sum ): problem_size(problem_size), block_Norm(block_Norm), block_Sum(block_Sum), problem_sizes(nullptr), offset_Norm_Device(nullptr), offset_Sum_Device(nullptr), batch_stride_Max(0), batch_stride_Sum(0) { } // Non-grouped constructor with batching Arguments( cutlass::gemm::GemmCoord problem_size, ElementNorm* block_Norm, ElementSum* block_Sum, int64_t batch_stride_Max, int64_t batch_stride_Sum ): problem_size(problem_size), block_Norm(block_Norm), block_Sum(block_Sum), batch_stride_Max(batch_stride_Max), batch_stride_Sum(batch_stride_Sum), problem_sizes(nullptr), offset_Norm_Device(nullptr), offset_Sum_Device(nullptr) { } // Grouped constructor Arguments( cutlass::gemm::GemmCoord *problem_sizes, ElementNorm* block_Norm, ElementSum* block_Sum, int64_t* offset_Norm_Device, int64_t* offset_Sum_Device ): problem_sizes(problem_sizes), problem_size(cutlass::gemm::GemmCoord(0, 0, 0)), block_Norm(block_Norm), block_Sum(block_Sum), offset_Norm_Device(offset_Norm_Device), offset_Sum_Device(offset_Sum_Device) { } }; struct SharedStorage { }; // // Params struct // struct Params { Arguments args; // // Methods // Params() { } Params(Arguments const &args_): args(args_) { } }; private: public: CUTLASS_DEVICE ApplySoftmaxFinalReduction() { } CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &shared_storage) { apply(params, shared_storage); } private: /// Full reduction CUTLASS_DEVICE void apply(Params const &params, SharedStorage &shared_storage) { int tid = threadIdx.x; int bid = blockIdx.x; int bdim = blockDim.x; int block_batch = blockIdx.z; // defining three vars for a general reduction module cutlass::gemm::GemmCoord problem_size = isGroupedProblem ? params.args.problem_sizes[bid] : params.args.problem_size; int m_dim_in_loop = isGroupedProblem ? problem_size.m() : tid + bdim; int access_offset = isGroupedProblem ? 0 : bid * bdim; if (!isGroupedProblem && access_offset + tid >= problem_size.m()) return; ElementNorm *curr_ptr_Max = isGroupedProblem ? \ params.args.block_Norm + params.args.offset_Norm_Device[bid] : \ params.args.block_Norm + block_batch * params.args.batch_stride_Max; ElementSum *curr_ptr_Sum = isGroupedProblem ? \ params.args.block_Sum + params.args.offset_Sum_Device[bid] : \ params.args.block_Sum + block_batch * params.args.batch_stride_Sum; int threadblock_num = (problem_size.n() + ThreadblockShape::kN - 1) / ThreadblockShape::kN; using ConvertSumOutput = cutlass::NumericConverter<ElementSum, ElementSoftmaxCompute>; using ConvertNormOutput = cutlass::NumericConverter<ElementNorm, ElementSoftmaxCompute>; using ConvertSum = cutlass::NumericConverter<ElementSoftmaxCompute, ElementSum>; using ConvertNorm = cutlass::NumericConverter<ElementSoftmaxCompute, ElementNorm>; ConvertSum convert_sum; ConvertNorm convert_norm; ConvertSumOutput convert_sum_output; ConvertNormOutput convert_norm_output; uint32_t float_max_bits = 0xff7fffff; float min_float = reinterpret_cast<float const &>(float_max_bits); CUTLASS_PRAGMA_UNROLL for (int idx_m = tid; idx_m < m_dim_in_loop; idx_m += bdim) { ElementNorm *access_n = curr_ptr_Max + idx_m + access_offset; ElementSum *access_s = curr_ptr_Sum + idx_m + access_offset; ElementNorm *access_n_bak = access_n; ElementSum *access_s_bak = access_s; ElementSoftmaxCompute max_val = ElementSoftmaxCompute(min_float); ElementSoftmaxCompute sum_val = ElementSoftmaxCompute(0); ElementNorm fetch_n; ElementSum fetch_s; CUTLASS_PRAGMA_UNROLL for (int idx_n = 0; idx_n < threadblock_num; idx_n++) { cutlass::arch::global_load<ElementNorm, sizeof(ElementNorm)>(fetch_n, access_n, true); max_val = cutlass::fast_max(max_val, convert_norm(fetch_n)); access_n += problem_size.m(); } access_n = access_n_bak; CUTLASS_PRAGMA_UNROLL for (int idx_n = 0; idx_n < threadblock_num; idx_n++) { cutlass::arch::global_load<ElementNorm, sizeof(ElementNorm)>(fetch_n, access_n, true); cutlass::arch::global_load<ElementSum, sizeof(ElementSum)>(fetch_s, access_s, true); sum_val += convert_sum(fetch_s) * cutlass::fast_exp(convert_norm(fetch_n) - max_val); access_n += problem_size.m(); access_s += problem_size.m(); } ElementSoftmaxCompute inv_sum = cutlass::constants::one<ElementSoftmaxCompute>() / sum_val; access_n = access_n_bak; access_s = access_s_bak; access_n[0] = convert_norm_output(max_val); access_s[0] = convert_sum_output(inv_sum); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace reduction } // namespace cutlass
8,762
C
31.697761
121
0.632618
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/tensor_op_multiplicand_sm70.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" #include "cutlass/layout/pitch_linear.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace layout { // template < // int ElementSize, // gemm::Operand Operand // > // struct VoltaTensorOpMultiplicandCongruous; // template < // int ElementSize, // gemm::Operand Operand // > // struct ColumnMajorVoltaTensorOpMultiplicandCongruous; // template < // int ElementSize, // gemm::Operand Operand // > // struct RowMajorVoltaTensorOpMultiplicandCongruous; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear memory. template <int ElementSize> struct VoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; /// Fundamental tile shape in units of vectors using TileShape = PitchLinearShape<8, 4>; /// Fundamental partition shape in units of vectors using PartitionShape = PitchLinearShape<8, 2>; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; using PartitionCount = PitchLinearShape< TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided >; using AccessCount = PitchLinearShape< PartitionShape::kContiguous, PartitionShape::kStrided >; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCongruous(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCongruous(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // First, compute c and s of vector within source (in units of vector accesses) int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // Compute the fundamental tile being accessed int tile_contiguous_idx = vec_contiguous_idx / TileShape::kContiguous; int tile_strided_idx = vec_strided_idx / TileShape::kStrided; int tile_contiguous_residual = vec_contiguous_idx % TileShape::kContiguous; int tile_strided_residual = vec_strided_idx % TileShape::kStrided; // Then swizzle in a tile // Swizzle pattern is (tid[2:0] << 2)|(tid[4:3] ^ tid[2:1]) int permuted_strided_within_tile = (tile_contiguous_residual >> 1); int permuted_contiguous_within_tile = (tile_strided_residual ^ permuted_strided_within_tile) | ((tile_contiguous_residual & 1) << 2); // Compute final element location int element_contiguous = (tile_contiguous_idx * TileShape::kContiguous + permuted_contiguous_within_tile) * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); int element_strided = tile_strided_idx * TileShape::kStrided + permuted_strided_within_tile; return element_contiguous + element_strided * stride_[0]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct ColumnMajorVoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandCongruous(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct RowMajorVoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandCongruous(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; /// Template based on element size (in bits) - defined in terms of pitch-linear memory. // template <int ElementSize, Operand Operand> template <int ElementSize> struct VoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; /// Fundamental tile shape in units of vectors using TileShape = PitchLinearShape<8, 4>; /// Fundamental partition shape in units of vectors using PartitionShape = PitchLinearShape<4, 4>; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; using PartitionCount = PitchLinearShape< TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided >; using AccessCount = PitchLinearShape< PartitionShape::kContiguous, PartitionShape::kStrided >; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandBCongruous(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandBCongruous(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandBCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // First, compute c and s of vector within source (in units of vector accesses) int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // Compute the fundamental tile being accessed int tile_contiguous_idx = vec_contiguous_idx / TileShape::kContiguous; int tile_strided_idx = vec_strided_idx / TileShape::kStrided; int tile_contiguous_residual = vec_contiguous_idx % TileShape::kContiguous; int tile_strided_residual = vec_strided_idx % TileShape::kStrided; // Then swizzle in a tile // Swizzle pattern is (tid[1:0] << 3)|(tid & 0x4)|(tid[1:0]) int permuted_strided_within_tile = (tile_contiguous_residual & 0x3); int permuted_contiguous_within_tile = (tile_strided_residual ^ permuted_strided_within_tile) | (tile_contiguous_residual & 0x4); // Compute final element location int element_contiguous = (tile_contiguous_idx * TileShape::kContiguous + permuted_contiguous_within_tile) * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); int element_strided = tile_strided_idx * TileShape::kStrided + permuted_strided_within_tile; return element_contiguous + element_strided * stride_[0]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct ColumnMajorVoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandBCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandBCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandBCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandBCongruous(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct RowMajorVoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandBCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandBCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandBCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandBCongruous(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and KBlock size (in elements). template <int ElementSize, int KBlock> struct VoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 64b accesses static int const kAccessSize = 64; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; static int const kKBlock = KBlock; private: // // Data members // /// Stride data member. For GEMM, it equals to KBlock x stage. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCrosswise(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandCrosswise packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandCrosswise(extent[1]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // // First, compute c and s of vector within source (in units of vector // accesses) // int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // // Then swizzle // The mapping is like this: // id[1:0]|(id[3]^id[4])|id[2] int vec_strided_within_tile = vec_contiguous_idx & 0x7; int permuted_vec_contiguous = (vec_strided_idx & (~0xF)) + (vec_strided_idx & 0x3) * 4 + (((vec_strided_idx >> 2) ^ ((vec_strided_idx & 0x10) >> 3)) & 0x3); permuted_vec_contiguous ^= ((vec_strided_within_tile >> 1) & 0x3); int permuted_vec_strided = vec_contiguous_idx; // // Compute final element location // int element_contiguous = permuted_vec_contiguous * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); return element_contiguous + permuted_vec_strided * (stride_[0] * kElementsPerAccess); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[0] * stride_[0]; } }; /// Template mapping a column-major view of pitch-linear memory to /// VoltaTensorOpMultiplicandCrosswise template <int ElementSize, int KBlock> struct ColumnMajorVoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCrosswise<ElementSize, KBlock>; /// This layout is optimized for 64b accesses static int const kAccessSize = Base::kAccessSize; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandCrosswise(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicandCrosswise template <int ElementSize, int KBlock> struct RowMajorVoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCrosswise<ElementSize, KBlock>; /// This layout is optimized for 64b accesses static int const kAccessSize = Base::kAccessSize; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandCrosswise(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; } // namespace layout } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
29,599
C
27.325359
106
0.699652
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/pitch_linear.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by TensorRef and derived classes for pitch-linear memory. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" #include "cutlass/pitch_linear_coord.h" namespace cutlass { namespace layout { template <int Contiguous, int Strided> using PitchLinearShape = cutlass::PitchLinearShape < Contiguous, Strided >; using PitchLinearCoord = PitchLinearCoord; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for pitch-linear memory class PitchLinear { public: /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE PitchLinear(LongIndex ldm = 0): stride_(ldm) { } /// Constructor CUTLASS_HOST_DEVICE PitchLinear(Stride _stride): stride_(_stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static PitchLinear packed(TensorCoord const &extent) { return PitchLinear(extent.contiguous()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return LongIndex(coord.contiguous()) + LongIndex(coord.strided()) * LongIndex(stride_[0]); } /// Returns the logical coordinate given an offset. CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex index) const { return make_Coord( TensorCoord::Index(index % stride_[0]), TensorCoord::Index(index / stride_[0]) ); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE LongIndex stride(int rank) const { return stride_[rank]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE LongIndex & stride(int rank) { return stride_[rank]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent.strided() * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass
4,696
C
30.52349
100
0.663969
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/tensor_op_multiplicand_sm80.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief layouts needed by Ampere fp64 tensor core kernels. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/tensor_op_multiplicand_sm75.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace layout { //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct TensorOpMultiplicandCongruous64b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Static constants // static int const kElementSize = 64; static int const kElementsPerAccess = 1; private: // // Data members // /// Stride data member. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous64b(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous64b(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) { return TensorOpMultiplicandCongruous64b(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { int tc = coord.contiguous() / 16; int ts = coord.strided() / 4; int c = coord.contiguous() % 16; int s = coord.strided() % 4; int bank = ((((c & 1) * 4 + (c & 6) / 2)) ^ (s & 1)) * 2 + (c / 8); int row = (c & 6) / 2; bank ^= ((s & 2) * 2); LongIndex offset = tc * 16 + bank + (ts * 4 + row) * stride_[0]; return offset; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { return TensorCoord(); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to /// TensorOpMultiplicand struct ColumnMajorTensorOpMultiplicandCongruous64b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous64b; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous64b(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous64b(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicandCongruous64b(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicand struct RowMajorTensorOpMultiplicandCongruous64b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous64b; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous64b(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous64b(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicandCongruous64b packed(TensorCoord const &extent) { return RowMajorTensorOpMultiplicandCongruous64b(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct TensorOpMultiplicand64bCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Static constants // static int const kElementSize = 64; static int const kElementsPerAccess = 1; private: // // Data members // /// Stride data member. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicand64bCrosswise(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicand64bCrosswise(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) { return TensorOpMultiplicand64bCrosswise(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { int tc = coord.contiguous() / 16; int ts = coord.strided() / 16; int c = coord.contiguous() % 16; int s = coord.strided() % 16; int k_group = c / 4; int access_s = s / 2; int row = access_s % 4; int bank = ((k_group & 2) << 2) ^ ((s % 2) << 3) + (c % 4) * 2 + (access_s / 4) ^ (k_group & 1); int smem_row = (k_group * 4 + row) + tc * 16; int smem_col = ts * 16 + bank; LongIndex offset = smem_row * stride_[0] + smem_col; return offset; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct ColumnMajorTensorOpMultiplicand64bCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicand64bCrosswise; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicand64bCrosswise(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicand64bCrosswise(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicand64bCrosswise(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct RowMajorTensorOpMultiplicand64bCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicand64bCrosswise; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicand64bCrosswise(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicand64bCrosswise(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicand64bCrosswise packed(TensorCoord const &extent) { return RowMajorTensorOpMultiplicand64bCrosswise(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct TensorOpMultiplicandCongruous128b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Static constants // static int const kElementSize = 128; static int const kElementsPerAccess = 1; private: // // Data members // /// Stride data member. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous128b(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous128b(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) { return TensorOpMultiplicandCongruous128b(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { Index tc = coord.contiguous() / 8; Index ts = coord.strided() / 4; Index c = coord.contiguous() % 8; Index s = coord.strided() % 4; Index k_index = (c / 2); Index bank = (((c & 1) * 4) | (s ^ k_index)); LongIndex offset = tc * 8 + bank + (ts * 4 + k_index) * stride_[0]; return offset; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { return TensorCoord(); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to /// TensorOpMultiplicand struct ColumnMajorTensorOpMultiplicandCongruous128b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous128b; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous128b(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous128b(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicandCongruous128b(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicand struct RowMajorTensorOpMultiplicandCongruous128b { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous128b; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous128b(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous128b(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicandCongruous128b packed(TensorCoord const &extent) { return RowMajorTensorOpMultiplicandCongruous128b(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). struct TensorOpMultiplicandCrosswise128x4 { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Static constants // static int const kElementSize = 128; static int const kElementsPerAccess = 1; private: // // Data members // /// Stride data member. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCrosswise128x4(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCrosswise128x4(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) { return TensorOpMultiplicandCrosswise128x4(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { Index tc = coord.contiguous() / 8; Index ts = coord.strided() / 8; Index c = coord.contiguous() % 8; Index s = coord.strided() % 8; Index liq = c % 4; Index bank = liq + ((s & 1) * 4) ^ (c & 4); Index k_index = (c & 4) + (s / 4) * 2 + ((s & 2) / 2); LongIndex offset = (tc * 8 + k_index) * stride_[0] + ts * 8 + bank; return offset; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to /// TensorOpMultiplicand struct ColumnMajorTensorOpMultiplicandCrosswise128x4 { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCrosswise128x4; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCrosswise128x4(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCrosswise128x4(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicandCrosswise128x4(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicand struct RowMajorTensorOpMultiplicandCrosswise128x4 { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCrosswise128x4; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCrosswise128x4(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCrosswise128x4(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicandCrosswise128x4 packed(TensorCoord const &extent) { return RowMajorTensorOpMultiplicandCrosswise128x4(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
29,336
C
24.734211
100
0.667201
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/permute.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by GEMM+permute path for common tensor or matrix formats. Like Layout functions, permute layout functions map logical coordinates to linear memory. They often require additional data to describe strides between elements. Permute layout functions must implement all members in the interface of NoPermute<> defined in this file. Address offset computation lies in operator() with private member variables {col_permute_, row_permute_ and stride_permute_} as new addresses after permute op. */ #pragma once #if defined(__CUDACC_RTC__) #include <cuda/std/cassert> #else #include "assert.h" #endif #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/matrix.h" #include "cutlass/coord.h" #include "cutlass/tensor_coord.h" namespace cutlass { namespace layout { class NoPermute { public: /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; private: // // Data members // MatrixCoord extent_; Index stride_unit_; // sizeof(AccessType) / kElementsPerAccess in epilogue's predicated_tile_iterator Index stride_permute_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE NoPermute() { } /// Constructor CUTLASS_HOST_DEVICE NoPermute(MatrixCoord extent, Index stride_init): extent_(extent) { } /// Computes the address offset after Permute Op in Bytes CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord offset_init) { return 0; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // // Defines permute layouts of various tensor formats. // ///////////////////////////////////////////////////////////////////////////////////////////////// /// Permute layout function for 4-D permuted tensors with output matrix (dimension as [M, N]) reshaped /// as [M/D1, D1, D2, N/D2]. Then perform permute([0, 2, 1, 3]) on the corresponding output tensor. template <int D1, int D2> class Tensor4DPermute0213 { public: /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; private: // // Data members // MatrixCoord extent_; Index stride_permute_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE Tensor4DPermute0213() { } /// Constructor CUTLASS_HOST_DEVICE Tensor4DPermute0213(MatrixCoord extent, Index stride_init): extent_(extent) { /// Update stride_permute with stride_init stride_permute_ = stride_init / D2 * D1; // stride in Elements } /// Computes the address offset after Permute Op in Bytes CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord offset_init) { // Permute as torch.permute(X1, [0, 2, 1, 3]) -> 4D Tensor indices as [i,j,k,l], the dimension of X // is [D0, D1, D2, D3], after permutation the dim of X1 is [D0, D2, D1, D3]. assert(extent_.row() % D1 == 0); assert(extent_.column() % D2 == 0); int D3 = extent_.column() / D2; Index col_init = offset_init.column(); Index row_init = offset_init.row(); int l = col_init % D3; int k = col_init / D3; int j = row_init % D1; int i = row_init / D1; // After the Permute Op Index col_permute = l + j * D3; Index row_permute = k + i * D2; return LongIndex(row_permute) * LongIndex(stride_permute_) + LongIndex(col_permute); } /// Return D1 CUTLASS_HOST_DEVICE Index d1() const { return D1; } /// Return D2 CUTLASS_HOST_DEVICE Index d2() const { return D2; } }; /// Permute layout function for 4-D permuted tensors for BMM with BMM output tensor (dimension as [B, M, N]) reshaped /// as [B/D1, D1, M, N]. Then perform permute([0, 2, 1, 3]) on the corresponding whole BMM output tensor. template <int D1> class Tensor4DPermuteBMM0213 { public: /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; private: // // Data members // MatrixCoord extent_; Index stride_permute_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE Tensor4DPermuteBMM0213() { } /// Constructor CUTLASS_HOST_DEVICE Tensor4DPermuteBMM0213(MatrixCoord extent, Index stride_init): extent_(extent) { /// Update stride_permute with stride_init stride_permute_ = stride_init * D1; // stride in Elements } /// Computes the address offset after Permute Op in Bytes CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord offset_init) { // The batch index for BMM Index BMM_batch_idx = blockIdx.z; // Permute as torch.permute(X1, [0, 2, 1, 3]) -> 4D Tensor indices as [i,j,k,l], the dimension of X // is [D0, D1, D2, D3], after permutation the dim of X1 is [D0, D2, D1, D3]. int D2 = extent_.row(); int D3 = extent_.column(); Index col_init = offset_init.column(); Index row_init = offset_init.row(); int l = col_init; int k = row_init; int j = BMM_batch_idx % D1; int i = BMM_batch_idx / D1; // After the Permute Op Index col_permute = l + j * D3; Index row_permute = k + i * D2; return LongIndex(row_permute) * LongIndex(stride_permute_) + LongIndex(col_permute); } /// Return D1 CUTLASS_HOST_DEVICE Index d1() const { return D1; } }; /// Permute layout function for 5-D permuted tensors with output matrix (dimension as [M, N]) reshaped /// as [M/T1, T1, T2, T3, N/T2/T3]. Then perform permute([2, 0, 3, 1, 4]) on the corresponding output tensor. template <int T1, int T2, int T3> class Tensor5DPermute20314 { public: /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; private: // // Data members // MatrixCoord extent_; Index stride_permute_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE Tensor5DPermute20314() { } /// Constructor CUTLASS_HOST_DEVICE Tensor5DPermute20314(MatrixCoord extent, Index stride_init): extent_(extent) { /// Update stride_permute with stride_init stride_permute_ = stride_init / T2 * T1; // stride in Elements } /// Computes the address offset after Permute Op in Bytes CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord offset_init) { // Permute as torch.permute(X1, [2, 0, 3, 1, 4]) -> 5D Tensor indices as [i,j,k,l,m], the dimension of X // is [T0, T1, T2, T3, T4], after permutation the dim of X1 is [T2, T0, T3, T1, T4]. int T0 = extent_.row() / T1; int T4 = extent_.column() / T2 / T3; Index col_init = offset_init.column(); Index row_init = offset_init.row(); int m = col_init % T4; int l = int(col_init / T4) % T3; int k = int(col_init / T4) / T3; int j = row_init % T1; int i = row_init / T1; // After the Permute Op Index col_permute = m + j * T4 + l * T1 * T4; Index row_permute = i + k * T0; return LongIndex(row_permute) * LongIndex(stride_permute_) + LongIndex(col_permute); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass
9,133
C
27.996825
149
0.642286
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/vector.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used for rank=1 vectors. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" namespace cutlass { namespace layout { /// Tensor layout for densely packed vectors. class PackedVectorLayout { public: /// Logical rank of tensor static int const kRank = 1; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Coord<kRank, Index>; /// Stride vector using Stride = Coord<kStrideRank, Index>; private: // // No actual stride vector stored // public: // // Methods // CUTLASS_HOST_DEVICE PackedVectorLayout() { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static PackedVectorLayout packed(TensorCoord const &size) { return PackedVectorLayout(); } /// Returns the offset of a coordinate in linear memory CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return coord[0]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return make_Coord(1); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &size) const { return size[0]; } }; } // namespace layout } // namespace cutlass
3,328
C
30.704762
100
0.692308
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/tensor_op_multiplicand_sm75.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" #include "cutlass/matrix_coord.h" #include "cutlass/layout/pitch_linear.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace layout { //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). /// This one is the base class of all Ampere/Turing fp16/bf16/int8/int4/int1 /// tensor core kernels. tf32 TN uses this too. template <int ElementSize, int Crosswise> struct TensorOpMultiplicand { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Static constants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; static int const kCrosswise = Crosswise; /// Contiguous dimension of the tile shape matches one shared memory cache /// line - 128B. For 128bit access size, it equals to 8 accesses. static int const kTileShapeContiguous = 128 / (kAccessSize / 8); /// Number of kblocks to store PartitionShape::kContiguous Elements static int const kFactor = kTileShapeContiguous * kElementsPerAccess / kCrosswise; static_assert( (kFactor > 0), "kCrosswise should be no large than one shared memory cache line."); /// The strided dimension needs to be at least (WarpSize(32) / /// kTileShapeContiguous) for a warp to access. To ensure conflict free /// access, it also needs to be at least (kTileShapeContiguous / kFactor). /// See comments below static int const kTileShapeStride = ((kTileShapeContiguous / kFactor) > (32 / kTileShapeContiguous)) ? (kTileShapeContiguous / kFactor) : (32 / kTileShapeContiguous); /// Fundamental tile shape in units of vectors to guarantee bank conflict free /// shared memory load/store. /// For kFactor = 1, TileShape = <8, 8> /// For kFactor > 1, TileShape = <8, 4> using TileShape = PitchLinearShape<kTileShapeContiguous, kTileShapeStride>; /// Fundamental partition shape in units of vectors using PartitionShape = PitchLinearShape<4, 4>; using PartitionCount = PitchLinearShape<TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided>; using AccessCount = PitchLinearShape<PartitionShape::kContiguous, PartitionShape::kStrided>; private: // // Data members // /// Stride data member. For GEMM, it equals to kCrosswise x stage. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicand(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicand(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicand packed(TensorCoord const &extent) { return TensorOpMultiplicand(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // // First, compute c and s of vector within source (in units of vector // accesses) // int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided() / kFactor; // Compute the fundamental tile being accessed int tile_contiguous_idx = vec_contiguous_idx / (TileShape::kContiguous / kFactor); int tile_contiguous_residual = vec_contiguous_idx % (TileShape::kContiguous / kFactor) + ((coord.strided() % kFactor) * (TileShape::kContiguous / kFactor)); int tile_strided_residual = vec_strided_idx % TileShape::kStrided; // Compute the 'partition' within the fundamental tile int partition_contiguous_idx = tile_contiguous_residual / PartitionShape::kContiguous; int partition_strided_idx = tile_strided_residual / PartitionShape::kStrided; int partition_contiguous_residual = tile_contiguous_residual % PartitionShape::kContiguous; int partition_strided_residual = tile_strided_residual % PartitionShape::kStrided; // // Then swizzle // int permuted_vec_contiguous_within_partition = partition_contiguous_residual ^ (partition_strided_residual % 4); int permuted_partition_contiguous_within_tile = partition_contiguous_idx ^ (partition_strided_idx % 2); // // Compute final element location // int element_contiguous = (tile_contiguous_idx * TileShape::kContiguous + permuted_partition_contiguous_within_tile * PartitionShape::kContiguous + permuted_vec_contiguous_within_partition) * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); int element_strided = vec_strided_idx; return element_contiguous + element_strided * stride_[0] * kFactor; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). template <int ElementSize, int Crosswise> struct TensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicand<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return TensorOpMultiplicandCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(coord); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return coord; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(extent); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). /// This one is just for TF32 NT kernel. template <int Crosswise> struct TensorOpMultiplicandCongruous<32, Crosswise> { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; /// Fundamental tile shape in units of vectors using TileShape = PitchLinearShape<8, 4>; /// Partitionshape is the same as TileShape for this layout using PartitionShape = PitchLinearShape<8, 4>; using PartitionCount = PitchLinearShape<TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided>; using AccessCount = PitchLinearShape<PartitionShape::kContiguous, PartitionShape::kStrided>; // // Static constants // static int const kElementSize = 32; static int const kElementsPerAccess = kAccessSize / kElementSize; private: // // Data members // /// Stride data member. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCongruous(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return TensorOpMultiplicandCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { int tc = coord.contiguous() / 32; int ts = coord.strided() / 4; int c = (coord.contiguous() % 32) / kElementsPerAccess; int s = coord.strided() % 4; LongIndex offset = (c ^ (2 * s)) * kElementsPerAccess + s * stride_[0] + tc * 32 + ts * stride_[0] * 4 + coord.contiguous() % 4; return offset; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to /// TensorOpMultiplicand template <int ElementSize, int Crosswise> struct ColumnMajorTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicandCongruous(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicand template <int ElementSize, int Crosswise> struct RowMajorTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCongruous<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return RowMajorTensorOpMultiplicandCongruous(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and Crosswise size (in elements). template <int ElementSize, int Crosswise> struct TensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicand<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; static int const kCrosswise = Base::kCrosswise; static int const kFactor = Base::kFactor; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandCrosswise packed(TensorCoord const &extent) { return TensorOpMultiplicandCrosswise(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(coord); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return coord; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(extent); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to /// TensorOpMultiplicandCrosswise template <int ElementSize, int Crosswise> struct ColumnMajorTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCrosswise<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE ColumnMajorTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return ColumnMajorTensorOpMultiplicandCrosswise(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicandCrosswise template <int ElementSize, int Crosswise> struct RowMajorTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = TensorOpMultiplicandCrosswise<ElementSize, Crosswise>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE RowMajorTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return RowMajorTensorOpMultiplicandCrosswise(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear memory. template <int ElementSize, int InterleavedK> struct TensorOpMultiplicandColumnMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; //static int const kThreadBlockStrided = ThreadBlockStrided; static int const kInterleavedK = InterleavedK; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandColumnMajorInterleaved(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandColumnMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandColumnMajorInterleaved packed(TensorCoord const &extent) { return TensorOpMultiplicandColumnMajorInterleaved(extent[0] * kInterleavedK); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { int const rows_per_smem_cache_line = 128 / kInterleavedK; int row_id = coord.strided() / rows_per_smem_cache_line; int col_id = (coord.strided() % rows_per_smem_cache_line) * kInterleavedK + coord.contiguous(); int access_block_id = col_id >> 4; int swizzle_access_block_id = access_block_id ^ (row_id & 1); int swizzle_col_id = swizzle_access_block_id << 4; return row_id * 128 + swizzle_col_id; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return (extent[1] / kInterleavedK) * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear memory. template <int ElementSize, int InterleavedK> struct TensorOpMultiplicandRowMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; //static int const kThreadBlockStrided = ThreadBlockStrided; static int const kInterleavedK = InterleavedK; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandRowMajorInterleaved(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE TensorOpMultiplicandRowMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorOpMultiplicandRowMajorInterleaved packed(TensorCoord const &extent) { return TensorOpMultiplicandRowMajorInterleaved(extent[1] * kInterleavedK); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { int const rows_per_smem_cache_line = 128 / kInterleavedK; int row_id = coord.strided() / rows_per_smem_cache_line; int col_id = (coord.strided() % rows_per_smem_cache_line) * kInterleavedK + coord.contiguous(); int access_block_id = col_id >> 4; int swizzle_access_block_id = access_block_id ^ (row_id & 1); int swizzle_col_id = swizzle_access_block_id << 4; return row_id * 128 + swizzle_col_id; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return (extent[0] / kInterleavedK) * stride_[0]; } }; //////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
33,137
C
27.518072
100
0.683194
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/tensor.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by TensorRef and derived classes for common 4-D and 5-D tensor formats. Layout functions map logical coordinates to linear memory. They often require additional data to describe strides between elements. Layout functions must implement all members in the public interface of IdentityTensorLayout<> defined in cutlass/tensor_ref.h. */ #pragma once #if defined(__CUDACC_RTC__) #include <cuda/std/cassert> #else #include "assert.h" #endif #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/matrix.h" #include "cutlass/coord.h" #include "cutlass/tensor_coord.h" namespace cutlass { namespace layout { ///////////////////////////////////////////////////////////////////////////////////////////////// // // Defines data layouts of various tensor formats usable by TensorRef and other classes. // ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for 4-D NHWC tensors. class TensorNHWC { public: /// Logical rank of tensor static int const kRank = 4; /// Rank of stride vector static int const kStrideRank = 3; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate (n, h, w, c) using TensorCoord = Tensor4DCoord; /// Stride vector using Stride = Coord<kStrideRank>; private: // // Data members // /// Stride data member - [stride_w, stride_h, stride_n] Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE TensorNHWC(Stride const &stride = Stride(0)): stride_(stride) { } /// Constructor CUTLASS_HOST_DEVICE TensorNHWC( typename Stride::Index stride_w, ///< number of elements between adjacent W coordinates typename Stride::Index stride_h, ///< number of elements between adjacent H coordinates typename Stride::Index stride_n ///< number of elements between adjacent N coordinates ): stride_(make_Coord(stride_w, stride_h, stride_n)) { } /// Constructor // Once convolutions implement 64b stride this ctor can be deleted CUTLASS_HOST_DEVICE TensorNHWC(Coord<kStrideRank, LongIndex> const &stride): stride_(make_Coord( static_cast<typename Stride::Index>(stride[0]), static_cast<typename Stride::Index>(stride[1]), static_cast<typename Stride::Index>(stride[2])) ) { } /// Helper returns a layout to a tightly packed NHWC tensor. CUTLASS_HOST_DEVICE static TensorNHWC packed(TensorCoord const &extent) { return TensorNHWC( make_Coord( extent.c(), extent.w() * extent.c(), extent.h() * extent.w() * extent.c() ) ); } /// Returns the offset of a coordinate (n, h, w, c) in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return coord.c() + LongIndex(stride_[0] * coord.w()) + LongIndex(stride_[1] * coord.h()) + LongIndex(stride_[2] * coord.n()); } /// Returns the offset of a pitchlinear coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(PitchLinearCoord coord) const { return coord.contiguous() + LongIndex(coord.strided() * stride_[2]); } /// Returns the logical coordinate (n, h, w, c) from a given offset in linear memory. CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex index) const { int n = 0, h = 0, w = 0, c = 0; #if defined(__CUDA_ARCH__) int tmp = 0; c = int(index % static_cast<int>(stride_[0])); unsigned int hw_mul, hw_shr, w_mul, w_shr, c_mul, c_shr; find_divisor(hw_mul, hw_shr, stride_[2]); find_divisor(w_mul, w_shr, stride_[1]); find_divisor(c_mul, c_shr, stride_[0]); fast_divmod(n, tmp, index, int(stride_[2]), hw_mul, hw_shr); fast_divmod(h, w, tmp, int(stride_[1]), w_mul, w_shr); fast_divmod(w, tmp, w, int(stride_[0]), c_mul, c_shr); #else n = int(index / stride_[2]); LongIndex residual = index % stride_[2]; h = int(residual / stride_[1]); residual = (residual % stride_[1]); w = int(residual / stride_[0]); c = int(residual % stride_[0]); #endif return TensorCoord(n, h, w, c); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { // it does not make sense if the extent is larger than stride // and we could not rely on the capacity calculation in such cases // we could move this checkers to debug code only if ((extent.c() > stride_[0]) || (extent.w() * stride_[0] > stride_[1]) || (extent.h() * stride_[1] > stride_[2])) { assert(0); } return extent.n() * stride_[2]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for 4-D NCHW tensors. class TensorNCHW { public: /// Logical rank of tensor static int const kRank = 4; /// Rank of stride vector static int const kStrideRank = 3; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Tensor4DCoord; /// Stride vector using Stride = Coord<kStrideRank>; private: // // Data members // /// Stride data member - [w, hw, chw] Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE TensorNCHW(Stride const &stride = Stride(0)): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorNCHW packed(TensorCoord const &extent) { return TensorNCHW( make_Coord( extent.w(), extent.w() * extent.h(), extent.h() * extent.w() * extent.c() ) ); } /// Returns the offset of a coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return coord.w() + LongIndex(stride_[0] * coord.h()) + LongIndex(stride_[1] * coord.c()) + LongIndex(stride_[2] * coord.n()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent.n() * stride_[2]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for 4-D NC/xHWx tensors. template <int Interleave> class TensorNCxHWx { public: /// Interleaving quantity static int const kInterleave = Interleave; /// Logical rank of tensor static int const kRank = 4; /// Rank of stride vector static int const kStrideRank = 3; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Tensor4DCoord; /// Stride vector using Stride = Coord<kStrideRank>; private: // // Data members // /// Stride data member - [Interleave x w, Interleave x wh, hwc] Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE TensorNCxHWx(Stride const &stride = Stride(0)): stride_(stride) { } /// Constructor CUTLASS_HOST_DEVICE TensorNCxHWx( typename Stride::Index stride_w, ///< number of elements between adjacent W coordinates typename Stride::Index stride_h, ///< number of elements between adjacent H coordinates typename Stride::Index stride_n ///< number of elements between adjacent N coordinates ): stride_(make_Coord(stride_w, stride_h, stride_n)) { } /// Constructor // Once convolutions implement 64b stride this ctor can be deleted CUTLASS_HOST_DEVICE TensorNCxHWx(Coord<kStrideRank, LongIndex> const &stride): stride_(make_Coord( static_cast<typename Stride::Index>(stride[0]), static_cast<typename Stride::Index>(stride[1]), static_cast<typename Stride::Index>(stride[2])) ) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorNCxHWx packed(TensorCoord const &extent) { return TensorNCxHWx( make_Coord( kInterleave * extent.w(), kInterleave * extent.w() * extent.h(), extent.h() * extent.w() * extent.c() ) ); } /// Returns the offset of a coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { Index c_minor = (coord.c() % kInterleave); Index c_major = (coord.c() / kInterleave); return c_minor + LongIndex(kInterleave * coord.w()) + LongIndex(stride_[0] * coord.h()) + LongIndex(stride_[1] * c_major) + LongIndex(stride_[2] * coord.n()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent.n() * stride_[2]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for 4-D CxRSKx tensors. template <int Interleave> class TensorCxRSKx { public: /// Interleaving quantity static int const kInterleave = Interleave; /// Logical rank of tensor static int const kRank = 4; /// Rank of stride vector static int const kStrideRank = 3; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Tensor4DCoord; /// Stride vector using Stride = Coord<kStrideRank>; private: // // Data members // /// Stride data member - [Interleave x n, Interleave x nw, Interleave x nwh] Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE TensorCxRSKx(Stride const &stride = Stride(0)): stride_(stride) { } /// Constructor CUTLASS_HOST_DEVICE TensorCxRSKx( typename Stride::Index stride_w, ///< number of elements between adjacent W coordinates typename Stride::Index stride_h, ///< number of elements between adjacent H coordinates typename Stride::Index stride_n ///< number of elements between adjacent N coordinates ): stride_(make_Coord(stride_w, stride_h, stride_n)) { } /// Constructor // Once convolutions implement 64b stride this ctor can be deleted CUTLASS_HOST_DEVICE TensorCxRSKx(Coord<kStrideRank, LongIndex> const &stride): stride_(make_Coord( static_cast<typename Stride::Index>(stride[0]), static_cast<typename Stride::Index>(stride[1]), static_cast<typename Stride::Index>(stride[2])) ) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static TensorCxRSKx packed(TensorCoord const &extent) { return TensorCxRSKx( make_Coord( kInterleave * extent.n(), kInterleave * extent.n() * extent.w(), kInterleave * extent.n() * extent.w() * extent.h() ) ); } /// Returns the offset of a coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { Index c_minor = (coord.c() % kInterleave); Index c_major = (coord.c() / kInterleave); return c_minor + LongIndex(kInterleave * coord.n()) + LongIndex(stride_[0] * coord.w()) + LongIndex(stride_[1] * coord.h()) + LongIndex(stride_[2] * c_major); } /// Returns the offset of a pitchlinear coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(PitchLinearCoord const &coord) const { return (coord.contiguous() % kInterleave) + LongIndex((coord.contiguous() / kInterleave) * stride_[2]) + LongIndex(coord.strided() * kInterleave); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return (extent.c() / kInterleave * stride_[2]); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for 5-D NDHWC tensors. class TensorNDHWC { public: /// Logical rank of tensor static int const kRank = 5; /// Rank of stride vector static int const kStrideRank = 4; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate (n, d, h, w, c) using TensorCoord = Tensor5DCoord; /// Stride vector using Stride = Coord<kStrideRank>; private: // // Data members // /// Stride data member - [c, wc, hwc, dhwc] Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE TensorNDHWC(Stride const &stride = Stride(0)): stride_(stride) { } /// Constructor CUTLASS_HOST_DEVICE TensorNDHWC( typename Stride::Index c, typename Stride::Index wc, typename Stride::Index hwc, typename Stride::Index dhwc): stride_(make_Coord(c, wc, hwc, dhwc)) { } /// Constructor // Once convolutions implement 64b stride this ctor can be deleted CUTLASS_HOST_DEVICE TensorNDHWC(Coord<kStrideRank, LongIndex> const &stride): stride_(make_Coord( static_cast<typename Stride::Index>(stride[0]), static_cast<typename Stride::Index>(stride[1]), static_cast<typename Stride::Index>(stride[2]), static_cast<typename Stride::Index>(stride[3])) ) { } /// Helper returns a layout to a tightly packed NHWC tensor. CUTLASS_HOST_DEVICE static TensorNDHWC packed(TensorCoord const &extent) { return TensorNDHWC( make_Coord( extent.c(), extent.w() * extent.c(), extent.h() * extent.w() * extent.c(), extent.d() * extent.h() * extent.w() * extent.c() ) ); } /// Returns the offset of a coordinate (n, d, h, w, c) in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return coord.c() + LongIndex(stride_[0] * coord.w()) + LongIndex(stride_[1] * coord.h()) + LongIndex(stride_[2] * coord.d()) + LongIndex(stride_[3] * coord.n()); } /// Returns the offset of a pitchlinear coordinate in linear memory. CUTLASS_HOST_DEVICE LongIndex operator()(PitchLinearCoord coord) const { return coord.contiguous() + LongIndex(coord.strided() * stride_[3]); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { // it does not make sense if the extent is larger than stride // and we could not rely on the capacity calculation in such cases // we could move this checkers to debug code only if ((extent.c() > stride_[0]) || (extent.w() * stride_[0] > stride_[1]) || (extent.h() * stride_[1] > stride_[2]) || (extent.d() * stride_[2] > stride_[3])) { assert(0); } return extent.n() * stride_[3]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass
18,295
C
27.722135
100
0.630227
NVIDIA/warp/warp/native/cutlass/include/cutlass/layout/matrix.h
/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by TensorRef and derived classes. Layout functions map logical coordinates to linear memory. They often require additional data to describe strides between elements. Layout functions must implement all members in the public interface of IdentityTensorLayout<> defined in cutlass/tensor_ref.h. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/matrix_coord.h" #include "cutlass/pitch_linear_coord.h" namespace cutlass { namespace layout { ///////////////////////////////////////////////////////////////////////////////////////////////// // // Defines data layouts of various matrix formats usable by TensorRef and other classes. // ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for row-major matrices. class RowMajor { public: /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE RowMajor(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajor(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajor packed(MatrixCoord const &extent) { return RowMajor(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return LongIndex(coord.row()) * LongIndex(stride_[0]) + coord.column(); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(Index(offset / stride_[0]), Index(offset % stride_[0])); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return LongIndex(extent.row()) * LongIndex(stride_[0]); } }; /// Mapping function for column-major matrices. class ColumnMajor { public: /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajor(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajor(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajor packed(MatrixCoord const &extent) { return ColumnMajor(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return LongIndex(coord.column()) * LongIndex(stride_[0]) + coord.row(); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(Index(offset % stride_[0]), Index(offset / stride_[0])); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return LongIndex(extent.column()) * LongIndex(stride_[0]); } }; /// Mapping function for interleaved matrices. Matrix is structured /// as row-major arrangement of fixed-size columns. template <int Interleave> struct RowMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of interleaved columns static int const kInterleave = Interleave; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorInterleaved(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorInterleaved packed(MatrixCoord const &extent) { return RowMajorInterleaved(extent.column() * kInterleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index row_major = coord.row() / kInterleave; Index row_minor = coord.row() % kInterleave; return LongIndex(row_major) * LongIndex(stride_[0]) + LongIndex(coord.column()) * kInterleave + row_minor; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { Index row_major = Index(offset / stride_[0]); Index residual = Index(offset % stride_[0]); Index column = residual / kInterleave; Index row_minor = residual % kInterleave; return MatrixCoord(row_major * kInterleave + row_minor, column); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.row() + kInterleave - 1) / kInterleave * stride_[0]; } }; /// Mapping function for interleaved matrices. Matrix is structured /// as column-major arrangement of fixed-size rows. template <int Interleave> struct ColumnMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of interleaved columns static int const kInterleave = Interleave; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorInterleaved(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorInterleaved packed(MatrixCoord const &extent) { return ColumnMajorInterleaved(extent.row() * kInterleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index column_major = coord.column() / kInterleave; Index column_minor = coord.column() % kInterleave; return LongIndex(column_major) * LongIndex(stride_[0]) + LongIndex(coord.row()) * kInterleave + column_minor; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { Index column_major = Index(offset / stride_[0]); Index residual = Index(offset % stride_[0]); Index row = residual / kInterleave; Index column_minor = residual % kInterleave; return MatrixCoord(row, column_major * kInterleave + column_minor); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.column() + kInterleave - 1) / kInterleave * stride_[0]; } }; /// Enumerated type for canonical pitch-linear matrix layouts enum class Matrix { kColumnMajor, ///< leading dimension refers to stride between columns; stride along rows is 1 kRowMajor ///< leading dimension refers to stride between rows; stride along columns is 1 }; /// Mapping function for scenario in which layout is row-major or column-major but this information /// is only available at runtime. struct ContiguousMatrix { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; /// Enumerated type indicating canonical matrix layout Matrix layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ContiguousMatrix( Index ldm = 0, Matrix layout = Matrix::kColumnMajor ): stride_(ldm), layout_(layout) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ContiguousMatrix packed( MatrixCoord const &extent, Matrix layout = Matrix::kColumnMajor) { Index ldm = 0; if (layout == Matrix::kColumnMajor) { ldm = extent.row(); } else if (layout == Matrix::kRowMajor) { ldm = extent.column(); } return ContiguousMatrix(ldm, layout); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { if (layout_ == Matrix::kColumnMajor) { return coord.row() + coord.column() * stride_[0]; } else if (layout_ == Matrix::kRowMajor) { return coord.row() * stride_[0] + coord.column(); } else { // degenerate case return 0; } } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { // TODO return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { if (layout_ == Matrix::kColumnMajor) { return stride_[0] * extent.column(); } else if (layout_ == Matrix::kRowMajor) { return stride_[0] * extent.row(); } else { // degenerate case return 0; } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for scenario in which both rows and columns are separated by a stride. template <int Rank> struct AffineRankN { /// Logical rank of tensor static int const kRank = Rank; /// Rank of stride vector static int const kStrideRank = kRank; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Coord<kRank, Index>; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRankN( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRankN( Coord<kRank/2, LongIndex> const &stride_m, Coord<kRank/2, LongIndex> const &stride_n ) { // Concatenate the strides CUTLASS_PRAGMA_UNROLL for (int m = 0; m < kRank/2; ++m) { stride_[m] = stride_m[m]; } CUTLASS_PRAGMA_UNROLL for (int n = 0; n < kRank/2; ++n) { stride_[n + kRank/2] = stride_n[n]; } } /// Ctor for N = 2 CUTLASS_HOST_DEVICE AffineRankN( LongIndex const &stride_m, LongIndex const &stride_n ) { stride_[0] = stride_m; stride_[1] = stride_n; } /// Ctor for N = 2 CUTLASS_HOST_DEVICE AffineRankN( LongIndex const &stride ) { stride_[0] = stride; stride_[1] = 1; } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRankN packed(TensorCoord const &extent) { AffineRankN layout; layout.stride_[kRank - 1] = 1; CUTLASS_PRAGMA_UNROLL for (int i = kRank - 1; i > 0; --i) { layout.stride_[i - 1] = layout.stride_[i] * extent[i]; } return layout; } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { // TODO return TensorCoord(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { int idx = stride_.max_dim_index(); return extent[idx] * stride_[idx]; } }; /// Mapping function for scenario in which both rows and columns are separated by a stride. /// Row stride is smaller than column stride in AffineRank2ColumnMajor. struct AffineRank2ColumnMajor { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( LongIndex row_stride, ///< stride between elements in consecutive rows LongIndex column_stride ///< stride between elements in consecutive columns ) { stride_[0] = row_stride; stride_[1] = column_stride;} /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( LongIndex stride ) { stride_[0] = 1; stride_[1] = stride;} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRank2ColumnMajor packed(MatrixCoord const &extent) { return AffineRank2ColumnMajor(extent.column(), 1); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { // TODO return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return extent.column() * stride_[1]; } }; /// Mapping function for scenario in which both rows and columns are separated by a stride. /// Column stride is smaller than row stride in AffineRank2RowMajor. struct AffineRank2RowMajor { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( LongIndex row_stride, ///< stride between elements in consecutive rows LongIndex column_stride ///< stride between elements in consecutive columns ) { stride_[0] = row_stride; stride_[1] = column_stride;} /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( LongIndex stride ) { stride_[0] = stride; stride_[1] = 1;} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRank2RowMajor packed(MatrixCoord const &extent) { return AffineRank2RowMajor(extent.column(), 1); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { // TODO return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return extent.row() * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Utility functions to convert stride_factor to the strides used by the Affine2 layout. // // stride_factor is the logical distance between two coorinates. // // All Coodinates used here are matrix coordinates. stride[0] and extent[0] are for the // rows. stride[1] and extent[1] are for the columns. template <typename Affine2Layout> struct Affine2Layout_Factory { CUTLASS_HOST_DEVICE static Affine2Layout layout_factory(cutlass::Coord<2> const &extent, typename Affine2Layout::Stride stride_factor) { return Affine2Layout::packed(extent); } }; template <> struct Affine2Layout_Factory<cutlass::layout::AffineRank2ColumnMajor> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRank2ColumnMajor layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRank2ColumnMajor::Stride stride_factor) { return cutlass::layout::AffineRank2ColumnMajor({ stride_factor[0], stride_factor[0] * stride_factor[1] * extent[0] }); } }; template <> struct Affine2Layout_Factory<cutlass::layout::AffineRank2RowMajor> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRank2RowMajor layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRank2RowMajor::Stride stride_factor) { return cutlass::layout::AffineRank2RowMajor({ stride_factor[0] * stride_factor[1] * extent[1], stride_factor[1] }); } }; // The base layout cutlass::layout::AffineRankN<2> is similar to AffineRank2ColumnMajor template <> struct Affine2Layout_Factory<cutlass::layout::AffineRankN<2>> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRankN<2> layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRankN<2>::Stride stride_factor) { return cutlass::layout::AffineRankN<2>({ stride_factor[0], stride_factor[0] * stride_factor[1] * extent[0] }); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for block-linear matrices. Matrix is structured /// as column-major arrangement of 2D tiles (that are column-major). template <int BlockRows, int BlockColumns> struct ColumnMajorBlockLinear { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of a block in rows static int const kBlockRows = BlockRows; /// Size of a block in columns static int const kBlockColumns = BlockColumns; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorBlockLinear(Index ldm = 0): stride_(ldm) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorBlockLinear packed(MatrixCoord const &extent) { return ColumnMajorBlockLinear(extent.row() * kBlockRows * kBlockColumns); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return (coord.row() % kBlockRows) + (coord.column() % kBlockColumns) * kBlockRows + (coord.row() / kBlockRows) * kBlockRows * kBlockColumns + (coord.column() / kBlockColumns) * stride_[0]; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { // TODO return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.column() + kBlockColumns - 1) / kBlockColumns * stride_[0]; } }; /// Mapping function for block-linear matrices. Matrix is structured /// as row-major arrangement of 2D tiles (that are row-major) template <int BlockRows, int BlockColumns> struct RowMajorBlockLinear { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of a block in rows static int const kBlockRows = BlockRows; /// Size of a block in columns static int const kBlockColumns = BlockColumns; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorBlockLinear(Index ldm = 0): stride_(ldm) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorBlockLinear packed(MatrixCoord const &extent) { return RowMajorBlockLinear(extent.column() * kBlockRows * kBlockColumns); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return (coord.column() % kBlockColumns) + (coord.row() % kBlockRows) * kBlockColumns + (coord.column() / kBlockColumns) * kBlockRows * kBlockColumns + (coord.row() / kBlockRows) * stride_[0]; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { // TODO return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.row() + kBlockRows - 1) / kBlockRows * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct GeneralMatrix { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index>; private: // // Data members // Matrix layout_id_; /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE GeneralMatrix(): layout_id_(Matrix::kColumnMajor), stride_(make_Coord(0, 1)) { } /// Ctor CUTLASS_HOST_DEVICE GeneralMatrix( Matrix layout_id, Index ldm, Index interleave): layout_id_(layout_id), stride_(make_Coord(ldm, interleave)) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static GeneralMatrix packed( MatrixCoord const &extent, Matrix layout_id = Matrix::kColumnMajor, Index interleave = 1) { Index c; if (layout_id == Matrix::kRowMajor) { c = extent.column(); } else { c = extent.row(); } Index ldm = c * interleave; return GeneralMatrix(layout_id, ldm, interleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index c, s; if (layout_id_ == Matrix::kRowMajor) { c = coord.column(); s = coord.row(); } else { s = coord.column(); c = coord.row(); } Index v = s / stride_[1]; Index residual = (s % stride_[1]); return LongIndex(c) * LongIndex(stride_[1]) + LongIndex(v) * LongIndex(stride_[0]) + residual; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } CUTLASS_HOST_DEVICE Matrix layout_id() const { return layout_id_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } CUTLASS_HOST_DEVICE Matrix & layout_id() { return layout_id_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { Index s; if (layout_id_ == Matrix::kRowMajor) { s = extent.row(); } else { s = extent.column(); } Index v = Index((s + stride_[1] - 1) / stride_[1]); return LongIndex(v) * LongIndex(stride_[0]); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines transposes of matrix layouts template <typename Layout> struct LayoutTranspose; /// Transpose of row-major is column-major template <> struct LayoutTranspose<layout::RowMajor> { using type = layout::ColumnMajor; }; /// Transpose of column-major is row-major template <> struct LayoutTranspose<layout::ColumnMajor> { using type = layout::RowMajor; }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass
34,712
C
24.675296
122
0.664813
NVIDIA/warp/warp/sim/import_usd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import re import numpy as np import warp as wp def parse_usd( source, builder, default_density=1.0e3, only_load_enabled_rigid_bodies=False, only_load_enabled_joints=True, contact_ke=1e5, contact_kd=250.0, contact_kf=500.0, contact_ka=0.0, contact_mu=0.6, contact_restitution=0.0, contact_thickness=0.0, joint_limit_ke=100.0, joint_limit_kd=10.0, armature=0.0, invert_rotations=False, verbose=False, ignore_paths=None, ): """ Parses a Universal Scene Description (USD) stage containing UsdPhysics schema definitions for rigid-body articulations and adds the bodies, shapes and joints to the given ModelBuilder. The USD description has to be either a path (file name or URL), or an existing USD stage instance that implements the `UsdStage <https://openusd.org/dev/api/class_usd_stage.html>`_ interface. Args: source (str | pxr.UsdStage): The file path to the USD file, or an existing USD stage instance. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. default_density (float): The default density to use for bodies without a density attribute. only_load_enabled_rigid_bodies (bool): If True, only rigid bodies which do not have `physics:rigidBodyEnabled` set to False are loaded. only_load_enabled_joints (bool): If True, only joints which do not have `physics:jointEnabled` set to False are loaded. contact_ke (float): The default contact stiffness to use, only considered by the Euler integrators. contact_kd (float): The default contact damping to use, only considered by the Euler integrators. contact_kf (float): The default friction stiffness to use, only considered by the Euler integrators. contact_ka (float): The default adhesion distance to use, only considered by the Euler integrators. contact_mu (float): The default friction coefficient to use if a shape has not friction coefficient defined. contact_restitution (float): The default coefficient of restitution to use if a shape has not coefficient of restitution defined. contact_thickness (float): The thickness to add to the shape geometry. joint_limit_ke (float): The default stiffness to use for joint limits, only considered by the Euler integrators. joint_limit_kd (float): The default damping to use for joint limits, only considered by the Euler integrators. armature (float): The armature to use for the bodies. invert_rotations (bool): If True, inverts any rotations defined in the shape transforms. verbose (bool): If True, print additional information about the parsed USD file. ignore_paths (List[str]): A list of regular expressions matching prim paths to ignore. Returns: dict: Dictionary with the following entries: .. list-table:: :widths: 25 75 * - "fps" - USD stage frames per second * - "duration" - Difference between end time code and start time code of the USD stage * - "up_axis" - Upper-case string of the stage's up axis ("X", "Y", or "Z") * - "path_shape_map" - Mapping from prim path (str) of the UsdGeom to the respective shape index in :class:`ModelBuilder` * - "path_body_map" - Mapping from prim path (str) of a rigid body prim (e.g. that implements the PhysicsRigidBodyAPI) to the respective body index in :class:`ModelBuilder` * - "path_shape_scale" - Mapping from prim path (str) of the UsdGeom to its respective 3D world scale * - "mass_unit" - The stage's Kilograms Per Unit (KGPU) definition (1.0 by default) * - "linear_unit" - The stage's Meters Per Unit (MPU) definition (1.0 by default) Note: This importer is experimental and only supports a subset of the USD Physics schema. Please report any issues you encounter. """ try: from pxr import Usd, UsdGeom, UsdPhysics except ImportError as e: raise ImportError("Failed to import pxr. Please install USD (e.g. via `pip install usd-core`).") from e if ignore_paths is None: ignore_paths = [] def get_attribute(prim, name): if "*" in name: regex = name.replace("*", ".*") for attr in prim.GetAttributes(): if re.match(regex, attr.GetName()): return attr else: return prim.GetAttribute(name) def has_attribute(prim, name): attr = get_attribute(prim, name) return attr.IsValid() and attr.HasAuthoredValue() def parse_float(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() if np.isfinite(val): return val return default def parse_quat(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() if invert_rotations: quat = wp.quat(*val.imaginary, -val.real) else: quat = wp.quat(*val.imaginary, val.real) l = wp.length(quat) if np.isfinite(l) and l > 0.0: return quat return default def parse_vec(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() if np.isfinite(val).all(): return np.array(val, dtype=np.float32) return default def parse_generic(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default return attr.Get() def str2axis(s: str) -> np.ndarray: axis = np.zeros(3, dtype=np.float32) axis["XYZ".index(s.upper())] = 1.0 return axis if isinstance(source, str): stage = Usd.Stage.Open(source, Usd.Stage.LoadAll) else: stage = source mass_unit = 1.0 try: if UsdPhysics.StageHasAuthoredKilogramsPerUnit(stage): mass_unit = UsdPhysics.GetStageKilogramsPerUnit(stage) except Exception as e: if verbose: print(f"Failed to get mass unit: {e}") linear_unit = 1.0 try: if UsdGeom.StageHasAuthoredMetersPerUnit(stage): linear_unit = UsdGeom.GetStageMetersPerUnit(stage) except Exception as e: if verbose: print(f"Failed to get linear unit: {e}") def parse_xform(prim): xform = UsdGeom.Xform(prim) mat = np.array(xform.GetLocalTransformation(), dtype=np.float32) if invert_rotations: rot = wp.quat_from_matrix(wp.mat33(mat[:3, :3].T.flatten())) else: rot = wp.quat_from_matrix(wp.mat33(mat[:3, :3].flatten())) pos = mat[3, :3] * linear_unit scale = np.ones(3, dtype=np.float32) for op in xform.GetOrderedXformOps(): if op.GetOpType() == UsdGeom.XformOp.TypeScale: scale = np.array(op.Get(), dtype=np.float32) return wp.transform(pos, rot), scale def parse_axis(prim, type, joint_data, is_angular, axis=None): # parse joint axis data schemas = prim.GetAppliedSchemas() schemas_str = "".join(schemas) if f"DriveAPI:{type}" not in schemas_str and f"PhysicsLimitAPI:{type}" not in schemas_str: return drive_type = parse_generic(prim, f"drive:{type}:physics:type", "force") if drive_type != "force": print(f"Warning: only force drive type is supported, ignoring drive:{type} for joint {path}") return stiffness = parse_float(prim, f"drive:{type}:physics:stiffness", 0.0) damping = parse_float(prim, f"drive:{type}:physics:damping", 0.0) low = parse_float(prim, f"limit:{type}:physics:low") high = parse_float(prim, f"limit:{type}:physics:high") target_pos = parse_float(prim, f"drive:{type}:physics:targetPosition") target_vel = parse_float(prim, f"drive:{type}:physics:targetVelocity") if is_angular: stiffness *= mass_unit * linear_unit**2 stiffness = np.deg2rad(stiffness) damping *= mass_unit * linear_unit**2 damping = np.deg2rad(damping) if target_pos is not None: target_pos = np.deg2rad(target_pos) if target_vel is not None: target_vel = np.deg2rad(target_vel) if low is None: low = joint_data["lowerLimit"] else: low = np.deg2rad(low) if high is None: high = joint_data["upperLimit"] else: high = np.deg2rad(high) else: stiffness *= mass_unit damping *= mass_unit if target_pos is not None: target_pos *= linear_unit if target_vel is not None: target_vel *= linear_unit if low is None: low = joint_data["lowerLimit"] else: low *= linear_unit if high is None: high = joint_data["upperLimit"] else: high *= linear_unit mode = wp.sim.JOINT_MODE_FORCE if f"DriveAPI:{type}" in schemas_str: if target_vel is not None and target_vel != 0.0: mode = wp.sim.JOINT_MODE_TARGET_VELOCITY else: mode = wp.sim.JOINT_MODE_TARGET_POSITION if low > high: low = (low + high) / 2 high = low axis = wp.sim.JointAxis( axis=(axis or joint_data["axis"]), limit_lower=low, limit_upper=high, action=(target_pos or target_vel or (low + high) / 2), target_ke=stiffness, target_kd=damping, mode=mode, limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) if is_angular: joint_data["angular_axes"].append(axis) else: joint_data["linear_axes"].append(axis) axis_str = "Y" try: axis_str = UsdGeom.GetStageUpAxis(stage) except Exception as e: if verbose: print(f"Failed to parse stage up axis: {e}") upaxis = str2axis(axis_str) shape_types = {"Cube", "Sphere", "Mesh", "Capsule", "Plane", "Cylinder", "Cone"} path_body_map = {} path_shape_map = {} path_shape_scale = {} # maps prim path name to its world transform path_world_poses = {} # transform from body frame to where the actual joint child frame is # so that the link's children will use the right parent tf for the joint prim_joint_xforms = {} path_collision_filters = set() no_collision_shapes = set() body_density = {} # mapping from body ID to defined density # first find all joints and materials joint_data = {} # mapping from path of child link to joint USD settings materials = {} # mapping from material path to material USD settings joint_parents = set() # paths of joint parents for prim in stage.Traverse(): type_name = str(prim.GetTypeName()) path = str(prim.GetPath()) # if verbose: # print(path, type_name) if type_name.endswith("Joint"): # the type name can sometimes be "DistancePhysicsJoint" or "PhysicsDistanceJoint" ... type_name = type_name.replace("Physics", "").replace("Joint", "") child = str(prim.GetRelationship("physics:body1").GetTargets()[0]) pos0 = parse_vec(prim, "physics:localPos0", np.zeros(3, dtype=np.float32)) * linear_unit pos1 = parse_vec(prim, "physics:localPos1", np.zeros(3, dtype=np.float32)) * linear_unit rot0 = parse_quat(prim, "physics:localRot0", wp.quat_identity()) rot1 = parse_quat(prim, "physics:localRot1", wp.quat_identity()) joint_data[child] = { "type": type_name, "name": str(prim.GetName()), "parent_tf": wp.transform(pos0, rot0), "child_tf": wp.transform(pos1, rot1), "enabled": parse_generic(prim, "physics:jointEnabled", True), "collisionEnabled": parse_generic(prim, "physics:collisionEnabled", False), "excludeFromArticulation": parse_generic(prim, "physics:excludeFromArticulation", False), "axis": str2axis(parse_generic(prim, "physics:axis", "X")), "breakForce": parse_float(prim, "physics:breakForce", np.inf), "breakTorque": parse_float(prim, "physics:breakTorque", np.inf), "linear_axes": [], "angular_axes": [], } if only_load_enabled_joints and not joint_data[child]["enabled"]: print("Skipping disabled joint", path) continue # parse joint limits lower = parse_float(prim, "physics:lowerLimit", -np.inf) upper = parse_float(prim, "physics:upperLimit", np.inf) if type_name == "Distance": # if distance is negative the joint is not limited joint_data[child]["lowerLimit"] = parse_float(prim, "physics:minDistance", -1.0) * linear_unit joint_data[child]["upperLimit"] = parse_float(prim, "physics:maxDistance", -1.0) * linear_unit elif type_name == "Prismatic": joint_data[child]["lowerLimit"] = lower * linear_unit joint_data[child]["upperLimit"] = upper * linear_unit else: joint_data[child]["lowerLimit"] = np.deg2rad(lower) if np.isfinite(lower) else lower joint_data[child]["upperLimit"] = np.deg2rad(upper) if np.isfinite(upper) else upper if joint_data[child]["lowerLimit"] > joint_data[child]["upperLimit"]: joint_data[child]["lowerLimit"] = ( joint_data[child]["lowerLimit"] + joint_data[child]["upperLimit"] ) / 2 joint_data[child]["upperLimit"] = joint_data[child]["lowerLimit"] parents = prim.GetRelationship("physics:body0").GetTargets() if len(parents) > 0: parent_path = str(parents[0]) joint_data[child]["parent"] = parent_path joint_parents.add(parent_path) else: joint_data[child]["parent"] = None # parse joint drive parse_axis(prim, "angular", joint_data[child], is_angular=True) parse_axis(prim, "rotX", joint_data[child], is_angular=True, axis=(1.0, 0.0, 0.0)) parse_axis(prim, "rotY", joint_data[child], is_angular=True, axis=(0.0, 1.0, 0.0)) parse_axis(prim, "rotZ", joint_data[child], is_angular=True, axis=(0.0, 0.0, 1.0)) parse_axis(prim, "linear", joint_data[child], is_angular=False) parse_axis(prim, "transX", joint_data[child], is_angular=False, axis=(1.0, 0.0, 0.0)) parse_axis(prim, "transY", joint_data[child], is_angular=False, axis=(0.0, 1.0, 0.0)) parse_axis(prim, "transZ", joint_data[child], is_angular=False, axis=(0.0, 0.0, 1.0)) elif type_name == "Material": material = {} if has_attribute(prim, "physics:density"): material["density"] = parse_float(prim, "physics:density") * mass_unit # / (linear_unit**3) if has_attribute(prim, "physics:restitution"): material["restitution"] = parse_float(prim, "physics:restitution", contact_restitution) if has_attribute(prim, "physics:staticFriction"): material["staticFriction"] = parse_float(prim, "physics:staticFriction", contact_mu) if has_attribute(prim, "physics:dynamicFriction"): material["dynamicFriction"] = parse_float(prim, "physics:dynamicFriction", contact_mu) materials[path] = material elif type_name == "PhysicsScene": try: scene = UsdPhysics.Scene(prim) g_vec = scene.GetGravityDirectionAttr() g_mag = scene.GetGravityMagnitudeAttr() if g_mag.HasAuthoredValue() and np.isfinite(g_mag.Get()): builder.gravity = -np.abs(g_mag.Get() * linear_unit) if g_vec.HasAuthoredValue() and np.linalg.norm(g_vec.Get()) > 0.0: builder.up_vector = np.array(g_vec.Get(), dtype=np.float32) if np.any(builder.up_vector < 0.0): builder.up_vector = -builder.up_vector else: builder.up_vector = upaxis except Exception as e: if verbose: print(f"Failed to parse physics scene: {e}") def parse_prim(prim, incoming_xform, incoming_scale, parent_body: int = -1): nonlocal builder nonlocal joint_data nonlocal path_body_map nonlocal path_shape_map nonlocal path_shape_scale nonlocal path_world_poses nonlocal prim_joint_xforms nonlocal path_collision_filters nonlocal no_collision_shapes nonlocal body_density path = str(prim.GetPath()) for pattern in ignore_paths: if re.match(pattern, path): return type_name = str(prim.GetTypeName()) if type_name.endswith("Joint") or type_name.endswith("Light") or type_name.endswith("Material"): return if verbose: print(f"parse_prim {prim.GetPath()} ({type_name})") if type_name == "PhysicsScene": # in case the PhysicsScene has bodies as children... for child in prim.GetChildren(): parse_prim(child, incoming_xform, incoming_scale, parent_body) schemas = set(prim.GetAppliedSchemas()) children_refs = prim.GetChildren() prim_joint_xforms[path] = wp.transform() local_xform, scale = parse_xform(prim) scale = incoming_scale * scale xform = wp.mul(incoming_xform, local_xform) path_world_poses[path] = xform geo_tf = local_xform body_id = parent_body is_rigid_body = "PhysicsRigidBodyAPI" in schemas and parent_body == -1 create_rigid_body = is_rigid_body or path in joint_parents if create_rigid_body: body_id = builder.add_body( origin=xform, name=prim.GetName(), armature=armature, ) path_body_map[path] = body_id body_density[body_id] = 0.0 parent_body = body_id geo_tf = wp.transform() # set up joints between rigid bodies after the children have been added if path in joint_data: joint = joint_data[path] joint_params = { "child": body_id, "linear_axes": joint["linear_axes"], "angular_axes": joint["angular_axes"], "name": joint["name"], "enabled": joint["enabled"], "parent_xform": joint["parent_tf"], "child_xform": joint["child_tf"], "armature": armature, } parent_path = joint["parent"] if parent_path is None: joint_params["parent"] = -1 parent_tf = wp.transform() else: joint_params["parent"] = path_body_map[parent_path] parent_tf = path_world_poses[parent_path] # the joint to which we are connected will transform this body already geo_tf = wp.transform() if verbose: print(f"Adding joint {joint['name']} between {joint['parent']} and {path}") print(" parent_xform", joint["parent_tf"]) print(" child_xform ", joint["child_tf"]) print(" parent_tf ", parent_tf) print(f" geo_tf at {path} = {geo_tf} (xform was {xform})") if joint["type"] == "Revolute": joint_params["joint_type"] = wp.sim.JOINT_REVOLUTE if len(joint_params["angular_axes"]) == 0: joint_params["angular_axes"].append( wp.sim.JointAxis( joint["axis"], limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "Prismatic": joint_params["joint_type"] = wp.sim.JOINT_PRISMATIC if len(joint_params["linear_axes"]) == 0: joint_params["linear_axes"].append( wp.sim.JointAxis( joint["axis"], limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "Spherical": joint_params["joint_type"] = wp.sim.JOINT_BALL elif joint["type"] == "Fixed": joint_params["joint_type"] = wp.sim.JOINT_FIXED elif joint["type"] == "Distance": joint_params["joint_type"] = wp.sim.JOINT_DISTANCE # we have to add a dummy linear X axis to define the joint limits joint_params["linear_axes"].append( wp.sim.JointAxis( (1.0, 0.0, 0.0), limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "": joint_params["joint_type"] = wp.sim.JOINT_D6 else: print(f"Warning: unsupported joint type {joint['type']} for {path}") builder.add_joint(**joint_params) elif is_rigid_body: builder.add_joint_free(child=body_id) # free joint; we set joint_q/qd, not body_q/qd since eval_fk is used after model creation builder.joint_q[-4:] = xform.q builder.joint_q[-7:-4] = xform.p linear_vel = parse_vec(prim, "physics:velocity", np.zeros(3, dtype=np.float32)) * linear_unit angular_vel = parse_vec(prim, "physics:angularVelocity", np.zeros(3, dtype=np.float32)) * linear_unit builder.joint_qd[-6:-3] = angular_vel builder.joint_qd[-3:] = linear_vel if verbose: print(f"added {type_name} body {body_id} ({path}) at {xform}") density = None material = None if prim.HasRelationship("material:binding:physics"): other_paths = prim.GetRelationship("material:binding:physics").GetTargets() if len(other_paths) > 0: material = materials[str(other_paths[0])] if material is not None: if "density" in material: density = material["density"] if has_attribute(prim, "physics:density"): d = parse_float(prim, "physics:density") density = d * mass_unit # / (linear_unit**3) # assert prim.GetAttribute('orientation').Get() == "rightHanded", "Only right-handed orientations are supported." enabled = parse_generic(prim, "physics:rigidBodyEnabled", True) if only_load_enabled_rigid_bodies and not enabled: if verbose: print("Skipping disabled rigid body", path) return mass = parse_float(prim, "physics:mass") if is_rigid_body: if density is None: density = default_density body_density[body_id] = density elif density is None: if body_id >= 0: density = body_density[body_id] else: density = 0.0 com = parse_vec(prim, "physics:centerOfMass", np.zeros(3, dtype=np.float32)) i_diag = parse_vec(prim, "physics:diagonalInertia", np.zeros(3, dtype=np.float32)) i_rot = parse_quat(prim, "physics:principalAxes", wp.quat_identity()) # parse children if type_name == "Xform": if prim.IsInstance(): proto = prim.GetPrototype() for child in proto.GetChildren(): parse_prim(child, xform, scale, parent_body) else: for child in children_refs: parse_prim(child, xform, scale, parent_body) elif type_name == "Scope": for child in children_refs: parse_prim(child, incoming_xform, incoming_scale, parent_body) elif type_name in shape_types: # parse shapes shape_params = { "ke": contact_ke, "kd": contact_kd, "kf": contact_kf, "ka": contact_ka, "mu": contact_mu, "restitution": contact_restitution, } if material is not None: if "restitution" in material: shape_params["restitution"] = material["restitution"] if "dynamicFriction" in material: shape_params["mu"] = material["dynamicFriction"] if has_attribute(prim, "doubleSided") and not prim.GetAttribute("doubleSided").Get(): print(f"Warning: treating {path} as double-sided because single-sided collisions are not supported.") if type_name == "Cube": size = parse_float(prim, "size", 2.0) if has_attribute(prim, "extents"): extents = parse_vec(prim, "extents") * scale # TODO position geom at extents center? # geo_pos = 0.5 * (extents[0] + extents[1]) extents = extents[1] - extents[0] else: extents = scale * size shape_id = builder.add_shape_box( body_id, geo_tf.p, geo_tf.q, hx=extents[0] / 2, hy=extents[1] / 2, hz=extents[2] / 2, density=density, thickness=contact_thickness, **shape_params, ) elif type_name == "Sphere": if not (scale[0] == scale[1] == scale[2]): print("Warning: Non-uniform scaling of spheres is not supported.") if has_attribute(prim, "extents"): extents = parse_vec(prim, "extents") * scale # TODO position geom at extents center? # geo_pos = 0.5 * (extents[0] + extents[1]) extents = extents[1] - extents[0] if not (extents[0] == extents[1] == extents[2]): print("Warning: Non-uniform extents of spheres are not supported.") radius = extents[0] else: radius = parse_float(prim, "radius", 1.0) * scale[0] shape_id = builder.add_shape_sphere( body_id, geo_tf.p, geo_tf.q, radius, density=density, **shape_params ) elif type_name == "Plane": normal_str = parse_generic(prim, "axis", "Z").upper() geo_rot = geo_tf.q if normal_str != "Y": normal = str2axis(normal_str) c = np.cross(normal, (0.0, 1.0, 0.0)) angle = np.arcsin(np.linalg.norm(c)) axis = c / np.linalg.norm(c) geo_rot = wp.mul(geo_rot, wp.quat_from_axis_angle(axis, angle)) width = parse_float(prim, "width", 0.0) * scale[0] length = parse_float(prim, "length", 0.0) * scale[1] shape_id = builder.add_shape_plane( body=body_id, pos=geo_tf.p, rot=geo_rot, width=width, length=length, thickness=contact_thickness, **shape_params, ) elif type_name == "Capsule": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Capsule extents are not supported." shape_id = builder.add_shape_capsule( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Cylinder": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Cylinder extents are not supported." shape_id = builder.add_shape_cylinder( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Cone": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Cone extents are not supported." shape_id = builder.add_shape_cone( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Mesh": mesh = UsdGeom.Mesh(prim) points = np.array(mesh.GetPointsAttr().Get(), dtype=np.float32) indices = np.array(mesh.GetFaceVertexIndicesAttr().Get(), dtype=np.float32) counts = mesh.GetFaceVertexCountsAttr().Get() faces = [] face_id = 0 for count in counts: if count == 3: faces.append(indices[face_id : face_id + 3]) elif count == 4: faces.append(indices[face_id : face_id + 3]) faces.append(indices[[face_id, face_id + 2, face_id + 3]]) else: # assert False, f"Error while parsing USD mesh {path}: encountered polygon with {count} vertices, but only triangles and quads are supported." continue face_id += count m = wp.sim.Mesh(points, np.array(faces, dtype=np.int32).flatten()) shape_id = builder.add_shape_mesh( body_id, geo_tf.p, geo_tf.q, scale=scale, mesh=m, density=density, thickness=contact_thickness, **shape_params, ) else: print(f"Warning: Unsupported geometry type {type_name} at {path}.") return path_body_map[path] = body_id path_shape_map[path] = shape_id path_shape_scale[path] = scale if prim.HasRelationship("physics:filteredPairs"): other_paths = prim.GetRelationship("physics:filteredPairs").GetTargets() for other_path in other_paths: path_collision_filters.add((path, str(other_path))) if "PhysicsCollisionAPI" not in schemas or not parse_generic(prim, "physics:collisionEnabled", True): no_collision_shapes.add(shape_id) else: print(f"Warning: encountered unsupported prim type {type_name}") # update mass properties of rigid bodies in cases where properties are defined with higher precedence if body_id >= 0: com = parse_vec(prim, "physics:centerOfMass") if com is not None: # overwrite COM builder.body_com[body_id] = com * scale if mass is not None and not (is_rigid_body and mass == 0.0): mass_ratio = mass / builder.body_mass[body_id] # mass has precedence over density, so we overwrite the mass computed from density builder.body_mass[body_id] = mass * mass_unit if mass > 0.0: builder.body_inv_mass[body_id] = 1.0 / builder.body_mass[body_id] else: builder.body_inv_mass[body_id] = 0.0 # update inertia builder.body_inertia[body_id] *= mass_ratio if np.array(builder.body_inertia[body_id]).any(): builder.body_inv_inertia[body_id] = wp.inverse(builder.body_inertia[body_id]) else: builder.body_inv_inertia[body_id] = wp.mat33(*np.zeros((3, 3), dtype=np.float32)) if np.linalg.norm(i_diag) > 0.0: rot = np.array(wp.quat_to_matrix(i_rot), dtype=np.float32).reshape(3, 3) inertia = rot @ np.diag(i_diag) @ rot.T builder.body_inertia[body_id] = inertia if inertia.any(): builder.body_inv_inertia[body_id] = wp.inverse(wp.mat33(*inertia)) else: builder.body_inv_inertia[body_id] = wp.mat33(*np.zeros((3, 3), dtype=np.float32)) parse_prim( stage.GetDefaultPrim(), incoming_xform=wp.transform(), incoming_scale=np.ones(3, dtype=np.float32) * linear_unit ) shape_count = len(builder.shape_geo_type) # apply collision filters now that we have added all shapes for path1, path2 in path_collision_filters: shape1 = path_shape_map[path1] shape2 = path_shape_map[path2] builder.shape_collision_filter_pairs.add((shape1, shape2)) # apply collision filters to all shapes that have no collision for shape_id in no_collision_shapes: for other_shape_id in range(shape_count): if other_shape_id != shape_id: builder.shape_collision_filter_pairs.add((shape_id, other_shape_id)) # return stage parameters return { "fps": stage.GetFramesPerSecond(), "duration": stage.GetEndTimeCode() - stage.GetStartTimeCode(), "up_axis": UsdGeom.GetStageUpAxis(stage).upper(), "path_shape_map": path_shape_map, "path_body_map": path_body_map, "path_shape_scale": path_shape_scale, "mass_unit": mass_unit, "linear_unit": linear_unit, } def resolve_usd_from_url(url: str, target_folder_name: str = None, export_usda: bool = False): """ Downloads a USD file from a URL and resolves all references to other USD files to be downloaded to the given target folder. Args: url (str): URL to the USD file. target_folder_name (str): Target folder name. If None, a timestamped folder will be created in the current directory. export_usda (bool): If True, converts each downloaded USD file to USDA and saves the additional USDA file in the target folder with the same base name as the original USD file. Returns: str: File path to the downloaded USD file. """ import datetime import os import requests try: from pxr import Usd except ImportError as e: raise ImportError("Failed to import pxr. Please install USD (e.g. via `pip install usd-core`).") from e response = requests.get(url, allow_redirects=True) if response.status_code != 200: raise RuntimeError(f"Failed to download USD file. Status code: {response.status_code}") file = response.content dot = os.path.extsep base = os.path.basename(url) url_folder = os.path.dirname(url) base_name = dot.join(base.split(dot)[:-1]) if target_folder_name is None: timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") target_folder_name = os.path.join(".usd_cache", f"{base_name}_{timestamp}") os.makedirs(target_folder_name, exist_ok=True) target_filename = os.path.join(target_folder_name, base) with open(target_filename, "wb") as f: f.write(file) stage = Usd.Stage.Open(target_filename, Usd.Stage.LoadNone) stage_str = stage.GetRootLayer().ExportToString() print(f"Downloaded USD file to {target_filename}.") if export_usda: usda_filename = os.path.join(target_folder_name, base_name + ".usda") with open(usda_filename, "w") as f: f.write(stage_str) print(f"Exported USDA file to {usda_filename}.") # parse referenced USD files like `references = @./franka_collisions.usd@` downloaded = set() for match in re.finditer(r"references.=.@(.*?)@", stage_str): refname = match.group(1) if refname.startswith("./"): refname = refname[2:] if refname in downloaded: continue try: response = requests.get(f"{url_folder}/{refname}", allow_redirects=True) if response.status_code != 200: print(f"Failed to download reference {refname}. Status code: {response.status_code}") continue file = response.content refdir = os.path.dirname(refname) if refdir: os.makedirs(os.path.join(target_folder_name, refdir), exist_ok=True) ref_filename = os.path.join(target_folder_name, refname) if not os.path.exists(ref_filename): with open(ref_filename, "wb") as f: f.write(file) downloaded.add(refname) print(f"Downloaded USD reference {refname} to {ref_filename}.") if export_usda: ref_stage = Usd.Stage.Open(ref_filename, Usd.Stage.LoadNone) ref_stage_str = ref_stage.GetRootLayer().ExportToString() base = os.path.basename(ref_filename) base_name = dot.join(base.split(dot)[:-1]) usda_filename = os.path.join(target_folder_name, base_name + ".usda") with open(usda_filename, "w") as f: f.write(ref_stage_str) print(f"Exported USDA file to {usda_filename}.") except Exception: print(f"Failed to download {refname}.") return target_filename
40,498
Python
44.606982
195
0.545953
NVIDIA/warp/warp/sim/integrator_featherstone.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .articulation import ( compute_2d_rotational_dofs, compute_3d_rotational_dofs, eval_fk, ) from .integrator import Integrator from .integrator_euler import ( eval_bending_forces, eval_joint_force, eval_muscle_forces, eval_particle_body_contact_forces, eval_particle_forces, eval_particle_ground_contact_forces, eval_rigid_contacts, eval_spring_forces, eval_tetrahedral_forces, eval_triangle_contact_forces, eval_triangle_forces, ) from .model import Control, Model, State # Frank & Park definition 3.20, pg 100 @wp.func def transform_twist(t: wp.transform, x: wp.spatial_vector): q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) w = wp.quat_rotate(q, w) v = wp.quat_rotate(q, v) + wp.cross(p, w) return wp.spatial_vector(w, v) @wp.func def transform_wrench(t: wp.transform, x: wp.spatial_vector): q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) v = wp.quat_rotate(q, v) w = wp.quat_rotate(q, w) + wp.cross(p, v) return wp.spatial_vector(w, v) @wp.func def spatial_adjoint(R: wp.mat33, S: wp.mat33): # T = [R 0] # [S R] # fmt: off return wp.spatial_matrix( R[0, 0], R[0, 1], R[0, 2], 0.0, 0.0, 0.0, R[1, 0], R[1, 1], R[1, 2], 0.0, 0.0, 0.0, R[2, 0], R[2, 1], R[2, 2], 0.0, 0.0, 0.0, S[0, 0], S[0, 1], S[0, 2], R[0, 0], R[0, 1], R[0, 2], S[1, 0], S[1, 1], S[1, 2], R[1, 0], R[1, 1], R[1, 2], S[2, 0], S[2, 1], S[2, 2], R[2, 0], R[2, 1], R[2, 2], ) # fmt: on @wp.kernel def compute_spatial_inertia( body_inertia: wp.array(dtype=wp.mat33), body_mass: wp.array(dtype=float), # outputs body_I_m: wp.array(dtype=wp.spatial_matrix), ): tid = wp.tid() I = body_inertia[tid] m = body_mass[tid] # fmt: off body_I_m[tid] = wp.spatial_matrix( I[0, 0], I[0, 1], I[0, 2], 0.0, 0.0, 0.0, I[1, 0], I[1, 1], I[1, 2], 0.0, 0.0, 0.0, I[2, 0], I[2, 1], I[2, 2], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, m, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, m, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, m, ) # fmt: on @wp.kernel def compute_com_transforms( body_com: wp.array(dtype=wp.vec3), # outputs body_X_com: wp.array(dtype=wp.transform), ): tid = wp.tid() com = body_com[tid] body_X_com[tid] = wp.transform(com, wp.quat_identity()) # computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 @wp.func def spatial_transform_inertia(t: wp.transform, I: wp.spatial_matrix): t_inv = wp.transform_inverse(t) q = wp.transform_get_rotation(t_inv) p = wp.transform_get_translation(t_inv) r1 = wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0)) r2 = wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0)) r3 = wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0)) R = wp.mat33(r1, r2, r3) S = wp.skew(p) @ R T = spatial_adjoint(R, S) return wp.mul(wp.mul(wp.transpose(T), I), T) # compute transform across a joint @wp.func def jcalc_transform( type: int, joint_axis: wp.array(dtype=wp.vec3), axis_start: int, lin_axis_count: int, ang_axis_count: int, joint_q: wp.array(dtype=float), start: int, ): if type == wp.sim.JOINT_PRISMATIC: q = joint_q[start] axis = joint_axis[axis_start] X_jc = wp.transform(axis * q, wp.quat_identity()) return X_jc if type == wp.sim.JOINT_REVOLUTE: q = joint_q[start] axis = joint_axis[axis_start] X_jc = wp.transform(wp.vec3(), wp.quat_from_axis_angle(axis, q)) return X_jc if type == wp.sim.JOINT_BALL: qx = joint_q[start + 0] qy = joint_q[start + 1] qz = joint_q[start + 2] qw = joint_q[start + 3] X_jc = wp.transform(wp.vec3(), wp.quat(qx, qy, qz, qw)) return X_jc if type == wp.sim.JOINT_FIXED: X_jc = wp.transform_identity() return X_jc if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: px = joint_q[start + 0] py = joint_q[start + 1] pz = joint_q[start + 2] qx = joint_q[start + 3] qy = joint_q[start + 4] qz = joint_q[start + 5] qw = joint_q[start + 6] X_jc = wp.transform(wp.vec3(px, py, pz), wp.quat(qx, qy, qz, qw)) return X_jc if type == wp.sim.JOINT_COMPOUND: rot, _ = compute_3d_rotational_dofs( joint_axis[axis_start], joint_axis[axis_start + 1], joint_axis[axis_start + 2], joint_q[start + 0], joint_q[start + 1], joint_q[start + 2], 0.0, 0.0, 0.0, ) X_jc = wp.transform(wp.vec3(), rot) return X_jc if type == wp.sim.JOINT_UNIVERSAL: rot, _ = compute_2d_rotational_dofs( joint_axis[axis_start], joint_axis[axis_start + 1], joint_q[start + 0], joint_q[start + 1], 0.0, 0.0, ) X_jc = wp.transform(wp.vec3(), rot) return X_jc if type == wp.sim.JOINT_D6: pos = wp.vec3(0.0) rot = wp.quat_identity() # unroll for loop to ensure joint actions remain differentiable # (since differentiating through a for loop that updates a local variable is not supported) if lin_axis_count > 0: axis = joint_axis[axis_start + 0] pos += axis * joint_q[start + 0] if lin_axis_count > 1: axis = joint_axis[axis_start + 1] pos += axis * joint_q[start + 1] if lin_axis_count > 2: axis = joint_axis[axis_start + 2] pos += axis * joint_q[start + 2] ia = axis_start + lin_axis_count iq = start + lin_axis_count if ang_axis_count == 1: axis = joint_axis[ia] rot = wp.quat_from_axis_angle(axis, joint_q[iq]) if ang_axis_count == 2: rot, _ = compute_2d_rotational_dofs( joint_axis[ia + 0], joint_axis[ia + 1], joint_q[iq + 0], joint_q[iq + 1], 0.0, 0.0, ) if ang_axis_count == 3: rot, _ = compute_3d_rotational_dofs( joint_axis[ia + 0], joint_axis[ia + 1], joint_axis[ia + 2], joint_q[iq + 0], joint_q[iq + 1], joint_q[iq + 2], 0.0, 0.0, 0.0, ) X_jc = wp.transform(pos, rot) return X_jc # default case return wp.transform_identity() # compute motion subspace and velocity for a joint @wp.func def jcalc_motion( type: int, joint_axis: wp.array(dtype=wp.vec3), axis_start: int, lin_axis_count: int, ang_axis_count: int, X_sc: wp.transform, joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), q_start: int, qd_start: int, # outputs joint_S_s: wp.array(dtype=wp.spatial_vector), ): if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis)) v_j_s = S_s * joint_qd[qd_start] joint_S_s[qd_start] = S_s return v_j_s if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3())) v_j_s = S_s * joint_qd[qd_start] joint_S_s[qd_start] = S_s return v_j_s if type == wp.sim.JOINT_UNIVERSAL: axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, wp.cross(axis_0, axis_1))) local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0]) axis_1 = wp.quat_rotate(q_0, local_1) S_0 = transform_twist(X_sc, wp.spatial_vector(axis_0, wp.vec3())) S_1 = transform_twist(X_sc, wp.spatial_vector(axis_1, wp.vec3())) joint_S_s[qd_start + 0] = S_0 joint_S_s[qd_start + 1] = S_1 return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1] if type == wp.sim.JOINT_COMPOUND: axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] axis_2 = joint_axis[axis_start + 2] q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, axis_2)) local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) local_2 = wp.quat_rotate(q_off, wp.vec3(0.0, 0.0, 1.0)) axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0]) axis_1 = wp.quat_rotate(q_0, local_1) q_1 = wp.quat_from_axis_angle(axis_1, joint_q[q_start + 1]) axis_2 = wp.quat_rotate(q_1 * q_0, local_2) S_0 = transform_twist(X_sc, wp.spatial_vector(axis_0, wp.vec3())) S_1 = transform_twist(X_sc, wp.spatial_vector(axis_1, wp.vec3())) S_2 = transform_twist(X_sc, wp.spatial_vector(axis_2, wp.vec3())) joint_S_s[qd_start + 0] = S_0 joint_S_s[qd_start + 1] = S_1 joint_S_s[qd_start + 2] = S_2 return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1] + S_2 * joint_qd[qd_start + 2] if type == wp.sim.JOINT_D6: v_j_s = wp.spatial_vector() if lin_axis_count > 0: axis = joint_axis[axis_start + 0] S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis)) v_j_s += S_s * joint_qd[qd_start + 0] joint_S_s[qd_start + 0] = S_s if lin_axis_count > 1: axis = joint_axis[axis_start + 1] S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis)) v_j_s += S_s * joint_qd[qd_start + 1] joint_S_s[qd_start + 1] = S_s if lin_axis_count > 2: axis = joint_axis[axis_start + 2] S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis)) v_j_s += S_s * joint_qd[qd_start + 2] joint_S_s[qd_start + 2] = S_s if ang_axis_count > 0: axis = joint_axis[axis_start + lin_axis_count + 0] S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3())) v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 0] joint_S_s[qd_start + lin_axis_count + 0] = S_s if ang_axis_count > 1: axis = joint_axis[axis_start + lin_axis_count + 1] S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3())) v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 1] joint_S_s[qd_start + lin_axis_count + 1] = S_s if ang_axis_count > 2: axis = joint_axis[axis_start + lin_axis_count + 2] S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3())) v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 2] joint_S_s[qd_start + lin_axis_count + 2] = S_s return v_j_s if type == wp.sim.JOINT_BALL: S_0 = transform_twist(X_sc, wp.spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) S_1 = transform_twist(X_sc, wp.spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) S_2 = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) joint_S_s[qd_start + 0] = S_0 joint_S_s[qd_start + 1] = S_1 joint_S_s[qd_start + 2] = S_2 return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1] + S_2 * joint_qd[qd_start + 2] if type == wp.sim.JOINT_FIXED: return wp.spatial_vector() if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: v_j_s = transform_twist( X_sc, wp.spatial_vector( joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2], joint_qd[qd_start + 3], joint_qd[qd_start + 4], joint_qd[qd_start + 5], ), ) joint_S_s[qd_start + 0] = transform_twist(X_sc, wp.spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) joint_S_s[qd_start + 1] = transform_twist(X_sc, wp.spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) joint_S_s[qd_start + 2] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) joint_S_s[qd_start + 3] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) joint_S_s[qd_start + 4] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0)) joint_S_s[qd_start + 5] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0)) return v_j_s wp.printf("jcalc_motion not implemented for joint type %d\n", type) # default case return wp.spatial_vector() # computes joint space forces/torques in tau @wp.func def jcalc_tau( type: int, joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_limit_ke: wp.array(dtype=float), joint_limit_kd: wp.array(dtype=float), joint_S_s: wp.array(dtype=wp.spatial_vector), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_act: wp.array(dtype=float), joint_axis_mode: wp.array(dtype=int), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), coord_start: int, dof_start: int, axis_start: int, lin_axis_count: int, ang_axis_count: int, body_f_s: wp.spatial_vector, # outputs tau: wp.array(dtype=float), ): if type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE: S_s = joint_S_s[dof_start] q = joint_q[coord_start] qd = joint_qd[dof_start] act = joint_act[axis_start] lower = joint_limit_lower[axis_start] upper = joint_limit_upper[axis_start] limit_ke = joint_limit_ke[axis_start] limit_kd = joint_limit_kd[axis_start] target_ke = joint_target_ke[axis_start] target_kd = joint_target_kd[axis_start] mode = joint_axis_mode[axis_start] # total torque / force on the joint t = -wp.dot(S_s, body_f_s) + eval_joint_force( q, qd, act, target_ke, target_kd, lower, upper, limit_ke, limit_kd, mode ) tau[dof_start] = t return if type == wp.sim.JOINT_BALL: # target_ke = joint_target_ke[axis_start] # target_kd = joint_target_kd[axis_start] for i in range(3): S_s = joint_S_s[dof_start + i] # w = joint_qd[dof_start + i] # r = joint_q[coord_start + i] tau[dof_start + i] = -wp.dot(S_s, body_f_s) # - w * target_kd - r * target_ke return if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: for i in range(6): S_s = joint_S_s[dof_start + i] tau[dof_start + i] = -wp.dot(S_s, body_f_s) return if type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_D6: axis_count = lin_axis_count + ang_axis_count for i in range(axis_count): S_s = joint_S_s[dof_start + i] q = joint_q[coord_start + i] qd = joint_qd[dof_start + i] act = joint_act[axis_start + i] lower = joint_limit_lower[axis_start + i] upper = joint_limit_upper[axis_start + i] limit_ke = joint_limit_ke[axis_start + i] limit_kd = joint_limit_kd[axis_start + i] target_ke = joint_target_ke[axis_start + i] target_kd = joint_target_kd[axis_start + i] mode = joint_axis_mode[axis_start + i] f = eval_joint_force(q, qd, act, target_ke, target_kd, lower, upper, limit_ke, limit_kd, mode) # total torque / force on the joint t = -wp.dot(S_s, body_f_s) + f tau[dof_start + i] = t return @wp.func def jcalc_integrate( type: int, joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_qdd: wp.array(dtype=float), coord_start: int, dof_start: int, lin_axis_count: int, ang_axis_count: int, dt: float, # outputs joint_q_new: wp.array(dtype=float), joint_qd_new: wp.array(dtype=float), ): if type == wp.sim.JOINT_FIXED: return # prismatic / revolute if type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE: qdd = joint_qdd[dof_start] qd = joint_qd[dof_start] q = joint_q[coord_start] qd_new = qd + qdd * dt q_new = q + qd_new * dt joint_qd_new[dof_start] = qd_new joint_q_new[coord_start] = q_new return # ball if type == wp.sim.JOINT_BALL: m_j = wp.vec3(joint_qdd[dof_start + 0], joint_qdd[dof_start + 1], joint_qdd[dof_start + 2]) w_j = wp.vec3(joint_qd[dof_start + 0], joint_qd[dof_start + 1], joint_qd[dof_start + 2]) r_j = wp.quat( joint_q[coord_start + 0], joint_q[coord_start + 1], joint_q[coord_start + 2], joint_q[coord_start + 3] ) # symplectic Euler w_j_new = w_j + m_j * dt drdt_j = wp.quat(w_j_new, 0.0) * r_j * 0.5 # new orientation (normalized) r_j_new = wp.normalize(r_j + drdt_j * dt) # update joint coords joint_q_new[coord_start + 0] = r_j_new[0] joint_q_new[coord_start + 1] = r_j_new[1] joint_q_new[coord_start + 2] = r_j_new[2] joint_q_new[coord_start + 3] = r_j_new[3] # update joint vel joint_qd_new[dof_start + 0] = w_j_new[0] joint_qd_new[dof_start + 1] = w_j_new[1] joint_qd_new[dof_start + 2] = w_j_new[2] return # free joint if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: # dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z) # coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w) # angular and linear acceleration m_s = wp.vec3(joint_qdd[dof_start + 0], joint_qdd[dof_start + 1], joint_qdd[dof_start + 2]) a_s = wp.vec3(joint_qdd[dof_start + 3], joint_qdd[dof_start + 4], joint_qdd[dof_start + 5]) # angular and linear velocity w_s = wp.vec3(joint_qd[dof_start + 0], joint_qd[dof_start + 1], joint_qd[dof_start + 2]) v_s = wp.vec3(joint_qd[dof_start + 3], joint_qd[dof_start + 4], joint_qd[dof_start + 5]) # symplectic Euler w_s = w_s + m_s * dt v_s = v_s + a_s * dt # translation of origin p_s = wp.vec3(joint_q[coord_start + 0], joint_q[coord_start + 1], joint_q[coord_start + 2]) # linear vel of origin (note q/qd switch order of linear angular elements) # note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velcity dpdt_s = v_s + wp.cross(w_s, p_s) # quat and quat derivative r_s = wp.quat( joint_q[coord_start + 3], joint_q[coord_start + 4], joint_q[coord_start + 5], joint_q[coord_start + 6] ) drdt_s = wp.quat(w_s, 0.0) * r_s * 0.5 # new orientation (normalized) p_s_new = p_s + dpdt_s * dt r_s_new = wp.normalize(r_s + drdt_s * dt) # update transform joint_q_new[coord_start + 0] = p_s_new[0] joint_q_new[coord_start + 1] = p_s_new[1] joint_q_new[coord_start + 2] = p_s_new[2] joint_q_new[coord_start + 3] = r_s_new[0] joint_q_new[coord_start + 4] = r_s_new[1] joint_q_new[coord_start + 5] = r_s_new[2] joint_q_new[coord_start + 6] = r_s_new[3] # update joint_twist joint_qd_new[dof_start + 0] = w_s[0] joint_qd_new[dof_start + 1] = w_s[1] joint_qd_new[dof_start + 2] = w_s[2] joint_qd_new[dof_start + 3] = v_s[0] joint_qd_new[dof_start + 4] = v_s[1] joint_qd_new[dof_start + 5] = v_s[2] return # other joint types (compound, universal, D6) if type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_D6: axis_count = lin_axis_count + ang_axis_count for i in range(axis_count): qdd = joint_qdd[dof_start + i] qd = joint_qd[dof_start + i] q = joint_q[coord_start + i] qd_new = qd + qdd * dt q_new = q + qd_new * dt joint_qd_new[dof_start + i] = qd_new joint_q_new[coord_start + i] = q_new return @wp.func def compute_link_transform( i: int, joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), body_X_com: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), # outputs body_q: wp.array(dtype=wp.transform), body_q_com: wp.array(dtype=wp.transform), ): # parent transform parent = joint_parent[i] child = joint_child[i] # parent transform in spatial coordinates X_pj = joint_X_p[i] X_cj = joint_X_c[i] # parent anchor frame in world space X_wpj = X_pj if parent >= 0: X_wp = body_q[parent] X_wpj = X_wp * X_wpj type = joint_type[i] axis_start = joint_axis_start[i] lin_axis_count = joint_axis_dim[i, 0] ang_axis_count = joint_axis_dim[i, 1] coord_start = joint_q_start[i] # compute transform across joint X_j = jcalc_transform(type, joint_axis, axis_start, lin_axis_count, ang_axis_count, joint_q, coord_start) # transform from world to joint anchor frame at child body X_wcj = X_wpj * X_j # transform from world to child body frame X_wc = X_wcj * wp.transform_inverse(X_cj) # compute transform of center of mass X_cm = body_X_com[child] X_sm = X_wc * X_cm # store geometry transforms body_q[child] = X_wc body_q_com[child] = X_sm @wp.kernel def eval_rigid_fk( articulation_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), body_X_com: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), # outputs body_q: wp.array(dtype=wp.transform), body_q_com: wp.array(dtype=wp.transform), ): # one thread per-articulation index = wp.tid() start = articulation_start[index] end = articulation_start[index + 1] for i in range(start, end): compute_link_transform( i, joint_type, joint_parent, joint_child, joint_q_start, joint_q, joint_X_p, joint_X_c, body_X_com, joint_axis, joint_axis_start, joint_axis_dim, body_q, body_q_com, ) @wp.func def spatial_cross(a: wp.spatial_vector, b: wp.spatial_vector): w_a = wp.spatial_top(a) v_a = wp.spatial_bottom(a) w_b = wp.spatial_top(b) v_b = wp.spatial_bottom(b) w = wp.cross(w_a, w_b) v = wp.cross(w_a, v_b) + wp.cross(v_a, w_b) return wp.spatial_vector(w, v) @wp.func def spatial_cross_dual(a: wp.spatial_vector, b: wp.spatial_vector): w_a = wp.spatial_top(a) v_a = wp.spatial_bottom(a) w_b = wp.spatial_top(b) v_b = wp.spatial_bottom(b) w = wp.cross(w_a, w_b) + wp.cross(v_a, v_b) v = wp.cross(w_a, v_b) return wp.spatial_vector(w, v) @wp.func def dense_index(stride: int, i: int, j: int): return i * stride + j @wp.func def compute_link_velocity( i: int, joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), body_I_m: wp.array(dtype=wp.spatial_matrix), body_q: wp.array(dtype=wp.transform), body_q_com: wp.array(dtype=wp.transform), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), gravity: wp.vec3, # outputs joint_S_s: wp.array(dtype=wp.spatial_vector), body_I_s: wp.array(dtype=wp.spatial_matrix), body_v_s: wp.array(dtype=wp.spatial_vector), body_f_s: wp.array(dtype=wp.spatial_vector), body_a_s: wp.array(dtype=wp.spatial_vector), ): type = joint_type[i] child = joint_child[i] parent = joint_parent[i] q_start = joint_q_start[i] qd_start = joint_qd_start[i] X_pj = joint_X_p[i] # X_cj = joint_X_c[i] # parent anchor frame in world space X_wpj = X_pj if parent >= 0: X_wp = body_q[parent] X_wpj = X_wp * X_wpj # compute motion subspace and velocity across the joint (also stores S_s to global memory) axis_start = joint_axis_start[i] lin_axis_count = joint_axis_dim[i, 0] ang_axis_count = joint_axis_dim[i, 1] v_j_s = jcalc_motion( type, joint_axis, axis_start, lin_axis_count, ang_axis_count, X_wpj, joint_q, joint_qd, q_start, qd_start, joint_S_s, ) # parent velocity v_parent_s = wp.spatial_vector() a_parent_s = wp.spatial_vector() if parent >= 0: v_parent_s = body_v_s[parent] a_parent_s = body_a_s[parent] # body velocity, acceleration v_s = v_parent_s + v_j_s a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + joint_S_s[i]*self.joint_qdd[i] # compute body forces X_sm = body_q_com[child] I_m = body_I_m[child] # gravity and external forces (expressed in frame aligned with s but centered at body mass) m = I_m[3, 3] f_g = m * gravity r_com = wp.transform_get_translation(X_sm) f_g_s = wp.spatial_vector(wp.cross(r_com, f_g), f_g) # body forces I_s = spatial_transform_inertia(X_sm, I_m) f_b_s = I_s * a_s + spatial_cross_dual(v_s, I_s * v_s) body_v_s[child] = v_s body_a_s[child] = a_s body_f_s[child] = f_b_s - f_g_s body_I_s[child] = I_s # Inverse dynamics via Recursive Newton-Euler algorithm (Featherstone Table 5.1) @wp.kernel def eval_rigid_id( articulation_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), body_I_m: wp.array(dtype=wp.spatial_matrix), body_q: wp.array(dtype=wp.transform), body_q_com: wp.array(dtype=wp.transform), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), gravity: wp.vec3, # outputs joint_S_s: wp.array(dtype=wp.spatial_vector), body_I_s: wp.array(dtype=wp.spatial_matrix), body_v_s: wp.array(dtype=wp.spatial_vector), body_f_s: wp.array(dtype=wp.spatial_vector), body_a_s: wp.array(dtype=wp.spatial_vector), ): # one thread per-articulation index = wp.tid() start = articulation_start[index] end = articulation_start[index + 1] # compute link velocities and coriolis forces for i in range(start, end): compute_link_velocity( i, joint_type, joint_parent, joint_child, joint_q_start, joint_qd_start, joint_q, joint_qd, joint_axis, joint_axis_start, joint_axis_dim, body_I_m, body_q, body_q_com, joint_X_p, joint_X_c, gravity, joint_S_s, body_I_s, body_v_s, body_f_s, body_a_s, ) @wp.kernel def eval_rigid_tau( articulation_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis_mode: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_act: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_limit_ke: wp.array(dtype=float), joint_limit_kd: wp.array(dtype=float), joint_S_s: wp.array(dtype=wp.spatial_vector), body_fb_s: wp.array(dtype=wp.spatial_vector), body_f_ext: wp.array(dtype=wp.spatial_vector), # outputs body_ft_s: wp.array(dtype=wp.spatial_vector), tau: wp.array(dtype=float), ): # one thread per-articulation index = wp.tid() start = articulation_start[index] end = articulation_start[index + 1] count = end - start # compute joint forces for offset in range(count): # for backwards traversal i = end - offset - 1 type = joint_type[i] parent = joint_parent[i] child = joint_child[i] dof_start = joint_qd_start[i] coord_start = joint_q_start[i] axis_start = joint_axis_start[i] lin_axis_count = joint_axis_dim[i, 0] ang_axis_count = joint_axis_dim[i, 1] # total forces on body f_b_s = body_fb_s[child] f_t_s = body_ft_s[child] f_ext = body_f_ext[child] f_s = f_b_s + f_t_s + f_ext # compute joint-space forces, writes out tau jcalc_tau( type, joint_target_ke, joint_target_kd, joint_limit_ke, joint_limit_kd, joint_S_s, joint_q, joint_qd, joint_act, joint_axis_mode, joint_limit_lower, joint_limit_upper, coord_start, dof_start, axis_start, lin_axis_count, ang_axis_count, f_s, tau, ) # update parent forces, todo: check that this is valid for the backwards pass if parent >= 0: wp.atomic_add(body_ft_s, parent, f_s) # builds spatial Jacobian J which is an (joint_count*6)x(dof_count) matrix @wp.kernel def eval_rigid_jacobian( articulation_start: wp.array(dtype=int), articulation_J_start: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_S_s: wp.array(dtype=wp.spatial_vector), # outputs J: wp.array(dtype=float), ): # one thread per-articulation index = wp.tid() joint_start = articulation_start[index] joint_end = articulation_start[index + 1] joint_count = joint_end - joint_start J_offset = articulation_J_start[index] articulation_dof_start = joint_qd_start[joint_start] articulation_dof_end = joint_qd_start[joint_end] articulation_dof_count = articulation_dof_end - articulation_dof_start for i in range(joint_count): row_start = i * 6 j = joint_start + i while j != -1: joint_dof_start = joint_qd_start[j] joint_dof_end = joint_qd_start[j + 1] joint_dof_count = joint_dof_end - joint_dof_start # fill out each row of the Jacobian walking up the tree for dof in range(joint_dof_count): col = (joint_dof_start - articulation_dof_start) + dof S = joint_S_s[joint_dof_start + dof] for k in range(6): J[J_offset + dense_index(articulation_dof_count, row_start + k, col)] = S[k] j = joint_parent[j] @wp.func def spatial_mass( body_I_s: wp.array(dtype=wp.spatial_matrix), joint_start: int, joint_count: int, M_start: int, # outputs M: wp.array(dtype=float), ): stride = joint_count * 6 for l in range(joint_count): I = body_I_s[joint_start + l] for i in range(6): for j in range(6): M[M_start + dense_index(stride, l * 6 + i, l * 6 + j)] = I[i, j] @wp.kernel def eval_rigid_mass( articulation_start: wp.array(dtype=int), articulation_M_start: wp.array(dtype=int), body_I_s: wp.array(dtype=wp.spatial_matrix), # outputs M: wp.array(dtype=float), ): # one thread per-articulation index = wp.tid() joint_start = articulation_start[index] joint_end = articulation_start[index + 1] joint_count = joint_end - joint_start M_offset = articulation_M_start[index] spatial_mass(body_I_s, joint_start, joint_count, M_offset, M) @wp.func def dense_gemm( m: int, n: int, p: int, transpose_A: bool, transpose_B: bool, add_to_C: bool, A_start: int, B_start: int, C_start: int, A: wp.array(dtype=float), B: wp.array(dtype=float), # outputs C: wp.array(dtype=float), ): # multiply a `m x p` matrix A by a `p x n` matrix B to produce a `m x n` matrix C for i in range(m): for j in range(n): sum = float(0.0) for k in range(p): if transpose_A: a_i = k * m + i else: a_i = i * p + k if transpose_B: b_j = j * p + k else: b_j = k * n + j sum += A[A_start + a_i] * B[B_start + b_j] if add_to_C: C[C_start + i * n + j] += sum else: C[C_start + i * n + j] = sum # @wp.func_grad(dense_gemm) # def adj_dense_gemm( # m: int, # n: int, # p: int, # transpose_A: bool, # transpose_B: bool, # add_to_C: bool, # A_start: int, # B_start: int, # C_start: int, # A: wp.array(dtype=float), # B: wp.array(dtype=float), # # outputs # C: wp.array(dtype=float), # ): # add_to_C = True # if transpose_A: # dense_gemm(p, m, n, False, True, add_to_C, A_start, B_start, C_start, B, wp.adjoint[C], wp.adjoint[A]) # dense_gemm(p, n, m, False, False, add_to_C, A_start, B_start, C_start, A, wp.adjoint[C], wp.adjoint[B]) # else: # dense_gemm( # m, p, n, False, not transpose_B, add_to_C, A_start, B_start, C_start, wp.adjoint[C], B, wp.adjoint[A] # ) # dense_gemm(p, n, m, True, False, add_to_C, A_start, B_start, C_start, A, wp.adjoint[C], wp.adjoint[B]) @wp.kernel def eval_dense_gemm_batched( m: wp.array(dtype=int), n: wp.array(dtype=int), p: wp.array(dtype=int), transpose_A: bool, transpose_B: bool, A_start: wp.array(dtype=int), B_start: wp.array(dtype=int), C_start: wp.array(dtype=int), A: wp.array(dtype=float), B: wp.array(dtype=float), C: wp.array(dtype=float), ): # on the CPU each thread computes the whole matrix multiply # on the GPU each block computes the multiply with one output per-thread batch = wp.tid() # /kNumThreadsPerBlock; add_to_C = False dense_gemm( m[batch], n[batch], p[batch], transpose_A, transpose_B, add_to_C, A_start[batch], B_start[batch], C_start[batch], A, B, C, ) @wp.func def dense_cholesky( n: int, A: wp.array(dtype=float), R: wp.array(dtype=float), A_start: int, R_start: int, # outputs L: wp.array(dtype=float), ): # compute the Cholesky factorization of A = L L^T with diagonal regularization R for j in range(n): s = A[A_start + dense_index(n, j, j)] + R[R_start + j] for k in range(j): r = L[A_start + dense_index(n, j, k)] s -= r * r s = wp.sqrt(s) invS = 1.0 / s L[A_start + dense_index(n, j, j)] = s for i in range(j + 1, n): s = A[A_start + dense_index(n, i, j)] for k in range(j): s -= L[A_start + dense_index(n, i, k)] * L[A_start + dense_index(n, j, k)] L[A_start + dense_index(n, i, j)] = s * invS @wp.func_grad(dense_cholesky) def adj_dense_cholesky( n: int, A: wp.array(dtype=float), R: wp.array(dtype=float), A_start: int, R_start: int, # outputs L: wp.array(dtype=float), ): # nop, use dense_solve to differentiate through (A^-1)b = x pass @wp.kernel def eval_dense_cholesky_batched( A_starts: wp.array(dtype=int), A_dim: wp.array(dtype=int), A: wp.array(dtype=float), R: wp.array(dtype=float), L: wp.array(dtype=float), ): batch = wp.tid() n = A_dim[batch] A_start = A_starts[batch] R_start = n * batch dense_cholesky(n, A, R, A_start, R_start, L) @wp.func def dense_subs( n: int, L_start: int, b_start: int, L: wp.array(dtype=float), b: wp.array(dtype=float), # outputs x: wp.array(dtype=float), ): # Solves (L L^T) x = b for x given the Cholesky factor L # forward substitution solves the lower triangular system L y = b for y for i in range(n): s = b[b_start + i] for j in range(i): s -= L[L_start + dense_index(n, i, j)] * x[b_start + j] x[b_start + i] = s / L[L_start + dense_index(n, i, i)] # backward substitution solves the upper triangular system L^T x = y for x for i in range(n - 1, -1, -1): s = x[b_start + i] for j in range(i + 1, n): s -= L[L_start + dense_index(n, j, i)] * x[b_start + j] x[b_start + i] = s / L[L_start + dense_index(n, i, i)] @wp.func def dense_solve( n: int, L_start: int, b_start: int, L: wp.array(dtype=float), b: wp.array(dtype=float), # outputs x: wp.array(dtype=float), tmp: wp.array(dtype=float), ): # helper function to include tmp argument for backward pass dense_subs(n, L_start, b_start, L, b, x) @wp.func_grad(dense_solve) def adj_dense_solve( n: int, L_start: int, b_start: int, L: wp.array(dtype=float), b: wp.array(dtype=float), # outputs x: wp.array(dtype=float), tmp: wp.array(dtype=float), ): if not tmp or not wp.adjoint[x] or not wp.adjoint[L]: return for i in range(n): tmp[b_start + i] = 0.0 dense_subs(n, L_start, b_start, L, wp.adjoint[x], tmp) for i in range(n): wp.adjoint[b][b_start + i] += tmp[b_start + i] # A* = -adj_b*x^T for i in range(n): for j in range(n): wp.adjoint[L][L_start + dense_index(n, i, j)] += -tmp[b_start + i] * x[b_start + j] @wp.kernel def eval_dense_solve_batched( L_start: wp.array(dtype=int), L_dim: wp.array(dtype=int), b_start: wp.array(dtype=int), L: wp.array(dtype=float), b: wp.array(dtype=float), # outputs x: wp.array(dtype=float), tmp: wp.array(dtype=float), ): batch = wp.tid() dense_solve(L_dim[batch], L_start[batch], b_start[batch], L, b, x, tmp) @wp.kernel def integrate_generalized_joints( joint_type: wp.array(dtype=int), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_qdd: wp.array(dtype=float), dt: float, # outputs joint_q_new: wp.array(dtype=float), joint_qd_new: wp.array(dtype=float), ): # one thread per-articulation index = wp.tid() type = joint_type[index] coord_start = joint_q_start[index] dof_start = joint_qd_start[index] lin_axis_count = joint_axis_dim[index, 0] ang_axis_count = joint_axis_dim[index, 1] jcalc_integrate( type, joint_q, joint_qd, joint_qdd, coord_start, dof_start, lin_axis_count, ang_axis_count, dt, joint_q_new, joint_qd_new, ) class FeatherstoneIntegrator(Integrator): """A semi-implicit integrator using symplectic Euler that operates on reduced (also called generalized) coordinates to simulate articulated rigid body dynamics based on Featherstone's composite rigid body algorithm (CRBA). See: Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2014. Instead of maximal coordinates :attr:`State.body_q` (rigid body positions) and :attr:`State.body_qd` (rigid body velocities) as is the case :class:`SemiImplicitIntegrator`, :class:`FeatherstoneIntegrator` uses :attr:`State.joint_q` and :attr:`State.joint_qd` to represent the positions and velocities of joints without allowing any redundant degrees of freedom. After constructing :class:`Model` and :class:`State` objects this time-integrator may be used to advance the simulation state forward in time. Note: Unlike :class:`SemiImplicitIntegrator` and :class:`XPBDIntegrator`, :class:`FeatherstoneIntegrator` does not simulate rigid bodies with nonzero mass as floating bodies if they are not connected through any joints. Floating-base systems require an explicit free joint with which the body is connected to the world, see :meth:`ModelBuilder.add_joint_free`. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example ------- .. code-block:: python integrator = wp.FeatherstoneIntegrator(model) # simulation loop for i in range(100): state = integrator.simulate(model, state_in, state_out, dt) Note: The :class:`FeatherstoneIntegrator` requires the :class:`Model` to be passed in as a constructor argument. """ def __init__(self, model, angular_damping=0.05, update_mass_matrix_every=1): """ Args: model (Model): the model to be simulated. angular_damping (float, optional): Angular damping factor. Defaults to 0.05. update_mass_matrix_every (int, optional): How often to update the mass matrix (every n-th time the :meth:`simulate` function gets called). Defaults to 1. """ self.angular_damping = angular_damping self.update_mass_matrix_every = update_mass_matrix_every self.compute_articulation_indices(model) self.allocate_model_aux_vars(model) self._step = 0 def compute_articulation_indices(self, model): # calculate total size and offsets of Jacobian and mass matrices for entire system if model.joint_count: self.J_size = 0 self.M_size = 0 self.H_size = 0 articulation_J_start = [] articulation_M_start = [] articulation_H_start = [] articulation_M_rows = [] articulation_H_rows = [] articulation_J_rows = [] articulation_J_cols = [] articulation_dof_start = [] articulation_coord_start = [] articulation_start = model.articulation_start.numpy() joint_q_start = model.joint_q_start.numpy() joint_qd_start = model.joint_qd_start.numpy() for i in range(model.articulation_count): first_joint = articulation_start[i] last_joint = articulation_start[i + 1] first_coord = joint_q_start[first_joint] first_dof = joint_qd_start[first_joint] last_dof = joint_qd_start[last_joint] joint_count = last_joint - first_joint dof_count = last_dof - first_dof articulation_J_start.append(self.J_size) articulation_M_start.append(self.M_size) articulation_H_start.append(self.H_size) articulation_dof_start.append(first_dof) articulation_coord_start.append(first_coord) # bit of data duplication here, but will leave it as such for clarity articulation_M_rows.append(joint_count * 6) articulation_H_rows.append(dof_count) articulation_J_rows.append(joint_count * 6) articulation_J_cols.append(dof_count) self.J_size += 6 * joint_count * dof_count self.M_size += 6 * joint_count * 6 * joint_count self.H_size += dof_count * dof_count # matrix offsets for batched gemm self.articulation_J_start = wp.array(articulation_J_start, dtype=wp.int32, device=model.device) self.articulation_M_start = wp.array(articulation_M_start, dtype=wp.int32, device=model.device) self.articulation_H_start = wp.array(articulation_H_start, dtype=wp.int32, device=model.device) self.articulation_M_rows = wp.array(articulation_M_rows, dtype=wp.int32, device=model.device) self.articulation_H_rows = wp.array(articulation_H_rows, dtype=wp.int32, device=model.device) self.articulation_J_rows = wp.array(articulation_J_rows, dtype=wp.int32, device=model.device) self.articulation_J_cols = wp.array(articulation_J_cols, dtype=wp.int32, device=model.device) self.articulation_dof_start = wp.array(articulation_dof_start, dtype=wp.int32, device=model.device) self.articulation_coord_start = wp.array(articulation_coord_start, dtype=wp.int32, device=model.device) def allocate_model_aux_vars(self, model): # allocate mass, Jacobian matrices, and other auxiliary variables pertaining to the model if model.joint_count: # system matrices self.M = wp.zeros((self.M_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad) self.J = wp.zeros((self.J_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad) self.P = wp.empty_like(self.J, requires_grad=model.requires_grad) self.H = wp.empty((self.H_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad) # zero since only upper triangle is set which can trigger NaN detection self.L = wp.zeros_like(self.H) if model.body_count: # TODO use requires_grad here? self.body_I_m = wp.empty( (model.body_count,), dtype=wp.spatial_matrix, device=model.device, requires_grad=model.requires_grad ) wp.launch( compute_spatial_inertia, model.body_count, inputs=[model.body_inertia, model.body_mass], outputs=[self.body_I_m], device=model.device, ) self.body_X_com = wp.empty( (model.body_count,), dtype=wp.transform, device=model.device, requires_grad=model.requires_grad ) wp.launch( compute_com_transforms, model.body_count, inputs=[model.body_com], outputs=[self.body_X_com], device=model.device, ) def allocate_state_aux_vars(self, model, target, requires_grad): # allocate auxiliary variables that vary with state if model.body_count: # joints target.joint_qdd = wp.zeros_like(model.joint_qd, requires_grad=requires_grad) target.joint_tau = wp.empty_like(model.joint_qd, requires_grad=requires_grad) if requires_grad: # used in the custom grad implementation of eval_dense_solve_batched target.joint_solve_tmp = wp.zeros_like(model.joint_qd, requires_grad=True) else: target.joint_solve_tmp = None target.joint_S_s = wp.empty( (model.joint_dof_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad, ) # derived rigid body data (maximal coordinates) target.body_q_com = wp.empty_like(model.body_q, requires_grad=requires_grad) target.body_I_s = wp.empty( (model.body_count,), dtype=wp.spatial_matrix, device=model.device, requires_grad=requires_grad ) target.body_v_s = wp.empty( (model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad ) target.body_a_s = wp.empty( (model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad ) target.body_f_s = wp.zeros( (model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad ) target.body_ft_s = wp.zeros( (model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad ) target._featherstone_augmented = True def simulate(self, model: Model, state_in: State, state_out: State, dt: float, control: Control = None): requires_grad = state_in.requires_grad # optionally create dynamical auxiliary variables if requires_grad: state_aug = state_out else: state_aug = self if not getattr(state_aug, "_featherstone_augmented", False): self.allocate_state_aux_vars(model, state_aug, requires_grad) if control is None: control = model.control(clone_variables=False) with wp.ScopedTimer("simulate", False): particle_f = None body_f = None if state_in.particle_count: particle_f = state_in.particle_f if state_in.body_count: body_f = state_in.body_f # damped springs eval_spring_forces(model, state_in, particle_f) # triangle elastic and lift/drag forces eval_triangle_forces(model, state_in, control, particle_f) # triangle/triangle contacts eval_triangle_contact_forces(model, state_in, particle_f) # triangle bending eval_bending_forces(model, state_in, particle_f) # tetrahedral FEM eval_tetrahedral_forces(model, state_in, control, particle_f) # particle-particle interactions eval_particle_forces(model, state_in, particle_f) # particle ground contacts eval_particle_ground_contact_forces(model, state_in, particle_f) # particle shape contact eval_particle_body_contact_forces(model, state_in, particle_f, body_f) # muscles if False: eval_muscle_forces(model, state_in, control, body_f) # ---------------------------- # articulations if model.joint_count: # evaluate body transforms wp.launch( eval_rigid_fk, dim=model.articulation_count, inputs=[ model.articulation_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_q_start, state_in.joint_q, model.joint_X_p, model.joint_X_c, self.body_X_com, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, ], outputs=[state_in.body_q, state_aug.body_q_com], device=model.device, ) # print("body_X_sc:") # print(state_in.body_q.numpy()) # evaluate joint inertias, motion vectors, and forces state_aug.body_f_s.zero_() wp.launch( eval_rigid_id, dim=model.articulation_count, inputs=[ model.articulation_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, self.body_I_m, state_in.body_q, state_aug.body_q_com, model.joint_X_p, model.joint_X_c, model.gravity, ], outputs=[ state_aug.joint_S_s, state_aug.body_I_s, state_aug.body_v_s, state_aug.body_f_s, state_aug.body_a_s, ], device=model.device, ) if model.rigid_contact_max and ( model.ground and model.shape_ground_contact_pair_count or model.shape_contact_pair_count ): wp.launch( kernel=eval_rigid_contacts, dim=model.rigid_contact_max, inputs=[ state_in.body_q, state_aug.body_v_s, model.body_com, model.shape_materials, model.shape_geo, model.shape_body, model.rigid_contact_count, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_normal, model.rigid_contact_shape0, model.rigid_contact_shape1, True, ], outputs=[body_f], device=model.device, ) # if model.rigid_contact_count.numpy()[0] > 0: # print(body_f.numpy()) if model.articulation_count: # evaluate joint torques state_aug.body_ft_s.zero_() wp.launch( eval_rigid_tau, dim=model.articulation_count, inputs=[ model.articulation_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_q_start, model.joint_qd_start, model.joint_axis_start, model.joint_axis_dim, model.joint_axis_mode, state_in.joint_q, state_in.joint_qd, control.joint_act, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, state_aug.joint_S_s, state_aug.body_f_s, body_f, ], outputs=[ state_aug.body_ft_s, state_aug.joint_tau, ], device=model.device, ) # print("joint_tau:") # print(state_aug.joint_tau.numpy()) # print("body_q:") # print(state_in.body_q.numpy()) # print("body_qd:") # print(state_in.body_qd.numpy()) if self._step % self.update_mass_matrix_every == 0: # build J wp.launch( eval_rigid_jacobian, dim=model.articulation_count, inputs=[ model.articulation_start, self.articulation_J_start, model.joint_parent, model.joint_qd_start, state_aug.joint_S_s, ], outputs=[self.J], device=model.device, ) # build M wp.launch( eval_rigid_mass, dim=model.articulation_count, inputs=[ model.articulation_start, self.articulation_M_start, state_aug.body_I_s, ], outputs=[self.M], device=model.device, ) # form P = M*J wp.launch( eval_dense_gemm_batched, dim=model.articulation_count, inputs=[ self.articulation_M_rows, self.articulation_J_cols, self.articulation_J_rows, False, False, self.articulation_M_start, self.articulation_J_start, # P start is the same as J start since it has the same dims as J self.articulation_J_start, self.M, self.J, ], outputs=[self.P], device=model.device, ) # form H = J^T*P wp.launch( eval_dense_gemm_batched, dim=model.articulation_count, inputs=[ self.articulation_J_cols, self.articulation_J_cols, # P rows is the same as J rows self.articulation_J_rows, True, False, self.articulation_J_start, # P start is the same as J start since it has the same dims as J self.articulation_J_start, self.articulation_H_start, self.J, self.P, ], outputs=[self.H], device=model.device, ) # compute decomposition wp.launch( eval_dense_cholesky_batched, dim=model.articulation_count, inputs=[ self.articulation_H_start, self.articulation_H_rows, self.H, model.joint_armature, ], outputs=[self.L], device=model.device, ) # print("joint_act:") # print(control.joint_act.numpy()) # print("joint_tau:") # print(state_aug.joint_tau.numpy()) # print("H:") # print(self.H.numpy()) # print("L:") # print(self.L.numpy()) # solve for qdd state_aug.joint_qdd.zero_() wp.launch( eval_dense_solve_batched, dim=model.articulation_count, inputs=[ self.articulation_H_start, self.articulation_H_rows, self.articulation_dof_start, self.L, state_aug.joint_tau, ], outputs=[ state_aug.joint_qdd, state_aug.joint_solve_tmp, ], device=model.device, ) # if wp.context.runtime.tape: # wp.context.runtime.tape.record_func( # backward=lambda: adj_matmul( # a, b, c, a.grad, b.grad, c.grad, d.grad, alpha, beta, allow_tf32x3_arith, device # ), # arrays=[a, b, c, d], # ) # print("joint_qdd:") # print(state_aug.joint_qdd.numpy()) # print("\n\n") # ------------------------------------- # integrate bodies if model.joint_count: wp.launch( kernel=integrate_generalized_joints, dim=model.joint_count, inputs=[ model.joint_type, model.joint_q_start, model.joint_qd_start, model.joint_axis_dim, state_in.joint_q, state_in.joint_qd, state_aug.joint_qdd, dt, ], outputs=[state_out.joint_q, state_out.joint_qd], device=model.device, ) # update maximal coordinates eval_fk(model, state_out.joint_q, state_out.joint_qd, None, state_out) self.integrate_particles(model, state_in, state_out, dt) self._step += 1 return state_out
64,584
Python
32.796442
362
0.522033
NVIDIA/warp/warp/sim/import_snu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import xml.etree.ElementTree as ET import numpy as np import warp as wp # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] class Skeleton: def __init__(self, root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0): self.parse_skeleton(skeleton_file, builder, filter, root_xform, armature) self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter, root_xform, armature): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = builder.joint_coord_count self.dof_start = builder.joint_dof_count type_map = { "Ball": wp.sim.JOINT_BALL, "Revolute": wp.sim.JOINT_REVOLUTE, "Prismatic": wp.sim.JOINT_PRISMATIC, "Free": wp.sim.JOINT_FREE, "Fixed": wp.sim.JOINT_FIXED, } builder.add_articulation() for child in root: if child.tag == "Node": body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = wp.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") # body_type = body.attrib["type"] # body_mass = body.attrib["mass"] body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3, 3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3, 3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = np.array([-1.0e3]) joint_upper = np.array([1.0e3]) try: joint_lower = np.fromstring(joint.attrib["lower"], sep=" ") joint_upper = np.fromstring(joint.attrib["upper"], sep=" ") except Exception: pass if "axis" in joint.attrib: joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = wp.transform(body_t_s, wp.quat_from_matrix(body_R_s)) joint_X_s = wp.transform(joint_t_s, wp.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] # mesh_file = mesh_base + ".usd" # ----------------------------------- # one time conversion, put meshes into local body space (and meter units) # stage = Usd.Stage.Open("./assets/snu/OBJ/" + mesh_file) # geom = UsdGeom.Mesh.Get(stage, "/" + mesh_base + "_obj/defaultobject/defaultobject") # body_X_bs = wp.transform_inverse(body_X_s) # joint_X_bs = wp.transform_inverse(joint_X_s) # points = geom.GetPointsAttr().Get() # for i in range(len(points)): # p = wp.transform_point(joint_X_bs, points[i]*0.01) # points[i] = Gf.Vec3f(p.tolist()) # cm -> meters # geom.GetPointsAttr().Set(points) # extent = UsdGeom.Boundable.ComputeExtentFromPlugins(geom, 0.0) # geom.GetExtentAttr().Set(extent) # stage.Save() # -------------------------------------- link = -1 if len(filter) == 0 or name in filter: joint_X_p = wp.transform_multiply(wp.transform_inverse(parent_X_s), joint_X_s) body_X_c = wp.transform_multiply(wp.transform_inverse(joint_X_s), body_X_s) if parent_link == -1: joint_X_p = wp.transform_identity() # add link link = builder.add_body( parent=parent_link, origin=wp.transform_multiply(root_xform, joint_X_s), joint_xform=joint_X_p, joint_axis=joint_axis, joint_type=joint_type, joint_target_ke=5.0, joint_target_kd=2.0, joint_limit_lower=joint_lower[0], joint_limit_upper=joint_upper[0], joint_limit_ke=1.0e3, joint_limit_kd=1.0e2, joint_armature=armature, ) # add shape builder.add_shape_box( body=link, pos=body_X_c.p, rot=body_X_c.q, hx=body_size[0] * 0.5, hy=body_size[1] * 0.5, hz=body_size[2] * 0.5, ke=1.0e3 * 5.0, kd=1.0e2 * 2.0, kf=1.0e3, mu=0.5, ) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if child.tag == "Unit": unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if way_link == -1: incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = wp.transform_point(wp.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle( m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen ) self.muscles = muscles def parse_snu(root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0): return Skeleton(root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0)
8,339
Python
36.737556
107
0.491786
NVIDIA/warp/warp/sim/import_mjcf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import os import re import xml.etree.ElementTree as ET import numpy as np import warp as wp def parse_mjcf( mjcf_filename, builder, xform=None, density=1000.0, stiffness=0.0, damping=0.0, contact_ke=1000.0, contact_kd=100.0, contact_kf=100.0, contact_ka=0.0, contact_mu=0.5, contact_restitution=0.5, contact_thickness=0.0, limit_ke=100.0, limit_kd=10.0, scale=1.0, armature=0.0, armature_scale=1.0, parse_meshes=True, enable_self_collisions=False, up_axis="Z", ignore_classes=None, collapse_fixed_joints=False, ): """ Parses MuJoCo XML (MJCF) file and adds the bodies and joints to the given ModelBuilder. Args: mjcf_filename (str): The filename of the MuJoCo file to parse. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. xform (:ref:`transform <transform>`): The transform to apply to the imported mechanism. density (float): The density of the shapes in kg/m^3 which will be used to calculate the body mass and inertia. stiffness (float): The stiffness of the joints. damping (float): The damping of the joints. contact_ke (float): The stiffness of the shape contacts. contact_kd (float): The damping of the shape contacts. contact_kf (float): The friction stiffness of the shape contacts. contact_ka (float): The adhesion distance of the shape contacts. contact_mu (float): The friction coefficient of the shape contacts. contact_restitution (float): The restitution coefficient of the shape contacts. contact_thickness (float): The thickness to add to the shape geometry. limit_ke (float): The stiffness of the joint limits. limit_kd (float): The damping of the joint limits. scale (float): The scaling factor to apply to the imported mechanism. armature (float): Default joint armature to use if `armature` has not been defined for a joint in the MJCF. armature_scale (float): Scaling factor to apply to the MJCF-defined joint armature values. parse_meshes (bool): Whether geometries of type `"mesh"` should be parsed. If False, geometries of type `"mesh"` are ignored. enable_self_collisions (bool): If True, self-collisions are enabled. up_axis (str): The up axis of the mechanism. Can be either `"X"`, `"Y"` or `"Z"`. The default is `"Z"`. ignore_classes (List[str]): A list of regular expressions. Bodies and joints with a class matching one of the regular expressions will be ignored. collapse_fixed_joints (bool): If True, fixed joints are removed and the respective bodies are merged. Note: The inertia and masses of the bodies are calculated from the shape geometry and the given density. The values defined in the MJCF are not respected at the moment. The handling of advanced features, such as MJCF classes, is still experimental. """ if xform is None: xform = wp.transform() if ignore_classes is None: ignore_classes = [] mjcf_dirname = os.path.dirname(mjcf_filename) file = ET.parse(mjcf_filename) root = file.getroot() contact_vars = { "ke": contact_ke, "kd": contact_kd, "kf": contact_kf, "ka": contact_ka, "mu": contact_mu, "restitution": contact_restitution, "thickness": contact_thickness, } use_degrees = True # angles are in degrees by default euler_seq = [1, 2, 3] # XYZ by default compiler = root.find("compiler") if compiler is not None: use_degrees = compiler.attrib.get("angle", "degree").lower() == "degree" euler_seq = ["xyz".index(c) + 1 for c in compiler.attrib.get("eulerseq", "xyz").lower()] mesh_dir = compiler.attrib.get("meshdir", ".") mesh_assets = {} for asset in root.findall("asset"): for mesh in asset.findall("mesh"): if "file" in mesh.attrib: fname = os.path.join(mesh_dir, mesh.attrib["file"]) # handle stl relative paths if not os.path.isabs(fname): fname = os.path.abspath(os.path.join(mjcf_dirname, fname)) if "name" in mesh.attrib: mesh_assets[mesh.attrib["name"]] = fname else: name = ".".join(os.path.basename(fname).split(".")[:-1]) mesh_assets[name] = fname class_parent = {} class_children = {} class_defaults = {"__all__": {}} def get_class(element): return element.get("class", "__all__") def parse_default(node, parent): nonlocal class_parent nonlocal class_children nonlocal class_defaults class_name = "__all__" if "class" in node.attrib: class_name = node.attrib["class"] class_parent[class_name] = parent parent = parent or "__all__" if parent not in class_children: class_children[parent] = [] class_children[parent].append(class_name) if class_name not in class_defaults: class_defaults[class_name] = {} for child in node: if child.tag == "default": parse_default(child, node.get("class")) else: class_defaults[class_name][child.tag] = child.attrib for default in root.findall("default"): parse_default(default, None) def merge_attrib(default_attrib: dict, incoming_attrib: dict): attrib = default_attrib.copy() attrib.update(incoming_attrib) return attrib if isinstance(up_axis, str): up_axis = "XYZ".index(up_axis.upper()) sqh = np.sqrt(0.5) if up_axis == 0: xform = wp.transform(xform.p, wp.quat(0.0, 0.0, -sqh, sqh) * xform.q) elif up_axis == 2: xform = wp.transform(xform.p, wp.quat(sqh, 0.0, 0.0, -sqh) * xform.q) # do not apply scaling to the root transform xform = wp.transform(np.array(xform.p) / scale, xform.q) def parse_float(attrib, key, default): if key in attrib: return float(attrib[key]) else: return default def parse_vec(attrib, key, default): if key in attrib: out = np.fromstring(attrib[key], sep=" ", dtype=np.float32) else: out = np.array(default, dtype=np.float32) length = len(out) if length == 1: return wp.vec(len(default), wp.float32)(out[0], out[0], out[0]) return wp.vec(length, wp.float32)(out) def parse_orientation(attrib): if "quat" in attrib: wxyz = np.fromstring(attrib["quat"], sep=" ") return wp.normalize(wp.quat(*wxyz[1:], wxyz[0])) if "euler" in attrib: euler = np.fromstring(attrib["euler"], sep=" ") if use_degrees: euler *= np.pi / 180 return wp.quat_from_euler(euler, *euler_seq) if "axisangle" in attrib: axisangle = np.fromstring(attrib["axisangle"], sep=" ") angle = axisangle[3] if use_degrees: angle *= np.pi / 180 axis = wp.normalize(wp.vec3(*axisangle[:3])) return wp.quat_from_axis_angle(axis, angle) if "xyaxes" in attrib: xyaxes = np.fromstring(attrib["xyaxes"], sep=" ") xaxis = wp.normalize(wp.vec3(*xyaxes[:3])) zaxis = wp.normalize(wp.vec3(*xyaxes[3:])) yaxis = wp.normalize(wp.cross(zaxis, xaxis)) rot_matrix = np.array([xaxis, yaxis, zaxis]).T return wp.quat_from_matrix(rot_matrix) if "zaxis" in attrib: zaxis = np.fromstring(attrib["zaxis"], sep=" ") zaxis = wp.normalize(wp.vec3(*zaxis)) xaxis = wp.normalize(wp.cross(wp.vec3(0, 0, 1), zaxis)) yaxis = wp.normalize(wp.cross(zaxis, xaxis)) rot_matrix = np.array([xaxis, yaxis, zaxis]).T return wp.quat_from_matrix(rot_matrix) return wp.quat_identity() def parse_mesh(geom): import trimesh faces = [] vertices = [] stl_file = mesh_assets[geom["mesh"]] m = trimesh.load(stl_file) for v in m.vertices: vertices.append(np.array(v) * scale) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) return wp.sim.Mesh(vertices, faces), m.scale def parse_body(body, parent, incoming_defaults: dict): body_class = body.get("childclass") if body_class is None: defaults = incoming_defaults else: for pattern in ignore_classes: if re.match(pattern, body_class): return defaults = merge_attrib(incoming_defaults, class_defaults[body_class]) if "body" in defaults: body_attrib = merge_attrib(defaults["body"], body.attrib) else: body_attrib = body.attrib body_name = body_attrib["name"] body_pos = parse_vec(body_attrib, "pos", (0.0, 0.0, 0.0)) body_ori = parse_orientation(body_attrib) if parent == -1: body_pos = wp.transform_point(xform, body_pos) body_ori = xform.q * body_ori body_pos *= scale joint_armature = [] joint_name = [] joint_pos = [] linear_axes = [] angular_axes = [] joint_type = None freejoint_tags = body.findall("freejoint") if len(freejoint_tags) > 0: joint_type = wp.sim.JOINT_FREE joint_name.append(freejoint_tags[0].attrib.get("name", f"{body_name}_freejoint")) else: joints = body.findall("joint") for _i, joint in enumerate(joints): if "joint" in defaults: joint_attrib = merge_attrib(defaults["joint"], joint.attrib) else: joint_attrib = joint.attrib # default to hinge if not specified joint_type_str = joint_attrib.get("type", "hinge") joint_name.append(joint_attrib["name"]) joint_pos.append(parse_vec(joint_attrib, "pos", (0.0, 0.0, 0.0)) * scale) joint_range = parse_vec(joint_attrib, "range", (-3.0, 3.0)) joint_armature.append(parse_float(joint_attrib, "armature", armature) * armature_scale) if joint_type_str == "free": joint_type = wp.sim.JOINT_FREE break if joint_type_str == "fixed": joint_type = wp.sim.JOINT_FIXED break is_angular = joint_type_str == "hinge" mode = wp.sim.JOINT_MODE_FORCE if stiffness > 0.0 or "stiffness" in joint_attrib: mode = wp.sim.JOINT_MODE_TARGET_POSITION axis_vec = parse_vec(joint_attrib, "axis", (0.0, 0.0, 0.0)) ax = wp.sim.model.JointAxis( axis=axis_vec, limit_lower=(np.deg2rad(joint_range[0]) if is_angular and use_degrees else joint_range[0]), limit_upper=(np.deg2rad(joint_range[1]) if is_angular and use_degrees else joint_range[1]), target_ke=parse_float(joint_attrib, "stiffness", stiffness), target_kd=parse_float(joint_attrib, "damping", damping), limit_ke=limit_ke, limit_kd=limit_kd, mode=mode, ) if is_angular: angular_axes.append(ax) else: linear_axes.append(ax) link = builder.add_body( origin=wp.transform(body_pos, body_ori), # will be evaluated in fk() armature=joint_armature[0] if len(joint_armature) > 0 else armature, name=body_name, ) if joint_type is None: if len(linear_axes) == 0: if len(angular_axes) == 0: joint_type = wp.sim.JOINT_FIXED elif len(angular_axes) == 1: joint_type = wp.sim.JOINT_REVOLUTE elif len(angular_axes) == 2: joint_type = wp.sim.JOINT_UNIVERSAL elif len(angular_axes) == 3: joint_type = wp.sim.JOINT_COMPOUND elif len(linear_axes) == 1 and len(angular_axes) == 0: joint_type = wp.sim.JOINT_PRISMATIC else: joint_type = wp.sim.JOINT_D6 joint_pos = joint_pos[0] if len(joint_pos) > 0 else (0.0, 0.0, 0.0) builder.add_joint( joint_type, parent, link, linear_axes, angular_axes, name="_".join(joint_name), parent_xform=wp.transform(body_pos + joint_pos, body_ori), child_xform=wp.transform(joint_pos, wp.quat_identity()), armature=joint_armature[0] if len(joint_armature) > 0 else armature, ) # ----------------- # add shapes for geo_count, geom in enumerate(body.findall("geom")): geom_defaults = defaults if "class" in geom.attrib: geom_class = geom.attrib["class"] ignore_geom = False for pattern in ignore_classes: if re.match(pattern, geom_class): ignore_geom = True break if ignore_geom: continue if geom_class in class_defaults: geom_defaults = merge_attrib(defaults, class_defaults[geom_class]) if "geom" in geom_defaults: geom_attrib = merge_attrib(geom_defaults["geom"], geom.attrib) else: geom_attrib = geom.attrib geom_name = geom_attrib.get("name", f"{body_name}_geom_{geo_count}") geom_type = geom_attrib.get("type", "sphere") if "mesh" in geom_attrib: geom_type = "mesh" geom_size = parse_vec(geom_attrib, "size", [1.0, 1.0, 1.0]) * scale geom_pos = parse_vec(geom_attrib, "pos", (0.0, 0.0, 0.0)) * scale geom_rot = parse_orientation(geom_attrib) geom_density = parse_float(geom_attrib, "density", density) if geom_type == "sphere": builder.add_shape_sphere( link, pos=geom_pos, rot=geom_rot, radius=geom_size[0], density=geom_density, **contact_vars, ) elif geom_type == "box": builder.add_shape_box( link, pos=geom_pos, rot=geom_rot, hx=geom_size[0], hy=geom_size[1], hz=geom_size[2], density=geom_density, **contact_vars, ) elif geom_type == "mesh" and parse_meshes: mesh, _ = parse_mesh(geom_attrib) if "mesh" in defaults: mesh_scale = parse_vec(defaults["mesh"], "scale", [1.0, 1.0, 1.0]) else: mesh_scale = [1.0, 1.0, 1.0] # as per the Mujoco XML reference, ignore geom size attribute assert len(geom_size) == 3, "need to specify size for mesh geom" builder.add_shape_mesh( body=link, pos=geom_pos, rot=geom_rot, mesh=mesh, scale=mesh_scale, density=density, **contact_vars, ) elif geom_type in {"capsule", "cylinder"}: if "fromto" in geom_attrib: geom_fromto = parse_vec(geom_attrib, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = wp.vec3(geom_fromto[0:3]) * scale end = wp.vec3(geom_fromto[3:6]) * scale # compute rotation to align the Warp capsule (along x-axis), with mjcf fromto direction axis = wp.normalize(end - start) angle = math.acos(wp.dot(axis, wp.vec3(0.0, 1.0, 0.0))) axis = wp.normalize(wp.cross(axis, wp.vec3(0.0, 1.0, 0.0))) geom_pos = (start + end) * 0.5 geom_rot = wp.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_height = wp.length(end - start) * 0.5 geom_up_axis = 1 else: geom_radius = geom_size[0] geom_height = geom_size[1] geom_up_axis = up_axis if geom_type == "cylinder": builder.add_shape_cylinder( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_height=geom_height, density=density, up_axis=geom_up_axis, **contact_vars, ) else: builder.add_shape_capsule( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_height=geom_height, density=density, up_axis=geom_up_axis, **contact_vars, ) else: print(f"MJCF parsing shape {geom_name} issue: geom type {geom_type} is unsupported") # ----------------- # recurse for child in body.findall("body"): parse_body(child, link, defaults) # ----------------- # start articulation start_shape_count = len(builder.shape_geo_type) builder.add_articulation() world = root.find("worldbody") world_class = get_class(world) world_defaults = merge_attrib(class_defaults["__all__"], class_defaults.get(world_class, {})) for body in world.findall("body"): parse_body(body, -1, world_defaults) end_shape_count = len(builder.shape_geo_type) if not enable_self_collisions: for i in range(start_shape_count, end_shape_count): for j in range(i + 1, end_shape_count): builder.shape_collision_filter_pairs.add((i, j)) if collapse_fixed_joints: builder.collapse_fixed_joints()
19,306
Python
38.402041
170
0.532995
NVIDIA/warp/warp/sim/integrator_xpbd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .integrator import Integrator from .model import ( JOINT_MODE_FORCE, JOINT_MODE_TARGET_POSITION, JOINT_MODE_TARGET_VELOCITY, PARTICLE_FLAG_ACTIVE, Control, Model, ModelShapeMaterials, State, ) from .utils import vec_abs, vec_leaky_max, vec_leaky_min, vec_max, vec_min, velocity_at_point @wp.kernel def solve_particle_ground_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), ke: float, kd: float, kf: float, mu: float, ground: wp.array(dtype=float), dt: float, relaxation: float, delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return wi = invmass[tid] if wi == 0.0: return x = particle_x[tid] v = particle_v[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.min(wp.dot(n, x) + ground[3] - particle_radius[tid], 0.0) if c > 0.0: return # normal lambda_n = c delta_n = n * lambda_n # friction vn = wp.dot(n, v) vt = v - n * vn lambda_f = wp.max(mu * lambda_n, 0.0 - wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f wp.atomic_add(delta, tid, (delta_f - delta_n) * relaxation) @wp.kernel def apply_particle_shape_restitution( particle_x_new: wp.array(dtype=wp.vec3), particle_v_new: wp.array(dtype=wp.vec3), particle_x_old: wp.array(dtype=wp.vec3), particle_v_old: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), shape_body: wp.array(dtype=int), shape_materials: ModelShapeMaterials, particle_ka: float, restitution: float, contact_count: wp.array(dtype=int), contact_particle: wp.array(dtype=int), contact_shape: wp.array(dtype=int), contact_body_pos: wp.array(dtype=wp.vec3), contact_body_vel: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_max: int, dt: float, relaxation: float, particle_v_out: wp.array(dtype=wp.vec3), ): tid = wp.tid() count = min(contact_max, contact_count[0]) if tid >= count: return shape_index = contact_shape[tid] body_index = shape_body[shape_index] particle_index = contact_particle[tid] if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return # x_new = particle_x_new[particle_index] v_new = particle_v_new[particle_index] px = particle_x_old[particle_index] v_old = particle_v_old[particle_index] X_wb = wp.transform_identity() # X_com = wp.vec3() if body_index >= 0: X_wb = body_q[body_index] # X_com = body_com[body_index] # body position in world space bx = wp.transform_point(X_wb, contact_body_pos[tid]) # r = bx - wp.transform_point(X_wb, X_com) n = contact_normal[tid] c = wp.dot(n, px - bx) - particle_radius[particle_index] if c > particle_ka: return rel_vel_old = wp.dot(n, v_old) rel_vel_new = wp.dot(n, v_new) if rel_vel_old < 0.0: # dv = -n * wp.max(-rel_vel_new + wp.max(-restitution * rel_vel_old, 0.0), 0.0) dv = n * (-rel_vel_new + wp.max(-restitution * rel_vel_old, 0.0)) # compute inverse masses # w1 = particle_invmass[particle_index] # w2 = 0.0 # if body_index >= 0: # angular = wp.cross(r, n) # q = wp.transform_get_rotation(X_wb) # rot_angular = wp.quat_rotate_inv(q, angular) # I_inv = body_I_inv[body_index] # w2 = body_m_inv[body_index] + wp.dot(rot_angular, I_inv * rot_angular) # denom = w1 + w2 # if denom == 0.0: # return wp.atomic_add(particle_v_out, tid, dv) @wp.kernel def apply_particle_ground_restitution( particle_x_new: wp.array(dtype=wp.vec3), particle_v_new: wp.array(dtype=wp.vec3), particle_x_old: wp.array(dtype=wp.vec3), particle_v_old: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), particle_ka: float, restitution: float, ground: wp.array(dtype=float), dt: float, relaxation: float, particle_v_out: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return wi = particle_invmass[tid] if wi == 0.0: return x = particle_x_old[tid] v_old = particle_v_old[tid] v_new = particle_v_new[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.dot(n, x) + ground[3] - particle_radius[tid] if c > particle_ka: return vn = wp.dot(n, v_old) vn_new = wp.dot(n, v_new) if vn < 0.0: dv = n * (-vn_new + wp.max(-restitution * vn, 0.0)) wp.atomic_add(particle_v_out, tid, dv) @wp.kernel def solve_particle_shape_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), shape_body: wp.array(dtype=int), shape_materials: ModelShapeMaterials, particle_mu: float, particle_ka: float, contact_count: wp.array(dtype=int), contact_particle: wp.array(dtype=int), contact_shape: wp.array(dtype=int), contact_body_pos: wp.array(dtype=wp.vec3), contact_body_vel: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_max: int, dt: float, relaxation: float, # outputs delta: wp.array(dtype=wp.vec3), body_delta: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = min(contact_max, contact_count[0]) if tid >= count: return shape_index = contact_shape[tid] body_index = shape_body[shape_index] particle_index = contact_particle[tid] if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return px = particle_x[particle_index] pv = particle_v[particle_index] X_wb = wp.transform_identity() X_com = wp.vec3() if body_index >= 0: X_wb = body_q[body_index] X_com = body_com[body_index] # body position in world space bx = wp.transform_point(X_wb, contact_body_pos[tid]) r = bx - wp.transform_point(X_wb, X_com) n = contact_normal[tid] c = wp.dot(n, px - bx) - particle_radius[particle_index] if c > particle_ka: return # take average material properties of shape and particle parameters mu = 0.5 * (particle_mu + shape_materials.mu[shape_index]) # body velocity body_v_s = wp.spatial_vector() if body_index >= 0: body_v_s = body_qd[body_index] body_w = wp.spatial_top(body_v_s) body_v = wp.spatial_bottom(body_v_s) # compute the body velocity at the particle position bv = body_v + wp.cross(body_w, r) + wp.transform_vector(X_wb, contact_body_vel[tid]) # relative velocity v = pv - bv # normal lambda_n = c delta_n = n * lambda_n # friction vn = wp.dot(n, v) vt = v - n * vn # compute inverse masses w1 = particle_invmass[particle_index] w2 = 0.0 if body_index >= 0: angular = wp.cross(r, n) q = wp.transform_get_rotation(X_wb) rot_angular = wp.quat_rotate_inv(q, angular) I_inv = body_I_inv[body_index] w2 = body_m_inv[body_index] + wp.dot(rot_angular, I_inv * rot_angular) denom = w1 + w2 if denom == 0.0: return lambda_f = wp.max(mu * lambda_n, -wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f delta_total = (delta_f - delta_n) / denom * relaxation wp.atomic_add(delta, particle_index, w1 * delta_total) if body_index >= 0: delta_t = wp.cross(r, delta_total) wp.atomic_sub(body_delta, body_index, wp.spatial_vector(delta_t, delta_total)) @wp.kernel def solve_particle_particle_contacts( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), k_mu: float, k_cohesion: float, max_radius: float, dt: float, relaxation: float, # outputs deltas: wp.array(dtype=wp.vec3), ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) if i == -1: # hash grid has not been built yet return if (particle_flags[i] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[i] v = particle_v[i] radius = particle_radius[i] w1 = particle_invmass[i] # particle contact query = wp.hash_grid_query(grid, x, radius + max_radius + k_cohesion) index = int(0) delta = wp.vec3(0.0) while wp.hash_grid_query_next(query, index): if (particle_flags[index] & PARTICLE_FLAG_ACTIVE) != 0 and index != i: # compute distance to point n = x - particle_x[index] d = wp.length(n) err = d - radius - particle_radius[index] # compute inverse masses w2 = particle_invmass[index] denom = w1 + w2 if err <= k_cohesion and denom > 0.0: n = n / d vrel = v - particle_v[index] # normal lambda_n = err delta_n = n * lambda_n # friction vn = wp.dot(n, vrel) vt = v - n * vn lambda_f = wp.max(k_mu * lambda_n, -wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f delta += (delta_f - delta_n) / denom wp.atomic_add(deltas, i, delta * w1 * relaxation) @wp.kernel def solve_springs( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), spring_indices: wp.array(dtype=int), spring_rest_lengths: wp.array(dtype=float), spring_stiffness: wp.array(dtype=float), spring_damping: wp.array(dtype=float), dt: float, lambdas: wp.array(dtype=float), delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = spring_indices[tid * 2 + 0] j = spring_indices[tid * 2 + 1] ke = spring_stiffness[tid] kd = spring_damping[tid] rest = spring_rest_lengths[tid] xi = x[i] xj = x[j] vi = v[i] vj = v[j] xij = xi - xj vij = vi - vj l = wp.length(xij) if l == 0.0: return n = xij / l c = l - rest grad_c_xi = n grad_c_xj = -1.0 * n wi = invmass[i] wj = invmass[j] denom = wi + wj # Note strict inequality for damping -- 0 damping is ok if denom <= 0.0 or ke <= 0.0 or kd < 0.0: return alpha = 1.0 / (ke * dt * dt) gamma = kd / (ke * dt) grad_c_dot_v = dt * wp.dot(grad_c_xi, vij) # Note: dt because from the paper we want x_i - x^n, not v... dlambda = -1.0 * (c + alpha * lambdas[tid] + gamma * grad_c_dot_v) / ((1.0 + gamma) * denom + alpha) dxi = wi * dlambda * grad_c_xi dxj = wj * dlambda * grad_c_xj lambdas[tid] = lambdas[tid] + dlambda wp.atomic_add(delta, i, dxi) wp.atomic_add(delta, j, dxj) @wp.kernel def bending_constraint( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), indices: wp.array2d(dtype=int), rest: wp.array(dtype=float), bending_properties: wp.array2d(dtype=float), dt: float, lambdas: wp.array(dtype=float), delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() eps = 1.0e-6 ke = bending_properties[tid, 0] kd = bending_properties[tid, 1] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] if i == -1 or j == -1 or k == -1 or l == -1: return rest_angle = rest[tid] x1 = x[i] x2 = x[j] x3 = x[k] x4 = x[l] v1 = v[i] v2 = v[j] v3 = v[k] v4 = v[l] w1 = invmass[i] w2 = invmass[j] w3 = invmass[k] w4 = invmass[l] n1 = wp.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = wp.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = wp.length(n1) n2_length = wp.length(n2) if n1_length < eps or n2_length < eps: return n1 /= n1_length n2 /= n2_length cos_theta = wp.dot(n1, n2) e = x4 - x3 e_hat = wp.normalize(e) e_length = wp.length(e) derivative_flip = wp.sign(wp.dot(wp.cross(n1, n2), e)) derivative_flip *= -1.0 angle = wp.acos(cos_theta) grad_x1 = n1 * e_length * derivative_flip grad_x2 = n2 * e_length * derivative_flip grad_x3 = (n1 * wp.dot(x1 - x4, e_hat) + n2 * wp.dot(x2 - x4, e_hat)) * derivative_flip grad_x4 = (n1 * wp.dot(x3 - x1, e_hat) + n2 * wp.dot(x3 - x2, e_hat)) * derivative_flip c = angle - rest_angle denominator = ( w1 * wp.length_sq(grad_x1) + w2 * wp.length_sq(grad_x2) + w3 * wp.length_sq(grad_x3) + w4 * wp.length_sq(grad_x4) ) # Note strict inequality for damping -- 0 damping is ok if denominator <= 0.0 or ke <= 0.0 or kd < 0.0: return alpha = 1.0 / (ke * dt * dt) gamma = kd / (ke * dt) grad_dot_v = dt * (wp.dot(grad_x1, v1) + wp.dot(grad_x2, v2) + wp.dot(grad_x3, v3) + wp.dot(grad_x4, v4)) dlambda = -1.0 * (c + alpha * lambdas[tid] + gamma * grad_dot_v) / ((1.0 + gamma) * denominator + alpha) delta0 = w1 * dlambda * grad_x1 delta1 = w2 * dlambda * grad_x2 delta2 = w3 * dlambda * grad_x3 delta3 = w4 * dlambda * grad_x4 lambdas[tid] = lambdas[tid] + dlambda wp.atomic_add(delta, i, delta0) wp.atomic_add(delta, j, delta1) wp.atomic_add(delta, k, delta2) wp.atomic_add(delta, l, delta3) @wp.kernel def solve_tetrahedra( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), inv_mass: wp.array(dtype=float), indices: wp.array(dtype=int, ndim=2), rest_matrix: wp.array(dtype=wp.mat33), activation: wp.array(dtype=float), materials: wp.array(dtype=float, ndim=2), dt: float, relaxation: float, delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] # act = activation[tid] # k_mu = materials[tid, 0] # k_lambda = materials[tid, 1] # k_damp = materials[tid, 2] x0 = x[i] x1 = x[j] x2 = x[k] x3 = x[l] # v0 = v[i] # v1 = v[j] # v2 = v[k] # v3 = v[l] w0 = inv_mass[i] w1 = inv_mass[j] w2 = inv_mass[k] w3 = inv_mass[l] x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 Ds = wp.mat33(x10, x20, x30) Dm = rest_matrix[tid] inv_QT = wp.transpose(Dm) inv_rest_volume = wp.determinant(Dm) * 6.0 # F = Xs*Xm^-1 F = Ds * Dm f1 = wp.vec3(F[0, 0], F[1, 0], F[2, 0]) f2 = wp.vec3(F[0, 1], F[1, 1], F[2, 1]) f3 = wp.vec3(F[0, 2], F[1, 2], F[2, 2]) tr = wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3) C = float(0.0) dC = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) compliance = float(0.0) stretching_compliance = relaxation volume_compliance = relaxation num_terms = 2 for term in range(0, num_terms): if term == 0: # deviatoric, stable C = tr - 3.0 dC = F * 2.0 compliance = stretching_compliance elif term == 1: # volume conservation C = wp.determinant(F) - 1.0 dC = wp.mat33(wp.cross(f2, f3), wp.cross(f3, f1), wp.cross(f1, f2)) compliance = volume_compliance if C != 0.0: dP = dC * inv_QT grad1 = wp.vec3(dP[0][0], dP[1][0], dP[2][0]) grad2 = wp.vec3(dP[0][1], dP[1][1], dP[2][1]) grad3 = wp.vec3(dP[0][2], dP[1][2], dP[2][2]) grad0 = -grad1 - grad2 - grad3 w = ( wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 ) if w > 0.0: alpha = compliance / dt / dt if inv_rest_volume > 0.0: alpha *= inv_rest_volume dlambda = -C / (w + alpha) wp.atomic_add(delta, i, w0 * dlambda * grad0) wp.atomic_add(delta, j, w1 * dlambda * grad1) wp.atomic_add(delta, k, w2 * dlambda * grad2) wp.atomic_add(delta, l, w3 * dlambda * grad3) # wp.atomic_add(particle.num_corr, id0, 1) # wp.atomic_add(particle.num_corr, id1, 1) # wp.atomic_add(particle.num_corr, id2, 1) # wp.atomic_add(particle.num_corr, id3, 1) # C_Spherical # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - wp.sqrt(3.0) # dCdx = F*wp.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # C = r_s*r_s - 3.0 # dCdx = F*wp.transpose(Dm)*2.0 # alpha = 1.0 # grad1 = wp.vec3(dCdx[0, 0], dCdx[1, 0], dCdx[2, 0]) # grad2 = wp.vec3(dCdx[0, 1], dCdx[1, 1], dCdx[2, 1]) # grad3 = wp.vec3(dCdx[0, 2], dCdx[1, 2], dCdx[2, 2]) # grad0 = (grad1 + grad2 + grad3) * (0.0 - 1.0) # denom = ( # wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 # ) # multiplier = C / (denom + 1.0 / (k_mu * dt * dt * rest_volume)) # delta0 = grad0 * multiplier # delta1 = grad1 * multiplier # delta2 = grad2 * multiplier # delta3 = grad3 * multiplier # # hydrostatic part # J = wp.determinant(F) # C_vol = J - alpha # # dCdx = wp.mat33(wp.cross(f2, f3), wp.cross(f3, f1), wp.cross(f1, f2))*wp.transpose(Dm) # # grad1 = wp.vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # # grad2 = wp.vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # # grad3 = wp.vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) # s = inv_rest_volume / 6.0 # grad1 = wp.cross(x20, x30) * s # grad2 = wp.cross(x30, x10) * s # grad3 = wp.cross(x10, x20) * s # grad0 = -(grad1 + grad2 + grad3) # denom = ( # wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 # ) # multiplier = C_vol / (denom + 1.0 / (k_lambda * dt * dt * rest_volume)) # delta0 += grad0 * multiplier # delta1 += grad1 * multiplier # delta2 += grad2 * multiplier # delta3 += grad3 * multiplier # # # apply forces # # wp.atomic_sub(delta, i, delta0 * w0 * relaxation) # # wp.atomic_sub(delta, j, delta1 * w1 * relaxation) # # wp.atomic_sub(delta, k, delta2 * w2 * relaxation) # # wp.atomic_sub(delta, l, delta3 * w3 * relaxation) @wp.kernel def solve_tetrahedra2( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), inv_mass: wp.array(dtype=float), indices: wp.array(dtype=int, ndim=2), pose: wp.array(dtype=wp.mat33), activation: wp.array(dtype=float), materials: wp.array(dtype=float, ndim=2), dt: float, relaxation: float, delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] # act = activation[tid] k_mu = materials[tid, 0] k_lambda = materials[tid, 1] # k_damp = materials[tid, 2] x0 = x[i] x1 = x[j] x2 = x[k] x3 = x[l] # v0 = v[i] # v1 = v[j] # v2 = v[k] # v3 = v[l] w0 = inv_mass[i] w1 = inv_mass[j] w2 = inv_mass[k] w3 = inv_mass[l] x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 Ds = wp.mat33(x10, x20, x30) Dm = pose[tid] inv_rest_volume = wp.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume # F = Xs*Xm^-1 F = Ds * Dm f1 = wp.vec3(F[0, 0], F[1, 0], F[2, 0]) f2 = wp.vec3(F[0, 1], F[1, 1], F[2, 1]) f3 = wp.vec3(F[0, 2], F[1, 2], F[2, 2]) # C_sqrt # tr = wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3) # r_s = wp.sqrt(abs(tr - 3.0)) # C = r_s # if (r_s == 0.0): # return # if (tr < 3.0): # r_s = 0.0 - r_s # dCdx = F*wp.transpose(Dm)*(1.0/r_s) # alpha = 1.0 + k_mu / k_lambda # C_Neo r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) if r_s == 0.0: return # tr = wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3) # if (tr < 3.0): # r_s = -r_s r_s_inv = 1.0 / r_s C = r_s dCdx = F * wp.transpose(Dm) * r_s_inv alpha = 1.0 + k_mu / k_lambda # C_Spherical # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - wp.sqrt(3.0) # dCdx = F*wp.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # C = r_s*r_s - 3.0 # dCdx = F*wp.transpose(Dm)*2.0 # alpha = 1.0 grad1 = wp.vec3(dCdx[0, 0], dCdx[1, 0], dCdx[2, 0]) grad2 = wp.vec3(dCdx[0, 1], dCdx[1, 1], dCdx[2, 1]) grad3 = wp.vec3(dCdx[0, 2], dCdx[1, 2], dCdx[2, 2]) grad0 = (grad1 + grad2 + grad3) * (0.0 - 1.0) denom = ( wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 ) multiplier = C / (denom + 1.0 / (k_mu * dt * dt * rest_volume)) delta0 = grad0 * multiplier delta1 = grad1 * multiplier delta2 = grad2 * multiplier delta3 = grad3 * multiplier # hydrostatic part J = wp.determinant(F) C_vol = J - alpha # dCdx = wp.mat33(wp.cross(f2, f3), wp.cross(f3, f1), wp.cross(f1, f2))*wp.transpose(Dm) # grad1 = wp.vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = wp.vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = wp.vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) s = inv_rest_volume / 6.0 grad1 = wp.cross(x20, x30) * s grad2 = wp.cross(x30, x10) * s grad3 = wp.cross(x10, x20) * s grad0 = -(grad1 + grad2 + grad3) denom = ( wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 ) multiplier = C_vol / (denom + 1.0 / (k_lambda * dt * dt * rest_volume)) delta0 += grad0 * multiplier delta1 += grad1 * multiplier delta2 += grad2 * multiplier delta3 += grad3 * multiplier # apply forces wp.atomic_sub(delta, i, delta0 * w0 * relaxation) wp.atomic_sub(delta, j, delta1 * w1 * relaxation) wp.atomic_sub(delta, k, delta2 * w2 * relaxation) wp.atomic_sub(delta, l, delta3 * w3 * relaxation) @wp.kernel def apply_particle_deltas( x_orig: wp.array(dtype=wp.vec3), x_pred: wp.array(dtype=wp.vec3), particle_flags: wp.array(dtype=wp.uint32), delta: wp.array(dtype=wp.vec3), dt: float, v_max: float, x_out: wp.array(dtype=wp.vec3), v_out: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x0 = x_orig[tid] xp = x_pred[tid] # constraint deltas d = delta[tid] x_new = xp + d v_new = (x_new - x0) / dt # enforce velocity limit to prevent instability v_new_mag = wp.length(v_new) if v_new_mag > v_max: v_new *= v_max / v_new_mag x_out[tid] = x_new v_out[tid] = v_new @wp.kernel def apply_body_deltas( q_in: wp.array(dtype=wp.transform), qd_in: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_I: wp.array(dtype=wp.mat33), body_inv_m: wp.array(dtype=float), body_inv_I: wp.array(dtype=wp.mat33), deltas: wp.array(dtype=wp.spatial_vector), constraint_inv_weights: wp.array(dtype=float), dt: float, # outputs q_out: wp.array(dtype=wp.transform), qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() inv_m = body_inv_m[tid] if inv_m == 0.0: q_out[tid] = q_in[tid] qd_out[tid] = qd_in[tid] return inv_I = body_inv_I[tid] tf = q_in[tid] delta = deltas[tid] p0 = wp.transform_get_translation(tf) q0 = wp.transform_get_rotation(tf) weight = 1.0 if constraint_inv_weights: inv_weight = constraint_inv_weights[tid] if inv_weight > 0.0: weight = 1.0 / inv_weight dp = wp.spatial_bottom(delta) * (inv_m * weight) dq = wp.spatial_top(delta) * weight dq = wp.quat_rotate(q0, inv_I * wp.quat_rotate_inv(q0, dq)) # update orientation q1 = q0 + 0.5 * wp.quat(dq * dt, 0.0) * q0 q1 = wp.normalize(q1) # update position com = body_com[tid] x_com = p0 + wp.quat_rotate(q0, com) p1 = x_com + dp * dt p1 -= wp.quat_rotate(q1, com) q_out[tid] = wp.transform(p1, q1) v0 = wp.spatial_bottom(qd_in[tid]) w0 = wp.spatial_top(qd_in[tid]) # update linear and angular velocity v1 = v0 + dp # angular part (compute in body frame) wb = wp.quat_rotate_inv(q0, w0 + dq) tb = -wp.cross(wb, body_I[tid] * wb) # coriolis forces w1 = wp.quat_rotate(q0, wb + inv_I * tb * dt) # XXX this improves gradient stability if wp.length(v1) < 1e-4: v1 = wp.vec3(0.0) if wp.length(w1) < 1e-4: w1 = wp.vec3(0.0) qd_out[tid] = wp.spatial_vector(w1, v1) @wp.kernel def apply_body_delta_velocities( deltas: wp.array(dtype=wp.spatial_vector), qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() wp.atomic_add(qd_out, tid, deltas[tid]) @wp.kernel def apply_joint_torques( body_q: wp.array(dtype=wp.transform), body_com: wp.array(dtype=wp.vec3), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis: wp.array(dtype=wp.vec3), joint_axis_mode: wp.array(dtype=int), joint_act: wp.array(dtype=float), body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] if type == wp.sim.JOINT_FIXED: return if type == wp.sim.JOINT_FREE: return if type == wp.sim.JOINT_DISTANCE: return if type == wp.sim.JOINT_BALL: return # rigid body indices of the child and parent id_c = joint_child[tid] id_p = joint_parent[tid] X_pj = joint_X_p[tid] # X_cj = joint_X_c[tid] X_wp = X_pj pose_p = X_pj com_p = wp.vec3(0.0) # parent transform and moment arm if id_p >= 0: pose_p = body_q[id_p] X_wp = pose_p * X_wp com_p = body_com[id_p] r_p = wp.transform_get_translation(X_wp) - wp.transform_point(pose_p, com_p) # child transform and moment arm pose_c = body_q[id_c] X_wc = pose_c com_c = body_com[id_c] r_c = wp.transform_get_translation(X_wc) - wp.transform_point(pose_c, com_c) # # local joint rotations # q_p = wp.transform_get_rotation(X_wp) # q_c = wp.transform_get_rotation(X_wc) # joint properties (for 1D joints) # q_start = joint_q_start[tid] qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] # total force/torque on the parent t_total = wp.vec3() f_total = wp.vec3() # handle angular constraints if type == wp.sim.JOINT_REVOLUTE: mode = joint_axis_mode[axis_start] if mode == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start] act = joint_act[qd_start] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p elif type == wp.sim.JOINT_PRISMATIC: mode = joint_axis_mode[axis_start] if mode == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start] act = joint_act[qd_start] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p elif type == wp.sim.JOINT_COMPOUND: # q_off = wp.transform_get_rotation(X_cj) # q_pc = wp.quat_inverse(q_off)*wp.quat_inverse(q_p)*q_c*q_off # # decompose to a compound rotation each axis # angles = quat_decompose(q_pc) # # reconstruct rotation axes # axis_0 = wp.vec3(1.0, 0.0, 0.0) # q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) # axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) # q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) # axis_2 = wp.quat_rotate(q_1*q_0, wp.vec3(0.0, 0.0, 1.0)) # q_w = q_p*q_off # t_total += joint_act[qd_start+0] * wp.quat_rotate(q_w, axis_0) # t_total += joint_act[qd_start+1] * wp.quat_rotate(q_w, axis_1) # t_total += joint_act[qd_start+2] * wp.quat_rotate(q_w, axis_2) if joint_axis_mode[axis_start + 0] == wp.sim.JOINT_MODE_FORCE: axis_0 = joint_axis[axis_start + 0] t_total += joint_act[qd_start + 0] * wp.transform_vector(X_wp, axis_0) if joint_axis_mode[axis_start + 1] == wp.sim.JOINT_MODE_FORCE: axis_1 = joint_axis[axis_start + 1] t_total += joint_act[qd_start + 1] * wp.transform_vector(X_wp, axis_1) if joint_axis_mode[axis_start + 2] == wp.sim.JOINT_MODE_FORCE: axis_2 = joint_axis[axis_start + 2] t_total += joint_act[qd_start + 2] * wp.transform_vector(X_wp, axis_2) elif type == wp.sim.JOINT_UNIVERSAL: # q_off = wp.transform_get_rotation(X_cj) # q_pc = wp.quat_inverse(q_off)*wp.quat_inverse(q_p)*q_c*q_off # # decompose to a compound rotation each axis # angles = quat_decompose(q_pc) # # reconstruct rotation axes # axis_0 = wp.vec3(1.0, 0.0, 0.0) # q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) # axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) # q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) # axis_2 = wp.quat_rotate(q_1*q_0, wp.vec3(0.0, 0.0, 1.0)) # q_w = q_p*q_off # free axes # t_total += joint_act[qd_start+0] * wp.quat_rotate(q_w, axis_0) # t_total += joint_act[qd_start+1] * wp.quat_rotate(q_w, axis_1) if joint_axis_mode[axis_start + 0] == wp.sim.JOINT_MODE_FORCE: axis_0 = joint_axis[axis_start + 0] t_total += joint_act[qd_start + 0] * wp.transform_vector(X_wp, axis_0) if joint_axis_mode[axis_start + 1] == wp.sim.JOINT_MODE_FORCE: axis_1 = joint_axis[axis_start + 1] t_total += joint_act[qd_start + 1] * wp.transform_vector(X_wp, axis_1) elif type == wp.sim.JOINT_D6: # unroll for loop to ensure joint actions remain differentiable # (since differentiating through a dynamic for loop that updates a local variable is not supported) if lin_axis_count > 0: if joint_axis_mode[axis_start + 0] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + 0] act = joint_act[qd_start + 0] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if lin_axis_count > 1: if joint_axis_mode[axis_start + 1] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + 1] act = joint_act[qd_start + 1] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if lin_axis_count > 2: if joint_axis_mode[axis_start + 2] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + 2] act = joint_act[qd_start + 2] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if ang_axis_count > 0: if joint_axis_mode[axis_start + lin_axis_count + 0] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + lin_axis_count + 0] act = joint_act[qd_start + lin_axis_count + 0] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p if ang_axis_count > 1: if joint_axis_mode[axis_start + lin_axis_count + 1] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + lin_axis_count + 1] act = joint_act[qd_start + lin_axis_count + 1] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p if ang_axis_count > 2: if joint_axis_mode[axis_start + lin_axis_count + 2] == wp.sim.JOINT_MODE_FORCE: axis = joint_axis[axis_start + lin_axis_count + 2] act = joint_act[qd_start + lin_axis_count + 2] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p else: print("joint type not handled in apply_joint_torques") # write forces if id_p >= 0: wp.atomic_sub(body_f, id_p, wp.spatial_vector(t_total + wp.cross(r_p, f_total), f_total)) wp.atomic_add(body_f, id_c, wp.spatial_vector(t_total + wp.cross(r_c, f_total), f_total)) @wp.func def update_joint_axis_mode(mode: wp.int32, axis: wp.vec3, input_axis_mode: wp.vec3i): # update the 3D axis mode flags given the axis vector and mode of this axis mode_x = wp.max(wp.int32(wp.nonzero(axis[0])) * mode, input_axis_mode[0]) mode_y = wp.max(wp.int32(wp.nonzero(axis[1])) * mode, input_axis_mode[1]) mode_z = wp.max(wp.int32(wp.nonzero(axis[2])) * mode, input_axis_mode[2]) return wp.vec3i(mode_x, mode_y, mode_z) @wp.func def update_joint_axis_limits(axis: wp.vec3, limit_lower: float, limit_upper: float, input_limits: wp.spatial_vector): # update the 3D linear/angular limits (spatial_vector [lower, upper]) given the axis vector and limits lo_temp = axis * limit_lower up_temp = axis * limit_upper lo = vec_min(lo_temp, up_temp) up = vec_max(lo_temp, up_temp) input_lower = wp.spatial_top(input_limits) input_upper = wp.spatial_bottom(input_limits) lower = vec_min(input_lower, lo) upper = vec_max(input_upper, up) return wp.spatial_vector(lower, upper) @wp.func def update_joint_axis_target_ke_kd( axis: wp.vec3, target: float, target_ke: float, target_kd: float, input_target_ke_kd: wp.mat33 ): # update the 3D linear/angular target, target_ke, and target_kd (mat33 [target, ke, kd]) given the axis vector and target, target_ke, target_kd axis_target = input_target_ke_kd[0] axis_ke = input_target_ke_kd[1] axis_kd = input_target_ke_kd[2] stiffness = axis * target_ke axis_target += stiffness * target # weighted target (to be normalized later by sum of target_ke) axis_ke += vec_abs(stiffness) axis_kd += vec_abs(axis * target_kd) return wp.mat33( axis_target[0], axis_target[1], axis_target[2], axis_ke[0], axis_ke[1], axis_ke[2], axis_kd[0], axis_kd[1], axis_kd[2], ) @wp.func def compute_linear_correction_3d( dx: wp.vec3, r1: wp.vec3, r2: wp.vec3, tf1: wp.transform, tf2: wp.transform, m_inv1: float, m_inv2: float, I_inv1: wp.mat33, I_inv2: wp.mat33, lambda_in: float, compliance: float, damping: float, dt: float, ) -> float: c = wp.length(dx) if c == 0.0: # print("c == 0.0 in positional correction") return 0.0 n = wp.normalize(dx) q1 = wp.transform_get_rotation(tf1) q2 = wp.transform_get_rotation(tf2) # Eq. 2-3 (make sure to project into the frame of the body) r1xn = wp.quat_rotate_inv(q1, wp.cross(r1, n)) r2xn = wp.quat_rotate_inv(q2, wp.cross(r2, n)) w1 = m_inv1 + wp.dot(r1xn, I_inv1 * r1xn) w2 = m_inv2 + wp.dot(r2xn, I_inv2 * r2xn) w = w1 + w2 if w == 0.0: return 0.0 alpha = compliance gamma = compliance * damping # Eq. 4-5 d_lambda = -c - alpha * lambda_in # TODO consider damping for velocity correction? # delta_lambda = -(err + alpha * lambda_in + gamma * derr) if w + alpha > 0.0: d_lambda /= w * (dt + gamma) + alpha / dt return d_lambda @wp.func def compute_angular_correction_3d( corr: wp.vec3, q1: wp.quat, q2: wp.quat, m_inv1: float, m_inv2: float, I_inv1: wp.mat33, I_inv2: wp.mat33, alpha_tilde: float, # lambda_prev: float, relaxation: float, dt: float, ): # compute and apply the correction impulse for an angular constraint theta = wp.length(corr) if theta == 0.0: return 0.0 n = wp.normalize(corr) # project variables to body rest frame as they are in local matrix n1 = wp.quat_rotate_inv(q1, n) n2 = wp.quat_rotate_inv(q2, n) # Eq. 11-12 w1 = wp.dot(n1, I_inv1 * n1) w2 = wp.dot(n2, I_inv2 * n2) w = w1 + w2 if w == 0.0: return 0.0 # Eq. 13-14 lambda_prev = 0.0 d_lambda = (-theta - alpha_tilde * lambda_prev) / (w * dt + alpha_tilde / dt) # TODO consider lambda_prev? # p = d_lambda * n * relaxation # Eq. 15-16 return d_lambda @wp.kernel def solve_simple_body_joints( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_inv_m: wp.array(dtype=float), body_inv_I: wp.array(dtype=wp.mat33), joint_type: wp.array(dtype=int), joint_enabled: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis_mode: wp.array(dtype=int), joint_axis: wp.array(dtype=wp.vec3), joint_target: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_linear_compliance: wp.array(dtype=float), joint_angular_compliance: wp.array(dtype=float), angular_relaxation: float, linear_relaxation: float, dt: float, deltas: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] if joint_enabled[tid] == 0: return if type == wp.sim.JOINT_FREE: return if type == wp.sim.JOINT_COMPOUND: return if type == wp.sim.JOINT_UNIVERSAL: return if type == wp.sim.JOINT_DISTANCE: return if type == wp.sim.JOINT_D6: return # rigid body indices of the child and parent id_c = joint_child[tid] id_p = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj m_inv_p = 0.0 I_inv_p = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) pose_p = X_pj com_p = wp.vec3(0.0) # parent transform and moment arm if id_p >= 0: pose_p = body_q[id_p] X_wp = pose_p * X_wp com_p = body_com[id_p] m_inv_p = body_inv_m[id_p] I_inv_p = body_inv_I[id_p] r_p = wp.transform_get_translation(X_wp) - wp.transform_point(pose_p, com_p) # child transform and moment arm pose_c = body_q[id_c] X_wc = pose_c * X_cj com_c = body_com[id_c] m_inv_c = body_inv_m[id_c] I_inv_c = body_inv_I[id_c] r_c = wp.transform_get_translation(X_wc) - wp.transform_point(pose_c, com_c) if m_inv_p == 0.0 and m_inv_c == 0.0: # connection between two immovable bodies return # accumulate constraint deltas lin_delta_p = wp.vec3(0.0) ang_delta_p = wp.vec3(0.0) lin_delta_c = wp.vec3(0.0) ang_delta_c = wp.vec3(0.0) # rel_pose = wp.transform_inverse(X_wp) * X_wc # rel_p = wp.transform_get_translation(rel_pose) # joint connection points # x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) # linear_compliance = joint_linear_compliance[tid] angular_compliance = joint_angular_compliance[tid] damping = 0.0 axis_start = joint_axis_start[tid] # mode = joint_axis_mode[axis_start] # local joint rotations q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) inertial_q_p = wp.transform_get_rotation(pose_p) inertial_q_c = wp.transform_get_rotation(pose_c) # joint properties (for 1D joints) axis = joint_axis[axis_start] if type == wp.sim.JOINT_FIXED: limit_lower = 0.0 limit_upper = 0.0 else: limit_lower = joint_limit_lower[axis_start] limit_upper = joint_limit_upper[axis_start] # linear_alpha_tilde = linear_compliance / dt / dt angular_alpha_tilde = angular_compliance / dt / dt # prevent division by zero # linear_alpha_tilde = wp.max(linear_alpha_tilde, 1e-6) # angular_alpha_tilde = wp.max(angular_alpha_tilde, 1e-6) # accumulate constraint deltas lin_delta_p = wp.vec3(0.0) ang_delta_p = wp.vec3(0.0) lin_delta_c = wp.vec3(0.0) ang_delta_c = wp.vec3(0.0) # handle angular constraints if type == wp.sim.JOINT_REVOLUTE: # align joint axes a_p = wp.quat_rotate(q_p, axis) a_c = wp.quat_rotate(q_c, axis) # Eq. 20 corr = wp.cross(a_p, a_c) ncorr = wp.normalize(corr) angular_relaxation = 0.2 # angular_correction( # corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, # angular_alpha_tilde, angular_relaxation, deltas, id_p, id_c) lambda_n = compute_angular_correction_3d( corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, angular_alpha_tilde, damping, dt ) lambda_n *= angular_relaxation ang_delta_p -= lambda_n * ncorr ang_delta_c += lambda_n * ncorr # limit joint angles (Alg. 3) pi = 3.14159265359 two_pi = 2.0 * pi if limit_lower > -two_pi or limit_upper < two_pi: # find a perpendicular vector to joint axis a = axis # https://math.stackexchange.com/a/3582461 g = wp.sign(a[2]) h = a[2] + g b = wp.vec3(g - a[0] * a[0] / h, -a[0] * a[1] / h, -a[0]) c = wp.normalize(wp.cross(a, b)) # b = c # TODO verify # joint axis n = wp.quat_rotate(q_p, a) # the axes n1 and n2 are aligned with the two bodies n1 = wp.quat_rotate(q_p, b) n2 = wp.quat_rotate(q_c, b) phi = wp.asin(wp.dot(wp.cross(n1, n2), n)) # print("phi") # print(phi) if wp.dot(n1, n2) < 0.0: phi = pi - phi if phi > pi: phi -= two_pi if phi < -pi: phi += two_pi if phi < limit_lower or phi > limit_upper: phi = wp.clamp(phi, limit_lower, limit_upper) # print("clamped phi") # print(phi) # rot = wp.quat(phi, n[0], n[1], n[2]) # rot = wp.quat(n, phi) rot = wp.quat_from_axis_angle(n, phi) n1 = wp.quat_rotate(rot, n1) corr = wp.cross(n1, n2) # print("corr") # print(corr) # TODO expose # angular_alpha_tilde = 0.0001 / dt / dt # angular_relaxation = 0.5 # TODO fix this constraint # angular_correction( # corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, # angular_alpha_tilde, angular_relaxation, deltas, id_p, id_c) lambda_n = compute_angular_correction_3d( corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, angular_alpha_tilde, damping, dt, ) lambda_n *= angular_relaxation ncorr = wp.normalize(corr) ang_delta_p -= lambda_n * ncorr ang_delta_c += lambda_n * ncorr # handle joint targets target_ke = joint_target_ke[axis_start] # target_kd = joint_target_kd[axis_start] target = joint_target[axis_start] if target_ke > 0.0: # find a perpendicular vector to joint axis a = axis # https://math.stackexchange.com/a/3582461 g = wp.sign(a[2]) h = a[2] + g b = wp.vec3(g - a[0] * a[0] / h, -a[0] * a[1] / h, -a[0]) c = wp.normalize(wp.cross(a, b)) b = c q = wp.quat_from_axis_angle(a_p, target) b_target = wp.quat_rotate(q, wp.quat_rotate(q_p, b)) b2 = wp.quat_rotate(q_c, b) # Eq. 21 d_target = wp.cross(b_target, b2) target_compliance = 1.0 / target_ke # / dt / dt # angular_correction( # d_target, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, # target_compliance, angular_relaxation, deltas, id_p, id_c) lambda_n = compute_angular_correction_3d( d_target, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, target_compliance, damping, dt ) lambda_n *= angular_relaxation ncorr = wp.normalize(d_target) # TODO fix ang_delta_p -= lambda_n * ncorr ang_delta_c += lambda_n * ncorr if (type == wp.sim.JOINT_FIXED) or (type == wp.sim.JOINT_PRISMATIC): # align the mutual orientations of the two bodies # Eq. 18-19 q = q_p * wp.quat_inverse(q_c) corr = -2.0 * wp.vec3(q[0], q[1], q[2]) # angular_correction( # -corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, # angular_alpha_tilde, angular_relaxation, deltas, id_p, id_c) lambda_n = compute_angular_correction_3d( corr, inertial_q_p, inertial_q_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, angular_alpha_tilde, damping, dt ) lambda_n *= angular_relaxation ncorr = wp.normalize(corr) ang_delta_p -= lambda_n * ncorr ang_delta_c += lambda_n * ncorr # handle positional constraints # joint connection points x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) # compute error between the joint attachment points on both bodies # delta x is the difference of point r_2 minus point r_1 (Fig. 3) dx = x_c - x_p # rotate the error vector into the joint frame q_dx = q_p # q_dx = q_c # q_dx = wp.transform_get_rotation(pose_p) dx = wp.quat_rotate_inv(q_dx, dx) lower_pos_limits = wp.vec3(0.0) upper_pos_limits = wp.vec3(0.0) if type == wp.sim.JOINT_PRISMATIC: lower_pos_limits = axis * limit_lower upper_pos_limits = axis * limit_upper # compute linear constraint violations corr = wp.vec3(0.0) zero = wp.vec3(0.0) corr -= vec_leaky_min(zero, upper_pos_limits - dx) corr -= vec_leaky_max(zero, lower_pos_limits - dx) # if (type == wp.sim.JOINT_PRISMATIC): # if mode == JOINT_MODE_TARGET_POSITION: # target = wp.clamp(target, limit_lower, limit_upper) # if target_ke > 0.0: # err = dx - target * axis # compliance = 1.0 / target_ke # damping = axis_damping[dim] # elif mode == JOINT_MODE_TARGET_VELOCITY: # if target_ke > 0.0: # err = (derr - target) * dt # compliance = 1.0 / target_ke # damping = axis_damping[dim] # rotate correction vector into world frame corr = wp.quat_rotate(q_dx, corr) lambda_in = 0.0 linear_alpha = joint_linear_compliance[tid] lambda_n = compute_linear_correction_3d( corr, r_p, r_c, pose_p, pose_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, lambda_in, linear_alpha, damping, dt ) lambda_n *= linear_relaxation n = wp.normalize(corr) lin_delta_p -= n * lambda_n lin_delta_c += n * lambda_n ang_delta_p -= wp.cross(r_p, n) * lambda_n ang_delta_c += wp.cross(r_c, n) * lambda_n if id_p >= 0: wp.atomic_add(deltas, id_p, wp.spatial_vector(ang_delta_p, lin_delta_p)) if id_c >= 0: wp.atomic_add(deltas, id_c, wp.spatial_vector(ang_delta_c, lin_delta_c)) @wp.kernel def solve_body_joints( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_inv_m: wp.array(dtype=float), body_inv_I: wp.array(dtype=wp.mat33), joint_type: wp.array(dtype=int), joint_enabled: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis_mode: wp.array(dtype=int), joint_axis: wp.array(dtype=wp.vec3), joint_act: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_linear_compliance: wp.array(dtype=float), joint_angular_compliance: wp.array(dtype=float), angular_relaxation: float, linear_relaxation: float, dt: float, deltas: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] if joint_enabled[tid] == 0: return if type == wp.sim.JOINT_FREE: return # if type == wp.sim.JOINT_FIXED: # return # if type == wp.sim.JOINT_REVOLUTE: # return # if type == wp.sim.JOINT_PRISMATIC: # return # if type == wp.sim.JOINT_BALL: # return # rigid body indices of the child and parent id_c = joint_child[tid] id_p = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj m_inv_p = 0.0 I_inv_p = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) pose_p = X_pj com_p = wp.vec3(0.0) vel_p = wp.vec3(0.0) omega_p = wp.vec3(0.0) # parent transform and moment arm if id_p >= 0: pose_p = body_q[id_p] X_wp = pose_p * X_wp com_p = body_com[id_p] m_inv_p = body_inv_m[id_p] I_inv_p = body_inv_I[id_p] vel_p = wp.spatial_bottom(body_qd[id_p]) omega_p = wp.spatial_top(body_qd[id_p]) # child transform and moment arm pose_c = body_q[id_c] X_wc = pose_c * X_cj com_c = body_com[id_c] m_inv_c = body_inv_m[id_c] I_inv_c = body_inv_I[id_c] vel_c = wp.spatial_bottom(body_qd[id_c]) omega_c = wp.spatial_top(body_qd[id_c]) if m_inv_p == 0.0 and m_inv_c == 0.0: # connection between two immovable bodies return # accumulate constraint deltas lin_delta_p = wp.vec3(0.0) ang_delta_p = wp.vec3(0.0) lin_delta_c = wp.vec3(0.0) ang_delta_c = wp.vec3(0.0) rel_pose = wp.transform_inverse(X_wp) * X_wc rel_p = wp.transform_get_translation(rel_pose) # joint connection points # x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) linear_compliance = joint_linear_compliance[tid] angular_compliance = joint_angular_compliance[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] world_com_p = wp.transform_point(pose_p, com_p) world_com_c = wp.transform_point(pose_c, com_c) # handle positional constraints if type == wp.sim.JOINT_DISTANCE: r_p = wp.transform_get_translation(X_wp) - world_com_p r_c = wp.transform_get_translation(X_wc) - world_com_c lower = joint_limit_lower[axis_start] upper = joint_limit_upper[axis_start] if lower < 0.0 and upper < 0.0: # no limits return d = wp.length(rel_p) err = 0.0 if lower >= 0.0 and d < lower: err = d - lower # use a more descriptive direction vector for the constraint # in case the joint parent and child anchors are very close rel_p = err * wp.normalize(world_com_c - world_com_p) elif upper >= 0.0 and d > upper: err = d - upper if wp.abs(err) > 1e-9: # compute gradients linear_c = rel_p linear_p = -linear_c r_c = x_c - world_com_c angular_p = -wp.cross(r_p, linear_c) angular_c = wp.cross(r_c, linear_c) # constraint time derivative derr = ( wp.dot(linear_p, vel_p) + wp.dot(linear_c, vel_c) + wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) ) lambda_in = 0.0 compliance = linear_compliance ke = joint_target_ke[axis_start] if ke > 0.0: compliance = 1.0 / ke damping = joint_target_kd[axis_start] d_lambda = compute_positional_correction( err, derr, pose_p, pose_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, linear_p, linear_c, angular_p, angular_c, lambda_in, compliance, damping, dt, ) lin_delta_p += linear_p * (d_lambda * linear_relaxation) ang_delta_p += angular_p * (d_lambda * angular_relaxation) lin_delta_c += linear_c * (d_lambda * linear_relaxation) ang_delta_c += angular_c * (d_lambda * angular_relaxation) else: # compute joint target, stiffness, damping ke_sum = float(0.0) axis_limits = wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) axis_mode = wp.vec3i(0, 0, 0) axis_target_ke_kd = wp.mat33(0.0) # avoid a for loop here since local variables would need to be modified which is not yet differentiable if lin_axis_count > 0: axis = joint_axis[axis_start] lo_temp = axis * joint_limit_lower[axis_start] up_temp = axis * joint_limit_upper[axis_start] axis_limits = wp.spatial_vector(vec_min(lo_temp, up_temp), vec_max(lo_temp, up_temp)) mode = joint_axis_mode[axis_start] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_start] kd = joint_target_kd[axis_start] target = joint_act[axis_start] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if lin_axis_count > 1: axis_idx = axis_start + 1 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_act[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if lin_axis_count > 2: axis_idx = axis_start + 2 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_act[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke axis_target = axis_target_ke_kd[0] axis_stiffness = axis_target_ke_kd[1] axis_damping = axis_target_ke_kd[2] if ke_sum > 0.0: axis_target /= ke_sum axis_limits_lower = wp.spatial_top(axis_limits) axis_limits_upper = wp.spatial_bottom(axis_limits) frame_p = wp.quat_to_matrix(wp.transform_get_rotation(X_wp)) # note that x_c appearing in both is correct r_p = x_c - world_com_p r_c = x_c - wp.transform_point(pose_c, com_c) # for loop will be unrolled, so we can modify local variables for dim in range(3): e = rel_p[dim] mode = axis_mode[dim] # compute gradients linear_c = wp.vec3(frame_p[0, dim], frame_p[1, dim], frame_p[2, dim]) linear_p = -linear_c angular_p = -wp.cross(r_p, linear_c) angular_c = wp.cross(r_c, linear_c) # constraint time derivative derr = ( wp.dot(linear_p, vel_p) + wp.dot(linear_c, vel_c) + wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) ) err = 0.0 compliance = linear_compliance damping = 0.0 # consider joint limits irrespective of axis mode lower = axis_limits_lower[dim] upper = axis_limits_upper[dim] if e < lower: err = e - lower elif e > upper: err = e - upper else: target = axis_target[dim] if mode == JOINT_MODE_TARGET_POSITION: target = wp.clamp(target, lower, upper) if axis_stiffness[dim] > 0.0: err = e - target compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] elif mode == JOINT_MODE_TARGET_VELOCITY: if axis_stiffness[dim] > 0.0: err = (derr - target) * dt compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] derr = 0.0 if wp.abs(err) > 1e-9: lambda_in = 0.0 d_lambda = compute_positional_correction( err, derr, pose_p, pose_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, linear_p, linear_c, angular_p, angular_c, lambda_in, compliance, damping, dt, ) lin_delta_p += linear_p * (d_lambda * linear_relaxation) ang_delta_p += angular_p * (d_lambda * angular_relaxation) lin_delta_c += linear_c * (d_lambda * linear_relaxation) ang_delta_c += angular_c * (d_lambda * angular_relaxation) if ( type == wp.sim.JOINT_FIXED or type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_D6 ): # handle angular constraints # local joint rotations q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # make quats lie in same hemisphere if wp.dot(q_p, q_c) < 0.0: q_c *= -1.0 rel_q = wp.quat_inverse(q_p) * q_c qtwist = wp.normalize(wp.quat(rel_q[0], 0.0, 0.0, rel_q[3])) qswing = rel_q * wp.quat_inverse(qtwist) # decompose to a compound rotation each axis s = wp.sqrt(rel_q[0] * rel_q[0] + rel_q[3] * rel_q[3]) invs = 1.0 / s invscube = invs * invs * invs # handle axis-angle joints # rescale twist from quaternion space to angular err_0 = 2.0 * wp.asin(wp.clamp(qtwist[0], -1.0, 1.0)) err_1 = qswing[1] err_2 = qswing[2] # analytic gradients of swing-twist decomposition grad_0 = wp.quat(invs - rel_q[0] * rel_q[0] * invscube, 0.0, 0.0, -(rel_q[3] * rel_q[0]) * invscube) grad_1 = wp.quat( -rel_q[3] * (rel_q[3] * rel_q[2] + rel_q[0] * rel_q[1]) * invscube, rel_q[3] * invs, -rel_q[0] * invs, rel_q[0] * (rel_q[3] * rel_q[2] + rel_q[0] * rel_q[1]) * invscube, ) grad_2 = wp.quat( rel_q[3] * (rel_q[3] * rel_q[1] - rel_q[0] * rel_q[2]) * invscube, rel_q[0] * invs, rel_q[3] * invs, rel_q[0] * (rel_q[2] * rel_q[0] - rel_q[3] * rel_q[1]) * invscube, ) grad_0 *= 2.0 / wp.abs(qtwist[3]) # grad_0 *= 2.0 / wp.sqrt(1.0-qtwist[0]*qtwist[0]) # derivative of asin(x) = 1/sqrt(1-x^2) # rescale swing swing_sq = qswing[3] * qswing[3] # if swing axis magnitude close to zero vector, just treat in quaternion space angularEps = 1.0e-4 if swing_sq + angularEps < 1.0: d = wp.sqrt(1.0 - qswing[3] * qswing[3]) theta = 2.0 * wp.acos(wp.clamp(qswing[3], -1.0, 1.0)) scale = theta / d err_1 *= scale err_2 *= scale grad_1 *= scale grad_2 *= scale errs = wp.vec3(err_0, err_1, err_2) grad_x = wp.vec3(grad_0[0], grad_1[0], grad_2[0]) grad_y = wp.vec3(grad_0[1], grad_1[1], grad_2[1]) grad_z = wp.vec3(grad_0[2], grad_1[2], grad_2[2]) grad_w = wp.vec3(grad_0[3], grad_1[3], grad_2[3]) # compute joint target, stiffness, damping ke_sum = float(0.0) axis_limits = wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) axis_mode = wp.vec3i(0, 0, 0) axis_target_ke_kd = wp.mat33(0.0) # avoid a for loop here since local variables would need to be modified which is not yet differentiable if ang_axis_count > 0: axis_idx = axis_start + lin_axis_count axis = joint_axis[axis_idx] lo_temp = axis * joint_limit_lower[axis_idx] up_temp = axis * joint_limit_upper[axis_idx] axis_limits = wp.spatial_vector(vec_min(lo_temp, up_temp), vec_max(lo_temp, up_temp)) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_act[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if ang_axis_count > 1: axis_idx = axis_start + lin_axis_count + 1 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_act[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if ang_axis_count > 2: axis_idx = axis_start + lin_axis_count + 2 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_FORCE: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_act[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke axis_target = axis_target_ke_kd[0] axis_stiffness = axis_target_ke_kd[1] axis_damping = axis_target_ke_kd[2] if ke_sum > 0.0: axis_target /= ke_sum axis_limits_lower = wp.spatial_top(axis_limits) axis_limits_upper = wp.spatial_bottom(axis_limits) # if type == wp.sim.JOINT_D6: # wp.printf("axis_target: %f %f %f\t axis_stiffness: %f %f %f\t axis_damping: %f %f %f\t axis_limits_lower: %f %f %f \t axis_limits_upper: %f %f %f\n", # axis_target[0], axis_target[1], axis_target[2], # axis_stiffness[0], axis_stiffness[1], axis_stiffness[2], # axis_damping[0], axis_damping[1], axis_damping[2], # axis_limits_lower[0], axis_limits_lower[1], axis_limits_lower[2], # axis_limits_upper[0], axis_limits_upper[1], axis_limits_upper[2]) # # wp.printf("wp.sqrt(1.0-qtwist[0]*qtwist[0]) = %f\n", wp.sqrt(1.0-qtwist[0]*qtwist[0])) for dim in range(3): e = errs[dim] mode = axis_mode[dim] # analytic gradients of swing-twist decomposition grad = wp.quat(grad_x[dim], grad_y[dim], grad_z[dim], grad_w[dim]) quat_c = 0.5 * q_p * grad * wp.quat_inverse(q_c) angular_c = wp.vec3(quat_c[0], quat_c[1], quat_c[2]) angular_p = -angular_c # time derivative of the constraint derr = wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) err = 0.0 compliance = angular_compliance damping = 0.0 # consider joint limits irrespective of mode lower = axis_limits_lower[dim] upper = axis_limits_upper[dim] if e < lower: err = e - lower elif e > upper: err = e - upper else: target = axis_target[dim] if mode == JOINT_MODE_TARGET_POSITION: target = wp.clamp(target, lower, upper) if axis_stiffness[dim] > 0.0: err = e - target compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] elif mode == JOINT_MODE_TARGET_VELOCITY: if axis_stiffness[dim] > 0.0: err = (derr - target) * dt compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] derr = 0.0 d_lambda = ( compute_angular_correction( err, derr, pose_p, pose_c, I_inv_p, I_inv_c, angular_p, angular_c, 0.0, compliance, damping, dt ) * angular_relaxation ) # update deltas ang_delta_p += angular_p * d_lambda ang_delta_c += angular_c * d_lambda if id_p >= 0: wp.atomic_add(deltas, id_p, wp.spatial_vector(ang_delta_p, lin_delta_p)) if id_c >= 0: wp.atomic_add(deltas, id_c, wp.spatial_vector(ang_delta_c, lin_delta_c)) @wp.func def compute_contact_constraint_delta( err: float, tf_a: wp.transform, tf_b: wp.transform, m_inv_a: float, m_inv_b: float, I_inv_a: wp.mat33, I_inv_b: wp.mat33, linear_a: wp.vec3, linear_b: wp.vec3, angular_a: wp.vec3, angular_b: wp.vec3, relaxation: float, dt: float, ) -> float: denom = 0.0 denom += wp.length_sq(linear_a) * m_inv_a denom += wp.length_sq(linear_b) * m_inv_b q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) delta_lambda = -err if denom > 0.0: delta_lambda /= dt * denom return delta_lambda * relaxation @wp.func def compute_positional_correction( err: float, derr: float, tf_a: wp.transform, tf_b: wp.transform, m_inv_a: float, m_inv_b: float, I_inv_a: wp.mat33, I_inv_b: wp.mat33, linear_a: wp.vec3, linear_b: wp.vec3, angular_a: wp.vec3, angular_b: wp.vec3, lambda_in: float, compliance: float, damping: float, dt: float, ) -> float: denom = 0.0 denom += wp.length_sq(linear_a) * m_inv_a denom += wp.length_sq(linear_b) * m_inv_b q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) alpha = compliance gamma = compliance * damping delta_lambda = -(err + alpha * lambda_in + gamma * derr) if denom + alpha > 0.0: delta_lambda /= (dt + gamma) * denom + alpha / dt return delta_lambda @wp.func def compute_angular_correction( err: float, derr: float, tf_a: wp.transform, tf_b: wp.transform, I_inv_a: wp.mat33, I_inv_b: wp.mat33, angular_a: wp.vec3, angular_b: wp.vec3, lambda_in: float, compliance: float, damping: float, dt: float, ) -> float: denom = 0.0 q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) alpha = compliance gamma = compliance * damping delta_lambda = -(err + alpha * lambda_in + gamma * derr) if denom + alpha > 0.0: delta_lambda /= (dt + gamma) * denom + alpha / dt return delta_lambda @wp.kernel def solve_body_contact_positions( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), shape_body: wp.array(dtype=int), contact_count: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_offset0: wp.array(dtype=wp.vec3), contact_offset1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_thickness: wp.array(dtype=float), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), shape_materials: ModelShapeMaterials, relaxation: float, dt: float, contact_torsional_friction: float, contact_rolling_friction: float, # outputs deltas: wp.array(dtype=wp.spatial_vector), contact_inv_weight: wp.array(dtype=float), ): tid = wp.tid() count = contact_count[0] if tid >= count: return shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: return body_a = -1 if shape_a >= 0: body_a = shape_body[shape_a] body_b = -1 if shape_b >= 0: body_b = shape_body[shape_b] if body_a == body_b: return # find body to world transform X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() if body_a >= 0: X_wb_a = body_q[body_a] if body_b >= 0: X_wb_b = body_q[body_b] # compute body position in world space bx_a = wp.transform_point(X_wb_a, contact_point0[tid]) bx_b = wp.transform_point(X_wb_b, contact_point1[tid]) thickness = contact_thickness[tid] n = -contact_normal[tid] d = wp.dot(n, bx_b - bx_a) - thickness if d >= 0.0: return m_inv_a = 0.0 m_inv_b = 0.0 I_inv_a = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) I_inv_b = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) # center of mass in body frame com_a = wp.vec3(0.0) com_b = wp.vec3(0.0) # body to world transform X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() # angular velocities omega_a = wp.vec3(0.0) omega_b = wp.vec3(0.0) # contact offset in body frame offset_a = contact_offset0[tid] offset_b = contact_offset1[tid] if body_a >= 0: X_wb_a = body_q[body_a] com_a = body_com[body_a] m_inv_a = body_m_inv[body_a] I_inv_a = body_I_inv[body_a] omega_a = wp.spatial_top(body_qd[body_a]) if body_b >= 0: X_wb_b = body_q[body_b] com_b = body_com[body_b] m_inv_b = body_m_inv[body_b] I_inv_b = body_I_inv[body_b] omega_b = wp.spatial_top(body_qd[body_b]) # use average contact material properties mat_nonzero = 0 mu = 0.0 if shape_a >= 0: mat_nonzero += 1 mu += shape_materials.mu[shape_a] if shape_b >= 0: mat_nonzero += 1 mu += shape_materials.mu[shape_b] if mat_nonzero > 0: mu /= float(mat_nonzero) r_a = bx_a - wp.transform_point(X_wb_a, com_a) r_b = bx_b - wp.transform_point(X_wb_b, com_b) angular_a = -wp.cross(r_a, n) angular_b = wp.cross(r_b, n) if contact_inv_weight: if body_a >= 0: wp.atomic_add(contact_inv_weight, body_a, 1.0) if body_b >= 0: wp.atomic_add(contact_inv_weight, body_b, 1.0) lambda_n = compute_contact_constraint_delta( d, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, -n, n, angular_a, angular_b, relaxation, dt ) lin_delta_a = -n * lambda_n lin_delta_b = n * lambda_n ang_delta_a = angular_a * lambda_n ang_delta_b = angular_b * lambda_n # linear friction if mu > 0.0: # add on displacement from surface offsets, this ensures we include any rotational effects due to thickness from feature # need to use the current rotation to account for friction due to angular effects (e.g.: slipping contact) bx_a += wp.transform_vector(X_wb_a, offset_a) bx_b += wp.transform_vector(X_wb_b, offset_b) # update delta delta = bx_b - bx_a friction_delta = delta - wp.dot(n, delta) * n perp = wp.normalize(friction_delta) r_a = bx_a - wp.transform_point(X_wb_a, com_a) r_b = bx_b - wp.transform_point(X_wb_b, com_b) angular_a = -wp.cross(r_a, perp) angular_b = wp.cross(r_b, perp) err = wp.length(friction_delta) if err > 0.0: lambda_fr = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, -perp, perp, angular_a, angular_b, 1.0, dt ) # limit friction based on incremental normal force, good approximation to limiting on total force lambda_fr = wp.max(lambda_fr, -lambda_n * mu) lin_delta_a -= perp * lambda_fr lin_delta_b += perp * lambda_fr ang_delta_a += angular_a * lambda_fr ang_delta_b += angular_b * lambda_fr torsional_friction = mu * contact_torsional_friction delta_omega = omega_b - omega_a if torsional_friction > 0.0: err = wp.dot(delta_omega, n) * dt if wp.abs(err) > 0.0: lin = wp.vec3(0.0) lambda_torsion = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, lin, lin, -n, n, 1.0, dt ) lambda_torsion = wp.clamp(lambda_torsion, -lambda_n * torsional_friction, lambda_n * torsional_friction) ang_delta_a -= n * lambda_torsion ang_delta_b += n * lambda_torsion rolling_friction = mu * contact_rolling_friction if rolling_friction > 0.0: delta_omega -= wp.dot(n, delta_omega) * n err = wp.length(delta_omega) * dt if err > 0.0: lin = wp.vec3(0.0) roll_n = wp.normalize(delta_omega) lambda_roll = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, lin, lin, -roll_n, roll_n, 1.0, dt ) lambda_roll = wp.max(lambda_roll, -lambda_n * rolling_friction) ang_delta_a -= roll_n * lambda_roll ang_delta_b += roll_n * lambda_roll if body_a >= 0: wp.atomic_add(deltas, body_a, wp.spatial_vector(ang_delta_a, lin_delta_a)) if body_b >= 0: wp.atomic_add(deltas, body_b, wp.spatial_vector(ang_delta_b, lin_delta_b)) @wp.kernel def update_body_velocities( poses: wp.array(dtype=wp.transform), poses_prev: wp.array(dtype=wp.transform), body_com: wp.array(dtype=wp.vec3), dt: float, qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() pose = poses[tid] pose_prev = poses_prev[tid] x = wp.transform_get_translation(pose) x_prev = wp.transform_get_translation(pose_prev) q = wp.transform_get_rotation(pose) q_prev = wp.transform_get_rotation(pose_prev) # Update body velocities according to Alg. 2 # XXX we consider the body COM as the origin of the body frame x_com = x + wp.quat_rotate(q, body_com[tid]) x_com_prev = x_prev + wp.quat_rotate(q_prev, body_com[tid]) # XXX consider the velocity of the COM v = (x_com - x_com_prev) / dt dq = q * wp.quat_inverse(q_prev) omega = 2.0 / dt * wp.vec3(dq[0], dq[1], dq[2]) if dq[3] < 0.0: omega = -omega qd_out[tid] = wp.spatial_vector(omega, v) @wp.kernel def apply_rigid_restitution( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_q_prev: wp.array(dtype=wp.transform), body_qd_prev: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), shape_body: wp.array(dtype=int), contact_count: wp.array(dtype=int), contact_normal: wp.array(dtype=wp.vec3), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), shape_materials: ModelShapeMaterials, contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_offset0: wp.array(dtype=wp.vec3), contact_offset1: wp.array(dtype=wp.vec3), contact_thickness: wp.array(dtype=float), contact_inv_weight: wp.array(dtype=float), gravity: wp.vec3, dt: float, # outputs deltas: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = contact_count[0] if tid >= count: return shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: return body_a = -1 body_b = -1 # use average contact material properties mat_nonzero = 0 restitution = 0.0 if shape_a >= 0: mat_nonzero += 1 restitution += shape_materials.restitution[shape_a] body_a = shape_body[shape_a] if shape_b >= 0: mat_nonzero += 1 restitution += shape_materials.restitution[shape_b] body_b = shape_body[shape_b] if mat_nonzero > 0: restitution /= float(mat_nonzero) if body_a == body_b: return m_inv_a = 0.0 m_inv_b = 0.0 I_inv_a = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) I_inv_b = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) # body to world transform X_wb_a_prev = wp.transform_identity() X_wb_b_prev = wp.transform_identity() # center of mass in body frame com_a = wp.vec3(0.0) com_b = wp.vec3(0.0) # previous velocity at contact points v_a = wp.vec3(0.0) v_b = wp.vec3(0.0) # new velocity at contact points v_a_new = wp.vec3(0.0) v_b_new = wp.vec3(0.0) # inverse mass used to compute the impulse inv_mass = 0.0 if body_a >= 0: X_wb_a_prev = body_q_prev[body_a] # X_wb_a = body_q[body_a] m_inv_a = body_m_inv[body_a] I_inv_a = body_I_inv[body_a] com_a = body_com[body_a] if body_b >= 0: X_wb_b_prev = body_q_prev[body_b] # X_wb_b = body_q[body_b] m_inv_b = body_m_inv[body_b] I_inv_b = body_I_inv[body_b] com_b = body_com[body_b] # compute body position in world space bx_a = wp.transform_point(X_wb_a_prev, contact_point0[tid] + contact_offset0[tid]) bx_b = wp.transform_point(X_wb_b_prev, contact_point1[tid] + contact_offset1[tid]) thickness = contact_thickness[tid] n = contact_normal[tid] d = -wp.dot(n, bx_b - bx_a) - thickness if d >= 0.0: return r_a = bx_a - wp.transform_point(X_wb_a_prev, com_a) r_b = bx_b - wp.transform_point(X_wb_b_prev, com_b) rxn_a = wp.vec3(0.0) rxn_b = wp.vec3(0.0) if body_a >= 0: v_a = velocity_at_point(body_qd_prev[body_a], r_a) + gravity * dt v_a_new = velocity_at_point(body_qd[body_a], r_a) q_a = wp.transform_get_rotation(X_wb_a_prev) rxn_a = wp.quat_rotate_inv(q_a, wp.cross(r_a, n)) # Eq. 2 inv_mass_a = m_inv_a + wp.dot(rxn_a, I_inv_a * rxn_a) # if contact_inv_weight: # if contact_inv_weight[body_a] > 0.0: # inv_mass_a *= contact_inv_weight[body_a] inv_mass += inv_mass_a if body_b >= 0: v_b = velocity_at_point(body_qd_prev[body_b], r_b) + gravity * dt v_b_new = velocity_at_point(body_qd[body_b], r_b) q_b = wp.transform_get_rotation(X_wb_b_prev) rxn_b = wp.quat_rotate_inv(q_b, wp.cross(r_b, n)) # Eq. 3 inv_mass_b = m_inv_b + wp.dot(rxn_b, I_inv_b * rxn_b) # if contact_inv_weight: # if contact_inv_weight[body_b] > 0.0: # inv_mass_b *= contact_inv_weight[body_b] inv_mass += inv_mass_b if inv_mass == 0.0: return # Eq. 29 rel_vel_old = wp.dot(n, v_a - v_b) rel_vel_new = wp.dot(n, v_a_new - v_b_new) if rel_vel_old >= 0.0: return # Eq. 34 dv = (-rel_vel_new - restitution * rel_vel_old) / inv_mass # Eq. 33 if body_a >= 0: dv_a = dv # if contact_inv_weight: # if contact_inv_weight[body_a] > 0.0: # dv_a *= contact_inv_weight[body_a] q_a = wp.transform_get_rotation(X_wb_a_prev) dq = wp.quat_rotate(q_a, I_inv_a * rxn_a * dv_a) wp.atomic_add(deltas, body_a, wp.spatial_vector(dq, n * m_inv_a * dv_a)) if body_b >= 0: dv_b = -dv # if contact_inv_weight: # if contact_inv_weight[body_b] > 0.0: # dv_b *= contact_inv_weight[body_b] q_b = wp.transform_get_rotation(X_wb_b_prev) dq = wp.quat_rotate(q_b, I_inv_b * rxn_b * dv_b) wp.atomic_add(deltas, body_b, wp.spatial_vector(dq, n * m_inv_b * dv_b)) class XPBDIntegrator(Integrator): """An implicit integrator using eXtended Position-Based Dynamics (XPBD) for rigid and soft body simulation. References: - Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games (MIG '16). Association for Computing Machinery, New York, NY, USA, 49-54. https://doi.org/10.1145/2994258.2994272 - Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong Kim. 2020. Detailed rigid body simulation with extended position based dynamics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '20). Eurographics Association, Goslar, DEU, Article 10, 1-12. https://doi.org/10.1111/cgf.14105 After constructing :class:`Model`, :class:`State`, and :class:`Control` (optional) objects, this time-integrator may be used to advance the simulation state forward in time. Example ------- .. code-block:: python integrator = wp.XPBDIntegrator() # simulation loop for i in range(100): state = integrator.simulate(model, state_in, state_out, dt, control) """ def __init__( self, iterations=2, soft_body_relaxation=0.9, soft_contact_relaxation=0.9, joint_linear_relaxation=0.7, joint_angular_relaxation=0.4, rigid_contact_relaxation=0.8, rigid_contact_con_weighting=True, angular_damping=0.0, enable_restitution=False, ): self.iterations = iterations self.soft_body_relaxation = soft_body_relaxation self.soft_contact_relaxation = soft_contact_relaxation self.joint_linear_relaxation = joint_linear_relaxation self.joint_angular_relaxation = joint_angular_relaxation self.rigid_contact_relaxation = rigid_contact_relaxation self.rigid_contact_con_weighting = rigid_contact_con_weighting self.angular_damping = angular_damping self.enable_restitution = enable_restitution self.compute_body_velocity_from_position_delta = False # helper variables to track constraint resolution vars self._particle_delta_counter = 0 self._body_delta_counter = 0 def apply_particle_deltas( self, model: Model, state_in: State, state_out: State, particle_deltas: wp.array, dt: float, ): if state_in.requires_grad: particle_q = state_out.particle_q # allocate new particle arrays so gradients can be tracked correctly without overwriting new_particle_q = wp.empty_like(state_out.particle_q) new_particle_qd = wp.empty_like(state_out.particle_qd) self._particle_delta_counter += 1 else: if self._particle_delta_counter == 0: particle_q = state_out.particle_q new_particle_q = state_in.particle_q new_particle_qd = state_in.particle_qd else: particle_q = state_in.particle_q new_particle_q = state_out.particle_q new_particle_qd = state_out.particle_qd self._particle_delta_counter = 1 - self._particle_delta_counter wp.launch( kernel=apply_particle_deltas, dim=model.particle_count, inputs=[ self.particle_q_init, particle_q, model.particle_flags, particle_deltas, dt, model.particle_max_velocity, ], outputs=[new_particle_q, new_particle_qd], device=model.device, ) if state_in.requires_grad: state_out.particle_q = new_particle_q state_out.particle_qd = new_particle_qd return new_particle_q, new_particle_qd def apply_body_deltas( self, model: Model, state_in: State, state_out: State, body_deltas: wp.array, dt: float, rigid_contact_inv_weight: wp.array = None, ): with wp.ScopedTimer("apply_body_deltas", False): if state_in.requires_grad: body_q = state_out.body_q body_qd = state_out.body_qd new_body_q = wp.clone(body_q) new_body_qd = wp.clone(body_qd) self._body_delta_counter += 1 else: if self._body_delta_counter == 0: body_q = state_out.body_q body_qd = state_out.body_qd new_body_q = state_in.body_q new_body_qd = state_in.body_qd else: body_q = state_in.body_q body_qd = state_in.body_qd new_body_q = state_out.body_q new_body_qd = state_out.body_qd self._body_delta_counter = 1 - self._body_delta_counter wp.launch( kernel=apply_body_deltas, dim=model.body_count, inputs=[ body_q, body_qd, model.body_com, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, body_deltas, rigid_contact_inv_weight, dt, ], outputs=[ new_body_q, new_body_qd, ], device=model.device, ) if state_in.requires_grad: state_out.body_q = new_body_q state_out.body_qd = new_body_qd return new_body_q, new_body_qd def simulate(self, model: Model, state_in: State, state_out: State, dt: float, control: Control = None): requires_grad = state_in.requires_grad self._particle_delta_counter = 0 self._body_delta_counter = 0 particle_q = None particle_qd = None particle_deltas = None body_q = None body_qd = None body_deltas = None rigid_contact_inv_weight = None if model.rigid_contact_max > 0: if self.rigid_contact_con_weighting: rigid_contact_inv_weight = wp.zeros_like(model.rigid_contact_thickness) rigid_contact_inv_weight_init = None if control is None: control = model.control(clone_variables=False) with wp.ScopedTimer("simulate", False): if model.particle_count: if requires_grad: particle_q = state_out.particle_q particle_qd = state_out.particle_qd else: particle_q = state_out.particle_q particle_qd = state_out.particle_qd self.particle_q_init = wp.clone(state_in.particle_q) if self.enable_restitution: self.particle_qd_init = wp.clone(state_in.particle_qd) particle_deltas = wp.empty_like(state_out.particle_qd) self.integrate_particles(model, state_in, state_out, dt) if model.body_count: body_q = state_out.body_q body_qd = state_out.body_qd if self.compute_body_velocity_from_position_delta or self.enable_restitution: body_q_init = wp.clone(state_in.body_q) body_qd_init = wp.clone(state_in.body_qd) body_deltas = wp.empty_like(state_out.body_qd) if model.joint_count: wp.launch( kernel=apply_joint_torques, dim=model.joint_count, inputs=[ state_in.body_q, model.body_com, model.joint_q_start, model.joint_qd_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis_start, model.joint_axis_dim, model.joint_axis, model.joint_axis_mode, control.joint_act, ], outputs=[state_in.body_f], device=model.device, ) self.integrate_bodies(model, state_in, state_out, dt, self.angular_damping) spring_constraint_lambdas = None if model.spring_count: spring_constraint_lambdas = wp.empty_like(model.spring_rest_length) edge_constraint_lambdas = None if model.edge_count: edge_constraint_lambdas = wp.empty_like(model.edge_rest_angle) for i in range(self.iterations): with wp.ScopedTimer(f"iteration_{i}", False): if model.body_count: if requires_grad and i > 0: body_deltas = wp.zeros_like(body_deltas) else: body_deltas.zero_() if model.particle_count: if requires_grad and i > 0: particle_deltas = wp.zeros_like(particle_deltas) else: particle_deltas.zero_() # particle ground contact if model.ground: wp.launch( kernel=solve_particle_ground_contacts, dim=model.particle_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.ground_plane, dt, self.soft_contact_relaxation, ], outputs=[particle_deltas], device=model.device, ) # particle-rigid body contacts (besides ground plane) if model.shape_count > 1: wp.launch( kernel=solve_particle_shape_contacts, dim=model.soft_contact_max, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, body_q, body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.shape_body, model.shape_materials, model.soft_contact_mu, model.particle_adhesion, model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_max, dt, self.soft_contact_relaxation, ], # outputs outputs=[particle_deltas, body_deltas], device=model.device, ) if model.particle_max_radius > 0.0 and model.particle_count > 1: # assert model.particle_grid.reserved, "model.particle_grid must be built, see HashGrid.build()" wp.launch( kernel=solve_particle_particle_contacts, dim=model.particle_count, inputs=[ model.particle_grid.id, particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.particle_mu, model.particle_cohesion, model.particle_max_radius, dt, self.soft_contact_relaxation, ], outputs=[particle_deltas], device=model.device, ) # distance constraints if model.spring_count: spring_constraint_lambdas.zero_() wp.launch( kernel=solve_springs, dim=model.spring_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt, spring_constraint_lambdas, ], outputs=[particle_deltas], device=model.device, ) # bending constraints if model.edge_count: edge_constraint_lambdas.zero_() wp.launch( kernel=bending_constraint, dim=model.edge_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.edge_indices, model.edge_rest_angle, model.edge_bending_properties, dt, edge_constraint_lambdas, ], outputs=[particle_deltas], device=model.device, ) # tetrahedral FEM if model.tet_count: wp.launch( kernel=solve_tetrahedra, dim=model.tet_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, self.soft_body_relaxation, ], outputs=[particle_deltas], device=model.device, ) particle_q, particle_qd = self.apply_particle_deltas( model, state_in, state_out, particle_deltas, dt ) # handle rigid bodies # ---------------------------- if model.joint_count: # wp.launch( # kernel=solve_simple_body_joints, # dim=model.joint_count, # inputs=[ # body_q, # body_qd, # model.body_com, # model.body_inv_mass, # model.body_inv_inertia, # model.joint_type, # model.joint_enabled, # model.joint_parent, # model.joint_child, # model.joint_X_p, # model.joint_X_c, # model.joint_limit_lower, # model.joint_limit_upper, # model.joint_axis_start, # model.joint_axis_dim, # model.joint_axis_mode, # model.joint_axis, # control.joint_target, # model.joint_target_ke, # model.joint_target_kd, # model.joint_linear_compliance, # model.joint_angular_compliance, # self.joint_angular_relaxation, # self.joint_linear_relaxation, # dt, # ], # outputs=[body_deltas], # device=model.device, # ) wp.launch( kernel=solve_body_joints, dim=model.joint_count, inputs=[ body_q, body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.joint_type, model.joint_enabled, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_limit_lower, model.joint_limit_upper, model.joint_axis_start, model.joint_axis_dim, model.joint_axis_mode, model.joint_axis, control.joint_act, model.joint_target_ke, model.joint_target_kd, model.joint_linear_compliance, model.joint_angular_compliance, self.joint_angular_relaxation, self.joint_linear_relaxation, dt, ], outputs=[body_deltas], device=model.device, ) body_q, body_qd = self.apply_body_deltas(model, state_in, state_out, body_deltas, dt) # Solve rigid contact constraints if model.rigid_contact_max and ( model.ground and model.shape_ground_contact_pair_count or model.shape_contact_pair_count ): if self.rigid_contact_con_weighting: rigid_contact_inv_weight.zero_() body_deltas.zero_() wp.launch( kernel=solve_body_contact_positions, dim=model.rigid_contact_max, inputs=[ body_q, body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.shape_body, model.rigid_contact_count, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_offset0, model.rigid_contact_offset1, model.rigid_contact_normal, model.rigid_contact_thickness, model.rigid_contact_shape0, model.rigid_contact_shape1, model.shape_materials, self.rigid_contact_relaxation, dt, model.rigid_contact_torsional_friction, model.rigid_contact_rolling_friction, ], outputs=[ body_deltas, rigid_contact_inv_weight, ], device=model.device, ) # if model.rigid_contact_count.numpy()[0] > 0: # print("rigid_contact_count:", model.rigid_contact_count.numpy().flatten()) # # print("rigid_active_contact_distance:", rigid_active_contact_distance.numpy().flatten()) # # print("rigid_active_contact_point0:", rigid_active_contact_point0.numpy().flatten()) # # print("rigid_active_contact_point1:", rigid_active_contact_point1.numpy().flatten()) # print("body_deltas:", body_deltas.numpy().flatten()) # print(rigid_active_contact_distance.numpy().flatten()) if self.enable_restitution and i == 0: # remember contact constraint weighting from the first iteration if self.rigid_contact_con_weighting: rigid_contact_inv_weight_init = wp.clone(rigid_contact_inv_weight) else: rigid_contact_inv_weight_init = None body_q, body_qd = self.apply_body_deltas( model, state_in, state_out, body_deltas, dt, rigid_contact_inv_weight ) if model.particle_count: if particle_q.ptr != state_out.particle_q.ptr: state_out.particle_q.assign(particle_q) state_out.particle_qd.assign(particle_qd) if model.body_count: if body_q.ptr != state_out.body_q.ptr: state_out.body_q.assign(body_q) state_out.body_qd.assign(body_qd) # update body velocities from position changes if self.compute_body_velocity_from_position_delta and model.body_count and not requires_grad: # causes gradient issues (probably due to numerical problems # when computing velocities from position changes) if requires_grad: out_body_qd = wp.clone(state_out.body_qd) else: out_body_qd = state_out.body_qd # update body velocities wp.launch( kernel=update_body_velocities, dim=model.body_count, inputs=[state_out.body_q, body_q_init, model.body_com, dt], outputs=[out_body_qd], device=model.device, ) if self.enable_restitution: if model.particle_count: wp.launch( kernel=apply_particle_shape_restitution, dim=model.particle_count, inputs=[ particle_q, particle_qd, self.particle_q_init, self.particle_qd_init, model.particle_inv_mass, model.particle_radius, model.particle_flags, body_q, body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.shape_body, model.shape_materials, model.particle_adhesion, model.soft_contact_restitution, model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_max, dt, self.soft_contact_relaxation, ], outputs=[state_out.particle_qd], device=model.device, ) if model.ground: wp.launch( kernel=apply_particle_ground_restitution, dim=model.particle_count, inputs=[ particle_q, particle_qd, self.particle_q_init, self.particle_qd_init, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.particle_adhesion, model.soft_contact_restitution, model.ground_plane, dt, self.soft_contact_relaxation, ], outputs=[state_out.particle_qd], device=model.device, ) if model.body_count: body_deltas.zero_() wp.launch( kernel=apply_rigid_restitution, dim=model.rigid_contact_max, inputs=[ state_out.body_q, state_out.body_qd, body_q_init, body_qd_init, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.shape_body, model.rigid_contact_count, model.rigid_contact_normal, model.rigid_contact_shape0, model.rigid_contact_shape1, model.shape_materials, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_offset0, model.rigid_contact_offset1, model.rigid_contact_thickness, rigid_contact_inv_weight_init, model.gravity, dt, ], outputs=[ body_deltas, ], device=model.device, ) wp.launch( kernel=apply_body_delta_velocities, dim=model.body_count, inputs=[ body_deltas, ], outputs=[state_out.body_qd], device=model.device, ) return state_out
115,420
Python
34.029135
354
0.512823
NVIDIA/warp/warp/sim/particles.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .model import PARTICLE_FLAG_ACTIVE @wp.func def particle_force(n: wp.vec3, v: wp.vec3, c: float, k_n: float, k_d: float, k_f: float, k_mu: float): # compute normal and tangential friction force for a single contact vn = wp.dot(n, v) jn = c * k_n jd = min(vn, 0.0) * k_d # contact force fn = jn + jd # friction force vt = v - n * vn vs = wp.length(vt) if vs > 0.0: vt = vt / vs # Coulomb condition ft = wp.min(vs * k_f, k_mu * wp.abs(fn)) # total force return -n * fn - vt * ft @wp.kernel def eval_particle_forces_kernel( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), k_contact: float, k_damp: float, k_friction: float, k_mu: float, k_cohesion: float, max_radius: float, # outputs particle_f: wp.array(dtype=wp.vec3), ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) if i == -1: # hash grid has not been built yet return if (particle_flags[i] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[i] v = particle_v[i] radius = particle_radius[i] f = wp.vec3() # particle contact query = wp.hash_grid_query(grid, x, radius + max_radius + k_cohesion) index = int(0) count = int(0) while wp.hash_grid_query_next(query, index): if (particle_flags[index] & PARTICLE_FLAG_ACTIVE) != 0 and index != i: # compute distance to point n = x - particle_x[index] d = wp.length(n) err = d - radius - particle_radius[index] count += 1 if err <= k_cohesion: n = n / d vrel = v - particle_v[index] f = f + particle_force(n, vrel, err, k_contact, k_damp, k_friction, k_mu) particle_f[i] = f def eval_particle_forces(model, state, forces): if model.particle_count > 1 and model.particle_max_radius > 0.0: wp.launch( kernel=eval_particle_forces_kernel, dim=model.particle_count, inputs=[ model.particle_grid.id, state.particle_q, state.particle_qd, model.particle_radius, model.particle_flags, model.particle_ke, model.particle_kd, model.particle_kf, model.particle_mu, model.particle_cohesion, model.particle_max_radius, ], outputs=[forces], device=model.device, )
3,165
Python
26.77193
102
0.576935
NVIDIA/warp/warp/sim/collide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """ Collision handling functions and kernels. """ import warp as wp from .model import PARTICLE_FLAG_ACTIVE, ModelShapeGeometry @wp.func def triangle_closest_point_barycentric(a: wp.vec3, b: wp.vec3, c: wp.vec3, p: wp.vec3): ab = b - a ac = c - a ap = p - a d1 = wp.dot(ab, ap) d2 = wp.dot(ac, ap) if d1 <= 0.0 and d2 <= 0.0: return wp.vec3(1.0, 0.0, 0.0) bp = p - b d3 = wp.dot(ab, bp) d4 = wp.dot(ac, bp) if d3 >= 0.0 and d4 <= d3: return wp.vec3(0.0, 1.0, 0.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0: return wp.vec3(1.0 - v, v, 0.0) cp = p - c d5 = wp.dot(ab, cp) d6 = wp.dot(ac, cp) if d6 >= 0.0 and d5 <= d6: return wp.vec3(0.0, 0.0, 1.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0: return wp.vec3(1.0 - w, 0.0, w) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0: return wp.vec3(0.0, w, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom return wp.vec3(1.0 - v - w, v, w) @wp.func def sphere_sdf(center: wp.vec3, radius: float, p: wp.vec3): return wp.length(p - center) - radius @wp.func def sphere_sdf_grad(center: wp.vec3, radius: float, p: wp.vec3): return wp.normalize(p - center) @wp.func def box_sdf(upper: wp.vec3, p: wp.vec3): # adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm qx = abs(p[0]) - upper[0] qy = abs(p[1]) - upper[1] qz = abs(p[2]) - upper[2] e = wp.vec3(wp.max(qx, 0.0), wp.max(qy, 0.0), wp.max(qz, 0.0)) return wp.length(e) + wp.min(wp.max(qx, wp.max(qy, qz)), 0.0) @wp.func def box_sdf_grad(upper: wp.vec3, p: wp.vec3): qx = abs(p[0]) - upper[0] qy = abs(p[1]) - upper[1] qz = abs(p[2]) - upper[2] # exterior case if qx > 0.0 or qy > 0.0 or qz > 0.0: x = wp.clamp(p[0], -upper[0], upper[0]) y = wp.clamp(p[1], -upper[1], upper[1]) z = wp.clamp(p[2], -upper[2], upper[2]) return wp.normalize(p - wp.vec3(x, y, z)) sx = wp.sign(p[0]) sy = wp.sign(p[1]) sz = wp.sign(p[2]) # x projection if qx > qy and qx > qz or qy == 0.0 and qz == 0.0: return wp.vec3(sx, 0.0, 0.0) # y projection if qy > qx and qy > qz or qx == 0.0 and qz == 0.0: return wp.vec3(0.0, sy, 0.0) # z projection return wp.vec3(0.0, 0.0, sz) @wp.func def capsule_sdf(radius: float, half_height: float, p: wp.vec3): if p[1] > half_height: return wp.length(wp.vec3(p[0], p[1] - half_height, p[2])) - radius if p[1] < -half_height: return wp.length(wp.vec3(p[0], p[1] + half_height, p[2])) - radius return wp.length(wp.vec3(p[0], 0.0, p[2])) - radius @wp.func def capsule_sdf_grad(radius: float, half_height: float, p: wp.vec3): if p[1] > half_height: return wp.normalize(wp.vec3(p[0], p[1] - half_height, p[2])) if p[1] < -half_height: return wp.normalize(wp.vec3(p[0], p[1] + half_height, p[2])) return wp.normalize(wp.vec3(p[0], 0.0, p[2])) @wp.func def cylinder_sdf(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius dy = wp.abs(p[1]) - half_height return wp.min(wp.max(dx, dy), 0.0) + wp.length(wp.vec2(wp.max(dx, 0.0), wp.max(dy, 0.0))) @wp.func def cylinder_sdf_grad(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius dy = wp.abs(p[1]) - half_height if dx > dy: return wp.normalize(wp.vec3(p[0], 0.0, p[2])) return wp.vec3(0.0, wp.sign(p[1]), 0.0) @wp.func def cone_sdf(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius * (p[1] + half_height) / (2.0 * half_height) dy = wp.abs(p[1]) - half_height return wp.min(wp.max(dx, dy), 0.0) + wp.length(wp.vec2(wp.max(dx, 0.0), wp.max(dy, 0.0))) @wp.func def cone_sdf_grad(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius * (p[1] + half_height) / (2.0 * half_height) dy = wp.abs(p[1]) - half_height if dy < 0.0 or dx == 0.0: return wp.vec3(0.0, wp.sign(p[1]), 0.0) return wp.normalize(wp.vec3(p[0], 0.0, p[2])) + wp.vec3(0.0, radius / (2.0 * half_height), 0.0) @wp.func def plane_sdf(width: float, length: float, p: wp.vec3): # SDF for a quad in the xz plane if width > 0.0 and length > 0.0: d = wp.max(wp.abs(p[0]) - width, wp.abs(p[2]) - length) return wp.max(d, wp.abs(p[1])) return p[1] @wp.func def closest_point_plane(width: float, length: float, point: wp.vec3): # projects the point onto the quad in the xz plane (if width and length > 0.0, otherwise the plane is infinite) if width > 0.0: x = wp.clamp(point[0], -width, width) else: x = point[0] if length > 0.0: z = wp.clamp(point[2], -length, length) else: z = point[2] return wp.vec3(x, 0.0, z) @wp.func def closest_point_line_segment(a: wp.vec3, b: wp.vec3, point: wp.vec3): ab = b - a ap = point - a t = wp.dot(ap, ab) / wp.dot(ab, ab) t = wp.clamp(t, 0.0, 1.0) return a + t * ab @wp.func def closest_point_box(upper: wp.vec3, point: wp.vec3): # closest point to box surface x = wp.clamp(point[0], -upper[0], upper[0]) y = wp.clamp(point[1], -upper[1], upper[1]) z = wp.clamp(point[2], -upper[2], upper[2]) if wp.abs(point[0]) <= upper[0] and wp.abs(point[1]) <= upper[1] and wp.abs(point[2]) <= upper[2]: # the point is inside, find closest face sx = wp.abs(wp.abs(point[0]) - upper[0]) sy = wp.abs(wp.abs(point[1]) - upper[1]) sz = wp.abs(wp.abs(point[2]) - upper[2]) # return closest point on closest side, handle corner cases if sx < sy and sx < sz or sy == 0.0 and sz == 0.0: x = wp.sign(point[0]) * upper[0] elif sy < sx and sy < sz or sx == 0.0 and sz == 0.0: y = wp.sign(point[1]) * upper[1] else: z = wp.sign(point[2]) * upper[2] return wp.vec3(x, y, z) @wp.func def get_box_vertex(point_id: int, upper: wp.vec3): # box vertex numbering: # 6---7 # |\ |\ y # | 2-+-3 | # 4-+-5 | z \| # \| \| o---x # 0---1 # get the vertex of the box given its ID (0-7) sign_x = float(point_id % 2) * 2.0 - 1.0 sign_y = float((point_id // 2) % 2) * 2.0 - 1.0 sign_z = float((point_id // 4) % 2) * 2.0 - 1.0 return wp.vec3(sign_x * upper[0], sign_y * upper[1], sign_z * upper[2]) @wp.func def get_box_edge(edge_id: int, upper: wp.vec3): # get the edge of the box given its ID (0-11) if edge_id < 4: # edges along x: 0-1, 2-3, 4-5, 6-7 i = edge_id * 2 j = i + 1 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) elif edge_id < 8: # edges along y: 0-2, 1-3, 4-6, 5-7 edge_id -= 4 i = edge_id % 2 + edge_id // 2 * 4 j = i + 2 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) # edges along z: 0-4, 1-5, 2-6, 3-7 edge_id -= 8 i = edge_id j = i + 4 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) @wp.func def get_plane_edge(edge_id: int, plane_width: float, plane_length: float): # get the edge of the plane given its ID (0-3) p0x = (2.0 * float(edge_id % 2) - 1.0) * plane_width p0z = (2.0 * float(edge_id // 2) - 1.0) * plane_length if edge_id == 0 or edge_id == 3: p1x = p0x p1z = -p0z else: p1x = -p0x p1z = p0z return wp.spatial_vector(wp.vec3(p0x, 0.0, p0z), wp.vec3(p1x, 0.0, p1z)) @wp.func def closest_edge_coordinate_box(upper: wp.vec3, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int): # find point on edge closest to box, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = box_sdf(upper, query) query = (1.0 - d) * edge_a + d * edge_b yd = box_sdf(upper, query) for _k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = box_sdf(upper, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = box_sdf(upper, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def closest_edge_coordinate_plane( plane_width: float, plane_length: float, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int, ): # find point on edge closest to plane, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = plane_sdf(plane_width, plane_length, query) query = (1.0 - d) * edge_a + d * edge_b yd = plane_sdf(plane_width, plane_length, query) for _k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = plane_sdf(plane_width, plane_length, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = plane_sdf(plane_width, plane_length, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def closest_edge_coordinate_capsule(radius: float, half_height: float, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int): # find point on edge closest to capsule, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = capsule_sdf(radius, half_height, query) query = (1.0 - d) * edge_a + d * edge_b yd = capsule_sdf(radius, half_height, query) for _k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = capsule_sdf(radius, half_height, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = capsule_sdf(radius, half_height, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def mesh_sdf(mesh: wp.uint64, point: wp.vec3, max_dist: float): face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal(mesh, point, max_dist, sign, face_index, face_u, face_v) if res: closest = wp.mesh_eval_position(mesh, face_index, face_u, face_v) return wp.length(point - closest) * sign return max_dist @wp.func def closest_point_mesh(mesh: wp.uint64, point: wp.vec3, max_dist: float): face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal(mesh, point, max_dist, sign, face_index, face_u, face_v) if res: return wp.mesh_eval_position(mesh, face_index, face_u, face_v) # return arbitrary point from mesh return wp.mesh_eval_position(mesh, 0, 0.0, 0.0) @wp.func def closest_edge_coordinate_mesh(mesh: wp.uint64, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int, max_dist: float): # find point on edge closest to mesh, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = mesh_sdf(mesh, query, max_dist) query = (1.0 - d) * edge_a + d * edge_b yd = mesh_sdf(mesh, query, max_dist) for _k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = mesh_sdf(mesh, query, max_dist) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = mesh_sdf(mesh, query, max_dist) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def volume_grad(volume: wp.uint64, p: wp.vec3): eps = 0.05 # TODO make this a parameter q = wp.volume_world_to_index(volume, p) # compute gradient of the SDF using finite differences dx = wp.volume_sample_f(volume, q + wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR ) dy = wp.volume_sample_f(volume, q + wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR ) dz = wp.volume_sample_f(volume, q + wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR ) return wp.normalize(wp.vec3(dx, dy, dz)) @wp.func def counter_increment(counter: wp.array(dtype=int), counter_index: int, tids: wp.array(dtype=int), tid: int): # increment counter, remember which thread received which counter value next_count = wp.atomic_add(counter, counter_index, 1) tids[tid] = next_count return next_count @wp.func_replay(counter_increment) def replay_counter_increment(counter: wp.array(dtype=int), counter_index: int, tids: wp.array(dtype=int), tid: int): return tids[tid] @wp.func def limited_counter_increment( counter: wp.array(dtype=int), counter_index: int, tids: wp.array(dtype=int), tid: int, index_limit: int ): # increment counter but only if it is smaller than index_limit, remember which thread received which counter value next_count = wp.atomic_add(counter, counter_index, 1) if next_count < index_limit or index_limit < 0: tids[tid] = next_count return next_count tids[tid] = -1 return -1 @wp.func_replay(limited_counter_increment) def replay_limited_counter_increment( counter: wp.array(dtype=int), counter_index: int, tids: wp.array(dtype=int), tid: int, index_limit: int ): return tids[tid] @wp.kernel def create_soft_contacts( particle_x: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_X_wb: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), geo: ModelShapeGeometry, margin: float, soft_contact_max: int, shape_count: int, # outputs soft_contact_count: wp.array(dtype=int), soft_contact_particle: wp.array(dtype=int), soft_contact_shape: wp.array(dtype=int), soft_contact_body_pos: wp.array(dtype=wp.vec3), soft_contact_body_vel: wp.array(dtype=wp.vec3), soft_contact_normal: wp.array(dtype=wp.vec3), soft_contact_tids: wp.array(dtype=int), ): tid = wp.tid() particle_index, shape_index = tid // shape_count, tid % shape_count if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return rigid_index = shape_body[shape_index] px = particle_x[particle_index] radius = particle_radius[particle_index] X_wb = wp.transform_identity() if rigid_index >= 0: X_wb = body_X_wb[rigid_index] X_bs = shape_X_bs[shape_index] X_ws = wp.transform_multiply(X_wb, X_bs) X_sw = wp.transform_inverse(X_ws) # transform particle position to shape local space x_local = wp.transform_point(X_sw, px) # geo description geo_type = geo.type[shape_index] geo_scale = geo.scale[shape_index] # evaluate shape sdf d = 1.0e6 n = wp.vec3() v = wp.vec3() if geo_type == wp.sim.GEO_SPHERE: d = sphere_sdf(wp.vec3(), geo_scale[0], x_local) n = sphere_sdf_grad(wp.vec3(), geo_scale[0], x_local) if geo_type == wp.sim.GEO_BOX: d = box_sdf(geo_scale, x_local) n = box_sdf_grad(geo_scale, x_local) if geo_type == wp.sim.GEO_CAPSULE: d = capsule_sdf(geo_scale[0], geo_scale[1], x_local) n = capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_CYLINDER: d = cylinder_sdf(geo_scale[0], geo_scale[1], x_local) n = cylinder_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_CONE: d = cone_sdf(geo_scale[0], geo_scale[1], x_local) n = cone_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_MESH: mesh = geo.source[shape_index] face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) min_scale = wp.min(geo_scale) if wp.mesh_query_point_sign_normal( mesh, wp.cw_div(x_local, geo_scale), margin + radius / min_scale, sign, face_index, face_u, face_v ): shape_p = wp.mesh_eval_position(mesh, face_index, face_u, face_v) shape_v = wp.mesh_eval_velocity(mesh, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale) shape_v = wp.cw_mul(shape_v, geo_scale) delta = x_local - shape_p d = wp.length(delta) * sign n = wp.normalize(delta) * sign v = shape_v if geo_type == wp.sim.GEO_SDF: volume = geo.source[shape_index] xpred_local = wp.volume_world_to_index(volume, wp.cw_div(x_local, geo_scale)) nn = wp.vec3(0.0, 0.0, 0.0) d = wp.volume_sample_grad_f(volume, xpred_local, wp.Volume.LINEAR, nn) n = wp.normalize(nn) if geo_type == wp.sim.GEO_PLANE: d = plane_sdf(geo_scale[0], geo_scale[1], x_local) n = wp.vec3(0.0, 1.0, 0.0) if d < margin + radius: index = counter_increment(soft_contact_count, 0, soft_contact_tids, tid) if index < soft_contact_max: # compute contact point in body local space body_pos = wp.transform_point(X_bs, x_local - n * d) body_vel = wp.transform_vector(X_bs, v) world_normal = wp.transform_vector(X_ws, n) soft_contact_shape[index] = shape_index soft_contact_body_pos[index] = body_pos soft_contact_body_vel[index] = body_vel soft_contact_particle[index] = particle_index soft_contact_normal[index] = world_normal @wp.kernel(enable_backward=False) def count_contact_points( contact_pairs: wp.array(dtype=int, ndim=2), geo: ModelShapeGeometry, mesh_contact_max: int, # outputs contact_count: wp.array(dtype=int), ): tid = wp.tid() shape_a = contact_pairs[tid, 0] shape_b = contact_pairs[tid, 1] if shape_b == -1: actual_shape_a = shape_a actual_type_a = geo.type[shape_a] # ground plane actual_type_b = wp.sim.GEO_PLANE actual_shape_b = -1 else: type_a = geo.type[shape_a] type_b = geo.type[shape_b] # unique ordering of shape pairs if type_a < type_b: actual_shape_a = shape_a actual_shape_b = shape_b actual_type_a = type_a actual_type_b = type_b else: actual_shape_a = shape_b actual_shape_b = shape_a actual_type_a = type_b actual_type_b = type_a # determine how many contact points need to be evaluated num_contacts = 0 num_actual_contacts = 0 if actual_type_a == wp.sim.GEO_SPHERE: num_contacts = 1 num_actual_contacts = 1 elif actual_type_a == wp.sim.GEO_CAPSULE: if actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 2 # vertex-based collision for infinite plane num_actual_contacts = 2 else: num_contacts = 2 + 4 # vertex-based collision + plane edges num_actual_contacts = 2 + 4 elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 2 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b if mesh_contact_max > 0: num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) num_actual_contacts = num_contacts_a + num_contacts_b else: num_contacts = 2 num_actual_contacts = 2 elif actual_type_a == wp.sim.GEO_BOX: if actual_type_b == wp.sim.GEO_BOX: num_contacts = 24 num_actual_contacts = 24 elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 8 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b if mesh_contact_max > 0: num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) num_actual_contacts = num_contacts_a + num_contacts_b elif actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 8 # vertex-based collision num_actual_contacts = 8 else: num_contacts = 8 + 4 # vertex-based collision + plane edges num_actual_contacts = 8 + 4 else: num_contacts = 8 elif actual_type_a == wp.sim.GEO_MESH: mesh_a = wp.mesh_get(geo.source[actual_shape_a]) num_contacts_a = mesh_a.points.shape[0] if mesh_contact_max > 0: num_contacts_a = wp.min(mesh_contact_max, num_contacts_a) if actual_type_b == wp.sim.GEO_MESH: mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b if mesh_contact_max > 0: num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) else: num_contacts_b = 0 num_contacts = num_contacts_a + num_contacts_b num_actual_contacts = num_contacts_a + num_contacts_b elif actual_type_a == wp.sim.GEO_PLANE: return # no plane-plane contacts else: wp.printf( "count_contact_points: unsupported geometry type combination %d and %d\n", actual_type_a, actual_type_b ) wp.atomic_add(contact_count, 0, num_contacts) wp.atomic_add(contact_count, 1, num_actual_contacts) @wp.kernel(enable_backward=False) def broadphase_collision_pairs( contact_pairs: wp.array(dtype=int, ndim=2), body_q: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), body_mass: wp.array(dtype=float), num_shapes: int, geo: ModelShapeGeometry, collision_radius: wp.array(dtype=float), rigid_contact_max: int, rigid_contact_margin: float, mesh_contact_max: int, iterate_mesh_vertices: bool, # outputs contact_count: wp.array(dtype=int), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point_id: wp.array(dtype=int), contact_point_limit: wp.array(dtype=int), ): tid = wp.tid() shape_a = contact_pairs[tid, 0] shape_b = contact_pairs[tid, 1] mass_a = 0.0 mass_b = 0.0 rigid_a = shape_body[shape_a] if rigid_a == -1: X_ws_a = shape_X_bs[shape_a] else: X_ws_a = wp.transform_multiply(body_q[rigid_a], shape_X_bs[shape_a]) mass_a = body_mass[rigid_a] rigid_b = shape_body[shape_b] if rigid_b == -1: X_ws_b = shape_X_bs[shape_b] else: X_ws_b = wp.transform_multiply(body_q[rigid_b], shape_X_bs[shape_b]) mass_b = body_mass[rigid_b] if mass_a == 0.0 and mass_b == 0.0: # skip if both bodies are static return type_a = geo.type[shape_a] type_b = geo.type[shape_b] # unique ordering of shape pairs if type_a < type_b: actual_shape_a = shape_a actual_shape_b = shape_b actual_type_a = type_a actual_type_b = type_b actual_X_ws_a = X_ws_a actual_X_ws_b = X_ws_b else: actual_shape_a = shape_b actual_shape_b = shape_a actual_type_a = type_b actual_type_b = type_a actual_X_ws_a = X_ws_b actual_X_ws_b = X_ws_a p_a = wp.transform_get_translation(actual_X_ws_a) if actual_type_b == wp.sim.GEO_PLANE: if actual_type_a == wp.sim.GEO_PLANE: return query_b = wp.transform_point(wp.transform_inverse(actual_X_ws_b), p_a) scale = geo.scale[actual_shape_b] closest = closest_point_plane(scale[0], scale[1], query_b) d = wp.length(query_b - closest) r_a = collision_radius[actual_shape_a] if d > r_a + rigid_contact_margin: return else: p_b = wp.transform_get_translation(actual_X_ws_b) d = wp.length(p_a - p_b) * 0.5 - 0.1 r_a = collision_radius[actual_shape_a] r_b = collision_radius[actual_shape_b] if d > r_a + r_b + rigid_contact_margin: return pair_index_ab = actual_shape_a * num_shapes + actual_shape_b pair_index_ba = actual_shape_b * num_shapes + actual_shape_a # determine how many contact points need to be evaluated num_contacts = 0 if actual_type_a == wp.sim.GEO_SPHERE: num_contacts = 1 elif actual_type_a == wp.sim.GEO_CAPSULE: if actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 2 # vertex-based collision for infinite plane else: num_contacts = 2 + 4 # vertex-based collision + plane edges elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 2 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) if iterate_mesh_vertices: num_contacts_b = mesh_b.points.shape[0] else: num_contacts_b = 0 num_contacts = num_contacts_a + num_contacts_b index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from capsule A against mesh B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against capsule A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i contact_point_limit[pair_index_ab] = 2 if mesh_contact_max > 0: num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) contact_point_limit[pair_index_ba] = num_contacts_b return else: num_contacts = 2 elif actual_type_a == wp.sim.GEO_BOX: if actual_type_b == wp.sim.GEO_BOX: index = wp.atomic_add(contact_count, 0, 24) if index + 23 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from box A against B for i in range(12): # 12 edges contact_shape0[index + i] = shape_a contact_shape1[index + i] = shape_b contact_point_id[index + i] = i contact_point_limit[pair_index_ab] = 12 # allocate contact points from box B against A for i in range(12): contact_shape0[index + 12 + i] = shape_b contact_shape1[index + 12 + i] = shape_a contact_point_id[index + 12 + i] = i contact_point_limit[pair_index_ba] = 12 return elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 8 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) if iterate_mesh_vertices: num_contacts_b = mesh_b.points.shape[0] else: num_contacts_b = 0 num_contacts = num_contacts_a + num_contacts_b index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from box A against mesh B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against box A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i contact_point_limit[pair_index_ab] = num_contacts_a if mesh_contact_max > 0: num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) contact_point_limit[pair_index_ba] = num_contacts_b return elif actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 8 # vertex-based collision else: num_contacts = 8 + 4 # vertex-based collision + plane edges else: num_contacts = 8 elif actual_type_a == wp.sim.GEO_MESH: mesh_a = wp.mesh_get(geo.source[actual_shape_a]) num_contacts_a = mesh_a.points.shape[0] num_contacts_b = 0 if actual_type_b == wp.sim.GEO_MESH: mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] elif actual_type_b != wp.sim.GEO_PLANE: print("broadphase_collision_pairs: unsupported geometry type for mesh collision") return num_contacts = num_contacts_a + num_contacts_b if num_contacts > 0: index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Mesh contact: Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from mesh A against B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i if mesh_contact_max > 0: num_contacts_a = wp.min(mesh_contact_max, num_contacts_a) num_contacts_b = wp.min(mesh_contact_max, num_contacts_b) contact_point_limit[pair_index_ab] = num_contacts_a contact_point_limit[pair_index_ba] = num_contacts_b return elif actual_type_a == wp.sim.GEO_PLANE: return # no plane-plane contacts else: print("broadphase_collision_pairs: unsupported geometry type") if num_contacts > 0: index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points for i in range(num_contacts): cp_index = index + i contact_shape0[cp_index] = actual_shape_a contact_shape1[cp_index] = actual_shape_b contact_point_id[cp_index] = i contact_point_limit[pair_index_ab] = num_contacts contact_point_limit[pair_index_ba] = 0 @wp.kernel def handle_contact_pairs( body_q: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), geo: ModelShapeGeometry, rigid_contact_margin: float, contact_broad_shape0: wp.array(dtype=int), contact_broad_shape1: wp.array(dtype=int), num_shapes: int, contact_point_id: wp.array(dtype=int), contact_point_limit: wp.array(dtype=int), edge_sdf_iter: int, # outputs contact_count: wp.array(dtype=int), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_offset0: wp.array(dtype=wp.vec3), contact_offset1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_thickness: wp.array(dtype=float), contact_pairwise_counter: wp.array(dtype=int), contact_tids: wp.array(dtype=int), ): tid = wp.tid() shape_a = contact_broad_shape0[tid] shape_b = contact_broad_shape1[tid] if shape_a == shape_b: return point_id = contact_point_id[tid] pair_index = shape_a * num_shapes + shape_b contact_limit = contact_point_limit[pair_index] if contact_pairwise_counter[pair_index] >= contact_limit: # reached limit of contact points per contact pair return rigid_a = shape_body[shape_a] X_wb_a = wp.transform_identity() if rigid_a >= 0: X_wb_a = body_q[rigid_a] X_bs_a = shape_X_bs[shape_a] X_ws_a = wp.transform_multiply(X_wb_a, X_bs_a) X_sw_a = wp.transform_inverse(X_ws_a) X_bw_a = wp.transform_inverse(X_wb_a) geo_type_a = geo.type[shape_a] geo_scale_a = geo.scale[shape_a] min_scale_a = min(geo_scale_a) thickness_a = geo.thickness[shape_a] # is_solid_a = geo.is_solid[shape_a] rigid_b = shape_body[shape_b] X_wb_b = wp.transform_identity() if rigid_b >= 0: X_wb_b = body_q[rigid_b] X_bs_b = shape_X_bs[shape_b] X_ws_b = wp.transform_multiply(X_wb_b, X_bs_b) X_sw_b = wp.transform_inverse(X_ws_b) X_bw_b = wp.transform_inverse(X_wb_b) geo_type_b = geo.type[shape_b] geo_scale_b = geo.scale[shape_b] min_scale_b = min(geo_scale_b) thickness_b = geo.thickness[shape_b] # is_solid_b = geo.is_solid[shape_b] distance = 1.0e6 u = float(0.0) thickness = thickness_a + thickness_b if geo_type_a == wp.sim.GEO_SPHERE: p_a_world = wp.transform_get_translation(X_ws_a) if geo_type_b == wp.sim.GEO_SPHERE: p_b_world = wp.transform_get_translation(X_ws_b) elif geo_type_b == wp.sim.GEO_BOX: # contact point in frame of body B p_a_body = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, p_a_body) p_b_world = wp.transform_point(X_ws_b, p_b_body) elif geo_type_b == wp.sim.GEO_CAPSULE: half_height_b = geo_scale_b[1] # capsule B A_b = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) B_b = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(A_b, B_b, p_a_world) elif geo_type_b == wp.sim.GEO_MESH: mesh_b = geo.source[shape_b] query_b_local = wp.transform_point(X_sw_b, p_a_world) face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = (thickness + rigid_contact_margin) / min_scale_b res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) else: return elif geo_type_b == wp.sim.GEO_PLANE: p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], wp.transform_point(X_sw_b, p_a_world)) p_b_world = wp.transform_point(X_ws_b, p_b_body) else: print("Unsupported geometry type in sphere collision handling") print(geo_type_b) return diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_BOX: # edge-based box contact edge = get_box_edge(point_id, geo_scale_a) edge0_world = wp.transform_point(X_ws_a, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_a, wp.spatial_bottom(edge)) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_b, edge0_b, edge1_b, max_iter) p_a_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box B query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world # use center of box A to query normal to make sure we are not inside B query_b = wp.transform_point(X_sw_b, wp.transform_get_translation(X_ws_a)) normal = wp.transform_vector(X_ws_b, box_sdf_grad(geo_scale_b, query_b)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_CAPSULE: half_height_b = geo_scale_b[1] # capsule B # depending on point id, we query an edge from 0 to 0.5 or 0.5 to 1 e0 = wp.vec3(0.0, -half_height_b * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, half_height_b * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_b, e0) edge1_world = wp.transform_point(X_ws_b, e1) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_a, edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box A query_a = wp.transform_point(X_sw_a, p_b_world) p_a_body = closest_point_box(geo_scale_a, query_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) diff = p_a_world - p_b_world # the contact point inside the capsule should already be outside the box normal = -wp.transform_vector(X_ws_a, box_sdf_grad(geo_scale_a, query_a)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_PLANE: plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] if point_id < 8: # vertex-based contact p_a_body = get_box_vertex(point_id, geo_scale_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(plane_width, plane_length, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) if plane_width > 0.0 and plane_length > 0.0: if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # skip, we will evaluate the plane edge contact with the box later return # check whether the COM is above the plane # sign = wp.sign(wp.dot(wp.transform_get_translation(X_ws_a) - p_b_world, normal)) # if sign < 0.0: # # the entire box is most likely below the plane # return # the contact point is within plane boundaries distance = wp.dot(diff, normal) else: # contact between box A and edges of finite plane B edge = get_plane_edge(point_id - 8, plane_width, plane_length) edge0_world = wp.transform_point(X_ws_b, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_b, wp.spatial_bottom(edge)) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_a, edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box A query_a = wp.transform_point(X_sw_a, p_b_world) p_a_body = closest_point_box(geo_scale_a, query_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) query_b = wp.transform_point(X_sw_b, p_a_world) if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # ensure that the closest point is actually inside the plane return diff = p_a_world - p_b_world com_a = wp.transform_get_translation(X_ws_a) query_b = wp.transform_point(X_sw_b, com_a) if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # the COM is outside the plane normal = wp.normalize(com_a - p_b_world) else: normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_CAPSULE: # find closest edge coordinate to capsule SDF B half_height_a = geo_scale_a[1] half_height_b = geo_scale_b[1] # edge from capsule A # depending on point id, we query an edge from 0 to 0.5 or 0.5 to 1 e0 = wp.vec3(0.0, half_height_a * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, -half_height_a * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_a, e0) edge1_world = wp.transform_point(X_ws_a, e1) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_capsule(geo_scale_b[0], geo_scale_b[1], edge0_b, edge1_b, max_iter) p_a_world = (1.0 - u) * edge0_world + u * edge1_world p0_b_world = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) p1_b_world = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(p0_b_world, p1_b_world, p_a_world) diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_MESH: # find closest edge coordinate to mesh SDF B half_height_a = geo_scale_a[1] # edge from capsule A # depending on point id, we query an edge from -h to 0 or 0 to h e0 = wp.vec3(0.0, -half_height_a * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, half_height_a * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_a, e0) edge1_world = wp.transform_point(X_ws_a, e1) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter max_dist = (rigid_contact_margin + thickness) / min_scale_b mesh_b = geo.source[shape_b] u = closest_edge_coordinate_mesh( mesh_b, wp.cw_div(edge0_b, geo_scale_b), wp.cw_div(edge1_b, geo_scale_b), max_iter, max_dist ) p_a_world = (1.0 - u) * edge0_world + u * edge1_world query_b_local = wp.transform_point(X_sw_b, p_a_world) mesh_b = geo.source[shape_b] face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) p_a_world = closest_point_line_segment(edge0_world, edge1_world, p_b_world) # contact direction vector in world frame diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) else: return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_CAPSULE: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) # find closest point + contact normal on capsule B half_height_b = geo_scale_b[1] A_b = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) B_b = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(A_b, B_b, p_a_world) diff = p_a_world - p_b_world # this is more reliable in practice than using the SDF gradient normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_PLANE: plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] if point_id < 2: # vertex-based collision half_height_a = geo_scale_a[1] side = float(point_id) * 2.0 - 1.0 p_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, side * half_height_a, 0.0)) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world if geo_scale_b[0] > 0.0 and geo_scale_b[1] > 0.0: normal = wp.normalize(diff) else: normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.dot(diff, normal) else: # contact between capsule A and edges of finite plane B plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] edge = get_plane_edge(point_id - 2, plane_width, plane_length) edge0_world = wp.transform_point(X_ws_b, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_b, wp.spatial_bottom(edge)) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_capsule(geo_scale_a[0], geo_scale_a[1], edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on capsule A half_height_a = geo_scale_a[1] p0_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, half_height_a, 0.0)) p1_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, -half_height_a, 0.0)) p_a_world = closest_point_line_segment(p0_a_world, p1_a_world, p_b_world) diff = p_a_world - p_b_world # normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_BOX: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) # find closest point + contact normal on box B query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world # this is more reliable in practice than using the SDF gradient normal = wp.normalize(diff) if box_sdf(geo_scale_b, query_b) < 0.0: normal = -normal distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_MESH: # vertex-based contact query_a = get_box_vertex(point_id, geo_scale_a) p_a_world = wp.transform_point(X_ws_a, query_a) query_b_local = wp.transform_point(X_sw_b, p_a_world) mesh_b = geo.source[shape_b] max_dist = (rigid_contact_margin + thickness) / min_scale_b face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) # contact direction vector in world frame diff_b = p_a_world - p_b_world normal = wp.normalize(diff_b) * sign distance = wp.dot(diff_b, normal) else: return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_MESH: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) mesh_b = geo.source[shape_b] body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) query_b_local = wp.transform_point(X_sw_b, p_a_world) face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) min_scale = min(min_scale_a, min_scale_b) max_dist = (rigid_contact_margin + thickness) / min_scale res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) # contact direction vector in world frame diff_b = p_a_world - p_b_world normal = wp.normalize(diff_b) * sign distance = wp.dot(diff_b, normal) else: return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_PLANE: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world # if the plane is infinite or the point is within the plane we fix the normal to prevent intersections if ( geo_scale_b[0] == 0.0 and geo_scale_b[1] == 0.0 or wp.abs(query_b[0]) < geo_scale_b[0] and wp.abs(query_b[2]) < geo_scale_b[1] ): normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.dot(diff, normal) else: normal = wp.normalize(diff) distance = wp.dot(diff, normal) # ignore extreme penetrations (e.g. when mesh is below the plane) if distance < -rigid_contact_margin: return else: print("Unsupported geometry pair in collision handling") return d = distance - thickness if d < rigid_contact_margin: pair_contact_id = limited_counter_increment( contact_pairwise_counter, pair_index, contact_tids, tid, contact_limit ) if pair_contact_id == -1: # wp.printf("Reached contact point limit %d >= %d for shape pair %d and %d (pair_index: %d)\n", # contact_pairwise_counter[pair_index], contact_limit, shape_a, shape_b, pair_index) # reached contact point limit return index = limited_counter_increment(contact_count, 0, contact_tids, tid, -1) contact_shape0[index] = shape_a contact_shape1[index] = shape_b # transform from world into body frame (so the contact point includes the shape transform) contact_point0[index] = wp.transform_point(X_bw_a, p_a_world) contact_point1[index] = wp.transform_point(X_bw_b, p_b_world) contact_offset0[index] = wp.transform_vector(X_bw_a, -thickness_a * normal) contact_offset1[index] = wp.transform_vector(X_bw_b, thickness_b * normal) contact_normal[index] = normal contact_thickness[index] = thickness def collide(model, state, edge_sdf_iter: int = 10, iterate_mesh_vertices: bool = True, requires_grad: bool = None): """ Generates contact points for the particles and rigid bodies in the model, to be used in the contact dynamics kernel of the integrator. Args: model: the model to be simulated state: the state of the model edge_sdf_iter: number of search iterations for finding closest contact points between edges and SDF iterate_mesh_vertices: whether to iterate over all vertices of a mesh for contact generation (used for capsule/box <> mesh collision) requires_grad: whether to duplicate contact arrays for gradient computation (if None uses model.requires_grad) """ if requires_grad is None: requires_grad = model.requires_grad with wp.ScopedTimer("collide", False): # generate soft contacts for particles and shapes except ground plane (last shape) if model.particle_count and model.shape_count > 1: if requires_grad: model.soft_contact_body_pos = wp.clone(model.soft_contact_body_pos) model.soft_contact_body_vel = wp.clone(model.soft_contact_body_vel) model.soft_contact_normal = wp.clone(model.soft_contact_normal) # clear old count model.soft_contact_count.zero_() wp.launch( kernel=create_soft_contacts, dim=model.particle_count * (model.shape_count - 1), inputs=[ state.particle_q, model.particle_radius, model.particle_flags, state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.soft_contact_margin, model.soft_contact_max, model.shape_count - 1, ], outputs=[ model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_tids, ], device=model.device, ) if model.shape_contact_pair_count or model.ground and model.shape_ground_contact_pair_count: # clear old count model.rigid_contact_count.zero_() model.rigid_contact_broad_shape0.fill_(-1) model.rigid_contact_broad_shape1.fill_(-1) if model.shape_contact_pair_count: wp.launch( kernel=broadphase_collision_pairs, dim=model.shape_contact_pair_count, inputs=[ model.shape_contact_pairs, state.body_q, model.shape_transform, model.shape_body, model.body_mass, model.shape_count, model.shape_geo, model.shape_collision_radius, model.rigid_contact_max, model.rigid_contact_margin, model.rigid_mesh_contact_max, iterate_mesh_vertices, ], outputs=[ model.rigid_contact_count, model.rigid_contact_broad_shape0, model.rigid_contact_broad_shape1, model.rigid_contact_point_id, model.rigid_contact_point_limit, ], device=model.device, record_tape=False, ) if model.ground and model.shape_ground_contact_pair_count: wp.launch( kernel=broadphase_collision_pairs, dim=model.shape_ground_contact_pair_count, inputs=[ model.shape_ground_contact_pairs, state.body_q, model.shape_transform, model.shape_body, model.body_mass, model.shape_count, model.shape_geo, model.shape_collision_radius, model.rigid_contact_max, model.rigid_contact_margin, model.rigid_mesh_contact_max, iterate_mesh_vertices, ], outputs=[ model.rigid_contact_count, model.rigid_contact_broad_shape0, model.rigid_contact_broad_shape1, model.rigid_contact_point_id, model.rigid_contact_point_limit, ], device=model.device, record_tape=False, ) if model.shape_contact_pair_count or model.ground and model.shape_ground_contact_pair_count: if requires_grad: model.rigid_contact_point0 = wp.clone(model.rigid_contact_point0) model.rigid_contact_point1 = wp.clone(model.rigid_contact_point1) model.rigid_contact_offset0 = wp.clone(model.rigid_contact_offset0) model.rigid_contact_offset1 = wp.clone(model.rigid_contact_offset1) model.rigid_contact_normal = wp.clone(model.rigid_contact_normal) model.rigid_contact_thickness = wp.clone(model.rigid_contact_thickness) model.rigid_contact_count = wp.zeros_like(model.rigid_contact_count) model.rigid_contact_pairwise_counter = wp.zeros_like(model.rigid_contact_pairwise_counter) model.rigid_contact_tids = wp.zeros_like(model.rigid_contact_tids) model.rigid_contact_shape0 = wp.empty_like(model.rigid_contact_shape0) model.rigid_contact_shape1 = wp.empty_like(model.rigid_contact_shape1) else: model.rigid_contact_count.zero_() model.rigid_contact_pairwise_counter.zero_() model.rigid_contact_tids.zero_() model.rigid_contact_shape0.fill_(-1) model.rigid_contact_shape1.fill_(-1) wp.launch( kernel=handle_contact_pairs, dim=model.rigid_contact_max, inputs=[ state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.rigid_contact_margin, model.rigid_contact_broad_shape0, model.rigid_contact_broad_shape1, model.shape_count, model.rigid_contact_point_id, model.rigid_contact_point_limit, edge_sdf_iter, ], outputs=[ model.rigid_contact_count, model.rigid_contact_shape0, model.rigid_contact_shape1, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_offset0, model.rigid_contact_offset1, model.rigid_contact_normal, model.rigid_contact_thickness, model.rigid_contact_pairwise_counter, model.rigid_contact_tids, ], device=model.device, )
63,358
Python
38.723511
141
0.559929
NVIDIA/warp/warp/sim/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .articulation import eval_fk, eval_ik from .collide import collide from .import_mjcf import parse_mjcf from .import_snu import parse_snu from .import_urdf import parse_urdf from .import_usd import parse_usd, resolve_usd_from_url from .inertia import transform_inertia from .integrator import Integrator, integrate_bodies, integrate_particles from .integrator_euler import SemiImplicitIntegrator from .integrator_featherstone import FeatherstoneIntegrator from .integrator_xpbd import XPBDIntegrator from .model import ( GEO_BOX, GEO_CAPSULE, GEO_CONE, GEO_CYLINDER, GEO_MESH, GEO_NONE, GEO_PLANE, GEO_SDF, GEO_SPHERE, JOINT_BALL, JOINT_COMPOUND, JOINT_D6, JOINT_DISTANCE, JOINT_FIXED, JOINT_FREE, JOINT_MODE_FORCE, JOINT_MODE_TARGET_POSITION, JOINT_MODE_TARGET_VELOCITY, JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_UNIVERSAL, SDF, Control, JointAxis, Mesh, Model, ModelBuilder, ModelShapeGeometry, ModelShapeMaterials, State, ) from .utils import load_mesh, quat_from_euler, quat_to_euler, velocity_at_point
1,553
Python
28.320754
79
0.746941
NVIDIA/warp/warp/sim/articulation.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .utils import quat_decompose, quat_twist @wp.func def compute_2d_rotational_dofs( axis_0: wp.vec3, axis_1: wp.vec3, q0: float, q1: float, qd0: float, qd1: float, ): """ Computes the rotation quaternion and 3D angular velocity given the joint axes, coordinates and velocities. """ q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, wp.cross(axis_0, axis_1))) # body local axes local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, q0) axis_1 = wp.quat_rotate(q_0, local_1) q_1 = wp.quat_from_axis_angle(axis_1, q1) rot = q_1 * q_0 vel = axis_0 * qd0 + axis_1 * qd1 return rot, vel @wp.func def invert_2d_rotational_dofs( axis_0: wp.vec3, axis_1: wp.vec3, q_p: wp.quat, q_c: wp.quat, w_err: wp.vec3, ): """ Computes generalized joint position and velocity coordinates for a 2D rotational joint given the joint axes, relative orientations and angular velocity differences between the two bodies the joint connects. """ q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, wp.cross(axis_0, axis_1))) q_pc = wp.quat_inverse(q_off) * wp.quat_inverse(q_p) * q_c * q_off # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # find rotation axes local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) local_2 = wp.quat_rotate(q_off, wp.vec3(0.0, 0.0, 1.0)) axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, local_1) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, local_2) # convert angular velocity to local space w_err_p = wp.quat_rotate_inv(q_p, w_err) # given joint axes and angular velocity error, solve for joint velocities c12 = wp.cross(axis_1, axis_2) c02 = wp.cross(axis_0, axis_2) vel = wp.vec2(wp.dot(w_err_p, c12) / wp.dot(axis_0, c12), wp.dot(w_err_p, c02) / wp.dot(axis_1, c02)) return wp.vec2(angles[0], angles[1]), vel @wp.func def compute_3d_rotational_dofs( axis_0: wp.vec3, axis_1: wp.vec3, axis_2: wp.vec3, q0: float, q1: float, q2: float, qd0: float, qd1: float, qd2: float, ): """ Computes the rotation quaternion and 3D angular velocity given the joint axes, coordinates and velocities. """ q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, axis_2)) # body local axes local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) local_2 = wp.quat_rotate(q_off, wp.vec3(0.0, 0.0, 1.0)) # reconstruct rotation axes axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, q0) axis_1 = wp.quat_rotate(q_0, local_1) q_1 = wp.quat_from_axis_angle(axis_1, q1) axis_2 = wp.quat_rotate(q_1 * q_0, local_2) q_2 = wp.quat_from_axis_angle(axis_2, q2) rot = q_2 * q_1 * q_0 vel = axis_0 * qd0 + axis_1 * qd1 + axis_2 * qd2 return rot, vel @wp.func def invert_3d_rotational_dofs( axis_0: wp.vec3, axis_1: wp.vec3, axis_2: wp.vec3, q_p: wp.quat, q_c: wp.quat, w_err: wp.vec3 ): """ Computes generalized joint position and velocity coordinates for a 3D rotational joint given the joint axes, relative orientations and angular velocity differences between the two bodies the joint connects. """ q_off = wp.quat_from_matrix(wp.mat33(axis_0, axis_1, axis_2)) q_pc = wp.quat_inverse(q_off) * wp.quat_inverse(q_p) * q_c * q_off # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # find rotation axes local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0)) local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0)) local_2 = wp.quat_rotate(q_off, wp.vec3(0.0, 0.0, 1.0)) axis_0 = local_0 q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, local_1) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, local_2) # convert angular velocity to local space w_err_p = wp.quat_rotate_inv(q_p, w_err) # given joint axes and angular velocity error, solve for joint velocities c12 = wp.cross(axis_1, axis_2) c02 = wp.cross(axis_0, axis_2) c01 = wp.cross(axis_0, axis_1) velocities = wp.vec3( wp.dot(w_err_p, c12) / wp.dot(axis_0, c12), wp.dot(w_err_p, c02) / wp.dot(axis_1, c02), wp.dot(w_err_p, c01) / wp.dot(axis_2, c01), ) return angles, velocities @wp.kernel def eval_articulation_fk( articulation_start: wp.array(dtype=int), articulation_mask: wp.array( dtype=int ), # used to enable / disable FK for an articulation, if None then treat all as enabled joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), body_com: wp.array(dtype=wp.vec3), # outputs body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() # early out if disabling FK for this articulation if articulation_mask: if articulation_mask[tid] == 0: return joint_start = articulation_start[tid] joint_end = articulation_start[tid + 1] for i in range(joint_start, joint_end): parent = joint_parent[i] child = joint_child[i] # compute transform across the joint type = joint_type[i] X_pj = joint_X_p[i] X_cj = joint_X_c[i] # parent anchor frame in world space X_wpj = X_pj # velocity of parent anchor point in world space v_wpj = wp.spatial_vector() if parent >= 0: X_wp = body_q[parent] X_wpj = X_wp * X_wpj r_p = wp.transform_get_translation(X_wpj) - wp.transform_point(X_wp, body_com[parent]) v_wp = body_qd[parent] w_p = wp.spatial_top(v_wp) v_p = wp.spatial_bottom(v_wp) + wp.cross(w_p, r_p) v_wpj = wp.spatial_vector(w_p, v_p) q_start = joint_q_start[i] qd_start = joint_qd_start[i] axis_start = joint_axis_start[i] lin_axis_count = joint_axis_dim[i, 0] ang_axis_count = joint_axis_dim[i, 1] X_j = wp.transform_identity() v_j = wp.spatial_vector(wp.vec3(), wp.vec3()) if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] q = joint_q[q_start] qd = joint_qd[qd_start] X_j = wp.transform(axis * q, wp.quat_identity()) v_j = wp.spatial_vector(wp.vec3(), axis * qd) if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] q = joint_q[q_start] qd = joint_qd[qd_start] X_j = wp.transform(wp.vec3(), wp.quat_from_axis_angle(axis, q)) v_j = wp.spatial_vector(axis * qd, wp.vec3()) if type == wp.sim.JOINT_BALL: r = wp.quat(joint_q[q_start + 0], joint_q[q_start + 1], joint_q[q_start + 2], joint_q[q_start + 3]) w = wp.vec3(joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2]) X_j = wp.transform(wp.vec3(), r) v_j = wp.spatial_vector(w, wp.vec3()) if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: t = wp.transform( wp.vec3(joint_q[q_start + 0], joint_q[q_start + 1], joint_q[q_start + 2]), wp.quat(joint_q[q_start + 3], joint_q[q_start + 4], joint_q[q_start + 5], joint_q[q_start + 6]), ) v = wp.spatial_vector( wp.vec3(joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2]), wp.vec3(joint_qd[qd_start + 3], joint_qd[qd_start + 4], joint_qd[qd_start + 5]), ) X_j = t v_j = v if type == wp.sim.JOINT_COMPOUND: rot, vel_w = compute_3d_rotational_dofs( joint_axis[axis_start], joint_axis[axis_start + 1], joint_axis[axis_start + 2], joint_q[q_start + 0], joint_q[q_start + 1], joint_q[q_start + 2], joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2], ) t = wp.transform(wp.vec3(0.0, 0.0, 0.0), rot) v = wp.spatial_vector(vel_w, wp.vec3(0.0, 0.0, 0.0)) X_j = t v_j = v if type == wp.sim.JOINT_UNIVERSAL: rot, vel_w = compute_2d_rotational_dofs( joint_axis[axis_start], joint_axis[axis_start + 1], joint_q[q_start + 0], joint_q[q_start + 1], joint_qd[qd_start + 0], joint_qd[qd_start + 1], ) t = wp.transform(wp.vec3(0.0, 0.0, 0.0), rot) v = wp.spatial_vector(vel_w, wp.vec3(0.0, 0.0, 0.0)) X_j = t v_j = v if type == wp.sim.JOINT_D6: pos = wp.vec3(0.0) rot = wp.quat_identity() vel_v = wp.vec3(0.0) vel_w = wp.vec3(0.0) # unroll for loop to ensure joint actions remain differentiable # (since differentiating through a for loop that updates a local variable is not supported) if lin_axis_count > 0: axis = joint_axis[axis_start + 0] pos += axis * joint_q[q_start + 0] vel_v += axis * joint_qd[qd_start + 0] if lin_axis_count > 1: axis = joint_axis[axis_start + 1] pos += axis * joint_q[q_start + 1] vel_v += axis * joint_qd[qd_start + 1] if lin_axis_count > 2: axis = joint_axis[axis_start + 2] pos += axis * joint_q[q_start + 2] vel_v += axis * joint_qd[qd_start + 2] ia = axis_start + lin_axis_count iq = q_start + lin_axis_count iqd = qd_start + lin_axis_count if ang_axis_count == 1: axis = joint_axis[ia] rot = wp.quat_from_axis_angle(axis, joint_q[iq]) vel_w = joint_qd[iqd] * axis if ang_axis_count == 2: rot, vel_w = compute_2d_rotational_dofs( joint_axis[ia + 0], joint_axis[ia + 1], joint_q[iq + 0], joint_q[iq + 1], joint_qd[iqd + 0], joint_qd[iqd + 1], ) if ang_axis_count == 3: rot, vel_w = compute_3d_rotational_dofs( joint_axis[ia + 0], joint_axis[ia + 1], joint_axis[ia + 2], joint_q[iq + 0], joint_q[iq + 1], joint_q[iq + 2], joint_qd[iqd + 0], joint_qd[iqd + 1], joint_qd[iqd + 2], ) X_j = wp.transform(pos, rot) v_j = wp.spatial_vector(vel_w, vel_v) # transform from world to joint anchor frame at child body X_wcj = X_wpj * X_j # transform from world to child body frame X_wc = X_wcj * wp.transform_inverse(X_cj) # transform velocity across the joint to world space angular_vel = wp.transform_vector(X_wpj, wp.spatial_top(v_j)) linear_vel = wp.transform_vector(X_wpj, wp.spatial_bottom(v_j)) v_wc = v_wpj + wp.spatial_vector(angular_vel, linear_vel) body_q[child] = X_wc body_qd[child] = v_wc # updates state body information based on joint coordinates def eval_fk(model, joint_q, joint_qd, mask, state): """ Evaluates the model's forward kinematics given the joint coordinates and updates the state's body information (:attr:`State.body_q` and :attr:`State.body_qd`). Args: model (Model): The model to evaluate. joint_q (array): Generalized joint position coordinates, shape [joint_coord_count], float joint_qd (array): Generalized joint velocity coordinates, shape [joint_dof_count], float mask (array): The mask to use to enable / disable FK for an articulation. If None then treat all as enabled, shape [articulation_count], int state (State): The state to update. """ wp.launch( kernel=eval_articulation_fk, dim=model.articulation_count, inputs=[ model.articulation_start, mask, joint_q, joint_qd, model.joint_q_start, model.joint_qd_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.body_com, ], outputs=[ state.body_q, state.body_qd, ], device=model.device, ) @wp.func def reconstruct_angular_q_qd(q_pc: wp.quat, w_err: wp.vec3, X_wp: wp.transform, axis: wp.vec3): """ Reconstructs the angular joint coordinates and velocities given the relative rotation and angular velocity between a parent and child body. Args: q_pc (quat): The relative rotation between the parent and child body. w_err (vec3): The angular velocity between the parent and child body. X_wp (transform): The parent body's transform in world space. axis (vec3): The joint axis in the frame of the parent body. Returns: q (float): The joint position coordinate. qd (float): The joint velocity coordinate. """ axis_p = wp.transform_vector(X_wp, axis) twist = quat_twist(axis, q_pc) q = wp.acos(twist[3]) * 2.0 * wp.sign(wp.dot(axis, wp.vec3(twist[0], twist[1], twist[2]))) qd = wp.dot(w_err, axis_p) return q, qd @wp.kernel def eval_articulation_ik( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), ): tid = wp.tid() parent = joint_parent[tid] child = joint_child[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] w_p = wp.vec3() v_p = wp.vec3() v_wp = wp.spatial_vector() # parent anchor frame in world space X_wpj = X_pj if parent >= 0: X_wp = body_q[parent] X_wpj = X_wp * X_pj r_p = wp.transform_get_translation(X_wpj) - wp.transform_point(X_wp, body_com[parent]) v_wp = body_qd[parent] w_p = wp.spatial_top(v_wp) v_p = wp.spatial_bottom(v_wp) + wp.cross(w_p, r_p) # child transform and moment arm X_wc = body_q[child] X_wcj = X_wc * X_cj v_wc = body_qd[child] w_c = wp.spatial_top(v_wc) v_c = wp.spatial_bottom(v_wc) # joint properties type = joint_type[tid] # compute position and orientation differences between anchor frames x_p = wp.transform_get_translation(X_wpj) x_c = wp.transform_get_translation(X_wcj) q_p = wp.transform_get_rotation(X_wpj) q_c = wp.transform_get_rotation(X_wcj) x_err = x_c - x_p v_err = v_c - v_p w_err = w_c - w_p q_start = joint_q_start[tid] qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] # world space joint axis axis_p = wp.quat_rotate(q_p, axis) # evaluate joint coordinates q = wp.dot(x_err, axis_p) qd = wp.dot(v_err, axis_p) joint_q[q_start] = q joint_qd[qd_start] = qd return if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] q_pc = wp.quat_inverse(q_p) * q_c q, qd = reconstruct_angular_q_qd(q_pc, w_err, X_wpj, axis) joint_q[q_start] = q joint_qd[qd_start] = qd return if type == wp.sim.JOINT_BALL: q_pc = wp.quat_inverse(q_p) * q_c joint_q[q_start + 0] = q_pc[0] joint_q[q_start + 1] = q_pc[1] joint_q[q_start + 2] = q_pc[2] joint_q[q_start + 3] = q_pc[3] ang_vel = wp.transform_vector(wp.transform_inverse(X_wpj), w_err) joint_qd[qd_start + 0] = ang_vel[0] joint_qd[qd_start + 1] = ang_vel[1] joint_qd[qd_start + 2] = ang_vel[2] return if type == wp.sim.JOINT_FIXED: return if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE: q_pc = wp.quat_inverse(q_p) * q_c x_err_c = wp.quat_rotate_inv(q_p, x_err) v_err_c = wp.quat_rotate_inv(q_p, v_err) w_err_c = wp.quat_rotate_inv(q_p, w_err) joint_q[q_start + 0] = x_err_c[0] joint_q[q_start + 1] = x_err_c[1] joint_q[q_start + 2] = x_err_c[2] joint_q[q_start + 3] = q_pc[0] joint_q[q_start + 4] = q_pc[1] joint_q[q_start + 5] = q_pc[2] joint_q[q_start + 6] = q_pc[3] joint_qd[qd_start + 0] = w_err_c[0] joint_qd[qd_start + 1] = w_err_c[1] joint_qd[qd_start + 2] = w_err_c[2] joint_qd[qd_start + 3] = v_err_c[0] joint_qd[qd_start + 4] = v_err_c[1] joint_qd[qd_start + 5] = v_err_c[2] return if type == wp.sim.JOINT_COMPOUND: axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] axis_2 = joint_axis[axis_start + 2] qs, qds = invert_3d_rotational_dofs(axis_0, axis_1, axis_2, q_p, q_c, w_err) joint_q[q_start + 0] = qs[0] joint_q[q_start + 1] = qs[1] joint_q[q_start + 2] = qs[2] joint_qd[qd_start + 0] = qds[0] joint_qd[qd_start + 1] = qds[1] joint_qd[qd_start + 2] = qds[2] return if type == wp.sim.JOINT_UNIVERSAL: axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] qs2, qds2 = invert_2d_rotational_dofs(axis_0, axis_1, q_p, q_c, w_err) joint_q[q_start + 0] = qs2[0] joint_q[q_start + 1] = qs2[1] joint_qd[qd_start + 0] = qds2[0] joint_qd[qd_start + 1] = qds2[1] return if type == wp.sim.JOINT_D6: x_err_c = wp.quat_rotate_inv(q_p, x_err) v_err_c = wp.quat_rotate_inv(q_p, v_err) if lin_axis_count > 0: axis = joint_axis[axis_start + 0] joint_q[q_start + 0] = wp.dot(x_err_c, axis) joint_qd[qd_start + 0] = wp.dot(v_err_c, axis) if lin_axis_count > 1: axis = joint_axis[axis_start + 1] joint_q[q_start + 1] = wp.dot(x_err_c, axis) joint_qd[qd_start + 1] = wp.dot(v_err_c, axis) if lin_axis_count > 2: axis = joint_axis[axis_start + 2] joint_q[q_start + 2] = wp.dot(x_err_c, axis) joint_qd[qd_start + 2] = wp.dot(v_err_c, axis) if ang_axis_count == 1: axis = joint_axis[axis_start] q_pc = wp.quat_inverse(q_p) * q_c q, qd = reconstruct_angular_q_qd(q_pc, w_err, X_wpj, joint_axis[axis_start + lin_axis_count]) joint_q[q_start + lin_axis_count] = q joint_qd[qd_start + lin_axis_count] = qd if ang_axis_count == 2: axis_0 = joint_axis[axis_start + lin_axis_count + 0] axis_1 = joint_axis[axis_start + lin_axis_count + 1] qs2, qds2 = invert_2d_rotational_dofs(axis_0, axis_1, q_p, q_c, w_err) joint_q[q_start + lin_axis_count + 0] = qs2[0] joint_q[q_start + lin_axis_count + 1] = qs2[1] joint_qd[qd_start + lin_axis_count + 0] = qds2[0] joint_qd[qd_start + lin_axis_count + 1] = qds2[1] if ang_axis_count == 3: axis_0 = joint_axis[axis_start + lin_axis_count + 0] axis_1 = joint_axis[axis_start + lin_axis_count + 1] axis_2 = joint_axis[axis_start + lin_axis_count + 2] qs3, qds3 = invert_3d_rotational_dofs(axis_0, axis_1, axis_2, q_p, q_c, w_err) joint_q[q_start + lin_axis_count + 0] = qs3[0] joint_q[q_start + lin_axis_count + 1] = qs3[1] joint_q[q_start + lin_axis_count + 2] = qs3[2] joint_qd[qd_start + lin_axis_count + 0] = qds3[0] joint_qd[qd_start + lin_axis_count + 1] = qds3[1] joint_qd[qd_start + lin_axis_count + 2] = qds3[2] return # given maximal coordinate model computes ik (closest point projection) def eval_ik(model, state, joint_q, joint_qd): """ Evaluates the model's inverse kinematics given the state's body information (:attr:`State.body_q` and :attr:`State.body_qd`) and updates the generalized joint coordinates `joint_q` and `joint_qd`. Args: model (Model): The model to evaluate. state (State): The state with the body's maximal coordinates (positions :attr:`State.body_q` and velocities :attr:`State.body_qd`) to use. joint_q (array): Generalized joint position coordinates, shape [joint_coord_count], float joint_qd (array): Generalized joint velocity coordinates, shape [joint_dof_count], float """ wp.launch( kernel=eval_articulation_ik, dim=model.joint_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.joint_q_start, model.joint_qd_start, ], outputs=[joint_q, joint_qd], device=model.device, )
23,349
Python
33.037901
210
0.555698
NVIDIA/warp/warp/sim/render.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from collections import defaultdict import numpy as np import warp as wp import warp.render import warp.sim from warp.render.utils import solidify_mesh, tab10_color_map # TODO allow NaNs in Warp kernels NAN = wp.constant(-1.0e8) @wp.kernel def compute_contact_points( body_q: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), contact_count: wp.array(dtype=int), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), # outputs contact_pos0: wp.array(dtype=wp.vec3), contact_pos1: wp.array(dtype=wp.vec3), ): tid = wp.tid() count = contact_count[0] if tid >= count: contact_pos0[tid] = wp.vec3(NAN, NAN, NAN) contact_pos1[tid] = wp.vec3(NAN, NAN, NAN) return shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: contact_pos0[tid] = wp.vec3(NAN, NAN, NAN) contact_pos1[tid] = wp.vec3(NAN, NAN, NAN) return body_a = shape_body[shape_a] body_b = shape_body[shape_b] X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() if body_a >= 0: X_wb_a = body_q[body_a] if body_b >= 0: X_wb_b = body_q[body_b] contact_pos0[tid] = wp.transform_point(X_wb_a, contact_point0[tid]) contact_pos1[tid] = wp.transform_point(X_wb_b, contact_point1[tid]) def CreateSimRenderer(renderer): class SimRenderer(renderer): use_unique_colors = True def __init__( self, model: warp.sim.Model, path, scaling=1.0, fps=60, up_axis="Y", show_rigid_contact_points=False, contact_points_radius=1e-3, show_joints=False, **render_kwargs, ): # create USD stage super().__init__(path, scaling=scaling, fps=fps, up_axis=up_axis, **render_kwargs) self.scaling = scaling self.cam_axis = "XYZ".index(up_axis.upper()) self.show_rigid_contact_points = show_rigid_contact_points self.show_joints = show_joints self.contact_points_radius = contact_points_radius self.populate(model) def populate(self, model: warp.sim.Model): self.skip_rendering = False self.model = model self.num_envs = model.num_envs self.body_names = [] if self.show_rigid_contact_points and model.rigid_contact_max: self.contact_points0 = wp.array( np.zeros((model.rigid_contact_max, 3)), dtype=wp.vec3, device=model.device ) self.contact_points1 = wp.array( np.zeros((model.rigid_contact_max, 3)), dtype=wp.vec3, device=model.device ) self.contact_points0_colors = [(1.0, 0.5, 0.0)] * model.rigid_contact_max self.contact_points1_colors = [(0.0, 0.5, 1.0)] * model.rigid_contact_max self.body_env = [] # mapping from body index to its environment index env_id = 0 self.bodies_per_env = model.body_count // self.num_envs # create rigid body nodes for b in range(model.body_count): body_name = f"body_{b}_{self.model.body_name[b].replace(' ', '_')}" self.body_names.append(body_name) self.register_body(body_name) if b > 0 and b % self.bodies_per_env == 0: env_id += 1 self.body_env.append(env_id) # create rigid shape children if self.model.shape_count: # mapping from hash of geometry to shape ID self.geo_shape = {} self.instance_count = 0 self.body_name = {} # mapping from body name to its body ID self.body_shapes = defaultdict(list) # mapping from body index to its shape IDs shape_body = model.shape_body.numpy() shape_geo_src = model.shape_geo_src shape_geo_type = model.shape_geo.type.numpy() shape_geo_scale = model.shape_geo.scale.numpy() shape_geo_thickness = model.shape_geo.thickness.numpy() shape_geo_is_solid = model.shape_geo.is_solid.numpy() shape_transform = model.shape_transform.numpy() shape_visible = model.shape_visible.numpy() p = np.zeros(3, dtype=np.float32) q = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32) scale = np.ones(3) color = (1.0, 1.0, 1.0) # loop over shapes excluding the ground plane for s in range(model.shape_count - 1): geo_type = shape_geo_type[s] geo_scale = [float(v) for v in shape_geo_scale[s]] geo_thickness = float(shape_geo_thickness[s]) geo_is_solid = bool(shape_geo_is_solid[s]) geo_src = shape_geo_src[s] name = f"shape_{s}" # shape transform in body frame body = int(shape_body[s]) if body >= 0 and body < len(self.body_names): body = self.body_names[body] else: body = None if self.use_unique_colors and body is not None: color = self._get_new_color() # shape transform in body frame X_bs = wp.transform_expand(shape_transform[s]) # check whether we can instance an already created shape with the same geometry geo_hash = hash((int(geo_type), geo_src, *geo_scale, geo_thickness, geo_is_solid)) if geo_hash in self.geo_shape: shape = self.geo_shape[geo_hash] else: if geo_type == warp.sim.GEO_PLANE: if s == model.shape_count - 1 and not model.ground: continue # hide ground plane # plane mesh width = geo_scale[0] if geo_scale[0] > 0.0 else 100.0 length = geo_scale[1] if geo_scale[1] > 0.0 else 100.0 shape = self.render_plane( name, p, q, width, length, color, parent_body=body, is_template=True ) elif geo_type == warp.sim.GEO_SPHERE: shape = self.render_sphere( name, p, q, geo_scale[0], parent_body=body, is_template=True, color=color ) elif geo_type == warp.sim.GEO_CAPSULE: shape = self.render_capsule( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True, color=color ) elif geo_type == warp.sim.GEO_CYLINDER: shape = self.render_cylinder( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True, color=color ) elif geo_type == warp.sim.GEO_CONE: shape = self.render_cone( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True, color=color ) elif geo_type == warp.sim.GEO_BOX: shape = self.render_box( name, p, q, geo_scale, parent_body=body, is_template=True, color=color ) elif geo_type == warp.sim.GEO_MESH: if not geo_is_solid: faces, vertices = solidify_mesh(geo_src.indices, geo_src.vertices, geo_thickness) else: faces, vertices = geo_src.indices, geo_src.vertices shape = self.render_mesh( name, vertices, faces, pos=p, rot=q, scale=geo_scale, colors=[color], parent_body=body, is_template=True, ) elif geo_type == warp.sim.GEO_SDF: continue self.geo_shape[geo_hash] = shape if shape_visible[s]: # TODO support dynamic visibility self.add_shape_instance( name, shape, body, X_bs.p, X_bs.q, scale, custom_index=s, visible=shape_visible[s] ) self.instance_count += 1 if self.show_joints and model.joint_count: joint_type = model.joint_type.numpy() joint_axis = model.joint_axis.numpy() joint_axis_start = model.joint_axis_start.numpy() joint_axis_dim = model.joint_axis_dim.numpy() joint_parent = model.joint_parent.numpy() joint_child = model.joint_child.numpy() joint_tf = model.joint_X_p.numpy() shape_collision_radius = model.shape_collision_radius.numpy() y_axis = wp.vec3(0.0, 1.0, 0.0) color = (1.0, 0.0, 1.0) shape = self.render_arrow( "joint_arrow", None, None, base_radius=0.01, base_height=0.4, cap_radius=0.02, cap_height=0.1, parent_body=None, is_template=True, color=color, ) for i, t in enumerate(joint_type): if t not in { warp.sim.JOINT_REVOLUTE, # warp.sim.JOINT_PRISMATIC, warp.sim.JOINT_UNIVERSAL, warp.sim.JOINT_COMPOUND, warp.sim.JOINT_D6, }: continue tf = joint_tf[i] body = int(joint_parent[i]) # if body == -1: # continue num_linear_axes = int(joint_axis_dim[i][0]) num_angular_axes = int(joint_axis_dim[i][1]) # find a good scale for the arrow based on the average radius # of the shapes attached to the joint child body scale = np.ones(3) child = int(joint_child[i]) if child >= 0: radii = [] for s in model.body_shapes[child]: radii.append(shape_collision_radius[s]) if len(radii) > 0: scale *= np.mean(radii) * 2.0 for a in range(num_linear_axes, num_linear_axes + num_angular_axes): index = joint_axis_start[i] + a axis = joint_axis[index] if np.linalg.norm(axis) < 1e-6: continue p = wp.vec3(tf[:3]) q = wp.quat(tf[3:]) # compute rotation between axis and y axis = axis / np.linalg.norm(axis) q = q * wp.quat_between_vectors(wp.vec3(axis), y_axis) name = f"joint_{i}_{a}" self.add_shape_instance(name, shape, body, p, q, scale, color1=color, color2=color) self.instance_count += 1 if model.ground: self.render_ground(plane=model.ground_plane_params) if hasattr(self, "complete_setup"): self.complete_setup() def _get_new_color(self): return tab10_color_map(self.instance_count) def render(self, state: warp.sim.State): """ Updates the renderer with the given simulation state. Args: state (warp.sim.State): The simulation state to render. """ if self.skip_rendering: return if self.model.particle_count: particle_q = state.particle_q.numpy() # render particles self.render_points( "particles", particle_q, radius=self.model.particle_radius.numpy(), colors=(0.8, 0.3, 0.2) ) # render tris if self.model.tri_count: self.render_mesh( "surface", particle_q, self.model.tri_indices.numpy().flatten(), colors=(((0.75, 0.25, 0.0),) * len(particle_q)), ) # render springs if self.model.spring_count: self.render_line_list( "springs", particle_q, self.model.spring_indices.numpy().flatten(), (0.25, 0.5, 0.25), 0.02 ) # render muscles if self.model.muscle_count: body_q = state.body_q.numpy() muscle_start = self.model.muscle_start.numpy() muscle_links = self.model.muscle_bodies.numpy() muscle_points = self.model.muscle_points.numpy() muscle_activation = self.model.muscle_activation.numpy() # for s in self.skeletons: # # for mesh, link in s.mesh_map.items(): # # if link != -1: # # X_sc = wp.transform_expand(self.state.body_X_sc[link].tolist()) # # #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) # # self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(self.model.muscle_count): start = int(muscle_start[m]) end = int(muscle_start[m + 1]) points = [] for w in range(start, end): link = muscle_links[w] point = muscle_points[w] X_sc = wp.transform_expand(body_q[link][0]) points.append(wp.transform_point(X_sc, point).tolist()) self.render_line_strip( name=f"muscle_{m}", vertices=points, radius=0.0075, color=(muscle_activation[m], 0.2, 0.5) ) # update bodies if self.model.body_count: self.update_body_transforms(state.body_q) if self.show_rigid_contact_points and self.model.rigid_contact_max: wp.launch( kernel=compute_contact_points, dim=self.model.rigid_contact_max, inputs=[ state.body_q, self.model.shape_body, self.model.rigid_contact_count, self.model.rigid_contact_shape0, self.model.rigid_contact_shape1, self.model.rigid_contact_point0, self.model.rigid_contact_point1, ], outputs=[ self.contact_points0, self.contact_points1, ], device=self.model.device, ) self.render_points( "contact_points0", self.contact_points0.numpy(), radius=self.contact_points_radius * self.scaling, colors=self.contact_points0_colors, ) self.render_points( "contact_points1", self.contact_points1.numpy(), radius=self.contact_points_radius * self.scaling, colors=self.contact_points1_colors, ) return SimRenderer SimRendererUsd = CreateSimRenderer(wp.render.UsdRenderer) SimRendererOpenGL = CreateSimRenderer(wp.render.OpenGLRenderer) SimRenderer = SimRendererUsd
17,794
Python
41.57177
128
0.462796
NVIDIA/warp/warp/sim/utils.py
from typing import List, Tuple import numpy as np import warp as wp @wp.func def velocity_at_point(qd: wp.spatial_vector, r: wp.vec3): """ Returns the velocity of a point relative to the frame with the given spatial velocity. Args: qd (spatial_vector): The spatial velocity of the frame. r (vec3): The position of the point relative to the frame. Returns: vec3: The velocity of the point. """ return wp.cross(wp.spatial_top(qd), r) + wp.spatial_bottom(qd) @wp.func def quat_twist(axis: wp.vec3, q: wp.quat): """ Returns the twist around an axis. """ # project imaginary part onto axis a = wp.vec3(q[0], q[1], q[2]) proj = wp.dot(a, axis) a = proj * axis # if proj < 0.0: # # ensure twist points in same direction as axis # a = -a return wp.normalize(wp.quat(a[0], a[1], a[2], q[3])) @wp.func def quat_twist_angle(axis: wp.vec3, q: wp.quat): """ Returns the angle of the twist around an axis. """ return 2.0 * wp.acos(quat_twist(axis, q)[3]) @wp.func def quat_decompose(q: wp.quat): """ Decompose a quaternion into a sequence of 3 rotations around x,y',z' respectively, i.e.: q = q_z''q_y'q_x. """ R = wp.mat33( wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0)), wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0)), wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0)), ) # https://www.sedris.org/wg8home/Documents/WG80485.pdf phi = wp.atan2(R[1, 2], R[2, 2]) sinp = -R[0, 2] if wp.abs(sinp) >= 1.0: theta = wp.HALF_PI * wp.sign(sinp) else: theta = wp.asin(-R[0, 2]) psi = wp.atan2(R[0, 1], R[0, 0]) return -wp.vec3(phi, theta, psi) @wp.func def quat_to_rpy(q: wp.quat): """ Convert a quaternion into Euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ x = q[0] y = q[1] z = q[2] w = q[3] t0 = 2.0 * (w * x + y * z) t1 = 1.0 - 2.0 * (x * x + y * y) roll_x = wp.atan2(t0, t1) t2 = 2.0 * (w * y - z * x) t2 = wp.clamp(t2, -1.0, 1.0) pitch_y = wp.asin(t2) t3 = 2.0 * (w * z + x * y) t4 = 1.0 - 2.0 * (y * y + z * z) yaw_z = wp.atan2(t3, t4) return wp.vec3(roll_x, pitch_y, yaw_z) @wp.func def quat_to_euler(q: wp.quat, i: int, j: int, k: int) -> wp.vec3: """ Convert a quaternion into Euler angles. :math:`i, j, k` are the indices in :math:`[0, 1, 2]` of the axes to use (:math:`i \\neq j, j \\neq k`). Reference: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276302 Args: q (quat): The quaternion to convert i (int): The index of the first axis j (int): The index of the second axis k (int): The index of the third axis Returns: vec3: The Euler angles (in radians) """ # i, j, k are actually assumed to follow 1-based indexing but # we want to be compatible with quat_from_euler i += 1 j += 1 k += 1 not_proper = True if i == k: not_proper = False k = 6 - i - j # because i + j + k = 1 + 2 + 3 = 6 e = float((i - j) * (j - k) * (k - i)) / 2.0 # Levi-Civita symbol a = q[0] b = q[i] c = q[j] d = q[k] * e if not_proper: a -= q[j] b += q[k] * e c += q[0] d -= q[i] t2 = wp.acos(2.0 * (a * a + b * b) / (a * a + b * b + c * c + d * d) - 1.0) tp = wp.atan2(b, a) tm = wp.atan2(d, c) t1 = 0.0 t3 = 0.0 if wp.abs(t2) < 1e-6: t3 = 2.0 * tp - t1 elif wp.abs(t2 - wp.HALF_PI) < 1e-6: t3 = 2.0 * tm + t1 else: t1 = tp - tm t3 = tp + tm if not_proper: t2 -= wp.HALF_PI t3 *= e return wp.vec3(t1, t2, t3) @wp.func def quat_from_euler(e: wp.vec3, i: int, j: int, k: int) -> wp.quat: """ Convert Euler angles to a quaternion. :math:`i, j, k` are the indices in :math:`[0, 1, 2]` of the axes in which the Euler angles are provided (:math:`i \\neq j, j \\neq k`), e.g. (0, 1, 2) for Euler sequence XYZ. Args: e (vec3): The Euler angles (in radians) i (int): The index of the first axis j (int): The index of the second axis k (int): The index of the third axis Returns: quat: The quaternion """ # Half angles half_e = e / 2.0 # Precompute sines and cosines of half angles cr = wp.cos(half_e[i]) sr = wp.sin(half_e[i]) cp = wp.cos(half_e[j]) sp = wp.sin(half_e[j]) cy = wp.cos(half_e[k]) sy = wp.sin(half_e[k]) # Components of the quaternion based on the rotation sequence return wp.quat( (cy * sr * cp - sy * cr * sp), (cy * cr * sp + sy * sr * cp), (sy * cr * cp - cy * sr * sp), (cy * cr * cp + sy * sr * sp), ) @wp.func def transform_twist(t: wp.transform, x: wp.spatial_vector): # Frank & Park definition 3.20, pg 100 q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) w = wp.quat_rotate(q, w) v = wp.quat_rotate(q, v) + wp.cross(p, w) return wp.spatial_vector(w, v) @wp.func def transform_wrench(t: wp.transform, x: wp.spatial_vector): q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) v = wp.quat_rotate(q, v) w = wp.quat_rotate(q, w) + wp.cross(p, v) return wp.spatial_vector(w, v) @wp.func def transform_inertia(t: wp.transform, I: wp.spatial_matrix): """ Computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates). (Frank & Park, section 8.2.3, pg 290) """ t_inv = wp.transform_inverse(t) q = wp.transform_get_rotation(t_inv) p = wp.transform_get_translation(t_inv) r1 = wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0)) r2 = wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0)) r3 = wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0)) R = wp.mat33(r1, r2, r3) S = wp.mul(wp.skew(p), R) T = wp.spatial_adjoint(R, S) return wp.mul(wp.mul(wp.transpose(T), I), T) @wp.func def boltzmann(a: float, b: float, alpha: float): e1 = wp.exp(alpha * a) e2 = wp.exp(alpha * b) return (a * e1 + b * e2) / (e1 + e2) @wp.func def smooth_max(a: float, b: float, eps: float): d = a - b return 0.5 * (a + b + wp.sqrt(d * d + eps)) @wp.func def smooth_min(a: float, b: float, eps: float): d = a - b return 0.5 * (a + b - wp.sqrt(d * d + eps)) @wp.func def leaky_max(a: float, b: float): return smooth_max(a, b, 1e-5) @wp.func def leaky_min(a: float, b: float): return smooth_min(a, b, 1e-5) @wp.func def vec_min(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.min(a[0], b[0]), wp.min(a[1], b[1]), wp.min(a[2], b[2])) @wp.func def vec_max(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.max(a[0], b[0]), wp.max(a[1], b[1]), wp.max(a[2], b[2])) @wp.func def vec_leaky_min(a: wp.vec3, b: wp.vec3): return wp.vec3(leaky_min(a[0], b[0]), leaky_min(a[1], b[1]), leaky_min(a[2], b[2])) @wp.func def vec_leaky_max(a: wp.vec3, b: wp.vec3): return wp.vec3(leaky_max(a[0], b[0]), leaky_max(a[1], b[1]), leaky_max(a[2], b[2])) @wp.func def vec_abs(a: wp.vec3): return wp.vec3(wp.abs(a[0]), wp.abs(a[1]), wp.abs(a[2])) def load_mesh(filename: str, method: str = None): """ Loads a 3D triangular surface mesh from a file. Args: filename (str): The path to the 3D model file (obj, and other formats supported by the different methods) to load. method (str): The method to use for loading the mesh (default None). Can be either `"trimesh"`, `"meshio"`, `"pcu"`, or `"openmesh"`. If None, every method is tried and the first successful mesh import where the number of vertices is greater than 0 is returned. Returns: Tuple of (mesh_points, mesh_indices), where mesh_points is a Nx3 numpy array of vertex positions (float32), and mesh_indices is a Mx3 numpy array of vertex indices (int32) for the triangular faces. """ import os if not os.path.exists(filename): raise ValueError(f"File not found: {filename}") def load_mesh_with_method(method): if method == "meshio": import meshio m = meshio.read(filename) mesh_points = np.array(m.points) mesh_indices = np.array(m.cells[0].data, dtype=np.int32) elif method == "openmesh": import openmesh m = openmesh.read_trimesh(filename) mesh_points = np.array(m.points()) mesh_indices = np.array(m.face_vertex_indices(), dtype=np.int32) elif method == "pcu": import point_cloud_utils as pcu mesh_points, mesh_indices = pcu.load_mesh_vf(filename) mesh_indices = mesh_indices.flatten() else: import trimesh m = trimesh.load(filename) if hasattr(m, "geometry"): # multiple meshes are contained in a scene; combine to one mesh mesh_points = [] mesh_indices = [] index_offset = 0 for geom in m.geometry.values(): vertices = np.array(geom.vertices, dtype=np.float32) faces = np.array(geom.faces.flatten(), dtype=np.int32) mesh_points.append(vertices) mesh_indices.append(faces + index_offset) index_offset += len(vertices) mesh_points = np.concatenate(mesh_points, axis=0) mesh_indices = np.concatenate(mesh_indices) else: # a single mesh mesh_points = np.array(m.vertices, dtype=np.float32) mesh_indices = np.array(m.faces.flatten(), dtype=np.int32) return mesh_points, mesh_indices if method is None: methods = ["trimesh", "meshio", "pcu", "openmesh"] for method in methods: try: mesh = load_mesh_with_method(method) if mesh is not None and len(mesh[0]) > 0: return mesh except Exception: pass raise ValueError(f"Failed to load mesh using any of the methods: {methods}") else: mesh = load_mesh_with_method(method) if mesh is None or len(mesh[0]) == 0: raise ValueError(f"Failed to load mesh using method {method}") return mesh def visualize_meshes( meshes: List[Tuple[list, list]], num_cols=0, num_rows=0, titles=None, scale_axes=True, show_plot=True ): # render meshes in a grid with matplotlib import matplotlib.pyplot as plt if titles is None: titles = [] num_cols = min(num_cols, len(meshes)) num_rows = min(num_rows, len(meshes)) if num_cols and not num_rows: num_rows = int(np.ceil(len(meshes) / num_cols)) elif num_rows and not num_cols: num_cols = int(np.ceil(len(meshes) / num_rows)) else: num_cols = len(meshes) num_rows = 1 vertices = [np.array(v).reshape((-1, 3)) for v, _ in meshes] faces = [np.array(f, dtype=np.int32).reshape((-1, 3)) for _, f in meshes] if scale_axes: ranges = np.array([v.max(axis=0) - v.min(axis=0) for v in vertices]) max_range = ranges.max() mid_points = np.array([v.max(axis=0) + v.min(axis=0) for v in vertices]) * 0.5 fig = plt.figure(figsize=(12, 6)) for i, (vertices, faces) in enumerate(meshes): ax = fig.add_subplot(num_rows, num_cols, i + 1, projection="3d") if i < len(titles): ax.set_title(titles[i]) ax.plot_trisurf(vertices[:, 0], vertices[:, 1], vertices[:, 2], triangles=faces, edgecolor="k") if scale_axes: mid = mid_points[i] ax.set_xlim(mid[0] - max_range, mid[0] + max_range) ax.set_ylim(mid[1] - max_range, mid[1] + max_range) ax.set_zlim(mid[2] - max_range, mid[2] + max_range) if show_plot: plt.show() return fig
12,194
Python
28.456522
269
0.556175
NVIDIA/warp/warp/sim/model.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """A module for building simulation models and state.""" import copy import math from typing import List, Optional, Tuple import numpy as np import warp as wp from .inertia import ( compute_box_inertia, compute_capsule_inertia, compute_cone_inertia, compute_cylinder_inertia, compute_mesh_inertia, compute_sphere_inertia, transform_inertia, ) Vec3 = List[float] Vec4 = List[float] Quat = List[float] Mat33 = List[float] Transform = Tuple[Vec3, Quat] # Particle flags PARTICLE_FLAG_ACTIVE = wp.constant(wp.uint32(1 << 0)) # Shape geometry types GEO_SPHERE = wp.constant(0) GEO_BOX = wp.constant(1) GEO_CAPSULE = wp.constant(2) GEO_CYLINDER = wp.constant(3) GEO_CONE = wp.constant(4) GEO_MESH = wp.constant(5) GEO_SDF = wp.constant(6) GEO_PLANE = wp.constant(7) GEO_NONE = wp.constant(8) # Types of joints linking rigid bodies JOINT_PRISMATIC = wp.constant(0) JOINT_REVOLUTE = wp.constant(1) JOINT_BALL = wp.constant(2) JOINT_FIXED = wp.constant(3) JOINT_FREE = wp.constant(4) JOINT_COMPOUND = wp.constant(5) JOINT_UNIVERSAL = wp.constant(6) JOINT_DISTANCE = wp.constant(7) JOINT_D6 = wp.constant(8) # Joint axis control mode types JOINT_MODE_FORCE = wp.constant(0) JOINT_MODE_TARGET_POSITION = wp.constant(1) JOINT_MODE_TARGET_VELOCITY = wp.constant(2) def flag_to_int(flag): """Converts a flag to an integer.""" if type(flag) in wp.types.int_types: return flag.value return int(flag) # Material properties pertaining to rigid shape contact dynamics @wp.struct class ModelShapeMaterials: ke: wp.array(dtype=float) # The contact elastic stiffness (only used by the Euler integrators) kd: wp.array(dtype=float) # The contact damping stiffness (only used by the Euler integrators) kf: wp.array(dtype=float) # The contact friction stiffness (only used by the Euler integrators) ka: wp.array( dtype=float ) # The contact adhesion distance (values greater than 0 mean adhesive contact; only used by the Euler integrators) mu: wp.array(dtype=float) # The coefficient of friction restitution: wp.array(dtype=float) # The coefficient of restitution (only used by XPBD integrator) # Shape properties of geometry @wp.struct class ModelShapeGeometry: type: wp.array(dtype=wp.int32) # The type of geometry (GEO_SPHERE, GEO_BOX, etc.) is_solid: wp.array(dtype=wp.uint8) # Indicates whether the shape is solid or hollow thickness: wp.array( dtype=float ) # The thickness of the shape (used for collision detection, and inertia computation of hollow shapes) source: wp.array(dtype=wp.uint64) # Pointer to the source geometry (in case of a mesh, zero otherwise) scale: wp.array(dtype=wp.vec3) # The 3D scale of the shape # Axis (linear or angular) of a joint that can have bounds and be driven towards a target class JointAxis: """ Describes a joint axis that can have limits and be driven towards a target. Attributes: axis (3D vector or JointAxis): The 3D axis that this JointAxis object describes, or alternatively another JointAxis object to copy from limit_lower (float): The lower position limit of the joint axis limit_upper (float): The upper position limit of the joint axis limit_ke (float): The elastic stiffness of the joint axis limits, only respected by :class:`SemiImplicitIntegrator` and :class:`FeatherstoneIntegrator` limit_kd (float): The damping stiffness of the joint axis limits, only respected by :class:`SemiImplicitIntegrator` and :class:`FeatherstoneIntegrator` action (float): The force applied by default to this joint axis, or the target position or velocity (depending on the mode, see `Joint modes`_) of the joint axis target_ke (float): The proportional gain of the joint axis target drive PD controller target_kd (float): The derivative gain of the joint axis target drive PD controller mode (int): The mode of the joint axis, see `Joint modes`_ """ def __init__( self, axis, limit_lower=-math.inf, limit_upper=math.inf, limit_ke=100.0, limit_kd=10.0, action=None, target_ke=0.0, target_kd=0.0, mode=JOINT_MODE_FORCE, ): if isinstance(axis, JointAxis): self.axis = axis.axis self.limit_lower = axis.limit_lower self.limit_upper = axis.limit_upper self.limit_ke = axis.limit_ke self.limit_kd = axis.limit_kd self.action = axis.action self.target_ke = axis.target_ke self.target_kd = axis.target_kd self.mode = axis.mode else: self.axis = wp.normalize(wp.vec3(axis)) self.limit_lower = limit_lower self.limit_upper = limit_upper self.limit_ke = limit_ke self.limit_kd = limit_kd if action is not None: self.action = action elif mode == JOINT_MODE_TARGET_POSITION and (limit_lower > 0.0 or limit_upper < 0.0): self.action = 0.5 * (limit_lower + limit_upper) else: self.action = 0.0 self.target_ke = target_ke self.target_kd = target_kd self.mode = mode class SDF: """Describes a signed distance field for simulation Attributes: volume (Volume): The volume defining the SDF I (Mat33): 3x3 inertia matrix of the SDF mass (float): The total mass of the SDF com (Vec3): The center of mass of the SDF """ def __init__(self, volume=None, I=None, mass=1.0, com=None): self.volume = volume self.I = I if I is not None else wp.mat33(np.eye(3)) self.mass = mass self.com = com if com is not None else wp.vec3() # Need to specify these for now self.has_inertia = True self.is_solid = True def finalize(self, device=None): return self.volume.id def __hash__(self): return hash((self.volume.id)) class Mesh: """Describes a triangle collision mesh for simulation Example mesh creation from a triangle OBJ mesh file: ==================================================== See :func:`load_mesh` which is provided as a utility function. .. code-block:: python import numpy as np import warp as wp import warp.sim import openmesh m = openmesh.read_trimesh("mesh.obj") mesh_points = np.array(m.points()) mesh_indices = np.array(m.face_vertex_indices(), dtype=np.int32).flatten() mesh = wp.sim.Mesh(mesh_points, mesh_indices) Attributes: vertices (List[Vec3]): Mesh 3D vertices points indices (List[int]): Mesh indices as a flattened list of vertex indices describing triangles I (Mat33): 3x3 inertia matrix of the mesh assuming density of 1.0 (around the center of mass) mass (float): The total mass of the body assuming density of 1.0 com (Vec3): The center of mass of the body """ def __init__(self, vertices: List[Vec3], indices: List[int], compute_inertia=True, is_solid=True): """Construct a Mesh object from a triangle mesh The mesh center of mass and inertia tensor will automatically be calculated using a density of 1.0. This computation is only valid if the mesh is closed (two-manifold). Args: vertices: List of vertices in the mesh indices: List of triangle indices, 3 per-element compute_inertia: If True, the mass, inertia tensor and center of mass will be computed assuming density of 1.0 is_solid: If True, the mesh is assumed to be a solid during inertia computation, otherwise it is assumed to be a hollow surface """ self.vertices = np.array(vertices).reshape(-1, 3) self.indices = np.array(indices, dtype=np.int32).flatten() self.is_solid = is_solid self.has_inertia = compute_inertia if compute_inertia: self.mass, self.com, self.I, _ = compute_mesh_inertia(1.0, vertices, indices, is_solid=is_solid) else: self.I = wp.mat33(np.eye(3)) self.mass = 1.0 self.com = wp.vec3() # construct simulation ready buffers from points def finalize(self, device=None): """ Constructs a simulation-ready :class:`Mesh` object from the mesh data and returns its ID. Args: device: The device on which to allocate the mesh buffers Returns: The ID of the simulation-ready :class:`Mesh` """ with wp.ScopedDevice(device): pos = wp.array(self.vertices, dtype=wp.vec3) vel = wp.zeros_like(pos) indices = wp.array(self.indices, dtype=wp.int32) self.mesh = wp.Mesh(points=pos, velocities=vel, indices=indices) return self.mesh.id def __hash__(self): """ Computes a hash of the mesh data for use in caching. The hash considers the mesh vertices, indices, and whether the mesh is solid or not. """ return hash((tuple(np.array(self.vertices).flatten()), tuple(np.array(self.indices).flatten()), self.is_solid)) class State: """The State object holds all *time-varying* data for a model. Time-varying data includes particle positions, velocities, rigid body states, and anything that is output from the integrator as derived data, e.g.: forces. The exact attributes depend on the contents of the model. State objects should generally be created using the :func:`Model.state()` function. Attributes: particle_q (array): Array of 3D particle positions, shape [particle_count], :class:`vec3` particle_qd (array): Array of 3D particle velocities, shape [particle_count], :class:`vec3` particle_f (array): Array of 3D particle forces, shape [particle_count], :class:`vec3` body_q (array): Array of body coordinates (7-dof transforms) in maximal coordinates, shape [body_count], :class:`transform` body_qd (array): Array of body velocities in maximal coordinates (first 3 entries represent angular velocity, last 3 entries represent linear velocity), shape [body_count], :class:`spatial_vector` body_f (array): Array of body forces in maximal coordinates (first 3 entries represent torque, last 3 entries represent linear force), shape [body_count], :class:`spatial_vector` Note: :attr:`body_f` represents external wrenches in world frame and denotes wrenches measured w.r.t. to the body's center of mass for all integrators except :class:`FeatherstoneIntegrator` which assumes the wrenches are measured w.r.t. world origin. joint_q (array): Array of generalized joint coordinates, shape [joint_coord_count], float joint_qd (array): Array of generalized joint velocities, shape [joint_dof_count], float """ def __init__(self): self.particle_q = None self.particle_qd = None self.particle_f = None self.body_q = None self.body_qd = None self.body_f = None self.joint_q = None self.joint_qd = None def clear_forces(self): """Clears all forces (for particles and bodies) in the state object.""" with wp.ScopedTimer("clear_forces", False): if self.particle_count: self.particle_f.zero_() if self.body_count: self.body_f.zero_() @property def requires_grad(self): """Indicates whether the state arrays have gradient computation enabled.""" if self.particle_q: return self.particle_q.requires_grad if self.body_q: return self.body_q.requires_grad return False @property def body_count(self): """The number of bodies represented in the state.""" if self.body_q is None: return 0 return len(self.body_q) @property def particle_count(self): """The number of particles represented in the state.""" if self.particle_q is None: return 0 return len(self.particle_q) @property def joint_coord_count(self): """The number of generalized joint position coordinates represented in the state.""" if self.joint_q is None: return 0 return len(self.joint_q) @property def joint_dof_count(self): """The number of generalized joint velocity coordinates represented in the state.""" if self.joint_qd is None: return 0 return len(self.joint_qd) class Control: """ The Control object holds all *time-varying* control data for a model. Time-varying control data includes joint control inputs, muscle activations, and activation forces for triangle and tetrahedral elements. The exact attributes depend on the contents of the model. Control objects should generally be created using the :func:`Model.control()` function. Attributes: joint_act (array): Array of joint control inputs, shape [joint_axis_count], float tri_activations (array): Array of triangle element activations, shape [tri_count], float tet_activations (array): Array of tetrahedral element activations, shape [tet_count], float muscle_activations (array): Array of muscle activations, shape [muscle_count], float """ def __init__(self, model): """ Args: model (Model): The model to use as a reference for the control inputs """ self.model = model self.joint_act = None self.tri_activations = None self.tet_activations = None self.muscle_activations = None def reset(self): """ Resets the control inputs to their initial state defined in :class:`Model`. """ if self.joint_act is not None: self.joint_act.assign(self.model.joint_act) if self.tri_activations is not None: self.tri_activations.assign(self.model.tri_activations) if self.tet_activations is not None: self.tet_activations.assign(self.model.tet_activations) if self.muscle_activations is not None: self.muscle_activations.assign(self.model.muscle_activations) def compute_shape_mass(type, scale, src, density, is_solid, thickness): """Computes the mass, center of mass and 3x3 inertia tensor of a shape Args: type: The type of shape (GEO_SPHERE, GEO_BOX, etc.) scale: The scale of the shape src: The source shape (Mesh or SDF) density: The density of the shape is_solid: Whether the shape is solid or hollow thickness: The thickness of the shape (used for collision detection, and inertia computation of hollow shapes) Returns: The mass, center of mass and 3x3 inertia tensor of the shape """ if density == 0.0 or type == GEO_PLANE: # zero density means fixed return 0.0, wp.vec3(), wp.mat33() if type == GEO_SPHERE: solid = compute_sphere_inertia(density, scale[0]) if is_solid: return solid else: hollow = compute_sphere_inertia(density, scale[0] - thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_BOX: w, h, d = scale * 2.0 solid = compute_box_inertia(density, w, h, d) if is_solid: return solid else: hollow = compute_box_inertia(density, w - thickness, h - thickness, d - thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CAPSULE: r, h = scale[0], scale[1] * 2.0 solid = compute_capsule_inertia(density, r, h) if is_solid: return solid else: hollow = compute_capsule_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CYLINDER: r, h = scale[0], scale[1] * 2.0 solid = compute_cylinder_inertia(density, r, h) if is_solid: return solid else: hollow = compute_cylinder_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CONE: r, h = scale[0], scale[1] * 2.0 solid = compute_cone_inertia(density, r, h) if is_solid: return solid else: hollow = compute_cone_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_MESH or type == GEO_SDF: if src.has_inertia and src.mass > 0.0 and src.is_solid == is_solid: m, c, I = src.mass, src.com, src.I sx, sy, sz = scale mass_ratio = sx * sy * sz * density m_new = m * mass_ratio c_new = wp.cw_mul(c, scale) Ixx = I[0, 0] * (sy**2 + sz**2) / 2 * mass_ratio Iyy = I[1, 1] * (sx**2 + sz**2) / 2 * mass_ratio Izz = I[2, 2] * (sx**2 + sy**2) / 2 * mass_ratio Ixy = I[0, 1] * sx * sy * mass_ratio Ixz = I[0, 2] * sx * sz * mass_ratio Iyz = I[1, 2] * sy * sz * mass_ratio I_new = wp.mat33([[Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) return m_new, c_new, I_new elif type == GEO_MESH: # fall back to computing inertia from mesh geometry vertices = np.array(src.vertices) * np.array(scale) m, c, I, vol = compute_mesh_inertia(density, vertices, src.indices, is_solid, thickness) return m, c, I raise ValueError("Unsupported shape type: {}".format(type)) class Model: """Holds the definition of the simulation model This class holds the non-time varying description of the system, i.e.: all geometry, constraints, and parameters used to describe the simulation. Attributes: requires_grad (float): Indicates whether the model was finalized (see :meth:`ModelBuilder.finalize`) with gradient computation enabled num_envs (int): Number of articulation environments that were added to the ModelBuilder via `add_builder` particle_q (array): Particle positions, shape [particle_count, 3], float particle_qd (array): Particle velocities, shape [particle_count, 3], float particle_mass (array): Particle mass, shape [particle_count], float particle_inv_mass (array): Particle inverse mass, shape [particle_count], float particle_radius (array): Particle radius, shape [particle_count], float particle_max_radius (float): Maximum particle radius (useful for HashGrid construction) particle_ke (array): Particle normal contact stiffness (used by :class:`SemiImplicitIntegrator`), shape [particle_count], float particle_kd (array): Particle normal contact damping (used by :class:`SemiImplicitIntegrator`), shape [particle_count], float particle_kf (array): Particle friction force stiffness (used by :class:`SemiImplicitIntegrator`), shape [particle_count], float particle_mu (array): Particle friction coefficient, shape [particle_count], float particle_cohesion (array): Particle cohesion strength, shape [particle_count], float particle_adhesion (array): Particle adhesion strength, shape [particle_count], float particle_grid (HashGrid): HashGrid instance used for accelerated simulation of particle interactions particle_flags (array): Particle enabled state, shape [particle_count], bool particle_max_velocity (float): Maximum particle velocity (to prevent instability) shape_transform (array): Rigid shape transforms, shape [shape_count, 7], float shape_visible (array): Rigid shape visibility, shape [shape_count], bool shape_body (array): Rigid shape body index, shape [shape_count], int body_shapes (dict): Mapping from body index to list of attached shape indices shape_materials (ModelShapeMaterials): Rigid shape contact materials, shape [shape_count], float shape_shape_geo (ModelShapeGeometry): Shape geometry properties (geo type, scale, thickness, etc.), shape [shape_count, 3], float shape_geo_src (list): List of `wp.Mesh` instances used for rendering of mesh geometry shape_collision_group (list): Collision group of each shape, shape [shape_count], int shape_collision_group_map (dict): Mapping from collision group to list of shape indices shape_collision_filter_pairs (set): Pairs of shape indices that should not collide shape_collision_radius (array): Collision radius of each shape used for bounding sphere broadphase collision checking, shape [shape_count], float shape_ground_collision (list): Indicates whether each shape should collide with the ground, shape [shape_count], bool shape_shape_collision (list): Indicates whether each shape should collide with any other shape, shape [shape_count], bool shape_contact_pairs (array): Pairs of shape indices that may collide, shape [contact_pair_count, 2], int shape_ground_contact_pairs (array): Pairs of shape, ground indices that may collide, shape [ground_contact_pair_count, 2], int spring_indices (array): Particle spring indices, shape [spring_count*2], int spring_rest_length (array): Particle spring rest length, shape [spring_count], float spring_stiffness (array): Particle spring stiffness, shape [spring_count], float spring_damping (array): Particle spring damping, shape [spring_count], float spring_control (array): Particle spring activation, shape [spring_count], float tri_indices (array): Triangle element indices, shape [tri_count*3], int tri_poses (array): Triangle element rest pose, shape [tri_count, 2, 2], float tri_activations (array): Triangle element activations, shape [tri_count], float tri_materials (array): Triangle element materials, shape [tri_count, 5], float edge_indices (array): Bending edge indices, shape [edge_count*4], int edge_rest_angle (array): Bending edge rest angle, shape [edge_count], float edge_bending_properties (array): Bending edge stiffness and damping parameters, shape [edge_count, 2], float tet_indices (array): Tetrahedral element indices, shape [tet_count*4], int tet_poses (array): Tetrahedral rest poses, shape [tet_count, 3, 3], float tet_activations (array): Tetrahedral volumetric activations, shape [tet_count], float tet_materials (array): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3] muscle_start (array): Start index of the first muscle point per muscle, shape [muscle_count], int muscle_params (array): Muscle parameters, shape [muscle_count, 5], float muscle_bodies (array): Body indices of the muscle waypoints, int muscle_points (array): Local body offset of the muscle waypoints, float muscle_activations (array): Muscle activations, shape [muscle_count], float body_q (array): Poses of rigid bodies used for state initialization, shape [body_count, 7], float body_qd (array): Velocities of rigid bodies used for state initialization, shape [body_count, 6], float body_com (array): Rigid body center of mass (in local frame), shape [body_count, 7], float body_inertia (array): Rigid body inertia tensor (relative to COM), shape [body_count, 3, 3], float body_inv_inertia (array): Rigid body inverse inertia tensor (relative to COM), shape [body_count, 3, 3], float body_mass (array): Rigid body mass, shape [body_count], float body_inv_mass (array): Rigid body inverse mass, shape [body_count], float body_name (list): Rigid body names, shape [body_count], str joint_q (array): Generalized joint positions used for state initialization, shape [joint_coord_count], float joint_qd (array): Generalized joint velocities used for state initialization, shape [joint_dof_count], float joint_act (array): Generalized joint control inputs, shape [joint_axis_count], float joint_type (array): Joint type, shape [joint_count], int joint_parent (array): Joint parent body indices, shape [joint_count], int joint_child (array): Joint child body indices, shape [joint_count], int joint_X_p (array): Joint transform in parent frame, shape [joint_count, 7], float joint_X_c (array): Joint mass frame in child frame, shape [joint_count, 7], float joint_axis (array): Joint axis in child frame, shape [joint_axis_count, 3], float joint_armature (array): Armature for each joint axis (only used by :class:`FeatherstoneIntegrator`), shape [joint_count], float joint_target_ke (array): Joint stiffness, shape [joint_axis_count], float joint_target_kd (array): Joint damping, shape [joint_axis_count], float joint_axis_start (array): Start index of the first axis per joint, shape [joint_count], int joint_axis_dim (array): Number of linear and angular axes per joint, shape [joint_count, 2], int joint_axis_mode (array): Joint axis mode, shape [joint_axis_count], int. See `Joint modes`_. joint_linear_compliance (array): Joint linear compliance, shape [joint_count], float joint_angular_compliance (array): Joint linear compliance, shape [joint_count], float joint_enabled (array): Controls which joint is simulated (bodies become disconnected if False), shape [joint_count], int Note: This setting is not supported by :class:`FeatherstoneIntegrator`. joint_limit_lower (array): Joint lower position limits, shape [joint_count], float joint_limit_upper (array): Joint upper position limits, shape [joint_count], float joint_limit_ke (array): Joint position limit stiffness (used by the Euler integrators), shape [joint_count], float joint_limit_kd (array): Joint position limit damping (used by the Euler integrators), shape [joint_count], float joint_twist_lower (array): Joint lower twist limit, shape [joint_count], float joint_twist_upper (array): Joint upper twist limit, shape [joint_count], float joint_q_start (array): Start index of the first position coordinate per joint, shape [joint_count], int joint_qd_start (array): Start index of the first velocity coordinate per joint, shape [joint_count], int articulation_start (array): Articulation start index, shape [articulation_count], int joint_name (list): Joint names, shape [joint_count], str joint_attach_ke (float): Joint attachment force stiffness (used by :class:`SemiImplicitIntegrator`) joint_attach_kd (float): Joint attachment force damping (used by :class:`SemiImplicitIntegrator`) soft_contact_margin (float): Contact margin for generation of soft contacts soft_contact_ke (float): Stiffness of soft contacts (used by the Euler integrators) soft_contact_kd (float): Damping of soft contacts (used by the Euler integrators) soft_contact_kf (float): Stiffness of friction force in soft contacts (used by the Euler integrators) soft_contact_mu (float): Friction coefficient of soft contacts soft_contact_restitution (float): Restitution coefficient of soft contacts (used by :class:`XPBDIntegrator`) soft_contact_count (array): Number of active particle-shape contacts, shape [1], int soft_contact_particle (array), Index of particle per soft contact point, shape [soft_contact_max], int soft_contact_shape (array), Index of shape per soft contact point, shape [soft_contact_max], int soft_contact_body_pos (array), Positional offset of soft contact point in body frame, shape [soft_contact_max], vec3 soft_contact_body_vel (array), Linear velocity of soft contact point in body frame, shape [soft_contact_max], vec3 soft_contact_normal (array), Contact surface normal of soft contact point in world space, shape [soft_contact_max], vec3 rigid_contact_max (int): Maximum number of potential rigid body contact points to generate ignoring the `rigid_mesh_contact_max` limit. rigid_contact_max_limited (int): Maximum number of potential rigid body contact points to generate respecting the `rigid_mesh_contact_max` limit. rigid_mesh_contact_max (int): Maximum number of rigid body contact points to generate per mesh (0 = unlimited, default) rigid_contact_margin (float): Contact margin for generation of rigid body contacts rigid_contact_torsional_friction (float): Torsional friction coefficient for rigid body contacts (used by :class:`XPBDIntegrator`) rigid_contact_rolling_friction (float): Rolling friction coefficient for rigid body contacts (used by :class:`XPBDIntegrator`) rigid_contact_count (array): Number of active shape-shape contacts, shape [1], int rigid_contact_point0 (array): Contact point relative to frame of body 0, shape [rigid_contact_max], vec3 rigid_contact_point1 (array): Contact point relative to frame of body 1, shape [rigid_contact_max], vec3 rigid_contact_offset0 (array): Contact offset due to contact thickness relative to body 0, shape [rigid_contact_max], vec3 rigid_contact_offset1 (array): Contact offset due to contact thickness relative to body 1, shape [rigid_contact_max], vec3 rigid_contact_normal (array): Contact normal in world space, shape [rigid_contact_max], vec3 rigid_contact_thickness (array): Total contact thickness, shape [rigid_contact_max], float rigid_contact_shape0 (array): Index of shape 0 per contact, shape [rigid_contact_max], int rigid_contact_shape1 (array): Index of shape 1 per contact, shape [rigid_contact_max], int ground (bool): Whether the ground plane and ground contacts are enabled ground_plane (array): Ground plane 3D normal and offset, shape [4], float up_vector (np.ndarray): Up vector of the world, shape [3], float up_axis (int): Up axis, 0 for x, 1 for y, 2 for z gravity (np.ndarray): Gravity vector, shape [3], float particle_count (int): Total number of particles in the system body_count (int): Total number of bodies in the system shape_count (int): Total number of shapes in the system joint_count (int): Total number of joints in the system tri_count (int): Total number of triangles in the system tet_count (int): Total number of tetrahedra in the system edge_count (int): Total number of edges in the system spring_count (int): Total number of springs in the system contact_count (int): Total number of contacts in the system muscle_count (int): Total number of muscles in the system articulation_count (int): Total number of articulations in the system joint_dof_count (int): Total number of velocity degrees of freedom of all joints in the system joint_coord_count (int): Total number of position degrees of freedom of all joints in the system device (wp.Device): Device on which the Model was allocated Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self, device=None): self.requires_grad = False self.num_envs = 0 self.particle_q = None self.particle_qd = None self.particle_mass = None self.particle_inv_mass = None self.particle_radius = None self.particle_max_radius = 0.0 self.particle_ke = 1.0e3 self.particle_kd = 1.0e2 self.particle_kf = 1.0e2 self.particle_mu = 0.5 self.particle_cohesion = 0.0 self.particle_adhesion = 0.0 self.particle_grid = None self.particle_flags = None self.particle_max_velocity = 1e5 self.shape_transform = None self.shape_body = None self.shape_visible = None self.body_shapes = {} self.shape_materials = ModelShapeMaterials() self.shape_geo = ModelShapeGeometry() self.shape_geo_src = None self.shape_collision_group = None self.shape_collision_group_map = None self.shape_collision_filter_pairs = None self.shape_collision_radius = None self.shape_ground_collision = None self.shape_shape_collision = None self.shape_contact_pairs = None self.shape_ground_contact_pairs = None self.spring_indices = None self.spring_rest_length = None self.spring_stiffness = None self.spring_damping = None self.spring_control = None self.spring_constraint_lambdas = None self.tri_indices = None self.tri_poses = None self.tri_activations = None self.tri_materials = None self.edge_indices = None self.edge_rest_angle = None self.edge_bending_properties = None self.edge_constraint_lambdas = None self.tet_indices = None self.tet_poses = None self.tet_activations = None self.tet_materials = None self.muscle_start = None self.muscle_params = None self.muscle_bodies = None self.muscle_points = None self.muscle_activations = None self.body_q = None self.body_qd = None self.body_com = None self.body_inertia = None self.body_inv_inertia = None self.body_mass = None self.body_inv_mass = None self.body_name = None self.joint_q = None self.joint_qd = None self.joint_act = None self.joint_type = None self.joint_parent = None self.joint_child = None self.joint_X_p = None self.joint_X_c = None self.joint_axis = None self.joint_armature = None self.joint_target_ke = None self.joint_target_kd = None self.joint_axis_start = None self.joint_axis_dim = None self.joint_axis_mode = None self.joint_linear_compliance = None self.joint_angular_compliance = None self.joint_enabled = None self.joint_limit_lower = None self.joint_limit_upper = None self.joint_limit_ke = None self.joint_limit_kd = None self.joint_twist_lower = None self.joint_twist_upper = None self.joint_q_start = None self.joint_qd_start = None self.articulation_start = None self.joint_name = None # todo: per-joint values? self.joint_attach_ke = 1.0e3 self.joint_attach_kd = 1.0e2 self.soft_contact_margin = 0.2 self.soft_contact_ke = 1.0e3 self.soft_contact_kd = 10.0 self.soft_contact_kf = 1.0e3 self.soft_contact_mu = 0.5 self.soft_contact_restitution = 0.0 self.soft_contact_count = 0 self.soft_contact_particle = None self.soft_contact_shape = None self.soft_contact_body_pos = None self.soft_contact_body_vel = None self.soft_contact_normal = None self.rigid_contact_max = 0 self.rigid_contact_max_limited = 0 self.rigid_mesh_contact_max = 0 self.rigid_contact_margin = None self.rigid_contact_torsional_friction = None self.rigid_contact_rolling_friction = None self.rigid_contact_count = None self.rigid_contact_point0 = None self.rigid_contact_point1 = None self.rigid_contact_offset0 = None self.rigid_contact_offset1 = None self.rigid_contact_normal = None self.rigid_contact_thickness = None self.rigid_contact_shape0 = None self.rigid_contact_shape1 = None # toggles ground contact for all shapes self.ground = True self.ground_plane = None self.up_vector = np.array((0.0, 1.0, 0.0)) self.up_axis = 1 self.gravity = np.array((0.0, -9.80665, 0.0)) self.particle_count = 0 self.body_count = 0 self.shape_count = 0 self.joint_count = 0 self.joint_axis_count = 0 self.tri_count = 0 self.tet_count = 0 self.edge_count = 0 self.spring_count = 0 self.muscle_count = 0 self.articulation_count = 0 self.joint_dof_count = 0 self.joint_coord_count = 0 self.device = wp.get_device(device) def state(self, requires_grad=None) -> State: """Returns a state object for the model The returned state will be initialized with the initial configuration given in the model description. Args: requires_grad (bool): Manual overwrite whether the state variables should have `requires_grad` enabled (defaults to `None` to use the model's setting :attr:`requires_grad`) Returns: State: The state object """ s = State() if requires_grad is None: requires_grad = self.requires_grad # particles if self.particle_count: s.particle_q = wp.clone(self.particle_q, requires_grad=requires_grad) s.particle_qd = wp.clone(self.particle_qd, requires_grad=requires_grad) s.particle_f = wp.zeros_like(self.particle_qd, requires_grad=requires_grad) # articulations if self.body_count: s.body_q = wp.clone(self.body_q, requires_grad=requires_grad) s.body_qd = wp.clone(self.body_qd, requires_grad=requires_grad) s.body_f = wp.zeros_like(self.body_qd, requires_grad=requires_grad) if self.joint_count: s.joint_q = wp.clone(self.joint_q, requires_grad=requires_grad) s.joint_qd = wp.clone(self.joint_qd, requires_grad=requires_grad) return s def control(self, requires_grad=None, clone_variables=True) -> Control: """ Returns a control object for the model. The returned control object will be initialized with the control inputs given in the model description. Args: requires_grad (bool): Manual overwrite whether the control variables should have `requires_grad` enabled (defaults to `None` to use the model's setting :attr:`requires_grad`) clone_variables (bool): Whether to clone the control inputs or use the original data Returns: Control: The control object """ c = Control(self) if requires_grad is None: requires_grad = self.requires_grad if clone_variables: if self.joint_count: c.joint_act = wp.clone(self.joint_act, requires_grad=requires_grad) if self.tri_count: c.tri_activations = wp.clone(self.tri_activations, requires_grad=requires_grad) if self.tet_count: c.tet_activations = wp.clone(self.tet_activations, requires_grad=requires_grad) if self.muscle_count: c.muscle_activations = wp.clone(self.muscle_activations, requires_grad=requires_grad) else: c.joint_act = self.joint_act c.tri_activations = self.tri_activations c.tet_activations = self.tet_activations c.muscle_activations = self.muscle_activations return c def _allocate_soft_contacts(self, target, count, requires_grad=False): with wp.ScopedDevice(self.device): target.soft_contact_count = wp.zeros(1, dtype=wp.int32) target.soft_contact_particle = wp.zeros(count, dtype=int) target.soft_contact_shape = wp.zeros(count, dtype=int) target.soft_contact_body_pos = wp.zeros(count, dtype=wp.vec3, requires_grad=requires_grad) target.soft_contact_body_vel = wp.zeros(count, dtype=wp.vec3, requires_grad=requires_grad) target.soft_contact_normal = wp.zeros(count, dtype=wp.vec3, requires_grad=requires_grad) target.soft_contact_tids = wp.zeros(count, dtype=int) def allocate_soft_contacts(self, count, requires_grad=False): self._allocate_soft_contacts(self, count, requires_grad) def find_shape_contact_pairs(self): # find potential contact pairs based on collision groups and collision mask (pairwise filtering) import copy import itertools filters = copy.copy(self.shape_collision_filter_pairs) for a, b in self.shape_collision_filter_pairs: filters.add((b, a)) contact_pairs = [] # iterate over collision groups (islands) for group, shapes in self.shape_collision_group_map.items(): for shape_a, shape_b in itertools.product(shapes, shapes): if not self.shape_shape_collision[shape_a]: continue if not self.shape_shape_collision[shape_b]: continue if shape_a < shape_b and (shape_a, shape_b) not in filters: contact_pairs.append((shape_a, shape_b)) if group != -1 and -1 in self.shape_collision_group_map: # shapes with collision group -1 collide with all other shapes for shape_a, shape_b in itertools.product(shapes, self.shape_collision_group_map[-1]): if shape_a < shape_b and (shape_a, shape_b) not in filters: contact_pairs.append((shape_a, shape_b)) self.shape_contact_pairs = wp.array(np.array(contact_pairs), dtype=wp.int32, device=self.device) self.shape_contact_pair_count = len(contact_pairs) # find ground contact pairs ground_contact_pairs = [] ground_id = self.shape_count - 1 for i in range(ground_id): if self.shape_ground_collision[i]: ground_contact_pairs.append((i, ground_id)) self.shape_ground_contact_pairs = wp.array(np.array(ground_contact_pairs), dtype=wp.int32, device=self.device) self.shape_ground_contact_pair_count = len(ground_contact_pairs) def count_contact_points(self): """ Counts the maximum number of rigid contact points that need to be allocated. This function returns two values corresponding to the maximum number of potential contacts excluding the limiting from `Model.rigid_mesh_contact_max` and the maximum number of contact points that may be generated when considering the `Model.rigid_mesh_contact_max` limit. :returns: - potential_count (int): Potential number of contact points - actual_count (int): Actual number of contact points """ from .collide import count_contact_points # calculate the potential number of shape pair contact points contact_count = wp.zeros(2, dtype=wp.int32, device=self.device) wp.launch( kernel=count_contact_points, dim=self.shape_contact_pair_count, inputs=[ self.shape_contact_pairs, self.shape_geo, self.rigid_mesh_contact_max, ], outputs=[contact_count], device=self.device, record_tape=False, ) # count ground contacts wp.launch( kernel=count_contact_points, dim=self.shape_ground_contact_pair_count, inputs=[ self.shape_ground_contact_pairs, self.shape_geo, self.rigid_mesh_contact_max, ], outputs=[contact_count], device=self.device, record_tape=False, ) counts = contact_count.numpy() potential_count = int(counts[0]) actual_count = int(counts[1]) return potential_count, actual_count def allocate_rigid_contacts(self, target=None, count=None, limited_contact_count=None, requires_grad=False): if count is not None: # potential number of contact points to consider self.rigid_contact_max = count if limited_contact_count is not None: self.rigid_contact_max_limited = limited_contact_count if target is None: target = self with wp.ScopedDevice(self.device): # serves as counter of the number of active contact points target.rigid_contact_count = wp.zeros(1, dtype=wp.int32) # contact point ID within the (shape_a, shape_b) contact pair target.rigid_contact_point_id = wp.zeros(self.rigid_contact_max, dtype=wp.int32) # position of contact point in body 0's frame before the integration step target.rigid_contact_point0 = wp.zeros( self.rigid_contact_max_limited, dtype=wp.vec3, requires_grad=requires_grad ) # position of contact point in body 1's frame before the integration step target.rigid_contact_point1 = wp.zeros( self.rigid_contact_max_limited, dtype=wp.vec3, requires_grad=requires_grad ) # moment arm before the integration step resulting from thickness displacement added to contact point 0 in body 0's frame (used in XPBD contact friction handling) target.rigid_contact_offset0 = wp.zeros( self.rigid_contact_max_limited, dtype=wp.vec3, requires_grad=requires_grad ) # moment arm before the integration step resulting from thickness displacement added to contact point 1 in body 1's frame (used in XPBD contact friction handling) target.rigid_contact_offset1 = wp.zeros( self.rigid_contact_max_limited, dtype=wp.vec3, requires_grad=requires_grad ) # contact normal in world frame target.rigid_contact_normal = wp.zeros( self.rigid_contact_max_limited, dtype=wp.vec3, requires_grad=requires_grad ) # combined thickness of both shapes target.rigid_contact_thickness = wp.zeros( self.rigid_contact_max_limited, dtype=wp.float32, requires_grad=requires_grad ) # ID of the first shape in the contact pair target.rigid_contact_shape0 = wp.zeros(self.rigid_contact_max_limited, dtype=wp.int32) # ID of the second shape in the contact pair target.rigid_contact_shape1 = wp.zeros(self.rigid_contact_max_limited, dtype=wp.int32) # shape IDs of potential contact pairs found during broadphase target.rigid_contact_broad_shape0 = wp.zeros(self.rigid_contact_max, dtype=wp.int32) target.rigid_contact_broad_shape1 = wp.zeros(self.rigid_contact_max, dtype=wp.int32) max_pair_count = self.shape_count * self.shape_count # maximum number of contact points per contact pair target.rigid_contact_point_limit = wp.zeros(max_pair_count, dtype=wp.int32) # currently found contacts per contact pair target.rigid_contact_pairwise_counter = wp.zeros(max_pair_count, dtype=wp.int32) # ID of thread that found the current contact point target.rigid_contact_tids = wp.zeros(self.rigid_contact_max, dtype=wp.int32) @property def soft_contact_max(self): """Maximum number of soft contacts that can be registered""" return len(self.soft_contact_particle) class ModelBuilder: """A helper class for building simulation models at runtime. Use the ModelBuilder to construct a simulation scene. The ModelBuilder and builds the scene representation using standard Python data structures (lists), this means it is not differentiable. Once :func:`finalize()` has been called the ModelBuilder transfers all data to Warp tensors and returns an object that may be used for simulation. Example ------- .. code-block:: python import warp as wp import warp.sim builder = wp.sim.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1, 10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i - 1, i, 1.0e3, 0.0, 0) # create model model = builder.finalize("cuda") state = model.state() control = model.control() # optional, to support time-varying control inputs integrator = wp.sim.SemiImplicitIntegrator() for i in range(100): state.clear_forces() integrator.simulate(model, state, state, dt=1.0 / 60.0, control=control) Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ # Default particle settings default_particle_radius = 0.1 # Default triangle soft mesh settings default_tri_ke = 100.0 default_tri_ka = 100.0 default_tri_kd = 10.0 default_tri_drag = 0.0 default_tri_lift = 0.0 # Default distance constraint properties default_spring_ke = 100.0 default_spring_kd = 0.0 # Default edge bending properties default_edge_ke = 100.0 default_edge_kd = 0.0 # Default rigid shape contact material properties default_shape_ke = 1.0e5 default_shape_kd = 1000.0 default_shape_kf = 1000.0 default_shape_ka = 0.0 default_shape_mu = 0.5 default_shape_restitution = 0.0 default_shape_density = 1000.0 default_shape_thickness = 1e-5 # Default joint settings default_joint_limit_ke = 100.0 default_joint_limit_kd = 1.0 def __init__(self, up_vector=(0.0, 1.0, 0.0), gravity=-9.80665): self.num_envs = 0 # particles self.particle_q = [] self.particle_qd = [] self.particle_mass = [] self.particle_radius = [] self.particle_flags = [] self.particle_max_velocity = 1e5 # shapes (each shape has an entry in these arrays) # transform from shape to body self.shape_transform = [] # maps from shape index to body index self.shape_body = [] self.shape_visible = [] self.shape_geo_type = [] self.shape_geo_scale = [] self.shape_geo_src = [] self.shape_geo_is_solid = [] self.shape_geo_thickness = [] self.shape_material_ke = [] self.shape_material_kd = [] self.shape_material_kf = [] self.shape_material_ka = [] self.shape_material_mu = [] self.shape_material_restitution = [] # collision groups within collisions are handled self.shape_collision_group = [] self.shape_collision_group_map = {} self.last_collision_group = 0 # radius to use for broadphase collision checking self.shape_collision_radius = [] # whether the shape collides with the ground self.shape_ground_collision = [] # whether the shape collides with any other shape self.shape_shape_collision = [] # filtering to ignore certain collision pairs self.shape_collision_filter_pairs = set() # geometry self.geo_meshes = [] self.geo_sdfs = [] # springs self.spring_indices = [] self.spring_rest_length = [] self.spring_stiffness = [] self.spring_damping = [] self.spring_control = [] # triangles self.tri_indices = [] self.tri_poses = [] self.tri_activations = [] self.tri_materials = [] # edges (bending) self.edge_indices = [] self.edge_rest_angle = [] self.edge_bending_properties = [] # tetrahedra self.tet_indices = [] self.tet_poses = [] self.tet_activations = [] self.tet_materials = [] # muscles self.muscle_start = [] self.muscle_params = [] self.muscle_activations = [] self.muscle_bodies = [] self.muscle_points = [] # rigid bodies self.body_mass = [] self.body_inertia = [] self.body_inv_mass = [] self.body_inv_inertia = [] self.body_com = [] self.body_q = [] self.body_qd = [] self.body_name = [] self.body_shapes = {} # mapping from body to shapes # rigid joints self.joint = {} self.joint_parent = [] # index of the parent body (constant) self.joint_parents = {} # mapping from joint to parent bodies self.joint_child = [] # index of the child body (constant) self.joint_axis = [] # joint axis in child joint frame (constant) self.joint_X_p = [] # frame of joint in parent (constant) self.joint_X_c = [] # frame of child com (in child coordinates) (constant) self.joint_q = [] self.joint_qd = [] self.joint_type = [] self.joint_name = [] self.joint_armature = [] self.joint_target_ke = [] self.joint_target_kd = [] self.joint_axis_mode = [] self.joint_limit_lower = [] self.joint_limit_upper = [] self.joint_limit_ke = [] self.joint_limit_kd = [] self.joint_act = [] self.joint_twist_lower = [] self.joint_twist_upper = [] self.joint_linear_compliance = [] self.joint_angular_compliance = [] self.joint_enabled = [] self.joint_q_start = [] self.joint_qd_start = [] self.joint_axis_start = [] self.joint_axis_dim = [] self.articulation_start = [] self.joint_dof_count = 0 self.joint_coord_count = 0 self.joint_axis_total_count = 0 self.up_vector = wp.vec3(up_vector) self.up_axis = wp.vec3(np.argmax(np.abs(up_vector))) self.gravity = gravity # indicates whether a ground plane has been created self._ground_created = False # constructor parameters for ground plane shape self._ground_params = { "plane": (*up_vector, 0.0), "width": 0.0, "length": 0.0, "ke": self.default_shape_ke, "kd": self.default_shape_kd, "kf": self.default_shape_kf, "mu": self.default_shape_mu, "restitution": self.default_shape_restitution, } # Maximum number of soft contacts that can be registered self.soft_contact_max = 64 * 1024 # maximum number of contact points to generate per mesh shape self.rigid_mesh_contact_max = 0 # 0 = unlimited # contacts to be generated within the given distance margin to be generated at # every simulation substep (can be 0 if only one PBD solver iteration is used) self.rigid_contact_margin = 0.1 # torsional friction coefficient (only considered by XPBD so far) self.rigid_contact_torsional_friction = 0.5 # rolling friction coefficient (only considered by XPBD so far) self.rigid_contact_rolling_friction = 0.001 # number of rigid contact points to allocate in the model during self.finalize() per environment # if setting is None, the number of worst-case number of contacts will be calculated in self.finalize() self.num_rigid_contacts_per_env = None @property def shape_count(self): return len(self.shape_geo_type) @property def body_count(self): return len(self.body_q) @property def joint_count(self): return len(self.joint_type) @property def joint_axis_count(self): return len(self.joint_axis) @property def particle_count(self): return len(self.particle_q) @property def tri_count(self): return len(self.tri_poses) @property def tet_count(self): return len(self.tet_poses) @property def edge_count(self): return len(self.edge_rest_angle) @property def spring_count(self): return len(self.spring_rest_length) @property def muscle_count(self): return len(self.muscle_start) @property def articulation_count(self): return len(self.articulation_start) # an articulation is a set of contiguous bodies bodies from articulation_start[i] to articulation_start[i+1] # these are used for computing forward kinematics e.g.: # # model.eval_articulation_fk() # model.eval_articulation_j() # model.eval_articulation_m() # # articulations are automatically 'closed' when calling finalize def add_articulation(self): self.articulation_start.append(self.joint_count) def add_builder(self, builder, xform=None, update_num_env_count=True, separate_collision_group=True): """Copies the data from `builder`, another `ModelBuilder` to this `ModelBuilder`. Args: builder (ModelBuilder): a model builder to add model data from. xform (:ref:`transform <transform>`): offset transform applied to root bodies. update_num_env_count (bool): if True, the number of environments is incremented by 1. separate_collision_group (bool): if True, the shapes from the articulations in `builder` will all be put into a single new collision group, otherwise, only the shapes in collision group > -1 will be moved to a new group. """ start_particle_idx = self.particle_count if builder.particle_count: self.particle_max_velocity = builder.particle_max_velocity if xform is not None: pos_offset = wp.transform_get_translation(xform) else: pos_offset = np.zeros(3) self.particle_q.extend((np.array(builder.particle_q) + pos_offset).tolist()) # other particle attributes are added below if builder.spring_count: self.spring_indices.extend((np.array(builder.spring_indices, dtype=np.int32) + start_particle_idx).tolist()) if builder.edge_count: self.edge_indices.extend((np.array(builder.edge_indices, dtype=np.int32) + start_particle_idx).tolist()) if builder.tri_count: self.tri_indices.extend((np.array(builder.tri_indices, dtype=np.int32) + start_particle_idx).tolist()) if builder.tet_count: self.tet_indices.extend((np.array(builder.tet_indices, dtype=np.int32) + start_particle_idx).tolist()) start_body_idx = self.body_count start_shape_idx = self.shape_count for s, b in enumerate(builder.shape_body): if b > -1: new_b = b + start_body_idx self.shape_body.append(new_b) self.shape_transform.append(builder.shape_transform[s]) else: self.shape_body.append(-1) # apply offset transform to root bodies if xform is not None: self.shape_transform.append(xform * builder.shape_transform[s]) for b, shapes in builder.body_shapes.items(): self.body_shapes[b + start_body_idx] = [s + start_shape_idx for s in shapes] if builder.joint_count: joint_X_p = copy.deepcopy(builder.joint_X_p) joint_q = copy.deepcopy(builder.joint_q) if xform is not None: for i in range(len(joint_X_p)): if builder.joint_type[i] == wp.sim.JOINT_FREE: qi = builder.joint_q_start[i] xform_prev = wp.transform(joint_q[qi : qi + 3], joint_q[qi + 3 : qi + 7]) tf = xform * xform_prev joint_q[qi : qi + 3] = tf.p joint_q[qi + 3 : qi + 7] = tf.q elif builder.joint_parent[i] == -1: joint_X_p[i] = xform * joint_X_p[i] self.joint_X_p.extend(joint_X_p) self.joint_q.extend(joint_q) self.add_articulation() # offset the indices self.joint_parent.extend([p + self.joint_count if p != -1 else -1 for p in builder.joint_parent]) self.joint_child.extend([c + self.joint_count for c in builder.joint_child]) self.joint_q_start.extend([c + self.joint_coord_count for c in builder.joint_q_start]) self.joint_qd_start.extend([c + self.joint_dof_count for c in builder.joint_qd_start]) self.joint_axis_start.extend([a + self.joint_axis_total_count for a in builder.joint_axis_start]) joint_children = set(builder.joint_child) for i in range(builder.body_count): if xform is not None and i not in joint_children: # rigid body is not attached to a joint, so apply input transform directly self.body_q.append(xform * builder.body_q[i]) else: self.body_q.append(builder.body_q[i]) # apply collision group if separate_collision_group: self.shape_collision_group.extend([self.last_collision_group + 1 for _ in builder.shape_collision_group]) else: self.shape_collision_group.extend( [(g + self.last_collision_group if g > -1 else -1) for g in builder.shape_collision_group] ) shape_count = self.shape_count for i, j in builder.shape_collision_filter_pairs: self.shape_collision_filter_pairs.add((i + shape_count, j + shape_count)) for group, shapes in builder.shape_collision_group_map.items(): if separate_collision_group: group = self.last_collision_group + 1 else: group = group + self.last_collision_group if group > -1 else -1 if group not in self.shape_collision_group_map: self.shape_collision_group_map[group] = [] self.shape_collision_group_map[group].extend([s + shape_count for s in shapes]) # update last collision group counter if separate_collision_group: self.last_collision_group += 1 elif builder.last_collision_group > -1: self.last_collision_group += builder.last_collision_group more_builder_attrs = [ "body_inertia", "body_mass", "body_inv_inertia", "body_inv_mass", "body_com", "body_qd", "body_name", "joint_type", "joint_enabled", "joint_X_c", "joint_armature", "joint_axis", "joint_axis_dim", "joint_axis_mode", "joint_name", "joint_qd", "joint_act", "joint_limit_lower", "joint_limit_upper", "joint_limit_ke", "joint_limit_kd", "joint_target_ke", "joint_target_kd", "joint_linear_compliance", "joint_angular_compliance", "shape_visible", "shape_geo_type", "shape_geo_scale", "shape_geo_src", "shape_geo_is_solid", "shape_geo_thickness", "shape_material_ke", "shape_material_kd", "shape_material_kf", "shape_material_ka", "shape_material_mu", "shape_material_restitution", "shape_collision_radius", "shape_ground_collision", "shape_shape_collision", "particle_qd", "particle_mass", "particle_radius", "particle_flags", "edge_rest_angle", "edge_bending_properties", "spring_rest_length", "spring_stiffness", "spring_damping", "spring_control", "tri_poses", "tri_activations", "tri_materials", "tet_poses", "tet_activations", "tet_materials", ] for attr in more_builder_attrs: getattr(self, attr).extend(getattr(builder, attr)) self.joint_dof_count += builder.joint_dof_count self.joint_coord_count += builder.joint_coord_count self.joint_axis_total_count += builder.joint_axis_total_count self.up_vector = builder.up_vector self.gravity = builder.gravity self._ground_params = builder._ground_params if update_num_env_count: self.num_envs += 1 # register a rigid body and return its index. def add_body( self, origin: Optional[Transform] = None, armature: float = 0.0, com: Optional[Vec3] = None, I_m: Optional[Mat33] = None, m: float = 0.0, name: str = None, ) -> int: """Adds a rigid body to the model. Args: origin: The location of the body in the world frame armature: Artificial inertia added to the body com: The center of mass of the body w.r.t its origin I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass) m: Mass of the body name: Name of the body (optional) Returns: The index of the body in the model Note: If the mass (m) is zero then the body is treated as kinematic with no dynamics """ if origin is None: origin = wp.transform() if com is None: com = wp.vec3() if I_m is None: I_m = wp.mat33() body_id = len(self.body_mass) # body data inertia = I_m + wp.mat33(np.eye(3)) * armature self.body_inertia.append(inertia) self.body_mass.append(m) self.body_com.append(com) if m > 0.0: self.body_inv_mass.append(1.0 / m) else: self.body_inv_mass.append(0.0) if any(x for x in inertia): self.body_inv_inertia.append(wp.inverse(inertia)) else: self.body_inv_inertia.append(inertia) self.body_q.append(origin) self.body_qd.append(wp.spatial_vector()) self.body_name.append(name or f"body {body_id}") self.body_shapes[body_id] = [] return body_id def add_joint( self, joint_type: wp.constant, parent: int, child: int, linear_axes: Optional[List[JointAxis]] = None, angular_axes: Optional[List[JointAxis]] = None, name: str = None, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """ Generic method to add any type of joint to this ModelBuilder. Args: joint_type (constant): The type of joint to add (see `Joint types`_) parent (int): The index of the parent body (-1 is the world) child (int): The index of the child body linear_axes (list(:class:`JointAxis`)): The linear axes (see :class:`JointAxis`) of the joint angular_axes (list(:class:`JointAxis`)): The angular axes (see :class:`JointAxis`) of the joint name (str): The name of the joint (optional) parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance (float): The linear compliance of the joint angular_compliance (float): The angular compliance of the joint armature (float): Artificial inertia added around the joint axes (only considered by :class:`FeatherstoneIntegrator`) collision_filter_parent (bool): Whether to filter collisions between shapes of the parent and child bodies enabled (bool): Whether the joint is enabled (not considered by :class:`FeatherstoneIntegrator`) Returns: The index of the added joint """ if linear_axes is None: linear_axes = [] if angular_axes is None: angular_axes = [] if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() if len(self.articulation_start) == 0: # automatically add an articulation if none exists self.add_articulation() self.joint_type.append(joint_type) self.joint_parent.append(parent) if child not in self.joint_parents: self.joint_parents[child] = [parent] else: self.joint_parents[child].append(parent) self.joint_child.append(child) self.joint_X_p.append(wp.transform(parent_xform)) self.joint_X_c.append(wp.transform(child_xform)) self.joint_name.append(name or f"joint {self.joint_count}") self.joint_axis_start.append(len(self.joint_axis)) self.joint_axis_dim.append((len(linear_axes), len(angular_axes))) self.joint_axis_total_count += len(linear_axes) + len(angular_axes) self.joint_linear_compliance.append(linear_compliance) self.joint_angular_compliance.append(angular_compliance) self.joint_enabled.append(enabled) def add_axis_dim(dim: JointAxis): self.joint_axis.append(dim.axis) self.joint_axis_mode.append(dim.mode) self.joint_act.append(dim.action) self.joint_target_ke.append(dim.target_ke) self.joint_target_kd.append(dim.target_kd) self.joint_limit_ke.append(dim.limit_ke) self.joint_limit_kd.append(dim.limit_kd) if np.isfinite(dim.limit_lower): self.joint_limit_lower.append(dim.limit_lower) else: self.joint_limit_lower.append(-1e6) if np.isfinite(dim.limit_upper): self.joint_limit_upper.append(dim.limit_upper) else: self.joint_limit_upper.append(1e6) for dim in linear_axes: add_axis_dim(dim) for dim in angular_axes: add_axis_dim(dim) if joint_type == JOINT_PRISMATIC: dof_count = 1 coord_count = 1 elif joint_type == JOINT_REVOLUTE: dof_count = 1 coord_count = 1 elif joint_type == JOINT_BALL: dof_count = 3 coord_count = 4 elif joint_type == JOINT_FREE or joint_type == JOINT_DISTANCE: dof_count = 6 coord_count = 7 elif joint_type == JOINT_FIXED: dof_count = 0 coord_count = 0 elif joint_type == JOINT_UNIVERSAL: dof_count = 2 coord_count = 2 elif joint_type == JOINT_COMPOUND: dof_count = 3 coord_count = 3 elif joint_type == JOINT_D6: dof_count = len(linear_axes) + len(angular_axes) coord_count = dof_count for _i in range(coord_count): self.joint_q.append(0.0) for _i in range(dof_count): self.joint_qd.append(0.0) self.joint_armature.append(armature) if joint_type == JOINT_FREE or joint_type == JOINT_DISTANCE or joint_type == JOINT_BALL: # ensure that a valid quaternion is used for the angular dofs self.joint_q[-1] = 1.0 self.joint_q_start.append(self.joint_coord_count) self.joint_qd_start.append(self.joint_dof_count) self.joint_dof_count += dof_count self.joint_coord_count += coord_count if collision_filter_parent and parent > -1: for child_shape in self.body_shapes[child]: for parent_shape in self.body_shapes[parent]: self.shape_collision_filter_pairs.add((parent_shape, child_shape)) return self.joint_count - 1 def add_joint_revolute( self, parent: int, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, axis: Vec3 = (1.0, 0.0, 0.0), target: float = None, target_ke: float = 0.0, target_kd: float = 0.0, mode: int = JOINT_MODE_FORCE, limit_lower: float = -2 * math.pi, limit_upper: float = 2 * math.pi, limit_ke: float = default_joint_limit_ke, limit_kd: float = default_joint_limit_kd, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a revolute (hinge) joint to the model. It has one degree of freedom. Args: parent: The index of the parent body child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame axis (3D vector or JointAxis): The axis of rotation in the parent body's local frame, can be a JointAxis object whose settings will be used instead of the other arguments target: The target angle (in radians) or target velocity of the joint (if None, the joint is considered to be in force control mode) target_ke: The stiffness of the joint target target_kd: The damping of the joint target limit_lower: The lower limit of the joint limit_upper: The upper limit of the joint limit_ke: The stiffness of the joint limit limit_kd: The damping of the joint limit linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature: Artificial inertia added around the joint axis name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() action = 0.0 if target is None and mode == JOINT_MODE_TARGET_POSITION: action = 0.5 * (limit_lower + limit_upper) elif target is not None: action = target if mode == JOINT_MODE_FORCE: mode = JOINT_MODE_TARGET_POSITION ax = JointAxis( axis=axis, limit_lower=limit_lower, limit_upper=limit_upper, action=action, target_ke=target_ke, target_kd=target_kd, mode=mode, limit_ke=limit_ke, limit_kd=limit_kd, ) return self.add_joint( JOINT_REVOLUTE, parent, child, parent_xform=parent_xform, child_xform=child_xform, angular_axes=[ax], linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_prismatic( self, parent: int, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, axis: Vec3 = (1.0, 0.0, 0.0), target: float = None, target_ke: float = 0.0, target_kd: float = 0.0, mode: int = JOINT_MODE_FORCE, limit_lower: float = -1e4, limit_upper: float = 1e4, limit_ke: float = default_joint_limit_ke, limit_kd: float = default_joint_limit_kd, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a prismatic (sliding) joint to the model. It has one degree of freedom. Args: parent: The index of the parent body child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame axis (3D vector or JointAxis): The axis of rotation in the parent body's local frame, can be a JointAxis object whose settings will be used instead of the other arguments target: The target position or velocity of the joint (if None, the joint is considered to be in force control mode) target_ke: The stiffness of the joint target target_kd: The damping of the joint target limit_lower: The lower limit of the joint limit_upper: The upper limit of the joint limit_ke: The stiffness of the joint limit limit_kd: The damping of the joint limit linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature: Artificial inertia added around the joint axis name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() action = 0.0 if target is None and mode == JOINT_MODE_TARGET_POSITION: action = 0.5 * (limit_lower + limit_upper) elif target is not None: action = target if mode == JOINT_MODE_FORCE: mode = JOINT_MODE_TARGET_POSITION ax = JointAxis( axis=axis, limit_lower=limit_lower, limit_upper=limit_upper, action=action, target_ke=target_ke, target_kd=target_kd, mode=mode, limit_ke=limit_ke, limit_kd=limit_kd, ) return self.add_joint( JOINT_PRISMATIC, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=[ax], linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_ball( self, parent: int, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a ball (spherical) joint to the model. Its position is defined by a 4D quaternion (xyzw) and its velocity is a 3D vector. Args: parent: The index of the parent body child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature (float): Artificial inertia added around the joint axis (only considered by FeatherstoneIntegrator) name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_BALL, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_fixed( self, parent: int, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a fixed (static) joint to the model. It has no degrees of freedom. See :meth:`collapse_fixed_joints` for a helper function that removes these fixed joints and merges the connecting bodies to simplify the model and improve stability. Args: parent: The index of the parent body child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature (float): Artificial inertia added around the joint axis (only considered by FeatherstoneIntegrator) name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_FIXED, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_free( self, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, armature: float = 0.0, parent: int = -1, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a free joint to the model. It has 7 positional degrees of freedom (first 3 linear and then 4 angular dimensions for the orientation quaternion in `xyzw` notation) and 6 velocity degrees of freedom (first 3 angular and then 3 linear velocity dimensions). Args: child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame armature (float): Artificial inertia added around the joint axis (only considered by FeatherstoneIntegrator) parent: The index of the parent body (-1 by default to use the world frame, e.g. to make the child body and its children a floating-base mechanism) name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_FREE, parent, child, parent_xform=parent_xform, child_xform=child_xform, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_distance( self, parent: int, child: int, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, min_distance: float = -1.0, max_distance: float = 1.0, compliance: float = 0.0, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a distance joint to the model. The distance joint constraints the distance between the joint anchor points on the two bodies (see :ref:`FK-IK`) it connects to the interval [`min_distance`, `max_distance`]. It has 7 positional degrees of freedom (first 3 linear and then 4 angular dimensions for the orientation quaternion in `xyzw` notation) and 6 velocity degrees of freedom (first 3 angular and then 3 linear velocity dimensions). Args: parent: The index of the parent body child: The index of the child body parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame min_distance: The minimum distance between the bodies (no limit if negative) max_distance: The maximum distance between the bodies (no limit if negative) compliance: The compliance of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint .. note:: Distance joints are currently only supported in the :class:`XPBDIntegrator` at the moment. """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() ax = JointAxis( axis=(1.0, 0.0, 0.0), limit_lower=min_distance, limit_upper=max_distance, ) return self.add_joint( JOINT_DISTANCE, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=[ax], linear_compliance=compliance, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_universal( self, parent: int, child: int, axis_0: JointAxis, axis_1: JointAxis, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a universal joint to the model. U-joints have two degrees of freedom, one for each axis. Args: parent: The index of the parent body child: The index of the child body axis_0 (3D vector or JointAxis): The first axis of the joint, can be a JointAxis object whose settings will be used instead of the other arguments axis_1 (3D vector or JointAxis): The second axis of the joint, can be a JointAxis object whose settings will be used instead of the other arguments parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature: Artificial inertia added around the joint axes name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_UNIVERSAL, parent, child, angular_axes=[JointAxis(axis_0), JointAxis(axis_1)], parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_compound( self, parent: int, child: int, axis_0: JointAxis, axis_1: JointAxis, axis_2: JointAxis, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a compound joint to the model, which has 3 degrees of freedom, one for each axis. Similar to the ball joint (see :meth:`add_ball_joint`), the compound joint allows bodies to move in a 3D rotation relative to each other, except that the rotation is defined by 3 axes instead of a quaternion. Depending on the choice of axes, the orientation can be specified through Euler angles, e.g. `z-x-z` or `x-y-x`, or through a Tait-Bryan angle sequence, e.g. `z-y-x` or `x-y-z`. Args: parent: The index of the parent body child: The index of the child body axis_0 (3D vector or JointAxis): The first axis of the joint, can be a JointAxis object whose settings will be used instead of the other arguments axis_1 (3D vector or JointAxis): The second axis of the joint, can be a JointAxis object whose settings will be used instead of the other arguments axis_2 (3D vector or JointAxis): The third axis of the joint, can be a JointAxis object whose settings will be used instead of the other arguments parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature: Artificial inertia added around the joint axes name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_COMPOUND, parent, child, angular_axes=[JointAxis(axis_0), JointAxis(axis_1), JointAxis(axis_2)], parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_d6( self, parent: int, child: int, linear_axes: Optional[List[JointAxis]] = None, angular_axes: Optional[List[JointAxis]] = None, name: str = None, parent_xform: Optional[wp.transform] = None, child_xform: Optional[wp.transform] = None, linear_compliance: float = 0.0, angular_compliance: float = 0.0, armature: float = 1e-2, collision_filter_parent: bool = True, enabled: bool = True, ): """Adds a generic joint with custom linear and angular axes. The number of axes determines the number of degrees of freedom of the joint. Args: parent: The index of the parent body child: The index of the child body linear_axes: A list of linear axes angular_axes: A list of angular axes name: The name of the joint parent_xform (:ref:`transform <transform>`): The transform of the joint in the parent body's local frame child_xform (:ref:`transform <transform>`): The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint armature: Artificial inertia added around the joint axes collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the added joint """ if linear_axes is None: linear_axes = [] if angular_axes is None: angular_axes = [] if parent_xform is None: parent_xform = wp.transform() if child_xform is None: child_xform = wp.transform() return self.add_joint( JOINT_D6, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=[JointAxis(a) for a in linear_axes], angular_axes=[JointAxis(a) for a in angular_axes], linear_compliance=linear_compliance, angular_compliance=angular_compliance, armature=armature, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def plot_articulation(self, plot_shapes=True): """Plots the model's articulation.""" def joint_type_str(type): if type == JOINT_FREE: return "free" elif type == JOINT_BALL: return "ball" elif type == JOINT_PRISMATIC: return "prismatic" elif type == JOINT_REVOLUTE: return "revolute" elif type == JOINT_D6: return "D6" elif type == JOINT_UNIVERSAL: return "universal" elif type == JOINT_COMPOUND: return "compound" elif type == JOINT_FIXED: return "fixed" elif type == JOINT_DISTANCE: return "distance" return "unknown" vertices = ["world"] + self.body_name if plot_shapes: vertices += [f"shape_{i}" for i in range(self.shape_count)] edges = [] edge_labels = [] for i in range(self.joint_count): edges.append((self.joint_child[i] + 1, self.joint_parent[i] + 1)) edge_labels.append(f"{self.joint_name[i]}\n({joint_type_str(self.joint_type[i])})") if plot_shapes: for i in range(self.shape_count): edges.append((len(self.body_name) + i + 1, self.shape_body[i] + 1)) wp.plot_graph(vertices, edges, edge_labels=edge_labels) def collapse_fixed_joints(self, verbose=wp.config.verbose): """Removes fixed joints from the model and merges the bodies they connect. This is useful for simplifying the model for faster and more stable simulation.""" body_data = {} body_children = {-1: []} visited = {} for i in range(self.body_count): name = self.body_name[i] body_data[i] = { "shapes": self.body_shapes[i], "q": self.body_q[i], "qd": self.body_qd[i], "mass": self.body_mass[i], "inertia": self.body_inertia[i], "inv_mass": self.body_inv_mass[i], "inv_inertia": self.body_inv_inertia[i], "com": self.body_com[i], "name": name, "original_id": i, } visited[i] = False body_children[i] = [] joint_data = {} for i in range(self.joint_count): name = self.joint_name[i] parent = self.joint_parent[i] child = self.joint_child[i] body_children[parent].append(child) q_start = self.joint_q_start[i] qd_start = self.joint_qd_start[i] if i < self.joint_count - 1: q_dim = self.joint_q_start[i + 1] - q_start qd_dim = self.joint_qd_start[i + 1] - qd_start else: q_dim = len(self.joint_q) - q_start qd_dim = len(self.joint_qd) - qd_start data = { "type": self.joint_type[i], "q": self.joint_q[q_start : q_start + q_dim], "qd": self.joint_qd[qd_start : qd_start + qd_dim], "act": self.joint_act[qd_start : qd_start + qd_dim], "armature": self.joint_armature[qd_start : qd_start + qd_dim], "q_start": q_start, "qd_start": qd_start, "linear_compliance": self.joint_linear_compliance[i], "angular_compliance": self.joint_angular_compliance[i], "name": name, "parent_xform": wp.transform_expand(self.joint_X_p[i]), "child_xform": wp.transform_expand(self.joint_X_c[i]), "enabled": self.joint_enabled[i], "axes": [], "axis_dim": self.joint_axis_dim[i], "parent": parent, "child": child, "original_id": i, } num_lin_axes, num_ang_axes = self.joint_axis_dim[i] start_ax = self.joint_axis_start[i] for j in range(start_ax, start_ax + num_lin_axes + num_ang_axes): data["axes"].append( { "axis": self.joint_axis[j], "axis_mode": self.joint_axis_mode[j], "target_ke": self.joint_target_ke[j], "target_kd": self.joint_target_kd[j], "limit_ke": self.joint_limit_ke[j], "limit_kd": self.joint_limit_kd[j], "limit_lower": self.joint_limit_lower[j], "limit_upper": self.joint_limit_upper[j], } ) joint_data[(parent, child)] = data # sort body children so we traverse the tree in the same order as the bodies are listed for children in body_children.values(): children.sort(key=lambda x: body_data[x]["original_id"]) retained_joints = [] retained_bodies = [] body_remap = {-1: -1} # depth first search over the joint graph def dfs(parent_body: int, child_body: int, incoming_xform: wp.transform, last_dynamic_body: int): nonlocal visited nonlocal retained_joints nonlocal retained_bodies nonlocal body_data nonlocal body_remap joint = joint_data[(parent_body, child_body)] if joint["type"] == JOINT_FIXED: joint_xform = joint["parent_xform"] * wp.transform_inverse(joint["child_xform"]) incoming_xform = incoming_xform * joint_xform parent_name = self.body_name[parent_body] if parent_body > -1 else "world" child_name = self.body_name[child_body] last_dynamic_body_name = self.body_name[last_dynamic_body] if last_dynamic_body > -1 else "world" if verbose: print( f'Remove fixed joint {joint["name"]} between {parent_name} and {child_name}, ' f"merging {child_name} into {last_dynamic_body_name}" ) child_id = body_data[child_body]["original_id"] for shape in self.body_shapes[child_id]: self.shape_transform[shape] = incoming_xform * self.shape_transform[shape] if verbose: print( f" Shape {shape} moved to body {last_dynamic_body_name} with transform {self.shape_transform[shape]}" ) if last_dynamic_body > -1: self.shape_body[shape] = body_data[last_dynamic_body]["id"] # add inertia to last_dynamic_body m = body_data[child_body]["mass"] com = body_data[child_body]["com"] inertia = body_data[child_body]["inertia"] body_data[last_dynamic_body]["inertia"] += wp.sim.transform_inertia( m, inertia, incoming_xform.p, incoming_xform.q ) body_data[last_dynamic_body]["mass"] += m source_m = body_data[last_dynamic_body]["mass"] source_com = body_data[last_dynamic_body]["com"] body_data[last_dynamic_body]["com"] = (m * com + source_m * source_com) / (m + source_m) body_data[last_dynamic_body]["shapes"].append(shape) # indicate to recompute inverse mass, inertia for this body body_data[last_dynamic_body]["inv_mass"] = None else: self.shape_body[shape] = -1 else: joint["parent_xform"] = incoming_xform * joint["parent_xform"] joint["parent"] = last_dynamic_body last_dynamic_body = child_body incoming_xform = wp.transform() retained_joints.append(joint) new_id = len(retained_bodies) body_data[child_body]["id"] = new_id retained_bodies.append(child_body) for shape in body_data[child_body]["shapes"]: self.shape_body[shape] = new_id visited[parent_body] = True if visited[child_body] or child_body not in body_children: return for child in body_children[child_body]: if not visited[child]: dfs(child_body, child, incoming_xform, last_dynamic_body) for body in body_children[-1]: if not visited[body]: dfs(-1, body, wp.transform(), -1) # repopulate the model self.body_name.clear() self.body_q.clear() self.body_qd.clear() self.body_mass.clear() self.body_inertia.clear() self.body_com.clear() self.body_inv_mass.clear() self.body_inv_inertia.clear() self.body_shapes.clear() for i in retained_bodies: body = body_data[i] new_id = len(self.body_name) body_remap[body["original_id"]] = new_id self.body_name.append(body["name"]) self.body_q.append(list(body["q"])) self.body_qd.append(list(body["qd"])) m = body["mass"] inertia = body["inertia"] self.body_mass.append(m) self.body_inertia.append(inertia) self.body_com.append(body["com"]) if body["inv_mass"] is None: # recompute inverse mass and inertia if m > 0.0: self.body_inv_mass.append(1.0 / m) self.body_inv_inertia.append(wp.inverse(inertia)) else: self.body_inv_mass.append(0.0) self.body_inv_inertia.append(wp.mat33(0.0)) else: self.body_inv_mass.append(body["inv_mass"]) self.body_inv_inertia.append(body["inv_inertia"]) self.body_shapes[new_id] = body["shapes"] body_remap[body["original_id"]] = new_id # sort joints so they appear in the same order as before retained_joints.sort(key=lambda x: x["original_id"]) self.joint_name.clear() self.joint_type.clear() self.joint_parent.clear() self.joint_child.clear() self.joint_q.clear() self.joint_qd.clear() self.joint_q_start.clear() self.joint_qd_start.clear() self.joint_enabled.clear() self.joint_linear_compliance.clear() self.joint_angular_compliance.clear() self.joint_armature.clear() self.joint_X_p.clear() self.joint_X_c.clear() self.joint_axis.clear() self.joint_axis_mode.clear() self.joint_target_ke.clear() self.joint_target_kd.clear() self.joint_limit_lower.clear() self.joint_limit_upper.clear() self.joint_limit_ke.clear() self.joint_limit_kd.clear() self.joint_axis_dim.clear() self.joint_axis_start.clear() self.joint_act.clear() for joint in retained_joints: self.joint_name.append(joint["name"]) self.joint_type.append(joint["type"]) self.joint_parent.append(body_remap[joint["parent"]]) self.joint_child.append(body_remap[joint["child"]]) self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) self.joint_q.extend(joint["q"]) self.joint_qd.extend(joint["qd"]) self.joint_act.extend(joint["act"]) self.joint_armature.extend(joint["armature"]) self.joint_enabled.append(joint["enabled"]) self.joint_linear_compliance.append(joint["linear_compliance"]) self.joint_angular_compliance.append(joint["angular_compliance"]) self.joint_X_p.append(list(joint["parent_xform"])) self.joint_X_c.append(list(joint["child_xform"])) self.joint_axis_dim.append(joint["axis_dim"]) self.joint_axis_start.append(len(self.joint_axis)) for axis in joint["axes"]: self.joint_axis.append(axis["axis"]) self.joint_axis_mode.append(axis["axis_mode"]) self.joint_target_ke.append(axis["target_ke"]) self.joint_target_kd.append(axis["target_kd"]) self.joint_limit_lower.append(axis["limit_lower"]) self.joint_limit_upper.append(axis["limit_upper"]) self.joint_limit_ke.append(axis["limit_ke"]) self.joint_limit_kd.append(axis["limit_kd"]) # muscles def add_muscle( self, bodies: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float ) -> float: """Adds a muscle-tendon activation unit. Args: bodies: A list of body indices for each waypoint positions: A list of positions of each waypoint in the body's local frame f0: Force scaling lm: Muscle length lt: Tendon length lmax: Maximally efficient muscle length Returns: The index of the muscle in the model .. note:: The simulation support for muscles is in progress and not yet fully functional. """ n = len(bodies) self.muscle_start.append(len(self.muscle_bodies)) self.muscle_params.append((f0, lm, lt, lmax, pen)) self.muscle_activations.append(0.0) for i in range(n): self.muscle_bodies.append(bodies[i]) self.muscle_points.append(positions[i]) # return the index of the muscle return len(self.muscle_start) - 1 # shapes def add_shape_plane( self, plane: Vec4 = (0.0, 1.0, 0.0, 0.0), pos: Vec3 = None, rot: Quat = None, width: float = 10.0, length: float = 10.0, body: int = -1, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, thickness: float = None, has_ground_collision: bool = False, has_shape_collision: bool = True, is_visible: bool = True, collision_group: int = -1, ): """ Adds a plane collision shape. If pos and rot are defined, the plane is assumed to have its normal as (0, 1, 0). Otherwise, the plane equation defined through the `plane` argument is used. Args: plane: The plane equation in form a*x + b*y + c*z + d = 0 pos: The position of the plane in world coordinates rot: The rotation of the plane in world coordinates width: The extent along x of the plane (infinite if 0) length: The extent along z of the plane (infinite if 0) body: The body index to attach the shape to (-1 by default to keep the plane static) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) thickness: The thickness of the plane (0 by default) for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes is_visible: Whether the plane is visible collision_group: The collision group of the shape Returns: The index of the added shape """ if pos is None or rot is None: # compute position and rotation from plane equation normal = np.array(plane[:3]) normal /= np.linalg.norm(normal) pos = plane[3] * normal if np.allclose(normal, (0.0, 1.0, 0.0)): # no rotation necessary rot = (0.0, 0.0, 0.0, 1.0) else: c = np.cross(normal, (0.0, 1.0, 0.0)) angle = np.arcsin(np.linalg.norm(c)) axis = np.abs(c) / np.linalg.norm(c) rot = wp.quat_from_axis_angle(axis, angle) scale = wp.vec3(width, length, 0.0) return self._add_shape( body, pos, rot, GEO_PLANE, scale, None, 0.0, ke, kd, kf, ka, mu, restitution, thickness, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, is_visible=is_visible, collision_group=collision_group, ) def add_shape_sphere( self, body, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a sphere collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the sphere density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: Whether the sphere is solid or hollow thickness: Thickness to use for computing inertia of a hollow sphere, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the sphere is visible Returns: The index of the added shape """ thickness = self.default_shape_thickness if thickness is None else thickness return self._add_shape( body, wp.vec3(pos), wp.quat(rot), GEO_SPHERE, wp.vec3(radius, 0.0, 0.0), None, density, ke, kd, kf, ka, mu, restitution, thickness + radius, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_box( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), hx: float = 0.5, hy: float = 0.5, hz: float = 0.5, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a box collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame hx: The half-extent along the x-axis hy: The half-extent along the y-axis hz: The half-extent along the z-axis density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: Whether the box is solid or hollow thickness: Thickness to use for computing inertia of a hollow box, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the box is visible Returns: The index of the added shape """ return self._add_shape( body, wp.vec3(pos), wp.quat(rot), GEO_BOX, wp.vec3(hx, hy, hz), None, density, ke, kd, kf, ka, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_capsule( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a capsule collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the capsule half_height: The half length of the center cylinder along the up axis up_axis: The axis along which the capsule is aligned (0=x, 1=y, 2=z) density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: Whether the capsule is solid or hollow thickness: Thickness to use for computing inertia of a hollow capsule, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the capsule is visible Returns: The index of the added shape """ q = wp.quat(rot) sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(q, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(q, wp.quat(sqh, 0.0, 0.0, sqh)) thickness = self.default_shape_thickness if thickness is None else thickness return self._add_shape( body, wp.vec3(pos), wp.quat(q), GEO_CAPSULE, wp.vec3(radius, half_height, 0.0), None, density, ke, kd, kf, ka, mu, restitution, thickness + radius, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_cylinder( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a cylinder collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the cylinder half_height: The half length of the cylinder along the up axis up_axis: The axis along which the cylinder is aligned (0=x, 1=y, 2=z) density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: Whether the cylinder is solid or hollow thickness: Thickness to use for computing inertia of a hollow cylinder, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the cylinder is visible Note: Cylinders are currently not supported in rigid body collision handling. Returns: The index of the added shape """ q = rot sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(rot, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(rot, wp.quat(sqh, 0.0, 0.0, sqh)) return self._add_shape( body, wp.vec3(pos), wp.quat(q), GEO_CYLINDER, wp.vec3(radius, half_height, 0.0), None, density, ke, kd, kf, ka, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_cone( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a cone collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the cone half_height: The half length of the cone along the up axis up_axis: The axis along which the cone is aligned (0=x, 1=y, 2=z) density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: Whether the cone is solid or hollow thickness: Thickness to use for computing inertia of a hollow cone, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the cone is visible Note: Cones are currently not supported in rigid body collision handling. Returns: The index of the added shape """ q = rot sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(rot, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(rot, wp.quat(sqh, 0.0, 0.0, sqh)) return self._add_shape( body, wp.vec3(pos), wp.quat(q), GEO_CONE, wp.vec3(radius, half_height, 0.0), None, density, ke, kd, kf, ka, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_mesh( self, body: int, pos: Optional[Vec3] = None, rot: Optional[Quat] = None, mesh: Optional[Mesh] = None, scale: Optional[Vec3] = None, density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds a triangle mesh collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame (None to use the default value ``wp.vec3(0.0, 0.0, 0.0)``) rot: The rotation of the shape with respect to the parent frame (None to use the default value ``wp.quat(0.0, 0.0, 0.0, 1.0)``) mesh: The mesh object scale: Scale to use for the collider. (None to use the default value ``wp.vec3(1.0, 1.0, 1.0)``) density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: If True, the mesh is solid, otherwise it is a hollow surface with the given wall thickness thickness: Thickness to use for computing inertia of a hollow mesh, and for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the mesh is visible Returns: The index of the added shape """ if pos is None: pos = wp.vec3(0.0, 0.0, 0.0) if rot is None: rot = wp.quat(0.0, 0.0, 0.0, 1.0) if scale is None: scale = wp.vec3(1.0, 1.0, 1.0) return self._add_shape( body, pos, rot, GEO_MESH, wp.vec3(scale[0], scale[1], scale[2]), mesh, density, ke, kd, kf, ka, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def add_shape_sdf( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), sdf: SDF = None, scale: Vec3 = (1.0, 1.0, 1.0), density: float = None, ke: float = None, kd: float = None, kf: float = None, ka: float = None, mu: float = None, restitution: float = None, is_solid: bool = True, thickness: float = None, has_ground_collision: bool = True, has_shape_collision: bool = True, collision_group: int = -1, is_visible: bool = True, ): """Adds SDF collision shape to a body. Args: body: The index of the parent body this shape belongs to (use -1 for static shapes) pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame sdf: The sdf object scale: Scale to use for the collider density: The density of the shape (None to use the default value :attr:`default_shape_density`) ke: The contact elastic stiffness (None to use the default value :attr:`default_shape_ke`) kd: The contact damping stiffness (None to use the default value :attr:`default_shape_kd`) kf: The contact friction stiffness (None to use the default value :attr:`default_shape_kf`) ka: The contact adhesion distance (None to use the default value :attr:`default_shape_ka`) mu: The coefficient of friction (None to use the default value :attr:`default_shape_mu`) restitution: The coefficient of restitution (None to use the default value :attr:`default_shape_restitution`) is_solid: If True, the SDF is solid, otherwise it is a hollow surface with the given wall thickness thickness: Thickness to use for collision handling (None to use the default value :attr:`default_shape_thickness`) has_ground_collision: If True, the shape will collide with the ground plane if `Model.ground` is True has_shape_collision: If True, the shape will collide with other shapes collision_group: The collision group of the shape is_visible: Whether the shape is visible Returns: The index of the added shape """ return self._add_shape( body, wp.vec3(pos), wp.quat(rot), GEO_SDF, wp.vec3(scale[0], scale[1], scale[2]), sdf, density, ke, kd, kf, ka, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, has_shape_collision=has_shape_collision, collision_group=collision_group, is_visible=is_visible, ) def _shape_radius(self, type, scale, src): """ Calculates the radius of a sphere that encloses the shape, used for broadphase collision detection. """ if type == GEO_SPHERE: return scale[0] elif type == GEO_BOX: return np.linalg.norm(scale) elif type == GEO_CAPSULE or type == GEO_CYLINDER or type == GEO_CONE: return scale[0] + scale[1] elif type == GEO_MESH: vmax = np.max(np.abs(src.vertices), axis=0) * np.max(scale) return np.linalg.norm(vmax) elif type == GEO_PLANE: if scale[0] > 0.0 and scale[1] > 0.0: # finite plane return np.linalg.norm(scale) else: return 1.0e6 else: return 10.0 def _add_shape( self, body, pos, rot, type, scale, src=None, density=None, ke=None, kd=None, kf=None, ka=None, mu=None, restitution=None, thickness=None, is_solid=True, collision_group=-1, collision_filter_parent=True, has_ground_collision=True, has_shape_collision=True, is_visible=True, ): self.shape_body.append(body) shape = self.shape_count if body in self.body_shapes: # no contacts between shapes of the same body for same_body_shape in self.body_shapes[body]: self.shape_collision_filter_pairs.add((same_body_shape, shape)) self.body_shapes[body].append(shape) else: self.body_shapes[body] = [shape] ke = ke if ke is not None else self.default_shape_ke kd = kd if kd is not None else self.default_shape_kd kf = kf if kf is not None else self.default_shape_kf ka = ka if ka is not None else self.default_shape_ka mu = mu if mu is not None else self.default_shape_mu restitution = restitution if restitution is not None else self.default_shape_restitution thickness = thickness if thickness is not None else self.default_shape_thickness density = density if density is not None else self.default_shape_density self.shape_transform.append(wp.transform(pos, rot)) self.shape_visible.append(is_visible) self.shape_geo_type.append(type) self.shape_geo_scale.append((scale[0], scale[1], scale[2])) self.shape_geo_src.append(src) self.shape_geo_thickness.append(thickness) self.shape_geo_is_solid.append(is_solid) self.shape_material_ke.append(ke) self.shape_material_kd.append(kd) self.shape_material_kf.append(kf) self.shape_material_ka.append(ka) self.shape_material_mu.append(mu) self.shape_material_restitution.append(restitution) self.shape_collision_group.append(collision_group) if collision_group not in self.shape_collision_group_map: self.shape_collision_group_map[collision_group] = [] self.last_collision_group = max(self.last_collision_group, collision_group) self.shape_collision_group_map[collision_group].append(shape) self.shape_collision_radius.append(self._shape_radius(type, scale, src)) if collision_filter_parent and body > -1 and body in self.joint_parents: for parent_body in self.joint_parents[body]: if parent_body > -1: for parent_shape in self.body_shapes[parent_body]: self.shape_collision_filter_pairs.add((parent_shape, shape)) if body == -1: has_ground_collision = False self.shape_ground_collision.append(has_ground_collision) self.shape_shape_collision.append(has_shape_collision) (m, c, I) = compute_shape_mass(type, scale, src, density, is_solid, thickness) self._update_body_mass(body, m, I, pos + c, rot) return shape # particles def add_particle( self, pos: Vec3, vel: Vec3, mass: float, radius: float = None, flags: wp.uint32 = PARTICLE_FLAG_ACTIVE ) -> int: """Adds a single particle to the model Args: pos: The initial position of the particle vel: The initial velocity of the particle mass: The mass of the particle radius: The radius of the particle used in collision handling. If None, the radius is set to the default value (:attr:`default_particle_radius`). flags: The flags that control the dynamical behavior of the particle, see PARTICLE_FLAG_* constants Note: Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics. Returns: The index of the particle in the system """ self.particle_q.append(pos) self.particle_qd.append(vel) self.particle_mass.append(mass) if radius is None: radius = self.default_particle_radius self.particle_radius.append(radius) self.particle_flags.append(flags) return len(self.particle_q) - 1 def add_spring(self, i: int, j, ke: float, kd: float, control: float): """Adds a spring between two particles in the system Args: i: The index of the first particle j: The index of the second particle ke: The elastic stiffness of the spring kd: The damping stiffness of the spring control: The actuation level of the spring Note: The spring is created with a rest-length based on the distance between the particles in their initial configuration. """ self.spring_indices.append(i) self.spring_indices.append(j) self.spring_stiffness.append(ke) self.spring_damping.append(kd) self.spring_control.append(control) # compute rest length p = self.particle_q[i] q = self.particle_q[j] delta = np.subtract(p, q) l = np.sqrt(np.dot(delta, delta)) self.spring_rest_length.append(l) def add_triangle( self, i: int, j: int, k: int, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ) -> float: """Adds a triangular FEM element between three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping parameters specified on the model. See model.tri_ke, model.tri_kd. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle Return: The area of the triangle Note: The triangle is created with a rest-length based on the distance between the particles in their initial configuration. """ # TODO: Expose elastic parameters on a per-element basis # compute basis for 2D rest pose p = self.particle_q[i] q = self.particle_q[j] r = self.particle_q[k] qp = q - p rp = r - p # construct basis aligned with the triangle n = wp.normalize(wp.cross(qp, rp)) e1 = wp.normalize(qp) e2 = wp.normalize(wp.cross(n, e1)) R = np.array((e1, e2)) M = np.array((qp, rp)) D = R @ M.T area = np.linalg.det(D) / 2.0 if area <= 0.0: print("inverted or degenerate triangle element") return 0.0 else: inv_D = np.linalg.inv(D) self.tri_indices.append((i, j, k)) self.tri_poses.append(inv_D.tolist()) self.tri_activations.append(0.0) self.tri_materials.append((tri_ke, tri_ka, tri_kd, tri_drag, tri_lift)) return area def add_triangles( self, i: List[int], j: List[int], k: List[int], tri_ke: Optional[List[float]] = None, tri_ka: Optional[List[float]] = None, tri_kd: Optional[List[float]] = None, tri_drag: Optional[List[float]] = None, tri_lift: Optional[List[float]] = None, ) -> List[float]: """Adds triangular FEM elements between groups of three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specified on the model. See model.tri_ke, model.tri_kd. Args: i: The indices of the first particle j: The indices of the second particle k: The indices of the third particle Return: The areas of the triangles Note: A triangle is created with a rest-length based on the distance between the particles in their initial configuration. """ # compute basis for 2D rest pose p = np.array(self.particle_q)[i] q = np.array(self.particle_q)[j] r = np.array(self.particle_q)[k] qp = q - p rp = r - p def normalized(a): l = np.linalg.norm(a, axis=-1, keepdims=True) l[l == 0] = 1.0 return a / l n = normalized(np.cross(qp, rp)) e1 = normalized(qp) e2 = normalized(np.cross(n, e1)) R = np.concatenate((e1[..., None], e2[..., None]), axis=-1) M = np.concatenate((qp[..., None], rp[..., None]), axis=-1) D = np.matmul(R.transpose(0, 2, 1), M) areas = np.linalg.det(D) / 2.0 areas[areas < 0.0] = 0.0 valid_inds = (areas > 0.0).nonzero()[0] if len(valid_inds) < len(areas): print("inverted or degenerate triangle elements") D[areas == 0.0] = np.eye(2)[None, ...] inv_D = np.linalg.inv(D) inds = np.concatenate((i[valid_inds, None], j[valid_inds, None], k[valid_inds, None]), axis=-1) self.tri_indices.extend(inds.tolist()) self.tri_poses.extend(inv_D[valid_inds].tolist()) self.tri_activations.extend([0.0] * len(valid_inds)) def init_if_none(arr, defaultValue): if arr is None: return [defaultValue] * len(areas) return arr tri_ke = init_if_none(tri_ke, self.default_tri_ke) tri_ka = init_if_none(tri_ka, self.default_tri_ka) tri_kd = init_if_none(tri_kd, self.default_tri_kd) tri_drag = init_if_none(tri_drag, self.default_tri_drag) tri_lift = init_if_none(tri_lift, self.default_tri_lift) self.tri_materials.extend( zip( np.array(tri_ke)[valid_inds], np.array(tri_ka)[valid_inds], np.array(tri_kd)[valid_inds], np.array(tri_drag)[valid_inds], np.array(tri_lift)[valid_inds], ) ) return areas.tolist() def add_tetrahedron( self, i: int, j: int, k: int, l: int, k_mu: float = 1.0e3, k_lambda: float = 1.0e3, k_damp: float = 0.0 ) -> float: """Adds a tetrahedral FEM element between four particles in the system. Tetrahedra are modeled as viscoelastic elements with a NeoHookean energy density based on [Smith et al. 2018]. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The element's damping stiffness Return: The volume of the tetrahedron Note: The tetrahedron is created with a rest-pose based on the particle's initial configuration """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) s = np.array(self.particle_q[l]) qp = q - p rp = r - p sp = s - p Dm = np.array((qp, rp, sp)).T volume = np.linalg.det(Dm) / 6.0 if volume <= 0.0: print("inverted tetrahedral element") else: inv_Dm = np.linalg.inv(Dm) self.tet_indices.append((i, j, k, l)) self.tet_poses.append(inv_Dm.tolist()) self.tet_activations.append(0.0) self.tet_materials.append((k_mu, k_lambda, k_damp)) return volume def add_edge( self, i: int, j: int, k: int, l: int, rest: float = None, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, ): """Adds a bending edge element between four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle rest: The rest angle across the edge in radians, if not specified it will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ # compute rest angle if rest is None: x1 = self.particle_q[i] x2 = self.particle_q[j] x3 = self.particle_q[k] x4 = self.particle_q[l] n1 = wp.normalize(wp.cross(x3 - x1, x4 - x1)) n2 = wp.normalize(wp.cross(x4 - x2, x3 - x2)) e = wp.normalize(x4 - x3) d = np.clip(np.dot(n2, n1), -1.0, 1.0) angle = math.acos(d) sign = np.sign(np.dot(np.cross(n2, n1), e)) rest = angle * sign self.edge_indices.append((i, j, k, l)) self.edge_rest_angle.append(rest) self.edge_bending_properties.append((edge_ke, edge_kd)) def add_edges( self, i, j, k, l, rest: Optional[List[float]] = None, edge_ke: Optional[List[float]] = None, edge_kd: Optional[List[float]] = None, ): """Adds bending edge elements between groups of four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The indices of the first particle j: The indices of the second particle k: The indices of the third particle l: The indices of the fourth particle rest: The rest angles across the edges in radians, if not specified they will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ if rest is None: # compute rest angle x1 = np.array(self.particle_q)[i] x2 = np.array(self.particle_q)[j] x3 = np.array(self.particle_q)[k] x4 = np.array(self.particle_q)[l] def normalized(a): l = np.linalg.norm(a, axis=-1, keepdims=True) l[l == 0] = 1.0 return a / l n1 = normalized(np.cross(x3 - x1, x4 - x1)) n2 = normalized(np.cross(x4 - x2, x3 - x2)) e = normalized(x4 - x3) def dot(a, b): return (a * b).sum(axis=-1) d = np.clip(dot(n2, n1), -1.0, 1.0) angle = np.arccos(d) sign = np.sign(dot(np.cross(n2, n1), e)) rest = angle * sign inds = np.concatenate((i[:, None], j[:, None], k[:, None], l[:, None]), axis=-1) self.edge_indices.extend(inds.tolist()) self.edge_rest_angle.extend(rest.tolist()) def init_if_none(arr, defaultValue): if arr is None: return [defaultValue] * len(i) return arr edge_ke = init_if_none(edge_ke, self.default_edge_ke) edge_kd = init_if_none(edge_kd, self.default_edge_kd) self.edge_bending_properties.extend(zip(edge_ke, edge_kd)) def add_cloth_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, cell_x: float, cell_y: float, mass: float, reverse_winding: bool = False, fix_left: bool = False, fix_right: bool = False, fix_top: bool = False, fix_bottom: bool = False, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, add_springs: bool = False, spring_ke: float = default_spring_ke, spring_kd: float = default_spring_kd, ): """Helper to create a regular planar cloth grid Creates a rectangular grid of particles with FEM triangles and bending elements automatically. Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction mass: The mass of each particle reverse_winding: Flip the winding of the mesh fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ def grid_index(x, y, dim_x): return y * dim_x + x start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) for y in range(0, dim_y + 1): for x in range(0, dim_x + 1): g = wp.vec3(x * cell_x, y * cell_y, 0.0) p = wp.quat_rotate(rot, g) + pos m = mass if x == 0 and fix_left: m = 0.0 elif x == dim_x and fix_right: m = 0.0 elif y == 0 and fix_bottom: m = 0.0 elif y == dim_y and fix_top: m = 0.0 self.add_particle(p, vel, m) if x > 0 and y > 0: if reverse_winding: tri1 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), ) tri2 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) self.add_triangle(*tri1, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) self.add_triangle(*tri2, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) else: tri1 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) tri2 = ( start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) self.add_triangle(*tri1, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) self.add_triangle(*tri2, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) end_tri = len(self.tri_indices) # bending constraints, could create these explicitly for a grid but this # is a good test of the adjacency structure adj = wp.utils.MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) spring_indices = set() for _k, e in adj.edges.items(): # skip open edges if e.f0 == -1 or e.f1 == -1: continue self.add_edge( e.o0, e.o1, e.v0, e.v1, edge_ke=edge_ke, edge_kd=edge_kd ) # opposite 0, opposite 1, vertex 0, vertex 1 spring_indices.add((min(e.o0, e.o1), max(e.o0, e.o1))) spring_indices.add((min(e.o0, e.v0), max(e.o0, e.v0))) spring_indices.add((min(e.o0, e.v1), max(e.o0, e.v1))) spring_indices.add((min(e.o1, e.v0), max(e.o1, e.v0))) spring_indices.add((min(e.o1, e.v1), max(e.o1, e.v1))) spring_indices.add((min(e.v0, e.v1), max(e.v0, e.v1))) if add_springs: for i, j in spring_indices: self.add_spring(i, j, spring_ke, spring_kd, control=0.0) def add_cloth_mesh( self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, add_springs: bool = False, spring_ke: float = default_spring_ke, spring_kd: float = default_spring_kd, ): """Helper to create a cloth model from a regular triangle mesh Creates one FEM triangle element and one bending element for every face and edge in the input triangle mesh Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space vertices: A list of vertex positions indices: A list of triangle indices, 3 entries per-face density: The density per-area of the mesh edge_callback: A user callback when an edge is created face_callback: A user callback when a face is created Note: The mesh should be two manifold. """ num_tris = int(len(indices) / 3) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # particles for v in vertices: p = wp.quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # triangles inds = start_vertex + np.array(indices) inds = inds.reshape(-1, 3) areas = self.add_triangles( inds[:, 0], inds[:, 1], inds[:, 2], [tri_ke] * num_tris, [tri_ka] * num_tris, [tri_kd] * num_tris, [tri_drag] * num_tris, [tri_lift] * num_tris, ) for t in range(num_tris): area = areas[t] self.particle_mass[inds[t, 0]] += density * area / 3.0 self.particle_mass[inds[t, 1]] += density * area / 3.0 self.particle_mass[inds[t, 2]] += density * area / 3.0 end_tri = len(self.tri_indices) adj = wp.utils.MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) edgeinds = np.fromiter( (x for e in adj.edges.values() if e.f0 != -1 and e.f1 != -1 for x in (e.o0, e.o1, e.v0, e.v1)), int, ).reshape(-1, 4) self.add_edges( edgeinds[:, 0], edgeinds[:, 1], edgeinds[:, 2], edgeinds[:, 0], edge_ke=[edge_ke] * len(edgeinds), edge_kd=[edge_kd] * len(edgeinds), ) if add_springs: spring_indices = set() for i, j, k, l in edgeinds: spring_indices.add((min(i, j), max(i, j))) spring_indices.add((min(i, k), max(i, k))) spring_indices.add((min(i, l), max(i, l))) spring_indices.add((min(j, k), max(j, k))) spring_indices.add((min(j, l), max(j, l))) spring_indices.add((min(k, l), max(k, l))) for i, j in spring_indices: self.add_spring(i, j, spring_ke, spring_kd, control=0.0) def add_particle_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, mass: float, jitter: float, radius_mean: float = default_particle_radius, radius_std: float = 0.0, ): rng = np.random.default_rng() for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v = wp.vec3(x * cell_x, y * cell_y, z * cell_z) m = mass p = wp.quat_rotate(rot, v) + pos + wp.vec3(rng.random(3) * jitter) if radius_std > 0.0: r = radius_mean + np.random.randn() * radius_std else: r = radius_mean self.add_particle(p, vel, m, r) def add_soft_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, density: float, k_mu: float, k_lambda: float, k_damp: float, fix_left: bool = False, fix_right: bool = False, fix_top: bool = False, fix_bottom: bool = False, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ): """Helper to create a rectangular tetrahedral FEM grid Creates a regular grid of FEM tetrahedra and surface triangles. Useful for example to create beams and sheets. Each hexahedral cell is decomposed into 5 tetrahedral elements. Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis dim_z: The number of rectangular cells along the z-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction cell_z: The width of each cell in the z-direction density: The density of each particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ start_vertex = len(self.particle_q) mass = cell_x * cell_y * cell_z * density for z in range(dim_z + 1): for y in range(dim_y + 1): for x in range(dim_x + 1): v = wp.vec3(x * cell_x, y * cell_y, z * cell_z) m = mass if fix_left and x == 0: m = 0.0 if fix_right and x == dim_x: m = 0.0 if fix_top and y == dim_y: m = 0.0 if fix_bottom and y == 0: m = 0.0 p = wp.quat_rotate(rot, v) + pos self.add_particle(p, vel, m) # dict of open faces faces = {} def add_face(i: int, j: int, k: int): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] def add_tet(i: int, j: int, k: int, l: int): self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp) add_face(i, k, j) add_face(j, k, l) add_face(i, j, l) add_face(i, l, k) def grid_index(x, y, z): return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v0 = grid_index(x, y, z) + start_vertex v1 = grid_index(x + 1, y, z) + start_vertex v2 = grid_index(x + 1, y, z + 1) + start_vertex v3 = grid_index(x, y, z + 1) + start_vertex v4 = grid_index(x, y + 1, z) + start_vertex v5 = grid_index(x + 1, y + 1, z) + start_vertex v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex v7 = grid_index(x, y + 1, z + 1) + start_vertex if (x & 1) ^ (y & 1) ^ (z & 1): add_tet(v0, v1, v4, v3) add_tet(v2, v3, v6, v1) add_tet(v5, v4, v1, v6) add_tet(v7, v6, v3, v4) add_tet(v4, v1, v6, v3) else: add_tet(v1, v2, v5, v0) add_tet(v3, v0, v7, v2) add_tet(v4, v7, v0, v5) add_tet(v6, v5, v2, v7) add_tet(v5, v2, v7, v0) # add triangles for _k, v in faces.items(): self.add_triangle(v[0], v[1], v[2], tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) def add_soft_mesh( self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ): """Helper to create a tetrahedral model from an input tetrahedral mesh Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space vertices: A list of vertex positions, array of 3D points indices: A list of tetrahedron indices, 4 entries per-element, flattened array density: The density per-area of the mesh k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness """ num_tets = int(len(indices) / 4) start_vertex = len(self.particle_q) # dict of open faces faces = {} def add_face(i, j, k): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] pos = wp.vec3(pos[0], pos[1], pos[2]) # add particles for v in vertices: v = wp.vec3(v[0], v[1], v[2]) p = wp.quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # add tetrahedra for t in range(num_tets): v0 = start_vertex + indices[t * 4 + 0] v1 = start_vertex + indices[t * 4 + 1] v2 = start_vertex + indices[t * 4 + 2] v3 = start_vertex + indices[t * 4 + 3] volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp) # distribute volume fraction to particles if volume > 0.0: self.particle_mass[v0] += density * volume / 4.0 self.particle_mass[v1] += density * volume / 4.0 self.particle_mass[v2] += density * volume / 4.0 self.particle_mass[v3] += density * volume / 4.0 # build open faces add_face(v0, v2, v1) add_face(v1, v2, v3) add_face(v0, v1, v3) add_face(v0, v3, v2) # add triangles for _k, v in faces.items(): try: self.add_triangle(v[0], v[1], v[2], tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) except np.linalg.LinAlgError: continue # incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body def _update_body_mass(self, i, m, I, p, q): if i == -1: return # find new COM new_mass = self.body_mass[i] + m if new_mass == 0.0: # no mass return new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass # shift inertia to new COM com_offset = new_com - self.body_com[i] shape_offset = new_com - p new_inertia = transform_inertia( self.body_mass[i], self.body_inertia[i], com_offset, wp.quat_identity() ) + transform_inertia(m, I, shape_offset, q) self.body_mass[i] = new_mass self.body_inertia[i] = new_inertia self.body_com[i] = new_com if new_mass > 0.0: self.body_inv_mass[i] = 1.0 / new_mass else: self.body_inv_mass[i] = 0.0 if any(x for x in new_inertia): self.body_inv_inertia[i] = wp.inverse(new_inertia) else: self.body_inv_inertia[i] = new_inertia def set_ground_plane( self, normal=None, offset=0.0, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, ): """ Creates a ground plane for the world. If the normal is not specified, the up_vector of the ModelBuilder is used. """ if normal is None: normal = self.up_vector self._ground_params = { "plane": (*normal, offset), "width": 0.0, "length": 0.0, "ke": ke, "kd": kd, "kf": kf, "mu": mu, "restitution": restitution, } def _create_ground_plane(self): ground_id = self.add_shape_plane(**self._ground_params) self._ground_created = True # disable ground collisions as they will be treated separately for i in range(self.shape_count - 1): self.shape_collision_filter_pairs.add((i, ground_id)) def finalize(self, device=None, requires_grad=False) -> Model: """Convert this builder object to a concrete model for simulation. After building simulation elements this method should be called to transfer all data to device memory ready for simulation. Args: device: The simulation device to use, e.g.: 'cpu', 'cuda' requires_grad: Whether to enable gradient computation for the model Returns: A model object. """ # ensure the env count is set correctly self.num_envs = max(1, self.num_envs) # add ground plane if not already created if not self._ground_created: self._create_ground_plane() # construct particle inv masses ms = np.array(self.particle_mass, dtype=np.float32) # static particles (with zero mass) have zero inverse mass particle_inv_mass = np.divide(1.0, ms, out=np.zeros_like(ms), where=ms != 0.0) with wp.ScopedDevice(device): # ------------------------------------- # construct Model (non-time varying) data m = Model(device) m.requires_grad = requires_grad m.ground_plane_params = self._ground_params["plane"] m.num_envs = self.num_envs # --------------------- # particles # state (initial) m.particle_q = wp.array(self.particle_q, dtype=wp.vec3, requires_grad=requires_grad) m.particle_qd = wp.array(self.particle_qd, dtype=wp.vec3, requires_grad=requires_grad) m.particle_mass = wp.array(self.particle_mass, dtype=wp.float32, requires_grad=requires_grad) m.particle_inv_mass = wp.array(particle_inv_mass, dtype=wp.float32, requires_grad=requires_grad) m.particle_radius = wp.array(self.particle_radius, dtype=wp.float32, requires_grad=requires_grad) m.particle_flags = wp.array([flag_to_int(f) for f in self.particle_flags], dtype=wp.uint32) m.particle_max_radius = np.max(self.particle_radius) if len(self.particle_radius) > 0 else 0.0 m.particle_max_velocity = self.particle_max_velocity # hash-grid for particle interactions m.particle_grid = wp.HashGrid(128, 128, 128) # --------------------- # collision geometry m.shape_transform = wp.array(self.shape_transform, dtype=wp.transform, requires_grad=requires_grad) m.shape_body = wp.array(self.shape_body, dtype=wp.int32) m.shape_visible = wp.array(self.shape_visible, dtype=wp.bool) m.body_shapes = self.body_shapes # build list of ids for geometry sources (meshes, sdfs) geo_sources = [] finalized_meshes = {} # do not duplicate meshes for geo in self.shape_geo_src: geo_hash = hash(geo) # avoid repeated hash computations if geo: if geo_hash not in finalized_meshes: finalized_meshes[geo_hash] = geo.finalize(device=device) geo_sources.append(finalized_meshes[geo_hash]) else: # add null pointer geo_sources.append(0) m.shape_geo.type = wp.array(self.shape_geo_type, dtype=wp.int32) m.shape_geo.source = wp.array(geo_sources, dtype=wp.uint64) m.shape_geo.scale = wp.array(self.shape_geo_scale, dtype=wp.vec3, requires_grad=requires_grad) m.shape_geo.is_solid = wp.array(self.shape_geo_is_solid, dtype=wp.uint8) m.shape_geo.thickness = wp.array(self.shape_geo_thickness, dtype=wp.float32, requires_grad=requires_grad) m.shape_geo_src = self.shape_geo_src # used for rendering # store refs to geometry m.geo_meshes = self.geo_meshes m.geo_sdfs = self.geo_sdfs m.shape_materials.ke = wp.array(self.shape_material_ke, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.kd = wp.array(self.shape_material_kd, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.kf = wp.array(self.shape_material_kf, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.ka = wp.array(self.shape_material_ka, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.mu = wp.array(self.shape_material_mu, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.restitution = wp.array( self.shape_material_restitution, dtype=wp.float32, requires_grad=requires_grad ) m.shape_collision_filter_pairs = self.shape_collision_filter_pairs m.shape_collision_group = self.shape_collision_group m.shape_collision_group_map = self.shape_collision_group_map m.shape_collision_radius = wp.array( self.shape_collision_radius, dtype=wp.float32, requires_grad=requires_grad ) m.shape_ground_collision = self.shape_ground_collision m.shape_shape_collision = self.shape_shape_collision # --------------------- # springs m.spring_indices = wp.array(self.spring_indices, dtype=wp.int32) m.spring_rest_length = wp.array(self.spring_rest_length, dtype=wp.float32, requires_grad=requires_grad) m.spring_stiffness = wp.array(self.spring_stiffness, dtype=wp.float32, requires_grad=requires_grad) m.spring_damping = wp.array(self.spring_damping, dtype=wp.float32, requires_grad=requires_grad) m.spring_control = wp.array(self.spring_control, dtype=wp.float32, requires_grad=requires_grad) # --------------------- # triangles m.tri_indices = wp.array(self.tri_indices, dtype=wp.int32) m.tri_poses = wp.array(self.tri_poses, dtype=wp.mat22, requires_grad=requires_grad) m.tri_activations = wp.array(self.tri_activations, dtype=wp.float32, requires_grad=requires_grad) m.tri_materials = wp.array(self.tri_materials, dtype=wp.float32, requires_grad=requires_grad) # --------------------- # edges m.edge_indices = wp.array(self.edge_indices, dtype=wp.int32) m.edge_rest_angle = wp.array(self.edge_rest_angle, dtype=wp.float32, requires_grad=requires_grad) m.edge_bending_properties = wp.array( self.edge_bending_properties, dtype=wp.float32, requires_grad=requires_grad ) # --------------------- # tetrahedra m.tet_indices = wp.array(self.tet_indices, dtype=wp.int32) m.tet_poses = wp.array(self.tet_poses, dtype=wp.mat33, requires_grad=requires_grad) m.tet_activations = wp.array(self.tet_activations, dtype=wp.float32, requires_grad=requires_grad) m.tet_materials = wp.array(self.tet_materials, dtype=wp.float32, requires_grad=requires_grad) # ----------------------- # muscles # close the muscle waypoint indices muscle_start = copy.copy(self.muscle_start) muscle_start.append(len(self.muscle_bodies)) m.muscle_start = wp.array(muscle_start, dtype=wp.int32) m.muscle_params = wp.array(self.muscle_params, dtype=wp.float32, requires_grad=requires_grad) m.muscle_bodies = wp.array(self.muscle_bodies, dtype=wp.int32) m.muscle_points = wp.array(self.muscle_points, dtype=wp.vec3, requires_grad=requires_grad) m.muscle_activations = wp.array(self.muscle_activations, dtype=wp.float32, requires_grad=requires_grad) # -------------------------------------- # rigid bodies m.body_q = wp.array(self.body_q, dtype=wp.transform, requires_grad=requires_grad) m.body_qd = wp.array(self.body_qd, dtype=wp.spatial_vector, requires_grad=requires_grad) m.body_inertia = wp.array(self.body_inertia, dtype=wp.mat33, requires_grad=requires_grad) m.body_inv_inertia = wp.array(self.body_inv_inertia, dtype=wp.mat33, requires_grad=requires_grad) m.body_mass = wp.array(self.body_mass, dtype=wp.float32, requires_grad=requires_grad) m.body_inv_mass = wp.array(self.body_inv_mass, dtype=wp.float32, requires_grad=requires_grad) m.body_com = wp.array(self.body_com, dtype=wp.vec3, requires_grad=requires_grad) m.body_name = self.body_name # joints m.joint_type = wp.array(self.joint_type, dtype=wp.int32) m.joint_parent = wp.array(self.joint_parent, dtype=wp.int32) m.joint_child = wp.array(self.joint_child, dtype=wp.int32) m.joint_X_p = wp.array(self.joint_X_p, dtype=wp.transform, requires_grad=requires_grad) m.joint_X_c = wp.array(self.joint_X_c, dtype=wp.transform, requires_grad=requires_grad) m.joint_axis_start = wp.array(self.joint_axis_start, dtype=wp.int32) m.joint_axis_dim = wp.array(np.array(self.joint_axis_dim), dtype=wp.int32, ndim=2) m.joint_axis = wp.array(self.joint_axis, dtype=wp.vec3, requires_grad=requires_grad) m.joint_q = wp.array(self.joint_q, dtype=wp.float32, requires_grad=requires_grad) m.joint_qd = wp.array(self.joint_qd, dtype=wp.float32, requires_grad=requires_grad) m.joint_name = self.joint_name # dynamics properties m.joint_armature = wp.array(self.joint_armature, dtype=wp.float32, requires_grad=requires_grad) m.joint_target_ke = wp.array(self.joint_target_ke, dtype=wp.float32, requires_grad=requires_grad) m.joint_target_kd = wp.array(self.joint_target_kd, dtype=wp.float32, requires_grad=requires_grad) m.joint_axis_mode = wp.array(self.joint_axis_mode, dtype=wp.int32) m.joint_act = wp.array(self.joint_act, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_lower = wp.array(self.joint_limit_lower, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_upper = wp.array(self.joint_limit_upper, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_ke = wp.array(self.joint_limit_ke, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_kd = wp.array(self.joint_limit_kd, dtype=wp.float32, requires_grad=requires_grad) m.joint_linear_compliance = wp.array( self.joint_linear_compliance, dtype=wp.float32, requires_grad=requires_grad ) m.joint_angular_compliance = wp.array( self.joint_angular_compliance, dtype=wp.float32, requires_grad=requires_grad ) m.joint_enabled = wp.array(self.joint_enabled, dtype=wp.int32) # 'close' the start index arrays with a sentinel value joint_q_start = copy.copy(self.joint_q_start) joint_q_start.append(self.joint_coord_count) joint_qd_start = copy.copy(self.joint_qd_start) joint_qd_start.append(self.joint_dof_count) articulation_start = copy.copy(self.articulation_start) articulation_start.append(self.joint_count) m.joint_q_start = wp.array(joint_q_start, dtype=wp.int32) m.joint_qd_start = wp.array(joint_qd_start, dtype=wp.int32) m.articulation_start = wp.array(articulation_start, dtype=wp.int32) # counts m.joint_count = self.joint_count m.joint_axis_count = self.joint_axis_count m.joint_dof_count = self.joint_dof_count m.joint_coord_count = self.joint_coord_count m.particle_count = len(self.particle_q) m.body_count = len(self.body_q) m.shape_count = len(self.shape_geo_type) m.tri_count = len(self.tri_poses) m.tet_count = len(self.tet_poses) m.edge_count = len(self.edge_rest_angle) m.spring_count = len(self.spring_rest_length) m.muscle_count = len(self.muscle_start) m.articulation_count = len(self.articulation_start) # contacts if m.particle_count: m.allocate_soft_contacts(self.soft_contact_max, requires_grad=requires_grad) m.find_shape_contact_pairs() if self.num_rigid_contacts_per_env is None: contact_count, limited_contact_count = m.count_contact_points() else: contact_count = limited_contact_count = self.num_rigid_contacts_per_env * self.num_envs if contact_count: if wp.config.verbose: print(f"Allocating {contact_count} rigid contacts.") m.allocate_rigid_contacts( count=contact_count, limited_contact_count=limited_contact_count, requires_grad=requires_grad ) m.rigid_mesh_contact_max = self.rigid_mesh_contact_max m.rigid_contact_margin = self.rigid_contact_margin m.rigid_contact_torsional_friction = self.rigid_contact_torsional_friction m.rigid_contact_rolling_friction = self.rigid_contact_rolling_friction # enable ground plane m.ground_plane = wp.array(self._ground_params["plane"], dtype=wp.float32, requires_grad=requires_grad) m.gravity = np.array(self.up_vector) * self.gravity m.enable_tri_collisions = False return m
186,281
Python
40.636567
260
0.585041
NVIDIA/warp/warp/sim/integrator_euler.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This module contains time-integration objects for simulating models + state forward in time. """ import warp as wp from .collide import triangle_closest_point_barycentric from .integrator import Integrator from .model import PARTICLE_FLAG_ACTIVE, Control, Model, ModelShapeGeometry, ModelShapeMaterials, State from .particles import eval_particle_forces from .utils import quat_decompose, quat_twist @wp.kernel def eval_springs( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), spring_indices: wp.array(dtype=int), spring_rest_lengths: wp.array(dtype=float), spring_stiffness: wp.array(dtype=float), spring_damping: wp.array(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = spring_indices[tid * 2 + 0] j = spring_indices[tid * 2 + 1] ke = spring_stiffness[tid] kd = spring_damping[tid] rest = spring_rest_lengths[tid] xi = x[i] xj = x[j] vi = v[i] vj = v[j] xij = xi - xj vij = vi - vj l = wp.length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = wp.dot(dir, vij) # damping based on relative velocity fs = dir * (ke * c + kd * dcdt) wp.atomic_sub(f, i, fs) wp.atomic_add(f, j, fs) @wp.kernel def eval_triangles( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), pose: wp.array(dtype=wp.mat22), activation: wp.array(dtype=float), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() k_mu = materials[tid, 0] k_lambda = materials[tid, 1] k_damp = materials[tid, 2] k_drag = materials[tid, 3] k_lift = materials[tid, 4] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] x0 = x[i] # point zero x1 = x[j] # point one x2 = x[k] # point two v0 = v[i] # vel zero v1 = v[j] # vel one v2 = v[k] # vel two x10 = x1 - x0 # barycentric coordinates (centered at p) x20 = x2 - x0 v10 = v1 - v0 v20 = v2 - v0 Dm = pose[tid] inv_rest_area = wp.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1) rest_area = 1.0 / inv_rest_area # scale stiffness coefficients to account for area k_mu = k_mu * rest_area k_lambda = k_lambda * rest_area k_damp = k_damp * rest_area # F = Xs*Xm^-1 F1 = x10 * Dm[0, 0] + x20 * Dm[1, 0] F2 = x10 * Dm[0, 1] + x20 * Dm[1, 1] # dFdt = Vs*Xm^-1 dFdt1 = v10 * Dm[0, 0] + v20 * Dm[1, 0] dFdt2 = v10 * Dm[0, 1] + v20 * Dm[1, 1] # deviatoric PK1 + damping term P1 = F1 * k_mu + dFdt1 * k_damp P2 = F2 * k_mu + dFdt2 * k_damp # ----------------------------- # St. Venant-Kirchoff # # Green strain, F'*F-I # e00 = dot(f1, f1) - 1.0 # e10 = dot(f2, f1) # e01 = dot(f1, f2) # e11 = dot(f2, f2) - 1.0 # E = wp.mat22(e00, e01, # e10, e11) # # local forces (deviatoric part) # T = wp.mul(E, wp.transpose(Dm)) # # spatial forces, F*T # fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0 # fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0 # alpha = 1.0 # ----------------------------- # Baraff & Witkin, note this model is not isotropic # c1 = length(f1) - 1.0 # c2 = length(f2) - 1.0 # f1 = normalize(f1)*c1*k1 # f2 = normalize(f2)*c2*k1 # fq = f1*Dm[0,0] + f2*Dm[0,1] # fr = f1*Dm[1,0] + f2*Dm[1,1] # ----------------------------- # Neo-Hookean (with rest stability) # force = P*Dm' f1 = P1 * Dm[0, 0] + P2 * Dm[0, 1] f2 = P1 * Dm[1, 0] + P2 * Dm[1, 1] alpha = 1.0 + k_mu / k_lambda # ----------------------------- # Area Preservation n = wp.cross(x10, x20) area = wp.length(n) * 0.5 # actuation act = activation[tid] # J-alpha c = area * inv_rest_area - alpha + act # dJdx n = wp.normalize(n) dcdq = wp.cross(x20, n) * inv_rest_area * 0.5 dcdr = wp.cross(n, x10) * inv_rest_area * 0.5 f_area = k_lambda * c # ----------------------------- # Area Damping dcdt = wp.dot(dcdq, v1) + wp.dot(dcdr, v2) - wp.dot(dcdq + dcdr, v0) f_damp = k_damp * dcdt f1 = f1 + dcdq * (f_area + f_damp) f2 = f2 + dcdr * (f_area + f_damp) f0 = f1 + f2 # ----------------------------- # Lift + Drag vmid = (v0 + v1 + v2) * 0.3333 vdir = wp.normalize(vmid) f_drag = vmid * (k_drag * area * wp.abs(wp.dot(n, vmid))) f_lift = n * (k_lift * area * (wp.HALF_PI - wp.acos(wp.dot(n, vdir)))) * wp.dot(vmid, vmid) f0 = f0 - f_drag - f_lift f1 = f1 + f_drag + f_lift f2 = f2 + f_drag + f_lift # apply forces wp.atomic_add(f, i, f0) wp.atomic_sub(f, j, f1) wp.atomic_sub(f, k, f2) # @wp.func # def triangle_closest_point(a: wp.vec3, b: wp.vec3, c: wp.vec3, p: wp.vec3): # ab = b - a # ac = c - a # ap = p - a # d1 = wp.dot(ab, ap) # d2 = wp.dot(ac, ap) # if (d1 <= 0.0 and d2 <= 0.0): # return a # bp = p - b # d3 = wp.dot(ab, bp) # d4 = wp.dot(ac, bp) # if (d3 >= 0.0 and d4 <= d3): # return b # vc = d1 * d4 - d3 * d2 # v = d1 / (d1 - d3) # if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0): # return a + ab * v # cp = p - c # d5 = dot(ab, cp) # d6 = dot(ac, cp) # if (d6 >= 0.0 and d5 <= d6): # return c # vb = d5 * d2 - d1 * d6 # w = d2 / (d2 - d6) # if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0): # return a + ac * w # va = d3 * d6 - d5 * d4 # w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) # if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0): # return b + (c - b) * w # denom = 1.0 / (va + vb + vc) # v = vb * denom # w = vc * denom # return a + ab * v + ac * w @wp.kernel def eval_triangles_contact( # idx : wp.array(dtype=int), # list of indices for colliding particles num_particles: int, # size of particles x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # k_mu = materials[face_no, 0] # k_lambda = materials[face_no, 1] # k_damp = materials[face_no, 2] # k_drag = materials[face_no, 3] # k_lift = materials[face_no, 4] # at the moment, just one particle pos = x[particle_no] i = indices[face_no, 0] j = indices[face_no, 1] k = indices[face_no, 2] if i == particle_no or j == particle_no or k == particle_no: return p = x[i] # point zero q = x[j] # point one r = x[k] # point two # vp = v[i] # vel zero # vq = v[j] # vel one # vr = v[k] # vel two # qp = q-p # barycentric coordinates (centered at p) # rp = r-p bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest dist = wp.dot(diff, diff) n = wp.normalize(diff) c = wp.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface # c = wp.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) fn = n * c * 1e5 wp.atomic_sub(f, particle_no, fn) # # apply forces (could do - f / 3 here) wp.atomic_add(f, i, fn * bary[0]) wp.atomic_add(f, j, fn * bary[1]) wp.atomic_add(f, k, fn * bary[2]) @wp.kernel def eval_triangles_body_contacts( num_particles: int, # number of particles (size of contact_point) x: wp.array(dtype=wp.vec3), # position of particles v: wp.array(dtype=wp.vec3), indices: wp.array(dtype=int), # triangle indices body_x: wp.array(dtype=wp.vec3), # body body positions body_r: wp.array(dtype=wp.quat), body_v: wp.array(dtype=wp.vec3), body_w: wp.array(dtype=wp.vec3), contact_body: wp.array(dtype=int), contact_point: wp.array(dtype=wp.vec3), # position of contact points relative to body contact_dist: wp.array(dtype=float), contact_mat: wp.array(dtype=int), materials: wp.array(dtype=float), # body_f : wp.array(dtype=wp.vec3), # body_t : wp.array(dtype=wp.vec3), tri_f: wp.array(dtype=wp.vec3), ): tid = wp.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # ----------------------- # load body body point c_body = contact_body[particle_no] c_point = contact_point[particle_no] c_dist = contact_dist[particle_no] c_mat = contact_mat[particle_no] # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = materials[c_mat * 4 + 0] # restitution coefficient kd = materials[c_mat * 4 + 1] # damping coefficient kf = materials[c_mat * 4 + 2] # friction coefficient mu = materials[c_mat * 4 + 3] # coulomb friction x0 = body_x[c_body] # position of colliding body r0 = body_r[c_body] # orientation of colliding body v0 = body_v[c_body] w0 = body_w[c_body] # transform point to world space pos = x0 + wp.quat_rotate(r0, c_point) # use x0 as center, everything is offset from center of mass # moment arm r = pos - x0 # basically just c_point in the new coordinates rhat = wp.normalize(r) pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # contact point velocity dpdt = v0 + wp.cross(w0, r) # this is body velocity cross offset, so it's the velocity of the contact point. # ----------------------- # load triangle i = indices[face_no * 3 + 0] j = indices[face_no * 3 + 1] k = indices[face_no * 3 + 2] p = x[i] # point zero q = x[j] # point one r = x[k] # point two vp = v[i] # vel zero vq = v[j] # vel one vr = v[k] # vel two bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest # vector from tri to point dist = wp.dot(diff, diff) # squared distance n = wp.normalize(diff) # points into the object c = wp.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface # c = wp.leaky_min(wp.dot(n, x0)-0.01, 0.0, 0.0) # fn = n * c * 1e6 # points towards cloth (both n and c are negative) # wp.atomic_sub(tri_f, particle_no, fn) fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative) vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity vrel = vtri - dpdt vn = wp.dot(n, vrel) # velocity component of body in negative normal direction vt = vrel - n * vn # velocity component not in normal direction # contact damping fd = -wp.max(vn, 0.0) * kd * wp.step(c) # again, negative, into the ground # # viscous friction # ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) upper = -lower nx = wp.cross(n, wp.vec3(0.0, 0.0, 1.0)) # basis vectors for tangent nz = wp.cross(n, wp.vec3(1.0, 0.0, 0.0)) vx = wp.clamp(wp.dot(nx * kf, vt), lower, upper) vz = wp.clamp(wp.dot(nz * kf, vt), lower, upper) ft = (nx * vx + nz * vz) * (-wp.step(c)) # wp.vec3(vx, 0.0, vz)*wp.step(c) # # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # #ft = wp.normalize(vt)*wp.min(kf*wp.length(vt), -mu*c*ke) f_total = n * (fn + fd) + ft wp.atomic_add(tri_f, i, f_total * bary[0]) wp.atomic_add(tri_f, j, f_total * bary[1]) wp.atomic_add(tri_f, k, f_total * bary[2]) @wp.kernel def eval_bending( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), rest: wp.array(dtype=float), bending_properties: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() ke = bending_properties[tid, 0] kd = bending_properties[tid, 1] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] rest_angle = rest[tid] x1 = x[i] x2 = x[j] x3 = x[k] x4 = x[l] v1 = v[i] v2 = v[j] v3 = v[k] v4 = v[l] n1 = wp.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = wp.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = wp.length(n1) n2_length = wp.length(n2) if n1_length < 1.0e-6 or n2_length < 1.0e-6: return rcp_n1 = 1.0 / n1_length rcp_n2 = 1.0 / n2_length cos_theta = wp.dot(n1, n2) * rcp_n1 * rcp_n2 n1 = n1 * rcp_n1 * rcp_n1 n2 = n2 * rcp_n2 * rcp_n2 e = x4 - x3 e_hat = wp.normalize(e) e_length = wp.length(e) s = wp.sign(wp.dot(wp.cross(n2, n1), e_hat)) angle = wp.acos(cos_theta) * s d1 = n1 * e_length d2 = n2 * e_length d3 = n1 * wp.dot(x1 - x4, e_hat) + n2 * wp.dot(x2 - x4, e_hat) d4 = n1 * wp.dot(x3 - x1, e_hat) + n2 * wp.dot(x3 - x2, e_hat) # elastic f_elastic = ke * (angle - rest_angle) # damping f_damp = kd * (wp.dot(d1, v1) + wp.dot(d2, v2) + wp.dot(d3, v3) + wp.dot(d4, v4)) # total force, proportional to edge length f_total = -e_length * (f_elastic + f_damp) wp.atomic_add(f, i, d1 * f_total) wp.atomic_add(f, j, d2 * f_total) wp.atomic_add(f, k, d3 * f_total) wp.atomic_add(f, l, d4 * f_total) @wp.kernel def eval_tetrahedra( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), pose: wp.array(dtype=wp.mat33), activation: wp.array(dtype=float), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] act = activation[tid] k_mu = materials[tid, 0] k_lambda = materials[tid, 1] k_damp = materials[tid, 2] x0 = x[i] x1 = x[j] x2 = x[k] x3 = x[l] v0 = v[i] v1 = v[j] v2 = v[k] v3 = v[l] x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = wp.mat33(x10, x20, x30) Dm = pose[tid] inv_rest_volume = wp.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda) # scale stiffness coefficients to account for area k_mu = k_mu * rest_volume k_lambda = k_lambda * rest_volume k_damp = k_damp * rest_volume # F = Xs*Xm^-1 F = Ds * Dm dFdt = wp.mat33(v10, v20, v30) * Dm col1 = wp.vec3(F[0, 0], F[1, 0], F[2, 0]) col2 = wp.vec3(F[0, 1], F[1, 1], F[2, 1]) col3 = wp.vec3(F[0, 2], F[1, 2], F[2, 2]) # ----------------------------- # Neo-Hookean (with rest stability [Smith et al 2018]) Ic = wp.dot(col1, col1) + wp.dot(col2, col2) + wp.dot(col3, col3) # deviatoric part P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp H = P * wp.transpose(Dm) f1 = wp.vec3(H[0, 0], H[1, 0], H[2, 0]) f2 = wp.vec3(H[0, 1], H[1, 1], H[2, 1]) f3 = wp.vec3(H[0, 2], H[1, 2], H[2, 2]) # ----------------------------- # C_sqrt # alpha = 1.0 # r_s = wp.sqrt(wp.abs(dot(col1, col1) + dot(col2, col2) + dot(col3, col3) - 3.0)) # f1 = wp.vec3() # f2 = wp.vec3() # f3 = wp.vec3() # if (r_s > 0.0): # r_s_inv = 1.0/r_s # C = r_s # dCdx = F*wp.transpose(Dm)*r_s_inv*wp.sign(r_s) # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ----------------------------- # C_spherical # alpha = 1.0 # r_s = wp.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # r_s_inv = 1.0/r_s # C = r_s - wp.sqrt(3.0) # dCdx = F*wp.transpose(Dm)*r_s_inv # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ---------------------------- # C_D # alpha = 1.0 # r_s = wp.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # C = r_s*r_s - 3.0 # dCdx = F*wp.transpose(Dm)*2.0 # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ---------------------------- # Hookean # alpha = 1.0 # I = wp.mat33(wp.vec3(1.0, 0.0, 0.0), # wp.vec3(0.0, 1.0, 0.0), # wp.vec3(0.0, 0.0, 1.0)) # P = (F + wp.transpose(F) + I*(0.0-2.0))*k_mu # H = P * wp.transpose(Dm) # f1 = wp.vec3(H[0, 0], H[1, 0], H[2, 0]) # f2 = wp.vec3(H[0, 1], H[1, 1], H[2, 1]) # f3 = wp.vec3(H[0, 2], H[1, 2], H[2, 2]) # hydrostatic part J = wp.determinant(F) # print(J) s = inv_rest_volume / 6.0 dJdx1 = wp.cross(x20, x30) * s dJdx2 = wp.cross(x30, x10) * s dJdx3 = wp.cross(x10, x20) * s f_volume = (J - alpha + act) * k_lambda f_damp = (wp.dot(dJdx1, v1) + wp.dot(dJdx2, v2) + wp.dot(dJdx3, v3)) * k_damp f_total = f_volume + f_damp f1 = f1 + dJdx1 * f_total f2 = f2 + dJdx2 * f_total f3 = f3 + dJdx3 * f_total f0 = -(f1 + f2 + f3) # apply forces wp.atomic_sub(f, i, f0) wp.atomic_sub(f, j, f1) wp.atomic_sub(f, k, f2) wp.atomic_sub(f, l, f3) @wp.kernel def eval_particle_ground_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), ke: float, kd: float, kf: float, mu: float, ground: wp.array(dtype=float), # outputs f: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[tid] v = particle_v[tid] radius = particle_radius[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.min(wp.dot(n, x) + ground[3] - radius, 0.0) vn = wp.dot(n, v) jn = c * ke if c >= 0.0: return jd = min(vn, 0.0) * kd # contact force fn = jn + jd # friction force vt = v - n * vn vs = wp.length(vt) if vs > 0.0: vt = vt / vs # Coulomb condition ft = wp.min(vs * kf, mu * wp.abs(fn)) # total force f[tid] = f[tid] - n * fn - vt * ft @wp.kernel def eval_particle_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_com: wp.array(dtype=wp.vec3), shape_body: wp.array(dtype=int), shape_materials: ModelShapeMaterials, particle_ke: float, particle_kd: float, particle_kf: float, particle_mu: float, particle_ka: float, contact_count: wp.array(dtype=int), contact_particle: wp.array(dtype=int), contact_shape: wp.array(dtype=int), contact_body_pos: wp.array(dtype=wp.vec3), contact_body_vel: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_max: int, # outputs particle_f: wp.array(dtype=wp.vec3), body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = min(contact_max, contact_count[0]) if tid >= count: return shape_index = contact_shape[tid] body_index = shape_body[shape_index] particle_index = contact_particle[tid] if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return px = particle_x[particle_index] pv = particle_v[particle_index] X_wb = wp.transform_identity() X_com = wp.vec3() body_v_s = wp.spatial_vector() if body_index >= 0: X_wb = body_q[body_index] X_com = body_com[body_index] body_v_s = body_qd[body_index] # body position in world space bx = wp.transform_point(X_wb, contact_body_pos[tid]) r = bx - wp.transform_point(X_wb, X_com) n = contact_normal[tid] c = wp.dot(n, px - bx) - particle_radius[tid] if c > particle_ka: return # take average material properties of shape and particle parameters ke = 0.5 * (particle_ke + shape_materials.ke[shape_index]) kd = 0.5 * (particle_kd + shape_materials.kd[shape_index]) kf = 0.5 * (particle_kf + shape_materials.kf[shape_index]) mu = 0.5 * (particle_mu + shape_materials.mu[shape_index]) body_w = wp.spatial_top(body_v_s) body_v = wp.spatial_bottom(body_v_s) # compute the body velocity at the particle position bv = body_v + wp.cross(body_w, r) + wp.transform_vector(X_wb, contact_body_vel[tid]) # relative velocity v = pv - bv # decompose relative velocity vn = wp.dot(n, v) vt = v - n * vn # contact elastic fn = n * c * ke # contact damping fd = n * wp.min(vn, 0.0) * kd # viscous friction # ft = vt*kf # Coulomb friction (box) # lower = mu * c * ke # upper = -lower # vx = wp.clamp(wp.dot(wp.vec3(kf, 0.0, 0.0), vt), lower, upper) # vz = wp.clamp(wp.dot(wp.vec3(0.0, 0.0, kf), vt), lower, upper) # ft = wp.vec3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) ft = wp.normalize(vt) * wp.min(kf * wp.length(vt), abs(mu * c * ke)) f_total = fn + (fd + ft) t_total = wp.cross(r, f_total) wp.atomic_sub(particle_f, particle_index, f_total) if body_index >= 0: wp.atomic_add(body_f, body_index, wp.spatial_vector(t_total, f_total)) @wp.kernel def eval_rigid_contacts( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), shape_materials: ModelShapeMaterials, geo: ModelShapeGeometry, shape_body: wp.array(dtype=int), contact_count: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), force_in_world_frame: bool, # outputs body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = contact_count[0] if tid >= count: return # retrieve contact thickness, compute average contact material properties ke = 0.0 # contact normal force stiffness kd = 0.0 # damping coefficient kf = 0.0 # friction force stiffness ka = 0.0 # adhesion distance mu = 0.0 # friction coefficient mat_nonzero = 0 thickness_a = 0.0 thickness_b = 0.0 shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: return body_a = -1 body_b = -1 if shape_a >= 0: mat_nonzero += 1 ke += shape_materials.ke[shape_a] kd += shape_materials.kd[shape_a] kf += shape_materials.kf[shape_a] ka += shape_materials.ka[shape_a] mu += shape_materials.mu[shape_a] thickness_a = geo.thickness[shape_a] body_a = shape_body[shape_a] if shape_b >= 0: mat_nonzero += 1 ke += shape_materials.ke[shape_b] kd += shape_materials.kd[shape_b] kf += shape_materials.kf[shape_b] ka += shape_materials.ka[shape_b] mu += shape_materials.mu[shape_b] thickness_b = geo.thickness[shape_b] body_b = shape_body[shape_b] if mat_nonzero > 0: ke /= float(mat_nonzero) kd /= float(mat_nonzero) kf /= float(mat_nonzero) ka /= float(mat_nonzero) mu /= float(mat_nonzero) # contact normal in world space n = contact_normal[tid] bx_a = contact_point0[tid] bx_b = contact_point1[tid] if body_a >= 0: X_wb_a = body_q[body_a] X_com_a = body_com[body_a] bx_a = wp.transform_point(X_wb_a, bx_a) - thickness_a * n r_a = bx_a - wp.transform_point(X_wb_a, X_com_a) if body_b >= 0: X_wb_b = body_q[body_b] X_com_b = body_com[body_b] bx_b = wp.transform_point(X_wb_b, bx_b) + thickness_b * n r_b = bx_b - wp.transform_point(X_wb_b, X_com_b) d = wp.dot(n, bx_a - bx_b) if d >= ka: return # compute contact point velocity bv_a = wp.vec3(0.0) bv_b = wp.vec3(0.0) if body_a >= 0: body_v_s_a = body_qd[body_a] body_w_a = wp.spatial_top(body_v_s_a) body_v_a = wp.spatial_bottom(body_v_s_a) if force_in_world_frame: bv_a = body_v_a + wp.cross(body_w_a, bx_a) else: bv_a = body_v_a + wp.cross(body_w_a, r_a) if body_b >= 0: body_v_s_b = body_qd[body_b] body_w_b = wp.spatial_top(body_v_s_b) body_v_b = wp.spatial_bottom(body_v_s_b) if force_in_world_frame: bv_b = body_v_b + wp.cross(body_w_b, bx_b) else: bv_b = body_v_b + wp.cross(body_w_b, r_b) # relative velocity v = bv_a - bv_b # print(v) # decompose relative velocity vn = wp.dot(n, v) vt = v - n * vn # contact elastic fn = d * ke # contact damping fd = wp.min(vn, 0.0) * kd * wp.step(d) # viscous friction # ft = vt*kf # Coulomb friction (box) # lower = mu * d * ke # upper = -lower # vx = wp.clamp(wp.dot(wp.vec3(kf, 0.0, 0.0), vt), lower, upper) # vz = wp.clamp(wp.dot(wp.vec3(0.0, 0.0, kf), vt), lower, upper) # ft = wp.vec3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # ft = wp.normalize(vt)*wp.min(kf*wp.length(vt), abs(mu*d*ke)) ft = wp.vec3(0.0) if d < 0.0: ft = wp.normalize(vt) * wp.min(kf * wp.length(vt), -mu * (fn + fd)) f_total = n * (fn + fd) + ft # f_total = n * fn if body_a >= 0: if force_in_world_frame: wp.atomic_add(body_f, body_a, wp.spatial_vector(wp.cross(bx_a, f_total), f_total)) else: wp.atomic_sub(body_f, body_a, wp.spatial_vector(wp.cross(r_a, f_total), f_total)) if body_b >= 0: if force_in_world_frame: wp.atomic_sub(body_f, body_b, wp.spatial_vector(wp.cross(bx_b, f_total), f_total)) else: wp.atomic_add(body_f, body_b, wp.spatial_vector(wp.cross(r_b, f_total), f_total)) @wp.func def eval_joint_force( q: float, qd: float, act: float, target_ke: float, target_kd: float, limit_lower: float, limit_upper: float, limit_ke: float, limit_kd: float, mode: wp.int32, ) -> float: """Joint force evaluation for a single degree of freedom.""" limit_f = 0.0 damping_f = 0.0 target_f = 0.0 if mode == wp.sim.JOINT_MODE_FORCE: target_f = act elif mode == wp.sim.JOINT_MODE_TARGET_POSITION: target_f = target_ke * (act - q) - target_kd * qd elif mode == wp.sim.JOINT_MODE_TARGET_VELOCITY: target_f = target_ke * (act - qd) # compute limit forces, damping only active when limit is violated if q < limit_lower: limit_f = limit_ke * (limit_lower - q) damping_f = -limit_kd * qd if mode == wp.sim.JOINT_MODE_TARGET_VELOCITY: target_f = 0.0 # override target force when limit is violated elif q > limit_upper: limit_f = limit_ke * (limit_upper - q) damping_f = -limit_kd * qd if mode == wp.sim.JOINT_MODE_TARGET_VELOCITY: target_f = 0.0 # override target force when limit is violated return limit_f + damping_f + target_f @wp.kernel def eval_body_joints( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_enabled: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis_mode: wp.array(dtype=int), joint_act: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_limit_ke: wp.array(dtype=float), joint_limit_kd: wp.array(dtype=float), joint_attach_ke: float, joint_attach_kd: float, body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] # early out for free joints if joint_enabled[tid] == 0 or type == wp.sim.JOINT_FREE: return c_child = joint_child[tid] c_parent = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj r_p = wp.vec3() w_p = wp.vec3() v_p = wp.vec3() # parent transform and moment arm if c_parent >= 0: X_wp = body_q[c_parent] * X_wp r_p = wp.transform_get_translation(X_wp) - wp.transform_point(body_q[c_parent], body_com[c_parent]) twist_p = body_qd[c_parent] w_p = wp.spatial_top(twist_p) v_p = wp.spatial_bottom(twist_p) + wp.cross(w_p, r_p) # child transform and moment arm X_wc = body_q[c_child] * X_cj r_c = wp.transform_get_translation(X_wc) - wp.transform_point(body_q[c_child], body_com[c_child]) twist_c = body_qd[c_child] w_c = wp.spatial_top(twist_c) v_c = wp.spatial_bottom(twist_c) + wp.cross(w_c, r_c) # joint properties (for 1D joints) # q_start = joint_q_start[tid] # qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # translational error x_err = x_c - x_p r_err = wp.quat_inverse(q_p) * q_c v_err = v_c - v_p w_err = w_c - w_p # total force/torque on the parent t_total = wp.vec3() f_total = wp.vec3() # reduce angular damping stiffness for stability angular_damping_scale = 0.01 if type == wp.sim.JOINT_FIXED: ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 f_total += x_err * joint_attach_ke + v_err * joint_attach_kd t_total += ( wp.transform_vector(X_wp, ang_err) * joint_attach_ke + w_err * joint_attach_kd * angular_damping_scale ) if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] # world space joint axis axis_p = wp.transform_vector(X_wp, axis) # evaluate joint coordinates q = wp.dot(x_err, axis_p) qd = wp.dot(v_err, axis_p) act = joint_act[axis_start] f_total = axis_p * -eval_joint_force( q, qd, act, joint_target_ke[axis_start], joint_target_kd[axis_start], joint_limit_lower[axis_start], joint_limit_upper[axis_start], joint_limit_ke[axis_start], joint_limit_kd[axis_start], joint_axis_mode[axis_start], ) # attachment dynamics ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 # project off any displacement along the joint axis f_total += (x_err - q * axis_p) * joint_attach_ke + (v_err - qd * axis_p) * joint_attach_kd t_total += ( wp.transform_vector(X_wp, ang_err) * joint_attach_ke + w_err * joint_attach_kd * angular_damping_scale ) if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] axis_p = wp.transform_vector(X_wp, axis) axis_c = wp.transform_vector(X_wc, axis) # swing twist decomposition twist = quat_twist(axis, r_err) q = wp.acos(twist[3]) * 2.0 * wp.sign(wp.dot(axis, wp.vec3(twist[0], twist[1], twist[2]))) qd = wp.dot(w_err, axis_p) act = joint_act[axis_start] t_total = axis_p * -eval_joint_force( q, qd, act, joint_target_ke[axis_start], joint_target_kd[axis_start], joint_limit_lower[axis_start], joint_limit_upper[axis_start], joint_limit_ke[axis_start], joint_limit_kd[axis_start], joint_axis_mode[axis_start], ) # attachment dynamics swing_err = wp.cross(axis_p, axis_c) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd t_total += swing_err * joint_attach_ke + (w_err - qd * axis_p) * joint_attach_kd * angular_damping_scale if type == wp.sim.JOINT_BALL: ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 # TODO joint limits # TODO expose target_kd or target_ke for ball joints # t_total += target_kd * w_err + target_ke * wp.transform_vector(X_wp, ang_err) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd if type == wp.sim.JOINT_COMPOUND: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, wp.vec3(0.0, 0.0, 1.0)) # q_2 = wp.quat_from_axis_angle(axis_2, angles[2]) # q_w = q_p axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) # joint dynamics # # TODO remove wp.quat_rotate(q_w, ...)? # t_total += eval_joint_force(angles[0], wp.dot(wp.quat_rotate(q_w, axis_0), w_err), joint_target[axis_start+0], joint_target_ke[axis_start+0],joint_target_kd[axis_start+0], joint_act[axis_start+0], joint_limit_lower[axis_start+0], joint_limit_upper[axis_start+0], joint_limit_ke[axis_start+0], joint_limit_kd[axis_start+0], wp.quat_rotate(q_w, axis_0)) # t_total += eval_joint_force(angles[1], wp.dot(wp.quat_rotate(q_w, axis_1), w_err), joint_target[axis_start+1], joint_target_ke[axis_start+1],joint_target_kd[axis_start+1], joint_act[axis_start+1], joint_limit_lower[axis_start+1], joint_limit_upper[axis_start+1], joint_limit_ke[axis_start+1], joint_limit_kd[axis_start+1], wp.quat_rotate(q_w, axis_1)) # t_total += eval_joint_force(angles[2], wp.dot(wp.quat_rotate(q_w, axis_2), w_err), joint_target[axis_start+2], joint_target_ke[axis_start+2],joint_target_kd[axis_start+2], joint_act[axis_start+2], joint_limit_lower[axis_start+2], joint_limit_upper[axis_start+2], joint_limit_ke[axis_start+2], joint_limit_kd[axis_start+2], wp.quat_rotate(q_w, axis_2)) t_total += axis_0 * -eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_act[axis_start + 0], joint_target_ke[axis_start + 0], joint_target_kd[axis_start + 0], joint_limit_lower[axis_start + 0], joint_limit_upper[axis_start + 0], joint_limit_ke[axis_start + 0], joint_limit_kd[axis_start + 0], joint_axis_mode[axis_start + 0], ) t_total += axis_1 * -eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_act[axis_start + 1], joint_target_ke[axis_start + 1], joint_target_kd[axis_start + 1], joint_limit_lower[axis_start + 1], joint_limit_upper[axis_start + 1], joint_limit_ke[axis_start + 1], joint_limit_kd[axis_start + 1], joint_axis_mode[axis_start + 1], ) t_total += axis_2 * -eval_joint_force( angles[2], wp.dot(axis_2, w_err), joint_act[axis_start + 2], joint_target_ke[axis_start + 2], joint_target_kd[axis_start + 2], joint_limit_lower[axis_start + 2], joint_limit_upper[axis_start + 2], joint_limit_ke[axis_start + 2], joint_limit_kd[axis_start + 2], joint_axis_mode[axis_start + 2], ) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd if type == wp.sim.JOINT_UNIVERSAL: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, wp.vec3(0.0, 0.0, 1.0)) axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) # joint dynamics t_total += axis_0 * -eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_act[axis_start + 0], joint_target_ke[axis_start + 0], joint_target_kd[axis_start + 0], joint_limit_lower[axis_start + 0], joint_limit_upper[axis_start + 0], joint_limit_ke[axis_start + 0], joint_limit_kd[axis_start + 0], joint_axis_mode[axis_start + 0], ) t_total += axis_1 * -eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_act[axis_start + 1], joint_target_ke[axis_start + 1], joint_target_kd[axis_start + 1], joint_limit_lower[axis_start + 1], joint_limit_upper[axis_start + 1], joint_limit_ke[axis_start + 1], joint_limit_kd[axis_start + 1], joint_axis_mode[axis_start + 1], ) # last axis (fixed) t_total += axis_2 * -eval_joint_force( angles[2], wp.dot(axis_2, w_err), 0.0, joint_attach_ke, joint_attach_kd * angular_damping_scale, 0.0, 0.0, 0.0, 0.0, wp.sim.JOINT_MODE_FORCE, ) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd if type == wp.sim.JOINT_D6: pos = wp.vec3(0.0) vel = wp.vec3(0.0) if lin_axis_count >= 1: axis_0 = wp.transform_vector(X_wp, joint_axis[axis_start + 0]) q0 = wp.dot(x_err, axis_0) qd0 = wp.dot(v_err, axis_0) f_total += axis_0 * -eval_joint_force( q0, qd0, joint_act[axis_start + 0], joint_target_ke[axis_start + 0], joint_target_kd[axis_start + 0], joint_limit_lower[axis_start + 0], joint_limit_upper[axis_start + 0], joint_limit_ke[axis_start + 0], joint_limit_kd[axis_start + 0], joint_axis_mode[axis_start + 0], ) pos += q0 * axis_0 vel += qd0 * axis_0 if lin_axis_count >= 2: axis_1 = wp.transform_vector(X_wp, joint_axis[axis_start + 1]) q1 = wp.dot(x_err, axis_1) qd1 = wp.dot(v_err, axis_1) f_total += axis_1 * -eval_joint_force( q1, qd1, joint_act[axis_start + 1], joint_target_ke[axis_start + 1], joint_target_kd[axis_start + 1], joint_limit_lower[axis_start + 1], joint_limit_upper[axis_start + 1], joint_limit_ke[axis_start + 1], joint_limit_kd[axis_start + 1], joint_axis_mode[axis_start + 1], ) pos += q1 * axis_1 vel += qd1 * axis_1 if lin_axis_count == 3: axis_2 = wp.transform_vector(X_wp, joint_axis[axis_start + 2]) q2 = wp.dot(x_err, axis_2) qd2 = wp.dot(v_err, axis_2) f_total += axis_2 * -eval_joint_force( q2, qd2, joint_act[axis_start + 2], joint_target_ke[axis_start + 2], joint_target_kd[axis_start + 2], joint_limit_lower[axis_start + 2], joint_limit_upper[axis_start + 2], joint_limit_ke[axis_start + 2], joint_limit_kd[axis_start + 2], joint_axis_mode[axis_start + 2], ) pos += q2 * axis_2 vel += qd2 * axis_2 f_total += (x_err - pos) * joint_attach_ke + (v_err - vel) * joint_attach_kd if ang_axis_count == 0: ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 t_total += ( wp.transform_vector(X_wp, ang_err) * joint_attach_ke + w_err * joint_attach_kd * angular_damping_scale ) i_0 = lin_axis_count + axis_start + 0 i_1 = lin_axis_count + axis_start + 1 i_2 = lin_axis_count + axis_start + 2 if ang_axis_count == 1: axis = joint_axis[i_0] axis_p = wp.transform_vector(X_wp, axis) axis_c = wp.transform_vector(X_wc, axis) # swing twist decomposition twist = quat_twist(axis, r_err) q = wp.acos(twist[3]) * 2.0 * wp.sign(wp.dot(axis, wp.vec3(twist[0], twist[1], twist[2]))) qd = wp.dot(w_err, axis_p) t_total = axis_p * -eval_joint_force( q, qd, joint_act[i_0], joint_target_ke[i_0], joint_target_kd[i_0], joint_limit_lower[i_0], joint_limit_upper[i_0], joint_limit_ke[i_0], joint_limit_kd[i_0], joint_axis_mode[i_0], ) # attachment dynamics swing_err = wp.cross(axis_p, axis_c) t_total += swing_err * joint_attach_ke + (w_err - qd * axis_p) * joint_attach_kd * angular_damping_scale if ang_axis_count == 2: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) orig_axis_0 = joint_axis[i_0] orig_axis_1 = joint_axis[i_1] orig_axis_2 = wp.cross(orig_axis_0, orig_axis_1) # reconstruct rotation axes axis_0 = orig_axis_0 q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, orig_axis_1) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, orig_axis_2) axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) # joint dynamics t_total += axis_0 * -eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_act[i_0], joint_target_ke[i_0], joint_target_kd[i_0], joint_limit_lower[i_0], joint_limit_upper[i_0], joint_limit_ke[i_0], joint_limit_kd[i_0], joint_axis_mode[i_0], ) t_total += axis_1 * -eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_act[i_1], joint_target_ke[i_1], joint_target_kd[i_1], joint_limit_lower[i_1], joint_limit_upper[i_1], joint_limit_ke[i_1], joint_limit_kd[i_1], joint_axis_mode[i_1], ) # last axis (fixed) t_total += axis_2 * -eval_joint_force( angles[2], wp.dot(axis_2, w_err), 0.0, joint_attach_ke, joint_attach_kd * angular_damping_scale, 0.0, 0.0, 0.0, 0.0, wp.sim.JOINT_MODE_FORCE, ) if ang_axis_count == 3: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) orig_axis_0 = joint_axis[i_0] orig_axis_1 = joint_axis[i_1] orig_axis_2 = joint_axis[i_2] # reconstruct rotation axes axis_0 = orig_axis_0 q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, orig_axis_1) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, orig_axis_2) axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) t_total += axis_0 * -eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_act[i_0], joint_target_ke[i_0], joint_target_kd[i_0], joint_limit_lower[i_0], joint_limit_upper[i_0], joint_limit_ke[i_0], joint_limit_kd[i_0], joint_axis_mode[i_0], ) t_total += axis_1 * -eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_act[i_1], joint_target_ke[i_1], joint_target_kd[i_1], joint_limit_lower[i_1], joint_limit_upper[i_1], joint_limit_ke[i_1], joint_limit_kd[i_1], joint_axis_mode[i_1], ) t_total += axis_2 * -eval_joint_force( angles[2], wp.dot(axis_2, w_err), joint_act[i_2], joint_target_ke[i_2], joint_target_kd[i_2], joint_limit_lower[i_2], joint_limit_upper[i_2], joint_limit_ke[i_2], joint_limit_kd[i_2], joint_axis_mode[i_2], ) # write forces if c_parent >= 0: wp.atomic_add(body_f, c_parent, wp.spatial_vector(t_total + wp.cross(r_p, f_total), f_total)) wp.atomic_sub(body_f, c_child, wp.spatial_vector(t_total + wp.cross(r_c, f_total), f_total)) @wp.func def compute_muscle_force( i: int, body_X_s: wp.array(dtype=wp.transform), body_v_s: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), muscle_links: wp.array(dtype=int), muscle_points: wp.array(dtype=wp.vec3), muscle_activation: float, body_f_s: wp.array(dtype=wp.spatial_vector), ): link_0 = muscle_links[i] link_1 = muscle_links[i + 1] if link_0 == link_1: return 0 r_0 = muscle_points[i] r_1 = muscle_points[i + 1] xform_0 = body_X_s[link_0] xform_1 = body_X_s[link_1] pos_0 = wp.transform_point(xform_0, r_0 - body_com[link_0]) pos_1 = wp.transform_point(xform_1, r_1 - body_com[link_1]) n = wp.normalize(pos_1 - pos_0) # todo: add passive elastic and viscosity terms f = n * muscle_activation wp.atomic_sub(body_f_s, link_0, wp.spatial_vector(f, wp.cross(pos_0, f))) wp.atomic_add(body_f_s, link_1, wp.spatial_vector(f, wp.cross(pos_1, f))) @wp.kernel def eval_muscles( body_X_s: wp.array(dtype=wp.transform), body_v_s: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), muscle_start: wp.array(dtype=int), muscle_params: wp.array(dtype=float), muscle_links: wp.array(dtype=int), muscle_points: wp.array(dtype=wp.vec3), muscle_activation: wp.array(dtype=float), # output body_f_s: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() m_start = muscle_start[tid] m_end = muscle_start[tid + 1] - 1 activation = muscle_activation[tid] for i in range(m_start, m_end): compute_muscle_force(i, body_X_s, body_v_s, body_com, muscle_links, muscle_points, activation, body_f_s) def eval_spring_forces(model: Model, state: State, particle_f: wp.array): if model.spring_count: wp.launch( kernel=eval_springs, dim=model.spring_count, inputs=[ state.particle_q, state.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, ], outputs=[particle_f], device=model.device, ) def eval_triangle_forces(model: Model, state: State, control: Control, particle_f: wp.array): if model.tri_count: wp.launch( kernel=eval_triangles, dim=model.tri_count, inputs=[ state.particle_q, state.particle_qd, model.tri_indices, model.tri_poses, control.tri_activations, model.tri_materials, ], outputs=[particle_f], device=model.device, ) def eval_triangle_contact_forces(model: Model, state: State, particle_f: wp.array): if model.enable_tri_collisions: wp.launch( kernel=eval_triangles_contact, dim=model.tri_count * model.particle_count, inputs=[ model.particle_count, state.particle_q, state.particle_qd, model.tri_indices, model.tri_materials, ], outputs=[particle_f], device=model.device, ) def eval_bending_forces(model: Model, state: State, particle_f: wp.array): if model.edge_count: wp.launch( kernel=eval_bending, dim=model.edge_count, inputs=[ state.particle_q, state.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_bending_properties, ], outputs=[particle_f], device=model.device, ) def eval_particle_ground_contact_forces(model: Model, state: State, particle_f: wp.array): if model.ground and model.particle_count: wp.launch( kernel=eval_particle_ground_contacts, dim=model.particle_count, inputs=[ state.particle_q, state.particle_qd, model.particle_radius, model.particle_flags, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.ground_plane, ], outputs=[particle_f], device=model.device, ) def eval_tetrahedral_forces(model: Model, state: State, control: Control, particle_f: wp.array): if model.tet_count: wp.launch( kernel=eval_tetrahedra, dim=model.tet_count, inputs=[ state.particle_q, state.particle_qd, model.tet_indices, model.tet_poses, control.tet_activations, model.tet_materials, ], outputs=[particle_f], device=model.device, ) def eval_body_contact_forces(model: Model, state: State, particle_f: wp.array): if model.rigid_contact_max and ( model.ground and model.shape_ground_contact_pair_count or model.shape_contact_pair_count ): wp.launch( kernel=eval_rigid_contacts, dim=model.rigid_contact_max, inputs=[ state.body_q, state.body_qd, model.body_com, model.shape_materials, model.shape_geo, model.shape_body, model.rigid_contact_count, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_normal, model.rigid_contact_shape0, model.rigid_contact_shape1, False, ], outputs=[state.body_f], device=model.device, ) def eval_body_joint_forces(model: Model, state: State, control: Control, body_f: wp.array): if model.joint_count: wp.launch( kernel=eval_body_joints, dim=model.joint_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.joint_qd_start, model.joint_type, model.joint_enabled, model.joint_child, model.joint_parent, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.joint_axis_mode, control.joint_act, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, model.joint_attach_ke, model.joint_attach_kd, ], outputs=[body_f], device=model.device, ) def eval_particle_body_contact_forces(model: Model, state: State, particle_f: wp.array, body_f: wp.array): if model.particle_count and model.shape_count > 1: wp.launch( kernel=eval_particle_contacts, dim=model.soft_contact_max, inputs=[ state.particle_q, state.particle_qd, state.body_q, state.body_qd, model.particle_radius, model.particle_flags, model.body_com, model.shape_body, model.shape_materials, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.particle_adhesion, model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_max, ], # outputs outputs=[particle_f, body_f], device=model.device, ) def eval_muscle_forces(model: Model, state: State, control: Control, body_f: wp.array): if model.muscle_count: wp.launch( kernel=eval_muscles, dim=model.muscle_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.muscle_start, model.muscle_params, model.muscle_bodies, model.muscle_points, control.muscle_activations, ], outputs=[body_f], device=model.device, ) def compute_forces(model: Model, state: State, control: Control, particle_f: wp.array, body_f: wp.array, dt: float): # damped springs eval_spring_forces(model, state, particle_f) # triangle elastic and lift/drag forces eval_triangle_forces(model, state, control, particle_f) # triangle/triangle contacts eval_triangle_contact_forces(model, state, particle_f) # triangle bending eval_bending_forces(model, state, particle_f) # tetrahedral FEM eval_tetrahedral_forces(model, state, control, particle_f) # body joints eval_body_joint_forces(model, state, control, body_f) # particle-particle interactions eval_particle_forces(model, state, particle_f) # particle ground contacts eval_particle_ground_contact_forces(model, state, particle_f) # body contacts eval_body_contact_forces(model, state, particle_f) # particle shape contact eval_particle_body_contact_forces(model, state, particle_f, body_f) # muscles if False: eval_muscle_forces(model, state, control, body_f) class SemiImplicitIntegrator(Integrator): """A semi-implicit integrator using symplectic Euler After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example ------- .. code-block:: python integrator = wp.SemiImplicitIntegrator() # simulation loop for i in range(100): state = integrator.simulate(model, state_in, state_out, dt) """ def __init__(self, angular_damping: float = 0.05): """ Args: angular_damping (float, optional): Angular damping factor. Defaults to 0.05. """ self.angular_damping = angular_damping def simulate(self, model: Model, state_in: State, state_out: State, dt: float, control: Control = None): with wp.ScopedTimer("simulate", False): particle_f = None body_f = None if state_in.particle_count: particle_f = state_in.particle_f if state_in.body_count: body_f = state_in.body_f if control is None: control = model.control(clone_variables=False) compute_forces(model, state_in, control, particle_f, body_f, dt) self.integrate_bodies(model, state_in, state_out, dt, self.angular_damping) self.integrate_particles(model, state_in, state_out, dt) return state_out
59,364
Python
29.334696
361
0.536419
NVIDIA/warp/warp/sim/import_urdf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import xml.etree.ElementTree as ET from typing import Union import numpy as np import warp as wp from warp.sim.model import Mesh def parse_urdf( urdf_filename, builder, xform=None, floating=False, base_joint: Union[dict, str] = None, density=1000.0, stiffness=100.0, damping=10.0, armature=0.0, contact_ke=1.0e4, contact_kd=1.0e3, contact_kf=1.0e2, contact_ka=0.0, contact_mu=0.25, contact_restitution=0.5, contact_thickness=0.0, limit_ke=100.0, limit_kd=10.0, joint_limit_lower=-1e6, joint_limit_upper=1e6, scale=1.0, parse_visuals_as_colliders=False, force_show_colliders=False, enable_self_collisions=True, ignore_inertial_definitions=True, ensure_nonstatic_links=True, static_link_mass=1e-2, collapse_fixed_joints=False, ): """ Parses a URDF file and adds the bodies and joints to the given ModelBuilder. Args: urdf_filename (str): The filename of the URDF file to parse. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. xform (:ref:`transform <transform>`): The transform to apply to the root body. floating (bool): If True, the root body is a free joint. If False, the root body is connected via a fixed joint to the world, unless a `base_joint` is defined. base_joint (Union[str, dict]): The joint by which the root body is connected to the world. This can be either a string defining the joint axes of a D6 joint with comma-separated positional and angular axis names (e.g. "px,py,rz" for a D6 joint with linear axes in x, y and an angular axis in z) or a dict with joint parameters (see :meth:`ModelBuilder.add_joint`). density (float): The density of the shapes in kg/m^3 which will be used to calculate the body mass and inertia. stiffness (float): The stiffness of the joints. damping (float): The damping of the joints. armature (float): The armature of the joints (bias to add to the inertia diagonals that may stabilize the simulation). contact_ke (float): The stiffness of the shape contacts (used by the Euler integrators). contact_kd (float): The damping of the shape contacts (used by the Euler integrators). contact_kf (float): The friction stiffness of the shape contacts (used by the Euler integrators). contact_ka (float): The adhesion distance of the shape contacts (used by the Euler integrators). contact_mu (float): The friction coefficient of the shape contacts. contact_restitution (float): The restitution coefficient of the shape contacts. contact_thickness (float): The thickness to add to the shape geometry. limit_ke (float): The stiffness of the joint limits (used by the Euler integrators). limit_kd (float): The damping of the joint limits (used by the Euler integrators). joint_limit_lower (float): The default lower joint limit if not specified in the URDF. joint_limit_upper (float): The default upper joint limit if not specified in the URDF. scale (float): The scaling factor to apply to the imported mechanism. parse_visuals_as_colliders (bool): If True, the geometry defined under the `<visual>` tags is used for collision handling instead of the `<collision>` geometries. force_show_colliders (bool): If True, the collision shapes are always shown, even if there are visual shapes. enable_self_collisions (bool): If True, self-collisions are enabled. ignore_inertial_definitions (bool): If True, the inertial parameters defined in the URDF are ignored and the inertia is calculated from the shape geometry. ensure_nonstatic_links (bool): If True, links with zero mass are given a small mass (see `static_link_mass`) to ensure they are dynamic. static_link_mass (float): The mass to assign to links with zero mass (if `ensure_nonstatic_links` is set to True). collapse_fixed_joints (bool): If True, fixed joints are removed and the respective bodies are merged. """ if xform is None: xform = wp.transform() file = ET.parse(urdf_filename) root = file.getroot() contact_vars = { "ke": contact_ke, "kd": contact_kd, "kf": contact_kf, "ka": contact_ka, "mu": contact_mu, "restitution": contact_restitution, "thickness": contact_thickness, } def parse_transform(element): if element is None or element.find("origin") is None: return wp.transform() origin = element.find("origin") xyz = origin.get("xyz") or "0 0 0" rpy = origin.get("rpy") or "0 0 0" xyz = [float(x) * scale for x in xyz.split()] rpy = [float(x) for x in rpy.split()] return wp.transform(xyz, wp.quat_rpy(*rpy)) def parse_shapes(link, geoms, density, incoming_xform=None, visible=True, just_visual=False): shapes = [] # add geometry for geom_group in geoms: geo = geom_group.find("geometry") if geo is None: continue tf = parse_transform(geom_group) if incoming_xform is not None: tf = incoming_xform * tf for box in geo.findall("box"): size = box.get("size") or "1 1 1" size = [float(x) for x in size.split()] s = builder.add_shape_box( body=link, pos=wp.vec3(tf.p), rot=wp.quat(tf.q), hx=size[0] * 0.5 * scale, hy=size[1] * 0.5 * scale, hz=size[2] * 0.5 * scale, density=density, is_visible=visible, has_ground_collision=not just_visual, has_shape_collision=not just_visual, **contact_vars, ) shapes.append(s) for sphere in geo.findall("sphere"): s = builder.add_shape_sphere( body=link, pos=wp.vec3(tf.p), rot=wp.quat(tf.q), radius=float(sphere.get("radius") or "1") * scale, density=density, is_visible=visible, has_ground_collision=not just_visual, has_shape_collision=not just_visual, **contact_vars, ) shapes.append(s) for cylinder in geo.findall("cylinder"): s = builder.add_shape_capsule( body=link, pos=wp.vec3(tf.p), rot=wp.quat(tf.q), radius=float(cylinder.get("radius") or "1") * scale, half_height=float(cylinder.get("length") or "1") * 0.5 * scale, density=density, up_axis=2, # cylinders in URDF are aligned with z-axis is_visible=visible, has_ground_collision=not just_visual, has_shape_collision=not just_visual, **contact_vars, ) shapes.append(s) for mesh in geo.findall("mesh"): filename = mesh.get("filename") if filename is None: continue if filename.startswith("package://"): fn = filename.replace("package://", "") package_name = fn.split("/")[0] urdf_folder = os.path.dirname(urdf_filename) # resolve file path from package name, i.e. find # the package folder from the URDF folder if package_name in urdf_folder: filename = os.path.join(urdf_folder[: urdf_folder.index(package_name)], fn) else: wp.utils.warn( f'Warning: package "{package_name}" not found in URDF folder while loading mesh at "{filename}"' ) elif filename.startswith("http://") or filename.startswith("https://"): # download mesh import shutil import tempfile import requests with tempfile.TemporaryDirectory() as tmpdir: # get filename extension extension = os.path.splitext(filename)[1] tmpfile = os.path.join(tmpdir, "mesh" + extension) with requests.get(filename, stream=True) as r: with open(tmpfile, "wb") as f: shutil.copyfileobj(r.raw, f) filename = tmpfile else: filename = os.path.join(os.path.dirname(urdf_filename), filename) if not os.path.exists(filename): wp.utils.warn(f"Warning: mesh file {filename} does not exist") continue import trimesh # use force='mesh' to load the mesh as a trimesh object # with baked in transforms, e.g. from COLLADA files m = trimesh.load(filename, force="mesh") scaling = mesh.get("scale") or "1 1 1" scaling = np.array([float(x) * scale for x in scaling.split()]) if hasattr(m, "geometry"): # multiple meshes are contained in a scene for geom in m.geometry.values(): vertices = np.array(geom.vertices, dtype=np.float32) * scaling faces = np.array(geom.faces.flatten(), dtype=np.int32) mesh = Mesh(vertices, faces) s = builder.add_shape_mesh( body=link, pos=wp.vec3(tf.p), rot=wp.quat(tf.q), mesh=mesh, density=density, is_visible=visible, has_ground_collision=not just_visual, has_shape_collision=not just_visual, **contact_vars, ) shapes.append(s) else: # a single mesh vertices = np.array(m.vertices, dtype=np.float32) * scaling faces = np.array(m.faces.flatten(), dtype=np.int32) mesh = Mesh(vertices, faces) s = builder.add_shape_mesh( body=link, pos=wp.vec3(tf.p), rot=wp.quat(tf.q), mesh=mesh, density=density, is_visible=visible, has_ground_collision=not just_visual, has_shape_collision=not just_visual, **contact_vars, ) shapes.append(s) return shapes # maps from link name -> link index link_index = {} visual_shapes = [] builder.add_articulation() start_shape_count = len(builder.shape_geo_type) # add links for _i, urdf_link in enumerate(root.findall("link")): name = urdf_link.get("name") link = builder.add_body(origin=wp.transform_identity(), armature=armature, name=name) # add ourselves to the index link_index[name] = link visuals = urdf_link.findall("visual") colliders = urdf_link.findall("collision") if parse_visuals_as_colliders: colliders = visuals else: s = parse_shapes(link, visuals, density=0.0, just_visual=True) visual_shapes.extend(s) show_colliders = force_show_colliders if parse_visuals_as_colliders: show_colliders = True elif len(visuals) == 0: # we need to show the collision shapes since there are no visual shapes show_colliders = True parse_shapes(link, colliders, density=density, visible=show_colliders) m = builder.body_mass[link] if not ignore_inertial_definitions and urdf_link.find("inertial") is not None: # overwrite inertial parameters if defined inertial = urdf_link.find("inertial") inertial_frame = parse_transform(inertial) com = inertial_frame.p I_m = np.zeros((3, 3)) I_m[0, 0] = float(inertial.find("inertia").get("ixx") or "0") * scale**2 I_m[1, 1] = float(inertial.find("inertia").get("iyy") or "0") * scale**2 I_m[2, 2] = float(inertial.find("inertia").get("izz") or "0") * scale**2 I_m[0, 1] = float(inertial.find("inertia").get("ixy") or "0") * scale**2 I_m[0, 2] = float(inertial.find("inertia").get("ixz") or "0") * scale**2 I_m[1, 2] = float(inertial.find("inertia").get("iyz") or "0") * scale**2 I_m[1, 0] = I_m[0, 1] I_m[2, 0] = I_m[0, 2] I_m[2, 1] = I_m[1, 2] rot = wp.quat_to_matrix(inertial_frame.q) I_m = rot @ wp.mat33(I_m) m = float(inertial.find("mass").get("value") or "0") builder.body_mass[link] = m builder.body_inv_mass[link] = 1.0 / m builder.body_com[link] = com builder.body_inertia[link] = I_m builder.body_inv_inertia[link] = wp.inverse(I_m) if m == 0.0 and ensure_nonstatic_links: # set the mass to something nonzero to ensure the body is dynamic m = static_link_mass # cube with side length 0.5 I_m = wp.mat33(np.eye(3)) * m / 12.0 * (0.5 * scale) ** 2 * 2.0 I_m += wp.mat33(armature * np.eye(3)) builder.body_mass[link] = m builder.body_inv_mass[link] = 1.0 / m builder.body_inertia[link] = I_m builder.body_inv_inertia[link] = wp.inverse(I_m) end_shape_count = len(builder.shape_geo_type) # find joints per body body_children = {name: [] for name in link_index.keys()} # mapping from parent, child link names to joint parent_child_joint = {} joints = [] for joint in root.findall("joint"): parent = joint.find("parent").get("link") child = joint.find("child").get("link") body_children[parent].append(child) joint_data = { "name": joint.get("name"), "parent": parent, "child": child, "type": joint.get("type"), "origin": parse_transform(joint), "damping": damping, "friction": 0.0, "limit_lower": joint_limit_lower, "limit_upper": joint_limit_upper, } if joint.find("axis") is not None: joint_data["axis"] = joint.find("axis").get("xyz") joint_data["axis"] = np.array([float(x) for x in joint_data["axis"].split()]) if joint.find("dynamics") is not None: dynamics = joint.find("dynamics") joint_data["damping"] = float(dynamics.get("damping") or str(damping)) joint_data["friction"] = float(dynamics.get("friction") or "0") if joint.find("limit") is not None: limit = joint.find("limit") joint_data["limit_lower"] = float(limit.get("lower") or "-1e6") joint_data["limit_upper"] = float(limit.get("upper") or "1e6") if joint.find("mimic") is not None: mimic = joint.find("mimic") joint_data["mimic_joint"] = mimic.get("joint") joint_data["mimic_multiplier"] = float(mimic.get("multiplier") or "1") joint_data["mimic_offset"] = float(mimic.get("offset") or "0") parent_child_joint[(parent, child)] = joint_data joints.append(joint_data) # topological sorting of joints because the FK solver will resolve body transforms # in joint order and needs the parent link transform to be resolved before the child visited = {name: False for name in link_index.keys()} sorted_joints = [] # depth-first search def dfs(joint): link = joint["child"] if visited[link]: return visited[link] = True for child in body_children[link]: if not visited[child]: dfs(parent_child_joint[(link, child)]) sorted_joints.insert(0, joint) # start DFS from each unvisited joint for joint in joints: if not visited[joint["parent"]]: dfs(joint) # add base joint if len(sorted_joints) > 0: base_link_name = sorted_joints[0]["parent"] else: base_link_name = next(iter(link_index.keys())) root = link_index[base_link_name] if base_joint is not None: # in case of a given base joint, the position is applied first, the rotation only # after the base joint itself to not rotate its axis base_parent_xform = wp.transform(xform.p, wp.quat_identity()) base_child_xform = wp.transform((0.0, 0.0, 0.0), wp.quat_inverse(xform.q)) if isinstance(base_joint, str): axes = base_joint.lower().split(",") axes = [ax.strip() for ax in axes] linear_axes = [ax[-1] for ax in axes if ax[0] in {"l", "p"}] angular_axes = [ax[-1] for ax in axes if ax[0] in {"a", "r"}] axes = { "x": [1.0, 0.0, 0.0], "y": [0.0, 1.0, 0.0], "z": [0.0, 0.0, 1.0], } builder.add_joint_d6( linear_axes=[wp.sim.JointAxis(axes[a]) for a in linear_axes], angular_axes=[wp.sim.JointAxis(axes[a]) for a in angular_axes], parent_xform=base_parent_xform, child_xform=base_child_xform, parent=-1, child=root, name="base_joint", ) elif isinstance(base_joint, dict): base_joint["parent"] = -1 base_joint["child"] = root base_joint["parent_xform"] = base_parent_xform base_joint["child_xform"] = base_child_xform base_joint["name"] = "base_joint" builder.add_joint(**base_joint) else: raise ValueError( "base_joint must be a comma-separated string of joint axes or a dict with joint parameters" ) elif floating: builder.add_joint_free(root, name="floating_base") # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform.p[0] builder.joint_q[start + 1] = xform.p[1] builder.joint_q[start + 2] = xform.p[2] builder.joint_q[start + 3] = xform.q[0] builder.joint_q[start + 4] = xform.q[1] builder.joint_q[start + 5] = xform.q[2] builder.joint_q[start + 6] = xform.q[3] else: builder.add_joint_fixed(-1, root, parent_xform=xform, name="fixed_base") # add joints, in topological order starting from root body for joint in sorted_joints: parent = link_index[joint["parent"]] child = link_index[joint["child"]] if child == -1: # we skipped the insertion of the child body continue lower = joint["limit_lower"] upper = joint["limit_upper"] joint_damping = joint["damping"] parent_xform = joint["origin"] child_xform = wp.transform_identity() joint_mode = wp.sim.JOINT_MODE_FORCE if stiffness > 0.0: joint_mode = wp.sim.JOINT_MODE_TARGET_POSITION joint_params = { "parent": parent, "child": child, "parent_xform": parent_xform, "child_xform": child_xform, "name": joint["name"], "armature": armature, } if joint["type"] == "revolute" or joint["type"] == "continuous": builder.add_joint_revolute( axis=joint["axis"], target_ke=stiffness, target_kd=joint_damping, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, mode=joint_mode, **joint_params, ) elif joint["type"] == "prismatic": builder.add_joint_prismatic( axis=joint["axis"], target_ke=stiffness, target_kd=joint_damping, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd, mode=joint_mode, **joint_params, ) elif joint["type"] == "fixed": builder.add_joint_fixed(**joint_params) elif joint["type"] == "floating": builder.add_joint_free(**joint_params) elif joint["type"] == "planar": # find plane vectors perpendicular to axis axis = np.array(joint["axis"]) axis /= np.linalg.norm(axis) # create helper vector that is not parallel to the axis helper = np.array([1, 0, 0]) if np.allclose(axis, [0, 1, 0]) else np.array([0, 1, 0]) u = np.cross(helper, axis) u /= np.linalg.norm(u) v = np.cross(axis, u) v /= np.linalg.norm(v) builder.add_joint_d6( linear_axes=[ wp.sim.JointAxis( u, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd ), wp.sim.JointAxis( v, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd ), ], **joint_params, ) else: raise Exception("Unsupported joint type: " + joint["type"]) for i in range(start_shape_count, end_shape_count): for j in visual_shapes: builder.shape_collision_filter_pairs.add((i, j)) if not enable_self_collisions: for i in range(start_shape_count, end_shape_count): for j in range(i + 1, end_shape_count): builder.shape_collision_filter_pairs.add((i, j)) if collapse_fixed_joints: builder.collapse_fixed_joints()
23,095
Python
42.009311
372
0.542368
NVIDIA/warp/warp/sim/inertia.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helper functions for computing rigid body inertia properties.""" import math from typing import List, Union import numpy as np import warp as wp @wp.func def triangle_inertia( p: wp.vec3, q: wp.vec3, r: wp.vec3, density: float, com: wp.vec3, # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), ): pcom = p - com qcom = q - com rcom = r - com Dm = wp.mat33(pcom[0], qcom[0], rcom[0], pcom[1], qcom[1], rcom[1], pcom[2], qcom[2], rcom[2]) volume = wp.abs(wp.determinant(Dm) / 6.0) # accumulate mass wp.atomic_add(mass, 0, 4.0 * density * volume) alpha = wp.sqrt(5.0) / 5.0 mid = (com + p + q + r) / 4.0 off_mid = mid - com # displacement of quadrature point from COM d0 = alpha * (p - mid) + off_mid d1 = alpha * (q - mid) + off_mid d2 = alpha * (r - mid) + off_mid d3 = alpha * (com - mid) + off_mid # accumulate inertia identity = wp.mat33(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) I = wp.dot(d0, d0) * identity - wp.outer(d0, d0) I += wp.dot(d1, d1) * identity - wp.outer(d1, d1) I += wp.dot(d2, d2) * identity - wp.outer(d2, d2) I += wp.dot(d3, d3) * identity - wp.outer(d3, d3) wp.atomic_add(inertia, 0, (density * volume) * I) return volume @wp.kernel def compute_solid_mesh_inertia( # inputs com: wp.vec3, weight: float, indices: wp.array(dtype=int, ndim=1), vertices: wp.array(dtype=wp.vec3, ndim=1), # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), volume: wp.array(dtype=float, ndim=1), ): i = wp.tid() p = vertices[indices[i * 3 + 0]] q = vertices[indices[i * 3 + 1]] r = vertices[indices[i * 3 + 2]] vol = triangle_inertia(p, q, r, weight, com, mass, inertia) wp.atomic_add(volume, 0, vol) @wp.kernel def compute_hollow_mesh_inertia( # inputs com: wp.vec3, density: float, indices: wp.array(dtype=int, ndim=1), vertices: wp.array(dtype=wp.vec3, ndim=1), thickness: wp.array(dtype=float, ndim=1), # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), volume: wp.array(dtype=float, ndim=1), ): tid = wp.tid() i = indices[tid * 3 + 0] j = indices[tid * 3 + 1] k = indices[tid * 3 + 2] vi = vertices[i] vj = vertices[j] vk = vertices[k] normal = -wp.normalize(wp.cross(vj - vi, vk - vi)) ti = normal * thickness[i] tj = normal * thickness[j] tk = normal * thickness[k] # wedge vertices vi0 = vi - ti vi1 = vi + ti vj0 = vj - tj vj1 = vj + tj vk0 = vk - tk vk1 = vk + tk triangle_inertia(vi0, vj0, vk0, density, com, mass, inertia) triangle_inertia(vj0, vk1, vk0, density, com, mass, inertia) triangle_inertia(vj0, vj1, vk1, density, com, mass, inertia) triangle_inertia(vj0, vi1, vj1, density, com, mass, inertia) triangle_inertia(vj0, vi0, vi1, density, com, mass, inertia) triangle_inertia(vj1, vi1, vk1, density, com, mass, inertia) triangle_inertia(vi1, vi0, vk0, density, com, mass, inertia) triangle_inertia(vi1, vk0, vk1, density, com, mass, inertia) # compute volume a = wp.length(wp.cross(vj - vi, vk - vi)) * 0.5 vol = a * (thickness[i] + thickness[j] + thickness[k]) / 3.0 wp.atomic_add(volume, 0, vol) def compute_sphere_inertia(density: float, r: float) -> tuple: """Helper to compute mass and inertia of a solid sphere Args: density: The sphere density r: The sphere radius Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = 4.0 / 3.0 * math.pi * r * r * r m = density * v Ia = 2.0 / 5.0 * m * r * r I = wp.mat33([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, wp.vec3(), I) def compute_capsule_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid capsule extending along the y-axis Args: density: The capsule density r: The capsule radius h: The capsule height (full height of the interior cylinder) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ ms = density * (4.0 / 3.0) * math.pi * r * r * r mc = density * math.pi * r * r * h # total mass m = ms + mc # adapted from ODE Ia = mc * (0.25 * r * r + (1.0 / 12.0) * h * h) + ms * (0.4 * r * r + 0.375 * r * h + 0.25 * h * h) Ib = (mc * 0.5 + ms * 0.4) * r * r I = wp.mat33([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, wp.vec3(), I) def compute_cylinder_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid cylinder extending along the y-axis Args: density: The cylinder density r: The cylinder radius h: The cylinder height (extent along the y-axis) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ m = density * math.pi * r * r * h Ia = 1 / 12 * m * (3 * r * r + h * h) Ib = 1 / 2 * m * r * r I = wp.mat33([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, wp.vec3(), I) def compute_cone_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid cone extending along the y-axis Args: density: The cone density r: The cone radius h: The cone height (extent along the y-axis) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ m = density * math.pi * r * r * h / 3.0 Ia = 1 / 20 * m * (3 * r * r + 2 * h * h) Ib = 3 / 10 * m * r * r I = wp.mat33([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, wp.vec3(), I) def compute_box_inertia(density: float, w: float, h: float, d: float) -> tuple: """Helper to compute mass and inertia of a solid box Args: density: The box density w: The box width along the x-axis h: The box height along the y-axis d: The box depth along the z-axis Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = w * h * d m = density * v Ia = 1.0 / 12.0 * m * (h * h + d * d) Ib = 1.0 / 12.0 * m * (w * w + d * d) Ic = 1.0 / 12.0 * m * (w * w + h * h) I = wp.mat33([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]]) return (m, wp.vec3(), I) def compute_mesh_inertia( density: float, vertices: list, indices: list, is_solid: bool = True, thickness: Union[List[float], float] = 0.001 ) -> tuple: """Computes mass, center of mass, 3x3 inertia matrix, and volume for a mesh.""" com = wp.vec3(np.mean(vertices, 0)) indices = np.array(indices).flatten() num_tris = len(indices) // 3 # compute signed inertia for each tetrahedron # formed with the interior point, using an order-2 # quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040 # Allocating for mass and inertia I_warp = wp.zeros(1, dtype=wp.mat33) mass_warp = wp.zeros(1, dtype=float) vol_warp = wp.zeros(1, dtype=float) if is_solid: weight = 0.25 # alpha = math.sqrt(5.0) / 5.0 wp.launch( kernel=compute_solid_mesh_inertia, dim=num_tris, inputs=[ com, weight, wp.array(indices, dtype=int), wp.array(vertices, dtype=wp.vec3), ], outputs=[mass_warp, I_warp, vol_warp], ) else: weight = 0.25 * density if isinstance(thickness, float): thickness = [thickness] * len(vertices) wp.launch( kernel=compute_hollow_mesh_inertia, dim=num_tris, inputs=[ com, weight, wp.array(indices, dtype=int), wp.array(vertices, dtype=wp.vec3), wp.array(thickness, dtype=float), ], outputs=[mass_warp, I_warp, vol_warp], ) # Extract mass and inertia and save to class attributes. mass = float(mass_warp.numpy()[0] * density) I = wp.mat33(*(I_warp.numpy()[0] * density)) volume = float(vol_warp.numpy()[0]) return mass, com, I, volume def transform_inertia(m, I, p, q): R = wp.quat_to_matrix(q) # Steiner's theorem return R @ I @ wp.transpose(R) + m * (wp.dot(p, p) * wp.mat33(np.eye(3)) - wp.outer(p, p))
9,074
Python
27.62776
118
0.573837
NVIDIA/warp/warp/sim/integrator.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .model import PARTICLE_FLAG_ACTIVE, Control, Model, State @wp.kernel def integrate_particles( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), f: wp.array(dtype=wp.vec3), w: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), gravity: wp.vec3, dt: float, v_max: float, x_new: wp.array(dtype=wp.vec3), v_new: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x0 = x[tid] v0 = v[tid] f0 = f[tid] inv_mass = w[tid] # simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt v1 = v0 + (f0 * inv_mass + gravity * wp.step(-inv_mass)) * dt # enforce velocity limit to prevent instability v1_mag = wp.length(v1) if v1_mag > v_max: v1 *= v_max / v1_mag x1 = x0 + v1 * dt x_new[tid] = x1 v_new[tid] = v1 @wp.func def integrate_rigid_body( q: wp.transform, qd: wp.spatial_vector, f: wp.spatial_vector, com: wp.vec3, inertia: wp.mat33, inv_mass: float, inv_inertia: wp.mat33, gravity: wp.vec3, angular_damping: float, dt: float, ): # unpack transform x0 = wp.transform_get_translation(q) r0 = wp.transform_get_rotation(q) # unpack spatial twist w0 = wp.spatial_top(qd) v0 = wp.spatial_bottom(qd) # unpack spatial wrench t0 = wp.spatial_top(f) f0 = wp.spatial_bottom(f) x_com = x0 + wp.quat_rotate(r0, com) # linear part v1 = v0 + (f0 * inv_mass + gravity * wp.nonzero(inv_mass)) * dt x1 = x_com + v1 * dt # angular part (compute in body frame) wb = wp.quat_rotate_inv(r0, w0) tb = wp.quat_rotate_inv(r0, t0) - wp.cross(wb, inertia * wb) # coriolis forces w1 = wp.quat_rotate(r0, wb + inv_inertia * tb * dt) r1 = wp.normalize(r0 + wp.quat(w1, 0.0) * r0 * 0.5 * dt) # angular damping w1 *= 1.0 - angular_damping * dt q_new = wp.transform(x1 - wp.quat_rotate(r1, com), r1) qd_new = wp.spatial_vector(w1, v1) return q_new, qd_new # semi-implicit Euler integration @wp.kernel def integrate_bodies( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_f: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), m: wp.array(dtype=float), I: wp.array(dtype=wp.mat33), inv_m: wp.array(dtype=float), inv_I: wp.array(dtype=wp.mat33), gravity: wp.vec3, angular_damping: float, dt: float, # outputs body_q_new: wp.array(dtype=wp.transform), body_qd_new: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() # positions q = body_q[tid] qd = body_qd[tid] f = body_f[tid] # masses inv_mass = inv_m[tid] # 1 / mass inertia = I[tid] inv_inertia = inv_I[tid] # inverse of 3x3 inertia matrix com = body_com[tid] q_new, qd_new = integrate_rigid_body( q, qd, f, com, inertia, inv_mass, inv_inertia, gravity, angular_damping, dt, ) body_q_new[tid] = q_new body_qd_new[tid] = qd_new class Integrator: """ Generic base class for integrators. Provides methods to integrate rigid bodies and particles. """ def integrate_bodies( self, model: Model, state_in: State, state_out: State, dt: float, angular_damping: float = 0.0, ): """ Integrate the rigid bodies of the model. Args: model (Model): The model to integrate. state_in (State): The input state. state_out (State): The output state. dt (float): The time step (typically in seconds). angular_damping (float, optional): The angular damping factor. Defaults to 0.0. """ if model.body_count: wp.launch( kernel=integrate_bodies, dim=model.body_count, inputs=[ state_in.body_q, state_in.body_qd, state_in.body_f, model.body_com, model.body_mass, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, model.gravity, angular_damping, dt, ], outputs=[state_out.body_q, state_out.body_qd], device=model.device, ) def integrate_particles( self, model: Model, state_in: State, state_out: State, dt: float, ): """ Integrate the particles of the model. Args: model (Model): The model to integrate. state_in (State): The input state. state_out (State): The output state. dt (float): The time step (typically in seconds). """ if model.particle_count: wp.launch( kernel=integrate_particles, dim=model.particle_count, inputs=[ state_in.particle_q, state_in.particle_qd, state_in.particle_f, model.particle_inv_mass, model.particle_flags, model.gravity, dt, model.particle_max_velocity, ], outputs=[state_out.particle_q, state_out.particle_qd], device=model.device, ) def simulate(self, model: Model, state_in: State, state_out: State, dt: float, control: Control = None): """ Simulate the model for a given time step using the given control input. Args: model (Model): The model to simulate. state_in (State): The input state. state_out (State): The output state. dt (float): The time step (typically in seconds). control (Control): The control input. Defaults to `None` which means the control values from the :class:`Model` are used. """ raise NotImplementedError()
6,652
Python
27.310638
133
0.555021
NVIDIA/warp/warp/fem/polynomial.py
import math from enum import Enum import numpy as np class Polynomial(Enum): """Polynomial family defining interpolation nodes over an interval""" GAUSS_LEGENDRE = 0 """Gauss--Legendre 1D polynomial family (does not include endpoints)""" LOBATTO_GAUSS_LEGENDRE = 1 """Lobatto--Gauss--Legendre 1D polynomial family (includes endpoints)""" EQUISPACED_CLOSED = 2 """Closed 1D polynomial family with uniformly distributed nodes (includes endpoints)""" EQUISPACED_OPEN = 3 """Open 1D polynomial family with uniformly distributed nodes (does not include endpoints)""" def __str__(self): return self.name def is_closed(family: Polynomial): """Whether the polynomial roots include interval endpoints""" return family == Polynomial.LOBATTO_GAUSS_LEGENDRE or family == Polynomial.EQUISPACED_CLOSED def _gauss_legendre_quadrature_1d(n: int): if n == 1: coords = [0.0] weights = [2.0] elif n == 2: coords = [-math.sqrt(1.0 / 3), math.sqrt(1.0 / 3)] weights = [1.0, 1.0] elif n == 3: coords = [0.0, -math.sqrt(3.0 / 5.0), math.sqrt(3.0 / 5.0)] weights = [8.0 / 9.0, 5.0 / 9.0, 5.0 / 9.0] elif n == 4: c_a = math.sqrt(3.0 / 7.0 - 2.0 / 7.0 * math.sqrt(6.0 / 5.0)) c_b = math.sqrt(3.0 / 7.0 + 2.0 / 7.0 * math.sqrt(6.0 / 5.0)) w_a = (18.0 + math.sqrt(30.0)) / 36.0 w_b = (18.0 - math.sqrt(30.0)) / 36.0 coords = [c_a, -c_a, c_b, -c_b] weights = [w_a, w_a, w_b, w_b] elif n == 5: c_a = 1.0 / 3.0 * math.sqrt(5.0 - 2.0 * math.sqrt(10.0 / 7.0)) c_b = 1.0 / 3.0 * math.sqrt(5.0 + 2.0 * math.sqrt(10.0 / 7.0)) w_a = (322.0 + 13.0 * math.sqrt(70.0)) / 900.0 w_b = (322.0 - 13.0 * math.sqrt(70.0)) / 900.0 coords = [0.0, c_a, -c_a, c_b, -c_b] weights = [128.0 / 225.0, w_a, w_a, w_b, w_b] else: raise NotImplementedError # Shift from [-1, 1] to [0, 1] weights = 0.5 * np.array(weights) coords = 0.5 * np.array(coords) + 0.5 return coords, weights def _lobatto_gauss_legendre_quadrature_1d(n: int): if n == 2: coords = [-1.0, 1.0] weights = [1.0, 1.0] elif n == 3: coords = [-1.0, 0.0, 1.0] weights = [1.0 / 3.0, 4.0 / 3.0, 1.0 / 3.0] elif n == 4: coords = [-1.0, -1.0 / math.sqrt(5.0), 1.0 / math.sqrt(5.0), 1.0] weights = [1.0 / 6.0, 5.0 / 6.0, 5.0 / 6.0, 1.0 / 6.0] elif n == 5: coords = [-1.0, -math.sqrt(3.0 / 7.0), 0.0, math.sqrt(3.0 / 7.0), 1.0] weights = [1.0 / 10.0, 49.0 / 90.0, 32.0 / 45.0, 49.0 / 90.0, 1.0 / 10.0] else: raise NotImplementedError # Shift from [-1, 1] to [0, 1] weights = 0.5 * np.array(weights) coords = 0.5 * np.array(coords) + 0.5 return coords, weights def _uniform_open_quadrature_1d(n: int): step = 1.0 / (n + 1) coords = np.linspace(step, 1.0 - step, n) weights = np.full(n, 1.0 / (n + 1)) # Boundaries have 3/2 the weight weights[0] = 1.5 / (n + 1) weights[-1] = 1.5 / (n + 1) return coords, weights def _uniform_closed_quadrature_1d(n: int): coords = np.linspace(0.0, 1.0, n) weights = np.full(n, 1.0 / (n - 1)) # Boundaries have half the weight weights[0] = 0.5 / (n - 1) weights[-1] = 0.5 / (n - 1) return coords, weights def _open_newton_cotes_quadrature_1d(n: int): step = 1.0 / (n + 1) coords = np.linspace(step, 1.0 - step, n) # Weisstein, Eric W. "Newton-Cotes Formulas." From MathWorld--A Wolfram Web Resource. # https://mathworld.wolfram.com/Newton-CotesFormulas.html if n == 1: weights = np.array([1.0]) elif n == 2: weights = np.array([0.5, 0.5]) elif n == 3: weights = np.array([2.0, -1.0, 2.0]) / 3.0 elif n == 4: weights = np.array([11.0, 1.0, 1.0, 11.0]) / 24.0 elif n == 5: weights = np.array([11.0, -14.0, 26.0, -14.0, 11.0]) / 20.0 elif n == 6: weights = np.array([611.0, -453.0, 562.0, 562.0, -453.0, 611.0]) / 1440.0 elif n == 7: weights = np.array([460.0, -954.0, 2196.0, -2459.0, 2196.0, -954.0, 460.0]) / 945.0 else: raise NotImplementedError return coords, weights def _closed_newton_cotes_quadrature_1d(n: int): coords = np.linspace(0.0, 1.0, n) # OEIS: A093735, A093736 if n == 2: weights = np.array([1.0, 1.0]) / 2.0 elif n == 3: weights = np.array([1.0, 4.0, 1.0]) / 3.0 elif n == 4: weights = np.array([3.0, 9.0, 9.0, 3.0]) / 8.0 elif n == 5: weights = np.array([14.0, 64.0, 24.0, 64.0, 14.0]) / 45.0 elif n == 6: weights = np.array([95.0 / 288.0, 125.0 / 96.0, 125.0 / 144.0, 125.0 / 144.0, 125.0 / 96.0, 95.0 / 288.0]) elif n == 7: weights = np.array([41, 54, 27, 68, 27, 54, 41], dtype=float) / np.array( [140, 35, 140, 35, 140, 35, 140], dtype=float ) elif n == 8: weights = np.array( [ 5257, 25039, 343, 20923, 20923, 343, 25039, 5257, ] ) / np.array( [ 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, ], dtype=float, ) else: raise NotImplementedError # Normalize with interval length weights = weights / (n - 1) return coords, weights def quadrature_1d(point_count: int, family: Polynomial): """Return quadrature points and weights for the given family and point count""" if family == Polynomial.GAUSS_LEGENDRE: return _gauss_legendre_quadrature_1d(point_count) if family == Polynomial.LOBATTO_GAUSS_LEGENDRE: return _lobatto_gauss_legendre_quadrature_1d(point_count) if family == Polynomial.EQUISPACED_CLOSED: return _closed_newton_cotes_quadrature_1d(point_count) if family == Polynomial.EQUISPACED_OPEN: return _open_newton_cotes_quadrature_1d(point_count) raise NotImplementedError def lagrange_scales(coords: np.array): """Return the scaling factors for Lagrange polynomials with roots at coords""" lagrange_scale = np.empty_like(coords) for i in range(len(coords)): deltas = coords[i] - coords deltas[i] = 1.0 lagrange_scale[i] = 1.0 / np.prod(deltas) return lagrange_scale
6,565
Python
29.539535
114
0.529322
NVIDIA/warp/warp/fem/cache.py
import bisect import re from copy import copy from typing import Any, Callable, Dict, Optional, Tuple, Union import warp as wp _kernel_cache = {} _struct_cache = {} _func_cache = {} _key_re = re.compile("[^0-9a-zA-Z_]+") def _make_key(obj, suffix: str, use_qualified_name): base_name = f"{obj.__module__}.{obj.__qualname__}" if use_qualified_name else obj.__name__ return _key_re.sub("", f"{base_name}_{suffix}") def get_func(func, suffix: str, use_qualified_name: bool = False): key = _make_key(func, suffix, use_qualified_name) if key not in _func_cache: _func_cache[key] = wp.Function( func=func, key=key, namespace="", module=wp.get_module( func.__module__, ), ) return _func_cache[key] def dynamic_func(suffix: str, use_qualified_name=False): def wrap_func(func: Callable): return get_func(func, suffix=suffix, use_qualified_name=use_qualified_name) return wrap_func def get_kernel( func, suffix: str, use_qualified_name: bool = False, kernel_options: Dict[str, Any] = None, ): if kernel_options is None: kernel_options = {} key = _make_key(func, suffix, use_qualified_name) if key not in _kernel_cache: # Avoid creating too long file names -- can lead to issues on Windows # We could hash the key, but prefer to keep it human-readable module_name = f"{func.__module__}.dyn.{key}" module_name = module_name[:128] if len(module_name) > 128 else module_name module = wp.get_module(module_name) module.options = copy(wp.get_module(func.__module__).options) module.options.update(kernel_options) _kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return _kernel_cache[key] def dynamic_kernel(suffix: str, use_qualified_name=False, kernel_options: Dict[str, Any] = None): if kernel_options is None: kernel_options = {} def wrap_kernel(func: Callable): return get_kernel(func, suffix=suffix, use_qualified_name=use_qualified_name, kernel_options=kernel_options) return wrap_kernel def get_struct(struct: type, suffix: str, use_qualified_name: bool = False): key = _make_key(struct, suffix, use_qualified_name) # used in codegen struct.__qualname__ = key if key not in _struct_cache: module = wp.get_module(struct.__module__) _struct_cache[key] = wp.codegen.Struct( cls=struct, key=key, module=module, ) return _struct_cache[key] def dynamic_struct(suffix: str, use_qualified_name=False): def wrap_struct(struct: type): return get_struct(struct, suffix=suffix, use_qualified_name=use_qualified_name) return wrap_struct def get_integrand_function( integrand: "warp.fem.operator.Integrand", # noqa: F821 suffix: str, func=None, annotations=None, code_transformers=None, ): if code_transformers is None: code_transformers = [] key = _make_key(integrand.func, suffix, use_qualified_name=True) if key not in _func_cache: _func_cache[key] = wp.Function( func=integrand.func if func is None else func, key=key, namespace="", module=integrand.module, overloaded_annotations=annotations, code_transformers=code_transformers, ) return _func_cache[key] def get_integrand_kernel( integrand: "warp.fem.operator.Integrand", # noqa: F821 suffix: str, kernel_fn: Optional[Callable] = None, kernel_options: Dict[str, Any] = None, code_transformers=None, ): if kernel_options is None: kernel_options = {} if code_transformers is None: code_transformers = [] key = _make_key(integrand.func, suffix, use_qualified_name=True) if key not in _kernel_cache: if kernel_fn is None: return None module = wp.get_module(f"{integrand.module.name}.{integrand.name}") module.options = copy(integrand.module.options) module.options.update(kernel_options) _kernel_cache[key] = wp.Kernel(func=kernel_fn, key=key, module=module, code_transformers=code_transformers) return _kernel_cache[key] def cached_arg_value(func: Callable): """Decorator to be applied to member methods assembling Arg structs, so that the result gets automatically cached for the lifetime of the parent object """ cache_attr = f"_{func.__name__}_cache" def get_arg(obj, device): if not hasattr(obj, cache_attr): setattr(obj, cache_attr, {}) cache = getattr(obj, cache_attr, {}) device = wp.get_device(device) if device.ordinal not in cache: cache[device.ordinal] = func(obj, device) return cache[device.ordinal] return get_arg _cached_vec_types = {} _cached_mat_types = {} def cached_vec_type(length, dtype): key = (length, dtype) if key not in _cached_vec_types: _cached_vec_types[key] = wp.vec(length=length, dtype=dtype) return _cached_vec_types[key] def cached_mat_type(shape, dtype): key = (*shape, dtype) if key not in _cached_mat_types: _cached_mat_types[key] = wp.mat(shape=shape, dtype=dtype) return _cached_mat_types[key] class Temporary: """Handle over a temporary array from a :class:`TemporaryStore`. The array will be automatically returned to the temporary pool for reuse upon destruction of this object, unless the temporary is explicitly detached from the pool using :meth:`detach`. The temporary may also be explicitly returned to the pool before destruction using :meth:`release`. """ def __init__(self, array: wp.array, pool: Optional["TemporaryStore.Pool"] = None, shape=None, dtype=None): self._raw_array = array self._array_view = array self._pool = pool if shape is not None or dtype is not None: self._view_as(shape=shape, dtype=dtype) def detach(self) -> wp.array: """Detaches the temporary so it is never returned to the pool""" if self._pool is not None: self._pool.detach(self._raw_array) self._pool = None return self._array_view def release(self): """Returns the temporary array to the pool""" if self._pool is not None: self._pool.redeem(self._raw_array) self._pool = None @property def array(self) -> wp.array: """View of the array with desired shape and data type.""" return self._array_view def _view_as(self, shape, dtype) -> "Temporary": def _view_reshaped_truncated(array): view = wp.types.array( ptr=array.ptr, dtype=dtype, shape=shape, device=array.device, pinned=array.pinned, capacity=array.capacity, copy=False, grad=None if array.grad is None else _view_reshaped_truncated(array.grad), ) view._ref = array return view self._array_view = _view_reshaped_truncated(self._raw_array) return self def __del__(self): self.release() class TemporaryStore: """ Shared pool of temporary arrays that will be persisted and reused across invocations of ``warp.fem`` functions. A :class:`TemporaryStore` instance may either be passed explicitly to ``warp.fem`` functions that accept such an argument, for instance :func:`.integrate.integrate`, or can be set globally as the default store using :func:`set_default_temporary_store`. By default, there is no default temporary store, so that temporary allocations are not persisted. """ _default_store: "TemporaryStore" = None class Pool: def __init__(self, dtype, device, pinned: bool): self.dtype = dtype self.device = device self.pinned = pinned self._pool = [] # Currently available arrays for borrowing, ordered by size self._pool_sizes = [] # Sizes of available arrays for borrowing, ascending self._allocs = {} # All allocated arrays, including borrowed ones def borrow(self, shape, dtype, requires_grad: bool): size = 1 if isinstance(shape, int): shape = (shape,) for d in shape: size *= d index = bisect.bisect_left( a=self._pool_sizes, x=size, ) if index < len(self._pool): # Big enough array found, remove from pool array = self._pool.pop(index) self._pool_sizes.pop(index) if requires_grad and array.grad is None: array.requires_grad = True return Temporary(pool=self, array=array, shape=shape, dtype=dtype) # No big enough array found, allocate new one if len(self._pool) > 0: grow_factor = 1.5 size = max(int(self._pool_sizes[-1] * grow_factor), size) array = wp.empty( shape=(size,), dtype=self.dtype, pinned=self.pinned, device=self.device, requires_grad=requires_grad ) self._allocs[array.ptr] = array return Temporary(pool=self, array=array, shape=shape, dtype=dtype) def redeem(self, array): # Insert back array into available pool index = bisect.bisect_left( a=self._pool_sizes, x=array.size, ) self._pool.insert(index, array) self._pool_sizes.insert(index, array.size) def detach(self, array): del self._allocs[array.ptr] def __init__(self): self.clear() def clear(self): self._temporaries = {} def borrow(self, shape, dtype, pinned: bool = False, device=None, requires_grad: bool = False) -> Temporary: dtype = wp.types.type_to_warp(dtype) device = wp.get_device(device) type_length = wp.types.type_length(dtype) key = (dtype._type_, type_length, pinned, device.ordinal) pool = self._temporaries.get(key, None) if pool is None: value_type = ( cached_vec_type(length=type_length, dtype=wp.types.type_scalar_type(dtype)) if type_length > 1 else dtype ) pool = TemporaryStore.Pool(value_type, device, pinned=pinned) self._temporaries[key] = pool return pool.borrow(dtype=dtype, shape=shape, requires_grad=requires_grad) def set_default_temporary_store(temporary_store: Optional[TemporaryStore]): """Globally sets the default :class:`TemporaryStore` instance to use for temporary allocations in ``warp.fem`` functions. If the default temporary store is set to ``None``, temporary allocations are not persisted unless a :class:`TemporaryStore` is provided at a per-function granularity. """ TemporaryStore._default_store = temporary_store def borrow_temporary( temporary_store: Optional[TemporaryStore], shape: Union[int, Tuple[int]], dtype: type, pinned: bool = False, requires_grad: bool = False, device=None, ) -> Temporary: """ Borrows and returns a temporary array with specified attributes from a shared pool. If an array with sufficient capacity and matching desired attributes is already available in the pool, it will be returned. Otherwise, a new allocation will be performed. Args: temporary_store: the shared pool to borrow the temporary from. If `temporary_store` is ``None``, the global default temporary store, if set, will be used. shape: desired dimensions for the temporary array dtype: desired data type for the temporary array pinned: whether a pinned allocation is desired device: device on which the memory should be allocated; if ``None``, the current device will be used. """ if temporary_store is None: temporary_store = TemporaryStore._default_store if temporary_store is None: return Temporary( array=wp.empty(shape=shape, dtype=dtype, pinned=pinned, device=device, requires_grad=requires_grad) ) return temporary_store.borrow(shape=shape, dtype=dtype, device=device, pinned=pinned, requires_grad=requires_grad) def borrow_temporary_like( array: Union[wp.array, Temporary], temporary_store: Optional[TemporaryStore], ) -> Temporary: """ Borrows and returns a temporary array with the same attributes as another array or temporary. Args: array: Warp or temporary array to read the desired attributes from temporary_store: the shared pool to borrow the temporary from. If `temporary_store` is ``None``, the global default temporary store, if set, will be used. """ if isinstance(array, Temporary): array = array.array return borrow_temporary( temporary_store=temporary_store, shape=array.shape, dtype=array.dtype, pinned=array.pinned, device=array.device, requires_grad=array.requires_grad, )
13,321
Python
31.975247
170
0.622251
NVIDIA/warp/warp/fem/__init__.py
from .cache import TemporaryStore, borrow_temporary, borrow_temporary_like, set_default_temporary_store from .dirichlet import normalize_dirichlet_projector, project_linear_system from .domain import BoundarySides, Cells, FrontierSides, GeometryDomain, Sides from .field import DiscreteField, FieldLike, make_restriction, make_test, make_trial from .geometry import ( ExplicitGeometryPartition, Geometry, GeometryPartition, Grid2D, Grid3D, Hexmesh, LinearGeometryPartition, Nanogrid, Quadmesh2D, Tetmesh, Trimesh2D, ) from .integrate import integrate, interpolate from .operator import ( D, at_node, average, curl, deformation_gradient, degree, div, div_outer, grad, grad_average, grad_jump, grad_outer, inner, integrand, jump, lookup, measure, measure_ratio, normal, outer, position, ) from .polynomial import Polynomial from .quadrature import ExplicitQuadrature, NodalQuadrature, PicQuadrature, Quadrature, RegularQuadrature from .space import ( BasisSpace, DofMapper, ElementBasis, FunctionSpace, PointBasisSpace, SkewSymmetricTensorMapper, SpacePartition, SpaceRestriction, SpaceTopology, SymmetricTensorMapper, make_collocated_function_space, make_polynomial_basis_space, make_polynomial_space, make_space_partition, make_space_restriction, ) from .types import Coords, Domain, ElementIndex, Field, Sample
1,500
Python
23.209677
105
0.72
NVIDIA/warp/warp/fem/utils.py
from typing import Any, Tuple import numpy as np import warp as wp from warp.fem.cache import ( Temporary, TemporaryStore, borrow_temporary, borrow_temporary_like, ) from warp.utils import array_scan, radix_sort_pairs, runlength_encode @wp.func def generalized_outer(x: Any, y: Any): """Generalized outer product allowing for the first argument to be a scalar""" return wp.outer(x, y) @wp.func def generalized_outer(x: wp.float32, y: wp.vec2): return x * y @wp.func def generalized_outer(x: wp.float32, y: wp.vec3): return x * y @wp.func def generalized_inner(x: Any, y: Any): """Generalized inner product allowing for the first argument to be a tensor""" return wp.dot(x, y) @wp.func def generalized_inner(x: wp.mat22, y: wp.vec2): return x[0] * y[0] + x[1] * y[1] @wp.func def generalized_inner(x: wp.mat33, y: wp.vec3): return x[0] * y[0] + x[1] * y[1] + x[2] * y[2] @wp.func def apply_right(x: Any, y: Any): """Performs x y multiplication with y a square matrix and x either a row-vector or a matrix. Will be removed once native @ operator is implemented. """ return x * y @wp.func def apply_right(x: wp.vec2, y: wp.mat22): return x[0] * y[0] + x[1] * y[1] @wp.func def apply_right(x: wp.vec3, y: wp.mat33): return x[0] * y[0] + x[1] * y[1] + x[2] * y[2] @wp.func def unit_element(template_type: Any, coord: int): """Returns a instance of `template_type` with a single coordinate set to 1 in the canonical basis""" t = type(template_type)(0.0) t[coord] = 1.0 return t @wp.func def unit_element(template_type: wp.float32, coord: int): return 1.0 @wp.func def unit_element(template_type: wp.mat22, coord: int): t = wp.mat22(0.0) row = coord // 2 col = coord - 2 * row t[row, col] = 1.0 return t @wp.func def unit_element(template_type: wp.mat33, coord: int): t = wp.mat33(0.0) row = coord // 3 col = coord - 3 * row t[row, col] = 1.0 return t @wp.func def symmetric_part(x: Any): """Symmetric part of a square tensor""" return 0.5 * (x + wp.transpose(x)) @wp.func def skew_part(x: wp.mat22): """Skew part of a 2x2 tensor as corresponding rotation angle""" return 0.5 * (x[1, 0] - x[0, 1]) @wp.func def skew_part(x: wp.mat33): """Skew part of a 3x3 tensor as the corresponding rotation vector""" a = 0.5 * (x[2, 1] - x[1, 2]) b = 0.5 * (x[0, 2] - x[2, 0]) c = 0.5 * (x[1, 0] - x[0, 1]) return wp.vec3(a, b, c) def compress_node_indices( node_count: int, node_indices: wp.array(dtype=int), temporary_store: TemporaryStore = None ) -> Tuple[Temporary, Temporary, int, Temporary]: """ Compress an unsorted list of node indices into: - a node_offsets array, giving for each node the start offset of corresponding indices in sorted_array_indices - a sorted_array_indices array, listing the indices in the input array corresponding to each node - the number of unique node indices - a unique_node_indices array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1]) """ index_count = node_indices.size sorted_node_indices_temp = borrow_temporary( temporary_store, shape=2 * index_count, dtype=int, device=node_indices.device ) sorted_array_indices_temp = borrow_temporary_like(sorted_node_indices_temp, temporary_store) sorted_node_indices = sorted_node_indices_temp.array sorted_array_indices = sorted_array_indices_temp.array wp.copy(dest=sorted_node_indices, src=node_indices, count=index_count) indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1] wp.launch( kernel=_iota_kernel, dim=index_count, inputs=[sorted_array_indices, indices_per_element], device=sorted_array_indices.device, ) # Sort indices radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count) # Build prefix sum of number of elements per node unique_node_indices_temp = borrow_temporary( temporary_store, shape=index_count, dtype=int, device=node_indices.device ) node_element_counts_temp = borrow_temporary( temporary_store, shape=index_count, dtype=int, device=node_indices.device ) unique_node_indices = unique_node_indices_temp.array node_element_counts = node_element_counts_temp.array unique_node_count_dev = borrow_temporary(temporary_store, shape=(1,), dtype=int, device=sorted_node_indices.device) runlength_encode( sorted_node_indices, unique_node_indices, node_element_counts, value_count=index_count, run_count=unique_node_count_dev.array, ) # Transfer unique node count to host if node_indices.device.is_cuda: unique_node_count_host = borrow_temporary(temporary_store, shape=(1,), dtype=int, pinned=True, device="cpu") wp.copy(src=unique_node_count_dev.array, dest=unique_node_count_host.array, count=1) wp.synchronize_stream(wp.get_stream(node_indices.device)) unique_node_count_dev.release() unique_node_count = int(unique_node_count_host.array.numpy()[0]) unique_node_count_host.release() else: unique_node_count = int(unique_node_count_dev.array.numpy()[0]) unique_node_count_dev.release() # Scatter seen run counts to global array of element count per node node_offsets_temp = borrow_temporary( temporary_store, shape=(node_count + 1), device=node_element_counts.device, dtype=int ) node_offsets = node_offsets_temp.array node_offsets.zero_() wp.launch( kernel=_scatter_node_counts, dim=unique_node_count, inputs=[node_element_counts, unique_node_indices, node_offsets], device=node_offsets.device, ) # Prefix sum of number of elements per node array_scan(node_offsets, node_offsets, inclusive=True) sorted_node_indices_temp.release() node_element_counts_temp.release() return node_offsets_temp, sorted_array_indices_temp, unique_node_count, unique_node_indices_temp def masked_indices( mask: wp.array, missing_index=-1, temporary_store: TemporaryStore = None ) -> Tuple[Temporary, Temporary]: """ From an array of boolean masks (must be either 0 or 1), returns: - The list of indices for which the mask is 1 - A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero. """ offsets_temp = borrow_temporary_like(mask, temporary_store) offsets = offsets_temp.array wp.utils.array_scan(mask, offsets, inclusive=True) # Get back total counts on host if offsets.device.is_cuda: masked_count_temp = borrow_temporary(temporary_store, shape=1, dtype=int, pinned=True, device="cpu") wp.copy(dest=masked_count_temp.array, src=offsets, src_offset=offsets.shape[0] - 1, count=1) wp.synchronize_stream(wp.get_stream(offsets.device)) masked_count = int(masked_count_temp.array.numpy()[0]) masked_count_temp.release() else: masked_count = int(offsets.numpy()[-1]) # Convert counts to indices indices_temp = borrow_temporary(temporary_store, shape=masked_count, device=mask.device, dtype=int) wp.launch( kernel=_masked_indices_kernel, dim=offsets.shape, inputs=[missing_index, mask, offsets, indices_temp.array, offsets], device=mask.device, ) return indices_temp, offsets_temp def array_axpy(x: wp.array, y: wp.array, alpha: float = 1.0, beta: float = 1.0): """Performs y = alpha*x + beta*y""" dtype = wp.types.type_scalar_type(x.dtype) alpha = dtype(alpha) beta = dtype(beta) if not wp.types.types_equal(x.dtype, y.dtype) or x.shape != y.shape or x.device != y.device: raise ValueError("x and y arrays must have same dat atype, shape and device") wp.launch(kernel=_array_axpy_kernel, dim=x.shape, device=x.device, inputs=[x, y, alpha, beta]) @wp.kernel def _iota_kernel(indices: wp.array(dtype=int), divisor: int): indices[wp.tid()] = wp.tid() // divisor @wp.kernel def _scatter_node_counts( unique_counts: wp.array(dtype=int), unique_node_indices: wp.array(dtype=int), node_counts: wp.array(dtype=int) ): i = wp.tid() node_counts[1 + unique_node_indices[i]] = unique_counts[i] @wp.kernel def _masked_indices_kernel( missing_index: int, mask: wp.array(dtype=int), offsets: wp.array(dtype=int), masked_to_global: wp.array(dtype=int), global_to_masked: wp.array(dtype=int), ): i = wp.tid() if mask[i] == 0: global_to_masked[i] = missing_index else: masked_idx = offsets[i] - 1 global_to_masked[i] = masked_idx masked_to_global[masked_idx] = i @wp.kernel def _array_axpy_kernel(x: wp.array(dtype=Any), y: wp.array(dtype=Any), alpha: Any, beta: Any): i = wp.tid() y[i] = beta * y[i] + alpha * x[i] def grid_to_tris(Nx: int, Ny: int): """Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles. The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction Args: Nx: Resolution of the grid along `x` dimension Ny: Resolution of the grid along `y` dimension Returns: Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle """ cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij") vidx = np.transpose( np.array( [ (Ny + 1) * cx + cy, (Ny + 1) * (cx + 1) + cy, (Ny + 1) * (cx + 1) + (cy + 1), (Ny + 1) * cx + cy, (Ny + 1) * (cx + 1) + (cy + 1), (Ny + 1) * (cx) + (cy + 1), ] ) ).reshape((-1, 3)) return vidx def grid_to_tets(Nx: int, Ny: int, Nz: int): """Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons The resulting tets have positive volume assuming that `z` is the fastest moving index direction Args: Nx: Resolution of the grid along `x` dimension Ny: Resolution of the grid along `y` dimension Nz: Resolution of the grid along `z` dimension Returns: Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet """ # Global node indices for each cell cx, cy, cz = np.meshgrid( np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij" ) grid_vidx = np.array( [ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz, (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1, (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz, (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1, (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz, (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1, (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz, (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1, ] ) # decompose grid cells into 5 tets tet_vidx = np.array( [ [0, 1, 2, 4], [3, 2, 1, 7], [5, 1, 7, 4], [6, 7, 4, 2], [4, 1, 2, 7], ] ) # Convert to 3d index coordinates vidx_coords = np.array( [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] ) tet_coords = vidx_coords[tet_vidx] # Symmetry bits for each cell ox, oy, oz = np.meshgrid( np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij" ) tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape)) # Flip coordinates according to symmetry ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1]) oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1]) oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1]) tet_coords_x = tet_coords[..., 0] ^ ox_bk tet_coords_y = tet_coords[..., 1] ^ oy_bk tet_coords_z = tet_coords[..., 2] ^ oz_bk # Back to local vertex indices corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z # Now go from cell-local to global node indices # There must be a nicer way than this, but for small grids this works corner_indices = corner_indices.reshape(-1, 4) grid_vidx = grid_vidx.reshape((8, -1, 1)) grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5)) grid_vidx = grid_vidx.reshape((8, -1)) node_indices = np.arange(corner_indices.shape[0]) tet_grid_vidx = np.transpose( [ grid_vidx[corner_indices[:, 0], node_indices], grid_vidx[corner_indices[:, 1], node_indices], grid_vidx[corner_indices[:, 2], node_indices], grid_vidx[corner_indices[:, 3], node_indices], ] ) return tet_grid_vidx def grid_to_quads(Nx: int, Ny: int): """Constructs a quadrilateral mesh topology from a dense 2D grid The resulting quads will be indexed counter-clockwise Args: Nx: Resolution of the grid along `x` dimension Ny: Resolution of the grid along `y` dimension Returns: Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral """ quad_vtx = np.array( [ [0, 0], [1, 0], [1, 1], [0, 1], ] ).T quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij")) quads_vtx_shape = (*quads.shape, quad_vtx.shape[1]) quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to( quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape ) quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1] return quad_vtx_indices.reshape(-1, 4) def grid_to_hexes(Nx: int, Ny: int, Nz: int): """Constructs a hexahedral mesh topology from a dense 3D grid The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction (counter-clockwise bottom vertices, then counter-clockwise top vertices) Args: Nx: Resolution of the grid along `x` dimension Ny: Resolution of the grid along `y` dimension Nz: Resolution of the grid along `z` dimension Returns: Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexaedron """ hex_vtx = np.array( [ [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1], ] ).T hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij")) hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1]) hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to( hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape ) hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2] return hexes_vtx_indices.reshape(-1, 8)
15,630
Python
30.514113
159
0.603391
NVIDIA/warp/warp/fem/domain.py
from enum import Enum from typing import Union import warp as wp import warp.codegen import warp.context from warp.fem.geometry import ( Element, Geometry, GeometryPartition, WholeGeometryPartition, ) GeometryOrPartition = Union[Geometry, GeometryPartition] class GeometryDomain: """Interface class for domains, i.e. (partial) views of elements in a Geometry""" class ElementKind(Enum): """Possible kinds of elements contained in a domain""" CELL = 0 SIDE = 1 def __init__(self, geometry: GeometryOrPartition): if isinstance(geometry, GeometryPartition): self.geometry_partition = geometry else: self.geometry_partition = WholeGeometryPartition(geometry) self.geometry = self.geometry_partition.geometry @property def name(self) -> str: return f"{self.geometry_partition.name}_{self.__class__.__name__}" def __str__(self) -> str: return self.name def __eq__(self, other) -> bool: return self.__class__ == other.__class__ and self.geometry_partition == other.geometry_partition @property def element_kind(self) -> ElementKind: """Kind of elements that this domain contains (cells or sides)""" raise NotImplementedError @property def dimension(self) -> int: """Dimension of the elements of the domain""" raise NotImplementedError def element_count(self) -> int: """Number of elements in the domain""" raise NotImplementedError def geometry_element_count(self) -> int: """Number of elements in the underlying geometry""" return self.geometry.cell_count() def reference_element(self) -> Element: """Protypical element""" raise NotImplementedError def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: """Value of the argument to be passed to device functions""" raise NotImplementedError def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: """Value of the argument to be passed to device functions""" raise NotImplementedError ElementIndexArg: warp.codegen.Struct """Structure containing arguments to be passed to device functions computing element indices""" element_index: wp.Function """Device function for retrieving an ElementIndex from a linearized index""" ElementArg: warp.codegen.Struct """Structure containing arguments to be passed to device functions computing element geometry""" element_measure: wp.Function """Device function returning the measure determinant (e.g. volume, area) at a given point""" element_measure_ratio: wp.Function """Device function returning the ratio of the measure of a side to that of its neighbour cells""" element_position: wp.Function """Device function returning the element position at a sample point""" element_deformation_gradient: wp.Function """Device function returning the gradient of the position with respect to the element's reference space""" element_normal: wp.Function """Device function returning the element normal at a sample point""" element_lookup: wp.Function """Device function returning the sample point corresponding to a world position""" class Cells(GeometryDomain): """A Domain containing all cells of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) @property def element_kind(self) -> GeometryDomain.ElementKind: return GeometryDomain.ElementKind.CELL @property def dimension(self) -> int: return self.geometry.dimension def reference_element(self) -> Element: return self.geometry.reference_cell() def element_count(self) -> int: return self.geometry_partition.cell_count() def geometry_element_count(self) -> int: return self.geometry.cell_count() @property def ElementIndexArg(self) -> warp.codegen.Struct: return self.geometry_partition.CellArg def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry_partition.cell_arg_value(device) @property def element_index(self) -> wp.Function: return self.geometry_partition.cell_index def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry.cell_arg_value(device) @property def ElementArg(self) -> warp.codegen.Struct: return self.geometry.CellArg @property def element_position(self) -> wp.Function: return self.geometry.cell_position @property def element_deformation_gradient(self) -> wp.Function: return self.geometry.cell_deformation_gradient @property def element_measure(self) -> wp.Function: return self.geometry.cell_measure @property def element_measure_ratio(self) -> wp.Function: return self.geometry.cell_measure_ratio @property def eval_normal(self) -> wp.Function: return self.geometry.cell_normal @property def element_lookup(self) -> wp.Function: return self.geometry.cell_lookup class Sides(GeometryDomain): """A Domain containing all (interior and boundary) sides of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): self.geometry = geometry super().__init__(geometry) @property def element_kind(self) -> GeometryDomain.ElementKind: return GeometryDomain.ElementKind.SIDE @property def dimension(self) -> int: return self.geometry.dimension - 1 def reference_element(self) -> Element: return self.geometry.reference_side() def element_count(self) -> int: return self.geometry_partition.side_count() def geometry_element_count(self) -> int: return self.geometry.side_count() @property def ElementIndexArg(self) -> warp.codegen.Struct: return self.geometry_partition.SideArg def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry_partition.side_arg_value(device) @property def element_index(self) -> wp.Function: return self.geometry_partition.side_index @property def ElementArg(self) -> warp.codegen.Struct: return self.geometry.SideArg def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry.side_arg_value(device) @property def element_position(self) -> wp.Function: return self.geometry.side_position @property def element_deformation_gradient(self) -> wp.Function: return self.geometry.side_deformation_gradient @property def element_measure(self) -> wp.Function: return self.geometry.side_measure @property def element_measure_ratio(self) -> wp.Function: return self.geometry.side_measure_ratio @property def eval_normal(self) -> wp.Function: return self.geometry.side_normal class BoundarySides(Sides): """A Domain containing boundary sides of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) def element_count(self) -> int: return self.geometry_partition.boundary_side_count() def geometry_element_count(self) -> int: return self.geometry.boundary_side_count() @property def element_index(self) -> wp.Function: return self.geometry_partition.boundary_side_index class FrontierSides(Sides): """A Domain containing frontier sides of the geometry partition (sides shared with at least another partition)""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) def element_count(self) -> int: return self.geometry_partition.frontier_side_count() def geometry_element_count(self) -> int: raise RuntimeError("Frontier sides not defined at the geometry level") @property def element_index(self) -> wp.Function: return self.geometry_partition.frontier_side_index
8,366
Python
30.813688
117
0.687306
NVIDIA/warp/warp/fem/operator.py
import inspect from typing import Any, Callable import warp as wp from warp.fem import utils from warp.fem.types import Domain, Field, Sample class Integrand: """An integrand is a device function containing arbitrary expressions over Field and Domain variables. It will get transformed to a proper warp.Function by resolving concrete Field types at call time. """ def __init__(self, func: Callable): self.func = func self.name = wp.codegen.make_full_qualified_name(self.func) self.module = wp.get_module(self.func.__module__) self.argspec = inspect.getfullargspec(self.func) class Operator: """ Operators provide syntaxic sugar over Field and Domain evaluation functions and arguments """ def __init__(self, func: Callable, resolver: Callable): self.func = func self.resolver = resolver def integrand(func: Callable): """Decorator for functions to be integrated (or interpolated) using warp.fem""" itg = Integrand(func) itg.__doc__ = func.__doc__ return itg def operator(resolver: Callable): """Decorator for functions operating on Field-like or Domain-like data inside warp.fem integrands""" def wrap_operator(func: Callable): op = Operator(func, resolver) op.__doc__ = func.__doc__ return op return wrap_operator # Domain operators @operator(resolver=lambda dmn: dmn.element_position) def position(domain: Domain, s: Sample): """Evaluates the world position of the sample point `s`""" pass @operator(resolver=lambda dmn: dmn.eval_normal) def normal(domain: Domain, s: Sample): """Evaluates the element normal at the sample point `s`. Null for interior points.""" pass @operator(resolver=lambda dmn: dmn.element_deformation_gradient) def deformation_gradient(domain: Domain, s: Sample): """Evaluates the gradient of the domain position with respect to the element reference space at the sample point `s`""" pass @operator(resolver=lambda dmn: dmn.element_lookup) def lookup(domain: Domain, x: Any) -> Sample: """Looks-up the sample point corresponding to a world position `x`, projecting to the closest point on the domain. Arg: x: world position of the point to look-up in the geometry guess: (optional) :class:`Sample` initial guess, may help perform the query Notes: Currently this operator is only fully supported for :class:`Grid2D` and :class:`Grid3D` geometries. For :class:`TriangleMesh2D` and :class:`Tetmesh` geometries, the operator requires providing `guess`. """ pass @operator(resolver=lambda dmn: dmn.element_measure) def measure(domain: Domain, s: Sample) -> float: """Returns the measure (volume, area, or length) determinant of an element at a sample point `s`""" pass @operator(resolver=lambda dmn: dmn.element_measure_ratio) def measure_ratio(domain: Domain, s: Sample) -> float: """Returns the maximum ratio between the measure of this element and that of higher-dimensional neighbours.""" pass # Field operators # On a side, inner and outer are such that normal goes from inner to outer @operator(resolver=lambda f: f.eval_inner) def inner(f: Field, s: Sample): """Evaluates the field at a sample point `s`. On oriented sides, uses the inner element""" pass @operator(resolver=lambda f: f.eval_grad_inner) def grad(f: Field, s: Sample): """Evaluates the field gradient at a sample point `s`. On oriented sides, uses the inner element""" pass @operator(resolver=lambda f: f.eval_div_inner) def div(f: Field, s: Sample): """Evaluates the field divergence at a sample point `s`. On oriented sides, uses the inner element""" pass @operator(resolver=lambda f: f.eval_outer) def outer(f: Field, s: Sample): """Evaluates the field at a sample point `s`. On oriented sides, uses the outer element. On interior points and on domain boundaries, this is equivalent to :func:`inner`.""" pass @operator(resolver=lambda f: f.eval_grad_outer) def grad_outer(f: Field, s: Sample): """Evaluates the field gradient at a sample point `s`. On oriented sides, uses the outer element. On interior points and on domain boundaries, this is equivalent to :func:`grad`.""" pass @operator(resolver=lambda f: f.eval_grad_outer) def div_outer(f: Field, s: Sample): """Evaluates the field divergence at a sample point `s`. On oriented sides, uses the outer element. On interior points and on domain boundaries, this is equivalent to :func:`div`.""" pass @operator(resolver=lambda f: f.eval_degree) def degree(f: Field): """Polynomial degree of a field""" pass @operator(resolver=lambda f: f.at_node) def at_node(f: Field, s: Sample): """For a Test or Trial field, returns a copy of the Sample `s` moved to the coordinates of the node being evaluated""" pass # Common derived operators, for convenience @integrand def D(f: Field, s: Sample): """Symmetric part of the (inner) gradient of the field at `s`""" return utils.symmetric_part(grad(f, s)) @integrand def curl(f: Field, s: Sample): """Skew part of the (inner) gradient of the field at `s`, as a vector such that ``wp.cross(curl(u), v) = skew(grad(u)) v``""" return utils.skew_part(grad(f, s)) @integrand def jump(f: Field, s: Sample): """Jump between inner and outer element values on an interior side. Zero for interior points or domain boundaries""" return inner(f, s) - outer(f, s) @integrand def average(f: Field, s: Sample): """Average between inner and outer element values""" return 0.5 * (inner(f, s) + outer(f, s)) @integrand def grad_jump(f: Field, s: Sample): """Jump between inner and outer element gradients on an interior side. Zero for interior points or domain boundaries""" return grad(f, s) - grad_outer(f, s) @integrand def grad_average(f: Field, s: Sample): """Average between inner and outer element gradients""" return 0.5 * (grad(f, s) + grad_outer(f, s)) # Set default call operators for argument types, so that field(s) = inner(field, s) and domain(s) = position(domain, s) Field.call_operator = inner Domain.call_operator = position
6,207
Python
31.502618
186
0.697116
NVIDIA/warp/warp/fem/dirichlet.py
from typing import Any, Optional import warp as wp from warp.sparse import BsrMatrix, bsr_assign, bsr_axpy, bsr_copy, bsr_mm, bsr_mv from warp.types import type_is_matrix, type_length from .utils import array_axpy def normalize_dirichlet_projector(projector_matrix: BsrMatrix, fixed_value: Optional[wp.array] = None): """ Scale projector so that it becomes idempotent, and apply the same scaling to fixed_value if provided """ if projector_matrix.nrow < projector_matrix.nnz or projector_matrix.ncol != projector_matrix.nrow: raise ValueError("Projector must be a square diagonal matrix, with at most one non-zero block per row") # Cast blocks to matrix type if necessary projector_values = projector_matrix.values if not type_is_matrix(projector_values.dtype): projector_values = wp.array( data=None, ptr=projector_values.ptr, capacity=projector_values.capacity, device=projector_values.device, dtype=wp.mat(shape=projector_matrix.block_shape, dtype=projector_matrix.scalar_type), shape=projector_values.shape[0], ) if fixed_value is None: wp.launch( kernel=_normalize_dirichlet_projector_kernel, dim=projector_matrix.nrow, device=projector_values.device, inputs=[projector_matrix.offsets, projector_matrix.columns, projector_values], ) else: if fixed_value.shape[0] != projector_matrix.nrow: raise ValueError("Fixed value array must be of length equal to the number of rows of blocks") if type_length(fixed_value.dtype) == 1: # array of scalars, convert to 1d array of vectors fixed_value = wp.array( data=None, ptr=fixed_value.ptr, capacity=fixed_value.capacity, device=fixed_value.device, dtype=wp.vec(length=projector_matrix.block_shape[0], dtype=projector_matrix.scalar_type), shape=fixed_value.shape[0], ) wp.launch( kernel=_normalize_dirichlet_projector_and_values_kernel, dim=projector_matrix.nrow, device=projector_values.device, inputs=[projector_matrix.offsets, projector_matrix.columns, projector_values, fixed_value], ) def project_system_rhs( system_matrix: BsrMatrix, system_rhs: wp.array, projector_matrix: BsrMatrix, fixed_value: Optional[wp.array] = None ): """Projects the right-hand-side of a linear system to enforce Dirichlet boundary conditions ``rhs = (I - projector) * ( rhs - system * projector * fixed_value) + projector * fixed_value`` """ rhs_tmp = wp.empty_like(system_rhs) rhs_tmp.assign(system_rhs) if fixed_value is None: system_rhs.zero_() else: bsr_mv(A=projector_matrix, x=fixed_value, y=system_rhs, alpha=1.0, beta=0.0) bsr_mv(A=system_matrix, x=system_rhs, y=rhs_tmp, alpha=-1.0, beta=1.0) # here rhs_tmp = system_rhs - system_matrix * projector * fixed_value # system_rhs = projector * fixed_value array_axpy(x=rhs_tmp, y=system_rhs, alpha=1.0, beta=1.0) bsr_mv(A=projector_matrix, x=rhs_tmp, y=system_rhs, alpha=-1.0, beta=1.0) def project_system_matrix(system_matrix: BsrMatrix, projector_matrix: BsrMatrix): """Projects the right-hand-side of a linear system to enforce Dirichlet boundary conditions ``system = (I - projector) * system * (I - projector) + projector`` """ complement_system = bsr_copy(system_matrix) bsr_mm(x=projector_matrix, y=system_matrix, z=complement_system, alpha=-1.0, beta=1.0) bsr_assign(dest=system_matrix, src=complement_system) bsr_axpy(x=projector_matrix, y=system_matrix) bsr_mm(x=complement_system, y=projector_matrix, z=system_matrix, alpha=-1.0, beta=1.0) def project_linear_system( system_matrix: BsrMatrix, system_rhs: wp.array, projector_matrix: BsrMatrix, fixed_value: Optional[wp.array] = None, normalize_projector=True, ): """ Projects both the left-hand-side and right-hand-side of a linear system to enforce Dirichlet boundary conditions If normalize_projector is True, first apply scaling so that the projector_matrix is idempotent """ if normalize_projector: normalize_dirichlet_projector(projector_matrix, fixed_value) project_system_rhs(system_matrix, system_rhs, projector_matrix, fixed_value) project_system_matrix(system_matrix, projector_matrix) @wp.kernel def _normalize_dirichlet_projector_kernel( offsets: wp.array(dtype=int), columns: wp.array(dtype=int), block_values: wp.array(dtype=Any), ): row = wp.tid() beg = offsets[row] end = offsets[row + 1] if beg == end: return diag = wp.lower_bound(columns, beg, end, row) if diag < end and columns[diag] == row: P = block_values[diag] P_sq = P * P trace_P = wp.trace(P) trace_P_sq = wp.trace(P_sq) if wp.nonzero(trace_P_sq): scale = trace_P / trace_P_sq block_values[diag] = scale * P else: block_values[diag] = P - P @wp.kernel def _normalize_dirichlet_projector_and_values_kernel( offsets: wp.array(dtype=int), columns: wp.array(dtype=int), block_values: wp.array(dtype=Any), fixed_values: wp.array(dtype=Any), ): row = wp.tid() beg = offsets[row] end = offsets[row + 1] if beg == end: return diag = wp.lower_bound(columns, beg, end, row) if diag < end and columns[diag] == row: P = block_values[diag] P_sq = P * P trace_P = wp.trace(P) trace_P_sq = wp.trace(P_sq) if wp.nonzero(trace_P_sq): scale = trace_P / trace_P_sq block_values[diag] = scale * P fixed_values[row] = scale * fixed_values[row] else: block_values[diag] = P - P fixed_values[row] = fixed_values[row] - fixed_values[row]
6,037
Python
32.731843
119
0.638893
NVIDIA/warp/warp/fem/types.py
import warp as wp # kept to avoid breaking existing example code, no longer used internally vec2i = wp.vec2i vec3i = wp.vec3i vec4i = wp.vec4i Coords = wp.vec3 OUTSIDE = wp.constant(-1.0e8) ElementIndex = int QuadraturePointIndex = int NodeIndex = int NULL_ELEMENT_INDEX = wp.constant(-1) NULL_QP_INDEX = wp.constant(-1) NULL_NODE_INDEX = wp.constant(-1) DofIndex = wp.vec2i """Opaque descriptor for indexing degrees of freedom within elements""" NULL_DOF_INDEX = wp.constant(DofIndex(-1, -1)) @wp.func def get_node_index_in_element(dof_idx: DofIndex): return dof_idx[0] @wp.func def get_node_coord(dof_idx: DofIndex): return dof_idx[1] @wp.struct class NodeElementIndex: domain_element_index: ElementIndex node_index_in_element: int @wp.struct class Sample: """Per-sample point context for evaluating fields and related operators in integrands""" element_index: ElementIndex """Index of the geometry element the sample point is in""" element_coords: Coords """Coordinates of the sample point inside the element""" qp_index: QuadraturePointIndex = NULL_QP_INDEX """If the sample corresponds to a quadrature point, its global index""" qp_weight: float = 0.0 """If the sample corresponds to a quadrature point, its weight""" test_dof: DofIndex = NULL_DOF_INDEX """For linear of bilinear form assembly, index of the test degree-of-freedom currently being considered""" trial_dof: DofIndex = NULL_DOF_INDEX """For bilinear form assembly, index of the trial degree-of-freedom currently being considered""" @wp.func def make_free_sample(element_index: ElementIndex, element_coords: Coords): """Returns a :class:`Sample` that is not associated to any quadrature point or dof""" return Sample(element_index, element_coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX) class Field: """ Tag for field-like integrand arguments """ call_operator: "warp.fem.operator.Operator" = None # noqa: F821 Set in operator.py class Domain: """ Tag for domain-like integrand arguments """ call_operator: "warp.fem.operator.Operator" = None # noqa: F821 Set in operator.py
2,188
Python
27.064102
110
0.713437
NVIDIA/warp/warp/fem/integrate.py
import ast from typing import Any, Dict, List, Optional, Set, Union import warp as wp from warp.codegen import get_annotations from warp.fem import cache from warp.fem.domain import GeometryDomain from warp.fem.field import ( DiscreteField, FieldLike, FieldRestriction, SpaceField, TestField, TrialField, make_restriction, ) from warp.fem.operator import Integrand, Operator from warp.fem.quadrature import Quadrature, RegularQuadrature from warp.fem.types import NULL_DOF_INDEX, OUTSIDE, DofIndex, Domain, Field, Sample, make_free_sample from warp.sparse import BsrMatrix, bsr_set_from_triplets, bsr_zeros from warp.types import type_length from warp.utils import array_cast def _resolve_path(func, node): """ Resolves variable and path from ast node/attribute (adapted from warp.codegen) """ modules = [] while isinstance(node, ast.Attribute): modules.append(node.attr) node = node.value if isinstance(node, ast.Name): modules.append(node.id) # reverse list since ast presents it backward order path = [*reversed(modules)] if len(path) == 0: return None, path # try and evaluate object path try: # Look up the closure info and append it to adj.func.__globals__ # in case you want to define a kernel inside a function and refer # to variables you've declared inside that function: capturedvars = dict(zip(func.__code__.co_freevars, [c.cell_contents for c in (func.__closure__ or [])])) vars_dict = {**func.__globals__, **capturedvars} func = eval(".".join(path), vars_dict) return func, path except (NameError, AttributeError): pass return None, path def _path_to_ast_attribute(name: str) -> ast.Attribute: path = name.split(".") path.reverse() node = ast.Name(id=path.pop(), ctx=ast.Load()) while len(path): node = ast.Attribute( value=node, attr=path.pop(), ctx=ast.Load(), ) return node class IntegrandTransformer(ast.NodeTransformer): def __init__(self, integrand: Integrand, field_args: Dict[str, FieldLike]): self._integrand = integrand self._field_args = field_args def visit_Call(self, call: ast.Call): call = self.generic_visit(call) callee = getattr(call.func, "id", None) if callee in self._field_args: # Shortcut for evaluating fields as f(x...) field = self._field_args[callee] arg_type = self._integrand.argspec.annotations[callee] operator = arg_type.call_operator call.func = ast.Attribute( value=_path_to_ast_attribute(f"{arg_type.__module__}.{arg_type.__qualname__}"), attr="call_operator", ctx=ast.Load(), ) call.args = [ast.Name(id=callee, ctx=ast.Load())] + call.args self._replace_call_func(call, operator, field) return call func, _ = _resolve_path(self._integrand.func, call.func) if isinstance(func, Operator) and len(call.args) > 0: # Evaluating operators as op(field, x, ...) callee = getattr(call.args[0], "id", None) if callee in self._field_args: field = self._field_args[callee] self._replace_call_func(call, func, field) if isinstance(func, Integrand): key = self._translate_callee(func, call.args) call.func = ast.Attribute( value=call.func, attr=key, ctx=ast.Load(), ) # print(ast.dump(call, indent=4)) return call def _replace_call_func(self, call: ast.Call, operator: Operator, field: FieldLike): try: pointer = operator.resolver(field) setattr(operator, pointer.key, pointer) except AttributeError as e: raise ValueError(f"Operator {operator.func.__name__} is not defined for field {field.name}") from e call.func = ast.Attribute(value=call.func, attr=pointer.key, ctx=ast.Load()) def _translate_callee(self, callee: Integrand, args: List[ast.AST]): # Get field types for call site arguments call_site_field_args = [] for arg in args: name = getattr(arg, "id", None) if name in self._field_args: call_site_field_args.append(self._field_args[name]) call_site_field_args.reverse() # Pass to callee in same order callee_field_args = {} for arg in callee.argspec.args: arg_type = callee.argspec.annotations[arg] if arg_type in (Field, Domain): callee_field_args[arg] = call_site_field_args.pop() return _translate_integrand(callee, callee_field_args).key def _translate_integrand(integrand: Integrand, field_args: Dict[str, FieldLike]) -> wp.Function: # Specialize field argument types argspec = integrand.argspec annotations = {} for arg in argspec.args: arg_type = argspec.annotations[arg] if arg_type == Field: annotations[arg] = field_args[arg].ElementEvalArg elif arg_type == Domain: annotations[arg] = field_args[arg].ElementArg else: annotations[arg] = arg_type # Transform field evaluation calls transformer = IntegrandTransformer(integrand, field_args) suffix = "_".join([f.name for f in field_args.values()]) func = cache.get_integrand_function( integrand=integrand, suffix=suffix, annotations=annotations, code_transformers=[transformer], ) key = func.key setattr(integrand, key, integrand.module.functions[key]) return getattr(integrand, key) def _get_integrand_field_arguments( integrand: Integrand, fields: Dict[str, FieldLike], domain: GeometryDomain = None, ): # parse argument types field_args = {} value_args = {} domain_name = None sample_name = None argspec = integrand.argspec for arg in argspec.args: arg_type = argspec.annotations[arg] if arg_type == Field: if arg not in fields: raise ValueError(f"Missing field for argument '{arg}' of integrand '{integrand.name}'") field_args[arg] = fields[arg] elif arg_type == Domain: domain_name = arg field_args[arg] = domain elif arg_type == Sample: sample_name = arg else: value_args[arg] = arg_type return field_args, value_args, domain_name, sample_name def _check_field_compat( integrand: Integrand, fields: Dict[str, FieldLike], field_args: Dict[str, FieldLike], domain: GeometryDomain = None, ): # Check field compatilibity for name, field in fields.items(): if name not in field_args: raise ValueError( f"Passed field argument '{name}' does not match any parameter of integrand '{integrand.name}'" ) if isinstance(field, SpaceField) and domain is not None: space = field.space if space.geometry != domain.geometry: raise ValueError(f"Field '{name}' must be defined on the same geometry as the integration domain") if space.dimension != domain.dimension: raise ValueError( f"Field '{name}' dimension ({space.dimension}) does not match that of the integration domain ({domain.dimension}). Maybe a forgotten `.trace()`?" ) def _populate_value_struct(ValueStruct: wp.codegen.Struct, values: Dict[str, Any], integrand_name: str): value_struct_values = ValueStruct() for k, v in values.items(): try: setattr(value_struct_values, k, v) except Exception as err: if k not in ValueStruct.vars: raise ValueError( f"Passed value argument '{k}' does not match any of the integrand '{integrand_name}' parameters" ) from err raise ValueError( f"Passed value argument '{k}' of type '{wp.types.type_repr(v)}' is incompatible with the integrand '{integrand_name}' parameter of type '{wp.types.type_repr(ValueStruct.vars[k].type)}'" ) from err missing_values = ValueStruct.vars.keys() - values.keys() if missing_values: wp.utils.warn( f"Missing values for parameter(s) '{', '.join(missing_values)}' of the integrand '{integrand_name}', will be zero-initialized" ) return value_struct_values def _get_test_and_trial_fields( fields: Dict[str, FieldLike], ): test = None trial = None test_name = None trial_name = None for name, field in fields.items(): if not isinstance(field, FieldLike): raise ValueError(f"Passed field argument '{name}' is not a proper Field") if isinstance(field, TestField): if test is not None: raise ValueError(f"More than one test field argument: '{test_name}' and '{name}'") test = field test_name = name elif isinstance(field, TrialField): if trial is not None: raise ValueError(f"More than one trial field argument: '{trial_name}' and '{name}'") trial = field trial_name = name if trial is not None: if test is None: raise ValueError("A trial field cannot be provided without a test field") if test.domain != trial.domain: raise ValueError("Incompatible test and trial domains") return test, test_name, trial, trial_name def _gen_field_struct(field_args: Dict[str, FieldLike]): class Fields: pass annotations = get_annotations(Fields) for name, arg in field_args.items(): if isinstance(arg, GeometryDomain): continue setattr(Fields, name, arg.EvalArg()) annotations[name] = arg.EvalArg try: Fields.__annotations__ = annotations except AttributeError: Fields.__dict__.__annotations__ = annotations suffix = "_".join([f"{name}_{arg_struct.cls.__qualname__}" for name, arg_struct in annotations.items()]) return cache.get_struct(Fields, suffix=suffix) def _gen_value_struct(value_args: Dict[str, type]): class Values: pass annotations = get_annotations(Values) for name, arg_type in value_args.items(): setattr(Values, name, None) annotations[name] = arg_type def arg_type_name(arg_type): if isinstance(arg_type, wp.codegen.Struct): return arg_type_name(arg_type.cls) return getattr(arg_type, "__name__", str(arg_type)) def arg_type_name(arg_type): if isinstance(arg_type, wp.codegen.Struct): return arg_type_name(arg_type.cls) return getattr(arg_type, "__name__", str(arg_type)) try: Values.__annotations__ = annotations except AttributeError: Values.__dict__.__annotations__ = annotations suffix = "_".join([f"{name}_{arg_type_name(arg_type)}" for name, arg_type in annotations.items()]) return cache.get_struct(Values, suffix=suffix) def _get_trial_arg(): pass def _get_test_arg(): pass class _FieldWrappers: pass def _register_integrand_field_wrappers(integrand_func: wp.Function, fields: Dict[str, FieldLike]): integrand_func._field_wrappers = _FieldWrappers() for name, field in fields.items(): setattr(integrand_func._field_wrappers, name, field.ElementEvalArg) class PassFieldArgsToIntegrand(ast.NodeTransformer): def __init__( self, arg_names: List[str], field_args: Set[str], value_args: Set[str], sample_name: str, domain_name: str, test_name: str = None, trial_name: str = None, func_name: str = "integrand_func", fields_var_name: str = "fields", values_var_name: str = "values", domain_var_name: str = "domain_arg", sample_var_name: str = "sample", field_wrappers_attr: str = "_field_wrappers", ): self._arg_names = arg_names self._field_args = field_args self._value_args = value_args self._domain_name = domain_name self._sample_name = sample_name self._func_name = func_name self._test_name = test_name self._trial_name = trial_name self._fields_var_name = fields_var_name self._values_var_name = values_var_name self._domain_var_name = domain_var_name self._sample_var_name = sample_var_name self._field_wrappers_attr = field_wrappers_attr def visit_Call(self, call: ast.Call): call = self.generic_visit(call) callee = getattr(call.func, "id", None) if callee == self._func_name: # Replace function arguments with ours generated structs call.args.clear() for arg in self._arg_names: if arg == self._domain_name: call.args.append( ast.Name(id=self._domain_var_name, ctx=ast.Load()), ) elif arg == self._sample_name: call.args.append( ast.Name(id=self._sample_var_name, ctx=ast.Load()), ) elif arg in self._field_args: call.args.append( ast.Call( func=ast.Attribute( value=ast.Attribute( value=ast.Name(id=self._func_name, ctx=ast.Load()), attr=self._field_wrappers_attr, ctx=ast.Load(), ), attr=arg, ctx=ast.Load(), ), args=[ ast.Name(id=self._domain_var_name, ctx=ast.Load()), ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=arg, ctx=ast.Load(), ), ], keywords=[], ) ) elif arg in self._value_args: call.args.append( ast.Attribute( value=ast.Name(id=self._values_var_name, ctx=ast.Load()), attr=arg, ctx=ast.Load(), ) ) else: raise RuntimeError(f"Unhandled argument {arg}") # print(ast.dump(call, indent=4)) elif callee == _get_test_arg.__name__: # print(ast.dump(call, indent=4)) call = ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=self._test_name, ctx=ast.Load(), ) elif callee == _get_trial_arg.__name__: # print(ast.dump(call, indent=4)) call = ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=self._trial_name, ctx=ast.Load(), ) return call def get_integrate_constant_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, accumulate_dtype, ): def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, fields: FieldStruct, values: ValueStruct, result: wp.array(dtype=accumulate_dtype), ): element_index = domain.element_index(domain_index_arg, wp.tid()) elem_sum = accumulate_dtype(0.0) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX qp_point_count = quadrature.point_count(domain_arg, qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(domain_arg, qp_arg, element_index, k) coords = quadrature.point_coords(domain_arg, qp_arg, element_index, k) qp_weight = quadrature.point_weight(domain_arg, qp_arg, element_index, k) sample = Sample(element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index) vol = domain.element_measure(domain_arg, sample) val = integrand_func(sample, fields, values) elem_sum += accumulate_dtype(qp_weight * vol * val) wp.atomic_add(result, 0, elem_sum) return integrate_kernel_fn def get_integrate_linear_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, output_dtype, accumulate_dtype, ): def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_arg: test.space_restriction.NodeArg, fields: FieldStruct, values: ValueStruct, result: wp.array2d(dtype=output_dtype), ): local_node_index, test_dof = wp.tid() node_index = test.space_restriction.node_partition_index(test_arg, local_node_index) element_count = test.space_restriction.node_element_count(test_arg, local_node_index) trial_dof_index = NULL_DOF_INDEX val_sum = accumulate_dtype(0.0) for n in range(element_count): node_element_index = test.space_restriction.node_element_index(test_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) test_dof_index = DofIndex(node_element_index.node_index_in_element, test_dof) qp_point_count = quadrature.point_count(domain_arg, qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(domain_arg, qp_arg, element_index, k) qp_coords = quadrature.point_coords(domain_arg, qp_arg, element_index, k) qp_weight = quadrature.point_weight(domain_arg, qp_arg, element_index, k) vol = domain.element_measure(domain_arg, make_free_sample(element_index, qp_coords)) sample = Sample(element_index, qp_coords, qp_index, qp_weight, test_dof_index, trial_dof_index) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(qp_weight * vol * val) result[node_index, test_dof] = output_dtype(val_sum) return integrate_kernel_fn def get_integrate_linear_nodal_kernel( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, output_dtype, accumulate_dtype, ): def integrate_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_restriction_arg: test.space_restriction.NodeArg, fields: FieldStruct, values: ValueStruct, result: wp.array2d(dtype=output_dtype), ): local_node_index, dof = wp.tid() node_index = test.space_restriction.node_partition_index(test_restriction_arg, local_node_index) element_count = test.space_restriction.node_element_count(test_restriction_arg, local_node_index) trial_dof_index = NULL_DOF_INDEX val_sum = accumulate_dtype(0.0) for n in range(element_count): node_element_index = test.space_restriction.node_element_index(test_restriction_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = test.space.node_coords_in_element( domain_arg, _get_test_arg(), element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: node_weight = test.space.node_quadrature_weight( domain_arg, _get_test_arg(), element_index, node_element_index.node_index_in_element, ) test_dof_index = DofIndex(node_element_index.node_index_in_element, dof) sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) vol = domain.element_measure(domain_arg, sample) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(node_weight * vol * val) result[node_index, dof] = output_dtype(val_sum) return integrate_kernel_fn def get_integrate_bilinear_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, trial: TrialField, output_dtype, accumulate_dtype, ): NODES_PER_ELEMENT = trial.space.topology.NODES_PER_ELEMENT def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_arg: test.space_restriction.NodeArg, trial_partition_arg: trial.space_partition.PartitionArg, trial_topology_arg: trial.space_partition.space_topology.TopologyArg, fields: FieldStruct, values: ValueStruct, row_offsets: wp.array(dtype=int), triplet_rows: wp.array(dtype=int), triplet_cols: wp.array(dtype=int), triplet_values: wp.array3d(dtype=output_dtype), ): test_local_node_index, trial_node, test_dof, trial_dof = wp.tid() element_count = test.space_restriction.node_element_count(test_arg, test_local_node_index) test_node_index = test.space_restriction.node_partition_index(test_arg, test_local_node_index) trial_dof_index = DofIndex(trial_node, trial_dof) for element in range(element_count): test_element_index = test.space_restriction.node_element_index(test_arg, test_local_node_index, element) element_index = domain.element_index(domain_index_arg, test_element_index.domain_element_index) qp_point_count = quadrature.point_count(domain_arg, qp_arg, element_index) test_dof_index = DofIndex( test_element_index.node_index_in_element, test_dof, ) val_sum = accumulate_dtype(0.0) for k in range(qp_point_count): qp_index = quadrature.point_index(domain_arg, qp_arg, element_index, k) coords = quadrature.point_coords(domain_arg, qp_arg, element_index, k) qp_weight = quadrature.point_weight(domain_arg, qp_arg, element_index, k) vol = domain.element_measure(domain_arg, make_free_sample(element_index, coords)) sample = Sample( element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index, ) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(qp_weight * vol * val) block_offset = (row_offsets[test_node_index] + element) * NODES_PER_ELEMENT + trial_node triplet_values[block_offset, test_dof, trial_dof] = output_dtype(val_sum) # Set row and column indices if test_dof == 0 and trial_dof == 0: trial_node_index = trial.space_partition.partition_node_index( trial_partition_arg, trial.space.topology.element_node_index(domain_arg, trial_topology_arg, element_index, trial_node), ) triplet_rows[block_offset] = test_node_index triplet_cols[block_offset] = trial_node_index return integrate_kernel_fn def get_integrate_bilinear_nodal_kernel( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, output_dtype, accumulate_dtype, ): def integrate_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_restriction_arg: test.space_restriction.NodeArg, fields: FieldStruct, values: ValueStruct, triplet_rows: wp.array(dtype=int), triplet_cols: wp.array(dtype=int), triplet_values: wp.array3d(dtype=output_dtype), ): local_node_index, test_dof, trial_dof = wp.tid() element_count = test.space_restriction.node_element_count(test_restriction_arg, local_node_index) node_index = test.space_restriction.node_partition_index(test_restriction_arg, local_node_index) val_sum = accumulate_dtype(0.0) for n in range(element_count): node_element_index = test.space_restriction.node_element_index(test_restriction_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = test.space.node_coords_in_element( domain_arg, _get_test_arg(), element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: node_weight = test.space.node_quadrature_weight( domain_arg, _get_test_arg(), element_index, node_element_index.node_index_in_element, ) test_dof_index = DofIndex(node_element_index.node_index_in_element, test_dof) trial_dof_index = DofIndex(node_element_index.node_index_in_element, trial_dof) sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) vol = domain.element_measure(domain_arg, sample) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(node_weight * vol * val) triplet_values[local_node_index, test_dof, trial_dof] = output_dtype(val_sum) triplet_rows[local_node_index] = node_index triplet_cols[local_node_index] = node_index return integrate_kernel_fn def _generate_integrate_kernel( integrand: Integrand, domain: GeometryDomain, nodal: bool, quadrature: Quadrature, test: Optional[TestField], test_name: str, trial: Optional[TrialField], trial_name: str, fields: Dict[str, FieldLike], output_dtype: type, accumulate_dtype: type, kernel_options: Optional[Dict[str, Any]] = None, ) -> wp.Kernel: if kernel_options is None: kernel_options = {} output_dtype = wp.types.type_scalar_type(output_dtype) # Extract field arguments from integrand field_args, value_args, domain_name, sample_name = _get_integrand_field_arguments( integrand, fields=fields, domain=domain ) FieldStruct = _gen_field_struct(field_args) ValueStruct = _gen_value_struct(value_args) # Check if kernel exist in cache kernel_suffix = f"_itg_{wp.types.type_typestr(output_dtype)}{wp.types.type_typestr(accumulate_dtype)}_{domain.name}_{FieldStruct.key}" if nodal: kernel_suffix += "_nodal" else: kernel_suffix += quadrature.name if test: kernel_suffix += f"_test_{test.space_partition.name}_{test.space.name}" if trial: kernel_suffix += f"_trial_{trial.space_partition.name}_{trial.space.name}" kernel = cache.get_integrand_kernel( integrand=integrand, suffix=kernel_suffix, ) if kernel is not None: return kernel, FieldStruct, ValueStruct # Not found in cache, transform integrand and generate kernel _check_field_compat(integrand, fields, field_args, domain) integrand_func = _translate_integrand( integrand, field_args, ) _register_integrand_field_wrappers(integrand_func, fields) if test is None and trial is None: integrate_kernel_fn = get_integrate_constant_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, accumulate_dtype=accumulate_dtype, ) elif trial is None: if nodal: integrate_kernel_fn = get_integrate_linear_nodal_kernel( integrand_func, domain, FieldStruct, ValueStruct, test=test, output_dtype=output_dtype, accumulate_dtype=accumulate_dtype, ) else: integrate_kernel_fn = get_integrate_linear_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, test=test, output_dtype=output_dtype, accumulate_dtype=accumulate_dtype, ) else: if nodal: integrate_kernel_fn = get_integrate_bilinear_nodal_kernel( integrand_func, domain, FieldStruct, ValueStruct, test=test, output_dtype=output_dtype, accumulate_dtype=accumulate_dtype, ) else: integrate_kernel_fn = get_integrate_bilinear_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, test=test, trial=trial, output_dtype=output_dtype, accumulate_dtype=accumulate_dtype, ) kernel = cache.get_integrand_kernel( integrand=integrand, kernel_fn=integrate_kernel_fn, suffix=kernel_suffix, kernel_options=kernel_options, code_transformers=[ PassFieldArgsToIntegrand( arg_names=integrand.argspec.args, field_args=field_args.keys(), value_args=value_args.keys(), sample_name=sample_name, domain_name=domain_name, test_name=test_name, trial_name=trial_name, ) ], ) return kernel, FieldStruct, ValueStruct def _launch_integrate_kernel( integrand: Integrand, kernel: wp.Kernel, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, domain: GeometryDomain, nodal: bool, quadrature: Quadrature, test: Optional[TestField], trial: Optional[TrialField], fields: Dict[str, FieldLike], values: Dict[str, Any], accumulate_dtype: type, temporary_store: Optional[cache.TemporaryStore], output_dtype: type, output: Optional[Union[wp.array, BsrMatrix]], device, ): # Set-up launch arguments domain_elt_arg = domain.element_arg_value(device=device) domain_elt_index_arg = domain.element_index_arg_value(device=device) if quadrature is not None: qp_arg = quadrature.arg_value(device=device) field_arg_values = FieldStruct() for k, v in fields.items(): setattr(field_arg_values, k, v.eval_arg_value(device=device)) value_struct_values = _populate_value_struct(ValueStruct, values, integrand_name=integrand.name) # Constant form if test is None and trial is None: if output is not None and output.dtype == accumulate_dtype: if output.size < 1: raise RuntimeError("Output array must be of size at least 1") accumulate_array = output else: accumulate_temporary = cache.borrow_temporary( shape=(1), device=device, dtype=accumulate_dtype, temporary_store=temporary_store, requires_grad=output is not None and output.requires_grad, ) accumulate_array = accumulate_temporary.array accumulate_array.zero_() wp.launch( kernel=kernel, dim=domain.element_count(), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, field_arg_values, value_struct_values, accumulate_array, ], device=device, ) if output == accumulate_array: return output elif output is None: return accumulate_array.numpy()[0] else: array_cast(in_array=accumulate_array, out_array=output) return output test_arg = test.space_restriction.node_arg(device=device) # Linear form if trial is None: # If an output array is provided with the correct type, accumulate directly into it # Otherwise, grab a temporary array if output is None: if type_length(output_dtype) == test.space.VALUE_DOF_COUNT: output_shape = (test.space_partition.node_count(),) elif type_length(output_dtype) == 1: output_shape = (test.space_partition.node_count(), test.space.VALUE_DOF_COUNT) else: raise RuntimeError( f"Incompatible output type {wp.types.type_repr(output_dtype)}, must be scalar or vector of length {test.space.VALUE_DOF_COUNT}" ) output_temporary = cache.borrow_temporary( temporary_store=temporary_store, shape=output_shape, dtype=output_dtype, device=device, ) output = output_temporary.array else: output_temporary = None if output.shape[0] < test.space_partition.node_count(): raise RuntimeError(f"Output array must have at least {test.space_partition.node_count()} rows") output_dtype = output.dtype if type_length(output_dtype) != test.space.VALUE_DOF_COUNT: if type_length(output_dtype) != 1: raise RuntimeError( f"Incompatible output type {wp.types.type_repr(output_dtype)}, must be scalar or vector of length {test.space.VALUE_DOF_COUNT}" ) if output.ndim != 2 and output.shape[1] != test.space.VALUE_DOF_COUNT: raise RuntimeError( f"Incompatible output array shape, last dimension must be of size {test.space.VALUE_DOF_COUNT}" ) # Launch the integration on the kernel on a 2d scalar view of the actual array output.zero_() def as_2d_array(array): return wp.array( data=None, ptr=array.ptr, capacity=array.capacity, device=array.device, shape=(test.space_partition.node_count(), test.space.VALUE_DOF_COUNT), dtype=wp.types.type_scalar_type(output_dtype), grad=None if array.grad is None else as_2d_array(array.grad), ) output_view = output if output.ndim == 2 else as_2d_array(output) if nodal: wp.launch( kernel=kernel, dim=(test.space_restriction.node_count(), test.space.VALUE_DOF_COUNT), inputs=[ domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, output_view, ], device=device, ) else: wp.launch( kernel=kernel, dim=(test.space_restriction.node_count(), test.space.VALUE_DOF_COUNT), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, output_view, ], device=device, ) if output_temporary is not None: return output_temporary.detach() return output # Bilinear form if test.space.VALUE_DOF_COUNT == 1 and trial.space.VALUE_DOF_COUNT == 1: block_type = output_dtype else: block_type = cache.cached_mat_type( shape=(test.space.VALUE_DOF_COUNT, trial.space.VALUE_DOF_COUNT), dtype=output_dtype ) if nodal: nnz = test.space_restriction.node_count() else: nnz = test.space_restriction.total_node_element_count() * trial.space.topology.NODES_PER_ELEMENT triplet_rows_temp = cache.borrow_temporary(temporary_store, shape=(nnz,), dtype=int, device=device) triplet_cols_temp = cache.borrow_temporary(temporary_store, shape=(nnz,), dtype=int, device=device) triplet_values_temp = cache.borrow_temporary( temporary_store, shape=( nnz, test.space.VALUE_DOF_COUNT, trial.space.VALUE_DOF_COUNT, ), dtype=output_dtype, device=device, ) triplet_cols = triplet_cols_temp.array triplet_rows = triplet_rows_temp.array triplet_values = triplet_values_temp.array triplet_values.zero_() if nodal: wp.launch( kernel=kernel, dim=triplet_values.shape, inputs=[ domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, triplet_rows, triplet_cols, triplet_values, ], device=device, ) else: offsets = test.space_restriction.partition_element_offsets() trial_partition_arg = trial.space_partition.partition_arg_value(device) trial_topology_arg = trial.space_partition.space_topology.topo_arg_value(device) wp.launch( kernel=kernel, dim=( test.space_restriction.node_count(), trial.space.topology.NODES_PER_ELEMENT, test.space.VALUE_DOF_COUNT, trial.space.VALUE_DOF_COUNT, ), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, test_arg, trial_partition_arg, trial_topology_arg, field_arg_values, value_struct_values, offsets, triplet_rows, triplet_cols, triplet_values, ], device=device, ) if output is not None: if output.nrow != test.space_partition.node_count() or output.ncol != trial.space_partition.node_count(): raise RuntimeError( f"Output matrix must have {test.space_partition.node_count()} rows and {trial.space_partition.node_count()} columns of blocks" ) else: output = bsr_zeros( rows_of_blocks=test.space_partition.node_count(), cols_of_blocks=trial.space_partition.node_count(), block_type=block_type, device=device, ) bsr_set_from_triplets(output, triplet_rows, triplet_cols, triplet_values) # Do not wait for garbage collection triplet_values_temp.release() triplet_rows_temp.release() triplet_cols_temp.release() return output def integrate( integrand: Integrand, domain: Optional[GeometryDomain] = None, quadrature: Optional[Quadrature] = None, nodal: bool = False, fields: Optional[Dict[str, FieldLike]] = None, values: Optional[Dict[str, Any]] = None, accumulate_dtype: type = wp.float64, output_dtype: Optional[type] = None, output: Optional[Union[BsrMatrix, wp.array]] = None, device=None, temporary_store: Optional[cache.TemporaryStore] = None, kernel_options: Optional[Dict[str, Any]] = None, ): """ Integrates a constant, linear or bilinear form, and returns a scalar, array, or sparse matrix, respectively. Args: integrand: Form to be integrated, must have :func:`integrand` decorator domain: Integration domain. If None, deduced from fields quadrature: Quadrature formula. If None, deduced from domain and fields degree. nodal: For linear or bilinear form only, use the test function nodes as the quadrature points. Assumes Lagrange interpolation functions are used, and no differential or DG operator is evaluated on the test or trial functions. fields: Discrete, test, and trial fields to be passed to the integrand. Keys in the dictionary must match integrand parameter names. values: Additional variable values to be passed to the integrand, can be of any type accepted by warp kernel launches. Keys in the dictionary must match integrand parameter names. temporary_store: shared pool from which to allocate temporary arrays accumulate_dtype: Scalar type to be used for accumulating integration samples output: Sparse matrix or warp array into which to store the result of the integration output_dtype: Scalar type for returned results in `output` is not provided. If None, defaults to `accumulate_dtype` device: Device on which to perform the integration kernel_options: Overloaded options to be passed to the kernel builder (e.g, ``{"enable_backward": True}``) """ if fields is None: fields = {} if values is None: values = {} if kernel_options is None: kernel_options = {} if not isinstance(integrand, Integrand): raise ValueError("integrand must be tagged with @warp.fem.integrand decorator") test, test_name, trial, trial_name = _get_test_and_trial_fields(fields) if domain is None: if quadrature is not None: domain = quadrature.domain elif test is not None: domain = test.domain if domain is None: raise ValueError("Must provide at least one of domain, quadrature, or test field") if test is not None and domain != test.domain: raise NotImplementedError("Mixing integration and test domain is not supported yet") if nodal: if quadrature is not None: raise ValueError("Cannot specify quadrature for nodal integration") if test is None: raise ValueError("Nodal integration requires specifying a test function") if trial is not None and test.space_partition != trial.space_partition: raise ValueError( "Bilinear nodal integration requires test and trial to be defined on the same function space" ) else: if quadrature is None: order = sum(field.degree for field in fields.values()) quadrature = RegularQuadrature(domain=domain, order=order) elif domain != quadrature.domain: raise ValueError("Incompatible integration and quadrature domain") # Canonicalize types accumulate_dtype = wp.types.type_to_warp(accumulate_dtype) if output is not None: if isinstance(output, BsrMatrix): output_dtype = output.scalar_type else: output_dtype = output.dtype elif output_dtype is None: output_dtype = accumulate_dtype else: output_dtype = wp.types.type_to_warp(output_dtype) kernel, FieldStruct, ValueStruct = _generate_integrate_kernel( integrand=integrand, domain=domain, nodal=nodal, quadrature=quadrature, test=test, test_name=test_name, trial=trial, trial_name=trial_name, fields=fields, accumulate_dtype=accumulate_dtype, output_dtype=output_dtype, kernel_options=kernel_options, ) return _launch_integrate_kernel( integrand=integrand, kernel=kernel, FieldStruct=FieldStruct, ValueStruct=ValueStruct, domain=domain, nodal=nodal, quadrature=quadrature, test=test, trial=trial, fields=fields, values=values, accumulate_dtype=accumulate_dtype, temporary_store=temporary_store, output_dtype=output_dtype, output=output, device=device, ) def get_interpolate_to_field_function( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, dest: FieldRestriction, ): value_type = dest.space.dtype def interpolate_to_field_fn( local_node_index: int, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, dest_node_arg: dest.space_restriction.NodeArg, dest_eval_arg: dest.field.EvalArg, fields: FieldStruct, values: ValueStruct, ): node_index = dest.space_restriction.node_partition_index(dest_node_arg, local_node_index) element_count = dest.space_restriction.node_element_count(dest_node_arg, local_node_index) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX node_weight = 1.0 # Volume-weighted average across elements # Superfluous if the interpolated function is continuous, but helpful for visualizing discontinuous spaces val_sum = value_type(0.0) vol_sum = float(0.0) for n in range(element_count): node_element_index = dest.space_restriction.node_element_index(dest_node_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = dest.space.node_coords_in_element( domain_arg, dest_eval_arg.space_arg, element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) vol = domain.element_measure(domain_arg, sample) val = integrand_func(sample, fields, values) vol_sum += vol val_sum += vol * val return val_sum, vol_sum return interpolate_to_field_fn def get_interpolate_to_field_kernel( interpolate_to_field_fn: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, dest: FieldRestriction, ): def interpolate_to_field_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, dest_node_arg: dest.space_restriction.NodeArg, dest_eval_arg: dest.field.EvalArg, fields: FieldStruct, values: ValueStruct, ): local_node_index = wp.tid() val_sum, vol_sum = interpolate_to_field_fn( local_node_index, domain_arg, domain_index_arg, dest_node_arg, dest_eval_arg, fields, values ) if vol_sum > 0.0: node_index = dest.space_restriction.node_partition_index(dest_node_arg, local_node_index) dest.field.set_node_value(dest_eval_arg, node_index, val_sum / vol_sum) return interpolate_to_field_kernel_fn def get_interpolate_to_array_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, value_type: type, ): def interpolate_to_array_kernel_fn( qp_arg: quadrature.Arg, domain_arg: quadrature.domain.ElementArg, domain_index_arg: quadrature.domain.ElementIndexArg, fields: FieldStruct, values: ValueStruct, result: wp.array(dtype=value_type), ): element_index = domain.element_index(domain_index_arg, wp.tid()) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX qp_point_count = quadrature.point_count(domain_arg, qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(domain_arg, qp_arg, element_index, k) coords = quadrature.point_coords(domain_arg, qp_arg, element_index, k) qp_weight = quadrature.point_weight(domain_arg, qp_arg, element_index, k) sample = Sample(element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index) result[qp_index] = integrand_func(sample, fields, values) return interpolate_to_array_kernel_fn def get_interpolate_nonvalued_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, ): def interpolate_nonvalued_kernel_fn( qp_arg: quadrature.Arg, domain_arg: quadrature.domain.ElementArg, domain_index_arg: quadrature.domain.ElementIndexArg, fields: FieldStruct, values: ValueStruct, ): element_index = domain.element_index(domain_index_arg, wp.tid()) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX qp_point_count = quadrature.point_count(domain_arg, qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(domain_arg, qp_arg, element_index, k) coords = quadrature.point_coords(domain_arg, qp_arg, element_index, k) qp_weight = quadrature.point_weight(domain_arg, qp_arg, element_index, k) sample = Sample(element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index) integrand_func(sample, fields, values) return interpolate_nonvalued_kernel_fn def _generate_interpolate_kernel( integrand: Integrand, domain: GeometryDomain, dest: Optional[Union[FieldLike, wp.array]], quadrature: Optional[Quadrature], fields: Dict[str, FieldLike], kernel_options: Optional[Dict[str, Any]] = None, ) -> wp.Kernel: if kernel_options is None: kernel_options = {} # Extract field arguments from integrand field_args, value_args, domain_name, sample_name = _get_integrand_field_arguments( integrand, fields=fields, domain=domain ) # Generate field struct integrand_func = _translate_integrand( integrand, field_args, ) _register_integrand_field_wrappers(integrand_func, fields) FieldStruct = _gen_field_struct(field_args) ValueStruct = _gen_value_struct(value_args) # Check if kernel exist in cache if isinstance(dest, FieldRestriction): kernel_suffix = ( f"_itp_{FieldStruct.key}_{dest.domain.name}_{dest.space_restriction.space_partition.name}_{dest.space.name}" ) elif wp.types.is_array(dest): kernel_suffix = f"_itp_{FieldStruct.key}_{quadrature.name}_{wp.types.type_repr(dest.dtype)}" else: kernel_suffix = f"_itp_{FieldStruct.key}_{quadrature.name}" kernel = cache.get_integrand_kernel( integrand=integrand, suffix=kernel_suffix, ) if kernel is not None: return kernel, FieldStruct, ValueStruct _check_field_compat(integrand, fields, field_args, domain) # Generate interpolation kernel if isinstance(dest, FieldRestriction): # need to split into kernel + function for diffferentiability interpolate_fn = get_interpolate_to_field_function( integrand_func, domain, dest=dest, FieldStruct=FieldStruct, ValueStruct=ValueStruct, ) interpolate_fn = cache.get_integrand_function( integrand=integrand, func=interpolate_fn, suffix=kernel_suffix, code_transformers=[ PassFieldArgsToIntegrand( arg_names=integrand.argspec.args, field_args=field_args.keys(), value_args=value_args.keys(), sample_name=sample_name, domain_name=domain_name, ) ], ) interpolate_kernel_fn = get_interpolate_to_field_kernel( interpolate_fn, domain, dest=dest, FieldStruct=FieldStruct, ValueStruct=ValueStruct, ) elif wp.types.is_array(dest): interpolate_kernel_fn = get_interpolate_to_array_kernel( integrand_func, domain=domain, quadrature=quadrature, value_type=dest.dtype, FieldStruct=FieldStruct, ValueStruct=ValueStruct, ) else: interpolate_kernel_fn = get_interpolate_nonvalued_kernel( integrand_func, domain=domain, quadrature=quadrature, FieldStruct=FieldStruct, ValueStruct=ValueStruct, ) kernel = cache.get_integrand_kernel( integrand=integrand, kernel_fn=interpolate_kernel_fn, suffix=kernel_suffix, kernel_options=kernel_options, code_transformers=[ PassFieldArgsToIntegrand( arg_names=integrand.argspec.args, field_args=field_args.keys(), value_args=value_args.keys(), sample_name=sample_name, domain_name=domain_name, ) ], ) return kernel, FieldStruct, ValueStruct def _launch_interpolate_kernel( integrand: Integrand, kernel: wp.kernel, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, domain: GeometryDomain, dest: Optional[Union[FieldRestriction, wp.array]], quadrature: Optional[Quadrature], fields: Dict[str, FieldLike], values: Dict[str, Any], device, ) -> wp.Kernel: # Set-up launch arguments elt_arg = domain.element_arg_value(device=device) elt_index_arg = domain.element_index_arg_value(device=device) field_arg_values = FieldStruct() for k, v in fields.items(): setattr(field_arg_values, k, v.eval_arg_value(device=device)) value_struct_values = _populate_value_struct(ValueStruct, values, integrand_name=integrand.name) if isinstance(dest, FieldRestriction): dest_node_arg = dest.space_restriction.node_arg(device=device) dest_eval_arg = dest.field.eval_arg_value(device=device) wp.launch( kernel=kernel, dim=dest.space_restriction.node_count(), inputs=[ elt_arg, elt_index_arg, dest_node_arg, dest_eval_arg, field_arg_values, value_struct_values, ], device=device, ) elif wp.types.is_array(dest): qp_arg = quadrature.arg_value(device) wp.launch( kernel=kernel, dim=domain.element_count(), inputs=[qp_arg, elt_arg, elt_index_arg, field_arg_values, value_struct_values, dest], device=device, ) else: qp_arg = quadrature.arg_value(device) wp.launch( kernel=kernel, dim=domain.element_count(), inputs=[qp_arg, elt_arg, elt_index_arg, field_arg_values, value_struct_values], device=device, ) def interpolate( integrand: Integrand, dest: Optional[Union[DiscreteField, FieldRestriction, wp.array]] = None, quadrature: Optional[Quadrature] = None, fields: Optional[Dict[str, FieldLike]] = None, values: Optional[Dict[str, Any]] = None, device=None, kernel_options: Optional[Dict[str, Any]] = None, ): """ Interpolates a function at a finite set of sample points and optionally assigns the result to a discrete field or a raw warp array. Args: integrand: Function to be interpolated, must have :func:`integrand` decorator dest: Where to store the interpolation result. Can be either - a :class:`DiscreteField`, or restriction of a discrete field to a domain (from :func:`make_restriction`). In this case, interpolation will be performed at each node. - a normal warp array. In this case, the `quadrature` argument defining the interpolation locations must be provided and the result of the `integrand` at each quadrature point will be assigned to the array. - ``None``. In this case, the `quadrature` argument must also be provided and the `integrand` function is responsible for dealing with the interpolation result. quadrature: Quadrature formula defining the interpolation samples if `dest` is not a discrete field or field restriction. fields: Discrete fields to be passed to the integrand. Keys in the dictionary must match integrand parameters names. values: Additional variable values to be passed to the integrand, can be of any type accepted by warp kernel launches. Keys in the dictionary must match integrand parameter names. device: Device on which to perform the interpolation kernel_options: Overloaded options to be passed to the kernel builder (e.g, ``{"enable_backward": True}``) """ if fields is None: fields = {} if values is None: values = {} if kernel_options is None: kernel_options = {} if not isinstance(integrand, Integrand): raise ValueError("integrand must be tagged with @integrand decorator") test, _, trial, __ = _get_test_and_trial_fields(fields) if test is not None or trial is not None: raise ValueError("Test or Trial fields should not be used for interpolation") if isinstance(dest, DiscreteField): dest = make_restriction(dest) if isinstance(dest, FieldRestriction): domain = dest.domain else: if quadrature is None: raise ValueError("When not interpolating to a field, a quadrature formula must be provided") domain = quadrature.domain kernel, FieldStruct, ValueStruct = _generate_interpolate_kernel( integrand=integrand, domain=domain, dest=dest, quadrature=quadrature, fields=fields, kernel_options=kernel_options, ) return _launch_interpolate_kernel( integrand=integrand, kernel=kernel, FieldStruct=FieldStruct, ValueStruct=ValueStruct, domain=domain, dest=dest, quadrature=quadrature, fields=fields, values=values, device=device, )
59,748
Python
34.459347
233
0.593158
NVIDIA/warp/warp/fem/field/trial.py
import warp as wp from warp.fem import cache, utils from warp.fem.domain import GeometryDomain from warp.fem.space import FunctionSpace, SpacePartition from warp.fem.types import Sample, get_node_index_in_element from .field import SpaceField class TrialField(SpaceField): """Field defined over a domain that can be used as a trial function""" def __init__( self, space: FunctionSpace, space_partition: SpacePartition, domain: GeometryDomain, ): if domain.dimension == space.dimension - 1: space = space.trace() if domain.dimension != space.dimension: raise ValueError("Incompatible space and domain dimensions") if not space.topology.is_derived_from(space_partition.space_topology): raise ValueError("Incompatible space and space partition topologies") super().__init__(space, space_partition) self.domain = domain self.EvalArg = self.space.SpaceArg self.ElementEvalArg = self._make_element_eval_arg() self.eval_degree = self._make_eval_degree() self.eval_inner = self._make_eval_inner() self.eval_grad_inner = self._make_eval_grad_inner() self.eval_div_inner = self._make_eval_div_inner() self.eval_outer = self._make_eval_outer() self.eval_grad_outer = self._make_eval_grad_outer() self.eval_div_outer = self._make_eval_div_outer() self.at_node = self._make_at_node() def partition_node_count(self) -> int: """Returns the number of nodes in the associated space topology partition""" return self.space_partition.node_count() @property def name(self) -> str: return self.space.name + "Trial" def eval_arg_value(self, device) -> wp.codegen.StructInstance: return self.space.space_arg_value(device) def _make_element_eval_arg(self): @cache.dynamic_struct(suffix=self.name) class ElementEvalArg: elt_arg: self.domain.ElementArg eval_arg: self.EvalArg return ElementEvalArg def _make_eval_inner(self): @cache.dynamic_func(suffix=self.name) def eval_trial_inner(args: self.ElementEvalArg, s: Sample): weight = self.space.element_inner_weight( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return weight * self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof) return eval_trial_inner def _make_eval_grad_inner(self): if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_nabla_trial_inner(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) return utils.generalized_outer( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_nabla_trial_inner def _make_eval_div_inner(self): if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_trial_inner(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) return utils.generalized_inner( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_div_trial_inner def _make_eval_outer(self): @cache.dynamic_func(suffix=self.name) def eval_trial_outer(args: self.ElementEvalArg, s: Sample): weight = self.space.element_outer_weight( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return weight * self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof) return eval_trial_outer def _make_eval_grad_outer(self): if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_nabla_trial_outer(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) return utils.generalized_outer( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_nabla_trial_outer def _make_eval_div_outer(self): if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_trial_outer(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) return utils.generalized_inner( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.trial_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_div_trial_outer def _make_at_node(self): @cache.dynamic_func(suffix=self.name) def at_node(args: self.ElementEvalArg, s: Sample): node_coords = self.space.node_coords_in_element( args.elt_arg, args.eval_arg, s.element_index, get_node_index_in_element(s.trial_dof) ) return Sample(s.element_index, node_coords, s.qp_index, s.qp_weight, s.test_dof, s.trial_dof) return at_node
6,918
Python
36.603261
105
0.593235
NVIDIA/warp/warp/fem/field/restriction.py
from warp.fem.space import SpaceRestriction from .field import DiscreteField class FieldRestriction: """Restriction of a discrete field to a given GeometryDomain""" def __init__(self, space_restriction: SpaceRestriction, field: DiscreteField): if field.space.dimension - 1 == space_restriction.space_topology.dimension: field = field.trace() if field.space.dimension != space_restriction.space_topology.dimension: raise ValueError("Incompatible space and field dimensions") if field.space.topology != space_restriction.space_topology: raise ValueError("Incompatible field and space restriction topologies") self.space_restriction = space_restriction self.domain = self.space_restriction.domain self.field = field self.space = self.field.space
850
Python
35.999998
83
0.705882
NVIDIA/warp/warp/fem/field/field.py
from typing import Any import warp as wp from warp.fem.geometry import DeformedGeometry, Geometry from warp.fem.space import FunctionSpace, SpacePartition from warp.fem.types import Sample class FieldLike: """Base class for integrable fields""" EvalArg: wp.codegen.Struct """Structure containing field-level arguments passed to device functions for field evaluation""" ElementEvalArg: wp.codegen.Struct """Structure combining geometry-level and field-level arguments passed to device functions for field evaluation""" def eval_arg_value(self, device) -> "EvalArg": # noqa: F821 """Value of the field-level arguments to be passed to device functions""" raise NotImplementedError @property def degree(self) -> int: """Polynomial degree of the field, used to estimate necessary quadrature order""" raise NotImplementedError @property def name(self) -> str: raise NotImplementedError @property def __str__(self) -> str: return self.name def eval_arg_value(self, device): """Value of arguments to be passed to device functions""" raise NotImplementedError @staticmethod def eval_inner(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the inner field value at a sample point""" raise NotImplementedError @staticmethod def eval_grad_inner(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the inner field gradient at a sample point""" raise NotImplementedError @staticmethod def eval_div_inner(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the inner field divergence at a sample point""" raise NotImplementedError @staticmethod def eval_outer(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the outer field value at a sample point""" raise NotImplementedError @staticmethod def eval_grad_outer(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the outer field gradient at a sample point""" raise NotImplementedError @staticmethod def eval_div_outer(args: "ElementEvalArg", s: "Sample"): # noqa: F821 """Device function evaluating the outer field divergence at a sample point""" raise NotImplementedError class SpaceField(FieldLike): """Base class for fields defined over a function space""" def __init__(self, space: FunctionSpace, space_partition: SpacePartition): self._space = space self._space_partition = space_partition @property def space(self) -> FunctionSpace: return self._space @property def space_partition(self) -> SpacePartition: return self._space_partition @property def degree(self) -> int: return self.space.degree @property def dtype(self) -> type: return self.space.dtype @property def dof_dtype(self) -> type: return self.space.dof_dtype def gradient_valid(self) -> bool: """Whether gradient operator can be computed. Only for scalar and vector fields as higher-order tensors are not support yet""" return not wp.types.type_is_matrix(self.dtype) def divergence_valid(self) -> bool: """Whether divergence of this field can be computed. Only for vector and tensor fields with same dimension as embedding geometry""" if wp.types.type_is_vector(self.dtype): return wp.types.type_length(self.dtype) == self.space.geometry.dimension if wp.types.type_is_matrix(self.dtype): return self.dtype._shape_[0] == self.space.geometry.dimension return False def _make_eval_degree(self): ORDER = self.space.ORDER from warp.fem import cache @cache.dynamic_func(suffix=self.name) def degree(args: self.ElementEvalArg): return ORDER return degree class DiscreteField(SpaceField): """Explicitly-valued field defined over a partition of a discrete function space""" @property def dof_values(self) -> wp.array: """Array of degrees of freedom values""" raise NotImplementedError @dof_values.setter def dof_values(self, values: wp.array): """Sets degrees of freedom values from an array""" raise NotImplementedError def trace(self) -> "DiscreteField": """Trace of this field over a lower-dimensional function space""" raise NotImplementedError @staticmethod def set_node_value(args: "FieldLike.EvalArg", node_index: int, value: Any): """Device function setting the value at given node""" raise NotImplementedError @property def name(self) -> str: return f"{self.__class__.__qualname__}_{self.space.name}_{self.space_partition.name}" def make_deformed_geometry(self) -> Geometry: """Returns a deformed version of the underlying geometry using this field's values as displacement""" return DeformedGeometry(self)
5,138
Python
33.489933
139
0.672635
NVIDIA/warp/warp/fem/field/__init__.py
from typing import Optional, Union from warp.fem.domain import Cells, GeometryDomain from warp.fem.space import FunctionSpace, SpacePartition, SpaceRestriction, make_space_partition, make_space_restriction from .field import DiscreteField, FieldLike, SpaceField from .nodal_field import NodalField from .restriction import FieldRestriction from .test import TestField from .trial import TrialField def make_restriction( field: DiscreteField, space_restriction: Optional[SpaceRestriction] = None, domain: Optional[GeometryDomain] = None, device=None, ) -> FieldRestriction: """ Restricts a discrete field to a subset of elements. Args: field: the discrete field to restrict space_restriction: the function space restriction defining the subset of elements to consider domain: if ``space_restriction`` is not provided, the :py:class:`Domain` defining the subset of elements to consider device: Warp device on which to perform and store computations Returns: the field restriction """ if space_restriction is None: space_restriction = make_space_restriction(space_partition=field.space_partition, domain=domain, device=device) return FieldRestriction(field=field, space_restriction=space_restriction) def make_test( space: FunctionSpace, space_restriction: Optional[SpaceRestriction] = None, space_partition: Optional[SpacePartition] = None, domain: Optional[GeometryDomain] = None, device=None, ) -> TestField: """ Constructs a test field over a function space or its restriction Args: space: the function space space_restriction: restriction of the space topology to a domain space_partition: if `space_restriction` is ``None``, the optional subset of node indices to consider domain: if `space_restriction` is ``None``, optional subset of elements to consider device: Warp device on which to perform and store computations Returns: the test field """ if space_restriction is None: space_restriction = make_space_restriction( space_topology=space.topology, space_partition=space_partition, domain=domain, device=device ) return TestField(space_restriction=space_restriction, space=space) def make_trial( space: FunctionSpace, space_restriction: Optional[SpaceRestriction] = None, space_partition: Optional[SpacePartition] = None, domain: Optional[GeometryDomain] = None, ) -> TrialField: """ Constructs a trial field over a function space or partition Args: space: the function space or function space restriction space_restriction: restriction of the space topology to a domain space_partition: if `space_restriction` is ``None``, the optional subset of node indices to consider domain: if `space_restriction` is ``None``, optional subset of elements to consider device: Warp device on which to perform and store computations Returns: the trial field """ if space_restriction is not None: domain = space.domain space_partition = space.space_partition if space_partition is None: if domain is None: domain = Cells(geometry=space.geometry) space_partition = make_space_partition( space_topology=space.topology, geometry_partition=domain.geometry_partition ) elif domain is None: domain = Cells(geometry=space_partition.geo_partition) return TrialField(space, space_partition, domain)
3,591
Python
34.564356
124
0.711501
NVIDIA/warp/warp/fem/field/test.py
import warp as wp from warp.fem import cache, utils from warp.fem.space import FunctionSpace, SpaceRestriction from warp.fem.types import Sample, get_node_index_in_element from .field import SpaceField class TestField(SpaceField): """Field defined over a space restriction that can be used as a test function. In order to reuse computations, it is possible to define the test field using a SpaceRestriction defined for a different value type than the test function value type, as long as the node topology is similar. """ def __init__(self, space_restriction: SpaceRestriction, space: FunctionSpace): if space_restriction.domain.dimension == space.dimension - 1: space = space.trace() if space_restriction.domain.dimension != space.dimension: raise ValueError("Incompatible space and domain dimensions") if space.topology != space_restriction.space_topology: raise ValueError("Incompatible space and space partition topologies") super().__init__(space, space_restriction.space_partition) self.space_restriction = space_restriction self.domain = self.space_restriction.domain self.EvalArg = self.space.SpaceArg self.ElementEvalArg = self._make_element_eval_arg() self.eval_degree = self._make_eval_degree() self.eval_inner = self._make_eval_inner() self.eval_grad_inner = self._make_eval_grad_inner() self.eval_div_inner = self._make_eval_div_inner() self.eval_outer = self._make_eval_outer() self.eval_grad_outer = self._make_eval_grad_outer() self.eval_div_outer = self._make_eval_div_outer() self.at_node = self._make_at_node() @property def name(self) -> str: return self.space.name + "Test" def eval_arg_value(self, device) -> wp.codegen.StructInstance: return self.space.space_arg_value(device) def _make_element_eval_arg(self): from warp.fem import cache @cache.dynamic_struct(suffix=self.name) class ElementEvalArg: elt_arg: self.domain.ElementArg eval_arg: self.EvalArg return ElementEvalArg def _make_eval_inner(self): @cache.dynamic_func(suffix=self.name) def eval_test_inner(args: self.ElementEvalArg, s: Sample): weight = self.space.element_inner_weight( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return weight * self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof) return eval_test_inner def _make_eval_grad_inner(self): if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_nabla_test_inner(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) return utils.generalized_outer( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_nabla_test_inner def _make_eval_div_inner(self): if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_test_inner(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) return utils.generalized_inner( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_div_test_inner def _make_eval_outer(self): @cache.dynamic_func(suffix=self.name) def eval_test_outer(args: self.ElementEvalArg, s: Sample): weight = self.space.element_outer_weight( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return weight * self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof) return eval_test_outer def _make_eval_grad_outer(self): if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_nabla_test_outer(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) return utils.generalized_outer( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_nabla_test_outer def _make_eval_div_outer(self): if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_test_outer(args: self.ElementEvalArg, s: Sample): nabla_weight = self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) return utils.generalized_inner( self.space.unit_dof_value(args.elt_arg, args.eval_arg, s.test_dof), utils.apply_right(nabla_weight, grad_transform), ) return eval_div_test_outer def _make_at_node(self): @cache.dynamic_func(suffix=self.name) def at_node(args: self.ElementEvalArg, s: Sample): node_coords = self.space.node_coords_in_element( args.elt_arg, args.eval_arg, s.element_index, get_node_index_in_element(s.test_dof) ) return Sample(s.element_index, node_coords, s.qp_index, s.qp_weight, s.test_dof, s.trial_dof) return at_node
6,994
Python
37.646409
114
0.5998
NVIDIA/warp/warp/fem/field/nodal_field.py
import warp as wp from warp.fem import cache, utils from warp.fem.space import CollocatedFunctionSpace, SpacePartition from warp.fem.types import NULL_NODE_INDEX, ElementIndex, Sample from .field import DiscreteField class NodalFieldBase(DiscreteField): """Base class for nodal field and nodal field traces. Does not hold values""" def __init__(self, space: CollocatedFunctionSpace, space_partition: SpacePartition): super().__init__(space, space_partition) self.EvalArg = self._make_eval_arg() self.ElementEvalArg = self._make_element_eval_arg() self.eval_degree = DiscreteField._make_eval_degree(self) self._read_node_value = self._make_read_node_value() self.eval_inner = self._make_eval_inner() self.eval_outer = self._make_eval_outer() self.eval_grad_inner = self._make_eval_grad_inner(world_space=True) self.eval_grad_outer = self._make_eval_grad_outer(world_space=True) self.eval_reference_grad_inner = self._make_eval_grad_inner(world_space=False) self.eval_reference_grad_outer = self._make_eval_grad_outer(world_space=False) self.eval_div_inner = self._make_eval_div_inner() self.eval_div_outer = self._make_eval_div_outer() self.set_node_value = self._make_set_node_value() def _make_eval_arg(self): @cache.dynamic_struct(suffix=self.name) class EvalArg: dof_values: wp.array(dtype=self.space.dof_dtype) space_arg: self.space.SpaceArg topology_arg: self.space.topology.TopologyArg partition_arg: self.space_partition.PartitionArg return EvalArg def _make_element_eval_arg(self): @cache.dynamic_struct(suffix=self.name) class ElementEvalArg: elt_arg: self.space.topology.ElementArg eval_arg: self.EvalArg return ElementEvalArg def _make_read_node_value(self): @cache.dynamic_func(suffix=self.name) def read_node_value(args: self.ElementEvalArg, geo_element_index: ElementIndex, node_index_in_elt: int): nidx = self.space.topology.element_node_index( args.elt_arg, args.eval_arg.topology_arg, geo_element_index, node_index_in_elt ) pidx = self.space_partition.partition_node_index(args.eval_arg.partition_arg, nidx) if pidx == NULL_NODE_INDEX: return self.space.dtype(0.0) return self.space.dof_mapper.dof_to_value(args.eval_arg.dof_values[pidx]) return read_node_value def _make_eval_inner(self): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def eval_inner(args: self.ElementEvalArg, s: Sample): res = self.space.element_inner_weight( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0 ) * self._read_node_value(args, s.element_index, 0) for k in range(1, NODES_PER_ELEMENT): res += self.space.element_inner_weight( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k ) * self._read_node_value(args, s.element_index, k) return res return eval_inner def _make_eval_grad_inner(self, world_space: bool): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_grad_inner_ref_space(args: self.ElementEvalArg, s: Sample): res = utils.generalized_outer( self._read_node_value(args, s.element_index, 0), self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0 ), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_outer( self._read_node_value(args, s.element_index, k), self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k ), ) return res @cache.dynamic_func(suffix=self.name) def eval_grad_inner_world_space(args: self.ElementEvalArg, s: Sample): grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) res = eval_grad_inner_ref_space(args, s) return utils.apply_right(res, grad_transform) return eval_grad_inner_world_space if world_space else eval_grad_inner_ref_space def _make_eval_div_inner(self): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_inner(args: self.ElementEvalArg, s: Sample): grad_transform = self.space.element_inner_reference_gradient_transform(args.elt_arg, s) res = utils.generalized_inner( self._read_node_value(args, s.element_index, 0), utils.apply_right( self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0 ), grad_transform, ), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_inner( self._read_node_value(args, s.element_index, k), utils.apply_right( self.space.element_inner_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k ), grad_transform, ), ) return res return eval_div_inner def _make_eval_outer(self): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def eval_outer(args: self.ElementEvalArg, s: Sample): res = self.space.element_outer_weight( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0, ) * self._read_node_value(args, s.element_index, 0) for k in range(1, NODES_PER_ELEMENT): res += self.space.element_outer_weight( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k, ) * self._read_node_value(args, s.element_index, k) return res return eval_outer def _make_eval_grad_outer(self, world_space: bool): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT if not self.gradient_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_grad_outer_ref_space(args: self.ElementEvalArg, s: Sample): res = utils.generalized_outer( self._read_node_value(args, s.element_index, 0), self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0 ), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_outer( self._read_node_value(args, s.element_index, k), self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k ), ) return res @cache.dynamic_func(suffix=self.name) def eval_grad_outer_world_space(args: self.ElementEvalArg, s: Sample): grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) res = eval_grad_outer_ref_space(args, s) return utils.apply_right(res, grad_transform) return eval_grad_outer_world_space if world_space else eval_grad_outer_ref_space def _make_eval_div_outer(self): NODES_PER_ELEMENT = self.space.topology.NODES_PER_ELEMENT if not self.divergence_valid(): return None @cache.dynamic_func(suffix=self.name) def eval_div_outer(args: self.ElementEvalArg, s: Sample): grad_transform = self.space.element_outer_reference_gradient_transform(args.elt_arg, s) res = utils.generalized_inner( self._read_node_value(args, s.element_index, 0), utils.apply_right( self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, 0 ), grad_transform, ), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_inner( self._read_node_value(args, s.element_index, k), utils.apply_right( self.space.element_outer_weight_gradient( args.elt_arg, args.eval_arg.space_arg, s.element_index, s.element_coords, k ), grad_transform, ), ) return res return eval_div_outer def _make_set_node_value(self): @cache.dynamic_func(suffix=self.name) def set_node_value(args: self.EvalArg, partition_node_index: int, value: self.space.dtype): args.dof_values[partition_node_index] = self.space.dof_mapper.value_to_dof(value) return set_node_value class NodalField(NodalFieldBase): """A field holding values for all degrees of freedom at each node of the underlying function space partition See also: warp.fem.space.CollocatedFunctionSpace.make_field """ def __init__(self, space: CollocatedFunctionSpace, space_partition: SpacePartition): if space.topology != space_partition.space_topology: raise ValueError("Incompatible space and space partition topologies") super().__init__(space, space_partition) self._dof_values = wp.zeros(n=self.space_partition.node_count(), dtype=self.dof_dtype) def eval_arg_value(self, device): arg = self.EvalArg() arg.dof_values = self._dof_values.to(device) arg.space_arg = self.space.space_arg_value(device) arg.partition_arg = self.space_partition.partition_arg_value(device) arg.topology_arg = self.space.topology.topo_arg_value(device) return arg @property def dof_values(self) -> wp.array: """Returns a warp array containing the values at all degrees of freedom of the underlying space partition""" return self._dof_values @dof_values.setter def dof_values(self, values): """Sets the degrees-of-freedom values Args: values: Array that is convertible to a warp array of length ``self.space_partition.node_count()`` and data type ``self.space.dof_dtype`` """ if isinstance(values, wp.array): self._dof_values = values else: self._dof_values = wp.array(values, dtype=self.dof_dtype) class Trace(NodalFieldBase): def __init__(self, field): self._field = field super().__init__(field.space.trace(), field.space_partition) def eval_arg_value(self, device): arg = self.EvalArg() arg.dof_values = self._field.dof_values.to(device) arg.space_arg = self.space.space_arg_value(device) arg.partition_arg = self.space_partition.partition_arg_value(device) arg.topology_arg = self.space.topology.topo_arg_value(device) return arg def trace(self) -> Trace: trace_field = NodalField.Trace(self) return trace_field
12,223
Python
39.882943
148
0.587744
NVIDIA/warp/warp/fem/space/grid_3d_function_space.py
import numpy as np import warp as wp from warp.fem import cache from warp.fem.geometry import Grid3D from warp.fem.polynomial import is_closed from warp.fem.types import ElementIndex from .shape import ( CubeSerendipityShapeFunctions, CubeTripolynomialShapeFunctions, ShapeFunction, ) from .topology import SpaceTopology, forward_base_topology class Grid3DSpaceTopology(SpaceTopology): def __init__(self, grid: Grid3D, shape: ShapeFunction): if not is_closed(shape.family): raise ValueError("A closed polynomial family is required to define a continuous function space") super().__init__(grid, shape.NODES_PER_ELEMENT) self._shape = shape self._grid = grid @wp.func def _vertex_coords(vidx_in_cell: int): x = vidx_in_cell // 4 y = (vidx_in_cell - 4 * x) // 2 z = vidx_in_cell - 4 * x - 2 * y return wp.vec3i(x, y, z) @wp.func def _vertex_index(cell_arg: Grid3D.CellArg, cell_index: ElementIndex, vidx_in_cell: int): res = cell_arg.res strides = wp.vec2i((res[1] + 1) * (res[2] + 1), res[2] + 1) corner = Grid3D.get_cell(res, cell_index) + Grid3DSpaceTopology._vertex_coords(vidx_in_cell) return Grid3D._from_3d_index(strides, corner) class GridTripolynomialSpaceTopology(Grid3DSpaceTopology): def __init__(self, grid: Grid3D, shape: CubeTripolynomialShapeFunctions): super().__init__(grid, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return ( (self.geometry.res[0] * self._shape.ORDER + 1) * (self.geometry.res[1] * self._shape.ORDER + 1) * (self.geometry.res[2] * self._shape.ORDER + 1) ) def _make_element_node_index(self): ORDER = self._shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Grid3D.CellArg, topo_arg: Grid3DSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): res = cell_arg.res cell = Grid3D.get_cell(res, element_index) node_i, node_j, node_k = self._shape._node_ijk(node_index_in_elt) node_x = ORDER * cell[0] + node_i node_y = ORDER * cell[1] + node_j node_z = ORDER * cell[2] + node_k node_pitch_y = (res[2] * ORDER) + 1 node_pitch_x = node_pitch_y * ((res[1] * ORDER) + 1) node_index = node_pitch_x * node_x + node_pitch_y * node_y + node_z return node_index return element_node_index def _node_grid(self): res = self.geometry.res cell_coords = np.array(self._shape.LOBATTO_COORDS)[:-1] grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) grid_coords_x = np.append(grid_coords_x, res[0]) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) grid_coords_y = np.append(grid_coords_y, res[1]) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] grid_coords_z = np.repeat(np.arange(0, res[2], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[2] ) grid_coords_z = np.append(grid_coords_z, res[2]) Z = grid_coords_z * self._grid.cell_size[2] + self._grid.origin[2] return np.meshgrid(X, Y, Z, indexing="ij") class Grid3DSerendipitySpaceTopology(Grid3DSpaceTopology): def __init__(self, grid: Grid3D, shape: CubeSerendipityShapeFunctions): super().__init__(grid, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return self.geometry.vertex_count() + (self._shape.ORDER - 1) * self.geometry.edge_count() def _make_element_node_index(self): ORDER = self._shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Grid3D.CellArg, topo_arg: Grid3DSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): res = cell_arg.res cell = Grid3D.get_cell(res, element_index) node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: return Grid3DSpaceTopology._vertex_index(cell_arg, element_index, type_index) axis = CubeSerendipityShapeFunctions._edge_axis(node_type) node_all = CubeSerendipityShapeFunctions._edge_coords(type_index) res = cell_arg.res edge_index = 0 if axis > 0: edge_index += (res[1] + 1) * (res[2] + 1) * res[0] if axis > 1: edge_index += (res[0] + 1) * (res[2] + 1) * res[1] res_loc = Grid3D._world_to_local(axis, res) cell_loc = Grid3D._world_to_local(axis, cell) edge_index += (res_loc[1] + 1) * (res_loc[2] + 1) * cell_loc[0] edge_index += (res_loc[2] + 1) * (cell_loc[1] + node_all[1]) edge_index += cell_loc[2] + node_all[2] vertex_count = (res[0] + 1) * (res[1] + 1) * (res[2] + 1) return vertex_count + (ORDER - 1) * edge_index + (node_all[0] - 1) return element_node_index def make_grid_3d_space_topology(grid: Grid3D, shape: ShapeFunction): if isinstance(shape, CubeSerendipityShapeFunctions): return forward_base_topology(Grid3DSerendipitySpaceTopology, grid, shape) if isinstance(shape, CubeTripolynomialShapeFunctions): return forward_base_topology(GridTripolynomialSpaceTopology, grid, shape) raise ValueError(f"Unsupported shape function {shape.name}")
6,042
Python
34.970238
108
0.595664
NVIDIA/warp/warp/fem/space/nanogrid_function_space.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Nanogrid from warp.fem.geometry.nanogrid import _add_axis_flag from warp.fem.polynomial import is_closed from warp.fem.types import ElementIndex from .shape import ( CubeSerendipityShapeFunctions, CubeTripolynomialShapeFunctions, ShapeFunction, ) from .topology import SpaceTopology, forward_base_topology @wp.struct class NanogridTopologyArg: vertex_grid: wp.uint64 face_grid: wp.uint64 edge_grid: wp.uint64 vertex_count: int edge_count: int face_count: int class NanogridSpaceTopology(SpaceTopology): TopologyArg = NanogridTopologyArg def __init__( self, grid: Nanogrid, shape: ShapeFunction, need_edge_indices: bool = True, need_face_indices: bool = True, ): if not is_closed(shape.family): raise ValueError("A closed polynomial family is required to define a continuous function space") super().__init__(grid, shape.NODES_PER_ELEMENT) self._grid = grid self._shape = shape if need_edge_indices: self._edge_count = self._grid.edge_count() else: self._edge_count = 0 self._vertex_grid = grid._node_grid self._face_grid = grid._face_grid self._edge_grid = grid._edge_grid @cache.cached_arg_value def topo_arg_value(self, device): arg = NanogridTopologyArg() arg.vertex_grid = self._vertex_grid.id arg.face_grid = self._face_grid.id arg.edge_grid = -1 if self._edge_grid is None else self._edge_grid.id arg.vertex_count = self._grid.vertex_count() arg.face_count = self._grid.side_count() arg.edge_count = self._edge_count return arg @wp.func def _cell_vertex_coord(cell_ijk: wp.vec3i, n: int): return cell_ijk + wp.vec3i((n & 4) >> 2, (n & 2) >> 1, n & 1) @wp.func def _cell_edge_coord(cell_ijk: wp.vec3i, axis: int, offset: int): e_ijk = cell_ijk e_ijk[(axis + 1) % 3] += offset >> 1 e_ijk[(axis + 2) % 3] += offset & 1 return _add_axis_flag(e_ijk, axis) @wp.func def _cell_face_coord(cell_ijk: wp.vec3i, axis: int, offset: int): f_ijk = cell_ijk f_ijk[axis] += offset return _add_axis_flag(f_ijk, axis) class NanogridTripolynomialSpaceTopology(NanogridSpaceTopology): def __init__(self, grid: Nanogrid, shape: CubeTripolynomialShapeFunctions): super().__init__(grid, shape, need_edge_indices=shape.ORDER >= 2, need_face_indices=shape.ORDER >= 2) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: ORDER = self._shape.ORDER INTERIOR_NODES_PER_EDGE = max(0, ORDER - 1) INTERIOR_NODES_PER_FACE = INTERIOR_NODES_PER_EDGE**2 INTERIOR_NODES_PER_CELL = INTERIOR_NODES_PER_EDGE**3 return ( self._grid.vertex_count() + self._grid.edge_count() * INTERIOR_NODES_PER_EDGE + self._grid.side_count() * INTERIOR_NODES_PER_FACE + self._grid.cell_count() * INTERIOR_NODES_PER_CELL ) def _make_element_node_index(self): ORDER = self._shape.ORDER INTERIOR_NODES_PER_EDGE = wp.constant(max(0, ORDER - 1)) INTERIOR_NODES_PER_FACE = wp.constant(INTERIOR_NODES_PER_EDGE**2) INTERIOR_NODES_PER_CELL = wp.constant(INTERIOR_NODES_PER_EDGE**3) @cache.dynamic_func(suffix=self.name) def element_node_index( geo_arg: Nanogrid.CellArg, topo_arg: NanogridTopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_instance, type_index = self._shape.node_type_and_type_index(node_index_in_elt) ijk = geo_arg.cell_ijk[element_index] if node_type == CubeTripolynomialShapeFunctions.VERTEX: n_ijk = _cell_vertex_coord(ijk, type_instance) return wp.volume_lookup_index(topo_arg.vertex_grid, n_ijk[0], n_ijk[1], n_ijk[2]) offset = topo_arg.vertex_count if node_type == CubeTripolynomialShapeFunctions.EDGE: axis = type_instance >> 2 node_offset = type_instance & 3 n_ijk = _cell_edge_coord(ijk, axis, node_offset) edge_index = wp.volume_lookup_index(topo_arg.edge_grid, n_ijk[0], n_ijk[1], n_ijk[2]) return offset + INTERIOR_NODES_PER_EDGE * edge_index + type_index offset += INTERIOR_NODES_PER_EDGE * topo_arg.edge_count if node_type == CubeTripolynomialShapeFunctions.FACE: axis = type_instance >> 1 node_offset = type_instance & 1 n_ijk = _cell_face_coord(ijk, axis, node_offset) face_index = wp.volume_lookup_index(topo_arg.face_grid, n_ijk[0], n_ijk[1], n_ijk[2]) return offset + INTERIOR_NODES_PER_FACE * face_index + type_index offset += INTERIOR_NODES_PER_FACE * topo_arg.face_count return offset + INTERIOR_NODES_PER_CELL * element_index + type_index return element_node_index class NanogridSerendipitySpaceTopology(NanogridSpaceTopology): def __init__(self, grid: Nanogrid, shape: CubeSerendipityShapeFunctions): super().__init__(grid, shape, need_edge_indices=True, need_face_indices=False) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return self.geometry.vertex_count() + (self._shape.ORDER - 1) * self.geometry.edge_count() def _make_element_node_index(self): ORDER = self._shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Nanogrid.CellArg, topo_arg: NanogridSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) ijk = cell_arg.cell_ijk[element_index] if node_type == CubeSerendipityShapeFunctions.VERTEX: n_ijk = _cell_vertex_coord(ijk, type_index) return wp.volume_lookup_index(topo_arg.vertex_grid, n_ijk[0], n_ijk[1], n_ijk[2]) type_instance, index_in_edge = CubeSerendipityShapeFunctions._cube_edge_index(node_type, type_index) axis = type_instance >> 2 node_offset = type_instance & 3 n_ijk = _cell_edge_coord(ijk, axis, node_offset) edge_index = wp.volume_lookup_index(topo_arg.edge_grid, n_ijk[0], n_ijk[1], n_ijk[2]) return topo_arg.vertex_count + (ORDER - 1) * edge_index + index_in_edge return element_node_index def make_nanogrid_space_topology(grid: Nanogrid, shape: ShapeFunction): if isinstance(shape, CubeSerendipityShapeFunctions): return forward_base_topology(NanogridSerendipitySpaceTopology, grid, shape) if isinstance(shape, CubeTripolynomialShapeFunctions): return forward_base_topology(NanogridTripolynomialSpaceTopology, grid, shape) raise ValueError(f"Unsupported shape function {shape.name}")
7,205
Python
34.497537
112
0.626926
NVIDIA/warp/warp/fem/space/quadmesh_2d_function_space.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Quadmesh2D from warp.fem.polynomial import is_closed from warp.fem.types import ElementIndex from .shape import ( ShapeFunction, SquareBipolynomialShapeFunctions, SquareSerendipityShapeFunctions, ) from .topology import SpaceTopology, forward_base_topology @wp.struct class Quadmesh2DTopologyArg: edge_vertex_indices: wp.array(dtype=wp.vec2i) quad_edge_indices: wp.array2d(dtype=int) vertex_count: int edge_count: int class Quadmesh2DSpaceTopology(SpaceTopology): TopologyArg = Quadmesh2DTopologyArg def __init__(self, mesh: Quadmesh2D, shape: ShapeFunction): if not is_closed(shape.family): raise ValueError("A closed polynomial family is required to define a continuous function space") super().__init__(mesh, shape.NODES_PER_ELEMENT) self._mesh = mesh self._shape = shape self._compute_quad_edge_indices() @cache.cached_arg_value def topo_arg_value(self, device): arg = Quadmesh2DTopologyArg() arg.quad_edge_indices = self._quad_edge_indices.to(device) arg.edge_vertex_indices = self._mesh.edge_vertex_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.edge_count = self._mesh.side_count() return arg def _compute_quad_edge_indices(self): self._quad_edge_indices = wp.empty( dtype=int, device=self._mesh.quad_vertex_indices.device, shape=(self._mesh.cell_count(), 4) ) wp.launch( kernel=Quadmesh2DSpaceTopology._compute_quad_edge_indices_kernel, dim=self._mesh.edge_quad_indices.shape, device=self._mesh.quad_vertex_indices.device, inputs=[ self._mesh.edge_quad_indices, self._mesh.edge_vertex_indices, self._mesh.quad_vertex_indices, self._quad_edge_indices, ], ) @wp.func def _find_edge_index_in_quad( edge_vtx: wp.vec2i, quad_vtx: wp.vec4i, ): for k in range(3): if (edge_vtx[0] == quad_vtx[k] and edge_vtx[1] == quad_vtx[k + 1]) or ( edge_vtx[1] == quad_vtx[k] and edge_vtx[0] == quad_vtx[k + 1] ): return k return 3 @wp.kernel def _compute_quad_edge_indices_kernel( edge_quad_indices: wp.array(dtype=wp.vec2i), edge_vertex_indices: wp.array(dtype=wp.vec2i), quad_vertex_indices: wp.array2d(dtype=int), quad_edge_indices: wp.array2d(dtype=int), ): e = wp.tid() edge_vtx = edge_vertex_indices[e] edge_quads = edge_quad_indices[e] q0 = edge_quads[0] q0_vtx = wp.vec4i( quad_vertex_indices[q0, 0], quad_vertex_indices[q0, 1], quad_vertex_indices[q0, 2], quad_vertex_indices[q0, 3], ) q0_edge = Quadmesh2DSpaceTopology._find_edge_index_in_quad(edge_vtx, q0_vtx) quad_edge_indices[q0, q0_edge] = e q1 = edge_quads[1] if q1 != q0: t1_vtx = wp.vec4i( quad_vertex_indices[q1, 0], quad_vertex_indices[q1, 1], quad_vertex_indices[q1, 2], quad_vertex_indices[q1, 3], ) t1_edge = Quadmesh2DSpaceTopology._find_edge_index_in_quad(edge_vtx, t1_vtx) quad_edge_indices[q1, t1_edge] = e class Quadmesh2DBipolynomialSpaceTopology(Quadmesh2DSpaceTopology): def __init__(self, mesh: Quadmesh2D, shape: SquareBipolynomialShapeFunctions): super().__init__(mesh, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: ORDER = self._shape.ORDER INTERIOR_NODES_PER_SIDE = max(0, ORDER - 1) INTERIOR_NODES_PER_CELL = INTERIOR_NODES_PER_SIDE**2 return ( self._mesh.vertex_count() + self._mesh.side_count() * INTERIOR_NODES_PER_SIDE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) def _make_element_node_index(self): ORDER = self._shape.ORDER INTERIOR_NODES_PER_SIDE = wp.constant(max(0, ORDER - 1)) INTERIOR_NODES_PER_CELL = wp.constant(INTERIOR_NODES_PER_SIDE**2) @cache.dynamic_func(suffix=self.name) def element_node_index( geo_arg: Quadmesh2D.CellArg, topo_arg: Quadmesh2DTopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i # Vertices if node_i == 0: if node_j == 0: return geo_arg.quad_vertex_indices[element_index, 0] elif node_j == ORDER: return geo_arg.quad_vertex_indices[element_index, 3] # 3-0 edge side_index = topo_arg.quad_edge_indices[element_index, 3] local_vs = geo_arg.quad_vertex_indices[element_index, 3] global_vs = topo_arg.edge_vertex_indices[side_index][0] index_in_side = wp.select(local_vs == global_vs, ORDER - node_j, node_j) - 1 return topo_arg.vertex_count + (ORDER - 1) * side_index + index_in_side elif node_i == ORDER: if node_j == 0: return geo_arg.quad_vertex_indices[element_index, 1] elif node_j == ORDER: return geo_arg.quad_vertex_indices[element_index, 2] # 1-2 edge side_index = topo_arg.quad_edge_indices[element_index, 1] local_vs = geo_arg.quad_vertex_indices[element_index, 1] global_vs = topo_arg.edge_vertex_indices[side_index][0] index_in_side = wp.select(local_vs == global_vs, ORDER - node_j, node_j) - 1 return topo_arg.vertex_count + (ORDER - 1) * side_index + index_in_side if node_j == 0: # 0-1 edge side_index = topo_arg.quad_edge_indices[element_index, 0] local_vs = geo_arg.quad_vertex_indices[element_index, 0] global_vs = topo_arg.edge_vertex_indices[side_index][0] index_in_side = wp.select(local_vs == global_vs, node_i, ORDER - node_i) - 1 return topo_arg.vertex_count + (ORDER - 1) * side_index + index_in_side elif node_j == ORDER: # 2-3 edge side_index = topo_arg.quad_edge_indices[element_index, 2] local_vs = geo_arg.quad_vertex_indices[element_index, 2] global_vs = topo_arg.edge_vertex_indices[side_index][0] index_in_side = wp.select(local_vs == global_vs, node_i, ORDER - node_i) - 1 return topo_arg.vertex_count + (ORDER - 1) * side_index + index_in_side return ( topo_arg.vertex_count + topo_arg.edge_count * INTERIOR_NODES_PER_SIDE + element_index * INTERIOR_NODES_PER_CELL + (node_i - 1) * INTERIOR_NODES_PER_SIDE + node_j - 1 ) return element_node_index class Quadmesh2DSerendipitySpaceTopology(Quadmesh2DSpaceTopology): def __init__(self, grid: Quadmesh2D, shape: SquareSerendipityShapeFunctions): super().__init__(grid, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return self.geometry.vertex_count() + (self._shape.ORDER - 1) * self.geometry.side_count() def _make_element_node_index(self): ORDER = self._shape.ORDER SHAPE_TO_QUAD_IDX = wp.constant(wp.vec4i([0, 3, 1, 2])) @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Quadmesh2D.CellArg, topo_arg: Quadmesh2DSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == SquareSerendipityShapeFunctions.VERTEX: return cell_arg.quad_vertex_indices[element_index, SHAPE_TO_QUAD_IDX[type_index]] side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index) if node_type == SquareSerendipityShapeFunctions.EDGE_X: if side_offset == 0: side_start = 0 else: side_start = 2 index_in_side = ORDER - 2 - index_in_side else: if side_offset == 0: side_start = 3 index_in_side = ORDER - 2 - index_in_side else: side_start = 1 side_index = topo_arg.quad_edge_indices[element_index, side_start] local_vs = cell_arg.quad_vertex_indices[element_index, side_start] global_vs = topo_arg.edge_vertex_indices[side_index][0] if local_vs != global_vs: # Flip indexing direction index_in_side = ORDER - 2 - index_in_side return topo_arg.vertex_count + (ORDER - 1) * side_index + index_in_side return element_node_index def make_quadmesh_2d_space_topology(mesh: Quadmesh2D, shape: ShapeFunction): if isinstance(shape, SquareSerendipityShapeFunctions): return forward_base_topology(Quadmesh2DSerendipitySpaceTopology, mesh, shape) if isinstance(shape, SquareBipolynomialShapeFunctions): return forward_base_topology(Quadmesh2DBipolynomialSpaceTopology, mesh, shape) raise ValueError(f"Unsupported shape function {shape.name}")
9,889
Python
36.748091
108
0.578319
NVIDIA/warp/warp/fem/space/restriction.py
import warp as wp from warp.fem.cache import TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value from warp.fem.domain import GeometryDomain from warp.fem.types import NodeElementIndex from warp.fem.utils import compress_node_indices from .partition import SpacePartition wp.set_module_options({"enable_backward": False}) class SpaceRestriction: """Restriction of a space partition to a given GeometryDomain""" def __init__( self, space_partition: SpacePartition, domain: GeometryDomain, device=None, temporary_store: TemporaryStore = None, ): space_topology = space_partition.space_topology if domain.dimension == space_topology.dimension - 1: space_topology = space_topology.trace() if domain.dimension != space_topology.dimension: raise ValueError("Incompatible space and domain dimensions") self.space_partition = space_partition self.space_topology = space_topology self.domain = domain self._compute_node_element_indices(device=device, temporary_store=temporary_store) def _compute_node_element_indices(self, device, temporary_store: TemporaryStore): from warp.fem import cache NODES_PER_ELEMENT = self.space_topology.NODES_PER_ELEMENT @cache.dynamic_kernel( suffix=f"{self.domain.name}_{self.space_topology.name}_{self.space_partition.name}", kernel_options={"max_unroll": 8}, ) def fill_element_node_indices( element_arg: self.domain.ElementArg, domain_index_arg: self.domain.ElementIndexArg, topo_arg: self.space_topology.TopologyArg, partition_arg: self.space_partition.PartitionArg, element_node_indices: wp.array2d(dtype=int), ): domain_element_index = wp.tid() element_index = self.domain.element_index(domain_index_arg, domain_element_index) for n in range(NODES_PER_ELEMENT): space_nidx = self.space_topology.element_node_index(element_arg, topo_arg, element_index, n) partition_nidx = self.space_partition.partition_node_index(partition_arg, space_nidx) element_node_indices[domain_element_index, n] = partition_nidx element_node_indices = borrow_temporary( temporary_store, shape=(self.domain.element_count(), NODES_PER_ELEMENT), dtype=int, device=device, ) wp.launch( dim=element_node_indices.array.shape[0], kernel=fill_element_node_indices, inputs=[ self.domain.element_arg_value(device), self.domain.element_index_arg_value(device), self.space_topology.topo_arg_value(device), self.space_partition.partition_arg_value(device), element_node_indices.array, ], device=device, ) # Build compressed map from node to element indices flattened_node_indices = element_node_indices.array.flatten() ( self._dof_partition_element_offsets, node_array_indices, self._node_count, self._dof_partition_indices, ) = compress_node_indices( self.space_partition.node_count(), flattened_node_indices, temporary_store=temporary_store ) # Extract element index and index in element self._dof_element_indices = borrow_temporary_like(flattened_node_indices, temporary_store) self._dof_indices_in_element = borrow_temporary_like(flattened_node_indices, temporary_store) wp.launch( kernel=SpaceRestriction._split_vertex_element_index, dim=flattened_node_indices.shape, inputs=[ NODES_PER_ELEMENT, node_array_indices.array, self._dof_element_indices.array, self._dof_indices_in_element.array, ], device=flattened_node_indices.device, ) node_array_indices.release() def node_count(self): return self._node_count def partition_element_offsets(self): return self._dof_partition_element_offsets.array def node_partition_indices(self): return self._dof_partition_indices.array def total_node_element_count(self): return self._dof_element_indices.array.size @wp.struct class NodeArg: dof_element_offsets: wp.array(dtype=int) dof_element_indices: wp.array(dtype=int) dof_partition_indices: wp.array(dtype=int) dof_indices_in_element: wp.array(dtype=int) @cached_arg_value def node_arg(self, device): arg = SpaceRestriction.NodeArg() arg.dof_element_offsets = self._dof_partition_element_offsets.array.to(device) arg.dof_element_indices = self._dof_element_indices.array.to(device) arg.dof_partition_indices = self._dof_partition_indices.array.to(device) arg.dof_indices_in_element = self._dof_indices_in_element.array.to(device) return arg @wp.func def node_partition_index(args: NodeArg, node_index: int): return args.dof_partition_indices[node_index] @wp.func def node_element_count(args: NodeArg, node_index: int): partition_node_index = SpaceRestriction.node_partition_index(args, node_index) return args.dof_element_offsets[partition_node_index + 1] - args.dof_element_offsets[partition_node_index] @wp.func def node_element_index(args: NodeArg, node_index: int, element_index: int): partition_node_index = SpaceRestriction.node_partition_index(args, node_index) offset = args.dof_element_offsets[partition_node_index] + element_index domain_element_index = args.dof_element_indices[offset] index_in_element = args.dof_indices_in_element[offset] return NodeElementIndex(domain_element_index, index_in_element) @wp.kernel def _split_vertex_element_index( vertex_per_element: int, sorted_indices: wp.array(dtype=int), vertex_element_index: wp.array(dtype=int), vertex_index_in_element: wp.array(dtype=int), ): idx = sorted_indices[wp.tid()] element_index = idx // vertex_per_element vertex_element_index[wp.tid()] = element_index vertex_index_in_element[wp.tid()] = idx - vertex_per_element * element_index
6,496
Python
39.104938
114
0.645628
NVIDIA/warp/warp/fem/space/partition.py
from typing import Any, Optional import warp as wp from warp.fem.cache import ( TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value, ) from warp.fem.geometry import GeometryPartition, WholeGeometryPartition from warp.fem.types import NULL_NODE_INDEX from warp.fem.utils import _iota_kernel, compress_node_indices from .function_space import FunctionSpace from .topology import SpaceTopology wp.set_module_options({"enable_backward": False}) class SpacePartition: class PartitionArg: pass def __init__(self, space_topology: SpaceTopology, geo_partition: GeometryPartition): self.space_topology = space_topology self.geo_partition = geo_partition def node_count(self): """Returns number of nodes in this partition""" def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" def space_node_indices(self) -> wp.array: """Return the global function space indices for nodes in this partition""" def partition_arg_value(self, device): pass @staticmethod def partition_node_index(args: "PartitionArg", space_node_index: int): """Returns the index in the partition of a function space node, or -1 if it does not exist""" def __str__(self) -> str: return self.name @property def name(self) -> str: return f"{self.__class__.__name__}" class WholeSpacePartition(SpacePartition): @wp.struct class PartitionArg: pass def __init__(self, space_topology: SpaceTopology): super().__init__(space_topology, WholeGeometryPartition(space_topology.geometry)) self._node_indices = None def node_count(self): """Returns number of nodes in this partition""" return self.space_topology.node_count() def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" return self.space_topology.node_count() def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" return self.space_topology.node_count() def space_node_indices(self): """Return the global function space indices for nodes in this partition""" if self._node_indices is None: self._node_indices = borrow_temporary(temporary_store=None, shape=(self.node_count(),), dtype=int) wp.launch(kernel=_iota_kernel, dim=self.node_count(), inputs=[self._node_indices.array, 1]) return self._node_indices.array def partition_arg_value(self, device): return WholeSpacePartition.PartitionArg() @wp.func def partition_node_index(args: Any, space_node_index: int): return space_node_index def __eq__(self, other: SpacePartition) -> bool: return isinstance(other, SpacePartition) and self.space_topology == other.space_topology @property def name(self) -> str: return "Whole" class NodeCategory: OWNED_INTERIOR = wp.constant(0) """Node is touched exclusively by this partition, not touched by frontier side""" OWNED_FRONTIER = wp.constant(1) """Node is touched by a frontier side, but belongs to an element of this partition""" HALO_LOCAL_SIDE = wp.constant(2) """Node belongs to an element of another partition, but is touched by one of our frontier side""" HALO_OTHER_SIDE = wp.constant(3) """Node belongs to an element of another partition, and is not touched by one of our frontier side""" EXTERIOR = wp.constant(4) """Node is never referenced by this partition""" COUNT = 5 class NodePartition(SpacePartition): @wp.struct class PartitionArg: space_to_partition: wp.array(dtype=int) def __init__( self, space_topology: SpaceTopology, geo_partition: GeometryPartition, with_halo: bool = True, device=None, temporary_store: TemporaryStore = None, ): super().__init__(space_topology=space_topology, geo_partition=geo_partition) self._compute_node_indices_from_sides(device, with_halo, temporary_store) def node_count(self) -> int: """Returns number of nodes referenced by this partition, including exterior halo""" return int(self._category_offsets.array.numpy()[NodeCategory.HALO_OTHER_SIDE + 1]) def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" return int(self._category_offsets.array.numpy()[NodeCategory.OWNED_FRONTIER + 1]) def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" return int(self._category_offsets.array.numpy()[NodeCategory.OWNED_INTERIOR + 1]) def space_node_indices(self): """Return the global function space indices for nodes in this partition""" return self._node_indices.array @cached_arg_value def partition_arg_value(self, device): arg = NodePartition.PartitionArg() arg.space_to_partition = self._space_to_partition.array.to(device) return arg @wp.func def partition_node_index(args: PartitionArg, space_node_index: int): return args.space_to_partition[space_node_index] def _compute_node_indices_from_sides(self, device, with_halo: bool, temporary_store: TemporaryStore): from warp.fem import cache trace_topology = self.space_topology.trace() NODES_PER_CELL = self.space_topology.NODES_PER_ELEMENT NODES_PER_SIDE = trace_topology.NODES_PER_ELEMENT @cache.dynamic_kernel(suffix=f"{self.geo_partition.name}_{self.space_topology.name}") def node_category_from_cells_kernel( geo_arg: self.geo_partition.geometry.CellArg, geo_partition_arg: self.geo_partition.CellArg, space_arg: self.space_topology.TopologyArg, node_mask: wp.array(dtype=int), ): partition_cell_index = wp.tid() cell_index = self.geo_partition.cell_index(geo_partition_arg, partition_cell_index) for n in range(NODES_PER_CELL): space_nidx = self.space_topology.element_node_index(geo_arg, space_arg, cell_index, n) node_mask[space_nidx] = NodeCategory.OWNED_INTERIOR @cache.dynamic_kernel(suffix=f"{self.geo_partition.name}_{self.space_topology.name}") def node_category_from_owned_sides_kernel( geo_arg: self.geo_partition.geometry.SideArg, geo_partition_arg: self.geo_partition.SideArg, space_arg: trace_topology.TopologyArg, node_mask: wp.array(dtype=int), ): partition_side_index = wp.tid() side_index = self.geo_partition.side_index(geo_partition_arg, partition_side_index) for n in range(NODES_PER_SIDE): space_nidx = trace_topology.element_node_index(geo_arg, space_arg, side_index, n) if node_mask[space_nidx] == NodeCategory.EXTERIOR: node_mask[space_nidx] = NodeCategory.HALO_LOCAL_SIDE @cache.dynamic_kernel(suffix=f"{self.geo_partition.name}_{self.space_topology.name}") def node_category_from_frontier_sides_kernel( geo_arg: self.geo_partition.geometry.SideArg, geo_partition_arg: self.geo_partition.SideArg, space_arg: trace_topology.TopologyArg, node_mask: wp.array(dtype=int), ): frontier_side_index = wp.tid() side_index = self.geo_partition.frontier_side_index(geo_partition_arg, frontier_side_index) for n in range(NODES_PER_SIDE): space_nidx = trace_topology.element_node_index(geo_arg, space_arg, side_index, n) if node_mask[space_nidx] == NodeCategory.EXTERIOR: node_mask[space_nidx] = NodeCategory.HALO_OTHER_SIDE elif node_mask[space_nidx] == NodeCategory.OWNED_INTERIOR: node_mask[space_nidx] = NodeCategory.OWNED_FRONTIER node_category = borrow_temporary( temporary_store, shape=(self.space_topology.node_count(),), dtype=int, device=device, ) node_category.array.fill_(value=NodeCategory.EXTERIOR) wp.launch( dim=self.geo_partition.cell_count(), kernel=node_category_from_cells_kernel, inputs=[ self.geo_partition.geometry.cell_arg_value(device), self.geo_partition.cell_arg_value(device), self.space_topology.topo_arg_value(device), node_category.array, ], device=device, ) if with_halo: wp.launch( dim=self.geo_partition.side_count(), kernel=node_category_from_owned_sides_kernel, inputs=[ self.geo_partition.geometry.side_arg_value(device), self.geo_partition.side_arg_value(device), self.space_topology.topo_arg_value(device), node_category.array, ], device=device, ) wp.launch( dim=self.geo_partition.frontier_side_count(), kernel=node_category_from_frontier_sides_kernel, inputs=[ self.geo_partition.geometry.side_arg_value(device), self.geo_partition.side_arg_value(device), self.space_topology.topo_arg_value(device), node_category.array, ], device=device, ) self._finalize_node_indices(node_category.array, temporary_store) node_category.release() def _finalize_node_indices(self, node_category: wp.array(dtype=int), temporary_store: TemporaryStore): category_offsets, node_indices, _, __ = compress_node_indices(NodeCategory.COUNT, node_category) # Copy offsets to cpu device = node_category.device self._category_offsets = borrow_temporary( temporary_store, shape=category_offsets.array.shape, dtype=category_offsets.array.dtype, pinned=device.is_cuda, device="cpu", ) wp.copy(src=category_offsets.array, dest=self._category_offsets.array) if device.is_cuda: # TODO switch to synchronize_event once available wp.synchronize_stream(wp.get_stream(device)) category_offsets.release() # Compute global to local indices self._space_to_partition = borrow_temporary_like(node_indices, temporary_store) wp.launch( kernel=NodePartition._scatter_partition_indices, dim=self.space_topology.node_count(), device=device, inputs=[self.node_count(), node_indices.array, self._space_to_partition.array], ) # Copy to shrinked-to-fit array self._node_indices = borrow_temporary(temporary_store, shape=(self.node_count()), dtype=int, device=device) wp.copy(dest=self._node_indices.array, src=node_indices.array, count=self.node_count()) node_indices.release() @wp.kernel def _scatter_partition_indices( local_node_count: int, node_indices: wp.array(dtype=int), space_to_partition_indices: wp.array(dtype=int), ): local_idx = wp.tid() space_idx = node_indices[local_idx] if local_idx < local_node_count: space_to_partition_indices[space_idx] = local_idx else: space_to_partition_indices[space_idx] = NULL_NODE_INDEX def make_space_partition( space: Optional[FunctionSpace] = None, geometry_partition: Optional[GeometryPartition] = None, space_topology: Optional[SpaceTopology] = None, with_halo: bool = True, device=None, temporary_store: TemporaryStore = None, ) -> SpacePartition: """Computes the subset of nodes from a function space topology that touch a geometry partition Either `space_topology` or `space` must be provided (and will be considered in that order). Args: space: (deprecated) the function space defining the topology if `space_topology` is ``None``. geometry_partition: The subset of the space geometry. If not provided, use the whole geometry. space_topology: the topology of the function space to consider. If ``None``, deduced from `space`. with_halo: if True, include the halo nodes (nodes from exterior frontier cells to the partition) device: Warp device on which to perform and store computations Returns: the resulting space partition """ if space_topology is None: space_topology = space.topology space_topology = space_topology.full_space_topology() if geometry_partition is not None: if geometry_partition.cell_count() < geometry_partition.geometry.cell_count(): return NodePartition( space_topology=space_topology, geo_partition=geometry_partition, with_halo=with_halo, device=device, temporary_store=temporary_store, ) return WholeSpacePartition(space_topology)
13,484
Python
37.418803
115
0.63542
NVIDIA/warp/warp/fem/space/function_space.py
import warp as wp from warp.fem.geometry import Geometry from warp.fem.types import Coords, DofIndex, ElementIndex from .topology import SpaceTopology class FunctionSpace: """ Interface class for function spaces, i.e. geometry + interpolation basis """ dtype: type """Value type of the interpolation functions""" SpaceArg: wp.codegen.Struct """Structure containing arguments to be passed to device function""" VALUE_DOF_COUNT: int """Number of degrees of freedom per node, as a Warp constant""" def __init__(self, topology: SpaceTopology): self._topology = topology if self._topology.is_trace: self.element_inner_reference_gradient_transform = self.geometry.side_inner_inverse_deformation_gradient self.element_outer_reference_gradient_transform = self.geometry.side_outer_inverse_deformation_gradient else: self.element_inner_reference_gradient_transform = self.geometry.cell_inverse_deformation_gradient self.element_outer_reference_gradient_transform = self.geometry.cell_inverse_deformation_gradient def node_count(self) -> int: """Number of nodes in the interpolation basis""" raise NotImplementedError def space_arg_value(self, device) -> wp.codegen.StructInstance: """Value of the arguments to be passed to device functions""" raise NotImplementedError @property def topology(self) -> SpaceTopology: """Underlying geometry""" return self._topology @property def geometry(self) -> Geometry: """Underlying geometry""" return self.topology.geometry @property def dimension(self) -> int: """Function space embedding dimension""" return self.topology.dimension @property def degree(self) -> int: """Maximum polynomial degree of the underlying basis""" raise NotImplementedError @property def name(self): raise NotImplementedError def __str__(self): return self.name def trace(self) -> "FunctionSpace": """Trace of the function space over lower-dimensional elements of the geometry""" raise NotImplementedError def make_field(self, space_partition=None): """Creates a zero-initialized discrete field over the function space holding values for all degrees of freedom of nodes in a space partition space_arg: space_partition: If provided, the subset of nodes to consider See also: :func:`make_space_partition` """ raise NotImplementedError @staticmethod def unit_dof_value(elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", dof: DofIndex): # noqa: F821 """Unit value for a given degree of freedom. Typically a rank-1 tensor""" raise NotImplementedError @staticmethod def node_coords_in_element( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, node_index_in_elt: int, ): """Coordinates inside element of a given node""" raise NotImplementedError @staticmethod def node_quadrature_weight( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, node_index_in_elt: int, ): """Weight of a given node when used as a quadrature point""" raise NotImplementedError @staticmethod def element_inner_weight( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): """Inner weight for a node at given coordinates""" raise NotImplementedError @staticmethod def element_inner_weight_gradient( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): """Inner weight gradient w.r.t. reference space for a node at given coordinates""" raise NotImplementedError @staticmethod def element_outer_weight( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): """Outer weight for a node at given coordinates""" raise NotImplementedError @staticmethod def element_outer_weight_gradient( elt_arg: "SpaceTopology.ElementArg", space_arg: "SpaceArg", # noqa: F821 element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): """Outer weight gradient w.r.t reference space for a node at given coordinates""" raise NotImplementedError
4,896
Python
31.865772
148
0.651757
NVIDIA/warp/warp/fem/space/basis_space.py
from typing import Optional import warp as wp from warp.fem import cache from warp.fem.geometry import Geometry from warp.fem.quadrature import Quadrature from warp.fem.types import Coords, ElementIndex, make_free_sample from .shape import ShapeFunction from .topology import DiscontinuousSpaceTopology, SpaceTopology class BasisSpace: """Interface class for defining a scalar-valued basis over a geometry. A basis space makes it easy to define multiple function spaces sharing the same basis (and thus nodes) but with different valuation functions; however, it is not a required ingredient of a function space. See also: :func:`make_polynomial_basis_space`, :func:`make_collocated_function_space` """ @wp.struct class BasisArg: """Argument structure to be passed to device functions""" pass def __init__(self, topology: SpaceTopology): self._topology = topology self.NODES_PER_ELEMENT = self._topology.NODES_PER_ELEMENT @property def topology(self) -> SpaceTopology: """Underlying topology of the basis space""" return self._topology @property def geometry(self) -> Geometry: """Underlying geometry of the basis space""" return self._topology.geometry def basis_arg_value(self, device) -> "BasisArg": """Value for the argument structure to be passed to device functions""" return BasisSpace.BasisArg() # Helpers for generating node positions def node_positions(self, out: Optional[wp.array] = None) -> wp.array: """Returns a temporary array containing the world position for each node""" NODES_PER_ELEMENT = self.NODES_PER_ELEMENT pos_type = cache.cached_vec_type(length=self.geometry.dimension, dtype=float) node_coords_in_element = self.make_node_coords_in_element() @cache.dynamic_kernel(suffix=self.name, kernel_options={"max_unroll": 4, "enable_backward": False}) def fill_node_positions( geo_cell_arg: self.geometry.CellArg, basis_arg: self.BasisArg, topo_arg: self.topology.TopologyArg, node_positions: wp.array(dtype=pos_type), ): element_index = wp.tid() for n in range(NODES_PER_ELEMENT): node_index = self.topology.element_node_index(geo_cell_arg, topo_arg, element_index, n) coords = node_coords_in_element(geo_cell_arg, basis_arg, element_index, n) sample = make_free_sample(element_index, coords) pos = self.geometry.cell_position(geo_cell_arg, sample) node_positions[node_index] = pos shape = (self.topology.node_count(),) if out is None: node_positions = wp.empty( shape=shape, dtype=pos_type, ) else: if out.shape != shape or not wp.types.types_equal(pos_type, out.dtype): raise ValueError( f"Out node positions array must have shape {shape} and data type {wp.types.type_repr(pos_type)}" ) node_positions = out wp.launch( dim=self.geometry.cell_count(), kernel=fill_node_positions, inputs=[ self.geometry.cell_arg_value(device=node_positions.device), self.basis_arg_value(device=node_positions.device), self.topology.topo_arg_value(device=node_positions.device), node_positions, ], ) return node_positions def make_node_coords_in_element(self): raise NotImplementedError() def make_node_quadrature_weight(self): raise NotImplementedError() def make_element_inner_weight(self): raise NotImplementedError() def make_element_outer_weight(self): return self.make_element_inner_weight() def make_element_inner_weight_gradient(self): raise NotImplementedError() def make_element_outer_weight_gradient(self): return self.make_element_inner_weight_gradient() def make_trace_node_quadrature_weight(self): raise NotImplementedError() def trace(self) -> "TraceBasisSpace": return TraceBasisSpace(self) class ShapeBasisSpace(BasisSpace): """Base class for defining shape-function-based basis spaces.""" def __init__(self, topology: SpaceTopology, shape: ShapeFunction): super().__init__(topology) self._shape = shape self.ORDER = self._shape.ORDER if hasattr(shape, "element_node_triangulation"): self.node_triangulation = self._node_triangulation if hasattr(shape, "element_node_tets"): self.node_tets = self._node_tets if hasattr(shape, "element_node_hexes"): self.node_hexes = self._node_hexes @property def shape(self) -> ShapeFunction: """Shape functions used for defining individual element basis""" return self._shape @property def name(self): return f"{self.topology.name}_{self._shape.name}" def make_node_coords_in_element(self): shape_node_coords_in_element = self._shape.make_node_coords_in_element() @cache.dynamic_func(suffix=self.name) def node_coords_in_element( elt_arg: self.geometry.CellArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return shape_node_coords_in_element(node_index_in_elt) return node_coords_in_element def make_node_quadrature_weight(self): shape_node_quadrature_weight = self._shape.make_node_quadrature_weight() @cache.dynamic_func(suffix=self.name) def node_quadrature_weight( elt_arg: self.geometry.CellArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return shape_node_quadrature_weight(node_index_in_elt) return node_quadrature_weight def make_element_inner_weight(self): shape_element_inner_weight = self._shape.make_element_inner_weight() @cache.dynamic_func(suffix=self.name) def element_inner_weight( elt_arg: self.geometry.CellArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return shape_element_inner_weight(coords, node_index_in_elt) return element_inner_weight def make_element_inner_weight_gradient(self): shape_element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( elt_arg: self.geometry.CellArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return shape_element_inner_weight_gradient(coords, node_index_in_elt) return element_inner_weight_gradient def make_trace_node_quadrature_weight(self, trace_basis): shape_trace_node_quadrature_weight = self._shape.make_trace_node_quadrature_weight() @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight( geo_side_arg: trace_basis.geometry.SideArg, basis_arg: trace_basis.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): neighbour_elem, index_in_neighbour = trace_basis.topology.neighbor_cell_index( geo_side_arg, element_index, node_index_in_elt ) return shape_trace_node_quadrature_weight(index_in_neighbour) return trace_node_quadrature_weight def _node_triangulation(self): element_node_indices = self._topology.element_node_indices().numpy() element_triangles = self._shape.element_node_triangulation() tri_indices = element_node_indices[:, element_triangles].reshape(-1, 3) return tri_indices def _node_tets(self): element_node_indices = self._topology.element_node_indices().numpy() element_tets = self._shape.element_node_tets() tet_indices = element_node_indices[:, element_tets].reshape(-1, 4) return tet_indices def _node_hexes(self): element_node_indices = self._topology.element_node_indices().numpy() element_hexes = self._shape.element_node_hexes() hex_indices = element_node_indices[:, element_hexes].reshape(-1, 8) return hex_indices class TraceBasisSpace(BasisSpace): """Auto-generated trace space evaluating the cell-defined basis on the geometry sides""" def __init__(self, basis: BasisSpace): super().__init__(basis.topology.trace()) self.ORDER = basis.ORDER self._basis = basis self.BasisArg = self._basis.BasisArg self.basis_arg_value = self._basis.basis_arg_value @property def name(self): return f"{self._basis.name}_Trace" def make_node_coords_in_element(self): node_coords_in_cell = self._basis.make_node_coords_in_element() @cache.dynamic_func(suffix=self._basis.name) def trace_node_coords_in_element( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): neighbour_elem, index_in_neighbour = self.topology.neighbor_cell_index( geo_side_arg, element_index, node_index_in_elt ) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) neighbour_coords = node_coords_in_cell( geo_cell_arg, basis_arg, neighbour_elem, index_in_neighbour, ) return self.geometry.side_from_cell_coords(geo_side_arg, element_index, neighbour_elem, neighbour_coords) return trace_node_coords_in_element def make_node_quadrature_weight(self): return self._basis.make_trace_node_quadrature_weight(self) def make_element_inner_weight(self): cell_inner_weight = self._basis.make_element_inner_weight() @cache.dynamic_func(suffix=self._basis.name) def trace_element_inner_weight( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): cell_index, index_in_cell = self.topology.inner_cell_index(geo_side_arg, element_index, node_index_in_elt) if index_in_cell < 0: return 0.0 cell_coords = self.geometry.side_inner_cell_coords(geo_side_arg, element_index, coords) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) return cell_inner_weight( geo_cell_arg, basis_arg, cell_index, cell_coords, index_in_cell, ) return trace_element_inner_weight def make_element_outer_weight(self): cell_outer_weight = self._basis.make_element_outer_weight() @cache.dynamic_func(suffix=self._basis.name) def trace_element_outer_weight( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): cell_index, index_in_cell = self.topology.outer_cell_index(geo_side_arg, element_index, node_index_in_elt) if index_in_cell < 0: return 0.0 cell_coords = self.geometry.side_outer_cell_coords(geo_side_arg, element_index, coords) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) return cell_outer_weight( geo_cell_arg, basis_arg, cell_index, cell_coords, index_in_cell, ) return trace_element_outer_weight def make_element_inner_weight_gradient(self): cell_inner_weight_gradient = self._basis.make_element_inner_weight_gradient() grad_vec_type = wp.vec(length=self.geometry.dimension, dtype=float) @cache.dynamic_func(suffix=self._basis.name) def trace_element_inner_weight_gradient( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): cell_index, index_in_cell = self.topology.inner_cell_index(geo_side_arg, element_index, node_index_in_elt) if index_in_cell < 0: return grad_vec_type(0.0) cell_coords = self.geometry.side_inner_cell_coords(geo_side_arg, element_index, coords) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) return cell_inner_weight_gradient(geo_cell_arg, basis_arg, cell_index, cell_coords, index_in_cell) return trace_element_inner_weight_gradient def make_element_outer_weight_gradient(self): cell_outer_weight_gradient = self._basis.make_element_outer_weight_gradient() grad_vec_type = wp.vec(length=self.geometry.dimension, dtype=float) @cache.dynamic_func(suffix=self._basis.name) def trace_element_outer_weight_gradient( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): cell_index, index_in_cell = self.topology.outer_cell_index(geo_side_arg, element_index, node_index_in_elt) if index_in_cell < 0: return grad_vec_type(0.0) cell_coords = self.geometry.side_outer_cell_coords(geo_side_arg, element_index, coords) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) return cell_outer_weight_gradient(geo_cell_arg, basis_arg, cell_index, cell_coords, index_in_cell) return trace_element_outer_weight_gradient def __eq__(self, other: "TraceBasisSpace") -> bool: return self._topo == other._topo class PiecewiseConstantBasisSpace(ShapeBasisSpace): class Trace(TraceBasisSpace): def make_node_coords_in_element(self): # Makes the single node visible to all sides; useful for interpolating on boundaries # For higher-order non-conforming elements direct interpolation on boundary is not possible, # need to do proper integration then solve with mass matrix CENTER_COORDS = Coords(self.geometry.reference_side().center()) @cache.dynamic_func(suffix=self._basis.name) def trace_node_coords_in_element( geo_side_arg: self.geometry.SideArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return CENTER_COORDS return trace_node_coords_in_element def trace(self): return PiecewiseConstantBasisSpace.Trace(self) def make_discontinuous_basis_space(geometry: Geometry, shape: ShapeFunction): topology = DiscontinuousSpaceTopology(geometry, shape.NODES_PER_ELEMENT) if shape.NODES_PER_ELEMENT == 1: # piecewise-constant space return PiecewiseConstantBasisSpace(topology=topology, shape=shape) return ShapeBasisSpace(topology=topology, shape=shape) class PointBasisSpace(BasisSpace): """An unstructured :class:`BasisSpace` that is non-zero at a finite set of points only. The node locations and nodal quadrature weights are defined by a :class:`Quadrature` formula. """ def __init__(self, quadrature: Quadrature): self._quadrature = quadrature if quadrature.points_per_element() is None: raise NotImplementedError("Varying number of points per element is not supported yet") topology = DiscontinuousSpaceTopology( geometry=quadrature.domain.geometry, nodes_per_element=quadrature.points_per_element() ) super().__init__(topology) self.BasisArg = quadrature.Arg self.basis_arg_value = quadrature.arg_value self.ORDER = 0 self.make_element_outer_weight = self.make_element_inner_weight self.make_element_outer_weight_gradient = self.make_element_outer_weight_gradient @property def name(self): return f"{self._quadrature.name}_Point" def make_node_coords_in_element(self): @cache.dynamic_func(suffix=self.name) def node_coords_in_element( elt_arg: self._quadrature.domain.ElementArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return self._quadrature.point_coords(elt_arg, basis_arg, element_index, node_index_in_elt) return node_coords_in_element def make_node_quadrature_weight(self): @cache.dynamic_func(suffix=self.name) def node_quadrature_weight( elt_arg: self._quadrature.domain.ElementArg, basis_arg: self.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return self._quadrature.point_weight(elt_arg, basis_arg, element_index, node_index_in_elt) return node_quadrature_weight def make_element_inner_weight(self): @cache.dynamic_func(suffix=self.name) def element_inner_weight( elt_arg: self._quadrature.domain.ElementArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): qp_coord = self._quadrature.point_coords(elt_arg, basis_arg, element_index, node_index_in_elt) return wp.select(wp.length_sq(coords - qp_coord) < 0.001, 0.0, 1.0) return element_inner_weight def make_element_inner_weight_gradient(self): gradient_vec = cache.cached_vec_type(length=self.geometry.dimension, dtype=float) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( elt_arg: self._quadrature.domain.ElementArg, basis_arg: self.BasisArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return gradient_vec(0.0) return element_inner_weight_gradient def make_trace_node_quadrature_weight(self, trace_basis): @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight( elt_arg: trace_basis.geometry.SideArg, basis_arg: trace_basis.BasisArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.0 return trace_node_quadrature_weight
19,174
Python
35.66348
146
0.623448
NVIDIA/warp/warp/fem/space/__init__.py
# isort: skip_file from enum import Enum from typing import Optional import warp.fem.domain as _domain import warp.fem.geometry as _geometry import warp.fem.polynomial as _polynomial from .function_space import FunctionSpace from .topology import SpaceTopology from .basis_space import BasisSpace, PointBasisSpace, ShapeBasisSpace, make_discontinuous_basis_space from .collocated_function_space import CollocatedFunctionSpace from .shape import ElementBasis, get_shape_function from .grid_2d_function_space import make_grid_2d_space_topology from .grid_3d_function_space import make_grid_3d_space_topology from .trimesh_2d_function_space import make_trimesh_2d_space_topology from .tetmesh_function_space import make_tetmesh_space_topology from .quadmesh_2d_function_space import make_quadmesh_2d_space_topology from .hexmesh_function_space import make_hexmesh_space_topology from .nanogrid_function_space import make_nanogrid_space_topology from .partition import SpacePartition, make_space_partition from .restriction import SpaceRestriction from .dof_mapper import DofMapper, IdentityMapper, SymmetricTensorMapper, SkewSymmetricTensorMapper def make_space_restriction( space: Optional[FunctionSpace] = None, space_partition: Optional[SpacePartition] = None, domain: Optional[_domain.GeometryDomain] = None, space_topology: Optional[SpaceTopology] = None, device=None, temporary_store: "Optional[warp.fem.cache.TemporaryStore]" = None, # noqa: F821 ) -> SpaceRestriction: """ Restricts a function space partition to a Domain, i.e. a subset of its elements. One of `space_partition`, `space_topology`, or `space` must be provided (and will be considered in that order). Args: space: (deprecated) if neither `space_partition` nor `space_topology` are provided, the space defining the topology to restrict space_partition: the subset of nodes from the space topology to consider domain: the domain to restrict the space to, defaults to all cells of the space geometry or partition. space_topology: the space topology to be restricted, if `space_partition` is ``None``. device: device on which to perform and store computations temporary_store: shared pool from which to allocate temporary arrays """ if space_partition is None: if space_topology is None: assert space is not None space_topology = space.topology if domain is None: domain = _domain.Cells(geometry=space_topology.geometry) space_partition = make_space_partition( space_topology=space_topology, geometry_partition=domain.geometry_partition ) elif domain is None: domain = _domain.Cells(geometry=space_partition.geo_partition) return SpaceRestriction( space_partition=space_partition, domain=domain, device=device, temporary_store=temporary_store ) def make_polynomial_basis_space( geo: _geometry.Geometry, degree: int = 1, element_basis: Optional[ElementBasis] = None, discontinuous: bool = False, family: Optional[_polynomial.Polynomial] = None, ) -> BasisSpace: """ Equips a geometry with a polynomial basis. Args: geo: the Geometry on which to build the space degree: polynomial degree of the per-element shape functions discontinuous: if True, use Discontinuous Galerkin shape functions. Discontinuous is implied if degree is 0, i.e, piecewise-constant shape functions. element_basis: type of basis function for the individual elements family: Polynomial family used to generate the shape function basis. If not provided, a reasonable basis is chosen. Returns: the constructed basis space """ base_geo = geo.base if isinstance(geo, _geometry.DeformedGeometry) else geo if element_basis is None: element_basis = ElementBasis.LAGRANGE elif element_basis == ElementBasis.SERENDIPITY and degree == 1: # Degree-1 serendipity is always equivalent to Lagrange element_basis = ElementBasis.LAGRANGE shape = get_shape_function(geo.reference_cell(), geo.dimension, degree, element_basis, family) if discontinuous or degree == 0 or element_basis == ElementBasis.NONCONFORMING_POLYNOMIAL: return make_discontinuous_basis_space(geo, shape) topology = None if isinstance(base_geo, _geometry.Grid2D): topology = make_grid_2d_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Grid3D): topology = make_grid_3d_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Trimesh2D): topology = make_trimesh_2d_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Tetmesh): topology = make_tetmesh_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Quadmesh2D): topology = make_quadmesh_2d_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Hexmesh): topology = make_hexmesh_space_topology(geo, shape) elif isinstance(base_geo, _geometry.Nanogrid): topology = make_nanogrid_space_topology(geo, shape) if topology is None: raise NotImplementedError(f"Unsupported geometry type {geo.name}") return ShapeBasisSpace(topology, shape) def make_collocated_function_space( basis_space: BasisSpace, dtype: type = float, dof_mapper: Optional[DofMapper] = None ) -> CollocatedFunctionSpace: """ Constructs a function space from a basis space and a value type, such that all degrees of freedom of the value type are stored at each of the basis nodes. Args: geo: the Geometry on which to build the space dtype: value type the function space. If ``dof_mapper`` is provided, the value type from the DofMapper will be used instead. dof_mapper: mapping from node degrees of freedom to function values, defaults to Identity. Useful for reduced coordinates, e.g. :py:class:`SymmetricTensorMapper` maps 2x2 (resp 3x3) symmetric tensors to 3 (resp 6) degrees of freedom. Returns: the constructed function space """ return CollocatedFunctionSpace(basis_space, dtype=dtype, dof_mapper=dof_mapper) def make_polynomial_space( geo: _geometry.Geometry, dtype: type = float, dof_mapper: Optional[DofMapper] = None, degree: int = 1, element_basis: Optional[ElementBasis] = None, discontinuous: bool = False, family: Optional[_polynomial.Polynomial] = None, ) -> CollocatedFunctionSpace: """ Equips a geometry with a collocated, polynomial function space. Equivalent to successive calls to :func:`make_polynomial_basis_space` and `make_collocated_function_space`. Args: geo: the Geometry on which to build the space dtype: value type the function space. If ``dof_mapper`` is provided, the value type from the DofMapper will be used instead. dof_mapper: mapping from node degrees of freedom to function values, defaults to Identity. Useful for reduced coordinates, e.g. :py:class:`SymmetricTensorMapper` maps 2x2 (resp 3x3) symmetric tensors to 3 (resp 6) degrees of freedom. degree: polynomial degree of the per-element shape functions discontinuous: if True, use Discontinuous Galerkin shape functions. Discontinuous is implied if degree is 0, i.e, piecewise-constant shape functions. element_basis: type of basis function for the individual elements family: Polynomial family used to generate the shape function basis. If not provided, a reasonable basis is chosen. Returns: the constructed function space """ basis_space = make_polynomial_basis_space(geo, degree, element_basis, discontinuous, family) return CollocatedFunctionSpace(basis_space, dtype=dtype, dof_mapper=dof_mapper)
7,828
Python
42.494444
241
0.728922
NVIDIA/warp/warp/fem/space/topology.py
from typing import Optional, Type import warp as wp from warp.fem import cache from warp.fem.geometry import DeformedGeometry, Geometry from warp.fem.types import ElementIndex class SpaceTopology: """ Interface class for defining the topology of a function space. The topology only considers the indices of the nodes in each element, and as such, the connectivity pattern of the function space. It does not specify the actual location of the nodes within the elements, or the valuation function. """ dimension: int """Embedding dimension of the function space""" NODES_PER_ELEMENT: int """Number of interpolation nodes per element of the geometry. .. note:: This will change to be defined per-element in future versions """ @wp.struct class TopologyArg: """Structure containing arguments to be passed to device functions""" pass def __init__(self, geometry: Geometry, nodes_per_element: int): self._geometry = geometry self.dimension = geometry.dimension self.NODES_PER_ELEMENT = wp.constant(nodes_per_element) self.ElementArg = geometry.CellArg @property def geometry(self) -> Geometry: """Underlying geometry""" return self._geometry def node_count(self) -> int: """Number of nodes in the interpolation basis""" raise NotImplementedError def topo_arg_value(self, device) -> "TopologyArg": """Value of the topology argument structure to be passed to device functions""" return SpaceTopology.TopologyArg() @property def name(self): return f"{self.__class__.__name__}_{self.NODES_PER_ELEMENT}" def __str__(self): return self.name @staticmethod def element_node_index( geo_arg: "ElementArg", # noqa: F821 topo_arg: "TopologyArg", element_index: ElementIndex, node_index_in_elt: int, ): """Global node index for a given node in a given element""" raise NotImplementedError def element_node_indices(self, out: Optional[wp.array] = None) -> wp.array: """Returns a temporary array containing the global index for each node of each element""" NODES_PER_ELEMENT = self.NODES_PER_ELEMENT @cache.dynamic_kernel(suffix=self.name) def fill_element_node_indices( geo_cell_arg: self.geometry.CellArg, topo_arg: self.TopologyArg, element_node_indices: wp.array2d(dtype=int), ): element_index = wp.tid() for n in range(NODES_PER_ELEMENT): element_node_indices[element_index, n] = self.element_node_index( geo_cell_arg, topo_arg, element_index, n ) shape = (self.geometry.cell_count(), NODES_PER_ELEMENT) if out is None: element_node_indices = wp.empty( shape=shape, dtype=int, ) else: if out.shape != shape or out.dtype != wp.int32: raise ValueError(f"Out element node indices array must have shape {shape} and data type 'int32'") element_node_indices = out wp.launch( dim=element_node_indices.shape[0], kernel=fill_element_node_indices, inputs=[ self.geometry.cell_arg_value(device=element_node_indices.device), self.topo_arg_value(device=element_node_indices.device), element_node_indices, ], device=element_node_indices.device, ) return element_node_indices # Interface generating trace space topology def trace(self) -> "TraceSpaceTopology": """Trace of the function space over lower-dimensional elements of the geometry""" return TraceSpaceTopology(self) @property def is_trace(self) -> bool: """Whether this topology is defined on the trace of the geometry""" return self.dimension == self.geometry.dimension - 1 def full_space_topology(self) -> "SpaceTopology": """Returns the full space topology from which this topology is derived""" return self def __eq__(self, other: "SpaceTopology") -> bool: """Checks whether two topologies are compatible""" return self.geometry == other.geometry and self.name == other.name def is_derived_from(self, other: "SpaceTopology") -> bool: """Checks whether two topologies are equal, or `self` is the trace of `other`""" if self.dimension == other.dimension: return self == other if self.dimension + 1 == other.dimension: return self.full_space_topology() == other return False class TraceSpaceTopology(SpaceTopology): """Auto-generated trace topology defining the node indices associated to the geometry sides""" def __init__(self, topo: SpaceTopology): super().__init__(topo.geometry, 2 * topo.NODES_PER_ELEMENT) self._topo = topo self.dimension = topo.dimension - 1 self.ElementArg = topo.geometry.SideArg self.TopologyArg = topo.TopologyArg self.topo_arg_value = topo.topo_arg_value self.inner_cell_index = self._make_inner_cell_index() self.outer_cell_index = self._make_outer_cell_index() self.neighbor_cell_index = self._make_neighbor_cell_index() self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return self._topo.node_count() @property def name(self): return f"{self._topo.name}_Trace" def _make_inner_cell_index(self): NODES_PER_ELEMENT = self._topo.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def inner_cell_index(args: self.geometry.SideArg, element_index: ElementIndex, node_index_in_elt: int): index_in_inner_cell = wp.select(node_index_in_elt < NODES_PER_ELEMENT, -1, node_index_in_elt) return self.geometry.side_inner_cell_index(args, element_index), index_in_inner_cell return inner_cell_index def _make_outer_cell_index(self): NODES_PER_ELEMENT = self._topo.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def outer_cell_index(args: self.geometry.SideArg, element_index: ElementIndex, node_index_in_elt: int): return self.geometry.side_outer_cell_index(args, element_index), node_index_in_elt - NODES_PER_ELEMENT return outer_cell_index def _make_neighbor_cell_index(self): NODES_PER_ELEMENT = self._topo.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def neighbor_cell_index(args: self.geometry.SideArg, element_index: ElementIndex, node_index_in_elt: int): if node_index_in_elt < NODES_PER_ELEMENT: return self.geometry.side_inner_cell_index(args, element_index), node_index_in_elt else: return ( self.geometry.side_outer_cell_index(args, element_index), node_index_in_elt - NODES_PER_ELEMENT, ) return neighbor_cell_index def _make_element_node_index(self): @cache.dynamic_func(suffix=self.name) def trace_element_node_index( geo_side_arg: self.geometry.SideArg, topo_arg: self._topo.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): cell_index, index_in_cell = self.neighbor_cell_index(geo_side_arg, element_index, node_index_in_elt) geo_cell_arg = self.geometry.side_to_cell_arg(geo_side_arg) return self._topo.element_node_index(geo_cell_arg, topo_arg, cell_index, index_in_cell) return trace_element_node_index def full_space_topology(self) -> SpaceTopology: """Returns the full space topology from which this topology is derived""" return self._topo def __eq__(self, other: "TraceSpaceTopology") -> bool: return self._topo == other._topo class DiscontinuousSpaceTopologyMixin: """Helper for defining discontinuous topologies (per-element nodes)""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.element_node_index = self._make_element_node_index() def node_count(self): return self.geometry.cell_count() * self.NODES_PER_ELEMENT @property def name(self): return f"{self.geometry.name}_D{self.NODES_PER_ELEMENT}" def _make_element_node_index(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def element_node_index( elt_arg: self.geometry.CellArg, topo_arg: self.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): return NODES_PER_ELEMENT * element_index + node_index_in_elt return element_node_index class DiscontinuousSpaceTopology(DiscontinuousSpaceTopologyMixin, SpaceTopology): """Topology for generic discontinuous spaces""" pass class DeformedGeometrySpaceTopology(SpaceTopology): def __init__(self, geometry: DeformedGeometry, base_topology: SpaceTopology): super().__init__(geometry, base_topology.NODES_PER_ELEMENT) self.base = base_topology self.node_count = self.base.node_count self.topo_arg_value = self.base.topo_arg_value self.TopologyArg = self.base.TopologyArg self.element_node_index = self._make_element_node_index() @property def name(self): return f"{self.base.name}_{self.geometry.field.name}" def _make_element_node_index(self): @cache.dynamic_func(suffix=self.name) def element_node_index( elt_arg: self.geometry.CellArg, topo_arg: self.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): return self.base.element_node_index(elt_arg.elt_arg, topo_arg, element_index, node_index_in_elt) return element_node_index def forward_base_topology(topology_class: Type[SpaceTopology], geometry: Geometry, *args, **kwargs) -> SpaceTopology: """ If `geometry` is *not* a :class:`DeformedGeometry`, constructs a normal instance of `topology_class` over `geometry`, forwarding additional arguments. If `geometry` *is* a :class:`DeformedGeometry`, constructs an instance of `topology_class` over the base (undeformed) geometry of `geometry`, then warp it in a :class:`DeformedGeometrySpaceTopology` forwarding the calls to the underlying topology. """ if isinstance(geometry, DeformedGeometry): base_topo = topology_class(geometry.base, *args, **kwargs) return DeformedGeometrySpaceTopology(geometry, base_topo) return topology_class(geometry, *args, **kwargs)
10,898
Python
35.573825
158
0.640852
NVIDIA/warp/warp/fem/space/dof_mapper.py
import math from enum import Enum from typing import Any import warp as wp import warp.types vec6 = wp.types.vector(length=6, dtype=wp.float32) _SQRT_2 = wp.constant(math.sqrt(2.0)) _SQRT_3 = wp.constant(math.sqrt(3.0)) _SQRT_1_2 = wp.constant(math.sqrt(1.0 / 2.0)) _SQRT_1_3 = wp.constant(math.sqrt(1.0 / 3.0)) class DofMapper: """Base class from mapping node degrees of freedom to function values""" value_dtype: type dof_dtype: type DOF_SIZE: int @wp.func def dof_to_value(dof: Any): raise NotImplementedError @wp.func def value_to_dof(val: Any): raise NotImplementedError def __str__(self): return f"{self.value_dtype.__name__}_{self.DOF_SIZE}" class IdentityMapper(DofMapper): """Identity mapper""" def __init__(self, dtype: type): if dtype == float: dtype = wp.float32 self.value_dtype = dtype self.dof_dtype = dtype size = warp.types.type_length(dtype) self.DOF_SIZE = wp.constant(size) @wp.func def dof_to_value(dof: Any): return dof @wp.func def value_to_dof(val: Any): return val class SymmetricTensorMapper(DofMapper): """Orthonormal isomorphism from R^{n (n+1)} to nxn symmetric tensors, using usual L2 norm for vectors and half Frobenius norm, (tau : tau)/2 for tensors. """ class Mapping(Enum): VOIGT = 0 """Voigt ordering of vector coefficients: first the three diagonal terms, then off-diagonal coefficients""" DB16 = 1 """Ordering that also separates normal from tangential coefficients: first trace, then other diagonal terms, then off-diagonal coefficients. See [Daviet and Bertails-Descoubes 2016]""" def __init__(self, dtype: type, mapping: Mapping = Mapping.VOIGT): self.value_dtype = dtype self.mapping = mapping if dtype == wp.mat22: self.dof_dtype = wp.vec3 self.DOF_SIZE = wp.constant(3) if mapping == SymmetricTensorMapper.Mapping.VOIGT: self.dof_to_value = SymmetricTensorMapper.dof_to_value_2d_voigt self.value_to_dof = SymmetricTensorMapper.value_to_dof_2d_voigt else: self.dof_to_value = SymmetricTensorMapper.dof_to_value_2d self.value_to_dof = SymmetricTensorMapper.value_to_dof_2d elif dtype == wp.mat33: self.dof_dtype = vec6 self.DOF_SIZE = wp.constant(6) if mapping == SymmetricTensorMapper.Mapping.VOIGT: self.dof_to_value = SymmetricTensorMapper.dof_to_value_3d_voigt self.value_to_dof = SymmetricTensorMapper.value_to_dof_3d_voigt else: self.dof_to_value = SymmetricTensorMapper.dof_to_value_3d self.value_to_dof = SymmetricTensorMapper.value_to_dof_3d else: raise ValueError("Unsupported value dtype: ", dtype) def __str__(self): return f"{self.mapping}_{self.DOF_SIZE}" @wp.func def dof_to_value_2d(dof: wp.vec3): a = dof[0] b = dof[1] c = dof[2] return wp.mat22(a + b, c, c, a - b) @wp.func def value_to_dof_2d(val: wp.mat22): a = 0.5 * (val[0, 0] + val[1, 1]) b = 0.5 * (val[0, 0] - val[1, 1]) c = 0.5 * (val[0, 1] + val[1, 0]) return wp.vec3(a, b, c) @wp.func def dof_to_value_2d_voigt(dof: wp.vec3): a = _SQRT_2 * dof[0] b = _SQRT_2 * dof[1] c = dof[2] return wp.mat22(a, c, c, b) @wp.func def value_to_dof_2d_voigt(val: wp.mat22): a = _SQRT_1_2 * val[0, 0] b = _SQRT_1_2 * val[1, 1] c = 0.5 * (val[0, 1] + val[1, 0]) return wp.vec3(a, b, c) @wp.func def dof_to_value_3d(dof: vec6): a = dof[0] * _SQRT_2 * _SQRT_1_3 b = dof[1] c = dof[2] * _SQRT_1_3 d = dof[3] e = dof[4] f = dof[5] return wp.mat33( a + b - c, f, e, f, a - b - c, d, e, d, a + 2.0 * c, ) @wp.func def value_to_dof_3d(val: wp.mat33): a = (val[0, 0] + val[1, 1] + val[2, 2]) * _SQRT_1_3 * _SQRT_1_2 b = 0.5 * (val[0, 0] - val[1, 1]) c = 0.5 * (val[2, 2] - (val[0, 0] + val[1, 1] + val[2, 2]) / 3.0) * _SQRT_3 d = 0.5 * (val[2, 1] + val[1, 2]) e = 0.5 * (val[0, 2] + val[2, 0]) f = 0.5 * (val[1, 0] + val[0, 1]) return vec6(a, b, c, d, e, f) @wp.func def dof_to_value_3d_voigt(dof: vec6): a = _SQRT_2 * dof[0] b = _SQRT_2 * dof[1] c = _SQRT_2 * dof[2] d = dof[3] e = dof[4] f = dof[5] return wp.mat33( a, f, e, f, b, d, e, d, c, ) @wp.func def value_to_dof_3d_voigt(val: wp.mat33): a = _SQRT_1_2 * val[0, 0] b = _SQRT_1_2 * val[1, 1] c = _SQRT_1_2 * val[2, 2] d = 0.5 * (val[2, 1] + val[1, 2]) e = 0.5 * (val[0, 2] + val[2, 0]) f = 0.5 * (val[1, 0] + val[0, 1]) return vec6(a, b, c, d, e, f) class SkewSymmetricTensorMapper(DofMapper): """Orthonormal isomorphism from R^{n (n-1)} to nxn skew-symmetric tensors, using usual L2 norm for vectors and half Frobenius norm, (tau : tau)/2 for tensors. """ def __init__(self, dtype: type): self.value_dtype = dtype if dtype == wp.mat22: self.dof_dtype = float self.DOF_SIZE = wp.constant(1) self.dof_to_value = SkewSymmetricTensorMapper.dof_to_value_2d self.value_to_dof = SkewSymmetricTensorMapper.value_to_dof_2d elif dtype == wp.mat33: self.dof_dtype = wp.vec3 self.DOF_SIZE = wp.constant(3) self.dof_to_value = SkewSymmetricTensorMapper.dof_to_value_3d self.value_to_dof = SkewSymmetricTensorMapper.value_to_dof_3d else: raise ValueError("Unsupported value dtype: ", dtype) def __str__(self): return f"{self.__class__.__name__}_{self.DOF_SIZE}" @wp.func def dof_to_value_2d(dof: float): return wp.mat22(0.0, -dof, dof, 0.0) @wp.func def value_to_dof_2d(val: wp.mat22): return 0.5 * (val[1, 0] - val[0, 1]) @wp.func def dof_to_value_3d(dof: wp.vec3): a = dof[0] b = dof[1] c = dof[2] return wp.mat33(0.0, -c, b, c, 0.0, -a, -b, a, 0.0) @wp.func def value_to_dof_3d(val: wp.mat33): a = 0.5 * (val[2, 1] - val[1, 2]) b = 0.5 * (val[0, 2] - val[2, 0]) c = 0.5 * (val[1, 0] - val[0, 1]) return wp.vec3(a, b, c)
6,859
Python
27.945148
87
0.516402
NVIDIA/warp/warp/fem/space/hexmesh_function_space.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Hexmesh from warp.fem.geometry.hexmesh import ( EDGE_VERTEX_INDICES, FACE_ORIENTATION, FACE_TRANSLATION, ) from warp.fem.polynomial import is_closed from warp.fem.types import ElementIndex from .shape import ( CubeSerendipityShapeFunctions, CubeTripolynomialShapeFunctions, ShapeFunction, ) from .topology import SpaceTopology, forward_base_topology _FACE_ORIENTATION_I = wp.constant(wp.mat(shape=(16, 2), dtype=int)(FACE_ORIENTATION)) _FACE_TRANSLATION_I = wp.constant(wp.mat(shape=(4, 2), dtype=int)(FACE_TRANSLATION)) # map from shape function vertex indexing to hexmesh vertex indexing _CUBE_TO_HEX_VERTEX = wp.constant(wp.vec(length=8, dtype=int)([0, 4, 3, 7, 1, 5, 2, 6])) # map from shape function edge indexing to hexmesh edge indexing _CUBE_TO_HEX_EDGE = wp.constant(wp.vec(length=12, dtype=int)([0, 4, 2, 6, 3, 1, 7, 5, 8, 11, 9, 10])) @wp.struct class HexmeshTopologyArg: hex_edge_indices: wp.array2d(dtype=int) hex_face_indices: wp.array2d(dtype=wp.vec2i) vertex_count: int edge_count: int face_count: int class HexmeshSpaceTopology(SpaceTopology): TopologyArg = HexmeshTopologyArg def __init__( self, mesh: Hexmesh, shape: ShapeFunction, need_hex_edge_indices: bool = True, need_hex_face_indices: bool = True, ): if not is_closed(shape.family): raise ValueError("A closed polynomial family is required to define a continuous function space") super().__init__(mesh, shape.NODES_PER_ELEMENT) self._mesh = mesh self.shape = shape if need_hex_edge_indices: self._hex_edge_indices = self._mesh.hex_edge_indices self._edge_count = self._mesh.edge_count() else: self._hex_edge_indices = wp.empty(shape=(0, 0), dtype=int) self._edge_count = 0 if need_hex_face_indices: self._compute_hex_face_indices() else: self._hex_face_indices = wp.empty(shape=(0, 0), dtype=wp.vec2i) self._compute_hex_face_indices() @cache.cached_arg_value def topo_arg_value(self, device): arg = HexmeshTopologyArg() arg.hex_edge_indices = self._hex_edge_indices.to(device) arg.hex_face_indices = self._hex_face_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.face_count = self._mesh.side_count() arg.edge_count = self._edge_count return arg def _compute_hex_face_indices(self): self._hex_face_indices = wp.empty( dtype=wp.vec2i, device=self._mesh.hex_vertex_indices.device, shape=(self._mesh.cell_count(), 6) ) wp.launch( kernel=HexmeshSpaceTopology._compute_hex_face_indices_kernel, dim=self._mesh.side_count(), device=self._mesh.hex_vertex_indices.device, inputs=[ self._mesh.face_hex_indices, self._mesh._face_hex_face_orientation, self._hex_face_indices, ], ) @wp.kernel def _compute_hex_face_indices_kernel( face_hex_indices: wp.array(dtype=wp.vec2i), face_hex_face_ori: wp.array(dtype=wp.vec4i), hex_face_indices: wp.array2d(dtype=wp.vec2i), ): f = wp.tid() hx0 = face_hex_indices[f][0] local_face_0 = face_hex_face_ori[f][0] ori_0 = face_hex_face_ori[f][1] hex_face_indices[hx0, local_face_0] = wp.vec2i(f, ori_0) hx1 = face_hex_indices[f][1] local_face_1 = face_hex_face_ori[f][2] ori_1 = face_hex_face_ori[f][3] hex_face_indices[hx1, local_face_1] = wp.vec2i(f, ori_1) class HexmeshTripolynomialSpaceTopology(HexmeshSpaceTopology): def __init__(self, mesh: Hexmesh, shape: CubeTripolynomialShapeFunctions): super().__init__(mesh, shape, need_hex_edge_indices=shape.ORDER >= 2, need_hex_face_indices=shape.ORDER >= 2) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: ORDER = self.shape.ORDER INTERIOR_NODES_PER_EDGE = max(0, ORDER - 1) INTERIOR_NODES_PER_FACE = INTERIOR_NODES_PER_EDGE**2 INTERIOR_NODES_PER_CELL = INTERIOR_NODES_PER_EDGE**3 return ( self._mesh.vertex_count() + self._mesh.edge_count() * INTERIOR_NODES_PER_EDGE + self._mesh.side_count() * INTERIOR_NODES_PER_FACE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) @wp.func def _rotate_face_index(type_index: int, ori: int, size: int): i = type_index // size j = type_index - i * size coords = wp.vec2i(i, j) fv = ori // 2 rot_i = wp.dot(_FACE_ORIENTATION_I[2 * ori], coords) + _FACE_TRANSLATION_I[fv, 0] rot_j = wp.dot(_FACE_ORIENTATION_I[2 * ori + 1], coords) + _FACE_TRANSLATION_I[fv, 1] return rot_i * size + rot_j def _make_element_node_index(self): ORDER = self.shape.ORDER INTERIOR_NODES_PER_EDGE = wp.constant(max(0, ORDER - 1)) INTERIOR_NODES_PER_FACE = wp.constant(INTERIOR_NODES_PER_EDGE**2) INTERIOR_NODES_PER_CELL = wp.constant(INTERIOR_NODES_PER_EDGE**3) @cache.dynamic_func(suffix=self.name) def element_node_index( geo_arg: Hexmesh.CellArg, topo_arg: HexmeshTopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_instance, type_index = self.shape.node_type_and_type_index(node_index_in_elt) if node_type == CubeTripolynomialShapeFunctions.VERTEX: return geo_arg.hex_vertex_indices[element_index, _CUBE_TO_HEX_VERTEX[type_instance]] offset = topo_arg.vertex_count if node_type == CubeTripolynomialShapeFunctions.EDGE: hex_edge = _CUBE_TO_HEX_EDGE[type_instance] edge_index = topo_arg.hex_edge_indices[element_index, hex_edge] v0 = geo_arg.hex_vertex_indices[element_index, EDGE_VERTEX_INDICES[hex_edge, 0]] v1 = geo_arg.hex_vertex_indices[element_index, EDGE_VERTEX_INDICES[hex_edge, 1]] if v0 > v1: type_index = ORDER - 1 - type_index return offset + INTERIOR_NODES_PER_EDGE * edge_index + type_index offset += INTERIOR_NODES_PER_EDGE * topo_arg.edge_count if node_type == CubeTripolynomialShapeFunctions.FACE: face_index_and_ori = topo_arg.hex_face_indices[element_index, type_instance] face_index = face_index_and_ori[0] face_orientation = face_index_and_ori[1] type_index = HexmeshTripolynomialSpaceTopology._rotate_face_index( type_index, face_orientation, ORDER - 1 ) return offset + INTERIOR_NODES_PER_FACE * face_index + type_index offset += INTERIOR_NODES_PER_FACE * topo_arg.face_count return offset + INTERIOR_NODES_PER_CELL * element_index + type_index return element_node_index class HexmeshSerendipitySpaceTopology(HexmeshSpaceTopology): def __init__( self, grid: Hexmesh, shape: CubeSerendipityShapeFunctions, ): super().__init__(grid, shape, need_hex_edge_indices=True, need_hex_face_indices=False) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return self.geometry.vertex_count() + (self.shape.ORDER - 1) * self.geometry.edge_count() def _make_element_node_index(self): ORDER = self.shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Hexmesh.CellArg, topo_arg: HexmeshSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self.shape.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: return cell_arg.hex_vertex_indices[element_index, _CUBE_TO_HEX_VERTEX[type_index]] type_instance, index_in_edge = CubeSerendipityShapeFunctions._cube_edge_index(node_type, type_index) hex_edge = _CUBE_TO_HEX_EDGE[type_instance] edge_index = topo_arg.hex_edge_indices[element_index, hex_edge] v0 = cell_arg.hex_vertex_indices[element_index, EDGE_VERTEX_INDICES[hex_edge, 0]] v1 = cell_arg.hex_vertex_indices[element_index, EDGE_VERTEX_INDICES[hex_edge, 1]] if v0 > v1: index_in_edge = ORDER - 1 - index_in_edge return topo_arg.vertex_count + (ORDER - 1) * edge_index + index_in_edge return element_node_index def make_hexmesh_space_topology(mesh: Hexmesh, shape: ShapeFunction): if isinstance(shape, CubeSerendipityShapeFunctions): return forward_base_topology(HexmeshSerendipitySpaceTopology, mesh, shape) if isinstance(shape, CubeTripolynomialShapeFunctions): return forward_base_topology(HexmeshTripolynomialSpaceTopology, mesh, shape) raise ValueError(f"Unsupported shape function {shape.name}")
9,317
Python
35.685039
117
0.622089
NVIDIA/warp/warp/fem/space/trimesh_2d_function_space.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Trimesh2D from warp.fem.types import ElementIndex from .shape import ( ShapeFunction, Triangle2DPolynomialShapeFunctions, ) from .topology import SpaceTopology, forward_base_topology @wp.struct class Trimesh2DTopologyArg: edge_vertex_indices: wp.array(dtype=wp.vec2i) tri_edge_indices: wp.array2d(dtype=int) vertex_count: int edge_count: int class Trimesh2DSpaceTopology(SpaceTopology): TopologyArg = Trimesh2DTopologyArg def __init__(self, mesh: Trimesh2D, shape: ShapeFunction): super().__init__(mesh, shape.NODES_PER_ELEMENT) self._mesh = mesh self._shape = shape self._compute_tri_edge_indices() @cache.cached_arg_value def topo_arg_value(self, device): arg = Trimesh2DTopologyArg() arg.tri_edge_indices = self._tri_edge_indices.to(device) arg.edge_vertex_indices = self._mesh.edge_vertex_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.edge_count = self._mesh.side_count() return arg def _compute_tri_edge_indices(self): self._tri_edge_indices = wp.empty( dtype=int, device=self._mesh.tri_vertex_indices.device, shape=(self._mesh.cell_count(), 3) ) wp.launch( kernel=Trimesh2DSpaceTopology._compute_tri_edge_indices_kernel, dim=self._mesh.edge_tri_indices.shape, device=self._mesh.tri_vertex_indices.device, inputs=[ self._mesh.edge_tri_indices, self._mesh.edge_vertex_indices, self._mesh.tri_vertex_indices, self._tri_edge_indices, ], ) @wp.func def _find_edge_index_in_tri( edge_vtx: wp.vec2i, tri_vtx: wp.vec3i, ): for k in range(2): if (edge_vtx[0] == tri_vtx[k] and edge_vtx[1] == tri_vtx[k + 1]) or ( edge_vtx[1] == tri_vtx[k] and edge_vtx[0] == tri_vtx[k + 1] ): return k return 2 @wp.kernel def _compute_tri_edge_indices_kernel( edge_tri_indices: wp.array(dtype=wp.vec2i), edge_vertex_indices: wp.array(dtype=wp.vec2i), tri_vertex_indices: wp.array2d(dtype=int), tri_edge_indices: wp.array2d(dtype=int), ): e = wp.tid() edge_vtx = edge_vertex_indices[e] edge_tris = edge_tri_indices[e] t0 = edge_tris[0] t0_vtx = wp.vec3i(tri_vertex_indices[t0, 0], tri_vertex_indices[t0, 1], tri_vertex_indices[t0, 2]) t0_edge = Trimesh2DSpaceTopology._find_edge_index_in_tri(edge_vtx, t0_vtx) tri_edge_indices[t0, t0_edge] = e t1 = edge_tris[1] if t1 != t0: t1_vtx = wp.vec3i(tri_vertex_indices[t1, 0], tri_vertex_indices[t1, 1], tri_vertex_indices[t1, 2]) t1_edge = Trimesh2DSpaceTopology._find_edge_index_in_tri(edge_vtx, t1_vtx) tri_edge_indices[t1, t1_edge] = e class Trimesh2DPolynomialSpaceTopology(Trimesh2DSpaceTopology): def __init__(self, mesh: Trimesh2D, shape: Triangle2DPolynomialShapeFunctions): super().__init__(mesh, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: INTERIOR_NODES_PER_SIDE = max(0, self._shape.ORDER - 1) INTERIOR_NODES_PER_CELL = max(0, self._shape.ORDER - 2) * max(0, self._shape.ORDER - 1) // 2 return ( self._mesh.vertex_count() + self._mesh.side_count() * INTERIOR_NODES_PER_SIDE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) def _make_element_node_index(self): INTERIOR_NODES_PER_SIDE = wp.constant(max(0, self._shape.ORDER - 1)) INTERIOR_NODES_PER_CELL = wp.constant(max(0, self._shape.ORDER - 2) * max(0, self._shape.ORDER - 1) // 2) @cache.dynamic_func(suffix=self.name) def element_node_index( geo_arg: Trimesh2D.CellArg, topo_arg: Trimesh2DTopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: return geo_arg.tri_vertex_indices[element_index][type_index] global_offset = topo_arg.vertex_count if node_type == Triangle2DPolynomialShapeFunctions.EDGE: edge = type_index // INTERIOR_NODES_PER_SIDE edge_node = type_index - INTERIOR_NODES_PER_SIDE * edge global_edge_index = topo_arg.tri_edge_indices[element_index][edge] if ( topo_arg.edge_vertex_indices[global_edge_index][0] != geo_arg.tri_vertex_indices[element_index][edge] ): edge_node = INTERIOR_NODES_PER_SIDE - 1 - edge_node return global_offset + INTERIOR_NODES_PER_SIDE * global_edge_index + edge_node global_offset += INTERIOR_NODES_PER_SIDE * topo_arg.edge_count return global_offset + INTERIOR_NODES_PER_CELL * element_index + type_index return element_node_index def make_trimesh_2d_space_topology(mesh: Trimesh2D, shape: ShapeFunction): if isinstance(shape, Triangle2DPolynomialShapeFunctions): return forward_base_topology(Trimesh2DPolynomialSpaceTopology, mesh, shape) raise ValueError(f"Unsupported shape function {shape.name}")
5,569
Python
35.168831
113
0.610882
NVIDIA/warp/warp/fem/space/collocated_function_space.py
from typing import Optional import warp as wp from warp.fem import cache, utils from warp.fem.types import DofIndex, get_node_coord from .basis_space import BasisSpace from .dof_mapper import DofMapper, IdentityMapper from .function_space import FunctionSpace from .partition import SpacePartition, make_space_partition class CollocatedFunctionSpace(FunctionSpace): """Function space where values are collocated at nodes""" def __init__(self, basis: BasisSpace, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(topology=basis.topology) self.dof_mapper = IdentityMapper(dtype) if dof_mapper is None else dof_mapper self.dtype = self.dof_mapper.value_dtype self.dof_dtype = self.dof_mapper.dof_dtype self.VALUE_DOF_COUNT = self.dof_mapper.DOF_SIZE self._basis = basis self.SpaceArg = self._basis.BasisArg self.ORDER = self._basis.ORDER self.unit_dof_value = self._make_unit_dof_value(self.dof_mapper) self.node_coords_in_element = self._basis.make_node_coords_in_element() self.node_quadrature_weight = self._basis.make_node_quadrature_weight() self.element_inner_weight = self._basis.make_element_inner_weight() self.element_inner_weight_gradient = self._basis.make_element_inner_weight_gradient() self.element_outer_weight = self._basis.make_element_outer_weight() self.element_outer_weight_gradient = self._basis.make_element_outer_weight_gradient() # For backward compatibility if hasattr(basis.topology, "node_grid"): self.node_grid = basis.node_grid if hasattr(basis, "node_triangulation"): self.node_triangulation = basis.node_triangulation if hasattr(basis, "node_tets"): self.node_tets = basis.node_tets if hasattr(basis, "node_hexes"): self.node_hexes = basis.node_hexes def space_arg_value(self, device): return self._basis.basis_arg_value(device) @property def name(self): return f"{self._basis.name}_{self.dof_mapper}".replace(".", "_") @property def degree(self): """Maximum polynomial degree of the underlying basis""" return self.ORDER def make_field( self, space_partition: Optional[SpacePartition] = None, ) -> "wp.fem.field.NodalField": from warp.fem.field import NodalField if space_partition is None: space_partition = make_space_partition(space_topology=self.topology) return NodalField(space=self, space_partition=space_partition) def _make_unit_dof_value(self, dof_mapper: DofMapper): @cache.dynamic_func(suffix=self.name) def unit_dof_value(geo_arg: self.topology.ElementArg, space_arg: self.SpaceArg, dof: DofIndex): return dof_mapper.dof_to_value(utils.unit_element(dof_mapper.dof_dtype(0.0), get_node_coord(dof))) return unit_dof_value def node_count(self): return self.topology.node_count() def node_positions(self, out: Optional[wp.array] = None) -> wp.array: return self._basis.node_positions(out=out) def trace(self) -> "CollocatedFunctionSpace": return CollocatedFunctionSpaceTrace(self) class CollocatedFunctionSpaceTrace(CollocatedFunctionSpace): """Trace of a :class:`CollocatedFunctionSpace`""" def __init__(self, space: CollocatedFunctionSpace): self._space = space super().__init__(space._basis.trace(), space.dtype, space.dof_mapper) @property def name(self): return f"{self._space.name}_Trace" def __eq__(self, other: "CollocatedFunctionSpaceTrace") -> bool: return self._space == other._space
3,736
Python
36
110
0.672109
NVIDIA/warp/warp/fem/space/grid_2d_function_space.py
import numpy as np import warp as wp from warp.fem import cache from warp.fem.geometry import Grid2D from warp.fem.polynomial import is_closed from warp.fem.types import ElementIndex from .shape import ( ShapeFunction, SquareBipolynomialShapeFunctions, SquareSerendipityShapeFunctions, ) from .topology import SpaceTopology, forward_base_topology class Grid2DSpaceTopology(SpaceTopology): def __init__(self, grid: Grid2D, shape: ShapeFunction): if not is_closed(shape.family): raise ValueError("A closed polynomial family is required to define a continuous function space") super().__init__(grid, shape.NODES_PER_ELEMENT) self._shape = shape @wp.func def _vertex_coords(vidx_in_cell: int): x = vidx_in_cell // 2 y = vidx_in_cell - 2 * x return wp.vec2i(x, y) @wp.func def _vertex_index(cell_arg: Grid2D.CellArg, cell_index: ElementIndex, vidx_in_cell: int): res = cell_arg.res x_stride = res[1] + 1 corner = Grid2D.get_cell(res, cell_index) + Grid2DSpaceTopology._vertex_coords(vidx_in_cell) return Grid2D._from_2d_index(x_stride, corner) class GridBipolynomialSpaceTopology(Grid2DSpaceTopology): def __init__(self, grid: Grid2D, shape: SquareBipolynomialShapeFunctions): super().__init__(grid, shape) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: return (self.geometry.res[0] * self._shape.ORDER + 1) * (self.geometry.res[1] * self._shape.ORDER + 1) def _make_element_node_index(self): ORDER = self._shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Grid2D.CellArg, topo_arg: Grid2DSpaceTopology.TopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): res = cell_arg.res cell = Grid2D.get_cell(res, element_index) node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i node_x = ORDER * cell[0] + node_i node_y = ORDER * cell[1] + node_j node_pitch = (res[1] * ORDER) + 1 node_index = node_pitch * node_x + node_y return node_index return element_node_index def _node_grid(self): res = self.geometry.res cell_coords = np.array(self._shape.LOBATTO_COORDS)[:-1] grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) grid_coords_x = np.append(grid_coords_x, res[0]) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) grid_coords_y = np.append(grid_coords_y, res[1]) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] return np.meshgrid(X, Y, indexing="ij") class GridSerendipitySpaceTopology(Grid2DSpaceTopology): def __init__(self, grid: Grid2D, shape: SquareSerendipityShapeFunctions): super().__init__(grid, shape) self.element_node_index = self._make_element_node_index() TopologyArg = Grid2D.SideArg def topo_arg_value(self, device): return self.geometry.side_arg_value(device) def node_count(self) -> int: return self.geometry.vertex_count() + (self._shape.ORDER - 1) * self.geometry.side_count() def _make_element_node_index(self): ORDER = self._shape.ORDER @cache.dynamic_func(suffix=self.name) def element_node_index( cell_arg: Grid2D.CellArg, topo_arg: Grid2D.SideArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == SquareSerendipityShapeFunctions.VERTEX: return Grid2DSpaceTopology._vertex_index(cell_arg, element_index, type_index) side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index) axis = 1 - (node_type - SquareSerendipityShapeFunctions.EDGE_X) cell = Grid2D.get_cell(cell_arg.res, element_index) origin = wp.vec2i(cell[Grid2D.ROTATION[axis, 0]] + side_offset, cell[Grid2D.ROTATION[axis, 1]]) side = Grid2D.Side(axis, origin) side_index = Grid2D.side_index(topo_arg, side) res = cell_arg.res vertex_count = (res[0] + 1) * (res[1] + 1) return vertex_count + (ORDER - 1) * side_index + index_in_side return element_node_index def make_grid_2d_space_topology(grid: Grid2D, shape: ShapeFunction): if isinstance(shape, SquareSerendipityShapeFunctions): return forward_base_topology(GridSerendipitySpaceTopology, grid, shape) if isinstance(shape, SquareBipolynomialShapeFunctions): return forward_base_topology(GridBipolynomialSpaceTopology, grid, shape) raise ValueError(f"Unsupported shape function {shape.name}")
5,238
Python
34.161074
110
0.62963
NVIDIA/warp/warp/fem/space/tetmesh_function_space.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Tetmesh from warp.fem.types import ElementIndex from .shape import ( ShapeFunction, TetrahedronPolynomialShapeFunctions, ) from .topology import SpaceTopology, forward_base_topology @wp.struct class TetmeshTopologyArg: tet_edge_indices: wp.array2d(dtype=int) tet_face_indices: wp.array2d(dtype=int) face_vertex_indices: wp.array(dtype=wp.vec3i) vertex_count: int edge_count: int face_count: int class TetmeshSpaceTopology(SpaceTopology): TopologyArg = TetmeshTopologyArg def __init__( self, mesh: Tetmesh, shape: ShapeFunction, need_tet_edge_indices: bool = True, need_tet_face_indices: bool = True, ): super().__init__(mesh, shape.NODES_PER_ELEMENT) self._mesh = mesh self._shape = shape if need_tet_edge_indices: self._tet_edge_indices = self._mesh.tet_edge_indices self._edge_count = self._mesh.edge_count() else: self._tet_edge_indices = wp.empty(shape=(0, 0), dtype=int) self._edge_count = 0 if need_tet_face_indices: self._compute_tet_face_indices() else: self._tet_face_indices = wp.empty(shape=(0, 0), dtype=int) @cache.cached_arg_value def topo_arg_value(self, device): arg = TetmeshTopologyArg() arg.tet_face_indices = self._tet_face_indices.to(device) arg.tet_edge_indices = self._tet_edge_indices.to(device) arg.face_vertex_indices = self._mesh.face_vertex_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.face_count = self._mesh.side_count() arg.edge_count = self._edge_count return arg def _compute_tet_face_indices(self): self._tet_face_indices = wp.empty( dtype=int, device=self._mesh.tet_vertex_indices.device, shape=(self._mesh.cell_count(), 4) ) wp.launch( kernel=TetmeshSpaceTopology._compute_tet_face_indices_kernel, dim=self._mesh._face_tet_indices.shape, device=self._mesh.tet_vertex_indices.device, inputs=[ self._mesh.face_tet_indices, self._mesh.face_vertex_indices, self._mesh.tet_vertex_indices, self._tet_face_indices, ], ) @wp.func def _find_face_index_in_tet( face_vtx: wp.vec3i, tet_vtx: wp.vec4i, ): for k in range(3): tvk = wp.vec3i(tet_vtx[k], tet_vtx[(k + 1) % 4], tet_vtx[(k + 2) % 4]) # Use fact that face always start with min vertex min_t = wp.min(tvk) max_t = wp.max(tvk) mid_t = tvk[0] + tvk[1] + tvk[2] - min_t - max_t if min_t == face_vtx[0] and ( (face_vtx[2] == max_t and face_vtx[1] == mid_t) or (face_vtx[1] == max_t and face_vtx[2] == mid_t) ): return k return 3 @wp.kernel def _compute_tet_face_indices_kernel( face_tet_indices: wp.array(dtype=wp.vec2i), face_vertex_indices: wp.array(dtype=wp.vec3i), tet_vertex_indices: wp.array2d(dtype=int), tet_face_indices: wp.array2d(dtype=int), ): e = wp.tid() face_vtx = face_vertex_indices[e] face_tets = face_tet_indices[e] t0 = face_tets[0] t0_vtx = wp.vec4i( tet_vertex_indices[t0, 0], tet_vertex_indices[t0, 1], tet_vertex_indices[t0, 2], tet_vertex_indices[t0, 3] ) t0_face = TetmeshSpaceTopology._find_face_index_in_tet(face_vtx, t0_vtx) tet_face_indices[t0, t0_face] = e t1 = face_tets[1] if t1 != t0: t1_vtx = wp.vec4i( tet_vertex_indices[t1, 0], tet_vertex_indices[t1, 1], tet_vertex_indices[t1, 2], tet_vertex_indices[t1, 3], ) t1_face = TetmeshSpaceTopology._find_face_index_in_tet(face_vtx, t1_vtx) tet_face_indices[t1, t1_face] = e class TetmeshPolynomialSpaceTopology(TetmeshSpaceTopology): def __init__(self, mesh: Tetmesh, shape: TetrahedronPolynomialShapeFunctions): super().__init__(mesh, shape, need_tet_edge_indices=shape.ORDER >= 2, need_tet_face_indices=shape.ORDER >= 3) self.element_node_index = self._make_element_node_index() def node_count(self) -> int: ORDER = self._shape.ORDER INTERIOR_NODES_PER_EDGE = max(0, ORDER - 1) INTERIOR_NODES_PER_FACE = max(0, ORDER - 2) * max(0, ORDER - 1) // 2 INTERIOR_NODES_PER_CELL = max(0, ORDER - 3) * max(0, ORDER - 2) * max(0, ORDER - 1) // 6 return ( self._mesh.vertex_count() + self._mesh.edge_count() * INTERIOR_NODES_PER_EDGE + self._mesh.side_count() * INTERIOR_NODES_PER_FACE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) def _make_element_node_index(self): ORDER = self._shape.ORDER INTERIOR_NODES_PER_EDGE = wp.constant(max(0, ORDER - 1)) INTERIOR_NODES_PER_FACE = wp.constant(max(0, ORDER - 2) * max(0, ORDER - 1) // 2) INTERIOR_NODES_PER_CELL = wp.constant(max(0, ORDER - 3) * max(0, ORDER - 2) * max(0, ORDER - 1) // 6) @cache.dynamic_func(suffix=self.name) def element_node_index( geo_arg: Tetmesh.CellArg, topo_arg: TetmeshTopologyArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: return geo_arg.tet_vertex_indices[element_index][type_index] global_offset = topo_arg.vertex_count if node_type == TetrahedronPolynomialShapeFunctions.EDGE: edge = type_index // INTERIOR_NODES_PER_EDGE edge_node = type_index - INTERIOR_NODES_PER_EDGE * edge global_edge_index = topo_arg.tet_edge_indices[element_index][edge] # Test if we need to swap edge direction if INTERIOR_NODES_PER_EDGE > 1: if edge < 3: c1 = edge c2 = (edge + 1) % 3 else: c1 = edge - 3 c2 = 3 if geo_arg.tet_vertex_indices[element_index][c1] > geo_arg.tet_vertex_indices[element_index][c2]: edge_node = INTERIOR_NODES_PER_EDGE - 1 - edge_node return global_offset + INTERIOR_NODES_PER_EDGE * global_edge_index + edge_node global_offset += INTERIOR_NODES_PER_EDGE * topo_arg.edge_count if node_type == TetrahedronPolynomialShapeFunctions.FACE: face = type_index // INTERIOR_NODES_PER_FACE face_node = type_index - INTERIOR_NODES_PER_FACE * face global_face_index = topo_arg.tet_face_indices[element_index][face] if INTERIOR_NODES_PER_FACE == 3: # Hard code for P4 case, 3 nodes per face # Higher orders would require rotating triangle coordinates, this is not supported yet vidx = geo_arg.tet_vertex_indices[element_index][(face + face_node) % 4] fvi = topo_arg.face_vertex_indices[global_face_index] if vidx == fvi[0]: face_node = 0 elif vidx == fvi[1]: face_node = 1 else: face_node = 2 return global_offset + INTERIOR_NODES_PER_FACE * global_face_index + face_node global_offset += INTERIOR_NODES_PER_FACE * topo_arg.face_count return global_offset + INTERIOR_NODES_PER_CELL * element_index + type_index return element_node_index def make_tetmesh_space_topology(mesh: Tetmesh, shape: ShapeFunction): if isinstance(shape, TetrahedronPolynomialShapeFunctions): return forward_base_topology(TetmeshPolynomialSpaceTopology, mesh, shape) raise ValueError(f"Unsupported shape function {shape.name}")
8,321
Python
35.986667
118
0.569403
NVIDIA/warp/warp/fem/space/shape/cube_shape_function.py
import math import numpy as np import warp as wp from warp.fem import cache from warp.fem.geometry import Grid3D from warp.fem.polynomial import Polynomial, is_closed, lagrange_scales, quadrature_1d from warp.fem.types import Coords from .tet_shape_function import TetrahedronPolynomialShapeFunctions class CubeTripolynomialShapeFunctions: VERTEX = 0 EDGE = 1 FACE = 2 INTERIOR = 3 def __init__(self, degree: int, family: Polynomial): self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) ** 3) self.NODES_PER_EDGE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1) self._node_ijk = self._make_node_ijk() self.node_type_and_type_index = self._make_node_type_and_type_index() @property def name(self) -> str: return f"Cube_Q{self.ORDER}_{self.family}" @wp.func def _vertex_coords_f(vidx_in_cell: int): x = vidx_in_cell // 4 y = (vidx_in_cell - 4 * x) // 2 z = vidx_in_cell - 4 * x - 2 * y return wp.vec3(float(x), float(y), float(z)) def _make_node_ijk(self): ORDER_PLUS_ONE = self.ORDER_PLUS_ONE def node_ijk( node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER_PLUS_ONE * ORDER_PLUS_ONE) node_jk = node_index_in_elt - ORDER_PLUS_ONE * ORDER_PLUS_ONE * node_i node_j = node_jk // ORDER_PLUS_ONE node_k = node_jk - ORDER_PLUS_ONE * node_j return node_i, node_j, node_k return cache.get_func(node_ijk, self.name) def _make_node_type_and_type_index(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def node_type_and_type_index( node_index_in_elt: int, ): i, j, k = self._node_ijk(node_index_in_elt) zi = wp.select(i == 0, 0, 1) zj = wp.select(j == 0, 0, 1) zk = wp.select(k == 0, 0, 1) mi = wp.select(i == ORDER, 0, 1) mj = wp.select(j == ORDER, 0, 1) mk = wp.select(k == ORDER, 0, 1) if zi + mi == 1: if zj + mj == 1: if zk + mk == 1: # vertex type_instance = mi * 4 + mj * 2 + mk return CubeTripolynomialShapeFunctions.VERTEX, type_instance, 0 # z edge type_instance = 8 + mi * 2 + mj type_index = k - 1 return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index if zk + mk == 1: # y edge type_instance = 4 + mk * 2 + mi type_index = j - 1 return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index # x face type_instance = mi type_index = wp.select(mi == 1, (j - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + j - 1) return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index if zj + mj == 1: if zk + mk == 1: # x edge type_instance = mj * 2 + mk type_index = i - 1 return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index # y face type_instance = 2 + mj type_index = wp.select(mj == 1, (i - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + i - 1) return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index if zk + mk == 1: # z face type_instance = 4 + mk type_index = wp.select(mk == 1, (j - 1) * (ORDER - 1) + i - 1, (i - 1) * (ORDER - 1) + j - 1) return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index type_index = ((i - 1) * (ORDER - 1) + (j - 1)) * (ORDER - 1) + k - 1 return CubeTripolynomialShapeFunctions.INTERIOR, 0, type_index return node_type_and_type_index def make_node_coords_in_element(self): LOBATTO_COORDS = self.LOBATTO_COORDS @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], LOBATTO_COORDS[node_k]) return node_coords_in_element def make_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def node_quadrature_weight( node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k] def node_quadrature_weight_linear( node_index_in_elt: int, ): return 0.125 if ORDER == 1: return cache.get_func(node_quadrature_weight_linear, self.name) return cache.get_func(node_quadrature_weight, self.name) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def trace_node_quadrature_weight( node_index_in_elt: int, ): # We're either on a side interior or at a vertex # If we find one index at extremum, pick the two other node_i, node_j, node_k = self._node_ijk(node_index_in_elt) if node_i == 0 or node_i == ORDER: return LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k] if node_j == 0 or node_j == ORDER: return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_k] return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] def trace_node_quadrature_weight_linear( node_index_in_elt: int, ): return 0.25 def trace_node_quadrature_weight_open( node_index_in_elt: int, ): return 0.0 if not is_closed(self.family): return cache.get_func(trace_node_quadrature_weight_open, self.name) if ORDER == 1: return cache.get_func(trace_node_quadrature_weight_linear, self.name) return cache.get_func(trace_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight( coords: Coords, node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) w = float(1.0) for k in range(ORDER_PLUS_ONE): if k != node_i: w *= coords[0] - LOBATTO_COORDS[k] if k != node_j: w *= coords[1] - LOBATTO_COORDS[k] if k != node_k: w *= coords[2] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k] return w def element_inner_weight_linear( coords: Coords, node_index_in_elt: int, ): v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2] return wx * wy * wz if self.ORDER == 1 and is_closed(self.family): return cache.get_func(element_inner_weight_linear, self.name) return cache.get_func(element_inner_weight, self.name) def make_element_inner_weight_gradient(self): ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) prefix_xy = float(1.0) prefix_yz = float(1.0) prefix_zx = float(1.0) for k in range(ORDER_PLUS_ONE): if k != node_i: prefix_yz *= coords[0] - LOBATTO_COORDS[k] if k != node_j: prefix_zx *= coords[1] - LOBATTO_COORDS[k] if k != node_k: prefix_xy *= coords[2] - LOBATTO_COORDS[k] prefix_x = prefix_zx * prefix_xy prefix_y = prefix_yz * prefix_xy prefix_z = prefix_zx * prefix_yz grad_x = float(0.0) grad_y = float(0.0) grad_z = float(0.0) for k in range(ORDER_PLUS_ONE): if k != node_i: delta_x = coords[0] - LOBATTO_COORDS[k] grad_x = grad_x * delta_x + prefix_x prefix_x *= delta_x if k != node_j: delta_y = coords[1] - LOBATTO_COORDS[k] grad_y = grad_y * delta_y + prefix_y prefix_y *= delta_y if k != node_k: delta_z = coords[2] - LOBATTO_COORDS[k] grad_z = grad_z * delta_z + prefix_z prefix_z *= delta_z grad = ( LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k] * wp.vec3( grad_x, grad_y, grad_z, ) ) return grad def element_inner_weight_gradient_linear( coords: Coords, node_index_in_elt: int, ): v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2] dx = 2.0 * v[0] - 1.0 dy = 2.0 * v[1] - 1.0 dz = 2.0 * v[2] - 1.0 return wp.vec3(dx * wy * wz, dy * wz * wx, dz * wx * wy) if self.ORDER == 1 and is_closed(self.family): return cache.get_func(element_inner_weight_gradient_linear, self.name) return cache.get_func(element_inner_weight_gradient, self.name) def element_node_hexes(self): from warp.fem.utils import grid_to_hexes return grid_to_hexes(self.ORDER, self.ORDER, self.ORDER) def element_node_tets(self): from warp.fem.utils import grid_to_tets return grid_to_tets(self.ORDER, self.ORDER, self.ORDER) class CubeSerendipityShapeFunctions: """ Serendipity element ~ tensor product space without interior nodes Edge shape functions are usual Lagrange shape functions times a bilinear function in the normal directions Corner shape functions are trilinear shape functions times a function of (x^{d-1} + y^{d-1}) """ # Node categories VERTEX = wp.constant(0) EDGE_X = wp.constant(1) EDGE_Y = wp.constant(2) def __init__(self, degree: int, family: Polynomial): if not is_closed(family): raise ValueError("A closed polynomial family is required to define serendipity elements") if degree not in [2, 3]: raise NotImplementedError("Serendipity element only implemented for order 2 or 3") self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant(8 + 12 * (degree - 1)) self.NODES_PER_EDGE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_lobatto_indices = self._get_node_lobatto_indices() @property def name(self) -> str: return f"Cube_S{self.ORDER}_{self.family}" def _get_node_type_and_type_index(self): @cache.dynamic_func(suffix=self.name) def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 8: return CubeSerendipityShapeFunctions.VERTEX, node_index_in_elt type_index = (node_index_in_elt - 8) // 3 side = node_index_in_elt - 8 - 3 * type_index return CubeSerendipityShapeFunctions.EDGE_X + side, type_index return node_type_and_index @wp.func def _vertex_coords(vidx_in_cell: int): x = vidx_in_cell // 4 y = (vidx_in_cell - 4 * x) // 2 z = vidx_in_cell - 4 * x - 2 * y return wp.vec3i(x, y, z) @wp.func def _edge_coords(type_index: int): index_in_side = type_index // 4 side_offset = type_index - 4 * index_in_side return wp.vec3i(index_in_side + 1, side_offset // 2, side_offset & 1) @wp.func def _edge_axis(node_type: int): return node_type - CubeSerendipityShapeFunctions.EDGE_X @wp.func def _cube_edge_index(node_type: int, type_index: int): index_in_side = type_index // 4 side_offset = type_index - 4 * index_in_side return 4 * (node_type - CubeSerendipityShapeFunctions.EDGE_X) + side_offset, index_in_side def _get_node_lobatto_indices(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def node_lobatto_indices(node_type: int, type_index: int): if node_type == CubeSerendipityShapeFunctions.VERTEX: return CubeSerendipityShapeFunctions._vertex_coords(type_index) * ORDER axis = CubeSerendipityShapeFunctions._edge_axis(node_type) local_coords = CubeSerendipityShapeFunctions._edge_coords(type_index) local_indices = wp.vec3i(local_coords[0], local_coords[1] * ORDER, local_coords[2] * ORDER) return Grid3D._local_to_world(axis, local_indices) return node_lobatto_indices def make_node_coords_in_element(self): LOBATTO_COORDS = self.LOBATTO_COORDS @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) node_coords = self._node_lobatto_indices(node_type, type_index) return Coords( LOBATTO_COORDS[node_coords[0]], LOBATTO_COORDS[node_coords[1]], LOBATTO_COORDS[node_coords[2]] ) return node_coords_in_element def make_node_quadrature_weight(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def node_quadrature_weight( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: return 1.0 / float(8 * ORDER * ORDER * ORDER) return (1.0 - 1.0 / float(ORDER * ORDER * ORDER)) / float(12 * (ORDER - 1)) return node_quadrature_weight def make_trace_node_quadrature_weight(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: return 0.25 / float(ORDER * ORDER) return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1) return trace_node_quadrature_weight def make_element_inner_weight(self): ORDER = self.ORDER ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2) DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD) @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index) cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0]) cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1]) cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2]) w = cx * cy * cz if ORDER == 2: w *= cx + cy + cz - 3.0 + LOBATTO_COORDS[1] return w * LAGRANGE_SCALE[0] if ORDER == 3: w *= ( (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) + (cz - 0.5) * (cz - 0.5) - DEGREE_3_SPHERE_RAD ) return w * DEGREE_3_SPHERE_SCALE axis = CubeSerendipityShapeFunctions._edge_axis(node_type) node_all = CubeSerendipityShapeFunctions._edge_coords(type_index) local_coords = Grid3D._world_to_local(axis, coords) w = float(1.0) w *= wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1]) w *= wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2]) for k in range(ORDER_PLUS_ONE): if k != node_all[0]: w *= local_coords[0] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_all[0]] return w return element_inner_weight def make_element_inner_weight_gradient(self): ORDER = self.ORDER ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2) DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == CubeSerendipityShapeFunctions.VERTEX: node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index) cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0]) cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1]) cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2]) gx = wp.select(node_ijk[0] == 0, 1.0, -1.0) gy = wp.select(node_ijk[1] == 0, 1.0, -1.0) gz = wp.select(node_ijk[2] == 0, 1.0, -1.0) if ORDER == 2: w = cx + cy + cz - 3.0 + LOBATTO_COORDS[1] grad_x = cy * cz * gx * (w + cx) grad_y = cz * cx * gy * (w + cy) grad_z = cx * cy * gz * (w + cz) return wp.vec3(grad_x, grad_y, grad_z) * LAGRANGE_SCALE[0] if ORDER == 3: w = ( (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) + (cz - 0.5) * (cz - 0.5) - DEGREE_3_SPHERE_RAD ) dw_dcx = 2.0 * cx - 1.0 dw_dcy = 2.0 * cy - 1.0 dw_dcz = 2.0 * cz - 1.0 grad_x = cy * cz * gx * (w + dw_dcx * cx) grad_y = cz * cx * gy * (w + dw_dcy * cy) grad_z = cx * cy * gz * (w + dw_dcz * cz) return wp.vec3(grad_x, grad_y, grad_z) * DEGREE_3_SPHERE_SCALE axis = CubeSerendipityShapeFunctions._edge_axis(node_type) node_all = CubeSerendipityShapeFunctions._edge_coords(type_index) local_coords = Grid3D._world_to_local(axis, coords) w_long = wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1]) w_lat = wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2]) g_long = wp.select(node_all[1] == 0, 1.0, -1.0) g_lat = wp.select(node_all[2] == 0, 1.0, -1.0) w_alt = LAGRANGE_SCALE[node_all[0]] g_alt = float(0.0) prefix_alt = LAGRANGE_SCALE[node_all[0]] for k in range(ORDER_PLUS_ONE): if k != node_all[0]: delta_alt = local_coords[0] - LOBATTO_COORDS[k] w_alt *= delta_alt g_alt = g_alt * delta_alt + prefix_alt prefix_alt *= delta_alt local_grad = wp.vec3(g_alt * w_long * w_lat, w_alt * g_long * w_lat, w_alt * w_long * g_lat) return Grid3D._local_to_world(axis, local_grad) return element_inner_weight_gradient def element_node_tets(self): from warp.fem.utils import grid_to_tets if self.ORDER == 2: element_tets = np.array( [ [0, 8, 9, 10], [1, 11, 10, 15], [2, 9, 14, 13], [3, 15, 13, 17], [4, 12, 8, 16], [5, 18, 16, 11], [6, 14, 12, 19], [7, 19, 18, 17], [16, 12, 18, 11], [8, 16, 12, 11], [12, 19, 18, 14], [14, 19, 17, 18], [10, 9, 15, 8], [10, 8, 11, 15], [9, 13, 15, 14], [13, 14, 17, 15], ] ) middle_hex = np.array([8, 11, 9, 15, 12, 18, 14, 17]) middle_tets = middle_hex[grid_to_tets(1, 1, 1)] return np.concatenate((element_tets, middle_tets)) raise NotImplementedError() class CubeNonConformingPolynomialShapeFunctions: # embeds the largest regular tet centered at (0.5, 0.5, 0.5) into the reference cube _tet_height = 2.0 / 3.0 _tet_side = math.sqrt(3.0 / 2.0) * _tet_height _tet_face_height = math.sqrt(3.0) / 2.0 * _tet_side _tet_to_cube = np.array( [ [_tet_side, _tet_side / 2.0, _tet_side / 2.0], [0.0, _tet_face_height, _tet_face_height / 3.0], [0.0, 0.0, _tet_height], ] ) _TET_OFFSET = wp.constant(wp.vec3(0.5 - 0.5 * _tet_side, 0.5 - _tet_face_height / 3.0, 0.5 - 0.25 * _tet_height)) def __init__(self, degree: int): self._tet_shape = TetrahedronPolynomialShapeFunctions(degree=degree) self.ORDER = self._tet_shape.ORDER self.NODES_PER_ELEMENT = self._tet_shape.NODES_PER_ELEMENT self.element_node_tets = self._tet_shape.element_node_tets @property def name(self) -> str: return f"Cube_P{self.ORDER}d" def make_node_coords_in_element(self): node_coords_in_tet = self._tet_shape.make_node_coords_in_element() TET_TO_CUBE = wp.constant(wp.mat33(self._tet_to_cube)) @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): tet_coords = node_coords_in_tet(node_index_in_elt) return TET_TO_CUBE * tet_coords + CubeNonConformingPolynomialShapeFunctions._TET_OFFSET return node_coords_in_element def make_node_quadrature_weight(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def node_uniform_quadrature_weight( node_index_in_elt: int, ): return 1.0 / float(NODES_PER_ELEMENT) return node_uniform_quadrature_weight def make_trace_node_quadrature_weight(self): # Non-conforming, zero measure on sides @wp.func def zero(node_index_in_elt: int): return 0.0 return zero def make_element_inner_weight(self): tet_inner_weight = self._tet_shape.make_element_inner_weight() CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube))) @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET) return tet_inner_weight(tet_coords, node_index_in_elt) return element_inner_weight def make_element_inner_weight_gradient(self): tet_inner_weight_gradient = self._tet_shape.make_element_inner_weight_gradient() CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube))) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET) grad = tet_inner_weight_gradient(tet_coords, node_index_in_elt) return wp.transpose(CUBE_TO_TET) * grad return element_inner_weight_gradient
26,552
Python
35.423868
117
0.532239
NVIDIA/warp/warp/fem/space/shape/__init__.py
from enum import Enum from typing import Optional from warp.fem.geometry import element as _element from warp.fem.polynomial import Polynomial from .cube_shape_function import ( CubeNonConformingPolynomialShapeFunctions, CubeSerendipityShapeFunctions, CubeTripolynomialShapeFunctions, ) from .shape_function import ConstantShapeFunction, ShapeFunction from .square_shape_function import ( SquareBipolynomialShapeFunctions, SquareNonConformingPolynomialShapeFunctions, SquareSerendipityShapeFunctions, ) from .tet_shape_function import TetrahedronNonConformingPolynomialShapeFunctions, TetrahedronPolynomialShapeFunctions from .triangle_shape_function import Triangle2DNonConformingPolynomialShapeFunctions, Triangle2DPolynomialShapeFunctions class ElementBasis(Enum): """Choice of basis function to equip individual elements""" LAGRANGE = 0 """Lagrange basis functions :math:`P_k` for simplices, tensor products :math:`Q_k` for squares and cubes""" SERENDIPITY = 1 """Serendipity elements :math:`S_k`, corresponding to Lagrange nodes with interior points removed (for degree <= 3)""" NONCONFORMING_POLYNOMIAL = 2 """Simplex Lagrange basis functions :math:`P_{kd}` embedded into non conforming reference elements (e.g. squares or cubes). Discontinuous only.""" def get_shape_function( element: _element.Element, space_dimension: int, degree: int, element_basis: ElementBasis, family: Optional[Polynomial] = None, ): """ Equips a reference element with a shape function basis. Args: element: the reference element on which to build the shape function space_dimension: the dimension of the embedding space degree: polynomial degree of the per-element shape functions element_basis: type of basis function for the individual elements family: Polynomial family used to generate the shape function basis. If not provided, a reasonable basis is chosen. Returns: the corresponding shape function """ if degree == 0: return ConstantShapeFunction(element, space_dimension) if family is None: family = Polynomial.LOBATTO_GAUSS_LEGENDRE if isinstance(element, _element.Square): if element_basis == ElementBasis.NONCONFORMING_POLYNOMIAL: return SquareNonConformingPolynomialShapeFunctions(degree=degree) if element_basis == ElementBasis.SERENDIPITY and degree > 1: return SquareSerendipityShapeFunctions(degree=degree, family=family) return SquareBipolynomialShapeFunctions(degree=degree, family=family) if isinstance(element, _element.Triangle): if element_basis == ElementBasis.NONCONFORMING_POLYNOMIAL: return Triangle2DNonConformingPolynomialShapeFunctions(degree=degree) if element_basis == ElementBasis.SERENDIPITY and degree > 2: raise NotImplementedError("Serendipity variant not implemented yet for Triangle elements") return Triangle2DPolynomialShapeFunctions(degree=degree) if isinstance(element, _element.Cube): if element_basis == ElementBasis.NONCONFORMING_POLYNOMIAL: return CubeNonConformingPolynomialShapeFunctions(degree=degree) if element_basis == ElementBasis.SERENDIPITY and degree > 1: return CubeSerendipityShapeFunctions(degree=degree, family=family) return CubeTripolynomialShapeFunctions(degree=degree, family=family) if isinstance(element, _element.Tetrahedron): if element_basis == ElementBasis.NONCONFORMING_POLYNOMIAL: return TetrahedronNonConformingPolynomialShapeFunctions(degree=degree) if element_basis == ElementBasis.SERENDIPITY and degree > 2: raise NotImplementedError("Serendipity variant not implemented yet for Tet elements") return TetrahedronPolynomialShapeFunctions(degree=degree) return NotImplementedError("Unrecognized element type")
3,962
Python
42.54945
150
0.751388
NVIDIA/warp/warp/fem/space/shape/square_shape_function.py
import math import numpy as np import warp as wp from warp.fem import cache from warp.fem.polynomial import Polynomial, is_closed, lagrange_scales, quadrature_1d from warp.fem.types import Coords from .triangle_shape_function import Triangle2DPolynomialShapeFunctions class SquareBipolynomialShapeFunctions: def __init__(self, degree: int, family: Polynomial): self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1)) self.NODES_PER_SIDE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1) @property def name(self) -> str: return f"Square_Q{self.ORDER}_{self.family}" def make_node_coords_in_element(self): ORDER = self.ORDER LOBATTO_COORDS = self.LOBATTO_COORDS @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0) return node_coords_in_element def make_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def node_quadrature_weight( node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] def node_quadrature_weight_linear( node_index_in_elt: int, ): return 0.25 if ORDER == 1: return cache.get_func(node_quadrature_weight_linear, self.name) return cache.get_func(node_quadrature_weight, self.name) @wp.func def _vertex_coords_f(vidx_in_cell: int): x = vidx_in_cell // 2 y = vidx_in_cell - 2 * x return wp.vec2(float(x), float(y)) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def trace_node_quadrature_weight( node_index_in_elt: int, ): # We're either on a side interior or at a vertex # I.e., either both indices are at extrema, or only one is # Pick the interior one if possible, if both are at extrema pick any one node_i = node_index_in_elt // (ORDER + 1) if node_i > 0 and node_i < ORDER: return LOBATTO_WEIGHT[node_i] node_j = node_index_in_elt - (ORDER + 1) * node_i return LOBATTO_WEIGHT[node_j] def trace_node_quadrature_weight_linear( node_index_in_elt: int, ): return 0.5 def trace_node_quadrature_weight_open( node_index_in_elt: int, ): return 0.0 if not is_closed(self.family): return cache.get_func(trace_node_quadrature_weight_open, self.name) if ORDER == 1: return cache.get_func(trace_node_quadrature_weight_linear, self.name) return cache.get_func(trace_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight( coords: Coords, node_index_in_elt: int, ): node_i = node_index_in_elt // ORDER_PLUS_ONE node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i w = float(1.0) for k in range(ORDER_PLUS_ONE): if k != node_i: w *= coords[0] - LOBATTO_COORDS[k] if k != node_j: w *= coords[1] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] return w def element_inner_weight_linear( coords: Coords, node_index_in_elt: int, ): v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] return wx * wy if self.ORDER == 1 and is_closed(self.family): return cache.get_func(element_inner_weight_linear, self.name) return cache.get_func(element_inner_weight, self.name) def make_element_inner_weight_gradient(self): ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): node_i = node_index_in_elt // ORDER_PLUS_ONE node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i prefix_x = float(1.0) prefix_y = float(1.0) for k in range(ORDER_PLUS_ONE): if k != node_i: prefix_y *= coords[0] - LOBATTO_COORDS[k] if k != node_j: prefix_x *= coords[1] - LOBATTO_COORDS[k] grad_x = float(0.0) grad_y = float(0.0) for k in range(ORDER_PLUS_ONE): if k != node_i: delta_x = coords[0] - LOBATTO_COORDS[k] grad_x = grad_x * delta_x + prefix_x prefix_x *= delta_x if k != node_j: delta_y = coords[1] - LOBATTO_COORDS[k] grad_y = grad_y * delta_y + prefix_y prefix_y *= delta_y grad = LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x, grad_y) return grad def element_inner_weight_gradient_linear( coords: Coords, node_index_in_elt: int, ): v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] dx = 2.0 * v[0] - 1.0 dy = 2.0 * v[1] - 1.0 return wp.vec2(dx * wy, dy * wx) if self.ORDER == 1 and is_closed(self.family): return cache.get_func(element_inner_weight_gradient_linear, self.name) return cache.get_func(element_inner_weight_gradient, self.name) def element_node_triangulation(self): from warp.fem.utils import grid_to_tris return grid_to_tris(self.ORDER, self.ORDER) class SquareSerendipityShapeFunctions: """ Serendipity element ~ tensor product space without interior nodes Side shape functions are usual Lagrange shape functions times a linear function in the normal direction Corner shape functions are bilinear shape functions times a function of (x^{d-1} + y^{d-1}) """ # Node categories VERTEX = wp.constant(0) EDGE_X = wp.constant(1) EDGE_Y = wp.constant(2) def __init__(self, degree: int, family: Polynomial): if not is_closed(family): raise ValueError("A closed polynomial family is required to define serendipity elements") if degree not in [2, 3]: raise NotImplementedError("Serendipity element only implemented for order 2 or 3") self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant(4 * degree) self.NODES_PER_SIDE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_lobatto_indices = self._get_node_lobatto_indices() @property def name(self) -> str: return f"Square_S{self.ORDER}_{self.family}" def _get_node_type_and_type_index(self): @cache.dynamic_func(suffix=self.name) def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 4: return SquareSerendipityShapeFunctions.VERTEX, node_index_in_elt type_index = (node_index_in_elt - 4) // 2 side = node_index_in_elt - 4 - 2 * type_index return SquareSerendipityShapeFunctions.EDGE_X + side, type_index return node_type_and_index @wp.func def side_offset_and_index(type_index: int): index_in_side = type_index // 2 side_offset = type_index - 2 * index_in_side return side_offset, index_in_side def _get_node_lobatto_indices(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def node_lobatto_indices(node_type: int, type_index: int): if node_type == SquareSerendipityShapeFunctions.VERTEX: node_i = type_index // 2 node_j = type_index - 2 * node_i return node_i * ORDER, node_j * ORDER side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index) if node_type == SquareSerendipityShapeFunctions.EDGE_X: node_i = 1 + index_in_side node_j = side_offset * ORDER else: node_j = 1 + index_in_side node_i = side_offset * ORDER return node_i, node_j return node_lobatto_indices def make_node_coords_in_element(self): LOBATTO_COORDS = self.LOBATTO_COORDS @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) node_i, node_j = self._node_lobatto_indices(node_type, type_index) return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0) return node_coords_in_element def make_node_quadrature_weight(self): ORDER = self.ORDER @cache.dynamic_func(suffix=self.name) def node_quadrature_weight( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == SquareSerendipityShapeFunctions.VERTEX: return 0.25 / float(ORDER * ORDER) return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1) return node_quadrature_weight def make_trace_node_quadrature_weight(self): LOBATTO_WEIGHT = self.LOBATTO_WEIGHT @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight( node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == SquareSerendipityShapeFunctions.VERTEX: return LOBATTO_WEIGHT[0] side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index) return LOBATTO_WEIGHT[1 + index_in_side] return trace_node_quadrature_weight def make_element_inner_weight(self): ORDER = self.ORDER ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2) DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD) @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) node_i, node_j = self._node_lobatto_indices(node_type, type_index) if node_type == SquareSerendipityShapeFunctions.VERTEX: cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0]) cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1]) w = cx * cy if ORDER == 2: w *= cx + cy - 2.0 + LOBATTO_COORDS[1] return w * LAGRANGE_SCALE[0] if ORDER == 3: w *= (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD return w * DEGREE_3_CIRCLE_SCALE w = float(1.0) if node_type == SquareSerendipityShapeFunctions.EDGE_Y: w *= wp.select(node_i == 0, coords[0], 1.0 - coords[0]) else: for k in range(ORDER_PLUS_ONE): if k != node_i: w *= coords[0] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_i] if node_type == SquareSerendipityShapeFunctions.EDGE_X: w *= wp.select(node_j == 0, coords[1], 1.0 - coords[1]) else: for k in range(ORDER_PLUS_ONE): if k != node_j: w *= coords[1] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_j] return w return element_inner_weight def make_element_inner_weight_gradient(self): ORDER = self.ORDER ORDER_PLUS_ONE = self.ORDER_PLUS_ONE LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2) DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) node_i, node_j = self._node_lobatto_indices(node_type, type_index) if node_type == SquareSerendipityShapeFunctions.VERTEX: cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0]) cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1]) gx = wp.select(node_i == 0, 1.0, -1.0) gy = wp.select(node_j == 0, 1.0, -1.0) if ORDER == 2: w = cx + cy - 2.0 + LOBATTO_COORDS[1] grad_x = cy * gx * (w + cx) grad_y = cx * gy * (w + cy) return wp.vec2(grad_x, grad_y) * LAGRANGE_SCALE[0] if ORDER == 3: w = (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD dw_dcx = 2.0 * cx - 1.0 dw_dcy = 2.0 * cy - 1.0 grad_x = cy * gx * (w + cx * dw_dcx) grad_y = cx * gy * (w + cy * dw_dcy) return wp.vec2(grad_x, grad_y) * DEGREE_3_CIRCLE_SCALE if node_type == SquareSerendipityShapeFunctions.EDGE_X: prefix_x = wp.select(node_j == 0, coords[1], 1.0 - coords[1]) else: prefix_x = LAGRANGE_SCALE[node_j] for k in range(ORDER_PLUS_ONE): if k != node_j: prefix_x *= coords[1] - LOBATTO_COORDS[k] if node_type == SquareSerendipityShapeFunctions.EDGE_Y: prefix_y = wp.select(node_i == 0, coords[0], 1.0 - coords[0]) else: prefix_y = LAGRANGE_SCALE[node_i] for k in range(ORDER_PLUS_ONE): if k != node_i: prefix_y *= coords[0] - LOBATTO_COORDS[k] if node_type == SquareSerendipityShapeFunctions.EDGE_X: grad_y = wp.select(node_j == 0, 1.0, -1.0) * prefix_y else: prefix_y *= LAGRANGE_SCALE[node_j] grad_y = float(0.0) for k in range(ORDER_PLUS_ONE): if k != node_j: delta_y = coords[1] - LOBATTO_COORDS[k] grad_y = grad_y * delta_y + prefix_y prefix_y *= delta_y if node_type == SquareSerendipityShapeFunctions.EDGE_Y: grad_x = wp.select(node_i == 0, 1.0, -1.0) * prefix_x else: prefix_x *= LAGRANGE_SCALE[node_i] grad_x = float(0.0) for k in range(ORDER_PLUS_ONE): if k != node_i: delta_x = coords[0] - LOBATTO_COORDS[k] grad_x = grad_x * delta_x + prefix_x prefix_x *= delta_x grad = wp.vec2(grad_x, grad_y) return grad return element_inner_weight_gradient def element_node_triangulation(self): if self.ORDER == 2: element_triangles = [ [0, 4, 5], [5, 4, 6], [5, 6, 1], [4, 2, 7], [4, 7, 6], [6, 7, 3], ] else: element_triangles = [ [0, 4, 5], [2, 7, 8], [3, 10, 11], [1, 9, 6], [5, 6, 9], [5, 4, 6], [8, 11, 10], [8, 7, 11], [4, 8, 10], [4, 10, 6], ] return element_triangles class SquareNonConformingPolynomialShapeFunctions: # embeds the largest equilateral triangle centered at (0.5, 0.5) into the reference square _tri_height = 0.75 _tri_side = 2.0 / math.sqrt(3.0) * _tri_height _tri_to_square = np.array([[_tri_side, _tri_side / 2.0], [0.0, _tri_height]]) _TRI_OFFSET = wp.constant(wp.vec2(0.5 - 0.5 * _tri_side, 0.5 - _tri_height / 3.0)) def __init__(self, degree: int): self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree) self.ORDER = self._tri_shape.ORDER self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT self.element_node_triangulation = self._tri_shape.element_node_triangulation @property def name(self) -> str: return f"Square_P{self.ORDER}d" def make_node_coords_in_element(self): node_coords_in_tet = self._tri_shape.make_node_coords_in_element() TRI_TO_SQUARE = wp.constant(wp.mat22(self._tri_to_square)) @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): tri_coords = node_coords_in_tet(node_index_in_elt) coords = ( TRI_TO_SQUARE * wp.vec2(tri_coords[1], tri_coords[2]) ) + SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET return Coords(coords[0], coords[1], 0.0) return node_coords_in_element def make_node_quadrature_weight(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT if self.ORDER == 2: # Intrinsic quadrature (order 2) @cache.dynamic_func(suffix=self.name) def node_quadrature_weight_quadratic( node_index_in_elt: int, ): node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_elt) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: return 0.18518521 return 0.14814811 return node_quadrature_weight_quadratic @cache.dynamic_func(suffix=self.name) def node_uniform_quadrature_weight( node_index_in_elt: int, ): return 1.0 / float(NODES_PER_ELEMENT) return node_uniform_quadrature_weight def make_trace_node_quadrature_weight(self): # Non-conforming, zero measure on sides @wp.func def zero(node_index_in_elt: int): return 0.0 return zero def make_element_inner_weight(self): tri_inner_weight = self._tri_shape.make_element_inner_weight() SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square))) @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): tri_param = SQUARE_TO_TRI * ( wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET ) tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1]) return tri_inner_weight(tri_coords, node_index_in_elt) return element_inner_weight def make_element_inner_weight_gradient(self): tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient() SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square))) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): tri_param = SQUARE_TO_TRI * ( wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET ) tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1]) grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt) return wp.transpose(SQUARE_TO_TRI) * grad return element_inner_weight_gradient
22,214
Python
35.29902
107
0.547673
NVIDIA/warp/warp/fem/space/shape/triangle_shape_function.py
import numpy as np import warp as wp from warp.fem import cache from warp.fem.types import Coords def _triangle_node_index(tx: int, ty: int, degree: int): VERTEX_NODE_COUNT = 3 SIDE_INTERIOR_NODE_COUNT = degree - 1 # Index in similar order to e.g. VTK # First vertices, then edge (counterclockwise) then interior points (recursively) if tx == 0: if ty == 0: return 0 elif ty == degree: return 2 else: edge_index = 2 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + (SIDE_INTERIOR_NODE_COUNT - ty) elif ty == 0: if tx == degree: return 1 else: edge_index = 0 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + tx - 1 elif tx + ty == degree: edge_index = 1 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + ty - 1 vertex_edge_node_count = 3 * degree return vertex_edge_node_count + _triangle_node_index(tx - 1, ty - 1, degree - 3) class Triangle2DPolynomialShapeFunctions: VERTEX = wp.constant(0) EDGE = wp.constant(1) INTERIOR = wp.constant(2) def __init__(self, degree: int): self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 2) // 2) self.NODES_PER_SIDE = wp.constant(degree + 1) triangle_coords = np.empty((self.NODES_PER_ELEMENT, 2), dtype=int) for tx in range(degree + 1): for ty in range(degree + 1 - tx): index = _triangle_node_index(tx, ty, degree) triangle_coords[index] = [tx, ty] CoordTypeVec = wp.mat(dtype=int, shape=(self.NODES_PER_ELEMENT, 2)) self.NODE_TRIANGLE_COORDS = wp.constant(CoordTypeVec(triangle_coords)) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_triangle_coordinates = self._get_node_triangle_coordinates() @property def name(self) -> str: return f"Tri_P{self.ORDER}" def _get_node_triangle_coordinates(self): NODE_TRIANGLE_COORDS = self.NODE_TRIANGLE_COORDS def node_triangle_coordinates( node_index_in_elt: int, ): return wp.vec2i(NODE_TRIANGLE_COORDS[node_index_in_elt, 0], NODE_TRIANGLE_COORDS[node_index_in_elt, 1]) return cache.get_func(node_triangle_coordinates, self.name) def _get_node_type_and_type_index(self): ORDER = self.ORDER def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 3: return Triangle2DPolynomialShapeFunctions.VERTEX, node_index_in_elt if node_index_in_elt < 3 * ORDER: return Triangle2DPolynomialShapeFunctions.EDGE, (node_index_in_elt - 3) return Triangle2DPolynomialShapeFunctions.INTERIOR, (node_index_in_elt - 3 * ORDER) return cache.get_func(node_type_and_index, self.name) def make_node_coords_in_element(self): ORDER = self.ORDER def node_coords_in_element( node_index_in_elt: int, ): tri_coords = self._node_triangle_coordinates(node_index_in_elt) cx = float(tri_coords[0]) / float(ORDER) cy = float(tri_coords[1]) / float(ORDER) return Coords(1.0 - cx - cy, cx, cy) return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): if self.ORDER == 3: # P3 intrisic quadrature vertex_weight = 1.0 / 30 edge_weight = 0.075 interior_weight = 0.45 elif self.ORDER == 2: # Order 1, but optimized quadrature weights for monomials of order <= 4 vertex_weight = 0.022335964126 edge_weight = 0.310997369207 interior_weight = 0.0 else: vertex_weight = 1.0 / self.NODES_PER_ELEMENT edge_weight = 1.0 / self.NODES_PER_ELEMENT interior_weight = 1.0 / self.NODES_PER_ELEMENT VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) INTERIOR_WEIGHT = wp.constant(interior_weight) @cache.dynamic_func(suffix=self.name) def node_quadrature_weight(node_index_in_element: int): node_type, type_index = self.node_type_and_type_index(node_index_in_element) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: return VERTEX_WEIGHT elif node_type == Triangle2DPolynomialShapeFunctions.EDGE: return EDGE_WEIGHT return INTERIOR_WEIGHT return node_quadrature_weight def make_trace_node_quadrature_weight(self): # Closed Newton-Cotes if self.ORDER == 3: vertex_weight = 1.0 / 8.0 edge_weight = 3.0 / 8.0 elif self.ORDER == 2: vertex_weight = 1.0 / 6.0 edge_weight = 2.0 / 3.0 else: vertex_weight = 1.0 / self.NODES_PER_SIDE edge_weight = 1.0 / self.NODES_PER_SIDE VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight(node_index_in_element: int): node_type, type_index = self.node_type_and_type_index(node_index_in_element) return wp.select(node_type == Triangle2DPolynomialShapeFunctions.VERTEX, EDGE_WEIGHT, VERTEX_WEIGHT) return trace_node_quadrature_weight def make_element_inner_weight(self): ORDER = self.ORDER def element_inner_weight_linear( coords: Coords, node_index_in_elt: int, ): return coords[node_index_in_elt] def element_inner_weight_quadratic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: # Vertex return coords[type_index] * (2.0 * coords[type_index] - 1.0) # Edge c1 = type_index c2 = (type_index + 1) % 3 return 4.0 * coords[c1] * coords[c2] def element_inner_weight_cubic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: # Vertex return 0.5 * coords[type_index] * (3.0 * coords[type_index] - 1.0) * (3.0 * coords[type_index] - 2.0) elif node_type == Triangle2DPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 k = type_index - 2 * edge c1 = (edge + k) % 3 c2 = (edge + 1 - k) % 3 return 4.5 * coords[c1] * coords[c2] * (3.0 * coords[c1] - 1.0) # Interior return 27.0 * coords[0] * coords[1] * coords[2] if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_cubic, self.name) return None def make_element_inner_weight_gradient(self): ORDER = self.ORDER def element_inner_weight_gradient_linear( coords: Coords, node_index_in_elt: int, ): dw_dc = wp.vec3(0.0) dw_dc[node_index_in_elt] = 1.0 dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return dw_du def element_inner_weight_gradient_quadratic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) dw_dc = wp.vec3(0.0) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = 4.0 * coords[type_index] - 1.0 else: # Edge c1 = type_index c2 = (type_index + 1) % 3 dw_dc[c1] = 4.0 * coords[c2] dw_dc[c2] = 4.0 * coords[c1] dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return dw_du def element_inner_weight_gradient_cubic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) dw_dc = wp.vec3(0.0) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = ( 0.5 * 27.0 * coords[type_index] * coords[type_index] - 9.0 * coords[type_index] + 1.0 ) elif node_type == Triangle2DPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 k = type_index - 2 * edge c1 = (edge + k) % 3 c2 = (edge + 1 - k) % 3 dw_dc[c1] = 4.5 * coords[c2] * (6.0 * coords[c1] - 1.0) dw_dc[c2] = 4.5 * coords[c1] * (3.0 * coords[c1] - 1.0) else: # Interior dw_dc = wp.vec3( 27.0 * coords[1] * coords[2], 27.0 * coords[2] * coords[0], 27.0 * coords[0] * coords[1] ) dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return dw_du if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_gradient_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_gradient_cubic, self.name) return None def element_node_triangulation(self): if self.ORDER == 1: element_triangles = [[0, 1, 2]] if self.ORDER == 2: element_triangles = [[0, 3, 5], [3, 1, 4], [2, 5, 4], [3, 4, 5]] elif self.ORDER == 3: element_triangles = [ [0, 3, 8], [3, 4, 9], [4, 1, 5], [8, 3, 9], [4, 5, 9], [8, 9, 7], [9, 5, 6], [6, 7, 9], [7, 6, 2], ] return np.array(element_triangles) class Triangle2DNonConformingPolynomialShapeFunctions: def __init__(self, degree: int): self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree) self.ORDER = self._tri_shape.ORDER self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT self.element_node_triangulation = self._tri_shape.element_node_triangulation # Coordinates (a, b, b) of embedded triangle if self.ORDER == 1: # Order 2 a = 2.0 / 3.0 elif self.ORDER == 2: # Order 2, optimized for small intrinsic quadrature error up to degree 4 a = 0.7790771484375001 elif self.ORDER == 3: # Order 3, optimized for small intrinsic quadrature error up to degree 6 a = 0.8429443359375002 else: a = 1.0 b = 0.5 * (1.0 - a) self._small_to_big = np.full((3, 3), b) + (a - b) * np.eye(3) self._tri_scale = a - b @property def name(self) -> str: return f"Tri_P{self.ORDER}d" def make_node_quadrature_weight(self): # Intrinsic quadrature -- precomputed integral of node shape functions # over element. Order equal to self.ORDER if self.ORDER == 2: vertex_weight = 0.13743348 edge_weight = 0.19589985 interior_weight = 0.0 elif self.ORDER == 3: vertex_weight = 0.07462578 edge_weight = 0.1019807 interior_weight = 0.16423881 else: vertex_weight = 1.0 / self.NODES_PER_ELEMENT edge_weight = 1.0 / self.NODES_PER_ELEMENT interior_weight = 1.0 / self.NODES_PER_ELEMENT VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) INTERIOR_WEIGHT = wp.constant(interior_weight) @cache.dynamic_func(suffix=self.name) def node_quadrature_weight(node_index_in_element: int): node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_element) if node_type == Triangle2DPolynomialShapeFunctions.VERTEX: return VERTEX_WEIGHT elif node_type == Triangle2DPolynomialShapeFunctions.EDGE: return EDGE_WEIGHT return INTERIOR_WEIGHT return node_quadrature_weight def make_trace_node_quadrature_weight(self): # Non-conforming, zero measure on sides @wp.func def zero(node_index_in_elt: int): return 0.0 return zero def make_node_coords_in_element(self): node_coords_in_tet = self._tri_shape.make_node_coords_in_element() SMALL_TO_BIG = wp.constant(wp.mat33(self._small_to_big)) @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): tri_coords = node_coords_in_tet(node_index_in_elt) return SMALL_TO_BIG * tri_coords return node_coords_in_element def make_element_inner_weight(self): tri_inner_weight = self._tri_shape.make_element_inner_weight() BIG_TO_SMALL = wp.constant(wp.mat33(np.linalg.inv(self._small_to_big))) @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): tri_coords = BIG_TO_SMALL * coords return tri_inner_weight(tri_coords, node_index_in_elt) return element_inner_weight def make_element_inner_weight_gradient(self): tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient() BIG_TO_SMALL = wp.constant(wp.mat33(np.linalg.inv(self._small_to_big))) INV_TRI_SCALE = wp.constant(1.0 / self._tri_scale) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): tri_coords = BIG_TO_SMALL * coords grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt) return INV_TRI_SCALE * grad return element_inner_weight_gradient
14,886
Python
33.62093
117
0.555757
NVIDIA/warp/warp/fem/space/shape/tet_shape_function.py
import numpy as np import warp as wp from warp.fem import cache from warp.fem.types import Coords def _tet_node_index(tx: int, ty: int, tz: int, degree: int): from .triangle_shape_function import _triangle_node_index VERTEX_NODE_COUNT = 4 EDGE_INTERIOR_NODE_COUNT = degree - 1 VERTEX_EDGE_NODE_COUNT = VERTEX_NODE_COUNT + 6 * EDGE_INTERIOR_NODE_COUNT FACE_INTERIOR_NODE_COUNT = (degree - 1) * (degree - 2) // 2 VERTEX_EDGE_FACE_NODE_COUNT = VERTEX_EDGE_NODE_COUNT + 4 * FACE_INTERIOR_NODE_COUNT # Index in similar order to e.g. VTK # First vertices, then edges (counterclockwise), then faces, then interior points (recursively) if tx == 0: if ty == 0: if tz == 0: return 0 elif tz == degree: return 3 else: # 0-3 edge edge_index = 3 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) elif tz == 0: if ty == degree: return 2 else: # 2-0 edge edge_index = 2 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (EDGE_INTERIOR_NODE_COUNT - ty) elif tz + ty == degree: # 2-3 edge edge_index = 5 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) else: # 2-3-0 face face_index = 2 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(degree - 1 - ty - tz, tz - 1, degree - 3) ) elif ty == 0: if tz == 0: if tx == degree: return 1 else: # 0-1 edge edge_index = 0 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tx - 1) elif tz + tx == degree: # 1-3 edge edge_index = 4 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) else: # 3-0-1 face face_index = 3 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, tz - 1, degree - 3) ) elif tz == 0: if tx + ty == degree: # 1-2 edge edge_index = 1 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (ty - 1) else: # 0-1-2 face face_index = 0 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, ty - 1, degree - 3) ) elif tx + ty + tz == degree: # 1-2-3 face face_index = 1 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, tz - 1, degree - 3) ) return VERTEX_EDGE_FACE_NODE_COUNT + _tet_node_index(tx - 1, ty - 1, tz - 1, degree - 4) class TetrahedronPolynomialShapeFunctions: INVALID = wp.constant(-1) VERTEX = wp.constant(0) EDGE = wp.constant(1) FACE = wp.constant(2) INTERIOR = wp.constant(3) def __init__(self, degree: int): self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 2) * (degree + 3) // 6) self.NODES_PER_SIDE = wp.constant((degree + 1) * (degree + 2) // 2) tet_coords = np.empty((self.NODES_PER_ELEMENT, 3), dtype=int) for tx in range(degree + 1): for ty in range(degree + 1 - tx): for tz in range(degree + 1 - tx - ty): index = _tet_node_index(tx, ty, tz, degree) tet_coords[index] = [tx, ty, tz] CoordTypeVec = wp.mat(dtype=int, shape=(self.NODES_PER_ELEMENT, 3)) self.NODE_TET_COORDS = wp.constant(CoordTypeVec(tet_coords)) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_tet_coordinates = self._get_node_tet_coordinates() @property def name(self) -> str: return f"Tet_P{self.ORDER}" def _get_node_tet_coordinates(self): NODE_TET_COORDS = self.NODE_TET_COORDS def node_tet_coordinates( node_index_in_elt: int, ): return wp.vec3i( NODE_TET_COORDS[node_index_in_elt, 0], NODE_TET_COORDS[node_index_in_elt, 1], NODE_TET_COORDS[node_index_in_elt, 2], ) return cache.get_func(node_tet_coordinates, self.name) def _get_node_type_and_type_index(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return TetrahedronPolynomialShapeFunctions.INVALID, TetrahedronPolynomialShapeFunctions.INVALID if node_index_in_elt < 4: return TetrahedronPolynomialShapeFunctions.VERTEX, node_index_in_elt if node_index_in_elt < (6 * ORDER - 2): return TetrahedronPolynomialShapeFunctions.EDGE, (node_index_in_elt - 4) if node_index_in_elt < (2 * ORDER * ORDER + 2): return TetrahedronPolynomialShapeFunctions.FACE, (node_index_in_elt - (6 * ORDER - 2)) return TetrahedronPolynomialShapeFunctions.INTERIOR, (node_index_in_elt - (2 * ORDER * ORDER + 2)) return cache.get_func(node_type_and_index, self.name) def make_node_coords_in_element(self): ORDER = self.ORDER def node_coords_in_element( node_index_in_elt: int, ): tet_coords = self._node_tet_coordinates(node_index_in_elt) cx = float(tet_coords[0]) / float(ORDER) cy = float(tet_coords[1]) / float(ORDER) cz = float(tet_coords[2]) / float(ORDER) return Coords(cx, cy, cz) return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): if self.ORDER == 3: # Order 1, but optimized quadrature weights for monomials of order <= 6 vertex_weight = 0.007348845656 edge_weight = 0.020688129855 face_weight = 0.180586764778 interior_weight = 0.0 else: vertex_weight = 1.0 / self.NODES_PER_ELEMENT edge_weight = 1.0 / self.NODES_PER_ELEMENT face_weight = 1.0 / self.NODES_PER_ELEMENT interior_weight = 1.0 / self.NODES_PER_ELEMENT VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) FACE_WEIGHT = wp.constant(face_weight) INTERIOR_WEIGHT = wp.constant(interior_weight) @cache.dynamic_func(suffix=self.name) def node_quadrature_weight(node_index_in_element: int): node_type, type_index = self.node_type_and_type_index(node_index_in_element) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: return VERTEX_WEIGHT elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: return EDGE_WEIGHT elif node_type == TetrahedronPolynomialShapeFunctions.FACE: return FACE_WEIGHT return INTERIOR_WEIGHT return node_quadrature_weight def make_trace_node_quadrature_weight(self): if self.ORDER == 3: # P3 intrisic quadrature vertex_weight = 1.0 / 30 edge_weight = 0.075 interior_weight = 0.45 elif self.ORDER == 2: # Order 1, but optimized quadrature weights for monomials of order <= 4 vertex_weight = 0.022335964126 edge_weight = 0.310997369207 interior_weight = 0.0 else: vertex_weight = 1.0 / self.NODES_PER_SIDE edge_weight = 1.0 / self.NODES_PER_SIDE interior_weight = 1.0 / self.NODES_PER_SIDE VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) FACE_INTERIOR_WEIGHT = wp.constant(interior_weight) @cache.dynamic_func(suffix=self.name) def trace_node_quadrature_weight(node_index_in_element: int): node_type, type_index = self.node_type_and_type_index(node_index_in_element) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: return VERTEX_WEIGHT elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: return EDGE_WEIGHT return FACE_INTERIOR_WEIGHT return trace_node_quadrature_weight def make_element_inner_weight(self): ORDER = self.ORDER def element_inner_weight_linear( coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return 0.0 tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) return tet_coords[node_index_in_elt] def element_inner_weight_quadratic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: # Vertex return tet_coords[type_index] * (2.0 * tet_coords[type_index] - 1.0) elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: # Edge if type_index < 3: c1 = type_index c2 = (type_index + 1) % 3 else: c1 = type_index - 3 c2 = 3 return 4.0 * tet_coords[c1] * tet_coords[c2] return 0.0 def element_inner_weight_cubic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: # Vertex return ( 0.5 * tet_coords[type_index] * (3.0 * tet_coords[type_index] - 1.0) * (3.0 * tet_coords[type_index] - 2.0) ) elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 edge_node = type_index - 2 * edge if edge < 3: c1 = (edge + edge_node) % 3 c2 = (edge + 1 - edge_node) % 3 elif edge_node == 0: c1 = edge - 3 c2 = 3 else: c1 = 3 c2 = edge - 3 return 4.5 * tet_coords[c1] * tet_coords[c2] * (3.0 * tet_coords[c1] - 1.0) elif node_type == TetrahedronPolynomialShapeFunctions.FACE: # Interior c1 = type_index c2 = (c1 + 1) % 4 c3 = (c1 + 2) % 4 return 27.0 * tet_coords[c1] * tet_coords[c2] * tet_coords[c3] return 0.0 if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_cubic, self.name) return None def make_element_inner_weight_gradient(self): ORDER = self.ORDER def element_inner_weight_gradient_linear( coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return wp.vec3(0.0) dw_dc = wp.vec4(0.0) dw_dc[node_index_in_elt] = 1.0 dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return dw_du def element_inner_weight_gradient_quadratic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) dw_dc = wp.vec4(0.0) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = 4.0 * tet_coords[type_index] - 1.0 elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: # Edge if type_index < 3: c1 = type_index c2 = (type_index + 1) % 3 else: c1 = type_index - 3 c2 = 3 dw_dc[c1] = 4.0 * tet_coords[c2] dw_dc[c2] = 4.0 * tet_coords[c1] dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return dw_du def element_inner_weight_gradient_cubic( coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) dw_dc = wp.vec4(0.0) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = ( 0.5 * 27.0 * tet_coords[type_index] * tet_coords[type_index] - 9.0 * tet_coords[type_index] + 1.0 ) elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 edge_node = type_index - 2 * edge if edge < 3: c1 = (edge + edge_node) % 3 c2 = (edge + 1 - edge_node) % 3 elif edge_node == 0: c1 = edge - 3 c2 = 3 else: c1 = 3 c2 = edge - 3 dw_dc[c1] = 4.5 * tet_coords[c2] * (6.0 * tet_coords[c1] - 1.0) dw_dc[c2] = 4.5 * tet_coords[c1] * (3.0 * tet_coords[c1] - 1.0) elif node_type == TetrahedronPolynomialShapeFunctions.FACE: # Interior c1 = type_index c2 = (c1 + 1) % 4 c3 = (c1 + 2) % 4 dw_dc[c1] = 27.0 * tet_coords[c2] * tet_coords[c3] dw_dc[c2] = 27.0 * tet_coords[c3] * tet_coords[c1] dw_dc[c3] = 27.0 * tet_coords[c1] * tet_coords[c2] dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return dw_du if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_gradient_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_gradient_cubic, self.name) return None def element_node_tets(self): if self.ORDER == 1: element_tets = [[0, 1, 2, 3]] if self.ORDER == 2: element_tets = [ [0, 4, 6, 7], [1, 5, 4, 8], [2, 6, 5, 9], [3, 7, 8, 9], [4, 5, 6, 8], [8, 7, 9, 6], [6, 5, 9, 8], [6, 8, 7, 4], ] elif self.ORDER == 3: raise NotImplementedError() return np.array(element_tets) class TetrahedronNonConformingPolynomialShapeFunctions: def __init__(self, degree: int): self._tet_shape = TetrahedronPolynomialShapeFunctions(degree=degree) self.ORDER = self._tet_shape.ORDER self.NODES_PER_ELEMENT = self._tet_shape.NODES_PER_ELEMENT self.element_node_tets = self._tet_shape.element_node_tets if self.ORDER == 1: self._TET_SCALE = 0.4472135955 # so v at 0.5854101966249680 (order 2) elif self.ORDER == 2: self._TET_SCALE = 0.6123779296874996 # optimized for low intrinsic quadrature error of deg 4 elif self.ORDER == 3: self._TET_SCALE = 0.7153564453124999 # optimized for low intrinsic quadrature error of deg 6 else: self._TET_SCALE = 1.0 self._TET_SCALE = wp.constant(self._TET_SCALE) self._TET_OFFSET = wp.constant((1.0 - self._TET_SCALE) * wp.vec3(0.25, 0.25, 0.25)) @property def name(self) -> str: return f"Tet_P{self.ORDER}d" def make_node_coords_in_element(self): node_coords_in_tet = self._tet_shape.make_node_coords_in_element() TET_SCALE = self._TET_SCALE TET_OFFSET = self._TET_OFFSET @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): tet_coords = node_coords_in_tet(node_index_in_elt) return TET_SCALE * tet_coords + TET_OFFSET return node_coords_in_element def make_node_quadrature_weight(self): # Intrinsic quadrature -- precomputed integral of node shape functions # over element. Order euqla to self.ORDER if self.ORDER == 2: vertex_weight = 0.07499641 edge_weight = 0.11666908 face_interior_weight = 0.0 elif self.ORDER == 3: vertex_weight = 0.03345134 edge_weight = 0.04521887 face_interior_weight = 0.08089206 else: vertex_weight = 1.0 / self.NODES_PER_ELEMENT edge_weight = 1.0 / self.NODES_PER_ELEMENT face_interior_weight = 1.0 / self.NODES_PER_ELEMENT VERTEX_WEIGHT = wp.constant(vertex_weight) EDGE_WEIGHT = wp.constant(edge_weight) FACE_INTERIOR_WEIGHT = wp.constant(face_interior_weight) @cache.dynamic_func(suffix=self.name) def node_quadrature_weight(node_index_in_element: int): node_type, type_index = self._tet_shape.node_type_and_type_index(node_index_in_element) if node_type == TetrahedronPolynomialShapeFunctions.VERTEX: return VERTEX_WEIGHT elif node_type == TetrahedronPolynomialShapeFunctions.EDGE: return EDGE_WEIGHT return FACE_INTERIOR_WEIGHT return node_quadrature_weight def make_trace_node_quadrature_weight(self): # Non-conforming, zero measure on sides @wp.func def zero(node_index_in_elt: int): return 0.0 return zero def make_element_inner_weight(self): tet_inner_weight = self._tet_shape.make_element_inner_weight() TET_SCALE = self._TET_SCALE TET_OFFSET = self._TET_OFFSET @cache.dynamic_func(suffix=self.name) def element_inner_weight( coords: Coords, node_index_in_elt: int, ): tet_coords = (coords - TET_OFFSET) / TET_SCALE return tet_inner_weight(tet_coords, node_index_in_elt) return element_inner_weight def make_element_inner_weight_gradient(self): tet_inner_weight_gradient = self._tet_shape.make_element_inner_weight_gradient() TET_SCALE = self._TET_SCALE TET_OFFSET = self._TET_OFFSET @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): tet_coords = (coords - TET_OFFSET) / TET_SCALE grad = tet_inner_weight_gradient(tet_coords, node_index_in_elt) return grad / TET_SCALE return element_inner_weight_gradient
20,400
Python
35.04417
117
0.531667
NVIDIA/warp/warp/fem/space/shape/shape_function.py
import warp as wp from warp.fem import cache from warp.fem.geometry import Element from warp.fem.types import Coords class ShapeFunction: """Interface class for defining scalar-valued shape functions over a single element""" ORDER: int """Maximum degree of the polynomials used to define the shape function""" NODES_PER_ELEMENT: int """Number of shape function nodes""" @property def name(self) -> str: """Unique name encoding all parameters defining the shape function""" raise NotImplementedError() def make_node_coords_in_element(self): """Creates a device function returning the coordinates of each node""" raise NotImplementedError() def make_node_quadrature_weight(self): """Creates a device function returning the weight of each node when use as a quadrature point over the element""" raise NotImplementedError() def make_trace_node_quadrature_weight(self): """Creates a device function returning the weight of each node when use as a quadrature point over the element boundary""" raise NotImplementedError() def make_element_inner_weight(self): """Creates a device function returning the value of the shape function associated to a given node at given coordinates""" raise NotImplementedError() def make_element_inner_weight_gradient(self): """Creates a device function returning the gradient of the shape function associated to a given node at given coordinates""" raise NotImplementedError() class ConstantShapeFunction: """Shape function that is constant over the element""" def __init__(self, element: Element, space_dimension: int): self._element = element self._dimension = space_dimension self.ORDER = wp.constant(0) self.NODES_PER_ELEMENT = wp.constant(1) coords, _ = element.instantiate_quadrature(order=0, family=None) self.COORDS = wp.constant(coords[0]) @property def name(self) -> str: return f"{self._element.__class__.__name__}{self._dimension}" def make_node_coords_in_element(self): COORDS = self.COORDS @cache.dynamic_func(suffix=self.name) def node_coords_in_element( node_index_in_elt: int, ): return COORDS return node_coords_in_element @wp.func def _node_quadrature_weight( node_index_in_elt: int, ): return 1.0 def make_node_quadrature_weight(self): return ConstantShapeFunction._node_quadrature_weight def make_trace_node_quadrature_weight(self): return ConstantShapeFunction._node_quadrature_weight @wp.func def _element_inner_weight( coords: Coords, node_index_in_elt: int, ): return 1.0 def make_element_inner_weight(self): return ConstantShapeFunction._element_inner_weight def make_element_inner_weight_gradient(self): grad_type = wp.vec(length=self._dimension, dtype=float) @cache.dynamic_func(suffix=self.name) def element_inner_weight_gradient( coords: Coords, node_index_in_elt: int, ): return grad_type(0.0) return element_inner_weight_gradient
3,278
Python
30.834951
132
0.664124
NVIDIA/warp/warp/fem/geometry/geometry.py
from typing import Any import warp as wp from warp.fem.types import Coords, ElementIndex, Sample from .element import Element class Geometry: """ Interface class for discrete geometries A geometry is composed of cells and sides. Sides may be boundary or interior (between cells). """ dimension: int = 0 def cell_count(self): """Number of cells in the geometry""" raise NotImplementedError def side_count(self): """Number of sides in the geometry""" raise NotImplementedError def boundary_side_count(self): """Number of boundary sides (sides with a single neighbour cell) in the geometry""" raise NotImplementedError def reference_cell(self) -> Element: """Prototypical element for a cell""" raise NotImplementedError def reference_side(self) -> Element: """Prototypical element for a side""" raise NotImplementedError @property def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name CellArg: wp.codegen.Struct """Structure containing arguments to be passed to device functions evaluating cell-related quantities""" SideArg: wp.codegen.Struct """Structure containing arguments to be passed to device functions evaluating side-related quantities""" SideIndexArg: wp.codegen.Struct """Structure containing arguments to be passed to device functions for indexing sides""" @staticmethod def cell_arg_value(self, device) -> "Geometry.CellArg": """Value of the arguments to be passed to cell-related device functions""" raise NotImplementedError @staticmethod def cell_position(args: "Geometry.CellArg", s: "Sample"): """Device function returning the world position of a cell sample point""" raise NotImplementedError @staticmethod def cell_deformation_gradient(args: "Geometry.CellArg", s: "Sample"): """Device function returning the transpose of the gradient of world position with respect to reference cell""" raise NotImplementedError @staticmethod def cell_inverse_deformation_gradient(args: "Geometry.CellArg", cell_index: ElementIndex, coords: Coords): """Device function returning the matrix right-transforming a gradient w.r.t. cell space to a gradient w.r.t. world space (i.e. the inverse deformation gradient) """ raise NotImplementedError @staticmethod def cell_lookup(args: "Geometry.CellArg", pos: Any): """Device function returning the cell sample point corresponding to a world position""" raise NotImplementedError @staticmethod def cell_lookup(args: "Geometry.CellArg", pos: Any, guess: "Sample"): """Device function returning the cell sample point corresponding to a world position. Can use guess for faster lookup""" raise NotImplementedError @staticmethod def cell_measure(args: "Geometry.CellArg", s: "Sample"): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError @wp.func def cell_measure_ratio(args: Any, s: Sample): return 1.0 @staticmethod def cell_normal(args: "Geometry.CellArg", s: "Sample"): """Device function returning the element normal at a sample point. For elements with the same dimension as the embedding space, this will be zero.""" raise NotImplementedError @staticmethod def side_arg_value(self, device) -> "Geometry.SideArg": """Value of the arguments to be passed to side-related device functions""" raise NotImplementedError @staticmethod def boundary_side_index(args: "Geometry.SideIndexArg", boundary_side_index: int): """Device function returning the side index corresponding to a boundary side""" raise NotImplementedError @staticmethod def side_position(args: "Geometry.SideArg", s: "Sample"): """Device function returning the side position at a sample point""" raise NotImplementedError @staticmethod def side_deformation_gradient(args: "Geometry.CellArg", s: "Sample"): """Device function returning the gradient of world position with respect to reference cell""" raise NotImplementedError @staticmethod def side_inner_inverse_deformation_gradient(args: "Geometry.CellArg", side_index: ElementIndex, coords: Coords): """Device function returning the matrix right-transforming a gradient w.r.t. inner cell space to a gradient w.r.t. world space (i.e. the inverse deformation gradient) """ raise NotImplementedError @staticmethod def side_outer_inverse_deformation_gradient(args: "Geometry.CellArg", side_index: ElementIndex, coords: Coords): """Device function returning the matrix right-transforming a gradient w.r.t. outer cell space to a gradient w.r.t. world space (i.e. the inverse deformation gradient) """ raise NotImplementedError @staticmethod def side_measure(args: "Geometry.SideArg", s: "Sample"): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError @staticmethod def side_measure_ratio(args: "Geometry.SideArg", s: "Sample"): """Device function returning the ratio of the measure of a side to that of its neighbour cells""" raise NotImplementedError @staticmethod def side_normal(args: "Geometry.SideArg", s: "Sample"): """Device function returning the element normal at a sample point""" raise NotImplementedError @staticmethod def side_inner_cell_index(args: "Geometry.SideArg", side_index: ElementIndex): """Device function returning the inner cell index for a given side""" raise NotImplementedError @staticmethod def side_outer_cell_index(args: "Geometry.SideArg", side_index: ElementIndex): """Device function returning the outer cell index for a given side""" raise NotImplementedError @staticmethod def side_inner_cell_coords(args: "Geometry.SideArg", side_index: ElementIndex, side_coords: Coords): """Device function returning the coordinates of a point on a side in the inner cell""" raise NotImplementedError @staticmethod def side_outer_cell_coords(args: "Geometry.SideArg", side_index: ElementIndex, side_coords: Coords): """Device function returning the coordinates of a point on a side in the outer cell""" raise NotImplementedError @staticmethod def side_from_cell_coords( args: "Geometry.SideArg", side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): """Device function converting coordinates on a cell to coordinates on a side, or ``OUTSIDE``""" raise NotImplementedError @staticmethod def side_to_cell_arg(side_arg: "Geometry.SideArg"): """Device function converting a side-related argument value to a cell-related argument value, for promoting trace samples to the full space""" raise NotImplementedError
7,260
Python
38.248648
150
0.689532
NVIDIA/warp/warp/fem/geometry/quadmesh_2d.py
from typing import Optional import warp as wp from warp.fem.cache import ( TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value, ) from warp.fem.types import OUTSIDE, Coords, ElementIndex, Sample, make_free_sample from .element import LinearEdge, Square from .geometry import Geometry # from .closest_point import project_on_tet_at_origin @wp.struct class Quadmesh2DCellArg: quad_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec2) # for neighbor cell lookup vertex_quad_offsets: wp.array(dtype=int) vertex_quad_indices: wp.array(dtype=int) @wp.struct class Quadmesh2DSideArg: cell_arg: Quadmesh2DCellArg edge_vertex_indices: wp.array(dtype=wp.vec2i) edge_quad_indices: wp.array(dtype=wp.vec2i) class Quadmesh2D(Geometry): """Two-dimensional quadrilateral mesh geometry""" dimension = 2 def __init__( self, quad_vertex_indices: wp.array, positions: wp.array, temporary_store: Optional[TemporaryStore] = None ): """ Constructs a two-dimensional quadrilateral mesh. Args: quad_vertex_indices: warp array of shape (num_tris, 4) containing vertex indices for each quad, in counter-clockwise order positions: warp array of shape (num_vertices, 2) containing 2d position for each vertex temporary_store: shared pool from which to allocate temporary arrays """ self.quad_vertex_indices = quad_vertex_indices self.positions = positions self._edge_vertex_indices: wp.array = None self._edge_quad_indices: wp.array = None self._vertex_quad_offsets: wp.array = None self._vertex_quad_indices: wp.array = None self._build_topology(temporary_store) def cell_count(self): return self.quad_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._edge_vertex_indices.shape[0] def boundary_side_count(self): return self._boundary_edge_indices.shape[0] def reference_cell(self) -> Square: return Square() def reference_side(self) -> LinearEdge: return LinearEdge() @property def edge_quad_indices(self) -> wp.array: return self._edge_quad_indices @property def edge_vertex_indices(self) -> wp.array: return self._edge_vertex_indices CellArg = Quadmesh2DCellArg SideArg = Quadmesh2DSideArg @wp.struct class SideIndexArg: boundary_edge_indices: wp.array(dtype=int) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.quad_vertex_indices = self.quad_vertex_indices.to(device) args.positions = self.positions.to(device) args.vertex_quad_offsets = self._vertex_quad_offsets.to(device) args.vertex_quad_indices = self._vertex_quad_indices.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): quad_idx = args.quad_vertex_indices[s.element_index] w_p = s.element_coords w_m = Coords(1.0) - s.element_coords # 0 : m m # 1 : p m # 2 : p p # 3 : m p return ( w_m[0] * w_m[1] * args.positions[quad_idx[0]] + w_p[0] * w_m[1] * args.positions[quad_idx[1]] + w_p[0] * w_p[1] * args.positions[quad_idx[2]] + w_m[0] * w_p[1] * args.positions[quad_idx[3]] ) @wp.func def cell_deformation_gradient(cell_arg: CellArg, s: Sample): """Deformation gradient at `coords`""" quad_idx = cell_arg.quad_vertex_indices[s.element_index] w_p = s.element_coords w_m = Coords(1.0) - s.element_coords return ( wp.outer(cell_arg.positions[quad_idx[0]], wp.vec2(-w_m[1], -w_m[0])) + wp.outer(cell_arg.positions[quad_idx[1]], wp.vec2(w_m[1], -w_p[0])) + wp.outer(cell_arg.positions[quad_idx[2]], wp.vec2(w_p[1], w_p[0])) + wp.outer(cell_arg.positions[quad_idx[3]], wp.vec2(-w_p[1], w_m[0])) ) @wp.func def cell_inverse_deformation_gradient(cell_arg: CellArg, s: Sample): return wp.inverse(Quadmesh2D.cell_deformation_gradient(cell_arg, s)) @wp.func def cell_measure(args: CellArg, s: Sample): return wp.abs(wp.determinant(Quadmesh2D.cell_deformation_gradient(args, s))) @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec2(0.0) @cached_arg_value def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_edge_indices = self._boundary_edge_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_edge_indices[boundary_side_index] @cached_arg_value def side_arg_value(self, device) -> CellArg: args = self.SideArg() args.cell_arg = self.cell_arg_value(device) args.edge_vertex_indices = self._edge_vertex_indices.to(device) args.edge_quad_indices = self._edge_quad_indices.to(device) return args @wp.func def side_position(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] return (1.0 - s.element_coords[0]) * args.cell_arg.positions[edge_idx[0]] + s.element_coords[ 0 ] * args.cell_arg.positions[edge_idx[1]] @wp.func def side_deformation_gradient(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] return v1 - v0 @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Quadmesh2D.side_inner_cell_index(args, s.element_index) cell_coords = Quadmesh2D.side_inner_cell_coords(args, s.element_index, s.element_coords) return Quadmesh2D.cell_inverse_deformation_gradient(args.cell_arg, make_free_sample(cell_index, cell_coords)) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Quadmesh2D.side_outer_cell_index(args, s.element_index) cell_coords = Quadmesh2D.side_outer_cell_coords(args, s.element_index, s.element_coords) return Quadmesh2D.cell_inverse_deformation_gradient(args.cell_arg, make_free_sample(cell_index, cell_coords)) @wp.func def side_measure(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] return wp.length(v1 - v0) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Quadmesh2D.side_inner_cell_index(args, s.element_index) outer = Quadmesh2D.side_outer_cell_index(args, s.element_index) inner_coords = Quadmesh2D.side_inner_cell_coords(args, s.element_index, s.element_coords) outer_coords = Quadmesh2D.side_outer_cell_coords(args, s.element_index, s.element_coords) return Quadmesh2D.side_measure(args, s) / wp.min( Quadmesh2D.cell_measure(args.cell_arg, make_free_sample(inner, inner_coords)), Quadmesh2D.cell_measure(args.cell_arg, make_free_sample(outer, outer_coords)), ) @wp.func def side_normal(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] e = v1 - v0 return wp.normalize(wp.vec2(-e[1], e[0])) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_quad_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_quad_indices[side_index][1] @wp.func def edge_to_quad_coords(args: SideArg, side_index: ElementIndex, quad_index: ElementIndex, side_coords: Coords): edge_vidx = args.edge_vertex_indices[side_index] quad_vidx = args.cell_arg.quad_vertex_indices[quad_index] vs = edge_vidx[0] ve = edge_vidx[1] s = side_coords[0] if vs == quad_vidx[0]: return wp.select(ve == quad_vidx[1], Coords(0.0, s, 0.0), Coords(s, 0.0, 0.0)) elif vs == quad_vidx[1]: return wp.select(ve == quad_vidx[2], Coords(1.0 - s, 0.0, 0.0), Coords(1.0, s, 0.0)) elif vs == quad_vidx[2]: return wp.select(ve == quad_vidx[3], Coords(1.0, 1.0 - s, 0.0), Coords(1.0 - s, 1.0, 0.0)) return wp.select(ve == quad_vidx[0], Coords(s, 1.0, 0.0), Coords(0.0, 1.0 - s, 0.0)) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): inner_cell_index = Quadmesh2D.side_inner_cell_index(args, side_index) return Quadmesh2D.edge_to_quad_coords(args, side_index, inner_cell_index, side_coords) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): outer_cell_index = Quadmesh2D.side_outer_cell_index(args, side_index) return Quadmesh2D.edge_to_quad_coords(args, side_index, outer_cell_index, side_coords) @wp.func def side_from_cell_coords( args: SideArg, side_index: ElementIndex, quad_index: ElementIndex, quad_coords: Coords, ): edge_vidx = args.edge_vertex_indices[side_index] quad_vidx = args.cell_arg.quad_vertex_indices[quad_index] vs = edge_vidx[0] ve = edge_vidx[1] cx = quad_coords[0] cy = quad_coords[1] if vs == quad_vidx[0]: oc = wp.select(ve == quad_vidx[1], cx, cy) ec = wp.select(ve == quad_vidx[1], cy, cx) elif vs == quad_vidx[1]: oc = wp.select(ve == quad_vidx[2], cy, 1.0 - cx) ec = wp.select(ve == quad_vidx[2], 1.0 - cx, cy) elif vs == quad_vidx[2]: oc = wp.select(ve == quad_vidx[3], 1.0 - cx, 1.0 - cy) ec = wp.select(ve == quad_vidx[3], 1.0 - cy, 1.0 - cx) else: oc = wp.select(ve == quad_vidx[0], 1.0 - cy, cx) ec = wp.select(ve == quad_vidx[0], cx, 1.0 - cy) return wp.select(oc == 0.0, Coords(OUTSIDE), Coords(ec, 0.0, 0.0)) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg def _build_topology(self, temporary_store: TemporaryStore): from warp.fem.utils import compress_node_indices, masked_indices from warp.utils import array_scan device = self.quad_vertex_indices.device vertex_quad_offsets, vertex_quad_indices, _, __ = compress_node_indices( self.vertex_count(), self.quad_vertex_indices, temporary_store=temporary_store ) self._vertex_quad_offsets = vertex_quad_offsets.detach() self._vertex_quad_indices = vertex_quad_indices.detach() vertex_start_edge_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_edge_count.array.zero_() vertex_start_edge_offsets = borrow_temporary_like(vertex_start_edge_count, temporary_store=temporary_store) vertex_edge_ends = borrow_temporary(temporary_store, dtype=int, device=device, shape=(4 * self.cell_count())) vertex_edge_quads = borrow_temporary( temporary_store, dtype=int, device=device, shape=(4 * self.cell_count(), 2) ) # Count face edges starting at each vertex wp.launch( kernel=Quadmesh2D._count_starting_edges_kernel, device=device, dim=self.cell_count(), inputs=[self.quad_vertex_indices, vertex_start_edge_count.array], ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_start_edge_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=Quadmesh2D._count_unique_starting_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_quad_offsets, self._vertex_quad_indices, self.quad_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, vertex_edge_quads.array, ], ) vertex_unique_edge_offsets = borrow_temporary_like(vertex_start_edge_offsets, temporary_store=temporary_store) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_unique_edge_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=edge_count.array, src=vertex_unique_edge_offsets.array, src_offset=self.vertex_count() - 1, count=1 ) wp.synchronize_stream(wp.get_stream(device)) edge_count = int(edge_count.array.numpy()[0]) else: edge_count = int(vertex_unique_edge_offsets.array.numpy()[self.vertex_count() - 1]) self._edge_vertex_indices = wp.empty(shape=(edge_count,), dtype=wp.vec2i, device=device) self._edge_quad_indices = wp.empty(shape=(edge_count,), dtype=wp.vec2i, device=device) boundary_mask = borrow_temporary(temporary_store=temporary_store, shape=(edge_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Quadmesh2D._compress_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_edge_offsets.array, vertex_unique_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, vertex_edge_quads.array, self._edge_vertex_indices, self._edge_quad_indices, boundary_mask.array, ], ) vertex_start_edge_offsets.release() vertex_unique_edge_offsets.release() vertex_unique_edge_count.release() vertex_edge_ends.release() vertex_edge_quads.release() # Flip normals if necessary wp.launch( kernel=Quadmesh2D._flip_edge_normals, device=device, dim=self.side_count(), inputs=[self._edge_vertex_indices, self._edge_quad_indices, self.quad_vertex_indices, self.positions], ) boundary_edge_indices, _ = masked_indices(boundary_mask.array, temporary_store=temporary_store) self._boundary_edge_indices = boundary_edge_indices.detach() boundary_mask.release() @wp.kernel def _count_starting_edges_kernel( quad_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(4): v0 = quad_vertex_indices[t, k] v1 = quad_vertex_indices[t, (k + 1) % 4] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_quad_offsets: wp.array(dtype=int), vertex_quad_indices: wp.array(dtype=int), quad_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), edge_quads: wp.array2d(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] quad_beg = vertex_quad_offsets[v] quad_end = vertex_quad_offsets[v + 1] edge_cur = edge_beg for quad in range(quad_beg, quad_end): q = vertex_quad_indices[quad] for k in range(4): v0 = quad_vertex_indices[q, k] v1 = quad_vertex_indices[q, (k + 1) % 4] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) # Check if other_v has been seen seen_idx = Quadmesh2D._find(other_v, edge_ends, edge_beg, edge_cur) if seen_idx == -1: edge_ends[edge_cur] = other_v edge_quads[edge_cur, 0] = q edge_quads[edge_cur, 1] = q edge_cur += 1 else: edge_quads[seen_idx, 1] = q vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), uncompressed_edge_quads: wp.array2d(dtype=int), edge_vertex_indices: wp.array(dtype=wp.vec2i), edge_quad_indices: wp.array(dtype=wp.vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] for e in range(unique_count): src_index = start_beg + e edge_index = unique_beg + e edge_vertex_indices[edge_index] = wp.vec2i(v, uncompressed_edge_ends[src_index]) q0 = uncompressed_edge_quads[src_index, 0] q1 = uncompressed_edge_quads[src_index, 1] edge_quad_indices[edge_index] = wp.vec2i(q0, q1) if q0 == q1: boundary_mask[edge_index] = 1 else: boundary_mask[edge_index] = 0 @wp.kernel def _flip_edge_normals( edge_vertex_indices: wp.array(dtype=wp.vec2i), edge_quad_indices: wp.array(dtype=wp.vec2i), quad_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec2), ): e = wp.tid() tri = edge_quad_indices[e][0] quad_vidx = quad_vertex_indices[tri] edge_vidx = edge_vertex_indices[e] quad_centroid = ( positions[quad_vidx[0]] + positions[quad_vidx[1]] + positions[quad_vidx[2]] + positions[quad_vidx[3]] ) / 4.0 v0 = positions[edge_vidx[0]] v1 = positions[edge_vidx[1]] edge_center = 0.5 * (v1 + v0) edge_vec = v1 - v0 edge_normal = wp.vec2(-edge_vec[1], edge_vec[0]) # if edge normal points toward first triangle centroid, flip indices if wp.dot(quad_centroid - edge_center, edge_normal) > 0.0: edge_vertex_indices[e] = wp.vec2i(edge_vidx[1], edge_vidx[0])
19,553
Python
35.686679
134
0.602823
NVIDIA/warp/warp/fem/geometry/closest_point.py
from typing import Any import warp as wp from warp.fem.types import Coords @wp.func def project_on_seg_at_origin(q: Any, seg: Any, len_sq: float): s = wp.clamp(wp.dot(q, seg) / len_sq, 0.0, 1.0) return wp.length_sq(q - s * seg), s @wp.func def project_on_tri_at_origin(q: Any, e1: Any, e2: Any): e1e1 = wp.dot(e1, e1) e1e2 = wp.dot(e1, e2) e2e2 = wp.dot(e2, e2) det = e1e1 * e2e2 - e1e2 * e1e2 if det > e1e1 * e2e2 * 1.0e-6: e1p = wp.dot(e1, q) e2p = wp.dot(e2, q) s = (e2e2 * e1p - e1e2 * e2p) / det t = (e1e1 * e2p - e1e2 * e1p) / det if s >= 0.0 and t >= 0.0 and s + t <= 1.0: # point inside triangle (distance can be non-zero in 3D case) return wp.length_sq(q - s * e1 - t * e2), Coords(1.0 - s - t, s, t) d1, s1 = project_on_seg_at_origin(q, e1, e1e1) d2, s2 = project_on_seg_at_origin(q, e2, e2e2) d12, s12 = project_on_seg_at_origin(q - e1, e2 - e1, wp.length_sq(e2 - e1)) if d1 <= d2: if d1 <= d12: return d1, Coords(1.0 - s1, s1, 0.0) elif d2 <= d12: return d2, Coords(1.0 - s2, 0.0, s2) return d12, Coords(0.0, 1.0 - s12, s12) @wp.func def project_on_tet_at_origin(q: wp.vec3, e1: wp.vec3, e2: wp.vec3, e3: wp.vec3): mat = wp.inverse(wp.mat33(e1, e2, e3)) coords = mat * q if wp.min(coords) >= 0.0 and coords[0] + coords[1] + coords[2] <= 1.0: return 0.0, coords # Not inside tet, compare closest point on each tri d12, s12 = project_on_tri_at_origin(q, e1, e2) d23, s23 = project_on_tri_at_origin(q, e2, e3) d31, s31 = project_on_tri_at_origin(q, e3, e1) d123, s123 = project_on_tri_at_origin(q - e1, e2 - e1, e3 - e1) dmin = wp.min(wp.vec4(d12, d23, d31, d123)) if dmin == d12: return dmin, Coords(s12[1], s12[2], 0.0) elif dmin == d23: return dmin, Coords(0.0, s23[1], s23[2]) elif dmin == d31: return dmin, Coords(s31[2], 0.0, s31[1]) else: return dmin, s123
2,028
Python
27.985714
80
0.54783
NVIDIA/warp/warp/fem/geometry/partition.py
from typing import Any import warp as wp from warp.fem.cache import TemporaryStore, borrow_temporary, cached_arg_value from warp.fem.types import NULL_ELEMENT_INDEX, ElementIndex from warp.fem.utils import masked_indices from .geometry import Geometry wp.set_module_options({"enable_backward": False}) class GeometryPartition: """Base class for geometry partitions, i.e. subset of cells and sides""" class CellArg: pass class SideArg: pass def __init__(self, geometry: Geometry): self.geometry = geometry def cell_count(self) -> int: """Number of cells that are 'owned' by this partition""" raise NotImplementedError() def side_count(self) -> int: """Number of sides that are 'owned' by this partition""" raise NotImplementedError() def boundary_side_count(self) -> int: """Number of geo-boundary sides that are 'owned' by this partition""" raise NotImplementedError() def frontier_side_count(self) -> int: """Number of sides with neighbors owned by this and another partition""" raise NotImplementedError() @property def name(self) -> str: return f"{self.geometry.name}_{self.__class__.__name__}" def __str__(self) -> str: return self.name def cell_arg_value(self, device): raise NotImplementedError() def side_arg_value(self, device): raise NotImplementedError() @staticmethod def cell_index(args: CellArg, partition_cell_index: int): """Index in the geometry of a partition cell""" raise NotImplementedError() @staticmethod def partition_cell_index(args: CellArg, cell_index: int): """Index of a geometry cell in the partition (or ``NULL_ELEMENT_INDEX``)""" raise NotImplementedError() @staticmethod def side_index(args: SideArg, partition_side_index: int): """Partition side to side index""" raise NotImplementedError() @staticmethod def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" raise NotImplementedError() @staticmethod def frontier_side_index(args: SideArg, frontier_side_index: int): """Frontier side to side index""" raise NotImplementedError() class WholeGeometryPartition(GeometryPartition): """Trivial (NOP) partition""" def __init__( self, geometry: Geometry, ): super().__init__(geometry) self.SideArg = geometry.SideIndexArg self.side_arg_value = geometry.side_index_arg_value self.cell_index = WholeGeometryPartition._identity_element_index self.partition_cell_index = WholeGeometryPartition._identity_element_index self.side_index = WholeGeometryPartition._identity_element_index self.boundary_side_index = geometry.boundary_side_index self.frontier_side_index = WholeGeometryPartition._identity_element_index def __eq__(self, other: GeometryPartition) -> bool: # Ensures that two whole partition instances of the same geometry are considered equal return isinstance(other, WholeGeometryPartition) and self.geometry == other.geometry def cell_count(self) -> int: return self.geometry.cell_count() def side_count(self) -> int: return self.geometry.side_count() def boundary_side_count(self) -> int: return self.geometry.boundary_side_count() def frontier_side_count(self) -> int: return 0 @wp.struct class CellArg: pass def cell_arg_value(self, device): arg = WholeGeometryPartition.CellArg() return arg @wp.func def _identity_element_index(args: Any, idx: ElementIndex): return idx @property def name(self) -> str: return self.geometry.name class CellBasedGeometryPartition(GeometryPartition): """Geometry partition based on a subset of cells. Interior, boundary and frontier sides are automatically categorized.""" def __init__( self, geometry: Geometry, device=None, ): super().__init__(geometry) @wp.struct class SideArg: partition_side_indices: wp.array(dtype=int) boundary_side_indices: wp.array(dtype=int) frontier_side_indices: wp.array(dtype=int) def side_count(self) -> int: return self._partition_side_indices.array.shape[0] def boundary_side_count(self) -> int: return self._boundary_side_indices.array.shape[0] def frontier_side_count(self) -> int: return self._frontier_side_indices.array.shape[0] @cached_arg_value def side_arg_value(self, device): arg = LinearGeometryPartition.SideArg() arg.partition_side_indices = self._partition_side_indices.array.to(device) arg.boundary_side_indices = self._boundary_side_indices.array.to(device) arg.frontier_side_indices = self._frontier_side_indices.array.to(device) return arg @wp.func def side_index(args: SideArg, partition_side_index: int): """partition side to side index""" return args.partition_side_indices[partition_side_index] @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_side_indices[boundary_side_index] @wp.func def frontier_side_index(args: SideArg, frontier_side_index: int): """Frontier side to side index""" return args.frontier_side_indices[frontier_side_index] def compute_side_indices_from_cells( self, cell_arg_value: Any, cell_inclusion_test_func: wp.Function, device, temporary_store: TemporaryStore = None ): from warp.fem import cache cell_arg_type = next(iter(cell_inclusion_test_func.input_types.values())) @cache.dynamic_kernel(suffix=f"{self.geometry.name}_{cell_inclusion_test_func.key}") def count_sides( geo_arg: self.geometry.SideArg, cell_arg_value: cell_arg_type, partition_side_mask: wp.array(dtype=int), boundary_side_mask: wp.array(dtype=int), frontier_side_mask: wp.array(dtype=int), ): side_index = wp.tid() inner_cell_index = self.geometry.side_inner_cell_index(geo_arg, side_index) outer_cell_index = self.geometry.side_outer_cell_index(geo_arg, side_index) inner_in = cell_inclusion_test_func(cell_arg_value, inner_cell_index) outer_in = cell_inclusion_test_func(cell_arg_value, outer_cell_index) if inner_in: # Inner neighbor in partition; count as partition side partition_side_mask[side_index] = 1 # Inner and outer element as the same -- this is a boundary side if inner_cell_index == outer_cell_index: boundary_side_mask[side_index] = 1 if inner_in != outer_in: # Exactly one neighbor in partition; count as frontier side frontier_side_mask[side_index] = 1 partition_side_mask = borrow_temporary( temporary_store, shape=(self.geometry.side_count(),), dtype=int, device=device, ) boundary_side_mask = borrow_temporary( temporary_store, shape=(self.geometry.side_count(),), dtype=int, device=device, ) frontier_side_mask = borrow_temporary( temporary_store, shape=(self.geometry.side_count(),), dtype=int, device=device, ) partition_side_mask.array.zero_() boundary_side_mask.array.zero_() frontier_side_mask.array.zero_() wp.launch( dim=partition_side_mask.array.shape[0], kernel=count_sides, inputs=[ self.geometry.side_arg_value(device), cell_arg_value, partition_side_mask.array, boundary_side_mask.array, frontier_side_mask.array, ], device=device, ) # Convert counts to indices self._partition_side_indices, _ = masked_indices(partition_side_mask.array, temporary_store=temporary_store) self._boundary_side_indices, _ = masked_indices(boundary_side_mask.array, temporary_store=temporary_store) self._frontier_side_indices, _ = masked_indices(frontier_side_mask.array, temporary_store=temporary_store) partition_side_mask.release() boundary_side_mask.release() frontier_side_mask.release() class LinearGeometryPartition(CellBasedGeometryPartition): def __init__( self, geometry: Geometry, partition_rank: int, partition_count: int, device=None, temporary_store: TemporaryStore = None, ): """Creates a geometry partition by uniformly partionning cell indices Args: geometry: the geometry to partition partition_rank: the index of the partition being created partition_count: the number of partitions that will be created over the geometry device: Warp device on which to perform and store computations """ super().__init__(geometry) total_cell_count = geometry.cell_count() cells_per_partition = (total_cell_count + partition_count - 1) // partition_count self.cell_begin = cells_per_partition * partition_rank self.cell_end = min(self.cell_begin + cells_per_partition, total_cell_count) super().compute_side_indices_from_cells( self.cell_arg_value(device), LinearGeometryPartition._cell_inclusion_test, device, temporary_store=temporary_store, ) def cell_count(self) -> int: return self.cell_end - self.cell_begin @wp.struct class CellArg: cell_begin: int cell_end: int def cell_arg_value(self, device): arg = LinearGeometryPartition.CellArg() arg.cell_begin = self.cell_begin arg.cell_end = self.cell_end return arg @wp.func def cell_index(args: CellArg, partition_cell_index: int): """Partition cell to cell index""" return args.cell_begin + partition_cell_index @wp.func def partition_cell_index(args: CellArg, cell_index: int): """Partition cell to cell index""" if cell_index > args.cell_end: return NULL_ELEMENT_INDEX partition_cell_index = cell_index - args.cell_begin if partition_cell_index < 0: return NULL_ELEMENT_INDEX return partition_cell_index @wp.func def _cell_inclusion_test(arg: CellArg, cell_index: int): return cell_index >= arg.cell_begin and cell_index < arg.cell_end class ExplicitGeometryPartition(CellBasedGeometryPartition): def __init__(self, geometry: Geometry, cell_mask: "wp.array(dtype=int)", temporary_store: TemporaryStore = None): """Creates a geometry partition by uniformly partionning cell indices Args: geometry: the geometry to partition cell_mask: warp array of length ``geometry.cell_count()`` indicating which cells are selected. Array values must be either ``1`` (selected) or ``0`` (not selected). """ super().__init__(geometry) self._cell_mask = cell_mask self._cells, self._partition_cells = masked_indices(self._cell_mask, temporary_store=temporary_store) super().compute_side_indices_from_cells( self._cell_mask, ExplicitGeometryPartition._cell_inclusion_test, self._cell_mask.device, temporary_store=temporary_store, ) def cell_count(self) -> int: return self._cells.array.shape[0] @wp.struct class CellArg: cell_index: wp.array(dtype=int) partition_cell_index: wp.array(dtype=int) @cached_arg_value def cell_arg_value(self, device): arg = ExplicitGeometryPartition.CellArg() arg.cell_index = self._cells.array.to(device) arg.partition_cell_index = self._partition_cells.array.to(device) return arg @wp.func def cell_index(args: CellArg, partition_cell_index: int): return args.cell_index[partition_cell_index] @wp.func def partition_cell_index(args: CellArg, cell_index: int): return args.partition_cell_index[cell_index] @wp.func def _cell_inclusion_test(mask: wp.array(dtype=int), cell_index: int): return mask[cell_index] > 0
12,705
Python
32.882667
176
0.632271
NVIDIA/warp/warp/fem/geometry/grid_3d.py
from typing import Any, Optional import warp as wp from warp.fem.cache import cached_arg_value from warp.fem.types import OUTSIDE, Coords, ElementIndex, Sample, make_free_sample from .element import Cube, Square from .geometry import Geometry @wp.struct class Grid3DCellArg: res: wp.vec3i cell_size: wp.vec3 origin: wp.vec3 _mat32 = wp.mat(shape=(3, 2), dtype=float) class Grid3D(Geometry): """Three-dimensional regular grid geometry""" dimension = 3 Permutation = wp.types.matrix(shape=(3, 3), dtype=int) LOC_TO_WORLD = wp.constant(Permutation(0, 1, 2, 1, 2, 0, 2, 0, 1)) WORLD_TO_LOC = wp.constant(Permutation(0, 1, 2, 2, 0, 1, 1, 2, 0)) def __init__(self, res: wp.vec3i, bounds_lo: Optional[wp.vec3] = None, bounds_hi: Optional[wp.vec3] = None): """Constructs a dense 3D grid Args: res: Resolution of the grid along each dimension bounds_lo: Position of the lower bound of the axis-aligned grid bounds_up: Position of the upper bound of the axis-aligned grid """ if bounds_lo is None: bounds_lo = wp.vec3(0.0) if bounds_hi is None: bounds_hi = wp.vec3(1.0) self.bounds_lo = bounds_lo self.bounds_hi = bounds_hi self._res = res @property def extents(self) -> wp.vec3: # Avoid using native sub due to higher over of calling builtins from Python return wp.vec3( self.bounds_hi[0] - self.bounds_lo[0], self.bounds_hi[1] - self.bounds_lo[1], self.bounds_hi[2] - self.bounds_lo[2], ) @property def cell_size(self) -> wp.vec3: ex = self.extents return wp.vec3( ex[0] / self.res[0], ex[1] / self.res[1], ex[2] / self.res[2], ) def cell_count(self): return self.res[0] * self.res[1] * self.res[2] def vertex_count(self): return (self.res[0] + 1) * (self.res[1] + 1) * (self.res[2] + 1) def side_count(self): return ( (self.res[0] + 1) * (self.res[1]) * (self.res[2]) + (self.res[0]) * (self.res[1] + 1) * (self.res[2]) + (self.res[0]) * (self.res[1]) * (self.res[2] + 1) ) def edge_count(self): return ( (self.res[0] + 1) * (self.res[1] + 1) * (self.res[2]) + (self.res[0]) * (self.res[1] + 1) * (self.res[2] + 1) + (self.res[0] + 1) * (self.res[1]) * (self.res[2] + 1) ) def boundary_side_count(self): return 2 * (self.res[1]) * (self.res[2]) + (self.res[0]) * 2 * (self.res[2]) + (self.res[0]) * (self.res[1]) * 2 def reference_cell(self) -> Cube: return Cube() def reference_side(self) -> Square: return Square() @property def res(self): return self._res @property def origin(self): return self.bounds_lo @property def strides(self): return wp.vec3i(self.res[1] * self.res[2], self.res[2], 1) # Utility device functions CellArg = Grid3DCellArg Cell = wp.vec3i @wp.func def _to_3d_index(strides: wp.vec2i, index: int): x = index // strides[0] y = (index - strides[0] * x) // strides[1] z = index - strides[0] * x - strides[1] * y return wp.vec3i(x, y, z) @wp.func def _from_3d_index(strides: wp.vec2i, index: wp.vec3i): return strides[0] * index[0] + strides[1] * index[1] + index[2] @wp.func def cell_index(res: wp.vec3i, cell: Cell): strides = wp.vec2i(res[1] * res[2], res[2]) return Grid3D._from_3d_index(strides, cell) @wp.func def get_cell(res: wp.vec3i, cell_index: ElementIndex): strides = wp.vec2i(res[1] * res[2], res[2]) return Grid3D._to_3d_index(strides, cell_index) @wp.struct class Side: axis: int # normal origin: wp.vec3i # index of vertex at corner (0,0,0) @wp.struct class SideArg: cell_count: int axis_offsets: wp.vec3i cell_arg: Grid3DCellArg SideIndexArg = SideArg @wp.func def _world_to_local(axis: int, vec: Any): return type(vec)( vec[Grid3D.LOC_TO_WORLD[axis, 0]], vec[Grid3D.LOC_TO_WORLD[axis, 1]], vec[Grid3D.LOC_TO_WORLD[axis, 2]], ) @wp.func def _local_to_world(axis: int, vec: Any): return type(vec)( vec[Grid3D.WORLD_TO_LOC[axis, 0]], vec[Grid3D.WORLD_TO_LOC[axis, 1]], vec[Grid3D.WORLD_TO_LOC[axis, 2]], ) @wp.func def side_index(arg: SideArg, side: Side): alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: # Upper-boundary side longitude = side.origin[1] latitude = side.origin[2] latitude_res = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[side.axis, 2]] lat_long = latitude_res * longitude + latitude return 3 * arg.cell_count + arg.axis_offsets[side.axis] + lat_long cell_index = Grid3D.cell_index(arg.cell_arg.res, Grid3D._local_to_world(side.axis, side.origin)) return side.axis * arg.cell_count + cell_index @wp.func def get_side(arg: SideArg, side_index: ElementIndex): if side_index < 3 * arg.cell_count: axis = side_index // arg.cell_count cell_index = side_index - axis * arg.cell_count origin = Grid3D._world_to_local(axis, Grid3D.get_cell(arg.cell_arg.res, cell_index)) return Grid3D.Side(axis, origin) axis_side_index = side_index - 3 * arg.cell_count if axis_side_index < arg.axis_offsets[1]: axis = 0 elif axis_side_index < arg.axis_offsets[2]: axis = 1 else: axis = 2 altitude = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 0]] lat_long = axis_side_index - arg.axis_offsets[axis] latitude_res = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 2]] longitude = lat_long // latitude_res latitude = lat_long - longitude * latitude_res origin_loc = wp.vec3i(altitude, longitude, latitude) return Grid3D.Side(axis, origin_loc) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.res = self.res args.origin = self.bounds_lo args.cell_size = self.cell_size return args @wp.func def cell_position(args: CellArg, s: Sample): cell = Grid3D.get_cell(args.res, s.element_index) return ( wp.vec3( (float(cell[0]) + s.element_coords[0]) * args.cell_size[0], (float(cell[1]) + s.element_coords[1]) * args.cell_size[1], (float(cell[2]) + s.element_coords[2]) * args.cell_size[2], ) + args.origin ) @wp.func def cell_deformation_gradient(args: CellArg, s: Sample): return wp.diag(args.cell_size) @wp.func def cell_inverse_deformation_gradient(args: CellArg, s: Sample): return wp.diag(wp.cw_div(wp.vec3(1.0), args.cell_size)) @wp.func def cell_lookup(args: CellArg, pos: wp.vec3): loc_pos = wp.cw_div(pos - args.origin, args.cell_size) x = wp.clamp(loc_pos[0], 0.0, float(args.res[0])) y = wp.clamp(loc_pos[1], 0.0, float(args.res[1])) z = wp.clamp(loc_pos[2], 0.0, float(args.res[2])) x_cell = wp.min(wp.floor(x), float(args.res[0]) - 1.0) y_cell = wp.min(wp.floor(y), float(args.res[1]) - 1.0) z_cell = wp.min(wp.floor(z), float(args.res[2]) - 1.0) coords = Coords(x - x_cell, y - y_cell, z - z_cell) cell_index = Grid3D.cell_index(args.res, Grid3D.Cell(int(x_cell), int(y_cell), int(z_cell))) return make_free_sample(cell_index, coords) @wp.func def cell_lookup(args: CellArg, pos: wp.vec3, guess: Sample): return Grid3D.cell_lookup(args, pos) @wp.func def cell_measure(args: CellArg, s: Sample): return args.cell_size[0] * args.cell_size[1] * args.cell_size[2] @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) @cached_arg_value def side_arg_value(self, device) -> SideArg: args = self.SideArg() axis_dims = wp.vec3i( self.res[1] * self.res[2], self.res[2] * self.res[0], self.res[0] * self.res[1], ) args.axis_offsets = wp.vec3i( 0, axis_dims[0], axis_dims[0] + axis_dims[1], ) args.cell_count = self.cell_count() args.cell_arg = self.cell_arg_value(device) return args def side_index_arg_value(self, device) -> SideIndexArg: return self.side_arg_value(device) @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" axis_side_index = boundary_side_index // 2 border = boundary_side_index - 2 * axis_side_index if axis_side_index < args.axis_offsets[1]: axis = 0 elif axis_side_index < args.axis_offsets[2]: axis = 1 else: axis = 2 lat_long = axis_side_index - args.axis_offsets[axis] latitude_res = args.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 2]] longitude = lat_long // latitude_res latitude = lat_long - longitude * latitude_res altitude = border * args.cell_arg.res[axis] side = Grid3D.Side(axis, wp.vec3i(altitude, longitude, latitude)) return Grid3D.side_index(args, side) @wp.func def side_position(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) coord0 = wp.select(side.origin[0] == 0, s.element_coords[0], 1.0 - s.element_coords[0]) local_pos = wp.vec3( float(side.origin[0]), float(side.origin[1]) + coord0, float(side.origin[2]) + s.element_coords[1], ) pos = args.cell_arg.origin + wp.cw_mul(Grid3D._local_to_world(side.axis, local_pos), args.cell_arg.cell_size) return pos @wp.func def side_deformation_gradient(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) sign = wp.select(side.origin[0] == 0, 1.0, -1.0) return _mat32( wp.cw_mul(Grid3D._local_to_world(side.axis, wp.vec3(0.0, sign, 0.0)), args.cell_arg.cell_size), wp.cw_mul(Grid3D._local_to_world(side.axis, wp.vec3(0.0, 0.0, 1.0)), args.cell_arg.cell_size), ) @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): return Grid3D.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): return Grid3D.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_measure(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) long_axis = Grid3D.LOC_TO_WORLD[side.axis, 1] lat_axis = Grid3D.LOC_TO_WORLD[side.axis, 2] return args.cell_arg.cell_size[long_axis] * args.cell_arg.cell_size[lat_axis] @wp.func def side_measure_ratio(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] return 1.0 / args.cell_arg.cell_size[alt_axis] @wp.func def side_normal(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) sign = wp.select(side.origin[0] == 0, 1.0, -1.0) local_n = wp.vec3(sign, 0.0, 0.0) return Grid3D._local_to_world(side.axis, local_n) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid3D.get_side(arg, side_index) inner_alt = wp.select(side.origin[0] == 0, side.origin[0] - 1, 0) inner_origin = wp.vec3i(inner_alt, side.origin[1], side.origin[2]) cell = Grid3D._local_to_world(side.axis, inner_origin) return Grid3D.cell_index(arg.cell_arg.res, cell) @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid3D.get_side(arg, side_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] outer_alt = wp.select( side.origin[0] == arg.cell_arg.res[alt_axis], side.origin[0], arg.cell_arg.res[alt_axis] - 1 ) outer_origin = wp.vec3i(outer_alt, side.origin[1], side.origin[2]) cell = Grid3D._local_to_world(side.axis, outer_origin) return Grid3D.cell_index(arg.cell_arg.res, cell) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): side = Grid3D.get_side(args, side_index) inner_alt = wp.select(side.origin[0] == 0, 1.0, 0.0) side_coord0 = wp.select(side.origin[0] == 0, side_coords[0], 1.0 - side_coords[0]) return Grid3D._local_to_world(side.axis, wp.vec3(inner_alt, side_coord0, side_coords[1])) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): side = Grid3D.get_side(args, side_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] outer_alt = wp.select(side.origin[0] == args.cell_arg.res[alt_axis], 0.0, 1.0) side_coord0 = wp.select(side.origin[0] == 0, side_coords[0], 1.0 - side_coords[0]) return Grid3D._local_to_world(side.axis, wp.vec3(outer_alt, side_coord0, side_coords[1])) @wp.func def side_from_cell_coords( args: SideArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): side = Grid3D.get_side(args, side_index) cell = Grid3D.get_cell(args.cell_arg.res, element_index) if float(side.origin[0] - cell[side.axis]) == element_coords[side.axis]: long_axis = Grid3D.LOC_TO_WORLD[side.axis, 1] lat_axis = Grid3D.LOC_TO_WORLD[side.axis, 2] long_coord = element_coords[long_axis] long_coord = wp.select(side.origin[0] == 0, long_coord, 1.0 - long_coord) return Coords(long_coord, element_coords[lat_axis], 0.0) return Coords(OUTSIDE) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg
14,466
Python
32.02968
120
0.579358
NVIDIA/warp/warp/fem/geometry/tetmesh.py
from typing import Optional import warp as wp from warp.fem.cache import ( TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value, ) from warp.fem.types import ( NULL_ELEMENT_INDEX, OUTSIDE, Coords, ElementIndex, Sample, make_free_sample, ) from .closest_point import project_on_tet_at_origin from .element import Tetrahedron, Triangle from .geometry import Geometry @wp.struct class TetmeshCellArg: tet_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec3) # for neighbor cell lookup vertex_tet_offsets: wp.array(dtype=int) vertex_tet_indices: wp.array(dtype=int) # for transforming reference gradient deformation_gradients: wp.array(dtype=wp.mat33f) @wp.struct class TetmeshSideArg: cell_arg: TetmeshCellArg face_vertex_indices: wp.array(dtype=wp.vec3i) face_tet_indices: wp.array(dtype=wp.vec2i) _mat32 = wp.mat(shape=(3, 2), dtype=float) class Tetmesh(Geometry): """Tetrahedral mesh geometry""" dimension = 3 def __init__( self, tet_vertex_indices: wp.array, positions: wp.array, temporary_store: Optional[TemporaryStore] = None ): """ Constructs a tetrahedral mesh. Args: tet_vertex_indices: warp array of shape (num_tets, 4) containing vertex indices for each tet positions: warp array of shape (num_vertices, 3) containing 3d position for each vertex temporary_store: shared pool from which to allocate temporary arrays """ self.tet_vertex_indices = tet_vertex_indices self.positions = positions self._face_vertex_indices: wp.array = None self._face_tet_indices: wp.array = None self._vertex_tet_offsets: wp.array = None self._vertex_tet_indices: wp.array = None self._tet_edge_indices: wp.array = None self._edge_count = 0 self._build_topology(temporary_store) self._deformation_gradients: wp.array = None self._compute_deformation_gradients() def cell_count(self): return self.tet_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._face_vertex_indices.shape[0] def edge_count(self): if self._tet_edge_indices is None: self._compute_tet_edges() return self._edge_count def boundary_side_count(self): return self._boundary_face_indices.shape[0] def reference_cell(self) -> Tetrahedron: return Tetrahedron() def reference_side(self) -> Triangle: return Triangle() @property def tet_edge_indices(self) -> wp.array: if self._tet_edge_indices is None: self._compute_tet_edges() return self._tet_edge_indices @property def face_tet_indices(self) -> wp.array: return self._face_tet_indices @property def face_vertex_indices(self) -> wp.array: return self._face_vertex_indices CellArg = TetmeshCellArg SideArg = TetmeshSideArg @wp.struct class SideIndexArg: boundary_face_indices: wp.array(dtype=int) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.tet_vertex_indices = self.tet_vertex_indices.to(device) args.positions = self.positions.to(device) args.vertex_tet_offsets = self._vertex_tet_offsets.to(device) args.vertex_tet_indices = self._vertex_tet_indices.to(device) args.deformation_gradients = self._deformation_gradients.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): tet_idx = args.tet_vertex_indices[s.element_index] w0 = 1.0 - s.element_coords[0] - s.element_coords[1] - s.element_coords[2] return ( w0 * args.positions[tet_idx[0]] + s.element_coords[0] * args.positions[tet_idx[1]] + s.element_coords[1] * args.positions[tet_idx[2]] + s.element_coords[2] * args.positions[tet_idx[3]] ) @wp.func def cell_deformation_gradient(args: CellArg, s: Sample): return args.deformation_gradients[s.element_index] @wp.func def cell_inverse_deformation_gradient(args: CellArg, s: Sample): return wp.inverse(args.deformation_gradients[s.element_index]) @wp.func def _project_on_tet(args: CellArg, pos: wp.vec3, tet_index: int): p0 = args.positions[args.tet_vertex_indices[tet_index, 0]] q = pos - p0 e1 = args.positions[args.tet_vertex_indices[tet_index, 1]] - p0 e2 = args.positions[args.tet_vertex_indices[tet_index, 2]] - p0 e3 = args.positions[args.tet_vertex_indices[tet_index, 3]] - p0 dist, coords = project_on_tet_at_origin(q, e1, e2, e3) return dist, coords @wp.func def cell_lookup(args: CellArg, pos: wp.vec3, guess: Sample): closest_tet = int(NULL_ELEMENT_INDEX) closest_coords = Coords(OUTSIDE) closest_dist = float(1.0e8) for v in range(4): vtx = args.tet_vertex_indices[guess.element_index, v] tet_beg = args.vertex_tet_offsets[vtx] tet_end = args.vertex_tet_offsets[vtx + 1] for t in range(tet_beg, tet_end): tet = args.vertex_tet_indices[t] dist, coords = Tetmesh._project_on_tet(args, pos, tet) if dist <= closest_dist: closest_dist = dist closest_tet = tet closest_coords = coords return make_free_sample(closest_tet, closest_coords) @wp.func def cell_measure(args: CellArg, s: Sample): return wp.abs(wp.determinant(args.deformation_gradients[s.element_index])) / 6.0 @wp.func def cell_measure_ratio(args: CellArg, s: Sample): return 1.0 @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) @cached_arg_value def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_face_indices = self._boundary_face_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_face_indices[boundary_side_index] @cached_arg_value def side_arg_value(self, device) -> CellArg: args = self.SideArg() args.cell_arg = self.cell_arg_value(device) args.face_vertex_indices = self._face_vertex_indices.to(device) args.face_tet_indices = self._face_tet_indices.to(device) return args @wp.func def side_position(args: SideArg, s: Sample): face_idx = args.face_vertex_indices[s.element_index] return ( s.element_coords[0] * args.cell_arg.positions[face_idx[0]] + s.element_coords[1] * args.cell_arg.positions[face_idx[1]] + s.element_coords[2] * args.cell_arg.positions[face_idx[2]] ) @wp.func def _side_vecs(args: SideArg, side_index: ElementIndex): face_idx = args.face_vertex_indices[side_index] v0 = args.cell_arg.positions[face_idx[0]] v1 = args.cell_arg.positions[face_idx[1]] v2 = args.cell_arg.positions[face_idx[2]] return v1 - v0, v2 - v0 @wp.func def side_deformation_gradient(args: SideArg, s: Sample): e1, e2 = Tetmesh._side_vecs(args, s.element_index) return _mat32(e1, e2) @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Tetmesh.side_inner_cell_index(args, s.element_index) return wp.inverse(args.cell_arg.deformation_gradients[cell_index]) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Tetmesh.side_outer_cell_index(args, s.element_index) return wp.inverse(args.cell_arg.deformation_gradients[cell_index]) @wp.func def side_measure(args: SideArg, s: Sample): e1, e2 = Tetmesh._side_vecs(args, s.element_index) return 0.5 * wp.length(wp.cross(e1, e2)) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Tetmesh.side_inner_cell_index(args, s.element_index) outer = Tetmesh.side_outer_cell_index(args, s.element_index) return Tetmesh.side_measure(args, s) / wp.min( Tetmesh.cell_measure(args.cell_arg, make_free_sample(inner, Coords())), Tetmesh.cell_measure(args.cell_arg, make_free_sample(outer, Coords())), ) @wp.func def side_normal(args: SideArg, s: Sample): e1, e2 = Tetmesh._side_vecs(args, s.element_index) return wp.normalize(wp.cross(e1, e2)) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_tet_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_tet_indices[side_index][1] @wp.func def face_to_tet_coords(args: SideArg, side_index: ElementIndex, tet_index: ElementIndex, side_coords: Coords): fvi = args.face_vertex_indices[side_index] tv1 = args.cell_arg.tet_vertex_indices[tet_index, 1] tv2 = args.cell_arg.tet_vertex_indices[tet_index, 2] tv3 = args.cell_arg.tet_vertex_indices[tet_index, 3] c1 = float(0.0) c2 = float(0.0) c3 = float(0.0) for k in range(3): if tv1 == fvi[k]: c1 = side_coords[k] elif tv2 == fvi[k]: c2 = side_coords[k] elif tv3 == fvi[k]: c3 = side_coords[k] return Coords(c1, c2, c3) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): inner_cell_index = Tetmesh.side_inner_cell_index(args, side_index) return Tetmesh.face_to_tet_coords(args, side_index, inner_cell_index, side_coords) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): outer_cell_index = Tetmesh.side_outer_cell_index(args, side_index) return Tetmesh.face_to_tet_coords(args, side_index, outer_cell_index, side_coords) @wp.func def side_from_cell_coords(args: SideArg, side_index: ElementIndex, tet_index: ElementIndex, tet_coords: Coords): fvi = args.face_vertex_indices[side_index] tv1 = args.cell_arg.tet_vertex_indices[tet_index, 1] tv2 = args.cell_arg.tet_vertex_indices[tet_index, 2] tv3 = args.cell_arg.tet_vertex_indices[tet_index, 3] if tv1 == fvi[0]: c0 = tet_coords[0] elif tv2 == fvi[0]: c0 = tet_coords[1] elif tv3 == fvi[0]: c0 = tet_coords[2] else: c0 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] if tv1 == fvi[1]: c1 = tet_coords[0] elif tv2 == fvi[1]: c1 = tet_coords[1] elif tv3 == fvi[1]: c1 = tet_coords[2] else: c1 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] if tv1 == fvi[2]: c2 = tet_coords[0] elif tv2 == fvi[2]: c2 = tet_coords[1] elif tv3 == fvi[2]: c2 = tet_coords[2] else: c2 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] return wp.select(c0 + c1 + c2 > 0.999, Coords(OUTSIDE), Coords(c0, c1, c2)) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg def _build_topology(self, temporary_store: TemporaryStore): from warp.fem.utils import compress_node_indices, masked_indices from warp.utils import array_scan device = self.tet_vertex_indices.device vertex_tet_offsets, vertex_tet_indices, _, __ = compress_node_indices( self.vertex_count(), self.tet_vertex_indices, temporary_store=temporary_store ) self._vertex_tet_offsets = vertex_tet_offsets.detach() self._vertex_tet_indices = vertex_tet_indices.detach() vertex_start_face_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_face_count.array.zero_() vertex_start_face_offsets = borrow_temporary_like(vertex_start_face_count, temporary_store=temporary_store) vertex_face_other_vs = borrow_temporary( temporary_store, dtype=wp.vec2i, device=device, shape=(4 * self.cell_count()) ) vertex_face_tets = borrow_temporary(temporary_store, dtype=int, device=device, shape=(4 * self.cell_count(), 2)) # Count face edges starting at each vertex wp.launch( kernel=Tetmesh._count_starting_faces_kernel, device=device, dim=self.cell_count(), inputs=[self.tet_vertex_indices, vertex_start_face_count.array], ) array_scan(in_array=vertex_start_face_count.array, out_array=vertex_start_face_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_face_count = vertex_start_face_count wp.launch( kernel=Tetmesh._count_unique_starting_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tet_offsets, self._vertex_tet_indices, self.tet_vertex_indices, vertex_start_face_offsets.array, vertex_unique_face_count.array, vertex_face_other_vs.array, vertex_face_tets.array, ], ) vertex_unique_face_offsets = borrow_temporary_like(vertex_start_face_offsets, temporary_store=temporary_store) array_scan(in_array=vertex_start_face_count.array, out_array=vertex_unique_face_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: face_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=face_count.array, src=vertex_unique_face_offsets.array, src_offset=self.vertex_count() - 1, count=1 ) wp.synchronize_stream(wp.get_stream(device)) face_count = int(face_count.array.numpy()[0]) else: face_count = int(vertex_unique_face_offsets.array.numpy()[self.vertex_count() - 1]) self._face_vertex_indices = wp.empty(shape=(face_count,), dtype=wp.vec3i, device=device) self._face_tet_indices = wp.empty(shape=(face_count,), dtype=wp.vec2i, device=device) boundary_mask = borrow_temporary(temporary_store, shape=(face_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Tetmesh._compress_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_face_offsets.array, vertex_unique_face_offsets.array, vertex_unique_face_count.array, vertex_face_other_vs.array, vertex_face_tets.array, self._face_vertex_indices, self._face_tet_indices, boundary_mask.array, ], ) vertex_start_face_offsets.release() vertex_unique_face_offsets.release() vertex_unique_face_count.release() vertex_face_other_vs.release() vertex_face_tets.release() # Flip normals if necessary wp.launch( kernel=Tetmesh._flip_face_normals, device=device, dim=self.side_count(), inputs=[self._face_vertex_indices, self._face_tet_indices, self.tet_vertex_indices, self.positions], ) boundary_face_indices, _ = masked_indices(boundary_mask.array) self._boundary_face_indices = boundary_face_indices.detach() def _compute_tet_edges(self, temporary_store: Optional[TemporaryStore] = None): from warp.utils import array_scan device = self.tet_vertex_indices.device vertex_start_edge_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_edge_count.array.zero_() vertex_start_edge_offsets = borrow_temporary_like(vertex_start_edge_count, temporary_store=temporary_store) vertex_edge_ends = borrow_temporary(temporary_store, dtype=int, device=device, shape=(6 * self.cell_count())) # Count face edges starting at each vertex wp.launch( kernel=Tetmesh._count_starting_edges_kernel, device=device, dim=self.cell_count(), inputs=[self.tet_vertex_indices, vertex_start_edge_count.array], ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_start_edge_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=Tetmesh._count_unique_starting_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tet_offsets, self._vertex_tet_indices, self.tet_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, ], ) vertex_unique_edge_offsets = borrow_temporary_like( vertex_start_edge_offsets.array, temporary_store=temporary_store ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_unique_edge_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=edge_count.array, src=vertex_unique_edge_offsets.array, src_offset=self.vertex_count() - 1, count=1, ) wp.synchronize_stream(wp.get_stream(device)) self._edge_count = int(edge_count.array.numpy()[0]) else: self._edge_count = int(vertex_unique_edge_offsets.array.numpy()[self.vertex_count() - 1]) self._tet_edge_indices = wp.empty( dtype=int, device=self.tet_vertex_indices.device, shape=(self.cell_count(), 6) ) # Compress edge data wp.launch( kernel=Tetmesh._compress_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tet_offsets, self._vertex_tet_indices, self.tet_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, self._tet_edge_indices, ], ) vertex_start_edge_offsets.release() vertex_unique_edge_offsets.release() vertex_unique_edge_count.release() vertex_edge_ends.release() def _compute_deformation_gradients(self): self._deformation_gradients = wp.empty(dtype=wp.mat33f, device=self.positions.device, shape=(self.cell_count())) wp.launch( kernel=Tetmesh._compute_deformation_gradients_kernel, dim=self._deformation_gradients.shape, device=self._deformation_gradients.device, inputs=[self.tet_vertex_indices, self.positions, self._deformation_gradients], ) @wp.kernel def _count_starting_faces_kernel( tet_vertex_indices: wp.array2d(dtype=int), vertex_start_face_count: wp.array(dtype=int) ): t = wp.tid() for k in range(4): vi = wp.vec3i( tet_vertex_indices[t, k], tet_vertex_indices[t, (k + 1) % 4], tet_vertex_indices[t, (k + 2) % 4] ) vm = wp.min(vi) for i in range(3): if vm == vi[i]: wp.atomic_add(vertex_start_face_count, vm, 1) @wp.func def _find_face( needle: wp.vec2i, values: wp.array(dtype=wp.vec2i), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_faces_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_face_offsets: wp.array(dtype=int), vertex_start_face_count: wp.array(dtype=int), face_other_vs: wp.array(dtype=wp.vec2i), face_tets: wp.array2d(dtype=int), ): v = wp.tid() face_beg = vertex_start_face_offsets[v] tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] face_cur = face_beg for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(4): vi = wp.vec3i( tet_vertex_indices[t, k], tet_vertex_indices[t, (k + 1) % 4], tet_vertex_indices[t, (k + 2) % 4] ) min_v = wp.min(vi) if v == min_v: max_v = wp.max(vi) mid_v = vi[0] + vi[1] + vi[2] - min_v - max_v other_v = wp.vec2i(mid_v, max_v) # Check if other_v has been seen seen_idx = Tetmesh._find_face(other_v, face_other_vs, face_beg, face_cur) if seen_idx == -1: face_other_vs[face_cur] = other_v face_tets[face_cur, 0] = t face_tets[face_cur, 1] = t face_cur += 1 else: face_tets[seen_idx, 1] = t vertex_start_face_count[v] = face_cur - face_beg @wp.kernel def _compress_faces_kernel( vertex_start_face_offsets: wp.array(dtype=int), vertex_unique_face_offsets: wp.array(dtype=int), vertex_unique_face_count: wp.array(dtype=int), uncompressed_face_other_vs: wp.array(dtype=wp.vec2i), uncompressed_face_tets: wp.array2d(dtype=int), face_vertex_indices: wp.array(dtype=wp.vec3i), face_tet_indices: wp.array(dtype=wp.vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_face_offsets[v] unique_beg = vertex_unique_face_offsets[v] unique_count = vertex_unique_face_count[v] for f in range(unique_count): src_index = start_beg + f face_index = unique_beg + f face_vertex_indices[face_index] = wp.vec3i( v, uncompressed_face_other_vs[src_index][0], uncompressed_face_other_vs[src_index][1], ) t0 = uncompressed_face_tets[src_index, 0] t1 = uncompressed_face_tets[src_index, 1] face_tet_indices[face_index] = wp.vec2i(t0, t1) if t0 == t1: boundary_mask[face_index] = 1 else: boundary_mask[face_index] = 0 @wp.kernel def _flip_face_normals( face_vertex_indices: wp.array(dtype=wp.vec3i), face_tet_indices: wp.array(dtype=wp.vec2i), tet_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec3), ): e = wp.tid() tet = face_tet_indices[e][0] tet_vidx = tet_vertex_indices[tet] face_vidx = face_vertex_indices[e] tet_centroid = ( positions[tet_vidx[0]] + positions[tet_vidx[1]] + positions[tet_vidx[2]] + positions[tet_vidx[3]] ) / 4.0 v0 = positions[face_vidx[0]] v1 = positions[face_vidx[1]] v2 = positions[face_vidx[2]] face_center = (v1 + v0 + v2) / 3.0 face_normal = wp.cross(v1 - v0, v2 - v0) # if face normal points toward first tet centroid, flip indices if wp.dot(tet_centroid - face_center, face_normal) > 0.0: face_vertex_indices[e] = wp.vec3i(face_vidx[0], face_vidx[2], face_vidx[1]) @wp.kernel def _count_starting_edges_kernel( tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find_edge( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] edge_cur = edge_beg for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) if Tetmesh._find_edge(other_v, edge_ends, edge_beg, edge_cur) == -1: edge_ends[edge_cur] = other_v edge_cur += 1 for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) if Tetmesh._find_edge(other_v, edge_ends, edge_beg, edge_cur) == -1: edge_ends[edge_cur] = other_v edge_cur += 1 vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), tet_edge_indices: wp.array2d(dtype=int), ): v = wp.tid() uncompressed_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) edge_id = ( Tetmesh._find_edge( other_v, uncompressed_edge_ends, uncompressed_beg, uncompressed_beg + unique_count ) - uncompressed_beg + unique_beg ) tet_edge_indices[t][k] = edge_id for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) edge_id = ( Tetmesh._find_edge( other_v, uncompressed_edge_ends, uncompressed_beg, uncompressed_beg + unique_count ) - uncompressed_beg + unique_beg ) tet_edge_indices[t][k + 3] = edge_id @wp.kernel def _compute_deformation_gradients_kernel( tet_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec3f), transforms: wp.array(dtype=wp.mat33f), ): t = wp.tid() p0 = positions[tet_vertex_indices[t, 0]] p1 = positions[tet_vertex_indices[t, 1]] p2 = positions[tet_vertex_indices[t, 2]] p3 = positions[tet_vertex_indices[t, 3]] e1 = p1 - p0 e2 = p2 - p0 e3 = p3 - p0 transforms[t] = wp.mat33(e1, e2, e3)
29,806
Python
34.442331
120
0.575018
NVIDIA/warp/warp/fem/geometry/hexmesh.py
from typing import Optional import warp as wp from warp.fem.cache import ( TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value, ) from warp.fem.types import OUTSIDE, Coords, ElementIndex, Sample, make_free_sample from .element import Cube, Square from .geometry import Geometry @wp.struct class HexmeshCellArg: hex_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec3) # for neighbor cell lookup vertex_hex_offsets: wp.array(dtype=int) vertex_hex_indices: wp.array(dtype=int) @wp.struct class HexmeshSideArg: cell_arg: HexmeshCellArg face_vertex_indices: wp.array(dtype=wp.vec4i) face_hex_indices: wp.array(dtype=wp.vec2i) face_hex_face_orientation: wp.array(dtype=wp.vec4i) _mat32 = wp.mat(shape=(3, 2), dtype=float) FACE_VERTEX_INDICES = wp.constant( wp.mat(shape=(6, 4), dtype=int)( [ [0, 4, 7, 3], # x = 0 [1, 2, 6, 5], # x = 1 [0, 1, 5, 4], # y = 0 [3, 7, 6, 2], # y = 1 [0, 3, 2, 1], # z = 0 [4, 5, 6, 7], # z = 1 ] ) ) EDGE_VERTEX_INDICES = wp.constant( wp.mat(shape=(12, 2), dtype=int)( [ [0, 1], [1, 2], [3, 2], [0, 3], [4, 5], [5, 6], [7, 6], [4, 7], [0, 4], [1, 5], [2, 6], [3, 7], ] ) ) # orthogal transform for face coordinates given first vertex + winding # (two rows per entry) FACE_ORIENTATION = [ [1, 0], # FV: 0, det: + [0, 1], [0, 1], # FV: 0, det: - [1, 0], [0, -1], # FV: 1, det: + [1, 0], [-1, 0], # FV: 1, det: - [0, 1], [-1, 0], # FV: 2, det: + [0, -1], [0, -1], # FV: 2, det: - [-1, 0], [0, 1], # FV: 3, det: + [-1, 0], [1, 0], # FV: 3, det: - [0, -1], ] FACE_TRANSLATION = [ [0, 0], [1, 0], [1, 1], [0, 1], ] # local face coordinate system _FACE_COORD_INDICES = wp.constant( wp.mat(shape=(6, 4), dtype=int)( [ [2, 1, 0, 0], # 0: z y -x [1, 2, 0, 1], # 1: y z x-1 [0, 2, 1, 0], # 2: x z -y [2, 0, 1, 1], # 3: z x y-1 [1, 0, 2, 0], # 4: y x -z [0, 1, 2, 1], # 5: x y z-1 ] ) ) _FACE_ORIENTATION_F = wp.constant(wp.mat(shape=(16, 2), dtype=float)(FACE_ORIENTATION)) _FACE_TRANSLATION_F = wp.constant(wp.mat(shape=(4, 2), dtype=float)(FACE_TRANSLATION)) class Hexmesh(Geometry): """Hexahedral mesh geometry""" dimension = 3 def __init__( self, hex_vertex_indices: wp.array, positions: wp.array, temporary_store: Optional[TemporaryStore] = None ): """ Constructs a tetrahedral mesh. Args: hex_vertex_indices: warp array of shape (num_hexes, 8) containing vertex indices for each hex following standard ordering (bottom face vertices in counter-clockwise order, then similarly for upper face) positions: warp array of shape (num_vertices, 3) containing 3d position for each vertex temporary_store: shared pool from which to allocate temporary arrays """ self.hex_vertex_indices = hex_vertex_indices self.positions = positions self._face_vertex_indices: wp.array = None self._face_hex_indices: wp.array = None self._face_hex_face_orientation: wp.array = None self._vertex_hex_offsets: wp.array = None self._vertex_hex_indices: wp.array = None self._hex_edge_indices: wp.array = None self._edge_count = 0 self._build_topology(temporary_store) def cell_count(self): return self.hex_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._face_vertex_indices.shape[0] def edge_count(self): if self._hex_edge_indices is None: self._compute_hex_edges() return self._edge_count def boundary_side_count(self): return self._boundary_face_indices.shape[0] def reference_cell(self) -> Cube: return Cube() def reference_side(self) -> Square: return Square() @property def hex_edge_indices(self) -> wp.array: if self._hex_edge_indices is None: self._compute_hex_edges() return self._hex_edge_indices @property def face_hex_indices(self) -> wp.array: return self._face_hex_indices @property def face_vertex_indices(self) -> wp.array: return self._face_vertex_indices CellArg = HexmeshCellArg SideArg = HexmeshSideArg @wp.struct class SideIndexArg: boundary_face_indices: wp.array(dtype=int) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.hex_vertex_indices = self.hex_vertex_indices.to(device) args.positions = self.positions.to(device) args.vertex_hex_offsets = self._vertex_hex_offsets.to(device) args.vertex_hex_indices = self._vertex_hex_indices.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): hex_idx = args.hex_vertex_indices[s.element_index] w_p = s.element_coords w_m = Coords(1.0) - s.element_coords # 0 : m m m # 1 : p m m # 2 : p p m # 3 : m p m # 4 : m m p # 5 : p m p # 6 : p p p # 7 : m p p return ( w_m[0] * w_m[1] * w_m[2] * args.positions[hex_idx[0]] + w_p[0] * w_m[1] * w_m[2] * args.positions[hex_idx[1]] + w_p[0] * w_p[1] * w_m[2] * args.positions[hex_idx[2]] + w_m[0] * w_p[1] * w_m[2] * args.positions[hex_idx[3]] + w_m[0] * w_m[1] * w_p[2] * args.positions[hex_idx[4]] + w_p[0] * w_m[1] * w_p[2] * args.positions[hex_idx[5]] + w_p[0] * w_p[1] * w_p[2] * args.positions[hex_idx[6]] + w_m[0] * w_p[1] * w_p[2] * args.positions[hex_idx[7]] ) @wp.func def cell_deformation_gradient(cell_arg: CellArg, s: Sample): """Deformation gradient at `coords`""" """Transposed deformation gradient at `coords`""" hex_idx = cell_arg.hex_vertex_indices[s.element_index] w_p = s.element_coords w_m = Coords(1.0) - s.element_coords return ( wp.outer(cell_arg.positions[hex_idx[0]], wp.vec3(-w_m[1] * w_m[2], -w_m[0] * w_m[2], -w_m[0] * w_m[1])) + wp.outer(cell_arg.positions[hex_idx[1]], wp.vec3(w_m[1] * w_m[2], -w_p[0] * w_m[2], -w_p[0] * w_m[1])) + wp.outer(cell_arg.positions[hex_idx[2]], wp.vec3(w_p[1] * w_m[2], w_p[0] * w_m[2], -w_p[0] * w_p[1])) + wp.outer(cell_arg.positions[hex_idx[3]], wp.vec3(-w_p[1] * w_m[2], w_m[0] * w_m[2], -w_m[0] * w_p[1])) + wp.outer(cell_arg.positions[hex_idx[4]], wp.vec3(-w_m[1] * w_p[2], -w_m[0] * w_p[2], w_m[0] * w_m[1])) + wp.outer(cell_arg.positions[hex_idx[5]], wp.vec3(w_m[1] * w_p[2], -w_p[0] * w_p[2], w_p[0] * w_m[1])) + wp.outer(cell_arg.positions[hex_idx[6]], wp.vec3(w_p[1] * w_p[2], w_p[0] * w_p[2], w_p[0] * w_p[1])) + wp.outer(cell_arg.positions[hex_idx[7]], wp.vec3(-w_p[1] * w_p[2], w_m[0] * w_p[2], w_m[0] * w_p[1])) ) @wp.func def cell_inverse_deformation_gradient(cell_arg: CellArg, s: Sample): return wp.inverse(Hexmesh.cell_deformation_gradient(cell_arg, s)) @wp.func def cell_measure(args: CellArg, s: Sample): return wp.abs(wp.determinant(Hexmesh.cell_deformation_gradient(args, s))) @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) @cached_arg_value def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_face_indices = self._boundary_face_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_face_indices[boundary_side_index] @cached_arg_value def side_arg_value(self, device) -> CellArg: args = self.SideArg() args.cell_arg = self.cell_arg_value(device) args.face_vertex_indices = self._face_vertex_indices.to(device) args.face_hex_indices = self._face_hex_indices.to(device) args.face_hex_face_orientation = self._face_hex_face_orientation.to(device) return args @wp.func def side_position(args: SideArg, s: Sample): face_idx = args.face_vertex_indices[s.element_index] w_p = s.element_coords w_m = Coords(1.0) - s.element_coords return ( w_m[0] * w_m[1] * args.cell_arg.positions[face_idx[0]] + w_p[0] * w_m[1] * args.cell_arg.positions[face_idx[1]] + w_p[0] * w_p[1] * args.cell_arg.positions[face_idx[2]] + w_m[0] * w_p[1] * args.cell_arg.positions[face_idx[3]] ) @wp.func def _side_deformation_vecs(args: SideArg, side_index: ElementIndex, coords: Coords): face_idx = args.face_vertex_indices[side_index] p0 = args.cell_arg.positions[face_idx[0]] p1 = args.cell_arg.positions[face_idx[1]] p2 = args.cell_arg.positions[face_idx[2]] p3 = args.cell_arg.positions[face_idx[3]] w_p = coords w_m = Coords(1.0) - coords v1 = w_m[1] * (p1 - p0) + w_p[1] * (p2 - p3) v2 = w_p[0] * (p2 - p1) + w_m[0] * (p3 - p0) return v1, v2 @wp.func def side_deformation_gradient(args: SideArg, s: Sample): """Transposed side deformation gradient at `coords`""" v1, v2 = Hexmesh._side_deformation_vecs(args, s.element_index, s.element_coords) return _mat32(v1, v2) @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Hexmesh.side_inner_cell_index(args, s.element_index) cell_coords = Hexmesh.side_inner_cell_coords(args, s.element_index, s.element_coords) return Hexmesh.cell_inverse_deformation_gradient(args.cell_arg, make_free_sample(cell_index, cell_coords)) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Hexmesh.side_outer_cell_index(args, s.element_index) cell_coords = Hexmesh.side_outer_cell_coords(args, s.element_index, s.element_coords) return Hexmesh.cell_inverse_deformation_gradient(args.cell_arg, make_free_sample(cell_index, cell_coords)) @wp.func def side_measure(args: SideArg, s: Sample): v1, v2 = Hexmesh._side_deformation_vecs(args, s.element_index, s.element_coords) return wp.length(wp.cross(v1, v2)) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Hexmesh.side_inner_cell_index(args, s.element_index) outer = Hexmesh.side_outer_cell_index(args, s.element_index) inner_coords = Hexmesh.side_inner_cell_coords(args, s.element_index, s.element_coords) outer_coords = Hexmesh.side_outer_cell_coords(args, s.element_index, s.element_coords) return Hexmesh.side_measure(args, s) / wp.min( Hexmesh.cell_measure(args.cell_arg, make_free_sample(inner, inner_coords)), Hexmesh.cell_measure(args.cell_arg, make_free_sample(outer, outer_coords)), ) @wp.func def side_normal(args: SideArg, s: Sample): v1, v2 = Hexmesh._side_deformation_vecs(args, s.element_index, s.element_coords) return wp.normalize(wp.cross(v1, v2)) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_hex_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_hex_indices[side_index][1] @wp.func def _hex_local_face_coords(hex_coords: Coords, face_index: int): # Coordinatex in local face coordinates system # Sign of last coordinate (out of face) face_coords = wp.vec2( hex_coords[_FACE_COORD_INDICES[face_index, 0]], hex_coords[_FACE_COORD_INDICES[face_index, 1]] ) normal_coord = hex_coords[_FACE_COORD_INDICES[face_index, 2]] normal_coord = wp.select(_FACE_COORD_INDICES[face_index, 3] == 0, normal_coord - 1.0, -normal_coord) return face_coords, normal_coord @wp.func def _local_face_hex_coords(face_coords: wp.vec2, face_index: int): # Coordinates in hex from local face coordinates system hex_coords = Coords() hex_coords[_FACE_COORD_INDICES[face_index, 0]] = face_coords[0] hex_coords[_FACE_COORD_INDICES[face_index, 1]] = face_coords[1] hex_coords[_FACE_COORD_INDICES[face_index, 2]] = wp.select(_FACE_COORD_INDICES[face_index, 3] == 0, 1.0, 0.0) return hex_coords @wp.func def _local_from_oriented_face_coords(ori: int, oriented_coords: Coords): fv = ori // 2 return (oriented_coords[0] - _FACE_TRANSLATION_F[fv, 0]) * _FACE_ORIENTATION_F[2 * ori] + ( oriented_coords[1] - _FACE_TRANSLATION_F[fv, 1] ) * _FACE_ORIENTATION_F[2 * ori + 1] @wp.func def _local_to_oriented_face_coords(ori: int, coords: wp.vec2): fv = ori // 2 return Coords( wp.dot(_FACE_ORIENTATION_F[2 * ori], coords) + _FACE_TRANSLATION_F[fv, 0], wp.dot(_FACE_ORIENTATION_F[2 * ori + 1], coords) + _FACE_TRANSLATION_F[fv, 1], 0.0, ) @wp.func def face_to_hex_coords(local_face_index: int, face_orientation: int, side_coords: Coords): local_coords = Hexmesh._local_from_oriented_face_coords(face_orientation, side_coords) return Hexmesh._local_face_hex_coords(local_coords, local_face_index) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): local_face_index = args.face_hex_face_orientation[side_index][0] face_orientation = args.face_hex_face_orientation[side_index][1] return Hexmesh.face_to_hex_coords(local_face_index, face_orientation, side_coords) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): local_face_index = args.face_hex_face_orientation[side_index][2] face_orientation = args.face_hex_face_orientation[side_index][3] return Hexmesh.face_to_hex_coords(local_face_index, face_orientation, side_coords) @wp.func def side_from_cell_coords(args: SideArg, side_index: ElementIndex, hex_index: ElementIndex, hex_coords: Coords): if Hexmesh.side_inner_cell_index(args, side_index) == hex_index: local_face_index = args.face_hex_face_orientation[side_index][0] face_orientation = args.face_hex_face_orientation[side_index][1] else: local_face_index = args.face_hex_face_orientation[side_index][2] face_orientation = args.face_hex_face_orientation[side_index][3] face_coords, normal_coord = Hexmesh._hex_local_face_coords(hex_coords, local_face_index) return wp.select( normal_coord == 0.0, Coords(OUTSIDE), Hexmesh._local_to_oriented_face_coords(face_orientation, face_coords) ) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg def _build_topology(self, temporary_store: TemporaryStore): from warp.fem.utils import compress_node_indices, masked_indices from warp.utils import array_scan device = self.hex_vertex_indices.device vertex_hex_offsets, vertex_hex_indices, _, __ = compress_node_indices( self.vertex_count(), self.hex_vertex_indices, temporary_store=temporary_store ) self._vertex_hex_offsets = vertex_hex_offsets.detach() self._vertex_hex_indices = vertex_hex_indices.detach() vertex_start_face_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_face_count.array.zero_() vertex_start_face_offsets = borrow_temporary_like(vertex_start_face_count, temporary_store=temporary_store) vertex_face_other_vs = borrow_temporary( temporary_store, dtype=wp.vec3i, device=device, shape=(8 * self.cell_count()) ) vertex_face_hexes = borrow_temporary( temporary_store, dtype=int, device=device, shape=(8 * self.cell_count(), 2) ) # Count face edges starting at each vertex wp.launch( kernel=Hexmesh._count_starting_faces_kernel, device=device, dim=self.cell_count(), inputs=[self.hex_vertex_indices, vertex_start_face_count.array], ) array_scan(in_array=vertex_start_face_count.array, out_array=vertex_start_face_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_face_count = vertex_start_face_count wp.launch( kernel=Hexmesh._count_unique_starting_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_hex_offsets, self._vertex_hex_indices, self.hex_vertex_indices, vertex_start_face_offsets.array, vertex_unique_face_count.array, vertex_face_other_vs.array, vertex_face_hexes.array, ], ) vertex_unique_face_offsets = borrow_temporary_like(vertex_start_face_offsets, temporary_store=temporary_store) array_scan(in_array=vertex_start_face_count.array, out_array=vertex_unique_face_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: face_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=face_count.array, src=vertex_unique_face_offsets.array, src_offset=self.vertex_count() - 1, count=1 ) wp.synchronize_stream(wp.get_stream(device)) face_count = int(face_count.array.numpy()[0]) else: face_count = int(vertex_unique_face_offsets.array.numpy()[self.vertex_count() - 1]) self._face_vertex_indices = wp.empty(shape=(face_count,), dtype=wp.vec4i, device=device) self._face_hex_indices = wp.empty(shape=(face_count,), dtype=wp.vec2i, device=device) self._face_hex_face_orientation = wp.empty(shape=(face_count,), dtype=wp.vec4i, device=device) boundary_mask = borrow_temporary(temporary_store, shape=(face_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Hexmesh._compress_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_face_offsets.array, vertex_unique_face_offsets.array, vertex_unique_face_count.array, vertex_face_other_vs.array, vertex_face_hexes.array, self._face_vertex_indices, self._face_hex_indices, boundary_mask.array, ], ) vertex_start_face_offsets.release() vertex_unique_face_offsets.release() vertex_unique_face_count.release() vertex_face_other_vs.release() vertex_face_hexes.release() # Flip normals if necessary wp.launch( kernel=Hexmesh._flip_face_normals, device=device, dim=self.side_count(), inputs=[self._face_vertex_indices, self._face_hex_indices, self.hex_vertex_indices, self.positions], ) # Compute and store face orientation wp.launch( kernel=Hexmesh._compute_face_orientation, device=device, dim=self.side_count(), inputs=[ self._face_vertex_indices, self._face_hex_indices, self.hex_vertex_indices, self._face_hex_face_orientation, ], ) boundary_face_indices, _ = masked_indices(boundary_mask.array) self._boundary_face_indices = boundary_face_indices.detach() def _compute_hex_edges(self, temporary_store: Optional[TemporaryStore] = None): from warp.utils import array_scan device = self.hex_vertex_indices.device vertex_start_edge_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_edge_count.array.zero_() vertex_start_edge_offsets = borrow_temporary_like(vertex_start_edge_count, temporary_store=temporary_store) vertex_edge_ends = borrow_temporary(temporary_store, dtype=int, device=device, shape=(12 * self.cell_count())) # Count face edges starting at each vertex wp.launch( kernel=Hexmesh._count_starting_edges_kernel, device=device, dim=self.cell_count(), inputs=[self.hex_vertex_indices, vertex_start_edge_count.array], ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_start_edge_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=Hexmesh._count_unique_starting_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_hex_offsets, self._vertex_hex_indices, self.hex_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, ], ) vertex_unique_edge_offsets = borrow_temporary_like( vertex_start_edge_offsets.array, temporary_store=temporary_store ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_unique_edge_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=edge_count.array, src=vertex_unique_edge_offsets.array, src_offset=self.vertex_count() - 1, count=1, ) wp.synchronize_stream(wp.get_stream(device)) self._edge_count = int(edge_count.array.numpy()[0]) else: self._edge_count = int(vertex_unique_edge_offsets.array.numpy()[self.vertex_count() - 1]) self._hex_edge_indices = wp.empty( dtype=int, device=self.hex_vertex_indices.device, shape=(self.cell_count(), 12) ) # Compress edge data wp.launch( kernel=Hexmesh._compress_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_hex_offsets, self._vertex_hex_indices, self.hex_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, self._hex_edge_indices, ], ) vertex_start_edge_offsets.release() vertex_unique_edge_offsets.release() vertex_unique_edge_count.release() vertex_edge_ends.release() @wp.kernel def _count_starting_faces_kernel( hex_vertex_indices: wp.array2d(dtype=int), vertex_start_face_count: wp.array(dtype=int) ): t = wp.tid() for k in range(6): vi = wp.vec4i( hex_vertex_indices[t, FACE_VERTEX_INDICES[k, 0]], hex_vertex_indices[t, FACE_VERTEX_INDICES[k, 1]], hex_vertex_indices[t, FACE_VERTEX_INDICES[k, 2]], hex_vertex_indices[t, FACE_VERTEX_INDICES[k, 3]], ) vm = wp.min(vi) for i in range(4): if vm == vi[i]: wp.atomic_add(vertex_start_face_count, vm, 1) @wp.func def _face_sort(vidx: wp.vec4i, min_k: int): v1 = vidx[(min_k + 1) % 4] v2 = vidx[(min_k + 2) % 4] v3 = vidx[(min_k + 3) % 4] if v1 < v3: return wp.vec3i(v1, v2, v3) return wp.vec3i(v3, v2, v1) @wp.func def _find_face( needle: wp.vec3i, values: wp.array(dtype=wp.vec3i), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_faces_kernel( vertex_hex_offsets: wp.array(dtype=int), vertex_hex_indices: wp.array(dtype=int), hex_vertex_indices: wp.array2d(dtype=int), vertex_start_face_offsets: wp.array(dtype=int), vertex_start_face_count: wp.array(dtype=int), face_other_vs: wp.array(dtype=wp.vec3i), face_hexes: wp.array2d(dtype=int), ): v = wp.tid() face_beg = vertex_start_face_offsets[v] hex_beg = vertex_hex_offsets[v] hex_end = vertex_hex_offsets[v + 1] face_cur = face_beg for hexa in range(hex_beg, hex_end): hx = vertex_hex_indices[hexa] for k in range(6): vi = wp.vec4i( hex_vertex_indices[hx, FACE_VERTEX_INDICES[k, 0]], hex_vertex_indices[hx, FACE_VERTEX_INDICES[k, 1]], hex_vertex_indices[hx, FACE_VERTEX_INDICES[k, 2]], hex_vertex_indices[hx, FACE_VERTEX_INDICES[k, 3]], ) min_i = int(wp.argmin(vi)) if v == vi[min_i]: other_v = Hexmesh._face_sort(vi, min_i) # Check if other_v has been seen seen_idx = Hexmesh._find_face(other_v, face_other_vs, face_beg, face_cur) if seen_idx == -1: face_other_vs[face_cur] = other_v face_hexes[face_cur, 0] = hx face_hexes[face_cur, 1] = hx face_cur += 1 else: face_hexes[seen_idx, 1] = hx vertex_start_face_count[v] = face_cur - face_beg @wp.kernel def _compress_faces_kernel( vertex_start_face_offsets: wp.array(dtype=int), vertex_unique_face_offsets: wp.array(dtype=int), vertex_unique_face_count: wp.array(dtype=int), uncompressed_face_other_vs: wp.array(dtype=wp.vec3i), uncompressed_face_hexes: wp.array2d(dtype=int), face_vertex_indices: wp.array(dtype=wp.vec4i), face_hex_indices: wp.array(dtype=wp.vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_face_offsets[v] unique_beg = vertex_unique_face_offsets[v] unique_count = vertex_unique_face_count[v] for f in range(unique_count): src_index = start_beg + f face_index = unique_beg + f face_vertex_indices[face_index] = wp.vec4i( v, uncompressed_face_other_vs[src_index][0], uncompressed_face_other_vs[src_index][1], uncompressed_face_other_vs[src_index][2], ) hx0 = uncompressed_face_hexes[src_index, 0] hx1 = uncompressed_face_hexes[src_index, 1] face_hex_indices[face_index] = wp.vec2i(hx0, hx1) if hx0 == hx1: boundary_mask[face_index] = 1 else: boundary_mask[face_index] = 0 @wp.kernel def _flip_face_normals( face_vertex_indices: wp.array(dtype=wp.vec4i), face_hex_indices: wp.array(dtype=wp.vec2i), hex_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec3), ): f = wp.tid() hexa = face_hex_indices[f][0] hex_vidx = hex_vertex_indices[hexa] face_vidx = face_vertex_indices[f] hex_centroid = ( positions[hex_vidx[0]] + positions[hex_vidx[1]] + positions[hex_vidx[2]] + positions[hex_vidx[3]] + positions[hex_vidx[4]] + positions[hex_vidx[5]] + positions[hex_vidx[6]] + positions[hex_vidx[7]] ) / 8.0 v0 = positions[face_vidx[0]] v1 = positions[face_vidx[1]] v2 = positions[face_vidx[2]] v3 = positions[face_vidx[3]] face_center = (v1 + v0 + v2 + v3) / 4.0 face_normal = wp.cross(v2 - v0, v3 - v1) # if face normal points toward first tet centroid, flip indices if wp.dot(hex_centroid - face_center, face_normal) > 0.0: face_vertex_indices[f] = wp.vec4i(face_vidx[0], face_vidx[3], face_vidx[2], face_vidx[1]) @wp.func def _find_face_orientation(face_vidx: wp.vec4i, hex_index: int, hex_vertex_indices: wp.array2d(dtype=int)): hex_vidx = hex_vertex_indices[hex_index] # Find local index in hex corresponding to face face_min_i = int(wp.argmin(face_vidx)) face_other_v = Hexmesh._face_sort(face_vidx, face_min_i) for k in range(6): hex_face_vi = wp.vec4i( hex_vidx[FACE_VERTEX_INDICES[k, 0]], hex_vidx[FACE_VERTEX_INDICES[k, 1]], hex_vidx[FACE_VERTEX_INDICES[k, 2]], hex_vidx[FACE_VERTEX_INDICES[k, 3]], ) hex_min_i = int(wp.argmin(hex_face_vi)) hex_other_v = Hexmesh._face_sort(hex_face_vi, hex_min_i) if hex_other_v == face_other_v: local_face_index = k break # Find starting vertex index for k in range(4): if face_vidx[k] == hex_face_vi[0]: face_orientation = 2 * k if face_vidx[(k + 1) % 4] != hex_face_vi[1]: face_orientation += 1 return local_face_index, face_orientation @wp.kernel def _compute_face_orientation( face_vertex_indices: wp.array(dtype=wp.vec4i), face_hex_indices: wp.array(dtype=wp.vec2i), hex_vertex_indices: wp.array2d(dtype=int), face_hex_face_ori: wp.array(dtype=wp.vec4i), ): f = wp.tid() face_vidx = face_vertex_indices[f] hx0 = face_hex_indices[f][0] local_face_0, ori_0 = Hexmesh._find_face_orientation(face_vidx, hx0, hex_vertex_indices) hx1 = face_hex_indices[f][1] if hx0 == hx1: face_hex_face_ori[f] = wp.vec4i(local_face_0, ori_0, local_face_0, ori_0) else: local_face_1, ori_1 = Hexmesh._find_face_orientation(face_vidx, hx1, hex_vertex_indices) face_hex_face_ori[f] = wp.vec4i(local_face_0, ori_0, local_face_1, ori_1) @wp.kernel def _count_starting_edges_kernel( hex_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(12): v0 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 0]] v1 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 1]] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find_edge( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_hex_offsets: wp.array(dtype=int), vertex_hex_indices: wp.array(dtype=int), hex_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] hex_beg = vertex_hex_offsets[v] hex_end = vertex_hex_offsets[v + 1] edge_cur = edge_beg for tet in range(hex_beg, hex_end): t = vertex_hex_indices[tet] for k in range(12): v0 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 0]] v1 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 1]] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) if Hexmesh._find_edge(other_v, edge_ends, edge_beg, edge_cur) == -1: edge_ends[edge_cur] = other_v edge_cur += 1 vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_hex_offsets: wp.array(dtype=int), vertex_hex_indices: wp.array(dtype=int), hex_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), hex_edge_indices: wp.array2d(dtype=int), ): v = wp.tid() uncompressed_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] hex_beg = vertex_hex_offsets[v] hex_end = vertex_hex_offsets[v + 1] for tet in range(hex_beg, hex_end): t = vertex_hex_indices[tet] for k in range(12): v0 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 0]] v1 = hex_vertex_indices[t, EDGE_VERTEX_INDICES[k, 1]] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) edge_id = ( Hexmesh._find_edge( other_v, uncompressed_edge_ends, uncompressed_beg, uncompressed_beg + unique_count ) - uncompressed_beg + unique_beg ) hex_edge_indices[t][k] = edge_id
34,831
Python
35.51153
124
0.569234
NVIDIA/warp/warp/fem/geometry/trimesh_2d.py
from typing import Optional import warp as wp from warp.fem.cache import ( TemporaryStore, borrow_temporary, borrow_temporary_like, cached_arg_value, ) from warp.fem.types import ( NULL_ELEMENT_INDEX, OUTSIDE, Coords, ElementIndex, Sample, make_free_sample, ) from .closest_point import project_on_tri_at_origin from .element import LinearEdge, Triangle from .geometry import Geometry @wp.struct class Trimesh2DCellArg: tri_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec2) # for neighbor cell lookup vertex_tri_offsets: wp.array(dtype=int) vertex_tri_indices: wp.array(dtype=int) deformation_gradients: wp.array(dtype=wp.mat22f) @wp.struct class Trimesh2DSideArg: cell_arg: Trimesh2DCellArg edge_vertex_indices: wp.array(dtype=wp.vec2i) edge_tri_indices: wp.array(dtype=wp.vec2i) class Trimesh2D(Geometry): """Two-dimensional triangular mesh geometry""" dimension = 2 def __init__( self, tri_vertex_indices: wp.array, positions: wp.array, temporary_store: Optional[TemporaryStore] = None ): """ Constructs a two-dimensional triangular mesh. Args: tri_vertex_indices: warp array of shape (num_tris, 3) containing vertex indices for each tri positions: warp array of shape (num_vertices, 2) containing 2d position for each vertex temporary_store: shared pool from which to allocate temporary arrays """ self.tri_vertex_indices = tri_vertex_indices self.positions = positions self._edge_vertex_indices: wp.array = None self._edge_tri_indices: wp.array = None self._vertex_tri_offsets: wp.array = None self._vertex_tri_indices: wp.array = None self._build_topology(temporary_store) self._deformation_gradients: wp.array = None self._compute_deformation_gradients() def cell_count(self): return self.tri_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._edge_vertex_indices.shape[0] def boundary_side_count(self): return self._boundary_edge_indices.shape[0] def reference_cell(self) -> Triangle: return Triangle() def reference_side(self) -> LinearEdge: return LinearEdge() @property def edge_tri_indices(self) -> wp.array: return self._edge_tri_indices @property def edge_vertex_indices(self) -> wp.array: return self._edge_vertex_indices CellArg = Trimesh2DCellArg SideArg = Trimesh2DSideArg @wp.struct class SideIndexArg: boundary_edge_indices: wp.array(dtype=int) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.tri_vertex_indices = self.tri_vertex_indices.to(device) args.positions = self.positions.to(device) args.vertex_tri_offsets = self._vertex_tri_offsets.to(device) args.vertex_tri_indices = self._vertex_tri_indices.to(device) args.deformation_gradients = self._deformation_gradients.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): tri_idx = args.tri_vertex_indices[s.element_index] return ( s.element_coords[0] * args.positions[tri_idx[0]] + s.element_coords[1] * args.positions[tri_idx[1]] + s.element_coords[2] * args.positions[tri_idx[2]] ) @wp.func def cell_deformation_gradient(args: CellArg, s: Sample): return args.deformation_gradients[s.element_index] @wp.func def cell_inverse_deformation_gradient(args: CellArg, s: Sample): return wp.inverse(args.deformation_gradients[s.element_index]) @wp.func def _project_on_tri(args: CellArg, pos: wp.vec2, tri_index: int): p0 = args.positions[args.tri_vertex_indices[tri_index, 0]] q = pos - p0 e1 = args.positions[args.tri_vertex_indices[tri_index, 1]] - p0 e2 = args.positions[args.tri_vertex_indices[tri_index, 2]] - p0 dist, coords = project_on_tri_at_origin(q, e1, e2) return dist, coords @wp.func def cell_lookup(args: CellArg, pos: wp.vec2, guess: Sample): closest_tri = int(NULL_ELEMENT_INDEX) closest_coords = Coords(OUTSIDE) closest_dist = float(1.0e8) for v in range(3): vtx = args.tri_vertex_indices[guess.element_index, v] tri_beg = args.vertex_tri_offsets[vtx] tri_end = args.vertex_tri_offsets[vtx + 1] for t in range(tri_beg, tri_end): tri = args.vertex_tri_indices[t] dist, coords = Trimesh2D._project_on_tri(args, pos, tri) if dist <= closest_dist: closest_dist = dist closest_tri = tri closest_coords = coords return make_free_sample(closest_tri, closest_coords) @wp.func def cell_measure(args: CellArg, s: Sample): return 0.5 * wp.abs(wp.determinant(args.deformation_gradients[s.element_index])) @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec2(0.0) @cached_arg_value def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_edge_indices = self._boundary_edge_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_edge_indices[boundary_side_index] @cached_arg_value def side_arg_value(self, device) -> CellArg: args = self.SideArg() args.cell_arg = self.cell_arg_value(device) args.edge_vertex_indices = self._edge_vertex_indices.to(device) args.edge_tri_indices = self._edge_tri_indices.to(device) return args @wp.func def side_position(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] return (1.0 - s.element_coords[0]) * args.cell_arg.positions[edge_idx[0]] + s.element_coords[ 0 ] * args.cell_arg.positions[edge_idx[1]] @wp.func def side_deformation_gradient(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] return v1 - v0 @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Trimesh2D.side_inner_cell_index(args, s.element_index) return wp.inverse(args.cell_arg.deformation_gradients[cell_index]) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): cell_index = Trimesh2D.side_outer_cell_index(args, s.element_index) return wp.inverse(args.cell_arg.deformation_gradients[cell_index]) @wp.func def side_measure(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] return wp.length(v1 - v0) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Trimesh2D.side_inner_cell_index(args, s.element_index) outer = Trimesh2D.side_outer_cell_index(args, s.element_index) return Trimesh2D.side_measure(args, s) / wp.min( Trimesh2D.cell_measure(args.cell_arg, make_free_sample(inner, Coords())), Trimesh2D.cell_measure(args.cell_arg, make_free_sample(outer, Coords())), ) @wp.func def side_normal(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.cell_arg.positions[edge_idx[0]] v1 = args.cell_arg.positions[edge_idx[1]] e = v1 - v0 return wp.normalize(wp.vec2(-e[1], e[0])) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_tri_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_tri_indices[side_index][1] @wp.func def edge_to_tri_coords(args: SideArg, side_index: ElementIndex, tri_index: ElementIndex, side_coords: Coords): edge_vidx = args.edge_vertex_indices[side_index] tri_vidx = args.cell_arg.tri_vertex_indices[tri_index] v0 = tri_vidx[0] v1 = tri_vidx[1] cx = float(0.0) cy = float(0.0) cz = float(0.0) if edge_vidx[0] == v0: cx = 1.0 - side_coords[0] elif edge_vidx[0] == v1: cy = 1.0 - side_coords[0] else: cz = 1.0 - side_coords[0] if edge_vidx[1] == v0: cx = side_coords[0] elif edge_vidx[1] == v1: cy = side_coords[0] else: cz = side_coords[0] return Coords(cx, cy, cz) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): inner_cell_index = Trimesh2D.side_inner_cell_index(args, side_index) return Trimesh2D.edge_to_tri_coords(args, side_index, inner_cell_index, side_coords) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): outer_cell_index = Trimesh2D.side_outer_cell_index(args, side_index) return Trimesh2D.edge_to_tri_coords(args, side_index, outer_cell_index, side_coords) @wp.func def side_from_cell_coords( args: SideArg, side_index: ElementIndex, tri_index: ElementIndex, tri_coords: Coords, ): edge_vidx = args.edge_vertex_indices[side_index] tri_vidx = args.cell_arg.tri_vertex_indices[tri_index] start = int(2) end = int(2) for k in range(2): v = tri_vidx[k] if edge_vidx[1] == v: end = k elif edge_vidx[0] == v: start = k return wp.select( tri_coords[start] + tri_coords[end] > 0.999, Coords(OUTSIDE), Coords(tri_coords[end], 0.0, 0.0) ) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg def _build_topology(self, temporary_store: TemporaryStore): from warp.fem.utils import compress_node_indices, masked_indices from warp.utils import array_scan device = self.tri_vertex_indices.device vertex_tri_offsets, vertex_tri_indices, _, __ = compress_node_indices( self.vertex_count(), self.tri_vertex_indices, temporary_store=temporary_store ) self._vertex_tri_offsets = vertex_tri_offsets.detach() self._vertex_tri_indices = vertex_tri_indices.detach() vertex_start_edge_count = borrow_temporary(temporary_store, dtype=int, device=device, shape=self.vertex_count()) vertex_start_edge_count.array.zero_() vertex_start_edge_offsets = borrow_temporary_like(vertex_start_edge_count, temporary_store=temporary_store) vertex_edge_ends = borrow_temporary(temporary_store, dtype=int, device=device, shape=(3 * self.cell_count())) vertex_edge_tris = borrow_temporary(temporary_store, dtype=int, device=device, shape=(3 * self.cell_count(), 2)) # Count face edges starting at each vertex wp.launch( kernel=Trimesh2D._count_starting_edges_kernel, device=device, dim=self.cell_count(), inputs=[self.tri_vertex_indices, vertex_start_edge_count.array], ) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_start_edge_offsets.array, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=Trimesh2D._count_unique_starting_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tri_offsets, self._vertex_tri_indices, self.tri_vertex_indices, vertex_start_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, vertex_edge_tris.array, ], ) vertex_unique_edge_offsets = borrow_temporary_like(vertex_start_edge_offsets, temporary_store=temporary_store) array_scan(in_array=vertex_start_edge_count.array, out_array=vertex_unique_edge_offsets.array, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = borrow_temporary(temporary_store, shape=(1,), dtype=int, device="cpu", pinned=True) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy( dest=edge_count.array, src=vertex_unique_edge_offsets.array, src_offset=self.vertex_count() - 1, count=1 ) wp.synchronize_stream(wp.get_stream(device)) edge_count = int(edge_count.array.numpy()[0]) else: edge_count = int(vertex_unique_edge_offsets.array.numpy()[self.vertex_count() - 1]) self._edge_vertex_indices = wp.empty(shape=(edge_count,), dtype=wp.vec2i, device=device) self._edge_tri_indices = wp.empty(shape=(edge_count,), dtype=wp.vec2i, device=device) boundary_mask = borrow_temporary(temporary_store=temporary_store, shape=(edge_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Trimesh2D._compress_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_edge_offsets.array, vertex_unique_edge_offsets.array, vertex_unique_edge_count.array, vertex_edge_ends.array, vertex_edge_tris.array, self._edge_vertex_indices, self._edge_tri_indices, boundary_mask.array, ], ) vertex_start_edge_offsets.release() vertex_unique_edge_offsets.release() vertex_unique_edge_count.release() vertex_edge_ends.release() vertex_edge_tris.release() # Flip normals if necessary wp.launch( kernel=Trimesh2D._flip_edge_normals, device=device, dim=self.side_count(), inputs=[self._edge_vertex_indices, self._edge_tri_indices, self.tri_vertex_indices, self.positions], ) boundary_edge_indices, _ = masked_indices(boundary_mask.array, temporary_store=temporary_store) self._boundary_edge_indices = boundary_edge_indices.detach() boundary_mask.release() def _compute_deformation_gradients(self): self._deformation_gradients = wp.empty(dtype=wp.mat22f, device=self.positions.device, shape=(self.cell_count())) wp.launch( kernel=Trimesh2D._compute_deformation_gradients_kernel, dim=self._deformation_gradients.shape, device=self._deformation_gradients.device, inputs=[self.tri_vertex_indices, self.positions, self._deformation_gradients], ) @wp.kernel def _count_starting_edges_kernel( tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_tri_offsets: wp.array(dtype=int), vertex_tri_indices: wp.array(dtype=int), tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), edge_tris: wp.array2d(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] tri_beg = vertex_tri_offsets[v] tri_end = vertex_tri_offsets[v + 1] edge_cur = edge_beg for tri in range(tri_beg, tri_end): t = vertex_tri_indices[tri] for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) # Check if other_v has been seen seen_idx = Trimesh2D._find(other_v, edge_ends, edge_beg, edge_cur) if seen_idx == -1: edge_ends[edge_cur] = other_v edge_tris[edge_cur, 0] = t edge_tris[edge_cur, 1] = t edge_cur += 1 else: edge_tris[seen_idx, 1] = t vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), uncompressed_edge_tris: wp.array2d(dtype=int), edge_vertex_indices: wp.array(dtype=wp.vec2i), edge_tri_indices: wp.array(dtype=wp.vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] for e in range(unique_count): src_index = start_beg + e edge_index = unique_beg + e edge_vertex_indices[edge_index] = wp.vec2i(v, uncompressed_edge_ends[src_index]) t0 = uncompressed_edge_tris[src_index, 0] t1 = uncompressed_edge_tris[src_index, 1] edge_tri_indices[edge_index] = wp.vec2i(t0, t1) if t0 == t1: boundary_mask[edge_index] = 1 else: boundary_mask[edge_index] = 0 @wp.kernel def _flip_edge_normals( edge_vertex_indices: wp.array(dtype=wp.vec2i), edge_tri_indices: wp.array(dtype=wp.vec2i), tri_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec2), ): e = wp.tid() tri = edge_tri_indices[e][0] tri_vidx = tri_vertex_indices[tri] edge_vidx = edge_vertex_indices[e] tri_centroid = (positions[tri_vidx[0]] + positions[tri_vidx[1]] + positions[tri_vidx[2]]) / 3.0 v0 = positions[edge_vidx[0]] v1 = positions[edge_vidx[1]] edge_center = 0.5 * (v1 + v0) edge_vec = v1 - v0 edge_normal = wp.vec2(-edge_vec[1], edge_vec[0]) # if edge normal points toward first triangle centroid, flip indices if wp.dot(tri_centroid - edge_center, edge_normal) > 0.0: edge_vertex_indices[e] = wp.vec2i(edge_vidx[1], edge_vidx[0]) @wp.kernel def _compute_deformation_gradients_kernel( tri_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec2f), transforms: wp.array(dtype=wp.mat22f), ): t = wp.tid() p0 = positions[tri_vertex_indices[t, 0]] p1 = positions[tri_vertex_indices[t, 1]] p2 = positions[tri_vertex_indices[t, 2]] e1 = p1 - p0 e2 = p2 - p0 transforms[t] = wp.mat22(e1, e2)
20,109
Python
33.792387
120
0.602715
NVIDIA/warp/warp/fem/geometry/__init__.py
from .deformed_geometry import DeformedGeometry from .element import Element from .geometry import Geometry from .grid_2d import Grid2D from .grid_3d import Grid3D from .hexmesh import Hexmesh from .nanogrid import Nanogrid from .partition import ( ExplicitGeometryPartition, GeometryPartition, LinearGeometryPartition, WholeGeometryPartition, ) from .quadmesh_2d import Quadmesh2D from .tetmesh import Tetmesh from .trimesh_2d import Trimesh2D
461
Python
26.176469
47
0.81128
NVIDIA/warp/warp/fem/geometry/nanogrid.py
from typing import Optional import numpy as np import warp as wp from warp.fem import cache, utils from warp.fem.types import NULL_ELEMENT_INDEX, OUTSIDE, Coords, ElementIndex, Sample, make_free_sample from .element import Cube, Square from .geometry import Geometry # Flag used for building edge/face grids to disambiguiate axis within the grid GRID_AXIS_FLAG = wp.constant(wp.int32(1 << 20)) FACE_AXIS_MASK = wp.constant(wp.uint8((1 << 3) - 1)) FACE_INNER_OFFSET_BIT = wp.constant(wp.uint8(3)) FACE_OUTER_OFFSET_BIT = wp.constant(wp.uint8(4)) _mat32 = wp.mat(shape=(3, 2), dtype=float) @wp.func def _add_axis_flag(ijk: wp.vec3i, axis: int): coord = ijk[axis] ijk[axis] = wp.select(coord < 0, coord | GRID_AXIS_FLAG, coord & (~GRID_AXIS_FLAG)) return ijk @wp.func def _extract_axis_flag(ijk: wp.vec3i): for ax in range(3): coord = ijk[ax] if coord < 0: if (ijk[ax] & GRID_AXIS_FLAG) == 0: ijk[ax] = ijk[ax] | GRID_AXIS_FLAG return ax, ijk else: if (ijk[ax] & GRID_AXIS_FLAG) != 0: ijk[ax] = ijk[ax] & (~GRID_AXIS_FLAG) return ax, ijk return -1, ijk @wp.struct class NanogridCellArg: # Utility device functions cell_grid: wp.uint64 cell_ijk: wp.array(dtype=wp.vec3i) inverse_transform: wp.mat33 cell_volume: float @wp.struct class NanogridSideArg: # Utility device functions cell_arg: NanogridCellArg face_ijk: wp.array(dtype=wp.vec3i) face_flags: wp.array(dtype=wp.uint8) face_areas: wp.vec3 class Nanogrid(Geometry): dimension = 3 def __init__(self, grid: wp.Volume, temporary_store: Optional[cache.TemporaryStore] = None): self._cell_grid = grid self._cell_grid_info = grid.get_grid_info() device = grid.device cell_count = grid.get_voxel_count() self._cell_ijk = wp.array(shape=(cell_count,), dtype=wp.vec3i, device=device) grid.get_voxels(out=self._cell_ijk) self._node_grid = _build_node_grid(self._cell_ijk, grid, temporary_store) node_count = self._node_grid.get_voxel_count() self._node_ijk = wp.array(shape=(node_count,), dtype=wp.vec3i, device=device) self._node_grid.get_voxels(out=self._node_ijk) self._face_grid = _build_face_grid(self._cell_ijk, grid, temporary_store) face_count = self._face_grid.get_voxel_count() self._face_ijk = wp.array(shape=(face_count,), dtype=wp.vec3i, device=device) self._face_grid.get_voxels(out=self._face_ijk) self._face_flags = wp.array(shape=(face_count,), dtype=wp.uint8, device=device) boundary_face_mask = cache.borrow_temporary(temporary_store, shape=(face_count,), dtype=wp.int32, device=device) wp.launch( _build_face_flags, dim=face_count, device=device, inputs=[grid.id, self._face_ijk, self._face_flags, boundary_face_mask.array], ) boundary_face_indices, _ = utils.masked_indices(boundary_face_mask.array) self._boundary_face_indices = boundary_face_indices.detach() self._edge_grid = None self._edge_ijk = None def _build_edge_grid(self, temporary_store: Optional[cache.TemporaryStore] = None): self._edge_grid = _build_edge_grid(self._cell_ijk, self._cell_grid, temporary_store) edge_count = self._edge_grid.get_voxel_count() self._edge_ijk = wp.array(shape=(edge_count,), dtype=wp.vec3i, device=self._edge_grid.device) self._edge_grid.get_voxels(out=self._edge_ijk) def cell_count(self): return self._cell_ijk.shape[0] def vertex_count(self): return self._node_ijk.shape[0] def side_count(self): return self._face_ijk.shape[0] def edge_count(self): if self._edge_ijk is None: self._build_edge_grid() return self._edge_ijk.shape[0] def boundary_side_count(self): return self._boundary_face_indices.shape[0] def reference_cell(self) -> Cube: return Cube() def reference_side(self) -> Square: return Square() CellArg = NanogridCellArg @cache.cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.cell_grid = self._cell_grid.id args.cell_ijk = self._cell_ijk transform = np.array(self._cell_grid_info.transform_matrix).reshape(3, 3) args.inverse_transform = wp.mat33f(np.linalg.inv(transform)) args.cell_volume = abs(np.linalg.det(transform)) return args @wp.func def cell_position(args: CellArg, s: Sample): uvw = wp.vec3(args.cell_ijk[s.element_index]) + s.element_coords return wp.volume_index_to_world(args.cell_grid, uvw) @wp.func def cell_deformation_gradient(args: CellArg, s: Sample): return wp.inverse(args.inverse_transform) @wp.func def cell_inverse_deformation_gradient(args: CellArg, s: Sample): return args.inverse_transform @wp.func def cell_lookup(args: CellArg, pos: wp.vec3): uvw = wp.volume_world_to_index(args.cell_grid, pos) ijk = wp.vec3i(int(wp.floor(uvw[0])), int(wp.floor(uvw[1])), int(wp.floor(uvw[2]))) element_index = wp.volume_lookup_index(args.cell_grid, ijk[0], ijk[1], ijk[2]) return wp.select( element_index == -1, make_free_sample(element_index, uvw - wp.vec3(ijk)), make_free_sample(NULL_ELEMENT_INDEX, Coords(OUTSIDE)), ) @wp.func def cell_lookup(args: CellArg, pos: wp.vec3, guess: Sample): return Nanogrid.cell_lookup(args, pos) @wp.func def cell_measure(args: CellArg, s: Sample): return args.cell_volume @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) SideArg = NanogridSideArg @cache.cached_arg_value def side_arg_value(self, device) -> SideArg: args = self.SideArg() args.cell_arg = self.cell_arg_value(device) args.face_ijk = self._face_ijk.to(device) args.face_flags = self._face_flags.to(device) transform = np.array(self._cell_grid_info.transform_matrix).reshape(3, 3) args.face_areas = wp.vec3( tuple(np.linalg.norm(np.cross(transform[:, k - 2], transform[:, k - 1])) for k in range(3)) ) return args @wp.struct class SideIndexArg: boundary_face_indices: wp.array(dtype=int) @cache.cached_arg_value def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_face_indices = self._boundary_face_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): return args.boundary_face_indices[boundary_side_index] @wp.func def _side_to_cell_coords(axis: int, inner: float, side_coords: Coords): uvw = wp.vec3() uvw[axis] = inner uvw[(axis + 1) % 3] = side_coords[0] uvw[(axis + 2) % 3] = side_coords[1] return uvw @wp.func def _get_face_axis(flags: wp.uint8): return wp.int32(flags & FACE_AXIS_MASK) @wp.func def _get_face_inner_offset(flags: wp.uint8): return wp.int32(flags >> FACE_INNER_OFFSET_BIT) & 1 @wp.func def _get_face_outer_offset(flags: wp.uint8): return wp.int32(flags >> FACE_OUTER_OFFSET_BIT) & 1 @wp.func def side_position(args: SideArg, s: Sample): ijk = args.face_ijk[s.element_index] axis = Nanogrid._get_face_axis(args.face_flags[s.element_index]) uvw = wp.vec3(ijk) + Nanogrid._side_to_cell_coords(axis, 0.0, s.element_coords) cell_grid = args.cell_arg.cell_grid return wp.volume_index_to_world(cell_grid, uvw) @wp.func def _face_tangent_vecs(args: SideArg, axis: int, flip: int): u_axis = utils.unit_element(wp.vec3(), (axis + 1 + flip) % 3) v_axis = utils.unit_element(wp.vec3(), (axis + 2 - flip) % 3) cell_grid = args.cell_arg.cell_grid return wp.volume_index_to_world_dir(cell_grid, u_axis), wp.volume_index_to_world_dir(cell_grid, v_axis) @wp.func def side_deformation_gradient(args: SideArg, s: Sample): flags = args.face_flags[s.element_index] axis = Nanogrid._get_face_axis(flags) flip = Nanogrid._get_face_inner_offset(flags) v1, v2 = Nanogrid._face_tangent_vecs(args, axis, flip) return _mat32(v1, v2) @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): return Nanogrid.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): return Nanogrid.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_measure(args: SideArg, s: Sample): axis = Nanogrid._get_face_axis(args.face_flags[s.element_index]) return args.face_areas[axis] @wp.func def side_measure_ratio(args: SideArg, s: Sample): axis = Nanogrid._get_face_axis(args.face_flags[s.element_index]) return args.face_areas[axis] / args.cell_arg.cell_volume @wp.func def side_normal(args: SideArg, s: Sample): flags = args.face_flags[s.element_index] axis = Nanogrid._get_face_axis(flags) flip = Nanogrid._get_face_inner_offset(flags) v1, v2 = Nanogrid._face_tangent_vecs(args, axis, flip) return wp.cross(v1, v2) / args.face_areas[axis] @wp.func def side_inner_cell_index(args: SideArg, side_index: ElementIndex): ijk = args.face_ijk[side_index] flags = args.face_flags[side_index] axis = Nanogrid._get_face_axis(flags) offset = Nanogrid._get_face_inner_offset(flags) ijk[axis] += offset - 1 cell_grid = args.cell_arg.cell_grid return wp.volume_lookup_index(cell_grid, ijk[0], ijk[1], ijk[2]) @wp.func def side_outer_cell_index(args: SideArg, side_index: ElementIndex): ijk = args.face_ijk[side_index] flags = args.face_flags[side_index] axis = Nanogrid._get_face_axis(flags) offset = Nanogrid._get_face_outer_offset(flags) ijk[axis] -= offset cell_grid = args.cell_arg.cell_grid return wp.volume_lookup_index(cell_grid, ijk[0], ijk[1], ijk[2]) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): flags = args.face_flags[side_index] axis = Nanogrid._get_face_axis(flags) offset = float(Nanogrid._get_face_inner_offset(flags)) return Nanogrid._side_to_cell_coords(axis, 1.0 - offset, side_coords) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): flags = args.face_flags[side_index] axis = Nanogrid._get_face_axis(flags) offset = float(Nanogrid._get_face_outer_offset(flags)) return Nanogrid._side_to_cell_coords(axis, offset, side_coords) @wp.func def side_from_cell_coords( args: SideArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): flags = args.face_flags[side_index] axis = Nanogrid._get_face_axis(flags) cell_ijk = args.cell_arg.cell_ijk[element_index] side_ijk = args.face_ijk[side_index] on_side = float(side_ijk[axis] - cell_ijk[axis]) == element_coords[axis] return wp.select( on_side, Coords(OUTSIDE), Coords(element_coords[(axis + 1) % 3], element_coords[(axis + 2) % 3], 0.0) ) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg @wp.kernel def _cell_node_indices( cell_ijk: wp.array(dtype=wp.vec3i), node_ijk: wp.array2d(dtype=wp.vec3i), ): cell, n = wp.tid() node_ijk[cell, n] = cell_ijk[cell] + wp.vec3i((n & 4) >> 2, (n & 2) >> 1, n & 1) @wp.kernel def _cell_face_indices( cell_ijk: wp.array(dtype=wp.vec3i), node_ijk: wp.array2d(dtype=wp.vec3i), ): cell = wp.tid() ijk = cell_ijk[cell] node_ijk[cell, 0] = _add_axis_flag(ijk, 0) node_ijk[cell, 1] = _add_axis_flag(ijk, 1) node_ijk[cell, 2] = _add_axis_flag(ijk, 2) node_ijk[cell, 3] = _add_axis_flag(ijk + wp.vec3i(1, 0, 0), 0) node_ijk[cell, 4] = _add_axis_flag(ijk + wp.vec3i(0, 1, 0), 1) node_ijk[cell, 5] = _add_axis_flag(ijk + wp.vec3i(0, 0, 1), 2) @wp.kernel def _cell_edge_indices( cell_ijk: wp.array(dtype=wp.vec3i), edge_ijk: wp.array2d(dtype=wp.vec3i), ): cell = wp.tid() ijk = cell_ijk[cell] edge_ijk[cell, 0] = _add_axis_flag(ijk, 0) edge_ijk[cell, 1] = _add_axis_flag(ijk, 1) edge_ijk[cell, 2] = _add_axis_flag(ijk, 2) edge_ijk[cell, 3] = _add_axis_flag(ijk + wp.vec3i(0, 1, 0), 0) edge_ijk[cell, 4] = _add_axis_flag(ijk + wp.vec3i(0, 0, 1), 1) edge_ijk[cell, 5] = _add_axis_flag(ijk + wp.vec3i(1, 0, 0), 2) edge_ijk[cell, 6] = _add_axis_flag(ijk + wp.vec3i(0, 1, 1), 0) edge_ijk[cell, 7] = _add_axis_flag(ijk + wp.vec3i(1, 0, 1), 1) edge_ijk[cell, 8] = _add_axis_flag(ijk + wp.vec3i(1, 1, 0), 2) edge_ijk[cell, 9] = _add_axis_flag(ijk + wp.vec3i(0, 0, 1), 0) edge_ijk[cell, 10] = _add_axis_flag(ijk + wp.vec3i(1, 0, 0), 1) edge_ijk[cell, 11] = _add_axis_flag(ijk + wp.vec3i(0, 1, 0), 2) def _build_node_grid(cell_ijk, grid: wp.Volume, temporary_store: cache.TemporaryStore): cell_count = cell_ijk.shape[0] cell_nodes = cache.borrow_temporary(temporary_store, shape=(cell_count, 8), dtype=wp.vec3i, device=cell_ijk.device) wp.launch( _cell_node_indices, dim=cell_nodes.array.shape, inputs=[cell_ijk, cell_nodes.array], device=cell_ijk.device ) node_grid = wp.Volume.allocate_by_voxels( cell_nodes.array.flatten(), voxel_size=grid.get_voxel_size()[0], device=cell_ijk.device ) return node_grid def _build_face_grid(cell_ijk, grid: wp.Volume, temporary_store: cache.TemporaryStore): cell_count = cell_ijk.shape[0] cell_faces = cache.borrow_temporary(temporary_store, shape=(cell_count, 6), dtype=wp.vec3i, device=cell_ijk.device) wp.launch(_cell_face_indices, dim=cell_count, inputs=[cell_ijk, cell_faces.array], device=cell_ijk.device) face_grid = wp.Volume.allocate_by_voxels( cell_faces.array.flatten(), voxel_size=grid.get_voxel_size()[0], device=cell_ijk.device ) return face_grid def _build_edge_grid(cell_ijk, grid: wp.Volume, temporary_store: cache.TemporaryStore): cell_count = cell_ijk.shape[0] cell_edges = cache.borrow_temporary(temporary_store, shape=(cell_count, 12), dtype=wp.vec3i, device=cell_ijk.device) wp.launch(_cell_edge_indices, dim=cell_count, inputs=[cell_ijk, cell_edges.array], device=cell_ijk.device) edge_grid = wp.Volume.allocate_by_voxels( cell_edges.array.flatten(), voxel_size=grid.get_voxel_size()[0], device=cell_ijk.device ) return edge_grid @wp.kernel def _build_face_flags( cell_grid: wp.uint64, face_ijk: wp.array(dtype=wp.vec3i), face_flags: wp.array(dtype=wp.uint8), boundary_face_mask: wp.array(dtype=int), ): face = wp.tid() axis, ijk = _extract_axis_flag(face_ijk[face]) ijk_minus = ijk ijk_minus[axis] -= 1 plus_cell_index = wp.volume_lookup_index(cell_grid, ijk[0], ijk[1], ijk[2]) minus_cell_index = wp.volume_lookup_index(cell_grid, ijk_minus[0], ijk_minus[1], ijk_minus[2]) plus_boundary = wp.uint8(wp.select(plus_cell_index == -1, 0, 1)) << FACE_OUTER_OFFSET_BIT minus_boundary = wp.uint8(wp.select(minus_cell_index == -1, 0, 1)) << FACE_INNER_OFFSET_BIT face_ijk[face] = ijk face_flags[face] = wp.uint8(axis) | plus_boundary | minus_boundary boundary_face_mask[face] = wp.select((plus_boundary | minus_boundary) == 0, 1, 0)
15,902
Python
33.875
120
0.629229
NVIDIA/warp/warp/fem/geometry/deformed_geometry.py
from typing import Any import warp as wp from warp.fem import cache from warp.fem.types import Coords, ElementIndex, Sample, make_free_sample from .geometry import Geometry _mat32 = wp.mat(shape=(3, 2), dtype=float) class DeformedGeometry(Geometry): def __init__(self, field): """Constructs a Deformed Geometry from a displacement field defined over a base geometry""" from warp.fem.field import DiscreteField self.field: DiscreteField = field self.base = self.field.space.geometry self.dimension = self.base.dimension if not wp.types.type_is_vector(field.dtype) or wp.types.type_length(field.dtype) != self.dimension: raise ValueError("Invalid value type for position field") self.CellArg = self.field.ElementEvalArg self.field_trace = field.trace() self.SideArg = self._make_side_arg() self.SideIndexArg = self.base.SideIndexArg self.cell_count = self.base.cell_count self.vertex_count = self.base.vertex_count self.side_count = self.base.side_count self.boundary_side_count = self.base.boundary_side_count self.reference_cell = self.base.reference_cell self.reference_side = self.base.reference_side self.side_index_arg_value = self.base.side_index_arg_value self.cell_position = self._make_cell_position() self.cell_deformation_gradient = self._make_cell_deformation_gradient() self.cell_inverse_deformation_gradient = self._make_cell_inverse_deformation_gradient() self.cell_measure = self._make_cell_measure() self.boundary_side_index = self.base.boundary_side_index self.side_to_cell_arg = self._make_side_to_cell_arg() self.side_position = self._make_side_position() self.side_deformation_gradient = self._make_side_deformation_gradient() self.side_inner_cell_index = self._make_side_inner_cell_index() self.side_outer_cell_index = self._make_side_outer_cell_index() self.side_inner_cell_coords = self._make_side_inner_cell_coords() self.side_outer_cell_coords = self._make_side_outer_cell_coords() self.side_from_cell_coords = self._make_side_from_cell_coords() self.side_inner_inverse_deformation_gradient = self._make_side_inner_inverse_deformation_gradient() self.side_outer_inverse_deformation_gradient = self._make_side_outer_inverse_deformation_gradient() self.side_measure = self._make_side_measure() self.side_measure_ratio = self._make_side_measure_ratio() self.side_normal = self._make_side_normal() @property def name(self): return f"DefGeo_{self.field.name}" # Geometry device interface @cache.cached_arg_value def cell_arg_value(self, device) -> "DeformedGeometry.CellArg": args = self.CellArg() args.elt_arg = self.base.cell_arg_value(device) args.eval_arg = self.field.eval_arg_value(device) return args def _make_cell_position(self): @cache.dynamic_func(suffix=self.name) def cell_position(cell_arg: self.CellArg, s: Sample): return self.field.eval_inner(cell_arg, s) + self.base.cell_position(cell_arg.elt_arg, s) return cell_position def _make_cell_deformation_gradient(self): @cache.dynamic_func(suffix=self.name) def cell_deformation_gradient(cell_arg: self.CellArg, s: Sample): return self.field.eval_reference_grad_inner(cell_arg, s) + self.base.cell_deformation_gradient( cell_arg.elt_arg, s ) return cell_deformation_gradient def _make_cell_inverse_deformation_gradient(self): @cache.dynamic_func(suffix=self.name) def cell_inverse_deformation_gradient(cell_arg: self.CellArg, s: Sample): return wp.inverse(self.cell_deformation_gradient(cell_arg, s)) return cell_inverse_deformation_gradient def _make_cell_measure(self): REF_MEASURE = wp.constant(self.reference_cell().measure()) @cache.dynamic_func(suffix=self.name) def cell_measure(args: self.CellArg, s: Sample): return wp.abs(wp.determinant(self.cell_deformation_gradient(args, s))) * REF_MEASURE return cell_measure @wp.func def cell_normal(args: Any, s: Sample): return wp.vec2(0.0) def _make_side_arg(self): @cache.dynamic_struct(suffix=self.name) class SideArg: base_arg: self.base.SideArg trace_arg: self.field_trace.EvalArg field_arg: self.field.EvalArg return SideArg @cache.cached_arg_value def side_arg_value(self, device) -> "DeformedGeometry.SideArg": args = self.SideArg() args.base_arg = self.base.side_arg_value(device) args.field_arg = self.field.eval_arg_value(device) args.trace_arg = self.field_trace.eval_arg_value(device) return args def _make_side_position(self): @cache.dynamic_func(suffix=self.name) def side_position(args: self.SideArg, s: Sample): trace_arg = self.field_trace.ElementEvalArg(args.base_arg, args.trace_arg) return self.field_trace.eval_inner(trace_arg, s) + self.base.side_position(args.base_arg, s) return side_position def _make_side_deformation_gradient(self): @cache.dynamic_func(suffix=self.name) def side_deformation_gradient(args: self.SideArg, s: Sample): base_def_grad = self.base.side_deformation_gradient(args.base_arg, s) trace_arg = self.field_trace.ElementEvalArg(args.base_arg, args.trace_arg) Du = self.field_trace.eval_grad_inner(trace_arg, s) return base_def_grad + Du * base_def_grad return side_deformation_gradient def _make_side_inner_inverse_deformation_gradient(self): @cache.dynamic_func(suffix=self.name) def side_inner_inverse_deformation_gradient(args: self.SideArg, s: Sample): cell_index = self.side_inner_cell_index(args, s.element_index) cell_coords = self.side_inner_cell_coords(args, s.element_index, s.element_coords) cell_arg = self.side_to_cell_arg(args) return self.cell_inverse_deformation_gradient(cell_arg, make_free_sample(cell_index, cell_coords)) def _make_side_outer_inverse_deformation_gradient(self): @cache.dynamic_func(suffix=self.name) def side_outer_inverse_deformation_gradient(args: self.SideArg, s: Sample): cell_index = self.side_outer_cell_index(args, s.element_index) cell_coords = self.side_outer_cell_coords(args, s.element_index, s.element_coords) cell_arg = self.side_to_cell_arg(args) return self.cell_inverse_deformation_gradient(cell_arg, make_free_sample(cell_index, cell_coords)) @wp.func def _side_measure(F: wp.vec2): return wp.length(F) @wp.func def _side_measure(F: _mat32): Fcross = wp.vec3( F[1, 0] * F[2, 1] - F[2, 0] * F[1, 1], F[2, 0] * F[0, 1] - F[0, 0] * F[2, 1], F[0, 0] * F[1, 1] - F[1, 0] * F[0, 1], ) return wp.length(Fcross) @wp.func def _side_normal(F: wp.vec2): return wp.normalize(wp.vec2(-F[1], F[0])) @wp.func def _side_normal(F: _mat32): Fcross = wp.vec3( F[1, 0] * F[2, 1] - F[2, 0] * F[1, 1], F[2, 0] * F[0, 1] - F[0, 0] * F[2, 1], F[0, 0] * F[1, 1] - F[1, 0] * F[0, 1], ) return wp.normalize(Fcross) def _make_side_measure(self): REF_MEASURE = wp.constant(self.reference_side().measure()) @cache.dynamic_func(suffix=self.name) def side_measure(args: self.SideArg, s: Sample): F = self.side_deformation_gradient(args, s) return DeformedGeometry._side_measure(F) * REF_MEASURE return side_measure def _make_side_measure_ratio(self): @cache.dynamic_func(suffix=self.name) def side_measure_ratio(args: self.SideArg, s: Sample): inner = self.side_inner_cell_index(args, s.element_index) outer = self.side_outer_cell_index(args, s.element_index) inner_coords = self.side_inner_cell_coords(args, s.element_index, s.element_coords) outer_coords = self.side_outer_cell_coords(args, s.element_index, s.element_coords) cell_arg = self.side_to_cell_arg(args) return self.side_measure(args, s) / wp.min( self.cell_measure(cell_arg, make_free_sample(inner, inner_coords)), self.cell_measure(cell_arg, make_free_sample(outer, outer_coords)), ) return side_measure_ratio def _make_side_normal(self): @cache.dynamic_func(suffix=self.name) def side_normal(args: self.SideArg, s: Sample): F = self.side_deformation_gradient(args, s) return DeformedGeometry._side_normal(F) return side_normal def _make_side_inner_cell_index(self): @cache.dynamic_func(suffix=self.name) def side_inner_cell_index(args: self.SideArg, side_index: ElementIndex): return self.base.side_inner_cell_index(args.base_arg, side_index) return side_inner_cell_index def _make_side_outer_cell_index(self): @cache.dynamic_func(suffix=self.name) def side_outer_cell_index(args: self.SideArg, side_index: ElementIndex): return self.base.side_outer_cell_index(args.base_arg, side_index) return side_outer_cell_index def _make_side_inner_cell_coords(self): @cache.dynamic_func(suffix=self.name) def side_inner_cell_coords(args: self.SideArg, side_index: ElementIndex, side_coords: Coords): return self.base.side_inner_cell_coords(args.base_arg, side_index, side_coords) return side_inner_cell_coords def _make_side_outer_cell_coords(self): @cache.dynamic_func(suffix=self.name) def side_outer_cell_coords(args: self.SideArg, side_index: ElementIndex, side_coords: Coords): return self.base.side_outer_cell_coords(args.base_arg, side_index, side_coords) return side_outer_cell_coords def _make_side_from_cell_coords(self): @cache.dynamic_func(suffix=self.name) def side_from_cell_coords( args: self.SideArg, side_index: ElementIndex, cell_index: ElementIndex, cell_coords: Coords, ): return self.base.side_from_cell_coords(args.base_arg, side_index, cell_index, cell_coords) return side_from_cell_coords def _make_side_to_cell_arg(self): @cache.dynamic_func(suffix=self.name) def side_to_cell_arg(side_arg: self.SideArg): return self.CellArg(self.base.side_to_cell_arg(side_arg.base_arg), side_arg.field_arg) return side_to_cell_arg
10,929
Python
39.332103
110
0.639949
NVIDIA/warp/warp/fem/geometry/grid_2d.py
from typing import Optional import warp as wp from warp.fem.cache import cached_arg_value from warp.fem.types import OUTSIDE, Coords, ElementIndex, Sample, make_free_sample from .element import LinearEdge, Square from .geometry import Geometry @wp.struct class Grid2DCellArg: res: wp.vec2i cell_size: wp.vec2 origin: wp.vec2 class Grid2D(Geometry): """Two-dimensional regular grid geometry""" dimension = 2 Permutation = wp.types.matrix(shape=(2, 2), dtype=int) ROTATION = wp.constant(Permutation(0, 1, 1, 0)) def __init__(self, res: wp.vec2i, bounds_lo: Optional[wp.vec2] = None, bounds_hi: Optional[wp.vec2] = None): """Constructs a dense 2D grid Args: res: Resolution of the grid along each dimension bounds_lo: Position of the lower bound of the axis-aligned grid bounds_up: Position of the upper bound of the axis-aligned grid """ if bounds_lo is None: bounds_lo = wp.vec2(0.0) if bounds_hi is None: bounds_hi = wp.vec2(1.0) self.bounds_lo = bounds_lo self.bounds_hi = bounds_hi self._res = res @property def extents(self) -> wp.vec3: # Avoid using native sub due to higher over of calling builtins from Python return wp.vec2( self.bounds_hi[0] - self.bounds_lo[0], self.bounds_hi[1] - self.bounds_lo[1], ) @property def cell_size(self) -> wp.vec2: ex = self.extents return wp.vec2( ex[0] / self.res[0], ex[1] / self.res[1], ) def cell_count(self): return self.res[0] * self.res[1] def vertex_count(self): return (self.res[0] + 1) * (self.res[1] + 1) def side_count(self): return 2 * self.cell_count() + self.res[0] + self.res[1] def boundary_side_count(self): return 2 * (self.res[0] + self.res[1]) def reference_cell(self) -> Square: return Square() def reference_side(self) -> LinearEdge: return LinearEdge() @property def res(self): return self._res @property def origin(self): return self.bounds_lo @property def strides(self): return wp.vec2i(self.res[1], 1) # Utility device functions CellArg = Grid2DCellArg Cell = wp.vec2i @wp.func def _to_2d_index(x_stride: int, index: int): x = index // x_stride y = index - x_stride * x return wp.vec2i(x, y) @wp.func def _from_2d_index(x_stride: int, index: wp.vec2i): return x_stride * index[0] + index[1] @wp.func def cell_index(res: wp.vec2i, cell: Cell): return Grid2D._from_2d_index(res[1], cell) @wp.func def get_cell(res: wp.vec2i, cell_index: ElementIndex): return Grid2D._to_2d_index(res[1], cell_index) @wp.struct class Side: axis: int # normal; 0: horizontal, 1: vertical origin: wp.vec2i # index of vertex at corner (0,0) @wp.struct class SideArg: cell_count: int axis_offsets: wp.vec2i cell_arg: Grid2DCellArg SideIndexArg = SideArg @wp.func def _rotate(axis: int, vec: wp.vec2i): return wp.vec2i( vec[Grid2D.ROTATION[axis, 0]], vec[Grid2D.ROTATION[axis, 1]], ) @wp.func def _rotate(axis: int, vec: wp.vec2): return wp.vec2( vec[Grid2D.ROTATION[axis, 0]], vec[Grid2D.ROTATION[axis, 1]], ) @wp.func def side_index(arg: SideArg, side: Side): alt_axis = Grid2D.ROTATION[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: # Upper-boundary side longitude = side.origin[1] return 2 * arg.cell_count + arg.axis_offsets[side.axis] + longitude cell_index = Grid2D.cell_index(arg.cell_arg.res, Grid2D._rotate(side.axis, side.origin)) return side.axis * arg.cell_count + cell_index @wp.func def get_side(arg: SideArg, side_index: ElementIndex): if side_index < 2 * arg.cell_count: axis = side_index // arg.cell_count cell_index = side_index - axis * arg.cell_count origin = Grid2D._rotate(axis, Grid2D.get_cell(arg.cell_arg.res, cell_index)) return Grid2D.Side(axis, origin) axis_side_index = side_index - 2 * arg.cell_count if axis_side_index < arg.axis_offsets[1]: axis = 0 else: axis = 1 altitude = arg.cell_arg.res[Grid2D.ROTATION[axis, 0]] longitude = axis_side_index - arg.axis_offsets[axis] origin_loc = wp.vec2i(altitude, longitude) return Grid2D.Side(axis, origin_loc) # Geometry device interface @cached_arg_value def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.res = self.res args.cell_size = self.cell_size args.origin = self.bounds_lo return args @wp.func def cell_position(args: CellArg, s: Sample): cell = Grid2D.get_cell(args.res, s.element_index) return ( wp.vec2( (float(cell[0]) + s.element_coords[0]) * args.cell_size[0], (float(cell[1]) + s.element_coords[1]) * args.cell_size[1], ) + args.origin ) @wp.func def cell_deformation_gradient(args: CellArg, s: Sample): return wp.diag(args.cell_size) @wp.func def cell_inverse_deformation_gradient(args: CellArg, s: Sample): return wp.diag(wp.cw_div(wp.vec2(1.0), args.cell_size)) @wp.func def cell_lookup(args: CellArg, pos: wp.vec2): loc_pos = wp.cw_div(pos - args.origin, args.cell_size) x = wp.clamp(loc_pos[0], 0.0, float(args.res[0])) y = wp.clamp(loc_pos[1], 0.0, float(args.res[1])) x_cell = wp.min(wp.floor(x), float(args.res[0]) - 1.0) y_cell = wp.min(wp.floor(y), float(args.res[1]) - 1.0) coords = Coords(x - x_cell, y - y_cell, 0.0) cell_index = Grid2D.cell_index(args.res, Grid2D.Cell(int(x_cell), int(y_cell))) return make_free_sample(cell_index, coords) @wp.func def cell_lookup(args: CellArg, pos: wp.vec2, guess: Sample): return Grid2D.cell_lookup(args, pos) @wp.func def cell_measure(args: CellArg, s: Sample): return args.cell_size[0] * args.cell_size[1] @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec2(0.0) @cached_arg_value def side_arg_value(self, device) -> SideArg: args = self.SideArg() args.axis_offsets = wp.vec2i( 0, self.res[0], ) args.cell_count = self.cell_count() args.cell_arg = self.cell_arg_value(device) return args def side_index_arg_value(self, device) -> SideIndexArg: return self.side_arg_value(device) @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" axis_side_index = boundary_side_index // 2 border = boundary_side_index - 2 * axis_side_index if axis_side_index < args.axis_offsets[1]: axis = 0 else: axis = 1 longitude = axis_side_index - args.axis_offsets[axis] altitude = border * args.cell_arg.res[axis] side = Grid2D.Side(axis, wp.vec2i(altitude, longitude)) return Grid2D.side_index(args, side) @wp.func def side_position(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) coord = wp.select((side.origin[0] == 0) == (side.axis == 0), 1.0 - s.element_coords[0], s.element_coords[0]) local_pos = wp.vec2( float(side.origin[0]), float(side.origin[1]) + coord, ) pos = args.cell_arg.origin + wp.cw_mul(Grid2D._rotate(side.axis, local_pos), args.cell_arg.cell_size) return pos @wp.func def side_deformation_gradient(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) sign = wp.select((side.origin[0] == 0) == (side.axis == 0), -1.0, 1.0) return wp.cw_mul(Grid2D._rotate(side.axis, wp.vec2(0.0, sign)), args.cell_arg.cell_size) @wp.func def side_inner_inverse_deformation_gradient(args: SideArg, s: Sample): return Grid2D.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_outer_inverse_deformation_gradient(args: SideArg, s: Sample): return Grid2D.cell_inverse_deformation_gradient(args.cell_arg, s) @wp.func def side_measure(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) long_axis = Grid2D.ROTATION[side.axis, 1] return args.cell_arg.cell_size[long_axis] @wp.func def side_measure_ratio(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) alt_axis = Grid2D.ROTATION[side.axis, 0] return 1.0 / args.cell_arg.cell_size[alt_axis] @wp.func def side_normal(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) sign = wp.select(side.origin[0] == 0, 1.0, -1.0) local_n = wp.vec2(sign, 0.0) return Grid2D._rotate(side.axis, local_n) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid2D.get_side(arg, side_index) inner_alt = wp.select(side.origin[0] == 0, side.origin[0] - 1, 0) inner_origin = wp.vec2i(inner_alt, side.origin[1]) cell = Grid2D._rotate(side.axis, inner_origin) return Grid2D.cell_index(arg.cell_arg.res, cell) @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid2D.get_side(arg, side_index) alt_axis = Grid2D.ROTATION[side.axis, 0] outer_alt = wp.select( side.origin[0] == arg.cell_arg.res[alt_axis], side.origin[0], arg.cell_arg.res[alt_axis] - 1 ) outer_origin = wp.vec2i(outer_alt, side.origin[1]) cell = Grid2D._rotate(side.axis, outer_origin) return Grid2D.cell_index(arg.cell_arg.res, cell) @wp.func def side_inner_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): side = Grid2D.get_side(args, side_index) inner_alt = wp.select(side.origin[0] == 0, 1.0, 0.0) side_coord = wp.select((side.origin[0] == 0) == (side.axis == 0), 1.0 - side_coords[0], side_coords[0]) coords = Grid2D._rotate(side.axis, wp.vec2(inner_alt, side_coord)) return Coords(coords[0], coords[1], 0.0) @wp.func def side_outer_cell_coords(args: SideArg, side_index: ElementIndex, side_coords: Coords): side = Grid2D.get_side(args, side_index) alt_axis = Grid2D.ROTATION[side.axis, 0] outer_alt = wp.select(side.origin[0] == args.cell_arg.res[alt_axis], 0.0, 1.0) side_coord = wp.select((side.origin[0] == 0) == (side.axis == 0), 1.0 - side_coords[0], side_coords[0]) coords = Grid2D._rotate(side.axis, wp.vec2(outer_alt, side_coord)) return Coords(coords[0], coords[1], 0.0) @wp.func def side_from_cell_coords( args: SideArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): side = Grid2D.get_side(args, side_index) cell = Grid2D.get_cell(args.cell_arg.res, element_index) if float(side.origin[0] - cell[side.axis]) == element_coords[side.axis]: long_axis = Grid2D.ROTATION[side.axis, 1] axis_coord = element_coords[long_axis] side_coord = wp.select((side.origin[0] == 0) == (side.axis == 0), 1.0 - axis_coord, axis_coord) return Coords(side_coord, 0.0, 0.0) return Coords(OUTSIDE) @wp.func def side_to_cell_arg(side_arg: SideArg): return side_arg.cell_arg
11,950
Python
30.367454
116
0.591799
NVIDIA/warp/warp/fem/geometry/element.py
from typing import List, Tuple from warp.fem.polynomial import Polynomial, quadrature_1d from warp.fem.types import Coords class Element: def measure() -> float: """Measure (area, volume, ...) of the reference element""" raise NotImplementedError @staticmethod def instantiate_quadrature(order: int, family: Polynomial) -> Tuple[List[Coords], List[float]]: """Returns a quadrature of a given order for a prototypical element""" raise NotImplementedError def center(self) -> Tuple[float]: coords, _ = self.instantiate_quadrature(order=0, family=None) return coords[0] def _point_count_from_order(order: int, family: Polynomial): if family == Polynomial.GAUSS_LEGENDRE: point_count = max(1, order // 2 + 1) elif family == Polynomial.LOBATTO_GAUSS_LEGENDRE: point_count = max(2, order // 2 + 2) elif family == Polynomial.EQUISPACED_CLOSED: point_count = max(2, 2 * (order // 2) + 1) elif family == Polynomial.EQUISPACED_OPEN: point_count = max(1, 2 * (order // 2) + 1) return point_count class Cube(Element): @staticmethod def measure() -> float: return 1.0 @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, y, z) for x in gauss_1d for y in gauss_1d for z in gauss_1d] weights = [wx * wy * wz for wx in weights_1d for wy in weights_1d for wz in weights_1d] return coords, weights class Square(Element): @staticmethod def measure() -> float: return 1.0 @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, y, 0.0) for x in gauss_1d for y in gauss_1d] weights = [wx * wy for wx in weights_1d for wy in weights_1d] return coords, weights class LinearEdge(Element): @staticmethod def measure() -> float: return 1.0 @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, 0.0, 0.0) for x in gauss_1d] return coords, weights_1d class Triangle(Element): @staticmethod def measure() -> float: return 0.5 @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is not None: # Duffy transformation from square to triangle point_count = _point_count_from_order(order=order + 1, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(1.0 - x - y + x * y, x, y * (1.0 - x)) for x in gauss_1d for y in gauss_1d] # Scale weight by 2.0 so that they sum up to 1 weights = [2.0 * wx * (1.0 - x) * wy for x, wx in zip(gauss_1d, weights_1d) for wy in weights_1d] return coords, weights if order <= 1: weights = [1.0] coords = [Coords(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0)] elif order <= 2: weights = [1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0] coords = [ Coords(2.0 / 3.0, 1.0 / 6.0, 1.0 / 6.0), Coords(1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0), Coords(1.0 / 6.0, 1.0 / 6.0, 2.0 / 3.0), ] elif order <= 3: # Hillion 1977, # "Numerical Integration on a Triangle" weights = [ 3.18041381743977225049491153185954e-01, 3.18041381743977225049491153185954e-01, 1.81958618256022719439357615556219e-01, 1.81958618256022719439357615556219e-01, ] coords = [ Coords( 6.66390246014701426169324349757517e-01, 1.78558728263616461884311092944699e-01, 1.55051025721682111946364557297784e-01, ), Coords( 1.78558728263616461884311092944699e-01, 6.66390246014701426169324349757517e-01, 1.55051025721682056435213326039957e-01, ), Coords( 2.80019915499074012465996474929852e-01, 7.50311102226081383381739442484104e-02, 6.44948974278317876951405196450651e-01, ), Coords( 7.50311102226081383381739442484104e-02, 2.80019915499074012465996474929852e-01, 6.44948974278317876951405196450651e-01, ), ] elif order <= 4: # Witherden and Vincent 2015, # "On the identification of symmetric quadrature rules for finite element methods" # https://doi.org/10.1016/j.camwa.2015.03.017 weights = [ 2.23381589678011471811203136894619e-01, 2.23381589678011471811203136894619e-01, 2.23381589678011471811203136894619e-01, 1.09951743655321870773988734981685e-01, 1.09951743655321870773988734981685e-01, 1.09951743655321870773988734981685e-01, ] coords = [ Coords( 4.45948490915964890213274429697776e-01, 4.45948490915964890213274429697776e-01, 1.08103018168070219573451140604448e-01, ), Coords( 4.45948490915964890213274429697776e-01, 1.08103018168070219573451140604448e-01, 4.45948490915964890213274429697776e-01, ), Coords( 1.08103018168070219573451140604448e-01, 4.45948490915964890213274429697776e-01, 4.45948490915964890213274429697776e-01, ), Coords( 9.15762135097707430375635340169538e-02, 9.15762135097707430375635340169538e-02, 8.16847572980458513924872931966092e-01, ), Coords( 9.15762135097707430375635340169538e-02, 8.16847572980458513924872931966092e-01, 9.15762135097707430375635340169538e-02, ), Coords( 8.16847572980458513924872931966092e-01, 9.15762135097707430375635340169538e-02, 9.15762135097707430375635340169538e-02, ), ] elif order <= 5: weights = [ 2.25000000000000005551115123125783e-01, 1.25939180544827139529573400977824e-01, 1.25939180544827139529573400977824e-01, 1.25939180544827139529573400977824e-01, 1.32394152788506191953388224646915e-01, 1.32394152788506191953388224646915e-01, 1.32394152788506191953388224646915e-01, ] coords = [ Coords( 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, ), Coords( 1.01286507323456342888334802410100e-01, 1.01286507323456342888334802410100e-01, 7.97426985353087314223330395179801e-01, ), Coords( 1.01286507323456342888334802410100e-01, 7.97426985353087314223330395179801e-01, 1.01286507323456342888334802410100e-01, ), Coords( 7.97426985353087314223330395179801e-01, 1.01286507323456342888334802410100e-01, 1.01286507323456342888334802410100e-01, ), Coords( 4.70142064105115109473587153843255e-01, 4.70142064105115109473587153843255e-01, 5.97158717897697810528256923134904e-02, ), Coords( 4.70142064105115109473587153843255e-01, 5.97158717897697810528256923134904e-02, 4.70142064105115109473587153843255e-01, ), Coords( 5.97158717897697810528256923134904e-02, 4.70142064105115109473587153843255e-01, 4.70142064105115109473587153843255e-01, ), ] elif order <= 6: weights = [ 5.08449063702068326797700592578622e-02, 5.08449063702068326797700592578622e-02, 5.08449063702068326797700592578622e-02, 1.16786275726379396022736045779311e-01, 1.16786275726379396022736045779311e-01, 1.16786275726379396022736045779311e-01, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, ] coords = [ Coords( 6.30890144915022266225435032538371e-02, 6.30890144915022266225435032538371e-02, 8.73821971016995546754912993492326e-01, ), Coords( 6.30890144915022266225435032538371e-02, 8.73821971016995546754912993492326e-01, 6.30890144915022266225435032538371e-02, ), Coords( 8.73821971016995546754912993492326e-01, 6.30890144915022266225435032538371e-02, 6.30890144915022266225435032538371e-02, ), Coords( 2.49286745170910428726074314909056e-01, 2.49286745170910428726074314909056e-01, 5.01426509658179142547851370181888e-01, ), Coords( 2.49286745170910428726074314909056e-01, 5.01426509658179142547851370181888e-01, 2.49286745170910428726074314909056e-01, ), Coords( 5.01426509658179142547851370181888e-01, 2.49286745170910428726074314909056e-01, 2.49286745170910428726074314909056e-01, ), Coords( 5.31450498448169383891581674106419e-02, 3.10352451033784393352732422499685e-01, 6.36502499121398668258109410089673e-01, ), Coords( 5.31450498448169383891581674106419e-02, 6.36502499121398668258109410089673e-01, 3.10352451033784393352732422499685e-01, ), Coords( 3.10352451033784393352732422499685e-01, 5.31450498448169383891581674106419e-02, 6.36502499121398668258109410089673e-01, ), Coords( 3.10352451033784393352732422499685e-01, 6.36502499121398668258109410089673e-01, 5.31450498448169383891581674106419e-02, ), Coords( 6.36502499121398668258109410089673e-01, 5.31450498448169383891581674106419e-02, 3.10352451033784393352732422499685e-01, ), Coords( 6.36502499121398668258109410089673e-01, 3.10352451033784393352732422499685e-01, 5.31450498448169383891581674106419e-02, ), ] else: # Order 8 weights = [ 1.44315607677787172136163462710101e-01, 9.50916342672846193195823616406415e-02, 9.50916342672846193195823616406415e-02, 9.50916342672846193195823616406415e-02, 1.03217370534718244634575512463925e-01, 1.03217370534718244634575512463925e-01, 1.03217370534718244634575512463925e-01, 3.24584976231980792960030157701112e-02, 3.24584976231980792960030157701112e-02, 3.24584976231980792960030157701112e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, ] coords = [ Coords( 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, ), Coords( 4.59292588292723125142913431773195e-01, 4.59292588292723125142913431773195e-01, 8.14148234145537497141731364536099e-02, ), Coords( 4.59292588292723125142913431773195e-01, 8.14148234145537497141731364536099e-02, 4.59292588292723125142913431773195e-01, ), Coords( 8.14148234145537497141731364536099e-02, 4.59292588292723125142913431773195e-01, 4.59292588292723125142913431773195e-01, ), Coords( 1.70569307751760212976677166807349e-01, 1.70569307751760212976677166807349e-01, 6.58861384496479574046645666385302e-01, ), Coords( 1.70569307751760212976677166807349e-01, 6.58861384496479574046645666385302e-01, 1.70569307751760212976677166807349e-01, ), Coords( 6.58861384496479574046645666385302e-01, 1.70569307751760212976677166807349e-01, 1.70569307751760212976677166807349e-01, ), Coords( 5.05472283170309566457945038564503e-02, 5.05472283170309566457945038564503e-02, 8.98905543365938086708410992287099e-01, ), Coords( 5.05472283170309566457945038564503e-02, 8.98905543365938086708410992287099e-01, 5.05472283170309566457945038564503e-02, ), Coords( 8.98905543365938086708410992287099e-01, 5.05472283170309566457945038564503e-02, 5.05472283170309566457945038564503e-02, ), Coords( 8.39477740995758781039626228448469e-03, 2.63112829634638112352718053443823e-01, 7.28492392955404355348036915529519e-01, ), Coords( 8.39477740995758781039626228448469e-03, 7.28492392955404355348036915529519e-01, 2.63112829634638112352718053443823e-01, ), Coords( 2.63112829634638112352718053443823e-01, 8.39477740995758781039626228448469e-03, 7.28492392955404355348036915529519e-01, ), Coords( 2.63112829634638112352718053443823e-01, 7.28492392955404355348036915529519e-01, 8.39477740995758781039626228448469e-03, ), Coords( 7.28492392955404355348036915529519e-01, 8.39477740995758781039626228448469e-03, 2.63112829634638112352718053443823e-01, ), Coords( 7.28492392955404355348036915529519e-01, 2.63112829634638112352718053443823e-01, 8.39477740995758781039626228448469e-03, ), ] return coords, weights class Tetrahedron(Element): @staticmethod def measure() -> float: return 1.0 / 6.0 @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is not None: # Duffy transformation from square to triangle point_count = _point_count_from_order(order=order + 1, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [ Coords(x, y * (1.0 - x), z * (1.0 - x) * (1.0 - y)) for x in gauss_1d for y in gauss_1d for z in gauss_1d ] # Scale weight by 6.0 so that they sum up to 1 weights = [ 6.0 * wx * wy * wz * (1.0 - x) * (1.0 - x) * (1.0 - y) for x, wx in zip(gauss_1d, weights_1d) for y, wy in zip(gauss_1d, weights_1d) for wz in weights_1d ] return coords, weights # Shunn and Ham 2012 # "Symmetric quadrature rules for tetrahedra based on a cubic close-packed lattice arrangement" # https://doi.org/10.1016/j.cam.2012.03.032 # TODO: add Witherden and Vincent 2015, if order <= 1: weights = [1.0] coords = [Coords(1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0)] elif order <= 2: weights = [1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0] coords = [ Coords(0.1381966011250110, 0.1381966011250110, 0.1381966011250110), Coords(0.5854101966249680, 0.1381966011250110, 0.1381966011250110), Coords(0.1381966011250110, 0.5854101966249680, 0.1381966011250110), Coords(0.1381966011250110, 0.1381966011250110, 0.5854101966249680), ] elif order <= 3: weights = [ 0.0476331348432089, 0.0476331348432089, 0.0476331348432089, 0.0476331348432089, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, ] coords = [ Coords(0.0738349017262234, 0.0738349017262234, 0.0738349017262234), Coords(0.7784952948213300, 0.0738349017262234, 0.0738349017262234), Coords(0.0738349017262234, 0.7784952948213300, 0.0738349017262234), Coords(0.0738349017262234, 0.0738349017262234, 0.7784952948213300), Coords(0.4062443438840510, 0.0937556561159491, 0.0937556561159491), Coords(0.0937556561159491, 0.4062443438840510, 0.0937556561159491), Coords(0.0937556561159491, 0.0937556561159491, 0.4062443438840510), Coords(0.4062443438840510, 0.4062443438840510, 0.0937556561159491), Coords(0.4062443438840510, 0.0937556561159491, 0.4062443438840510), Coords(0.0937556561159491, 0.4062443438840510, 0.4062443438840510), ] elif order <= 4: weights = [ 0.0070670747944695, 0.0070670747944695, 0.0070670747944695, 0.0070670747944695, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.1019369182898680, 0.1019369182898680, 0.1019369182898680, 0.1019369182898680, ] coords = [ Coords(0.0323525947272439, 0.0323525947272439, 0.0323525947272439), Coords(0.9029422158182680, 0.0323525947272439, 0.0323525947272439), Coords(0.0323525947272439, 0.9029422158182680, 0.0323525947272439), Coords(0.0323525947272439, 0.0323525947272439, 0.9029422158182680), Coords(0.6165965330619370, 0.0603604415251421, 0.0603604415251421), Coords(0.2626825838877790, 0.0603604415251421, 0.0603604415251421), Coords(0.0603604415251421, 0.6165965330619370, 0.0603604415251421), Coords(0.0603604415251421, 0.2626825838877790, 0.0603604415251421), Coords(0.0603604415251421, 0.0603604415251421, 0.6165965330619370), Coords(0.0603604415251421, 0.0603604415251421, 0.2626825838877790), Coords(0.2626825838877790, 0.6165965330619370, 0.0603604415251421), Coords(0.6165965330619370, 0.2626825838877790, 0.0603604415251421), Coords(0.2626825838877790, 0.0603604415251421, 0.6165965330619370), Coords(0.6165965330619370, 0.0603604415251421, 0.2626825838877790), Coords(0.0603604415251421, 0.2626825838877790, 0.6165965330619370), Coords(0.0603604415251421, 0.6165965330619370, 0.2626825838877790), Coords(0.3097693042728620, 0.3097693042728620, 0.0706920871814129), Coords(0.3097693042728620, 0.0706920871814129, 0.3097693042728620), Coords(0.0706920871814129, 0.3097693042728620, 0.3097693042728620), Coords(0.3097693042728620, 0.3097693042728620, 0.3097693042728620), ] elif order <= 5: weights = [ 0.0021900463965388, 0.0021900463965388, 0.0021900463965388, 0.0021900463965388, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0931745731195340, ] coords = [ Coords(0.0267367755543735, 0.0267367755543735, 0.0267367755543735), Coords(0.9197896733368800, 0.0267367755543735, 0.0267367755543735), Coords(0.0267367755543735, 0.9197896733368800, 0.0267367755543735), Coords(0.0267367755543735, 0.0267367755543735, 0.9197896733368800), Coords(0.7477598884818090, 0.0391022406356488, 0.0391022406356488), Coords(0.1740356302468940, 0.0391022406356488, 0.0391022406356488), Coords(0.0391022406356488, 0.7477598884818090, 0.0391022406356488), Coords(0.0391022406356488, 0.1740356302468940, 0.0391022406356488), Coords(0.0391022406356488, 0.0391022406356488, 0.7477598884818090), Coords(0.0391022406356488, 0.0391022406356488, 0.1740356302468940), Coords(0.1740356302468940, 0.7477598884818090, 0.0391022406356488), Coords(0.7477598884818090, 0.1740356302468940, 0.0391022406356488), Coords(0.1740356302468940, 0.0391022406356488, 0.7477598884818090), Coords(0.7477598884818090, 0.0391022406356488, 0.1740356302468940), Coords(0.0391022406356488, 0.1740356302468940, 0.7477598884818090), Coords(0.0391022406356488, 0.7477598884818090, 0.1740356302468940), Coords(0.4547545999844830, 0.0452454000155172, 0.0452454000155172), Coords(0.0452454000155172, 0.4547545999844830, 0.0452454000155172), Coords(0.0452454000155172, 0.0452454000155172, 0.4547545999844830), Coords(0.4547545999844830, 0.4547545999844830, 0.0452454000155172), Coords(0.4547545999844830, 0.0452454000155172, 0.4547545999844830), Coords(0.0452454000155172, 0.4547545999844830, 0.4547545999844830), Coords(0.2232010379623150, 0.2232010379623150, 0.0504792790607720), Coords(0.5031186450145980, 0.2232010379623150, 0.0504792790607720), Coords(0.2232010379623150, 0.5031186450145980, 0.0504792790607720), Coords(0.2232010379623150, 0.0504792790607720, 0.2232010379623150), Coords(0.5031186450145980, 0.0504792790607720, 0.2232010379623150), Coords(0.2232010379623150, 0.0504792790607720, 0.5031186450145980), Coords(0.0504792790607720, 0.2232010379623150, 0.2232010379623150), Coords(0.0504792790607720, 0.5031186450145980, 0.2232010379623150), Coords(0.0504792790607720, 0.2232010379623150, 0.5031186450145980), Coords(0.5031186450145980, 0.2232010379623150, 0.2232010379623150), Coords(0.2232010379623150, 0.5031186450145980, 0.2232010379623150), Coords(0.2232010379623150, 0.2232010379623150, 0.5031186450145980), Coords(0.2500000000000000, 0.2500000000000000, 0.2500000000000000), ] elif order <= 6: weights = [ 0.0010373112336140, 0.0010373112336140, 0.0010373112336140, 0.0010373112336140, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0366291366405108, 0.0366291366405108, 0.0366291366405108, 0.0366291366405108, ] coords = [ Coords(0.0149520651530592, 0.0149520651530592, 0.0149520651530592), Coords(0.9551438045408220, 0.0149520651530592, 0.0149520651530592), Coords(0.0149520651530592, 0.9551438045408220, 0.0149520651530592), Coords(0.0149520651530592, 0.0149520651530592, 0.9551438045408220), Coords(0.1518319491659370, 0.0340960211962615, 0.0340960211962615), Coords(0.7799760084415400, 0.0340960211962615, 0.0340960211962615), Coords(0.0340960211962615, 0.1518319491659370, 0.0340960211962615), Coords(0.0340960211962615, 0.7799760084415400, 0.0340960211962615), Coords(0.0340960211962615, 0.0340960211962615, 0.1518319491659370), Coords(0.0340960211962615, 0.0340960211962615, 0.7799760084415400), Coords(0.7799760084415400, 0.1518319491659370, 0.0340960211962615), Coords(0.1518319491659370, 0.7799760084415400, 0.0340960211962615), Coords(0.7799760084415400, 0.0340960211962615, 0.1518319491659370), Coords(0.1518319491659370, 0.0340960211962615, 0.7799760084415400), Coords(0.0340960211962615, 0.7799760084415400, 0.1518319491659370), Coords(0.0340960211962615, 0.1518319491659370, 0.7799760084415400), Coords(0.5526556431060170, 0.0462051504150017, 0.0462051504150017), Coords(0.3549340560639790, 0.0462051504150017, 0.0462051504150017), Coords(0.0462051504150017, 0.5526556431060170, 0.0462051504150017), Coords(0.0462051504150017, 0.3549340560639790, 0.0462051504150017), Coords(0.0462051504150017, 0.0462051504150017, 0.5526556431060170), Coords(0.0462051504150017, 0.0462051504150017, 0.3549340560639790), Coords(0.3549340560639790, 0.5526556431060170, 0.0462051504150017), Coords(0.5526556431060170, 0.3549340560639790, 0.0462051504150017), Coords(0.3549340560639790, 0.0462051504150017, 0.5526556431060170), Coords(0.5526556431060170, 0.0462051504150017, 0.3549340560639790), Coords(0.0462051504150017, 0.3549340560639790, 0.5526556431060170), Coords(0.0462051504150017, 0.5526556431060170, 0.3549340560639790), Coords(0.2281904610687610, 0.2281904610687610, 0.0055147549744775), Coords(0.5381043228880020, 0.2281904610687610, 0.0055147549744775), Coords(0.2281904610687610, 0.5381043228880020, 0.0055147549744775), Coords(0.2281904610687610, 0.0055147549744775, 0.2281904610687610), Coords(0.5381043228880020, 0.0055147549744775, 0.2281904610687610), Coords(0.2281904610687610, 0.0055147549744775, 0.5381043228880020), Coords(0.0055147549744775, 0.2281904610687610, 0.2281904610687610), Coords(0.0055147549744775, 0.5381043228880020, 0.2281904610687610), Coords(0.0055147549744775, 0.2281904610687610, 0.5381043228880020), Coords(0.5381043228880020, 0.2281904610687610, 0.2281904610687610), Coords(0.2281904610687610, 0.5381043228880020, 0.2281904610687610), Coords(0.2281904610687610, 0.2281904610687610, 0.5381043228880020), Coords(0.3523052600879940, 0.3523052600879940, 0.0992057202494530), Coords(0.1961837595745600, 0.3523052600879940, 0.0992057202494530), Coords(0.3523052600879940, 0.1961837595745600, 0.0992057202494530), Coords(0.3523052600879940, 0.0992057202494530, 0.3523052600879940), Coords(0.1961837595745600, 0.0992057202494530, 0.3523052600879940), Coords(0.3523052600879940, 0.0992057202494530, 0.1961837595745600), Coords(0.0992057202494530, 0.3523052600879940, 0.3523052600879940), Coords(0.0992057202494530, 0.1961837595745600, 0.3523052600879940), Coords(0.0992057202494530, 0.3523052600879940, 0.1961837595745600), Coords(0.1961837595745600, 0.3523052600879940, 0.3523052600879940), Coords(0.3523052600879940, 0.1961837595745600, 0.3523052600879940), Coords(0.3523052600879940, 0.3523052600879940, 0.1961837595745600), Coords(0.1344783347929940, 0.1344783347929940, 0.1344783347929940), Coords(0.5965649956210170, 0.1344783347929940, 0.1344783347929940), Coords(0.1344783347929940, 0.5965649956210170, 0.1344783347929940), Coords(0.1344783347929940, 0.1344783347929940, 0.5965649956210170), ] else: raise NotImplementedError return coords, weights
34,180
Python
44.635514
109
0.570246
NVIDIA/warp/warp/fem/quadrature/quadrature.py
from typing import Any import warp as wp from warp.fem import cache, domain from warp.fem.space import FunctionSpace from warp.fem.types import Coords, ElementIndex from ..polynomial import Polynomial class Quadrature: """Interface class for quadrature rules""" @wp.struct class Arg: """Structure containing arguments to be passed to device functions""" pass def __init__(self, domain: domain.GeometryDomain): self._domain = domain @property def domain(self): """Domain over which this quadrature is defined""" return self._domain def arg_value(self, device) -> "Arg": """ Value of the argument to be passed to device """ arg = RegularQuadrature.Arg() return arg def total_point_count(self): """Total number of quadrature points over the domain""" raise NotImplementedError() def points_per_element(self): """Number of points per element if constant, or ``None`` if varying""" return None @staticmethod def point_count(elt_arg: "domain.GeometryDomain.ElementArg", qp_arg: Arg, element_index: ElementIndex): """Number of quadrature points for a given element""" raise NotImplementedError() @staticmethod def point_coords( elt_arg: "domain.GeometryDomain.ElementArg", qp_arg: Arg, element_index: ElementIndex, qp_index: int ): """Coordinates in element of the element's qp_index'th quadrature point""" raise NotImplementedError() @staticmethod def point_weight( elt_arg: "domain.GeometryDomain.ElementArg", qp_arg: Arg, element_index: ElementIndex, qp_index: int ): """Weight of the element's qp_index'th quadrature point""" raise NotImplementedError() @staticmethod def point_index( elt_arg: "domain.GeometryDomain.ElementArg", qp_arg: Arg, element_index: ElementIndex, qp_index: int ): """Global index of the element's qp_index'th quadrature point""" raise NotImplementedError() def __str__(self) -> str: return self.name class RegularQuadrature(Quadrature): """Regular quadrature formula, using a constant set of quadrature points per element""" def __init__( self, domain: domain.GeometryDomain, order: int, family: Polynomial = None, ): super().__init__(domain) self.family = family self.order = order self._element_quadrature = domain.reference_element().instantiate_quadrature(order, family) self._N = wp.constant(len(self.points)) WeightVec = wp.vec(length=self._N, dtype=wp.float32) CoordMat = wp.mat(shape=(self._N, 3), dtype=wp.float32) self._POINTS = wp.constant(CoordMat(self.points)) self._WEIGHTS = wp.constant(WeightVec(self.weights)) self.point_count = self._make_point_count() self.point_index = self._make_point_index() self.point_coords = self._make_point_coords() self.point_weight = self._make_point_weight() @property def name(self): return f"{self.__class__.__name__}_{self.domain.name}_{self.family}_{self.order}" def total_point_count(self): return len(self.points) * self.domain.geometry_element_count() def points_per_element(self): return self._N @property def points(self): return self._element_quadrature[0] @property def weights(self): return self._element_quadrature[1] def _make_point_count(self): N = self._N @cache.dynamic_func(suffix=self.name) def point_count(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex): return N return point_count def _make_point_coords(self): POINTS = self._POINTS @cache.dynamic_func(suffix=self.name) def point_coords(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return Coords(POINTS[qp_index, 0], POINTS[qp_index, 1], POINTS[qp_index, 2]) return point_coords def _make_point_weight(self): WEIGHTS = self._WEIGHTS @cache.dynamic_func(suffix=self.name) def point_weight(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return WEIGHTS[qp_index] return point_weight def _make_point_index(self): N = self._N @cache.dynamic_func(suffix=self.name) def point_index(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return N * element_index + qp_index return point_index class NodalQuadrature(Quadrature): """Quadrature using space node points as quadrature points Note that in contrast to the `nodal=True` flag for :func:`integrate`, this quadrature odes not make any assumption about orthogonality of shape functions, and is thus safe to use for arbitrary integrands. """ def __init__(self, domain: domain.GeometryDomain, space: FunctionSpace): super().__init__(domain) self._space = space self.Arg = self._make_arg() self.point_count = self._make_point_count() self.point_index = self._make_point_index() self.point_coords = self._make_point_coords() self.point_weight = self._make_point_weight() @property def name(self): return f"{self.__class__.__name__}_{self._space.name}" def total_point_count(self): return self._space.node_count() def points_per_element(self): return self._space.topology.NODES_PER_ELEMENT def _make_arg(self): @cache.dynamic_struct(suffix=self.name) class Arg: space_arg: self._space.SpaceArg topo_arg: self._space.topology.TopologyArg return Arg @cache.cached_arg_value def arg_value(self, device): arg = self.Arg() arg.space_arg = self._space.space_arg_value(device) arg.topo_arg = self._space.topology.topo_arg_value(device) return arg def _make_point_count(self): N = self._space.topology.NODES_PER_ELEMENT @cache.dynamic_func(suffix=self.name) def point_count(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex): return N return point_count def _make_point_coords(self): @cache.dynamic_func(suffix=self.name) def point_coords(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return self._space.node_coords_in_element(elt_arg, qp_arg.space_arg, element_index, qp_index) return point_coords def _make_point_weight(self): @cache.dynamic_func(suffix=self.name) def point_weight(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return self._space.node_quadrature_weight(elt_arg, qp_arg.space_arg, element_index, qp_index) return point_weight def _make_point_index(self): @cache.dynamic_func(suffix=self.name) def point_index(elt_arg: self.domain.ElementArg, qp_arg: self.Arg, element_index: ElementIndex, qp_index: int): return self._space.topology.element_node_index(elt_arg, qp_arg.topo_arg, element_index, qp_index) return point_index class ExplicitQuadrature(Quadrature): """Quadrature using explicit per-cell points and weights. The number of quadrature points per cell is assumed to be constant and deduced from the shape of the points and weights arrays. Args: domain: Domain of definition of the quadrature formula points: 2d array of shape ``(domain.geometry_element-count(), points_per_cell)`` containing the coordinates of each quadrature point. weights: 2d array of shape ``(domain.geometry_element-count(), points_per_cell)`` containing the weight for each quadrature point. See also: :class:`PicQuadrature` """ @wp.struct class Arg: points_per_cell: int points: wp.array2d(dtype=Coords) weights: wp.array2d(dtype=float) def __init__( self, domain: domain.GeometryDomain, points: "wp.array2d(dtype=Coords)", weights: "wp.array2d(dtype=float)" ): super().__init__(domain) if points.shape != weights.shape: raise ValueError("Points and weights arrays must have the same shape") self._points_per_cell = points.shape[1] self._points = points self._weights = weights @property def name(self): return f"{self.__class__.__name__}" def total_point_count(self): return self._weights.size def points_per_element(self): return self._points_per_cell @cache.cached_arg_value def arg_value(self, device): arg = self.Arg() arg.points_per_cell = self._points_per_cell arg.points = self._points.to(device) arg.weights = self._weights.to(device) return arg @wp.func def point_count(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex): return qp_arg.points_per_cell @wp.func def point_coords(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, qp_index: int): return qp_arg.points[element_index, qp_index] @wp.func def point_weight(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, qp_index: int): return qp_arg.weights[element_index, qp_index] @wp.func def point_index(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, qp_index: int): return qp_arg.points_per_cell * element_index + qp_index
9,746
Python
31.929054
141
0.644162
NVIDIA/warp/warp/fem/quadrature/__init__.py
from .pic_quadrature import PicQuadrature from .quadrature import ExplicitQuadrature, NodalQuadrature, Quadrature, RegularQuadrature
133
Python
43.666652
90
0.87218
NVIDIA/warp/warp/fem/quadrature/pic_quadrature.py
from typing import Any, Optional, Tuple, Union import warp as wp from warp.fem.cache import TemporaryStore, borrow_temporary, cached_arg_value, dynamic_kernel from warp.fem.domain import GeometryDomain from warp.fem.types import Coords, ElementIndex, make_free_sample from warp.fem.utils import compress_node_indices from .quadrature import Quadrature wp.set_module_options({"enable_backward": False}) class PicQuadrature(Quadrature): """Particle-based quadrature formula, using a global set of points unevenly spread out over geometry elements. Useful for Particle-In-Cell and derived methods. Args: domain: Underlying domain for the quadrature positions: Either an array containing the world positions of all particles, or a tuple of arrays containing the cell indices and coordinates for each particle. Note that the former requires the underlying geometry to define a global :meth:`Geometry.cell_lookup` method; currently this is only available for :class:`Grid2D` and :class:`Grid3D`. measures: Array containing the measure (area/volume) of each particle, used to defined the integration weights. If ``None``, defaults to the cell measure divided by the number of particles in the cell. temporary_store: shared pool from which to allocate temporary arrays """ def __init__( self, domain: GeometryDomain, positions: Union[ "wp.array(dtype=wp.vecXd)", Tuple[ "wp.array(dtype=ElementIndex)", "wp.array(dtype=Coords)", ], ], measures: Optional["wp.array(dtype=float)"] = None, temporary_store: TemporaryStore = None, ): super().__init__(domain) self._bin_particles(positions, measures, temporary_store) @property def name(self): return f"{self.__class__.__name__}" @Quadrature.domain.setter def domain(self, domain: GeometryDomain): # Allow changing the quadrature domain as long as underlying geometry and element kind are the same if self.domain is not None and ( domain.geometry != self.domain.geometry or domain.element_kind != self.domain.element_kind ): raise RuntimeError( "Cannot change the domain to that of a different Geometry and/or using different element kinds." ) self._domain = domain @wp.struct class Arg: cell_particle_offsets: wp.array(dtype=int) cell_particle_indices: wp.array(dtype=int) particle_fraction: wp.array(dtype=float) particle_coords: wp.array(dtype=Coords) @cached_arg_value def arg_value(self, device) -> Arg: arg = PicQuadrature.Arg() arg.cell_particle_offsets = self._cell_particle_offsets.array.to(device) arg.cell_particle_indices = self._cell_particle_indices.array.to(device) arg.particle_fraction = self._particle_fraction.to(device) arg.particle_coords = self._particle_coords.to(device) return arg def total_point_count(self): return self._particle_coords.shape[0] def active_cell_count(self): """Number of cells containing at least one particle""" return self._cell_count @wp.func def point_count(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex): return qp_arg.cell_particle_offsets[element_index + 1] - qp_arg.cell_particle_offsets[element_index] @wp.func def point_coords(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, index: int): particle_index = qp_arg.cell_particle_indices[qp_arg.cell_particle_offsets[element_index] + index] return qp_arg.particle_coords[particle_index] @wp.func def point_weight(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, index: int): particle_index = qp_arg.cell_particle_indices[qp_arg.cell_particle_offsets[element_index] + index] return qp_arg.particle_fraction[particle_index] @wp.func def point_index(elt_arg: Any, qp_arg: Arg, element_index: ElementIndex, index: int): particle_index = qp_arg.cell_particle_indices[qp_arg.cell_particle_offsets[element_index] + index] return particle_index def fill_element_mask(self, mask: "wp.array(dtype=int)"): """Fills a mask array such that all non-empty elements are set to 1, all empty elements to zero. Args: mask: Int warp array with size at least equal to `self.domain.geometry_element_count()` """ wp.launch( kernel=PicQuadrature._fill_mask_kernel, dim=self.domain.geometry_element_count(), device=mask.device, inputs=[self._cell_particle_offsets.array, mask], ) @wp.kernel def _fill_mask_kernel( element_particle_offsets: wp.array(dtype=int), element_mask: wp.array(dtype=int), ): i = wp.tid() element_mask[i] = wp.select(element_particle_offsets[i] == element_particle_offsets[i + 1], 1, 0) @wp.kernel def _compute_uniform_fraction( cell_index: wp.array(dtype=ElementIndex), cell_particle_offsets: wp.array(dtype=int), cell_fraction: wp.array(dtype=float), ): p = wp.tid() cell = cell_index[p] cell_particle_count = cell_particle_offsets[cell + 1] - cell_particle_offsets[cell] cell_fraction[p] = 1.0 / float(cell_particle_count) def _bin_particles(self, positions, measures, temporary_store: TemporaryStore): if wp.types.is_array(positions): # Initialize from positions @dynamic_kernel(suffix=f"{self.domain.name}") def bin_particles( cell_arg_value: self.domain.ElementArg, positions: wp.array(dtype=positions.dtype), cell_index: wp.array(dtype=ElementIndex), cell_coords: wp.array(dtype=Coords), ): p = wp.tid() sample = self.domain.element_lookup(cell_arg_value, positions[p]) cell_index[p] = sample.element_index cell_coords[p] = sample.element_coords device = positions.device cell_index_temp = borrow_temporary(temporary_store, shape=positions.shape, dtype=int, device=device) cell_index = cell_index_temp.array self._particle_coords_temp = borrow_temporary( temporary_store, shape=positions.shape, dtype=Coords, device=device ) self._particle_coords = self._particle_coords_temp.array wp.launch( dim=positions.shape[0], kernel=bin_particles, inputs=[ self.domain.element_arg_value(device), positions, cell_index, self._particle_coords, ], device=device, ) else: cell_index, self._particle_coords = positions if cell_index.shape != self._particle_coords.shape: raise ValueError("Cell index and coordinates arrays must have the same shape") cell_index_temp = None self._particle_coords_temp = None self._cell_particle_offsets, self._cell_particle_indices, self._cell_count, _ = compress_node_indices( self.domain.geometry_element_count(), cell_index ) self._compute_fraction(cell_index, measures, temporary_store) def _compute_fraction(self, cell_index, measures, temporary_store: TemporaryStore): device = cell_index.device self._particle_fraction_temp = borrow_temporary( temporary_store, shape=cell_index.shape, dtype=float, device=device ) self._particle_fraction = self._particle_fraction_temp.array if measures is None: # Split fraction uniformly over all particles in cell wp.launch( dim=cell_index.shape, kernel=PicQuadrature._compute_uniform_fraction, inputs=[ cell_index, self._cell_particle_offsets.array, self._particle_fraction, ], device=device, ) else: # Fraction from particle measure if measures.shape != cell_index.shape: raise ValueError("Measures should be an 1d array or length equal to particle count") @dynamic_kernel(suffix=f"{self.domain.name}") def compute_fraction( cell_arg_value: self.domain.ElementArg, measures: wp.array(dtype=float), cell_index: wp.array(dtype=ElementIndex), cell_coords: wp.array(dtype=Coords), cell_fraction: wp.array(dtype=float), ): p = wp.tid() sample = make_free_sample(cell_index[p], cell_coords[p]) cell_fraction[p] = measures[p] / self.domain.element_measure(cell_arg_value, sample) wp.launch( dim=measures.shape[0], kernel=compute_fraction, inputs=[ self.domain.element_arg_value(device), measures, cell_index, self._particle_coords, self._particle_fraction, ], device=device, )
9,515
Python
38
135
0.607252
NVIDIA/warp/warp/tests/test_rounding.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * compare_to_numpy = False print_results = False @wp.kernel def test_kernel( x: wp.array(dtype=float), x_round: wp.array(dtype=float), x_rint: wp.array(dtype=float), x_trunc: wp.array(dtype=float), x_cast: wp.array(dtype=float), x_floor: wp.array(dtype=float), x_ceil: wp.array(dtype=float), x_frac: wp.array(dtype=float), ): tid = wp.tid() x_round[tid] = wp.round(x[tid]) x_rint[tid] = wp.rint(x[tid]) x_trunc[tid] = wp.trunc(x[tid]) x_cast[tid] = float(int(x[tid])) x_floor[tid] = wp.floor(x[tid]) x_ceil[tid] = wp.ceil(x[tid]) x_frac[tid] = wp.frac(x[tid]) def test_rounding(test, device): nx = np.array( [ 4.9, 4.5, 4.1, 3.9, 3.5, 3.1, 2.9, 2.5, 2.1, 1.9, 1.5, 1.1, 0.9, 0.5, 0.1, -0.1, -0.5, -0.9, -1.1, -1.5, -1.9, -2.1, -2.5, -2.9, -3.1, -3.5, -3.9, -4.1, -4.5, -4.9, ], dtype=np.float32, ) x = wp.array(nx, device=device) N = len(x) x_round = wp.empty(N, dtype=float, device=device) x_rint = wp.empty(N, dtype=float, device=device) x_trunc = wp.empty(N, dtype=float, device=device) x_cast = wp.empty(N, dtype=float, device=device) x_floor = wp.empty(N, dtype=float, device=device) x_ceil = wp.empty(N, dtype=float, device=device) x_frac = wp.empty(N, dtype=float, device=device) wp.launch( kernel=test_kernel, dim=N, inputs=[x, x_round, x_rint, x_trunc, x_cast, x_floor, x_ceil, x_frac], device=device ) wp.synchronize() nx_round = x_round.numpy().reshape(N) nx_rint = x_rint.numpy().reshape(N) nx_trunc = x_trunc.numpy().reshape(N) nx_cast = x_cast.numpy().reshape(N) nx_floor = x_floor.numpy().reshape(N) nx_ceil = x_ceil.numpy().reshape(N) nx_frac = x_frac.numpy().reshape(N) tab = np.stack([nx, nx_round, nx_rint, nx_trunc, nx_cast, nx_floor, nx_ceil, nx_frac], axis=1) golden = np.array( [ [4.9, 5.0, 5.0, 4.0, 4.0, 4.0, 5.0, 0.9], [4.5, 5.0, 4.0, 4.0, 4.0, 4.0, 5.0, 0.5], [4.1, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 0.1], [3.9, 4.0, 4.0, 3.0, 3.0, 3.0, 4.0, 0.9], [3.5, 4.0, 4.0, 3.0, 3.0, 3.0, 4.0, 0.5], [3.1, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 0.1], [2.9, 3.0, 3.0, 2.0, 2.0, 2.0, 3.0, 0.9], [2.5, 3.0, 2.0, 2.0, 2.0, 2.0, 3.0, 0.5], [2.1, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 0.1], [1.9, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 0.9], [1.5, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 0.5], [1.1, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 0.1], [0.9, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.9], [0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.5], [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.1], [-0.1, -0.0, -0.0, -0.0, 0.0, -1.0, -0.0, -0.1], [-0.5, -1.0, -0.0, -0.0, 0.0, -1.0, -0.0, -0.5], [-0.9, -1.0, -1.0, -0.0, 0.0, -1.0, -0.0, -0.9], [-1.1, -1.0, -1.0, -1.0, -1.0, -2.0, -1.0, -0.1], [-1.5, -2.0, -2.0, -1.0, -1.0, -2.0, -1.0, -0.5], [-1.9, -2.0, -2.0, -1.0, -1.0, -2.0, -1.0, -0.9], [-2.1, -2.0, -2.0, -2.0, -2.0, -3.0, -2.0, -0.1], [-2.5, -3.0, -2.0, -2.0, -2.0, -3.0, -2.0, -0.5], [-2.9, -3.0, -3.0, -2.0, -2.0, -3.0, -2.0, -0.9], [-3.1, -3.0, -3.0, -3.0, -3.0, -4.0, -3.0, -0.1], [-3.5, -4.0, -4.0, -3.0, -3.0, -4.0, -3.0, -0.5], [-3.9, -4.0, -4.0, -3.0, -3.0, -4.0, -3.0, -0.9], [-4.1, -4.0, -4.0, -4.0, -4.0, -5.0, -4.0, -0.1], [-4.5, -5.0, -4.0, -4.0, -4.0, -5.0, -4.0, -0.5], [-4.9, -5.0, -5.0, -4.0, -4.0, -5.0, -4.0, -0.9], ], dtype=np.float32, ) assert_np_equal(tab, golden, tol=1e-6) if print_results: np.set_printoptions(formatter={"float": lambda x: "{:6.1f}".format(x).replace(".0", ".")}) print("----------------------------------------------") print(" %5s %5s %5s %5s %5s %5s %5s" % ("x ", "round", "rint", "trunc", "cast", "floor", "ceil")) print(tab) print("----------------------------------------------") if compare_to_numpy: nx_round = np.round(nx) nx_rint = np.rint(nx) nx_trunc = np.trunc(nx) nx_fix = np.fix(nx) nx_floor = np.floor(nx) nx_ceil = np.ceil(nx) nx_frac = np.modf(nx)[0] tab = np.stack([nx, nx_round, nx_rint, nx_trunc, nx_fix, nx_floor, nx_ceil, nx_frac], axis=1) print(" %5s %5s %5s %5s %5s %5s %5s" % ("x ", "round", "rint", "trunc", "fix", "floor", "ceil")) print(tab) print("----------------------------------------------") class TestRounding(unittest.TestCase): pass devices = get_test_devices() add_function_test(TestRounding, "test_rounding", test_rounding, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
5,784
Python
31.5
119
0.449343
NVIDIA/warp/warp/tests/test_launch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * dim_x = wp.constant(2) dim_y = wp.constant(2) dim_z = wp.constant(2) dim_w = wp.constant(2) @wp.kernel def kernel1d(a: wp.array(dtype=int, ndim=1)): i = wp.tid() wp.expect_eq(a[i], i) @wp.kernel def kernel2d(a: wp.array(dtype=int, ndim=2)): i, j = wp.tid() wp.expect_eq(a[i, j], i * dim_y + j) @wp.kernel def kernel3d(a: wp.array(dtype=int, ndim=3)): i, j, k = wp.tid() wp.expect_eq(a[i, j, k], i * dim_y * dim_z + j * dim_z + k) @wp.kernel def kernel4d(a: wp.array(dtype=int, ndim=4)): i, j, k, l = wp.tid() wp.expect_eq(a[i, j, k, l], i * dim_y * dim_z * dim_w + j * dim_z * dim_w + k * dim_w + l) def test1d(test, device): a = np.arange(0, dim_x).reshape(dim_x) wp.launch(kernel1d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test2d(test, device): a = np.arange(0, dim_x * dim_y).reshape(dim_x, dim_y) wp.launch(kernel2d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test3d(test, device): a = np.arange(0, dim_x * dim_y * dim_z).reshape(dim_x, dim_y, dim_z) wp.launch(kernel3d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test4d(test, device): a = np.arange(0, dim_x * dim_y * dim_z * dim_w).reshape(dim_x, dim_y, dim_z, dim_w) wp.launch(kernel4d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) @wp.struct class Params: a: wp.array(dtype=int) i: int f: float @wp.kernel def kernel_cmd(params: Params, i: int, f: float, v: wp.vec3, m: wp.mat33, out: wp.array(dtype=int)): tid = wp.tid() wp.expect_eq(params.i, i) wp.expect_eq(params.f, f) wp.expect_eq(i, int(f)) wp.expect_eq(v[0], f) wp.expect_eq(v[1], f) wp.expect_eq(v[2], f) wp.expect_eq(m[0, 0], f) wp.expect_eq(m[1, 1], f) wp.expect_eq(m[2, 2], f) out[tid] = tid + i def test_launch_cmd(test, device): n = 1 ref = np.arange(0, n) out = wp.zeros(n, dtype=int, device=device) params = Params() params.i = 1 params.f = 1.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) # standard launch wp.launch(kernel_cmd, dim=n, inputs=[params, params.i, params.f, v, m, out], device=device) assert_np_equal(out.numpy(), ref + params.i) # cmd launch out.zero_() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, params.i, params.f, v, m, out], device=device, record_cmd=True) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) def test_launch_cmd_set_param(test, device): n = 1 ref = np.arange(0, n) params = Params() v = wp.vec3() m = wp.mat33() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, 0, 0.0, v, m, None], device=device, record_cmd=True) # cmd param modification out = wp.zeros(n, dtype=int, device=device) params.i = 13 params.f = 13.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) cmd.set_param_at_index(0, params) cmd.set_param_at_index(1, params.i) cmd.set_param_at_index(2, params.f) cmd.set_param_at_index(3, v) cmd.set_param_at_index(4, m) cmd.set_param_by_name("out", out) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) # test changing params after launch directly # because we now cache the ctypes object inside the wp.struct # instance the command buffer will be automatically updated params.i = 14 params.f = 14.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) # this is the line we explicitly leave out to # ensure that param changes are reflected in the launch # launch.set_param_at_index(0, params) cmd.set_param_at_index(1, params.i) cmd.set_param_at_index(2, params.f) cmd.set_param_at_index(3, v) cmd.set_param_at_index(4, m) cmd.set_param_by_name("out", out) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) def test_launch_cmd_set_ctype(test, device): n = 1 ref = np.arange(0, n) params = Params() v = wp.vec3() m = wp.mat33() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, 0, 0.0, v, m, None], device=device, record_cmd=True) # cmd param modification out = wp.zeros(n, dtype=int, device=device) # cmd param modification out.zero_() params.i = 13 params.f = 13.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) cmd.set_param_at_index_from_ctype(0, params.__ctype__()) cmd.set_param_at_index_from_ctype(1, params.i) cmd.set_param_at_index_from_ctype(2, params.f) cmd.set_param_at_index_from_ctype(3, v) cmd.set_param_at_index_from_ctype(4, m) cmd.set_param_by_name_from_ctype("out", out.__ctype__()) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) @wp.kernel def arange(out: wp.array(dtype=int)): tid = wp.tid() out[tid] = tid def test_launch_cmd_set_dim(test, device): n = 10 ref = np.arange(0, n, dtype=int) out = wp.zeros(n, dtype=int, device=device) cmd = wp.launch(arange, dim=n, inputs=[out], device=device, record_cmd=True) cmd.set_dim(5) cmd.launch() # check first half the array is filled while rest is still zero assert_np_equal(out.numpy()[0:5], ref[0:5]) assert_np_equal(out.numpy()[5:], np.zeros(5)) out.zero_() cmd.set_dim(10) cmd.launch() # check the whole array was filled assert_np_equal(out.numpy(), ref) def test_launch_cmd_empty(test, device): n = 10 ref = np.arange(0, n, dtype=int) out = wp.zeros(n, dtype=int, device=device) cmd = wp.Launch(arange, device) cmd.set_dim(5) cmd.set_param_by_name("out", out) cmd.launch() # check first half the array is filled while rest is still zero assert_np_equal(out.numpy()[0:5], ref[0:5]) assert_np_equal(out.numpy()[5:], np.zeros(5)) out.zero_() cmd.set_dim(10) cmd.launch() # check the whole array was filled assert_np_equal(out.numpy(), ref) @wp.kernel def kernel_mul( values: wp.array(dtype=int), coeff: int, out: wp.array(dtype=int), ): tid = wp.tid() out[tid] = values[tid] * coeff def test_launch_tuple_args(test, device): values = wp.array(np.arange(0, 4), dtype=int, device=device) coeff = 3 out = wp.empty_like(values) wp.launch( kernel_mul, dim=len(values), inputs=( values, coeff, ), outputs=(out,), device=device, ) assert_np_equal(out.numpy(), np.array((0, 3, 6, 9))) wp.launch( kernel_mul, dim=len(values), inputs=( values, coeff, out, ), device=device, ) assert_np_equal(out.numpy(), np.array((0, 3, 6, 9))) wp.launch( kernel_mul, dim=len(values), outputs=( values, coeff, out, ), device=device, ) assert_np_equal(out.numpy(), np.array((0, 3, 6, 9))) devices = get_test_devices() class TestLaunch(unittest.TestCase): pass add_function_test(TestLaunch, "test_launch_1d", test1d, devices=devices) add_function_test(TestLaunch, "test_launch_2d", test2d, devices=devices) add_function_test(TestLaunch, "test_launch_3d", test3d, devices=devices) add_function_test(TestLaunch, "test_launch_4d", test4d, devices=devices) add_function_test(TestLaunch, "test_launch_cmd", test_launch_cmd, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_param", test_launch_cmd_set_param, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_ctype", test_launch_cmd_set_ctype, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_dim", test_launch_cmd_set_dim, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_empty", test_launch_cmd_empty, devices=devices) add_function_test(TestLaunch, "test_launch_tuple_args", test_launch_tuple_args, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
8,862
Python
24.107649
118
0.619499
NVIDIA/warp/warp/tests/test_large.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import unittest from typing import Any import warp as wp from warp.tests.unittest_utils import * @wp.kernel def conditional_sum(result: wp.array(dtype=wp.uint64)): i, j, k = wp.tid() if i == 0: wp.atomic_add(result, 0, wp.uint64(1)) def test_large_launch_large_kernel(test, device): """Test tid() on kernel launch of 2**33 threads. The function conditional sum will add 1 to result for every thread that has an i index of 0. Due to the size of the grid, this test is not run on CPUs """ test_result = wp.zeros(shape=(1,), dtype=wp.uint64, device=device) large_dim_length = 2**16 half_result = large_dim_length * large_dim_length wp.launch(kernel=conditional_sum, dim=[2, large_dim_length, large_dim_length], inputs=[test_result], device=device) test.assertEqual(test_result.numpy()[0], half_result) @wp.kernel def count_elements(result: wp.array(dtype=wp.uint64)): wp.atomic_add(result, 0, wp.uint64(1)) def test_large_launch_max_blocks(test, device): # Loop over 1000x1x1 elements using a grid of 256 threads test_result = wp.zeros(shape=(1,), dtype=wp.uint64, device=device) wp.launch(count_elements, (1000,), inputs=[test_result], max_blocks=1, device=device) test.assertEqual(test_result.numpy()[0], 1000) # Loop over 2x10x10 elements using a grid of 256 threads, using the tid() index to count half the elements test_result.zero_() wp.launch( conditional_sum, ( 2, 50, 10, ), inputs=[test_result], max_blocks=1, device=device, ) test.assertEqual(test_result.numpy()[0], 500) def test_large_launch_very_large_kernel(test, device): """Due to the size of the grid, this test is not run on CPUs""" # Dim is chosen to be larger than the maximum CUDA one-dimensional grid size (total threads) dim = (2**31 - 1) * 256 + 1 test_result = wp.zeros(shape=(1,), dtype=wp.uint64, device=device) wp.launch(count_elements, (dim,), inputs=[test_result], device=device) test.assertEqual(test_result.numpy()[0], dim) def test_large_arrays_slow(test, device): # The goal of this test is to use arrays just large enough to know # if there's a flaw in handling arrays with more than 2**31-1 elements # Unfortunately, it takes a long time to run so it won't be run automatically # without changes to support how frequently a test may be run total_elements = 2**31 + 8 # 2-D to 4-D arrays: test zero_, fill_, then zero_ for scalar data types: for total_dims in range(2, 5): dim_x = math.ceil(total_elements ** (1 / total_dims)) shape_tuple = tuple([dim_x] * total_dims) for wptype in wp.types.scalar_types: a1 = wp.zeros(shape_tuple, dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) a1.fill_(127) assert_np_equal(a1.numpy(), 127 * np.ones_like(a1.numpy())) a1.zero_() assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) @wp.kernel def check_array_equal_value(data: wp.array2d(dtype=Any), expect: Any): i, j = wp.tid() wp.expect_eq(data[i, j], expect) def test_large_arrays_fast(test, device): # A truncated version of test_large_arrays_slow meant to catch basic errors # Make is so that a (dim_x, dim_x) array has more than 2**31 elements dim_x = math.ceil(math.sqrt(2**31)) a1 = wp.zeros((dim_x, dim_x), dtype=wp.int8, device=device) a1.fill_(127) wp.launch(check_array_equal_value, a1.shape, inputs=[a1, wp.int8(127)], device=device) a1.zero_() wp.launch(check_array_equal_value, a1.shape, inputs=[a1, wp.int8(0)], device=device) def test_large_array_excessive_zeros(test, device): # Tests the allocation of an array with length exceeding 2**31-1 in a dimension with test.assertRaisesRegex( ValueError, "Array shapes must not exceed the maximum representable value of a signed 32-bit integer" ): _ = wp.zeros((2**31), dtype=int, device=device) def test_large_array_excessive_numpy(test, device): # Tests the allocation of an array from a numpy array with length exceeding 2**31-1 in a dimension large_np_array = np.empty((2**31), dtype=int) with test.assertRaisesRegex( ValueError, "Array shapes must not exceed the maximum representable value of a signed 32-bit integer" ): _ = wp.array(large_np_array, device=device) devices = get_test_devices() class TestLarge(unittest.TestCase): pass add_function_test( TestLarge, "test_large_launch_large_kernel", test_large_launch_large_kernel, devices=get_selected_cuda_test_devices(), ) add_function_test(TestLarge, "test_large_launch_max_blocks", test_large_launch_max_blocks, devices=devices) add_function_test( TestLarge, "test_large_launch_very_large_kernel", test_large_launch_very_large_kernel, devices=get_selected_cuda_test_devices(), ) add_function_test(TestLarge, "test_large_arrays_fast", test_large_arrays_fast, devices=devices) add_function_test(TestLarge, "test_large_array_excessive_zeros", test_large_array_excessive_zeros, devices=devices) add_function_test(TestLarge, "test_large_array_excessive_numpy", test_large_array_excessive_numpy, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
5,873
Python
33.552941
119
0.680742
NVIDIA/warp/warp/tests/test_examples.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Test Warp examples with unittest. This module tests the Warp examples registered in it using the unittest framework. When registering tests with add_example_test(), three optional dictionaries can be provided: test_options, test_options_cuda, and test_options_cpu. These are added to the command line arguments in-order, so if a parameter is specified in both test_options and test_options_cuda, the one in test_options_cuda will take precedence due to how argparse works. Generally the test_options[_cpu,_cuda] dictionaries should be used to prevent graphical windows from being open by the example {"headless": True} and to override example defaults so the example can run in less than ten seconds. Use {"usd_required": True} and {"torch_required": True} to skip running the test if usd-core or torch are not found in the Python environment. Use the "num_frames" and "train_iters" keys to control the number of steps. """ import os import subprocess import sys import unittest from typing import Any, Dict, Optional, Type import warp as wp import warp.tests.unittest_utils from warp.tests.unittest_utils import ( USD_AVAILABLE, get_selected_cuda_test_devices, get_test_devices, sanitize_identifier, ) def _build_command_line_options(test_options: Dict[str, Any]) -> list: """Helper function to build command-line options from the test options dictionary.""" additional_options = [] for key, value in test_options.items(): if key == "headless" and value: additional_options.extend(["--headless"]) else: # Just add --key value additional_options.extend(["--" + key, str(value)]) return additional_options def _merge_options(base_options: Dict[str, Any], device_options: Dict[str, Any]) -> Dict[str, Any]: """Helper function to merge base test options with device-specific test options.""" merged_options = base_options.copy() # Update options with device-specific dictionary, overwriting existing keys with the more-specific values merged_options.update(device_options) return merged_options def add_example_test( cls: Type, name: str, devices: Optional[list] = None, test_options: Optional[Dict[str, Any]] = None, test_options_cpu: Optional[Dict[str, Any]] = None, test_options_cuda: Optional[Dict[str, Any]] = None, ): """Registers a Warp example to run on ``devices`` as a TestCase.""" if test_options is None: test_options = {} if test_options_cpu is None: test_options_cpu = {} if test_options_cuda is None: test_options_cuda = {} def run(test, device): if wp.get_device(device).is_cuda: options = _merge_options(test_options, test_options_cuda) else: options = _merge_options(test_options, test_options_cpu) # Mark the test as skipped if Torch is not installed but required torch_required = options.pop("torch_required", False) if torch_required: try: import torch if wp.get_device(device).is_cuda and not torch.cuda.is_available(): # Ensure torch has CUDA support test.skipTest("Torch not compiled with CUDA support") except Exception as e: test.skipTest(f"{e}") # Mark the test as skipped if USD is not installed but required usd_required = options.pop("usd_required", False) if usd_required and not USD_AVAILABLE: test.skipTest("Requires usd-core") # Find the current Warp cache warp_cache_path = wp.config.kernel_cache_dir env_vars = os.environ.copy() if warp_cache_path is not None: env_vars["WARP_CACHE_PATH"] = warp_cache_path if warp.tests.unittest_utils.coverage_enabled: import tempfile # Generate a random coverage data file name - file is deleted along with containing directory with tempfile.NamedTemporaryFile( dir=warp.tests.unittest_utils.coverage_temp_dir, delete=False ) as coverage_file: pass command = ["coverage", "run", f"--data-file={coverage_file.name}"] if warp.tests.unittest_utils.coverage_branch: command.append("--branch") else: command = [sys.executable] # Append Warp commands command.extend(["-m", f"warp.examples.{name}", "--device", str(device)]) stage_path = ( options.pop( "stage_path", os.path.join(os.path.dirname(__file__), f"outputs/{name}_{sanitize_identifier(device)}.usd"), ) if USD_AVAILABLE else "None" ) if stage_path: command.extend(["--stage_path", stage_path]) try: os.remove(stage_path) except OSError: pass command.extend(_build_command_line_options(options)) # with wp.ScopedTimer(f"{name}_{sanitize_identifier(device)}"): # Run the script as a subprocess result = subprocess.run(command, capture_output=True, text=True, env=env_vars) # Check the return code (0 is standard for success) test.assertEqual( result.returncode, 0, msg=f"Failed with return code {result.returncode}, command: {' '.join(command)}\n\nOutput:\n{result.stdout}\n{result.stderr}", ) # If the test succeeded, try to clean up the output by default if stage_path and result.returncode == 0: try: os.remove(stage_path) except OSError: pass from warp.tests.unittest_utils import add_function_test add_function_test(cls, f"test_{name}", run, devices=devices, check_output=False) cuda_test_devices = get_selected_cuda_test_devices(mode="basic") # Don't test on multiple GPUs to save time test_devices = get_test_devices(mode="basic") # NOTE: To give the parallel test runner more opportunities to parallelize test cases, # we break up the tests into multiple TestCase classes class TestCoreExamples(unittest.TestCase): pass # Exclude unless we can run headless somehow # add_example_test(TestCoreExamples, name="example_render_opengl") add_example_test(TestCoreExamples, name="core.example_dem", devices=test_devices, test_options_cpu={"num_frames": 2}) add_example_test( TestCoreExamples, name="core.example_fluid", devices=test_devices, test_options={"num_frames": 100, "headless": True}, ) add_example_test( TestCoreExamples, name="core.example_graph_capture", devices=test_devices, test_options={"headless": True}, test_options_cpu={"num_frames": 100}, ) add_example_test(TestCoreExamples, name="core.example_marching_cubes", devices=cuda_test_devices) add_example_test(TestCoreExamples, name="core.example_mesh", devices=test_devices, test_options={"usd_required": True}) add_example_test( TestCoreExamples, name="core.example_mesh_intersect", devices=test_devices, test_options={"usd_required": True} ) add_example_test(TestCoreExamples, name="core.example_nvdb", devices=test_devices) add_example_test( TestCoreExamples, name="core.example_raycast", devices=test_devices, test_options={"usd_required": True, "headless": True}, ) add_example_test( TestCoreExamples, name="core.example_raymarch", devices=test_devices, test_options={"height": 512, "width": 1024, "headless": True}, ) add_example_test(TestCoreExamples, name="core.example_sph", devices=test_devices, test_options_cpu={"num_frames": 1}) add_example_test( TestCoreExamples, name="core.example_torch", devices=test_devices, test_options={"headless": True, "num_frames": 1000, "torch_required": True}, ) add_example_test(TestCoreExamples, name="core.example_wave", devices=test_devices) class TestOptimExamples(unittest.TestCase): pass add_example_test( TestOptimExamples, name="optim.example_bounce", devices=test_devices, test_options_cpu={"train_iters": 3} ) add_example_test( TestOptimExamples, name="optim.example_drone", devices=test_devices, test_options={"headless": True}, test_options_cpu={"num_frames": 10}, ) add_example_test( TestOptimExamples, name="optim.example_cloth_throw", devices=test_devices, test_options_cpu={"train_iters": 3} ) add_example_test( TestOptimExamples, name="optim.example_diffray", devices=test_devices, test_options={"usd_required": True, "headless": True}, test_options_cpu={"train_iters": 2}, ) add_example_test(TestOptimExamples, name="optim.example_inverse_kinematics", devices=test_devices) add_example_test( TestOptimExamples, name="optim.example_inverse_kinematics_torch", devices=test_devices, test_options={"torch_required": True}, ) add_example_test(TestOptimExamples, name="optim.example_spring_cage", devices=test_devices) add_example_test( TestOptimExamples, name="optim.example_trajectory", devices=test_devices, test_options={"headless": True, "train_iters": 50}, ) # NOTE: This example uses CUTLASS and will run orders of magnitude slower when Warp is built in debug mode add_example_test( TestOptimExamples, name="optim.example_walker", devices=test_devices, test_options={"usd_required": True}, test_options_cuda={ "train_iters": 1 if warp.context.runtime.core.is_debug_enabled() else 3, "num_frames": 1 if warp.context.runtime.core.is_debug_enabled() else 60, }, test_options_cpu={"train_iters": 1, "num_frames": 30}, ) class TestSimExamples(unittest.TestCase): pass add_example_test(TestSimExamples, name="sim.example_cartpole", devices=test_devices) add_example_test( TestSimExamples, name="sim.example_cloth", devices=test_devices, test_options={"usd_required": True}, test_options_cpu={"num_frames": 10}, ) add_example_test( TestSimExamples, name="sim.example_granular", devices=test_devices, test_options_cpu={"num_frames": 10} ) add_example_test(TestSimExamples, name="sim.example_granular_collision_sdf", devices=cuda_test_devices) add_example_test(TestSimExamples, name="sim.example_jacobian_ik", devices=test_devices) add_example_test(TestSimExamples, name="sim.example_particle_chain", devices=test_devices) add_example_test( TestSimExamples, name="sim.example_quadruped", devices=test_devices, test_options_cpu={"num_frames": 100} ) add_example_test(TestSimExamples, name="sim.example_rigid_chain", devices=test_devices) add_example_test( TestSimExamples, name="sim.example_rigid_contact", devices=test_devices, test_options={"usd_required": True}, test_options_cpu={"num_frames": 3}, ) add_example_test( TestSimExamples, name="sim.example_rigid_soft_contact", devices=test_devices, test_options_cpu={"num_frames": 10} ) add_example_test(TestSimExamples, name="sim.example_rigid_force", devices=test_devices) add_example_test(TestSimExamples, name="sim.example_rigid_gyroscopic", devices=test_devices) add_example_test( TestSimExamples, name="sim.example_soft_body", devices=test_devices, test_options_cpu={"num_frames": 10} ) class TestFemExamples(unittest.TestCase): pass class TestFemDiffusionExamples(unittest.TestCase): pass add_example_test( TestFemDiffusionExamples, name="fem.example_diffusion_mgpu", devices=get_selected_cuda_test_devices(mode="basic"), test_options={"headless": True}, ) add_example_test( TestFemExamples, name="fem.example_apic_fluid", devices=get_selected_cuda_test_devices(), test_options={"num_frames": 5, "voxel_size": 2.0}, ) # The following examples do not need CUDA add_example_test( TestFemDiffusionExamples, name="fem.example_diffusion", devices=test_devices, test_options={"resolution": 10, "mesh": "tri", "headless": True}, ) add_example_test( TestFemDiffusionExamples, name="fem.example_diffusion_3d", devices=test_devices, test_options={"headless": True} ) add_example_test( TestFemExamples, name="fem.example_deformed_geometry", devices=test_devices, test_options={"resolution": 10, "mesh": "tri", "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_convection_diffusion", devices=test_devices, test_options={"resolution": 20, "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_burgers", devices=test_devices, test_options={"resolution": 20, "num_frames": 25, "degree": 1, "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_convection_diffusion_dg", devices=test_devices, test_options={"resolution": 20, "num_frames": 25, "mesh": "quad", "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_mixed_elasticity", devices=test_devices, test_options={"nonconforming_stresses": True, "mesh": "quad", "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_stokes_transfer", devices=test_devices, test_options={"headless": True} ) add_example_test( TestFemExamples, name="fem.example_stokes", devices=test_devices, test_options={"resolution": 10, "nonconforming_pressures": True, "headless": True}, ) add_example_test( TestFemExamples, name="fem.example_navier_stokes", devices=test_devices, test_options={"num_frames": 101, "resolution": 10, "tri_mesh": True, "headless": True}, ) if __name__ == "__main__": # force rebuild of all kernels wp.build.clear_kernel_cache() unittest.main(verbosity=2, failfast=True)
14,108
Python
33.923267
138
0.683513
NVIDIA/warp/warp/tests/test_generics.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest from typing import Any import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.func def generic_adder(a: Any, b: Any): return a + b @wp.kernel def test_generic_adder(): wp.expect_eq(generic_adder(17, 25), 42) wp.expect_eq(generic_adder(7.0, 10.0), 17.0) v1 = wp.vec3(1.0, 2.0, 3.0) v2 = wp.vec3(10.0, 20.0, 30.0) wp.expect_eq(generic_adder(v1, v2), wp.vec3(11.0, 22.0, 33.0)) # regular functions for floats @wp.func def specialized_func(a: float, b: float): return a * b @wp.func def specialized_func(a: float, b: float, c: float): return a * b * c # generic forms @wp.func def specialized_func(a: Any, b: Any): return a + b @wp.func def specialized_func(a: Any, b: Any, c: Any): return a + b + c # specializations for ints @wp.func def specialized_func(a: int, b: int): return a - b @wp.func def specialized_func(a: int, b: int, c: int): return a - b - c @wp.kernel def test_specialized_func(): # subtraction with int args wp.expect_eq(specialized_func(17, 25), -8) wp.expect_eq(specialized_func(17, 25, 10), -18) # multiplication with float args wp.expect_eq(specialized_func(7.0, 10.0), 70.0) wp.expect_eq(specialized_func(7.0, 10.0, 2.0), 140.0) # addition with vector args v1 = wp.vec3(1.0, 2.0, 3.0) v2 = wp.vec3(10.0, 20.0, 30.0) v3 = wp.vec3(100.0, 200.0, 300.0) wp.expect_eq(specialized_func(v1, v2), wp.vec3(11.0, 22.0, 33.0)) wp.expect_eq(specialized_func(v1, v2, v3), wp.vec3(111.0, 222.0, 333.0)) # generic array kernel, version 1 (Any) @wp.kernel def generic_array_kernel_v1(a: Any, b: Any, c: Any): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v1, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v1, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v1, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) # generic array kernel, version 2 (generic dtype) @wp.kernel def generic_array_kernel_v2(a: wp.array(dtype=Any), b: wp.array(dtype=Any), c: wp.array(dtype=Any)): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v2, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v2, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v2, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) # generic array kernel, version 3 (unspecified dtype) @wp.kernel def generic_array_kernel_v3(a: wp.array(), b: wp.array(), c: wp.array()): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v3, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v3, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v3, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) def test_generic_array_kernel(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.array(data=np.ones(n, dtype=np.int32)) ci = wp.empty(10, dtype=int) af = wp.array(data=np.ones(n, dtype=np.float32)) cf = wp.empty(10, dtype=float) a3 = wp.array(data=np.ones((n, 3), dtype=np.float32), dtype=wp.vec3) c3 = wp.empty(n, dtype=wp.vec3) wp.launch(generic_array_kernel_v1, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v1, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v1, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) wp.launch(generic_array_kernel_v2, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v2, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v2, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) wp.launch(generic_array_kernel_v3, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v3, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v3, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) # kernel that adds any scalar value to an array @wp.kernel def generic_accumulator_kernel(a: wp.array(dtype=wp.float64), value: Any): tid = wp.tid() a[tid] = a[tid] + wp.float64(value) # overload named args wp.overload(generic_accumulator_kernel, {"value": int}) wp.overload(generic_accumulator_kernel, {"value": float}) wp.overload(generic_accumulator_kernel, {"value": wp.float64}) wp.overload(generic_accumulator_kernel, {"value": wp.bool}) def test_generic_accumulator_kernel(test, device): with wp.ScopedDevice(device): n = 10 a = wp.zeros(n, dtype=wp.float64) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, 25]) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, 17.0]) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, wp.float64(8.0)]) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, wp.bool(True)]) assert_np_equal(a.numpy(), np.full((n,), 51.0, dtype=np.float64)) # generic kernel used to automatically generate overloads from launch args @wp.kernel def generic_fill(a: wp.array(dtype=Any), value: Any): tid = wp.tid() a[tid] = value def test_generic_fill(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.zeros(n, dtype=int) af = wp.zeros(n, dtype=float) a3 = wp.zeros(n, dtype=wp.vec3) ab = wp.zeros(n, dtype=wp.bool) wp.launch(generic_fill, dim=ai.size, inputs=[ai, 42]) wp.launch(generic_fill, dim=af.size, inputs=[af, 17.0]) wp.launch(generic_fill, dim=a3.size, inputs=[a3, wp.vec3(5.0, 5.0, 5.0)]) wp.launch(generic_fill, dim=ab.size, inputs=[ab, wp.bool(True)]) assert_np_equal(ai.numpy(), np.full((n,), 42, dtype=np.int32)) assert_np_equal(af.numpy(), np.full((n,), 17.0, dtype=np.float32)) assert_np_equal(a3.numpy(), np.full((n, 3), 5.0, dtype=np.float32)) assert_np_equal(ab.numpy(), np.full((n,), True, dtype=np.bool_)) # generic kernel used to create and launch explicit overloads @wp.kernel def generic_fill_v2(a: wp.array(dtype=Any), value: Any): tid = wp.tid() a[tid] = value vec3b_type = wp.vec(3, wp.bool) # create explicit overloads to be launched directly fill_int = wp.overload(generic_fill_v2, [wp.array(dtype=int), int]) fill_float = wp.overload(generic_fill_v2, [wp.array(dtype=float), float]) fill_vec3 = wp.overload(generic_fill_v2, [wp.array(dtype=wp.vec3), wp.vec3]) fill_vec3b = wp.overload(generic_fill_v2, [wp.array(dtype=vec3b_type), vec3b_type]) def test_generic_fill_overloads(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.zeros(n, dtype=int) af = wp.zeros(n, dtype=float) a3 = wp.zeros(n, dtype=wp.vec3) a3b = wp.zeros(n, dtype=vec3b_type) wp.launch(fill_int, dim=ai.size, inputs=[ai, 42]) wp.launch(fill_float, dim=af.size, inputs=[af, 17.0]) wp.launch(fill_vec3, dim=a3.size, inputs=[a3, wp.vec3(5.0, 5.0, 5.0)]) wp.launch(fill_vec3b, dim=a3b.size, inputs=[a3b, vec3b_type([True, True, True])]) assert_np_equal(ai.numpy(), np.full((n,), 42, dtype=np.int32)) assert_np_equal(af.numpy(), np.full((n,), 17.0, dtype=np.float32)) assert_np_equal(a3.numpy(), np.full((n, 3), 5.0, dtype=np.float32)) assert_np_equal(a3b.numpy(), np.full((n, 3), True, dtype=np.bool_)) # custom vector/matrix types my_vec5 = wp.vec(length=5, dtype=wp.float32) my_mat55 = wp.mat(shape=(5, 5), dtype=wp.float32) @wp.kernel def generic_transform(v: Any, m: Any, expected: Any): result = wp.mul(m, v) wp.expect_eq(result, expected) # use overload decorator syntax @wp.overload def generic_transform(v: wp.vec2, m: wp.mat22, expected: wp.vec2): # fmt: skip ... @wp.overload def generic_transform(v: wp.vec3, m: wp.mat33, expected: wp.vec3): # fmt: skip ... @wp.overload def generic_transform(v: wp.vec4, m: wp.mat44, expected: wp.vec4): # fmt: skip ... @wp.overload def generic_transform(v: my_vec5, m: my_mat55, expected: my_vec5): # fmt: skip ... def test_generic_transform_kernel(test, device): with wp.ScopedDevice(device): v2 = wp.vec2(1, 2) m22 = wp.mat22(2, 0, 0, 2) e2 = wp.vec2(2, 4) v3 = wp.vec3(1, 2, 3) m33 = wp.mat33(2, 0, 0, 0, 2, 0, 0, 0, 2) e3 = wp.vec3(2, 4, 6) v4 = wp.vec4(1, 2, 3, 4) m44 = wp.mat44(2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2) e4 = wp.vec4(2, 4, 6, 8) v5 = my_vec5(1, 2, 3, 4, 5) m55 = my_mat55(2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2) e5 = my_vec5(2, 4, 6, 8, 10) wp.launch(generic_transform, dim=1, inputs=[v2, m22, e2]) wp.launch(generic_transform, dim=1, inputs=[v3, m33, e3]) wp.launch(generic_transform, dim=1, inputs=[v4, m44, e4]) wp.launch(generic_transform, dim=1, inputs=[v5, m55, e5]) wp.synchronize() @wp.kernel def generic_transform_array(v: wp.array(), m: wp.array(), result: wp.array()): tid = wp.tid() result[tid] = wp.mul(m[tid], v[tid]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec2), wp.array(dtype=wp.mat22), wp.array(dtype=wp.vec2)]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.mat33), wp.array(dtype=wp.vec3)]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec4), wp.array(dtype=wp.mat44), wp.array(dtype=wp.vec4)]) wp.overload(generic_transform_array, [wp.array(dtype=my_vec5), wp.array(dtype=my_mat55), wp.array(dtype=my_vec5)]) def test_generic_transform_array_kernel(test, device): with wp.ScopedDevice(device): n = 10 a2_data = np.tile(np.arange(2, dtype=np.float32), (n, 1)) a3_data = np.tile(np.arange(3, dtype=np.float32), (n, 1)) a4_data = np.tile(np.arange(4, dtype=np.float32), (n, 1)) a5_data = np.tile(np.arange(5, dtype=np.float32), (n, 1)) m22_data = np.tile((np.identity(2, dtype=np.float32) * 2), (n, 1, 1)) m33_data = np.tile((np.identity(3, dtype=np.float32) * 2), (n, 1, 1)) m44_data = np.tile((np.identity(4, dtype=np.float32) * 2), (n, 1, 1)) m55_data = np.tile((np.identity(5, dtype=np.float32) * 2), (n, 1, 1)) a2 = wp.array(data=a2_data, dtype=wp.vec2) a3 = wp.array(data=a3_data, dtype=wp.vec3) a4 = wp.array(data=a4_data, dtype=wp.vec4) a5 = wp.array(data=a5_data, dtype=my_vec5) m22 = wp.array(data=m22_data, dtype=wp.mat22) m33 = wp.array(data=m33_data, dtype=wp.mat33) m44 = wp.array(data=m44_data, dtype=wp.mat44) m55 = wp.array(data=m55_data, dtype=my_mat55) b2 = wp.zeros_like(a2) b3 = wp.zeros_like(a3) b4 = wp.zeros_like(a4) b5 = wp.zeros_like(a5) wp.launch(generic_transform_array, dim=n, inputs=[a2, m22, b2]) wp.launch(generic_transform_array, dim=n, inputs=[a3, m33, b3]) wp.launch(generic_transform_array, dim=n, inputs=[a4, m44, b4]) wp.launch(generic_transform_array, dim=n, inputs=[a5, m55, b5]) assert_np_equal(b2.numpy(), a2_data * 2) assert_np_equal(b3.numpy(), a3_data * 2) assert_np_equal(b4.numpy(), a4_data * 2) assert_np_equal(b5.numpy(), a5_data * 2) @wp.struct class Foo: x: float y: float z: float @wp.struct class Bar: x: wp.vec3 y: wp.vec3 z: wp.vec3 @wp.kernel def test_generic_struct_kernel(s: Any): # test member access for generic structs wp.expect_eq(s.x + s.y, s.z) wp.overload(test_generic_struct_kernel, [Foo]) wp.overload(test_generic_struct_kernel, [Bar]) @wp.kernel def test_generic_type_cast_kernel(a: Any, b: Any): a = type(a)(b) c = type(generic_adder(b, b))(a) wp.expect_eq(b, c) wp.overload(test_generic_type_cast_kernel, [wp.float32, wp.float64]) wp.overload(test_generic_type_cast_kernel, [wp.float32, wp.int32]) wp.overload(test_generic_type_cast_kernel, [wp.vec3f, wp.vec3d]) wp.overload(test_generic_type_cast_kernel, [wp.mat22f, wp.mat22d]) def test_generic_type_cast(test, device): with wp.ScopedDevice(device): wp.launch(test_generic_type_cast_kernel, dim=1, inputs=[1.0, 2.0]) wp.launch(test_generic_type_cast_kernel, dim=1, inputs=[2.0, -5]) wp.launch(test_generic_type_cast_kernel, dim=1, inputs=[wp.vec3f(1.0, 2.0, 3.0), wp.vec3d(4.0, 5.0, 6.0)]) wp.launch(test_generic_type_cast_kernel, dim=1, inputs=[wp.mat22f(0.0), wp.mat22d(np.eye(2))]) wp.synchronize() @wp.kernel def test_generic_scalar_construction_kernel(a: wp.array(dtype=Any)): zero = type(a[0])(0) copy = a.dtype(a[0]) copy += zero wp.expect_eq(copy, a[0]) wp.overload(test_generic_scalar_construction_kernel, [wp.array(dtype=wp.int32)]) wp.overload(test_generic_scalar_construction_kernel, [wp.array(dtype=wp.float64)]) def test_generic_scalar_construction(test, device): with wp.ScopedDevice(device): wp.launch(test_generic_scalar_construction_kernel, dim=1, inputs=[wp.array([1.0], dtype=wp.int32)]) wp.launch(test_generic_scalar_construction_kernel, dim=1, inputs=[wp.array([-5], dtype=wp.float64)]) wp.synchronize() @wp.kernel def test_generic_type_construction_kernel(a: wp.array(dtype=Any)): zero = type(a[0])() copy = type(a).dtype(a[0]) * a.dtype.dtype(1.0) copy += zero wp.expect_eq(copy, a[0]) wp.overload(test_generic_type_construction_kernel, [wp.array(dtype=wp.vec3f)]) wp.overload(test_generic_type_construction_kernel, [wp.array(dtype=wp.mat22d)]) def test_generic_type_construction(test, device): with wp.ScopedDevice(device): wp.launch(test_generic_type_construction_kernel, dim=1, inputs=[wp.array([1.0, 2.0, 3.0], dtype=wp.vec3f)]) wp.launch(test_generic_type_construction_kernel, dim=1, inputs=[wp.array([np.eye(2)], dtype=wp.mat22d)]) wp.synchronize() @wp.kernel def test_generic_struct_construction_kernel(a: Any): b = type(a)(a.x, a.y, a.z) wp.expect_eq(a.x, b.x) wp.expect_eq(a.y, b.y) wp.expect_eq(a.z, b.z) wp.overload(test_generic_struct_construction_kernel, [Foo]) wp.overload(test_generic_struct_construction_kernel, [Bar]) @wp.kernel def test_generic_type_as_argument_kernel(a: Any): vec = wp.vector(length=2, dtype=type(a)) matrix = wp.identity(n=vec.length, dtype=vec.dtype) * a wp.expect_eq(wp.trace(matrix), type(a)(2.0) * a) wp.overload(test_generic_type_as_argument_kernel, [wp.float32]) wp.overload(test_generic_type_as_argument_kernel, [wp.float64]) def test_generic_type_as_argument(test, device): with wp.ScopedDevice(device): wp.launch(test_generic_type_as_argument_kernel, dim=1, inputs=[2.0]) wp.launch(test_generic_type_as_argument_kernel, dim=1, inputs=[-1.0]) wp.synchronize() def test_type_operator_misspell(test, device): @wp.kernel def kernel(): i = wp.tid() _ = typez(i)(0) with test.assertRaisesRegex(KeyError, r"Referencing undefined symbol: typez"): wp.launch( kernel, dim=1, inputs=[], device=device, ) def test_type_attribute_error(test, device): @wp.kernel def kernel(): a = wp.vec3(0.0) _ = a.dtype.shape with test.assertRaisesRegex(AttributeError, r"`shape` is not an attribute of '<class 'warp.types.float32'>'"): wp.launch( kernel, dim=1, inputs=[], device=device, ) class TestGenerics(unittest.TestCase): pass devices = get_test_devices() add_kernel_test(TestGenerics, name="test_generic_adder", kernel=test_generic_adder, dim=1, devices=devices) add_kernel_test(TestGenerics, name="test_specialized_func", kernel=test_specialized_func, dim=1, devices=devices) add_function_test(TestGenerics, "test_generic_array_kernel", test_generic_array_kernel, devices=devices) add_function_test(TestGenerics, "test_generic_accumulator_kernel", test_generic_accumulator_kernel, devices=devices) add_function_test(TestGenerics, "test_generic_fill", test_generic_fill, devices=devices) add_function_test(TestGenerics, "test_generic_fill_overloads", test_generic_fill_overloads, devices=devices) add_function_test(TestGenerics, "test_generic_transform_kernel", test_generic_transform_kernel, devices=devices) add_function_test( TestGenerics, "test_generic_transform_array_kernel", test_generic_transform_array_kernel, devices=devices ) add_function_test(TestGenerics, "test_generic_type_cast", test_generic_type_cast, devices=devices) add_function_test(TestGenerics, "test_generic_type_construction", test_generic_type_construction, devices=devices) add_function_test(TestGenerics, "test_generic_scalar_construction", test_generic_scalar_construction, devices=devices) add_function_test(TestGenerics, "test_generic_type_as_argument", test_generic_type_as_argument, devices=devices) foo = Foo() foo.x = 17.0 foo.y = 25.0 foo.z = 42.0 bar = Bar() bar.x = wp.vec3(1, 2, 3) bar.y = wp.vec3(10, 20, 30) bar.z = wp.vec3(11, 22, 33) add_kernel_test( TestGenerics, name="test_generic_struct_kernel", kernel=test_generic_struct_kernel, dim=1, inputs=[foo], devices=devices, ) add_kernel_test( TestGenerics, name="test_generic_struct_kernel", kernel=test_generic_struct_kernel, dim=1, inputs=[bar], devices=devices, ) add_kernel_test( TestGenerics, name="test_generic_struct_construction_kernel", kernel=test_generic_struct_construction_kernel, dim=1, inputs=[foo], devices=devices, ) add_kernel_test( TestGenerics, name="test_generic_struct_construction_kernel", kernel=test_generic_struct_construction_kernel, dim=1, inputs=[bar], devices=devices, ) add_function_test(TestGenerics, "test_type_operator_misspell", test_type_operator_misspell, devices=devices) add_function_test(TestGenerics, "test_type_attribute_error", test_type_attribute_error, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
19,605
Python
33.396491
118
0.649222
NVIDIA/warp/warp/tests/test_fp16.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.kernel def load_store_half(f32: wp.array(dtype=wp.float32), f16: wp.array(dtype=wp.float16)): tid = wp.tid() # check conversion from f32->f16 a = wp.float16(f32[tid]) b = f16[tid] wp.expect_eq(a, b) # check stores f16[tid] = a def test_fp16_conversion(test, device): s = [1.0, 2.0, 3.0, -3.14159] np_f32 = np.array(s, dtype=np.float32) np_f16 = np.array(s, dtype=np.float16) wp_f32 = wp.array(s, dtype=wp.float32, device=device) wp_f16 = wp.array(s, dtype=wp.float16, device=device) assert_np_equal(np_f32, wp_f32.numpy()) assert_np_equal(np_f16, wp_f16.numpy()) wp.launch(load_store_half, dim=len(s), inputs=[wp_f32, wp_f16], device=device) # check that stores worked assert_np_equal(np_f16, wp_f16.numpy()) @wp.kernel def value_load_store_half(f16_value: wp.float16, f16_array: wp.array(dtype=wp.float16)): wp.expect_eq(f16_value, f16_array[0]) # check stores f16_array[0] = f16_value def test_fp16_kernel_parameter(test, device): """Test the ability to pass in fp16 into kernels as parameters""" s = [1.0, 2.0, 3.0, -3.14159] for test_val in s: np_f16 = np.array([test_val], dtype=np.float16) wp_f16 = wp.array([test_val], dtype=wp.float16, device=device) wp.launch(value_load_store_half, (1,), inputs=[wp.float16(test_val), wp_f16], device=device) # check that stores worked assert_np_equal(np_f16, wp_f16.numpy()) # Do the same thing but pass in test_val as a Python float to test automatic conversion wp_f16 = wp.array([test_val], dtype=wp.float16, device=device) wp.launch(value_load_store_half, (1,), inputs=[test_val, wp_f16], device=device) assert_np_equal(np_f16, wp_f16.numpy()) @wp.kernel def mul_half(input: wp.array(dtype=wp.float16), output: wp.array(dtype=wp.float16)): tid = wp.tid() # convert to compute type fp32 x = wp.float(input[tid]) * 2.0 # store back as fp16 output[tid] = wp.float16(x) def test_fp16_grad(test, device): rng = np.random.default_rng(123) # checks that gradients are correctly propagated for # fp16 arrays, even when intermediate calculations # are performed in e.g.: fp32 s = rng.random(size=15).astype(np.float16) input = wp.array(s, dtype=wp.float16, device=device, requires_grad=True) output = wp.zeros_like(input) tape = wp.Tape() with tape: wp.launch(mul_half, dim=len(s), inputs=[input, output], device=device) ones = wp.array(np.ones(len(output)), dtype=wp.float16, device=device) tape.backward(grads={output: ones}) assert_np_equal(input.grad.numpy(), np.ones(len(s)) * 2.0) class TestFp16(unittest.TestCase): pass devices = [] if wp.is_cpu_available(): devices.append("cpu") for cuda_device in get_selected_cuda_test_devices(): if cuda_device.arch >= 70: devices.append(cuda_device) add_function_test(TestFp16, "test_fp16_conversion", test_fp16_conversion, devices=devices) add_function_test(TestFp16, "test_fp16_grad", test_fp16_grad, devices=devices) add_function_test(TestFp16, "test_fp16_kernel_parameter", test_fp16_kernel_parameter, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
3,824
Python
28.651163
102
0.675209
NVIDIA/warp/warp/tests/test_intersect.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.kernel def intersect_tri( v0: wp.vec3, v1: wp.vec3, v2: wp.vec3, u0: wp.vec3, u1: wp.vec3, u2: wp.vec3, result: wp.array(dtype=int) ): tid = wp.tid() result[0] = wp.intersect_tri_tri(v0, v1, v2, u0, u1, u2) def test_intersect_tri(test, device): points_intersect = [ wp.vec3(0.0, 0.0, 0.0), wp.vec3(1.0, 0.0, 0.0), wp.vec3(0.0, 0.0, 1.0), wp.vec3(0.5, -0.5, 0.0), wp.vec3(0.5, -0.5, 1.0), wp.vec3(0.5, 0.5, 0.0), ] points_separated = [ wp.vec3(0.0, 0.0, 0.0), wp.vec3(1.0, 0.0, 0.0), wp.vec3(0.0, 0.0, 1.0), wp.vec3(-0.5, -0.5, 0.0), wp.vec3(-0.5, -0.5, 1.0), wp.vec3(-0.5, 0.5, 0.0), ] result = wp.zeros(1, dtype=int, device=device) wp.launch(intersect_tri, dim=1, inputs=[*points_intersect, result], device=device) assert_np_equal(result.numpy(), np.array([1])) wp.launch(intersect_tri, dim=1, inputs=[*points_separated, result], device=device) assert_np_equal(result.numpy(), np.array([0])) devices = get_test_devices() class TestIntersect(unittest.TestCase): pass add_function_test(TestIntersect, "test_intersect_tri", test_intersect_tri, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2, failfast=False)
1,855
Python
27.121212
109
0.638814
NVIDIA/warp/warp/tests/test_torch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.kernel def op_kernel(x: wp.array(dtype=float), y: wp.array(dtype=float)): tid = wp.tid() y[tid] = 0.5 - x[tid] * 2.0 @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 @wp.kernel def arange(start: int, step: int, a: wp.array(dtype=int)): tid = wp.tid() a[tid] = start + step * tid # copy elements between non-contiguous 1d arrays of float @wp.kernel def copy1d_float_kernel(dst: wp.array(dtype=float), src: wp.array(dtype=float)): i = wp.tid() dst[i] = src[i] # copy elements between non-contiguous 2d arrays of float @wp.kernel def copy2d_float_kernel(dst: wp.array2d(dtype=float), src: wp.array2d(dtype=float)): i, j = wp.tid() dst[i, j] = src[i, j] # copy elements between non-contiguous 3d arrays of float @wp.kernel def copy3d_float_kernel(dst: wp.array3d(dtype=float), src: wp.array3d(dtype=float)): i, j, k = wp.tid() dst[i, j, k] = src[i, j, k] # copy elements between non-contiguous 2d arrays of vec3 @wp.kernel def copy2d_vec3_kernel(dst: wp.array2d(dtype=wp.vec3), src: wp.array2d(dtype=wp.vec3)): i, j = wp.tid() dst[i, j] = src[i, j] # copy elements between non-contiguous 2d arrays of mat22 @wp.kernel def copy2d_mat22_kernel(dst: wp.array2d(dtype=wp.mat22), src: wp.array2d(dtype=wp.mat22)): i, j = wp.tid() dst[i, j] = src[i, j] def test_dtype_from_torch(test, device): import torch def test_conversions(torch_type, warp_type): test.assertEqual(wp.dtype_from_torch(torch_type), warp_type) test_conversions(torch.float16, wp.float16) test_conversions(torch.float32, wp.float32) test_conversions(torch.float64, wp.float64) test_conversions(torch.int8, wp.int8) test_conversions(torch.int16, wp.int16) test_conversions(torch.int32, wp.int32) test_conversions(torch.int64, wp.int64) test_conversions(torch.uint8, wp.uint8) test_conversions(torch.bool, wp.bool) def test_dtype_to_torch(test, device): import torch def test_conversions(warp_type, torch_type): test.assertEqual(wp.dtype_to_torch(warp_type), torch_type) test_conversions(wp.float16, torch.float16) test_conversions(wp.float32, torch.float32) test_conversions(wp.float64, torch.float64) test_conversions(wp.int8, torch.int8) test_conversions(wp.int16, torch.int16) test_conversions(wp.int32, torch.int32) test_conversions(wp.int64, torch.int64) test_conversions(wp.uint8, torch.uint8) test_conversions(wp.uint16, torch.int16) test_conversions(wp.uint32, torch.int32) test_conversions(wp.uint64, torch.int64) test_conversions(wp.bool, torch.bool) def test_device_conversion(test, device): torch_device = wp.device_to_torch(device) warp_device = wp.device_from_torch(torch_device) test.assertEqual(warp_device, device) def test_torch_zerocopy(test, device): import torch a = wp.zeros(10, dtype=wp.float32, device=device) t = wp.to_torch(a) assert a.ptr == t.data_ptr() torch_device = wp.device_to_torch(device) t = torch.zeros(10, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) assert a.ptr == t.data_ptr() def test_from_torch(test, device): import torch torch_device = wp.device_to_torch(device) # automatically determine warp dtype def wrap_scalar_tensor_implicit(torch_dtype, expected_warp_dtype): t = torch.zeros(10, dtype=torch_dtype, device=torch_device) a = wp.from_torch(t) assert a.dtype == expected_warp_dtype assert a.shape == tuple(t.shape) wrap_scalar_tensor_implicit(torch.float64, wp.float64) wrap_scalar_tensor_implicit(torch.float32, wp.float32) wrap_scalar_tensor_implicit(torch.float16, wp.float16) wrap_scalar_tensor_implicit(torch.int64, wp.int64) wrap_scalar_tensor_implicit(torch.int32, wp.int32) wrap_scalar_tensor_implicit(torch.int16, wp.int16) wrap_scalar_tensor_implicit(torch.int8, wp.int8) wrap_scalar_tensor_implicit(torch.uint8, wp.uint8) wrap_scalar_tensor_implicit(torch.bool, wp.bool) # explicitly specify warp dtype def wrap_scalar_tensor_explicit(torch_dtype, expected_warp_dtype): t = torch.zeros(10, dtype=torch_dtype, device=torch_device) a = wp.from_torch(t, expected_warp_dtype) assert a.dtype == expected_warp_dtype assert a.shape == tuple(t.shape) wrap_scalar_tensor_explicit(torch.float64, wp.float64) wrap_scalar_tensor_explicit(torch.float32, wp.float32) wrap_scalar_tensor_explicit(torch.float16, wp.float16) wrap_scalar_tensor_explicit(torch.int64, wp.int64) wrap_scalar_tensor_explicit(torch.int64, wp.uint64) wrap_scalar_tensor_explicit(torch.int32, wp.int32) wrap_scalar_tensor_explicit(torch.int32, wp.uint32) wrap_scalar_tensor_explicit(torch.int16, wp.int16) wrap_scalar_tensor_explicit(torch.int16, wp.uint16) wrap_scalar_tensor_explicit(torch.int8, wp.int8) wrap_scalar_tensor_explicit(torch.int8, wp.uint8) wrap_scalar_tensor_explicit(torch.uint8, wp.uint8) wrap_scalar_tensor_explicit(torch.uint8, wp.int8) wrap_scalar_tensor_explicit(torch.bool, wp.uint8) wrap_scalar_tensor_explicit(torch.bool, wp.int8) wrap_scalar_tensor_explicit(torch.bool, wp.bool) def wrap_vec_tensor(n, desired_warp_dtype): t = torch.zeros((10, n), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_vec_tensor(2, wp.vec2) wrap_vec_tensor(3, wp.vec3) wrap_vec_tensor(4, wp.vec4) wrap_vec_tensor(6, wp.spatial_vector) wrap_vec_tensor(7, wp.transform) def wrap_mat_tensor(n, m, desired_warp_dtype): t = torch.zeros((10, n, m), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_mat_tensor(2, 2, wp.mat22) wrap_mat_tensor(3, 3, wp.mat33) wrap_mat_tensor(4, 4, wp.mat44) wrap_mat_tensor(6, 6, wp.spatial_matrix) def wrap_vec_tensor_with_grad(n, desired_warp_dtype): t = torch.zeros((10, n), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype, requires_grad=True) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_vec_tensor_with_grad(2, wp.vec2) wrap_vec_tensor_with_grad(3, wp.vec3) wrap_vec_tensor_with_grad(4, wp.vec4) wrap_vec_tensor_with_grad(6, wp.spatial_vector) wrap_vec_tensor_with_grad(7, wp.transform) def wrap_mat_tensor_with_grad(n, m, desired_warp_dtype): t = torch.zeros((10, n, m), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype, requires_grad=True) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_mat_tensor_with_grad(2, 2, wp.mat22) wrap_mat_tensor_with_grad(3, 3, wp.mat33) wrap_mat_tensor_with_grad(4, 4, wp.mat44) wrap_mat_tensor_with_grad(6, 6, wp.spatial_matrix) def test_to_torch(test, device): import torch def wrap_scalar_array(warp_dtype, expected_torch_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == expected_torch_dtype assert tuple(t.shape) == a.shape wrap_scalar_array(wp.float64, torch.float64) wrap_scalar_array(wp.float32, torch.float32) wrap_scalar_array(wp.float16, torch.float16) wrap_scalar_array(wp.int64, torch.int64) wrap_scalar_array(wp.int32, torch.int32) wrap_scalar_array(wp.int16, torch.int16) wrap_scalar_array(wp.int8, torch.int8) wrap_scalar_array(wp.uint8, torch.uint8) wrap_scalar_array(wp.bool, torch.bool) # not supported by torch # wrap_scalar_array(wp.uint64, torch.int64) # wrap_scalar_array(wp.uint32, torch.int32) # wrap_scalar_array(wp.uint16, torch.int16) def wrap_vec_array(n, warp_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == torch.float32 assert tuple(t.shape) == (10, n) wrap_vec_array(2, wp.vec2) wrap_vec_array(3, wp.vec3) wrap_vec_array(4, wp.vec4) wrap_vec_array(6, wp.spatial_vector) wrap_vec_array(7, wp.transform) def wrap_mat_array(n, m, warp_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == torch.float32 assert tuple(t.shape) == (10, n, m) wrap_mat_array(2, 2, wp.mat22) wrap_mat_array(3, 3, wp.mat33) wrap_mat_array(4, 4, wp.mat44) wrap_mat_array(6, 6, wp.spatial_matrix) def test_from_torch_slices(test, device): import torch torch_device = wp.device_to_torch(device) # 1D slice, contiguous t_base = torch.arange(10, dtype=torch.float32, device=torch_device) t = t_base[2:9] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert a.is_contiguous assert a.shape == tuple(t.shape) assert_np_equal(a.numpy(), t.cpu().numpy()) # 1D slice with non-contiguous stride t_base = torch.arange(10, dtype=torch.float32, device=torch_device) t = t_base[2:9:2] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy1d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices (non-contiguous) t_base = torch.arange(24, dtype=torch.float32, device=torch_device).reshape((4, 6)) t = t_base[1:3, 2:5] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 3D slices (non-contiguous) t_base = torch.arange(36, dtype=torch.float32, device=torch_device).reshape((4, 3, 3)) t = t_base[::2, 0:1, 1:2] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices of vec3 (inner contiguous, outer non-contiguous) t_base = torch.arange(150, dtype=torch.float32, device=torch_device).reshape((10, 5, 3)) t = t_base[1:7:2, 2:5] a = wp.from_torch(t, dtype=wp.vec3) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape[:-1]) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_vec3_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices of mat22 (inner contiguous, outer non-contiguous) t_base = torch.arange(200, dtype=torch.float32, device=torch_device).reshape((10, 5, 2, 2)) t = t_base[1:7:2, 2:5] a = wp.from_torch(t, dtype=wp.mat22) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape[:-2]) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_mat22_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) def test_from_torch_zero_strides(test, device): import torch torch_device = wp.device_to_torch(device) t_base = torch.arange(9, dtype=torch.float32, device=torch_device).reshape((3, 3)) # expand outermost dimension t = t_base.unsqueeze(0).expand(3, -1, -1) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # expand middle dimension t = t_base.unsqueeze(1).expand(-1, 3, -1) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # expand innermost dimension t = t_base.unsqueeze(2).expand(-1, -1, 3) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) def test_torch_mgpu_from_torch(test, device): import torch n = 32 t0 = torch.arange(0, n, 1, dtype=torch.int32, device="cuda:0") t1 = torch.arange(0, n * 2, 2, dtype=torch.int32, device="cuda:1") a0 = wp.from_torch(t0, dtype=wp.int32) a1 = wp.from_torch(t1, dtype=wp.int32) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected0 = np.arange(0, n, 1) expected1 = np.arange(0, n * 2, 2) assert_np_equal(a0.numpy(), expected0) assert_np_equal(a1.numpy(), expected1) def test_torch_mgpu_to_torch(test, device): n = 32 with wp.ScopedDevice("cuda:0"): a0 = wp.empty(n, dtype=wp.int32) wp.launch(arange, dim=a0.size, inputs=[0, 1, a0]) with wp.ScopedDevice("cuda:1"): a1 = wp.empty(n, dtype=wp.int32) wp.launch(arange, dim=a1.size, inputs=[0, 2, a1]) t0 = wp.to_torch(a0) t1 = wp.to_torch(a1) assert str(t0.device) == "cuda:0" assert str(t1.device) == "cuda:1" expected0 = np.arange(0, n, 1, dtype=np.int32) expected1 = np.arange(0, n * 2, 2, dtype=np.int32) assert_np_equal(t0.cpu().numpy(), expected0) assert_np_equal(t1.cpu().numpy(), expected1) def test_torch_mgpu_interop(test, device): import torch n = 1024 * 1024 with torch.cuda.device(0): t0 = torch.arange(n, dtype=torch.float32, device="cuda") a0 = wp.from_torch(t0) wp.launch(inc, dim=a0.size, inputs=[a0], stream=wp.stream_from_torch()) with torch.cuda.device(1): t1 = torch.arange(n, dtype=torch.float32, device="cuda") a1 = wp.from_torch(t1) wp.launch(inc, dim=a1.size, inputs=[a1], stream=wp.stream_from_torch()) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected = np.arange(n, dtype=int) + 1 # ensure the torch tensors were modified by warp assert_np_equal(t0.cpu().numpy(), expected) assert_np_equal(t1.cpu().numpy(), expected) def test_torch_autograd(test, device): """Test torch autograd with a custom Warp op""" import torch # custom autograd op class TestFunc(torch.autograd.Function): @staticmethod def forward(ctx, x): # allocate output array y = torch.empty_like(x) ctx.x = x ctx.y = y wp.launch(kernel=op_kernel, dim=len(x), inputs=[wp.from_torch(x)], outputs=[wp.from_torch(y)]) return y @staticmethod def backward(ctx, adj_y): # adjoints should be allocated as zero initialized adj_x = torch.zeros_like(ctx.x).contiguous() adj_y = adj_y.contiguous() wp_x = wp.from_torch(ctx.x, grad=adj_x) wp_y = wp.from_torch(ctx.y, grad=adj_y) wp.launch( kernel=op_kernel, dim=len(ctx.x), # fwd inputs inputs=[wp_x], outputs=[wp_y], # adj inputs (already stored in input/output arrays, passing null pointers) adj_inputs=[None], adj_outputs=[None], adjoint=True, ) return adj_x # run autograd on given device with wp.ScopedDevice(device): torch_device = wp.device_to_torch(device) # input data x = torch.ones(16, dtype=torch.float32, device=torch_device, requires_grad=True) # execute op y = TestFunc.apply(x) # compute grads l = y.sum() l.backward() passed = (x.grad == -2.0).all() assert passed.item() def test_torch_graph_torch_stream(test, device): """Capture Torch graph on Torch stream""" wp.load_module(device=device) import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) g = torch.cuda.CUDAGraph() # create a device-specific torch stream to use for capture # (otherwise torch.cuda.graph reuses its capture stream, which can be problematic if it's from a different device) torch_stream = torch.cuda.Stream(device=torch_device) # make warp use the same stream warp_stream = wp.stream_from_torch(torch_stream) # capture graph with wp.ScopedStream(warp_stream), torch.cuda.graph(g, stream=torch_stream): wp.capture_begin(force_module_load=False, external=True) try: t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) finally: wp.capture_end() # replay graph num_iters = 10 for _i in range(num_iters): g.replay() passed = (t == num_iters * 4.0).all() assert passed.item() def test_torch_graph_warp_stream(test, device): """Capture Torch graph on Warp stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) g = torch.cuda.CUDAGraph() # make torch use the warp stream from the given device torch_stream = wp.stream_to_torch(device) # capture graph with wp.ScopedDevice(device), torch.cuda.graph(g, stream=torch_stream): wp.capture_begin(force_module_load=False, external=True) try: t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) finally: wp.capture_end() # replay graph num_iters = 10 for _i in range(num_iters): g.replay() passed = (t == num_iters * 4.0).all() assert passed.item() def test_warp_graph_warp_stream(test, device): """Capture Warp graph on Warp stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) # make torch use the warp stream from the given device torch_stream = wp.stream_to_torch(device) # capture graph with wp.ScopedDevice(device), torch.cuda.stream(torch_stream): wp.capture_begin(force_module_load=False) try: t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) finally: g = wp.capture_end() # replay graph num_iters = 10 for _i in range(num_iters): wp.capture_launch(g) passed = (t == num_iters * 4.0).all() assert passed.item() def test_warp_graph_torch_stream(test, device): """Capture Warp graph on Torch stream""" wp.load_module(device=device) import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) # create a device-specific torch stream to use for capture # (the default torch stream is not suitable for graph capture) torch_stream = torch.cuda.Stream(device=torch_device) # make warp use the same stream warp_stream = wp.stream_from_torch(torch_stream) # capture graph with wp.ScopedStream(warp_stream), torch.cuda.stream(torch_stream): wp.capture_begin(force_module_load=False) try: t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) finally: g = wp.capture_end() # replay graph num_iters = 10 for _i in range(num_iters): wp.capture_launch(g) passed = (t == num_iters * 4.0).all() assert passed.item() class TestTorch(unittest.TestCase): pass test_devices = get_test_devices() try: import torch # check which Warp devices work with Torch # CUDA devices may fail if Torch was not compiled with CUDA support torch_compatible_devices = [] torch_compatible_cuda_devices = [] for d in test_devices: try: t = torch.arange(10, device=wp.device_to_torch(d)) t += 1 torch_compatible_devices.append(d) if d.is_cuda: torch_compatible_cuda_devices.append(d) except Exception as e: print(f"Skipping Torch tests on device '{d}' due to exception: {e}") add_function_test(TestTorch, "test_dtype_from_torch", test_dtype_from_torch, devices=None) add_function_test(TestTorch, "test_dtype_to_torch", test_dtype_to_torch, devices=None) if torch_compatible_devices: add_function_test(TestTorch, "test_device_conversion", test_device_conversion, devices=torch_compatible_devices) add_function_test(TestTorch, "test_from_torch", test_from_torch, devices=torch_compatible_devices) add_function_test(TestTorch, "test_from_torch_slices", test_from_torch_slices, devices=torch_compatible_devices) add_function_test( TestTorch, "test_from_torch_zero_strides", test_from_torch_zero_strides, devices=torch_compatible_devices, ) add_function_test(TestTorch, "test_to_torch", test_to_torch, devices=torch_compatible_devices) add_function_test(TestTorch, "test_torch_zerocopy", test_torch_zerocopy, devices=torch_compatible_devices) add_function_test(TestTorch, "test_torch_autograd", test_torch_autograd, devices=torch_compatible_devices) if torch_compatible_cuda_devices: add_function_test( TestTorch, "test_torch_graph_torch_stream", test_torch_graph_torch_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_torch_graph_warp_stream", test_torch_graph_warp_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_warp_graph_warp_stream", test_warp_graph_warp_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_warp_graph_torch_stream", test_warp_graph_torch_stream, devices=torch_compatible_cuda_devices, ) # multi-GPU tests if len(torch_compatible_cuda_devices) > 1: add_function_test(TestTorch, "test_torch_mgpu_from_torch", test_torch_mgpu_from_torch) add_function_test(TestTorch, "test_torch_mgpu_to_torch", test_torch_mgpu_to_torch) add_function_test(TestTorch, "test_torch_mgpu_interop", test_torch_mgpu_interop) except Exception as e: print(f"Skipping Torch tests due to exception: {e}") if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
24,392
Python
31.874663
120
0.638775
NVIDIA/warp/warp/tests/test_mesh.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * # fmt: off POINT_POSITIONS = ( ( 0.5, -0.5, 0.5), (-0.5, -0.5, 0.5), ( 0.5, 0.5, 0.5), (-0.5, 0.5, 0.5), (-0.5, -0.5, -0.5), ( 0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), ( 0.5, 0.5, -0.5), ) # Right-hand winding order. This corresponds to USD's (and others). RIGHT_HANDED_FACE_VERTEX_INDICES = ( 0, 3, 1, 0, 2, 3, 4, 7, 5, 4, 6, 7, 6, 2, 7, 6, 3, 2, 5, 1, 4, 5, 0, 1, 5, 2, 0, 5, 7, 2, 1, 6, 4, 1, 3, 6, ) # Left-hand winding order. This corresponds to Houdini's (and others). LEFT_HANDED_FACE_VERTEX_INDICES = ( 0, 1, 3, 0, 3, 2, 4, 5, 7, 4, 7, 6, 6, 7, 2, 6, 2, 3, 5, 4, 1, 5, 1, 0, 5, 0, 2, 5, 2, 7, 1, 4, 6, 1, 6, 3, ) # fmt: on POINT_COUNT = 8 VERTEX_COUNT = 36 FACE_COUNT = 12 @wp.kernel(enable_backward=False) def read_points_kernel( mesh_id: wp.uint64, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() mesh = wp.mesh_get(mesh_id) out_points[tid] = mesh.points[tid] @wp.kernel(enable_backward=False) def read_indices_kernel( mesh_id: wp.uint64, out_indices: wp.array(dtype=int), ): tid = wp.tid() mesh = wp.mesh_get(mesh_id) out_indices[tid * 3 + 0] = mesh.indices[tid * 3 + 0] out_indices[tid * 3 + 1] = mesh.indices[tid * 3 + 1] out_indices[tid * 3 + 2] = mesh.indices[tid * 3 + 2] def test_mesh_read_properties(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) assert mesh.points.size == POINT_COUNT assert mesh.indices.size == VERTEX_COUNT assert int(mesh.indices.size / 3) == FACE_COUNT out_points = wp.empty(POINT_COUNT, dtype=wp.vec3, device=device) wp.launch(read_points_kernel, dim=POINT_COUNT, inputs=[mesh.id], outputs=[out_points], device=device) assert_np_equal(out_points.numpy(), np.array(POINT_POSITIONS)) out_indices = wp.empty(VERTEX_COUNT, dtype=int, device=device) wp.launch(read_indices_kernel, dim=FACE_COUNT, inputs=[mesh.id], outputs=[out_indices], device=device) assert_np_equal(out_indices.numpy(), np.array(RIGHT_HANDED_FACE_VERTEX_INDICES)) @wp.kernel(enable_backward=False) def query_point_kernel( mesh_id: wp.uint64, expected_sign: float, ): point = wp.vec3(0.1, 0.2, 0.3) expected_pos = wp.vec3(0.1, 0.2, 0.5) sign = float(0.0) face = int(0) bary_u = float(0.0) bary_v = float(0.0) wp.mesh_query_point(mesh_id, point, 1e6, sign, face, bary_u, bary_v) pos = wp.mesh_eval_position(mesh_id, face, bary_u, bary_v) wp.expect_eq(wp.sign(sign), expected_sign) wp.expect_eq(face, 1) wp.expect_near(wp.length(pos - expected_pos), 0.0) def test_mesh_query_point(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) expected_sign = -1.0 wp.launch(query_point_kernel, dim=1, inputs=[mesh.id, expected_sign], device=device) indices = wp.array(LEFT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) expected_sign = 1.0 wp.launch(query_point_kernel, dim=1, inputs=[mesh.id, expected_sign], device=device) @wp.kernel(enable_backward=False) def query_ray_kernel( mesh_id: wp.uint64, expected_sign: float, ): start = wp.vec3(0.1, 0.2, 0.3) dir = wp.normalize(wp.vec3(-1.2, 2.3, -3.4)) expected_t = 0.557828 expected_pos = wp.vec3(-0.0565217, 0.5, -0.143478) t = float(0.0) bary_u = float(0.0) bary_v = float(0.0) sign = float(0.0) normal = wp.vec3(0.0, 0.0, 0.0) face = int(0) wp.mesh_query_ray( mesh_id, start, dir, 1e6, t, bary_u, bary_v, sign, normal, face, ) pos = wp.mesh_eval_position(mesh_id, face, bary_u, bary_v) wp.expect_near(t, expected_t) wp.expect_near(t, wp.length(pos - start), 1e-6) wp.expect_eq(wp.sign(sign), expected_sign) wp.expect_eq(face, 4) wp.expect_near(wp.length(pos - expected_pos), 0.0, 1e-6) def test_mesh_query_ray(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) expected_sign = -1.0 wp.launch( query_ray_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], device=device, ) indices = wp.array(LEFT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) expected_sign = 1.0 wp.launch( query_ray_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], device=device, ) def test_mesh_refit_graph(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) mesh = wp.Mesh(points=points, indices=indices) wp.capture_begin(device, force_module_load=False) try: mesh.refit() finally: graph = wp.capture_end(device) # replay num_iters = 10 for _ in range(num_iters): wp.capture_launch(graph) wp.synchronize_device(device) def test_mesh_exceptions(test, device): # points and indices must be on same device with test.assertRaises(RuntimeError): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device="cpu") indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) wp.Mesh(points=points, indices=indices) # points must be vec3 with test.assertRaises(RuntimeError): points = wp.array(POINT_POSITIONS, dtype=wp.vec3d, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) wp.Mesh(points=points, indices=indices) # velocities must be vec3 with test.assertRaises(RuntimeError): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) velocities = wp.zeros(points.shape, dtype=wp.vec3d, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) wp.Mesh(points=points, indices=indices, velocities=velocities) # indices must be int32 with test.assertRaises(RuntimeError): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=wp.int64, device=device) wp.Mesh(points=points, indices=indices) # indices must be 1d with test.assertRaises(RuntimeError): points = wp.array(POINT_POSITIONS, dtype=wp.vec3, device=device) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int, device=device) indices = indices.reshape((3, -1)) wp.Mesh(points=points, indices=indices) devices = get_test_devices() class TestMesh(unittest.TestCase): pass add_function_test(TestMesh, "test_mesh_read_properties", test_mesh_read_properties, devices=devices) add_function_test(TestMesh, "test_mesh_query_point", test_mesh_query_point, devices=devices) add_function_test(TestMesh, "test_mesh_query_ray", test_mesh_query_ray, devices=devices) add_function_test(TestMesh, "test_mesh_refit_graph", test_mesh_refit_graph, devices=get_selected_cuda_test_devices()) add_function_test(TestMesh, "test_mesh_exceptions", test_mesh_exceptions, devices=get_selected_cuda_test_devices()) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
8,386
Python
28.741135
117
0.641426
NVIDIA/warp/warp/tests/test_lvalue.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.kernel def rmw_array_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() foos[i] += wp.uint32(1) def test_rmw_array(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=rmw_array_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.struct class RmwFoo: field: wp.uint32 @wp.kernel def rmw_array_struct_kernel(foos: wp.array(dtype=RmwFoo)): i = wp.tid() foos[i].field += wp.uint32(1) def test_rmw_array_struct(test, device): foos = wp.zeros((10,), dtype=RmwFoo, device=device) wp.launch(kernel=rmw_array_struct_kernel, dim=(10,), inputs=[foos], device=device) expected = RmwFoo() expected.field = 1 for f in foos.list(): test.assertEqual(f.field, expected.field) @wp.func def lookup(foos: wp.array(dtype=wp.uint32), index: int): return foos[index] @wp.kernel def lookup_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() x = lookup(foos, i) foos[i] = x + wp.uint32(1) def test_lookup(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=lookup_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.func def lookup3(foos: wp.array(dtype=wp.float32), index: int): return foos[index] @wp.kernel def grad_kernel(foos: wp.array(dtype=wp.float32), bars: wp.array(dtype=wp.float32)): i = wp.tid() x = lookup3(foos, i) bars[i] = x * wp.float32(i) + 1.0 def test_grad(test, device): num = 10 data = np.linspace(20, 20 + num, num, endpoint=False, dtype=np.float32) input = wp.array(data, device=device, requires_grad=True) output = wp.zeros(num, dtype=wp.float32, device=device) ones = wp.array(np.ones(len(output)), dtype=wp.float32, device=device) tape = wp.Tape() with tape: wp.launch(kernel=grad_kernel, dim=(num,), inputs=[input], outputs=[output], device=device) tape.backward(grads={output: ones}) # test forward results for i, f in enumerate(output.list()): test.assertEqual(f, data[i] * i + 1) # test backward results for i, f in enumerate(tape.gradients[input].list()): test.assertEqual(f, i) @wp.func def lookup2(foos: wp.array(dtype=wp.uint32), index: int): if index % 2 == 0: x = foos[index] x = wp.uint32(0) return x else: return foos[index] @wp.kernel def lookup2_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() x = lookup2(foos, i) foos[i] = x + wp.uint32(1) def test_lookup2(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=lookup2_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.kernel def unary_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() foos[i] = wp.uint32(-1) x = -foos[i] foos[i] = x def test_unary(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=unary_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.kernel def rvalue_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() if foos[i] < wp.uint32(1): foos[i] = wp.uint32(1) def test_rvalue(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=rvalue_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) # Tests, among other things, that assigning a reference to a new variable does # not create a reference @wp.kernel def intermediate_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() x = foos[i] x = x + wp.uint32(1) foos[i] = x def test_intermediate(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=intermediate_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.kernel def array_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() foos[i] = wp.uint32(1) def test_array_assign(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=array_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.func def increment(arg: wp.uint32): return arg + wp.uint32(1) @wp.kernel def array_call_kernel(foos: wp.array(dtype=wp.uint32)): i = wp.tid() foos[i] = increment(foos[i]) def test_array_call_assign(test, device): arr = wp.zeros((10,), dtype=wp.uint32, device=device) wp.launch(kernel=array_kernel, dim=(10,), inputs=[arr], device=device) assert_np_equal(arr.numpy(), np.ones(10)) @wp.struct class Foo: field: wp.uint32 @wp.kernel def array_struct_kernel(foos: wp.array(dtype=Foo)): i = wp.tid() foos[i].field = wp.uint32(1) def test_array_struct_assign(test, device): foos = wp.zeros((10,), dtype=Foo, device=device) wp.launch(kernel=array_struct_kernel, dim=(10,), inputs=[foos], device=device) expected = Foo() expected.field = 1 test.assertEqual(expected.field, 1) for f in foos.list(): test.assertEqual(f.field, 1) @wp.struct class Bar: field: wp.uint32 @wp.struct class Baz: bar: Bar @wp.kernel def array_struct_struct_kernel(foos: wp.array(dtype=Baz)): i = wp.tid() foos[i].bar.field = wp.uint32(1) def test_array_struct_struct_assign(test, device): foos = wp.zeros((10,), dtype=Baz, device=device) wp.launch(kernel=array_struct_struct_kernel, dim=(10,), inputs=[foos], device=device) expected = Baz() expected.bar.field = 1 test.assertEqual(expected.bar.field, 1) for f in foos.list(): test.assertEqual(f.bar.field, 1) @wp.struct class S: a: wp.uint32 b: wp.float32 @wp.struct class F: x: wp.float32 s: S y: wp.int32 @wp.kernel def complex_kernel(foos: wp.array(dtype=F)): i = wp.tid() foos[i].x += wp.float32(1.0) foos[i].y = wp.int32(2) foos[i].s.b += wp.float32(3.0) foos[i].s.a = wp.uint32(foos[i].y) def test_complex(test, device): foos = wp.zeros((10,), dtype=F, device=device) wp.launch(kernel=complex_kernel, dim=(10,), inputs=[foos], device=device) expected = F() expected.x = 1.0 expected.y = 2 expected.s.b = 3.0 expected.s.a = expected.y for f in foos.list(): test.assertEqual(f.x, expected.x) test.assertEqual(f.y, expected.y) test.assertEqual(f.s.a, expected.s.a) test.assertEqual(f.s.b, expected.s.b) @wp.struct class Svec: a: wp.uint32 b: wp.vec2f @wp.struct class Fvec: x: wp.vec2f s: Svec y: wp.int32 @wp.kernel def swizzle_kernel(foos: wp.array(dtype=Fvec)): i = wp.tid() foos[i].x += wp.vec2f(1.0, 2.0) foos[i].y = wp.int32(3) foos[i].s.b = wp.vec2f(4.0, 5.0) foos[i].s.b.y = wp.float32(6.0) foos[i].s.b.x = foos[i].x.y foos[i].s.a = wp.uint32(foos[i].y) def test_swizzle(test, device): foos = wp.zeros((10,), dtype=Fvec, device=device) wp.launch(kernel=swizzle_kernel, dim=(10,), inputs=[foos], device=device) expected = Fvec() expected.x = wp.vec2f(1.0, 2.0) expected.y = 3 expected.s.b = wp.vec2f(4.0, 5.0) expected.s.b.y = 6.0 expected.s.b.x = expected.x.y expected.s.a = expected.y for f in foos.list(): test.assertEqual(f.x, expected.x) test.assertEqual(f.y, expected.y) test.assertEqual(f.s.a, expected.s.a) test.assertEqual(f.s.b, expected.s.b) @wp.kernel def slice_kernel(a: wp.array2d(dtype=wp.vec3), b: wp.array2d(dtype=wp.vec3), c: wp.array2d(dtype=wp.vec3)): tid = wp.tid() c[tid][0] = a[tid][0] + b[tid][0] def test_slice(test, device): a = wp.full((1, 1), value=1.0, dtype=wp.vec3, requires_grad=True, device=device) b = wp.full((1, 1), value=1.0, dtype=wp.vec3, requires_grad=True, device=device) c = wp.zeros((1, 1), dtype=wp.vec3, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel=slice_kernel, dim=1, inputs=[a, b], outputs=[c], device=device) c.grad = wp.full((1, 1), value=1.0, dtype=wp.vec3, device=device) tape.backward() x = a.grad.list()[0] y = b.grad.list()[0] expected = wp.vec3(1.0) test.assertEqual(x, expected) test.assertEqual(y, expected) devices = get_test_devices() class TestLValue(unittest.TestCase): def test_swizzle_error_invalid_attribute(self): v = wp.vec3(1, 2, 3) with self.assertRaisesRegex(AttributeError, r"'vec3f' object has no attribute 'foo'$"): v.foo # noqa: B018 try: v.bar = 123 except AttributeError: self.fail() add_function_test(TestLValue, "test_rmw_array", test_rmw_array, devices=devices) add_function_test(TestLValue, "test_rmw_array_struct", test_rmw_array_struct, devices=devices) add_function_test(TestLValue, "test_lookup", test_lookup, devices=devices) add_function_test(TestLValue, "test_lookup2", test_lookup2, devices=devices) add_function_test(TestLValue, "test_grad", test_grad, devices=devices) add_function_test(TestLValue, "test_unary", test_unary, devices=devices) add_function_test(TestLValue, "test_rvalue", test_rvalue, devices=devices) add_function_test(TestLValue, "test_intermediate", test_intermediate, devices=devices) add_function_test(TestLValue, "test_array_assign", test_array_assign, devices=devices) add_function_test(TestLValue, "test_array_struct_assign", test_array_struct_assign, devices=devices) add_function_test(TestLValue, "test_array_struct_struct_assign", test_array_struct_struct_assign, devices=devices) add_function_test(TestLValue, "test_complex", test_complex, devices=devices) add_function_test(TestLValue, "test_swizzle", test_swizzle, devices=devices) add_function_test(TestLValue, "test_slice", test_slice, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
10,580
Python
24.192857
114
0.649811
NVIDIA/warp/warp/tests/test_mat_scalar_ops.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * np_signed_int_types = [ np.int8, np.int16, np.int32, np.int64, np.byte, ] np_unsigned_int_types = [ np.uint8, np.uint16, np.uint32, np.uint64, np.ubyte, ] np_int_types = np_signed_int_types + np_unsigned_int_types np_float_types = [np.float16, np.float32, np.float64] np_scalar_types = np_int_types + np_float_types def randvals(rng, shape, dtype): if dtype in np_float_types: return rng.standard_normal(size=shape).astype(dtype) elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]: return rng.integers(1, high=3, size=shape, dtype=dtype) return rng.integers(1, high=5, size=shape, dtype=dtype) kernel_cache = {} def getkernel(func, suffix=""): key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) def test_arrays(test, device, dtype): rng = np.random.default_rng(123) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) v2_np = randvals(rng, [10, 2, 2], dtype) v3_np = randvals(rng, [10, 3, 3], dtype) v4_np = randvals(rng, [10, 4, 4], dtype) v5_np = randvals(rng, [10, 5, 5], dtype) v32_np = randvals(rng, [10, 3, 2], dtype) v2 = wp.array(v2_np, dtype=mat22, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=mat33, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=mat44, requires_grad=True, device=device) v5 = wp.array(v5_np, dtype=mat55, requires_grad=True, device=device) v32 = wp.array(v32_np, dtype=mat32, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) assert_np_equal(v5.numpy(), v5_np, tol=1.0e-6) assert_np_equal(v32.numpy(), v32_np, tol=1.0e-6) mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) v2 = wp.array(v2_np, dtype=mat22, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=mat33, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=mat44, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) def test_components(test, device, dtype): # test accessing matrix components from Python - this is especially important # for float16, which requires special handling internally wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat23 = wp.types.matrix(shape=(2, 3), dtype=wptype) m = mat23(1, 2, 3, 4, 5, 6) # test __getitem__ for row vectors r0 = m[0] r1 = m[1] test.assertEqual(r0[0], 1) test.assertEqual(r0[1], 2) test.assertEqual(r0[2], 3) test.assertEqual(r1[0], 4) test.assertEqual(r1[1], 5) test.assertEqual(r1[2], 6) # test __getitem__ for individual components test.assertEqual(m[0, 0], 1) test.assertEqual(m[0, 1], 2) test.assertEqual(m[0, 2], 3) test.assertEqual(m[1, 0], 4) test.assertEqual(m[1, 1], 5) test.assertEqual(m[1, 2], 6) # test __setitem__ for row vectors m[0] = [7, 8, 9] m[1] = [10, 11, 12] test.assertEqual(m[0, 0], 7) test.assertEqual(m[0, 1], 8) test.assertEqual(m[0, 2], 9) test.assertEqual(m[1, 0], 10) test.assertEqual(m[1, 1], 11) test.assertEqual(m[1, 2], 12) # test __setitem__ for individual components m[0, 0] = 13 m[0, 1] = 14 m[0, 2] = 15 m[1, 0] = 16 m[1, 1] = 17 m[1, 2] = 18 test.assertEqual(m[0, 0], 13) test.assertEqual(m[0, 1], 14) test.assertEqual(m[0, 2], 15) test.assertEqual(m[1, 0], 16) test.assertEqual(m[1, 1], 17) test.assertEqual(m[1, 2], 18) def test_constants(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) cm22 = wp.constant(mat22(22)) cm33 = wp.constant(mat33(33)) cm44 = wp.constant(mat44(44)) cm55 = wp.constant(mat55(55)) cm32 = wp.constant(mat32(32)) def check_matrix_constants(): wp.expect_eq(cm22, mat22(wptype(22))) wp.expect_eq(cm33, mat33(wptype(33))) wp.expect_eq(cm44, mat44(wptype(44))) wp.expect_eq(cm55, mat55(wptype(55))) wp.expect_eq(cm32, mat32(wptype(32))) kernel = getkernel(check_matrix_constants, suffix=dtype.__name__) if register_kernels: return def test_constructors(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_scalar_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(input[0]) m3result = wptype(2) * mat33(input[0]) m4result = wptype(2) * mat44(input[0]) m5result = wptype(2) * mat55(input[0]) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 def check_component_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(input[0], input[1], input[2], input[3]) m3result = wptype(2) * mat33( input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], ) m4result = wptype(2) * mat44( input[13], input[14], input[15], input[16], input[17], input[18], input[19], input[20], input[21], input[22], input[23], input[24], input[25], input[26], input[27], input[28], ) m5result = wptype(2) * mat55( input[29], input[30], input[31], input[32], input[33], input[34], input[35], input[36], input[37], input[38], input[39], input[40], input[41], input[42], input[43], input[44], input[45], input[46], input[47], input[48], input[49], input[50], input[51], input[52], input[53], ) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 def check_vector_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(vec2(input[0], input[2]), vec2(input[1], input[3])) m3result = wptype(2) * mat33( vec3(input[4], input[7], input[10]), vec3(input[5], input[8], input[11]), vec3(input[6], input[9], input[12]), ) m4result = wptype(2) * mat44( vec4(input[13], input[17], input[21], input[25]), vec4(input[14], input[18], input[22], input[26]), vec4(input[15], input[19], input[23], input[27]), vec4(input[16], input[20], input[24], input[28]), ) m5result = wptype(2) * mat55( vec5(input[29], input[34], input[39], input[44], input[49]), vec5(input[30], input[35], input[40], input[45], input[50]), vec5(input[31], input[36], input[41], input[46], input[51]), vec5(input[32], input[37], input[42], input[47], input[52]), vec5(input[33], input[38], input[43], input[48], input[53]), ) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 kernel = getkernel(check_scalar_mat_constructor, suffix=dtype.__name__) compkernel = getkernel(check_component_mat_constructor, suffix=dtype.__name__) veckernel = getkernel(check_vector_mat_constructor, suffix=dtype.__name__) if register_kernels: return input = wp.array(randvals(rng, [1], dtype), requires_grad=True, device=device) val = input.numpy()[0] outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * val * np.ones(2 * 2), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * val * np.ones(3 * 3), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * val * np.ones(4 * 4), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * val * np.ones(5 * 5), tol=tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) test.assertEqual(tape.gradients[input].numpy()[0], 2) tape.zero() input = wp.array(randvals(rng, [2 * 2 + 3 * 3 + 4 * 4 + 5 * 5], dtype), requires_grad=True, device=device) wp.launch(compkernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(2 * input.numpy(), outcomponents.numpy(), tol=10 * tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(compkernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedgrads = np.zeros(len(input)) expectedgrads[idx] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() wp.launch(veckernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(2 * input.numpy(), outcomponents.numpy(), tol=10 * tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(veckernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedgrads = np.zeros(len(input)) expectedgrads[idx] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_anon_type_instance(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_scalar_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): m2result = wp.matrix(input[0], shape=(2, 2)) m3result = wp.matrix(input[1], shape=(3, 3)) m4result = wp.matrix(input[2], shape=(4, 4)) m5result = wp.matrix(input[3], shape=(5, 5)) m32result = wp.matrix(input[4], shape=(3, 2)) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): output[idx] = wptype(2) * m32result[i, j] idx = idx + 1 def check_component_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): m2result = wp.matrix(input[0], input[1], input[2], input[3], shape=(2, 2)) m3result = wp.matrix( input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], shape=(3, 3) ) m4result = wp.matrix( input[13], input[14], input[15], input[16], input[17], input[18], input[19], input[20], input[21], input[22], input[23], input[24], input[25], input[26], input[27], input[28], shape=(4, 4), ) m5result = wp.matrix( input[29], input[30], input[31], input[32], input[33], input[34], input[35], input[36], input[37], input[38], input[39], input[40], input[41], input[42], input[43], input[44], input[45], input[46], input[47], input[48], input[49], input[50], input[51], input[52], input[53], shape=(5, 5), ) m32result = wp.matrix(input[54], input[55], input[56], input[57], input[58], input[59], shape=(3, 2)) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): output[idx] = wptype(2) * m32result[i, j] idx = idx + 1 scalar_kernel = getkernel(check_scalar_init, suffix=dtype.__name__) component_kernel = getkernel(check_component_init, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(randvals(rng, [5], dtype), requires_grad=True, device=device) output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device) wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy()[:4], 2 * np.array([input.numpy()[0]] * 2 * 2), tol=1.0e-6) assert_np_equal(output.numpy()[4:13], 2 * np.array([input.numpy()[1]] * 3 * 3), tol=1.0e-6) assert_np_equal(output.numpy()[13:29], 2 * np.array([input.numpy()[2]] * 4 * 4), tol=1.0e-6) assert_np_equal(output.numpy()[29:54], 2 * np.array([input.numpy()[3]] * 5 * 5), tol=1.0e-6) assert_np_equal(output.numpy()[54:], 2 * np.array([input.numpy()[4]] * 3 * 2), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) if i < 4: expected[0] = 2 elif i < 13: expected[1] = 2 elif i < 29: expected[2] = 2 elif i < 54: expected[3] = 2 else: expected[4] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() input = wp.array(randvals(rng, [2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2], dtype), requires_grad=True, device=device) output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device) wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) expected[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() def test_identity(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_identity_mat( output: wp.array(dtype=wptype), ): m2result = wp.identity(dtype=wptype, n=2) m3result = wp.identity(dtype=wptype, n=3) m4result = wp.identity(dtype=wptype, n=4) m5result = wp.identity(dtype=wptype, n=5) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 id_kernel = getkernel(check_identity_mat, suffix=dtype.__name__) if register_kernels: return output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(id_kernel, dim=1, inputs=[], outputs=[output], device=device) assert_np_equal(output.numpy()[:4], 2 * np.eye(2), tol=1.0e-6) assert_np_equal(output.numpy()[4:13], 2 * np.eye(3), tol=1.0e-6) assert_np_equal(output.numpy()[13:29], 2 * np.eye(4), tol=1.0e-6) assert_np_equal(output.numpy()[29:], 2 * np.eye(5), tol=1.0e-6) def test_indexing(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_indexing( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2[0][i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3[0][i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4[0][i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5[0][i, j] idx = idx + 1 kernel = getkernel(check_mat_indexing, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_equality(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_equality(): wp.expect_eq( mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), ) wp.expect_neq( mat22(wptype(1.0), wptype(2.0), wptype(3.0), -wptype(4.0)), mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), ) wp.expect_eq( mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), ) wp.expect_neq( mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), mat33( wptype(1.0), wptype(2.0), wptype(3.0), -wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), ) wp.expect_eq( mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), ) wp.expect_neq( mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), mat44( -wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), ) wp.expect_eq( mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), ) wp.expect_neq( mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), -wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), ) kernel = getkernel(check_mat_equality, suffix=dtype.__name__) if register_kernels: return wp.launch(kernel, dim=1, inputs=[], outputs=[], device=device) def test_scalar_multiplication(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_scalar_mul( s: wp.array(dtype=wptype), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), outcomponents_rightmul: wp.array(dtype=wptype), ): m2result = s[0] * m2[0] m3result = s[0] * m3[0] m4result = s[0] * m4[0] m5result = s[0] * m5[0] m2resultright = m2[0] * s[0] m3resultright = m3[0] * s[0] m4resultright = m4[0] * s[0] m5resultright = m5[0] * s[0] m2result_2 = s[0] * m2[0] m3result_2 = s[0] * m3[0] m4result_2 = s[0] * m4[0] m5result_2 = s[0] * m5[0] m2resultright_2 = m2[0] * s[0] m3resultright_2 = m3[0] * s[0] m4resultright_2 = m4[0] * s[0] m5resultright_2 = m5[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result[i, j] outcomponents_rightmul[idx] = wptype(2) * m2resultright[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] outcomponents_rightmul[idx] = wptype(2) * m3resultright[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result[i, j] outcomponents_rightmul[idx] = wptype(2) * m4resultright[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result[i, j] outcomponents_rightmul[idx] = wptype(2) * m5resultright[i, j] idx = idx + 1 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m2resultright_2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m3resultright_2[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m4resultright_2[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m5resultright_2[i, j] idx = idx + 1 kernel = getkernel(check_mat_scalar_mul, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals(rng, [1], dtype), requires_grad=True, device=device) m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device) outcomponents_rightmul = wp.zeros( 2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device ) wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device) sval = s.numpy()[0] assert_np_equal(outcomponents.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents_rightmul.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents_rightmul.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): # test left mul gradient: tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol) tape.zero() # test right mul gradient: tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents_rightmul, idx], outputs=[out], device=device, ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol) tape.zero() idx = idx + 1 def test_matvec_multiplication(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_vec_mul( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v32: wp.array(dtype=vec2), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), m32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): v2result = m2[0] * v2[0] v3result = m3[0] * v3[0] v4result = m4[0] * v4[0] v5result = m5[0] * v5[0] v32result = m32[0] * v32[0] v2result_2 = m2[0] @ v2[0] v3result_2 = m3[0] @ v3[0] v4result_2 = m4[0] @ v4[0] v5result_2 = m5[0] @ v5[0] v32result_2 = m32[0] @ v32[0] idx = 0 # multiply outputs by 2 so we've got something to backpropagate: for i in range(2): outcomponents[idx] = wptype(2) * v2result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result[i] idx = idx + 1 for i in range(2): outcomponents[idx] = wptype(2) * v2result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result_2[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result_2[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result_2[i] idx = idx + 1 kernel = getkernel(check_mat_vec_mul, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4], dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5], dtype), dtype=vec5, requires_grad=True, device=device) v32 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals(rng, [1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros(2 * (2 + 3 + 4 + 5 + 3), dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:2], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[2:5], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[5:9], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[9:14], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[14:17], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[17:19], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[19:22], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[22:26], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[26:31], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[31:34], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, invec, inmat in [(2, v2, m2), (3, v3, m3), (4, v4, m4), (5, v5, m5), (3, v32, m32)]: for i in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(tape.gradients[invec].numpy()[0], 2 * inmat.numpy()[0, i, :], tol=2 * tol) expectedresult = np.zeros(inmat.dtype._shape_, dtype=dtype) expectedresult[i, :] = 2 * invec.numpy()[0] assert_np_equal(tape.gradients[inmat].numpy()[0], expectedresult, tol=2 * tol) tape.zero() idx = idx + 1 def test_vecmat_multiplication(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat23 = wp.types.matrix(shape=(2, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_vec_mat_mul( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v32: wp.array(dtype=vec2), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), m23: wp.array(dtype=mat23), outcomponents: wp.array(dtype=wptype), ): v2result = v2[0] * m2[0] v3result = v3[0] * m3[0] v4result = v4[0] * m4[0] v5result = v5[0] * m5[0] v32result = v32[0] * m23[0] v2result_2 = v2[0] @ m2[0] v3result_2 = v3[0] @ m3[0] v4result_2 = v4[0] @ m4[0] v5result_2 = v5[0] @ m5[0] v32result_2 = v32[0] @ m23[0] idx = 0 # multiply outputs by 2 so we've got something to backpropagate: for i in range(2): outcomponents[idx] = wptype(2) * v2result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result[i] idx = idx + 1 for i in range(2): outcomponents[idx] = wptype(2) * v2result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result_2[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result_2[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result_2[i] idx = idx + 1 kernel = getkernel(check_vec_mat_mul, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4], dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5], dtype), dtype=vec5, requires_grad=True, device=device) v32 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m23 = wp.array(randvals(rng, [1, 2, 3], dtype), dtype=mat23, requires_grad=True, device=device) outcomponents = wp.zeros(2 * (2 + 3 + 4 + 5 + 3), dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m23], outputs=[outcomponents], device=device) outcomponents_np = outcomponents.numpy() assert_np_equal(outcomponents_np[:2], 2 * np.matmul(v2.numpy()[0], m2.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[2:5], 2 * np.matmul(v3.numpy()[0], m3.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[5:9], 2 * np.matmul(v4.numpy()[0], m4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[9:14], 2 * np.matmul(v5.numpy()[0], m5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[14:17], 2 * np.matmul(v32.numpy()[0], m23.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[17:19], 2 * np.matmul(v2.numpy()[0], m2.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[19:22], 2 * np.matmul(v3.numpy()[0], m3.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[22:26], 2 * np.matmul(v4.numpy()[0], m4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[26:31], 2 * np.matmul(v5.numpy()[0], m5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[31:34], 2 * np.matmul(v32.numpy()[0], m23.numpy()[0]), tol=5 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, inmat, invec in [(2, m2, v2), (3, m3, v3), (4, m4, v4), (5, m5, v5), (3, m23, v32)]: for i in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m23], outputs=[outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(tape.gradients[invec].numpy()[0], 2 * inmat.numpy()[0, :, i], tol=2 * tol) expectedresult = np.zeros(inmat.dtype._shape_, dtype=dtype) expectedresult[:, i] = 2 * invec.numpy()[0] assert_np_equal(tape.gradients[inmat].numpy()[0], expectedresult, tol=2 * tol) tape.zero() idx = idx + 1 def test_matmat_multiplication(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_mat_mul( a2: wp.array(dtype=mat22), a3: wp.array(dtype=mat33), a4: wp.array(dtype=mat44), a5: wp.array(dtype=mat55), a32: wp.array(dtype=mat32), b2: wp.array(dtype=mat22), b3: wp.array(dtype=mat33), b4: wp.array(dtype=mat44), b5: wp.array(dtype=mat55), b32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): c2result = b2[0] * a2[0] c3result = b3[0] * a3[0] c4result = b4[0] * a4[0] c5result = b5[0] * a5[0] c32result = b32[0] * a2[0] c32result2 = b3[0] * a32[0] c2result_2 = b2[0] @ a2[0] c3result_2 = b3[0] @ a3[0] c4result_2 = b4[0] @ a4[0] c5result_2 = b5[0] @ a5[0] c32result_2 = b32[0] @ a2[0] c32result2_2 = b3[0] @ a32[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * c2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * c3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * c4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * c5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result2[i, j] idx = idx + 1 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * c2result_2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * c3result_2[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * c4result_2[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * c5result_2[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result_2[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result2_2[i, j] idx = idx + 1 kernel = getkernel(check_mat_mat_mul, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v32 = wp.array(randvals(rng, [1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals(rng, [1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros( 2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2 + 3 * 2), dtype=wptype, requires_grad=True, device=device ) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) outcomponents_np = outcomponents.numpy() assert_np_equal(outcomponents_np[:4].reshape((2, 2)), 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[4:13].reshape((3, 3)), 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[13:29].reshape((4, 4)), 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol) assert_np_equal(outcomponents_np[29:54].reshape((5, 5)), 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol) assert_np_equal(outcomponents_np[54:60].reshape((3, 2)), 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[60:66].reshape((3, 2)), 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents_np[66:70].reshape((2, 2)), 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[70:79].reshape((3, 3)), 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents_np[79:95].reshape((4, 4)), 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol) assert_np_equal(outcomponents_np[95:120].reshape((5, 5)), 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol) assert_np_equal( outcomponents_np[120:126].reshape((3, 2)), 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol ) assert_np_equal( outcomponents_np[126:132].reshape((3, 2)), 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol ) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for v, m in [(v2, m2), (v3, m3), (v4, m4), (v5, m5), (v2, m32), (v32, m3)]: rows, cols = m.dtype._shape_[0], v.dtype._shape_[1] for i in range(rows): for j in range(cols): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expected = np.zeros(v.dtype._shape_, dtype=dtype) expected[:, j] = 2 * m.numpy()[0, i, :] assert_np_equal(tape.gradients[v].numpy()[0], expected, tol=10 * tol) expected = np.zeros(m.dtype._shape_, dtype=dtype) expected[i, :] = 2 * v.numpy()[0, :, j] assert_np_equal(tape.gradients[m].numpy()[0], expected, tol=10 * tol) tape.zero() idx = idx + 1 def test_cw_multiplication(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 5.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_cw_mul( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = wptype(2) * wp.cw_mul(v2[0], s2[0]) v3result = wptype(2) * wp.cw_mul(v3[0], s3[0]) v4result = wptype(2) * wp.cw_mul(v4[0], s4[0]) v5result = wptype(2) * wp.cw_mul(v5[0], s5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_cw_mul, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) outcomponents_np = outcomponents.numpy() assert_np_equal(outcomponents_np[:4], 2 * (v2.numpy() * s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents_np[4:13], 2 * (v3.numpy() * s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents_np[13:29], 2 * (v4.numpy() * s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents_np[29:54], 2 * (v5.numpy() * s5.numpy()).reshape(-1), tol=50 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * in1.numpy()[0][i, j] assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=5 * tol) expectedresult[i, j] = 2 * in2.numpy()[0][i, j] assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=5 * tol) tape.zero() idx = idx + 1 def test_cw_division(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_cw_div( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = wptype(2) * wp.cw_div(v2[0], s2[0]) v3result = wptype(2) * wp.cw_div(v3[0], s3[0]) v4result = wptype(2) * wp.cw_div(v4[0], s4[0]) v5result = wptype(2) * wp.cw_div(v5[0], s5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_cw_div, suffix=dtype.__name__) if register_kernels: return s2 = randvals(rng, [1, 2, 2], dtype) s3 = randvals(rng, [1, 3, 3], dtype) s4 = randvals(rng, [1, 4, 4], dtype) s5 = randvals(rng, [1, 5, 5], dtype) # set denominators to 1 if their magnitudes are small # to prevent divide by zero, or overflows if we're testing # float16: s2[np.abs(s2) < 1.0e-2] = 1 s3[np.abs(s3) < 1.0e-2] = 1 s4[np.abs(s4) < 1.0e-2] = 1 s5[np.abs(s5) < 1.0e-2] = 1 s2 = wp.array(s2, dtype=mat22, requires_grad=True, device=device) s3 = wp.array(s3, dtype=mat33, requires_grad=True, device=device) s4 = wp.array(s4, dtype=mat44, requires_grad=True, device=device) s5 = wp.array(s5, dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) if dtype in np_float_types: assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() / s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() / s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() / s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() / s5.numpy()).reshape(-1), tol=50 * tol) else: assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() // s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() // s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() // s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() // s5.numpy()).reshape(-1), tol=50 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, s, v in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) # y = v/s # dy/dv = 1.0/s # dy/ds = -v/s^2 expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2.0 / (s.numpy()[0, i, j]) assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=50 * tol) expectedresult[i, j] = -2.0 * v.numpy()[0, i, j] / (s.numpy()[0, i, j] ** 2) assert_np_equal( tape.gradients[s].numpy()[0], expectedresult, tol=abs(outcomponents.numpy()[idx]) * 50 * tol ) tape.zero() idx = idx + 1 def test_outer_product(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_outer_product( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), outcomponents: wp.array(dtype=wptype), ): m22result = wptype(2) * wp.outer(s2[0], v2[0]) m33result = wptype(2) * wp.outer(s3[0], v3[0]) m44result = wptype(2) * wp.outer(s4[0], v4[0]) m55result = wptype(2) * wp.outer(s5[0], v5[0]) m25result = wptype(2) * wp.outer(s2[0], v5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m22result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m33result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m44result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m55result[i, j] idx = idx + 1 for i in range(2): for j in range(5): outcomponents[idx] = m25result[i, j] idx = idx + 1 kernel = getkernel(check_mat_outer_product, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals(rng, [1, 4], dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals(rng, [1, 5], dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals(rng, [1, 2], dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4], dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5], dtype), dtype=vec5, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s2, s3, s4, s5, v2, v3, v4, v5], outputs=[outcomponents], device=device) outcomponents_np = outcomponents.numpy() assert_np_equal(outcomponents_np[:4].reshape((2, 2)), 2 * s2.numpy()[0, :, None] * v2.numpy()[0, None, :], tol=tol) assert_np_equal( outcomponents_np[4:13].reshape((3, 3)), 2 * s3.numpy()[0, :, None] * v3.numpy()[0, None, :], tol=10 * tol ) assert_np_equal( outcomponents_np[13:29].reshape((4, 4)), 2 * s4.numpy()[0, :, None] * v4.numpy()[0, None, :], tol=10 * tol ) assert_np_equal( outcomponents_np[29:54].reshape((5, 5)), 2 * s5.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol ) assert_np_equal( outcomponents_np[54:].reshape(2, 5), 2 * s2.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol ) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for s, v in [(s2, v2), (s3, v3), (s4, v4), (s5, v5), (s2, v5)]: rows = s.dtype._length_ cols = v.dtype._length_ for i in range(rows): for j in range(cols): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) # this component's gonna be s_i * v_j, so its s gradient is gonna be nozero # at the ith component and its v gradient will be nonzero at the jth component: expectedresult = np.zeros((rows), dtype=dtype) expectedresult[i] = 2 * v.numpy()[0, j] assert_np_equal(tape.gradients[s].numpy()[0], expectedresult, tol=10 * tol) expectedresult = np.zeros((cols), dtype=dtype) expectedresult[j] = 2 * s.numpy()[0, i] assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_transpose(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_transpose( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), m32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: mat2 = wptype(2) * wp.transpose(m2[0]) mat3 = wptype(2) * wp.transpose(m3[0]) mat4 = wptype(2) * wp.transpose(m4[0]) mat5 = wptype(2) * wp.transpose(m5[0]) mat32 = wptype(2) * wp.transpose(m32[0]) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = mat2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = mat3[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = mat4[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = mat5[i, j] idx = idx + 1 for i in range(2): for j in range(3): outcomponents[idx] = mat32[i, j] idx = idx + 1 kernel = getkernel(check_mat_transpose, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals(rng, [1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 3, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[54:], 2 * m32.numpy()[0].T.reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for input in [m2, m3, m4, m5]: for i in range(input.dtype._shape_[0]): for j in range(input.dtype._shape_[1]): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((input.dtype._shape_[1], input.dtype._shape_[0]), dtype=dtype) expectedresult[j, i] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_scalar_division(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_scalar_div( s: wp.array(dtype=wptype), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): m2result = m2[0] / s[0] m3result = m3[0] / s[0] m4result = m4[0] / s[0] m5result = m5[0] / s[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_scalar_div, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals(rng, [1], dtype), requires_grad=True, device=device) m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device) sval = s.numpy()[0] if dtype in np_float_types: assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1) / sval, tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1) / sval, tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1) / sval, tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1) / sval, tol=10 * tol) else: assert_np_equal(outcomponents.numpy()[:4], 2 * (m2.numpy().reshape(-1) // sval), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (m3.numpy().reshape(-1) // sval), tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (m4.numpy().reshape(-1) // sval), tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (m5.numpy().reshape(-1) // sval), tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2.0 / sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal( tape.gradients[s].numpy()[0], -2 * input.numpy()[0, i, j] / (sval * sval), tol=10 * tol ) tape.zero() idx = idx + 1 def test_addition(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_add( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = v2[0] + s2[0] v3result = v3[0] + s3[0] v4result = v4[0] + s4[0] v5result = v5[0] + s5[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_add, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() + s2.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() + s3.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() + s4.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() + s5.numpy()).reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=10 * tol) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_ddot(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_dot( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), dot2: wp.array(dtype=wptype), dot3: wp.array(dtype=wptype), dot4: wp.array(dtype=wptype), dot5: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: dot2[0] = wptype(2) * wp.ddot(v2[0], s2[0]) dot3[0] = wptype(2) * wp.ddot(v3[0], s3[0]) dot4[0] = wptype(2) * wp.ddot(v4[0], s4[0]) dot5[0] = wptype(2) * wp.ddot(v5[0], s5[0]) kernel = getkernel(check_mat_dot, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) dot2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[dot2, dot3, dot4, dot5], device=device, ) assert_np_equal(dot2.numpy()[0], 2 * (v2.numpy() * s2.numpy()).sum(), tol=10 * tol) assert_np_equal(dot3.numpy()[0], 2 * (v3.numpy() * s3.numpy()).sum(), tol=10 * tol) assert_np_equal(dot4.numpy()[0], 2 * (v4.numpy() * s4.numpy()).sum(), tol=50 * tol) assert_np_equal(dot5.numpy()[0], 2 * (v5.numpy() * s5.numpy()).sum(), tol=200 * tol) if dtype in np_float_types: tape.backward(loss=dot2) sgrads = tape.gradients[s2].numpy()[0] expected_grads = 2.0 * v2.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v2].numpy()[0] expected_grads = 2.0 * s2.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot3) sgrads = tape.gradients[s3].numpy()[0] expected_grads = 2.0 * v3.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v3].numpy()[0] expected_grads = 2.0 * s3.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot4) sgrads = tape.gradients[s4].numpy()[0] expected_grads = 2.0 * v4.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v4].numpy()[0] expected_grads = 2.0 * s4.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot5) sgrads = tape.gradients[s5].numpy()[0] expected_grads = 2.0 * v5.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v5].numpy()[0] expected_grads = 2.0 * s5.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() def test_trace(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_trace( v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), tr2: wp.array(dtype=wptype), tr3: wp.array(dtype=wptype), tr4: wp.array(dtype=wptype), tr5: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: tr2[0] = wptype(2) * wp.trace(v2[0]) tr3[0] = wptype(2) * wp.trace(v3[0]) tr4[0] = wptype(2) * wp.trace(v4[0]) tr5[0] = wptype(2) * wp.trace(v5[0]) kernel = getkernel(check_mat_trace, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) tr2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ v2, v3, v4, v5, ], outputs=[ tr2, tr3, tr4, tr5, ], device=device, ) assert_np_equal(tr2.numpy()[0], 2 * np.trace(v2.numpy()[0]), tol=10 * tol) assert_np_equal(tr3.numpy()[0], 2 * np.trace(v3.numpy()[0]), tol=10 * tol) assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol) assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol) if dtype in np_float_types: tape.backward(loss=tr2) vgrads = tape.gradients[v2].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(2), tol=10 * tol) tape.zero() tape.backward(loss=tr3) vgrads = tape.gradients[v3].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(3), tol=10 * tol) tape.zero() tape.backward(loss=tr4) vgrads = tape.gradients[v4].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(4), tol=10 * tol) tape.zero() tape.backward(loss=tr5) vgrads = tape.gradients[v5].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(5), tol=10 * tol) tape.zero() def test_diag(test, device, dtype, register_kernels=False): rng = np.random.default_rng(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_diag( s5: wp.array(dtype=vec5), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m55result = wptype(2) * wp.diag(s5[0]) idx = 0 for i in range(5): for j in range(5): outcomponents[idx] = m55result[i, j] idx = idx + 1 kernel = getkernel(check_mat_diag, suffix=dtype.__name__) if register_kernels: return s5 = wp.array(randvals(rng, [1, 5], dtype), dtype=vec5, requires_grad=True, device=device) outcomponents = wp.zeros(5 * 5, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.reshape((5, 5)).numpy(), 2 * np.diag(s5.numpy()[0]), tol=tol) if dtype in np_float_types: idx = 0 for i in range(5): for j in range(5): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(5, dtype=dtype) if i == j: expectedresult[i] = 2 assert_np_equal(tape.gradients[s5].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_equivalent_types(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] # matrix types mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) # matrix types equivalent to the above mat22_equiv = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33_equiv = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44_equiv = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55_equiv = wp.types.matrix(shape=(5, 5), dtype=wptype) # declare kernel with original types def check_equivalence( m2: mat22, m3: mat33, m4: mat44, m5: mat55, ): wp.expect_eq(m2, mat22(wptype(42))) wp.expect_eq(m3, mat33(wptype(43))) wp.expect_eq(m4, mat44(wptype(44))) wp.expect_eq(m5, mat55(wptype(45))) wp.expect_eq(m2, mat22_equiv(wptype(42))) wp.expect_eq(m3, mat33_equiv(wptype(43))) wp.expect_eq(m4, mat44_equiv(wptype(44))) wp.expect_eq(m5, mat55_equiv(wptype(45))) kernel = getkernel(check_equivalence, suffix=dtype.__name__) if register_kernels: return # call kernel with equivalent types m2 = mat22_equiv(42) m3 = mat33_equiv(43) m4 = mat44_equiv(44) m5 = mat55_equiv(45) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], device=device) def test_conversions(test, device, dtype, register_kernels=False): def check_matrices_equal( m0: wp.mat22, m1: wp.mat22, m2: wp.mat22, m3: wp.mat22, m4: wp.mat22, m5: wp.mat22, m6: wp.mat22, ): wp.expect_eq(m1, m0) wp.expect_eq(m2, m0) wp.expect_eq(m3, m0) wp.expect_eq(m4, m0) wp.expect_eq(m5, m0) wp.expect_eq(m6, m0) kernel = getkernel(check_matrices_equal, suffix=dtype.__name__) if register_kernels: return m0 = wp.mat22(1, 2, 3, 4) # test explicit conversions - constructing matrices from different containers m1 = wp.mat22(((1, 2), (3, 4))) # nested tuples m2 = wp.mat22([[1, 2], [3, 4]]) # nested lists m3 = wp.mat22(np.array([[1, 2], [3, 4]], dtype=dtype)) # 2d array m4 = wp.mat22((1, 2, 3, 4)) # flat tuple m5 = wp.mat22([1, 2, 3, 4]) # flat list m6 = wp.mat22(np.array([1, 2, 3, 4], dtype=dtype)) # 1d array wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device) # test implicit conversions - passing different containers as matrices to wp.launch() m1 = ((1, 2), (3, 4)) # nested tuples m2 = [[1, 2], [3, 4]] # nested lists m3 = np.array([[1, 2], [3, 4]], dtype=dtype) # 2d array m4 = (1, 2, 3, 4) # flat tuple m5 = [1, 2, 3, 4] # flat list m6 = np.array([1, 2, 3, 4], dtype=dtype) # 1d array wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device) devices = get_test_devices() class TestMatScalarOps(unittest.TestCase): pass for dtype in np_scalar_types: add_function_test(TestMatScalarOps, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype) add_function_test(TestMatScalarOps, f"test_components_{dtype.__name__}", test_components, devices=None, dtype=dtype) add_function_test_register_kernel( TestMatScalarOps, f"test_constructors_{dtype.__name__}", test_constructors, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_identity_{dtype.__name__}", test_identity, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_equality_{dtype.__name__}", test_equality, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_scalar_multiplication_{dtype.__name__}", test_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_matvec_multiplication_{dtype.__name__}", test_matvec_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_vecmat_multiplication_{dtype.__name__}", test_vecmat_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_matmat_multiplication_{dtype.__name__}", test_matmat_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_cw_multiplication_{dtype.__name__}", test_cw_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMatScalarOps, f"test_cw_division_{dtype.__name__}", test_cw_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_outer_product_{dtype.__name__}", test_outer_product, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_transpose_{dtype.__name__}", test_transpose, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_ddot_{dtype.__name__}", test_ddot, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_trace_{dtype.__name__}", test_trace, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_get_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_equivalent_types_{dtype.__name__}", test_equivalent_types, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_conversions_{dtype.__name__}", test_conversions, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMatScalarOps, f"test_constants_{dtype.__name__}", test_constants, devices=None, dtype=dtype ) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2, failfast=True)
110,256
Python
36.941156
120
0.522548
NVIDIA/warp/warp/tests/test_mlp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.func def mlp_activation(z: float): return wp.tanh(z) @wp.kernel def mlp_kernel( weights: wp.array2d(dtype=float), bias: wp.array(dtype=float), x: wp.array2d(dtype=float), y: wp.array2d(dtype=float), ): wp.mlp(weights, bias, mlp_activation, wp.tid(), x, y) @wp.kernel def loss_kernel(x: wp.array2d(dtype=float), loss: wp.array(dtype=float)): i, j = wp.tid() wp.atomic_add(loss, 0, x[i, j] * x[i, j]) def test_mlp(test, device): rng = np.random.default_rng(123) m = 10 n = 200 batches = 20000 weights = wp.array(rng.random(size=(m, n)) * 0.5 - 0.5, dtype=float, device=device) bias = wp.array(rng.random(size=m) * 0.5 - 0.5, dtype=float, device=device) x = wp.array(rng.random(size=(n, batches)), dtype=float, device=device) y = wp.zeros(shape=(m, batches), device=device) with wp.ScopedTimer("warp", active=False): wp.launch(mlp_kernel, dim=batches, inputs=[weights, bias, x, y], device=device) wp.synchronize() # A*x + b with wp.ScopedTimer("numpy", active=False): expect = np.tanh(weights.numpy().reshape(m, n) @ x.numpy().reshape(-1, batches) + bias.numpy().reshape(m, 1)) result = y.numpy().reshape(-1, batches) assert_np_equal(result, expect, tol=1.0e-6) def create_mlp(m, n): import torch torch.manual_seed(0) class FeedForward(torch.nn.Module): def __init__(self, input_size, hidden_size): super(FeedForward, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size) self.act = torch.nn.Tanh() def forward(self, x): out = self.fc1(x) out = self.act(out) return out return FeedForward(m, n) def create_golden(): import torch rng = np.random.default_rng(123) input_size = 32 hidden_size = 16 batch_size = 64 network = create_mlp(input_size, hidden_size) x = torch.Tensor(rng.random(size=(batch_size, input_size))) x.requires_grad = True y = network.forward(x) y.retain_grad() loss = torch.inner(y.flatten(), y.flatten()) loss.backward(retain_graph=True) results = {} results["weights"] = network.fc1.weight.cpu().detach().numpy() results["weights_grad"] = network.fc1.weight.grad.cpu().detach().numpy() results["bias"] = network.fc1.bias.cpu().detach().numpy() results["bias_grad"] = network.fc1.bias.grad.cpu().detach().numpy() results["x"] = x.cpu().detach().numpy() results["x_grad"] = x.grad.cpu().detach().numpy() results["y"] = y.cpu().detach().numpy() results["y_grad"] = y.grad.cpu().detach().numpy() results["loss"] = loss.cpu().detach().numpy() np.save(os.path.join(os.path.dirname(__file__), "assets/mlp_golden.npy"), results, allow_pickle=True) def load_golden(): return np.load(os.path.join(os.path.dirname(__file__), "assets/mlp_golden.npy"), allow_pickle=True).item() def test_mlp_grad(test, device): # uncomment to re-build golden files # create_golden() results = load_golden() torch_weights = results["weights"] torch_weights_grad = results["weights_grad"] torch_bias = results["bias"] torch_bias_grad = results["bias_grad"] torch_x = results["x"].T torch_x_grad = results["x_grad"].T torch_y = results["y"].T torch_y_grad = results["y_grad"].T torch_loss = results["loss"].T weights = wp.array(torch_weights, dtype=float, device=device, requires_grad=True) bias = wp.array(torch_bias, dtype=float, device=device, requires_grad=True) x = wp.array(torch_x, dtype=float, device=device, requires_grad=True) y = wp.array(torch_y, dtype=float, device=device, requires_grad=True) y.zero_() loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) m = torch_weights.shape[0] n = torch_weights.shape[1] b = torch_x.shape[1] tape = wp.Tape() with tape: wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.launch(loss_kernel, dim=y.shape, inputs=[y, loss], device=device) tape.backward(loss=loss) # check forward result assert_np_equal(y.numpy().reshape(-1, b), torch_y, tol=1.0e-1) assert_np_equal(loss.numpy(), torch_loss, tol=1.0e-1) # check backward result assert_np_equal(tape.gradients[weights].numpy().reshape(m, n), torch_weights_grad, tol=1.0e-1) assert_np_equal(tape.gradients[bias].numpy(), torch_bias_grad, tol=1.0e-1) assert_np_equal(tape.gradients[x].numpy().reshape(n, b), torch_x_grad, tol=1.0e-1) assert_np_equal(tape.gradients[y].numpy().reshape(m, b), torch_y_grad, tol=1.0e-1) def profile_mlp_torch(): import torch rng = np.random.default_rng(123) m = 128 n = 64 steps = 20 for i in range(steps): b = 2**i network = create_mlp(m, n) x = torch.Tensor(rng.random(size=(b, m))) with wp.ScopedTimer("torch_forward" + str(b)): y = network.forward(x) torch.cuda.synchronize() for i in range(steps): b = 2**i network = create_mlp(m, n) x = torch.Tensor(rng.random(size=(b, m))) y = network.forward(x) loss = torch.norm(y) # run once to alloc all gradients loss.backward(retain_graph=True) with wp.ScopedTimer("torch-backward" + str(b)): loss.backward() torch.cuda.synchronize() def profile_mlp_warp(device): rng = np.random.default_rng(123) m = 128 n = 64 steps = 20 for i in range(steps): b = 2**i weights = wp.array(rng.random(size=(m, n)) * 0.5 - 0.5, dtype=float, device=device) bias = wp.array(rng.random(size=m) * 0.5 - 0.5, dtype=float, device=device) x = wp.array(rng.random(size=(n, b)), dtype=float, device=device) y = wp.zeros(shape=(m, b), device=device) with wp.ScopedTimer("warp-forward" + str(b)): wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.synchronize() for i in range(steps): b = 2**i weights = wp.array(rng.random(size=(m, n)) * 0.5 - 0.5, dtype=float, device=device, requires_grad=True) bias = wp.array(rng.random(size=m) * 0.5 - 0.5, dtype=float, device=device, requires_grad=True) x = wp.array(rng.random(size=(n, b)), dtype=float, device=device, requires_grad=True) y = wp.zeros(shape=(m, b), device=device, requires_grad=True) loss = wp.zeros(1, dtype=float, device=device) tape = wp.Tape() with tape: wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.launch(loss_kernel, dim=y.size, inputs=[y.flatten(), loss], device=device) # run backward once to ensure all adjoints are allocated tape.backward(loss) wp.synchronize() with wp.ScopedTimer("warp-backward" + str(b)): tape.backward(loss) wp.synchronize() # profile_mlp_warp("cuda") # profile_mlp_torch() devices = get_test_devices() class TestMLP(unittest.TestCase): pass add_function_test(TestMLP, "test_mlp", test_mlp, devices=devices) add_function_test(TestMLP, "test_mlp_grad", test_mlp_grad, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2, failfast=False)
8,000
Python
28.094545
117
0.622
NVIDIA/warp/warp/tests/test_array.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * @wp.kernel def kernel_1d(a: wp.array(dtype=int, ndim=1)): i = wp.tid() wp.expect_eq(a[i], wp.tid()) a[i] = a[i] * 2 wp.atomic_add(a, i, 1) wp.expect_eq(a[i], wp.tid() * 2 + 1) def test_1d(test, device): dim_x = 4 a = np.arange(0, dim_x, dtype=np.int32) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_1d, dim=arr.size, inputs=[arr], device=device) @wp.kernel def kernel_2d(a: wp.array(dtype=int, ndim=2), m: int, n: int): i = wp.tid() // n j = wp.tid() % n wp.expect_eq(a[i, j], wp.tid()) wp.expect_eq(a[i][j], wp.tid()) a[i, j] = a[i, j] * 2 wp.atomic_add(a, i, j, 1) wp.expect_eq(a[i, j], wp.tid() * 2 + 1) def test_2d(test, device): dim_x = 4 dim_y = 2 a = np.arange(0, dim_x * dim_y, dtype=np.int32) a = a.reshape(dim_x, dim_y) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_2d, dim=arr.size, inputs=[arr, dim_x, dim_y], device=device) @wp.kernel def kernel_3d(a: wp.array(dtype=int, ndim=3), m: int, n: int, o: int): i = wp.tid() // (n * o) j = wp.tid() % (n * o) // o k = wp.tid() % o wp.expect_eq(a[i, j, k], wp.tid()) wp.expect_eq(a[i][j][k], wp.tid()) a[i, j, k] = a[i, j, k] * 2 a[i][j][k] = a[i][j][k] * 2 wp.atomic_add(a, i, j, k, 1) wp.expect_eq(a[i, j, k], wp.tid() * 4 + 1) def test_3d(test, device): dim_x = 8 dim_y = 4 dim_z = 2 a = np.arange(0, dim_x * dim_y * dim_z, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_3d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z], device=device) @wp.kernel def kernel_4d(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int): i = wp.tid() // (n * o * p) j = wp.tid() % (n * o * p) // (o * p) k = wp.tid() % (o * p) / p l = wp.tid() % p wp.expect_eq(a[i, j, k, l], wp.tid()) wp.expect_eq(a[i][j][k][l], wp.tid()) def test_4d(test, device): dim_x = 16 dim_y = 8 dim_z = 4 dim_w = 2 a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z, dim_w) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_4d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z, dim_w], device=device) @wp.kernel def kernel_4d_transposed(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int): i = wp.tid() // (n * o * p) j = wp.tid() % (n * o * p) // (o * p) k = wp.tid() % (o * p) / p l = wp.tid() % p wp.expect_eq(a[l, k, j, i], wp.tid()) wp.expect_eq(a[l][k][j][i], wp.tid()) def test_4d_transposed(test, device): dim_x = 16 dim_y = 8 dim_z = 4 dim_w = 2 a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z, dim_w) arr = wp.array(a, device=device) # Transpose the array manually, as using the wp.array() constructor with arr.T would make it contiguous first a_T = a.T arr_T = wp.array( dtype=arr.dtype, shape=a_T.shape, strides=a_T.__array_interface__["strides"], capacity=arr.capacity, ptr=arr.ptr, requires_grad=arr.requires_grad, device=device, ) test.assertFalse(arr_T.is_contiguous) test.assertEqual(arr_T.shape, a_T.shape) test.assertEqual(arr_T.strides, a_T.__array_interface__["strides"]) test.assertEqual(arr_T.size, a_T.size) test.assertEqual(arr_T.ndim, a_T.ndim) with CheckOutput(test): wp.launch(kernel_4d_transposed, dim=arr_T.size, inputs=[arr_T, dim_x, dim_y, dim_z, dim_w], device=device) @wp.kernel def lower_bound_kernel(values: wp.array(dtype=float), arr: wp.array(dtype=float), indices: wp.array(dtype=int)): tid = wp.tid() indices[tid] = wp.lower_bound(arr, values[tid]) def test_lower_bound(test, device): arr = wp.array(np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], dtype=float), dtype=float, device=device) values = wp.array(np.array([-0.1, 0.0, 2.5, 4.0, 5.0, 5.5], dtype=float), dtype=float, device=device) indices = wp.zeros(6, dtype=int, device=device) wp.launch(kernel=lower_bound_kernel, dim=6, inputs=[values, arr, indices], device=device) test.assertTrue((np.array([0, 0, 3, 4, 5, 5]) == indices.numpy()).all()) @wp.kernel def f1(arr: wp.array(dtype=float)): wp.expect_eq(arr.shape[0], 10) @wp.kernel def f2(arr: wp.array2d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) slice = arr[0] wp.expect_eq(slice.shape[0], 20) @wp.kernel def f3(arr: wp.array3d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) wp.expect_eq(arr.shape[2], 30) slice = arr[0, 0] wp.expect_eq(slice.shape[0], 30) @wp.kernel def f4(arr: wp.array4d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) wp.expect_eq(arr.shape[2], 30) wp.expect_eq(arr.shape[3], 40) slice = arr[0, 0, 0] wp.expect_eq(slice.shape[0], 40) def test_shape(test, device): with CheckOutput(test): a1 = wp.zeros(dtype=float, shape=10, device=device) wp.launch(f1, dim=1, inputs=[a1], device=device) a2 = wp.zeros(dtype=float, shape=(10, 20), device=device) wp.launch(f2, dim=1, inputs=[a2], device=device) a3 = wp.zeros(dtype=float, shape=(10, 20, 30), device=device) wp.launch(f3, dim=1, inputs=[a3], device=device) a4 = wp.zeros(dtype=float, shape=(10, 20, 30, 40), device=device) wp.launch(f4, dim=1, inputs=[a4], device=device) def test_negative_shape(test, device): with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"): _ = wp.zeros(shape=-1, dtype=int, device=device) with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"): _ = wp.zeros(shape=-(2**32), dtype=int, device=device) with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"): _ = wp.zeros(shape=(10, -1), dtype=int, device=device) @wp.kernel def sum_array(arr: wp.array(dtype=float), loss: wp.array(dtype=float)): tid = wp.tid() wp.atomic_add(loss, 0, arr[tid]) def test_flatten(test, device): np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=float) arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) arr_flat = arr.flatten() arr_comp = wp.array(np_arr.flatten(), dtype=float, device=device) assert_array_equal(arr_flat, arr_comp) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(arr_flat), inputs=[arr_flat, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[arr_flat] ones = wp.array( np.ones( (8,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 36) def test_reshape(test, device): np_arr = np.arange(6, dtype=float) arr = wp.array(np_arr, dtype=float, device=device, requires_grad=True) arr_reshaped = arr.reshape((3, 2)) arr_comp = wp.array(np_arr.reshape((3, 2)), dtype=float, device=device) assert_array_equal(arr_reshaped, arr_comp) arr_reshaped = arr_reshaped.reshape(6) assert_array_equal(arr_reshaped, arr) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(arr_reshaped), inputs=[arr_reshaped, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[arr_reshaped] ones = wp.array( np.ones( (6,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 15) np_arr = np.arange(6, dtype=float) arr = wp.array(np_arr, dtype=float, device=device) arr_infer = arr.reshape((-1, 3)) arr_comp = wp.array(np_arr.reshape((-1, 3)), dtype=float, device=device) assert_array_equal(arr_infer, arr_comp) @wp.kernel def compare_stepped_window_a(x: wp.array2d(dtype=float)): wp.expect_eq(x[0, 0], 1.0) wp.expect_eq(x[0, 1], 2.0) wp.expect_eq(x[1, 0], 9.0) wp.expect_eq(x[1, 1], 10.0) @wp.kernel def compare_stepped_window_b(x: wp.array2d(dtype=float)): wp.expect_eq(x[0, 0], 3.0) wp.expect_eq(x[0, 1], 4.0) wp.expect_eq(x[1, 0], 7.0) wp.expect_eq(x[1, 1], 8.0) wp.expect_eq(x[2, 0], 11.0) wp.expect_eq(x[2, 1], 12.0) def test_slicing(test, device): np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float) arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) slice_a = arr[1, :, :] # test indexing slice_b = arr[1:2, :, :] # test slicing slice_c = arr[-1, :, :] # test negative indexing slice_d = arr[-2:-1, :, :] # test negative slicing slice_e = arr[-1:3, :, :] # test mixed slicing slice_e2 = slice_e[0, 0, :] # test 2x slicing slice_f = arr[0:3:2, 0, :] # test step assert_array_equal(slice_a, wp.array(np_arr[1, :, :], dtype=float, device=device)) assert_array_equal(slice_b, wp.array(np_arr[1:2, :, :], dtype=float, device=device)) assert_array_equal(slice_c, wp.array(np_arr[-1, :, :], dtype=float, device=device)) assert_array_equal(slice_d, wp.array(np_arr[-2:-1, :, :], dtype=float, device=device)) assert_array_equal(slice_e, wp.array(np_arr[-1:3, :, :], dtype=float, device=device)) assert_array_equal(slice_e2, wp.array(np_arr[2, 0, :], dtype=float, device=device)) # wp does not support copying from/to non-contiguous arrays # stepped windows must read on the device the original array was created on wp.launch(kernel=compare_stepped_window_a, dim=1, inputs=[slice_f], device=device) slice_flat = slice_b.flatten() loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(slice_flat), inputs=[slice_flat, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[slice_flat] ones = wp.array( np.ones( (4,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 26) index_a = arr[1] index_b = arr[2, 1] index_c = arr[1, :] index_d = arr[:, 1] assert_array_equal(index_a, wp.array(np_arr[1], dtype=float, device=device)) assert_array_equal(index_b, wp.array(np_arr[2, 1], dtype=float, device=device)) assert_array_equal(index_c, wp.array(np_arr[1, :], dtype=float, device=device)) wp.launch(kernel=compare_stepped_window_b, dim=1, inputs=[index_d], device=device) np_arr = np.zeros(10, dtype=int) wp_arr = wp.array(np_arr, dtype=int, device=device) assert_array_equal(wp_arr[:5], wp.array(np_arr[:5], dtype=int, device=device)) assert_array_equal(wp_arr[1:5], wp.array(np_arr[1:5], dtype=int, device=device)) assert_array_equal(wp_arr[-9:-5:1], wp.array(np_arr[-9:-5:1], dtype=int, device=device)) assert_array_equal(wp_arr[:5,], wp.array(np_arr[:5], dtype=int, device=device)) # noqa: E231 def test_view(test, device): np_arr_a = np.arange(1, 10, 1, dtype=np.uint32) np_arr_b = np.arange(1, 10, 1, dtype=np.float32) np_arr_c = np.arange(1, 10, 1, dtype=np.uint16) np_arr_d = np.arange(1, 10, 1, dtype=np.float16) np_arr_e = np.ones((4, 4), dtype=np.float32) wp_arr_a = wp.array(np_arr_a, dtype=wp.uint32, device=device) wp_arr_b = wp.array(np_arr_b, dtype=wp.float32, device=device) wp_arr_c = wp.array(np_arr_a, dtype=wp.uint16, device=device) wp_arr_d = wp.array(np_arr_b, dtype=wp.float16, device=device) wp_arr_e = wp.array(np_arr_e, dtype=wp.vec4, device=device) wp_arr_f = wp.array(np_arr_e, dtype=wp.quat, device=device) assert_np_equal(wp_arr_a.view(dtype=wp.float32).numpy(), np_arr_a.view(dtype=np.float32)) assert_np_equal(wp_arr_b.view(dtype=wp.uint32).numpy(), np_arr_b.view(dtype=np.uint32)) assert_np_equal(wp_arr_c.view(dtype=wp.float16).numpy(), np_arr_c.view(dtype=np.float16)) assert_np_equal(wp_arr_d.view(dtype=wp.uint16).numpy(), np_arr_d.view(dtype=np.uint16)) assert_array_equal(wp_arr_e.view(dtype=wp.quat), wp_arr_f) def test_clone_adjoint(test, device): state_in = wp.from_numpy( np.array([1.0, 2.0, 3.0]).astype(np.float32), dtype=wp.float32, requires_grad=True, device=device ) tape = wp.Tape() with tape: state_out = wp.clone(state_in) grads = {state_out: wp.from_numpy(np.array([1.0, 1.0, 1.0]).astype(np.float32), dtype=wp.float32, device=device)} tape.backward(grads=grads) assert_np_equal(state_in.grad.numpy(), np.array([1.0, 1.0, 1.0]).astype(np.float32)) def test_assign_adjoint(test, device): state_in = wp.from_numpy( np.array([1.0, 2.0, 3.0]).astype(np.float32), dtype=wp.float32, requires_grad=True, device=device ) state_out = wp.zeros(state_in.shape, dtype=wp.float32, requires_grad=True, device=device) tape = wp.Tape() with tape: state_out.assign(state_in) grads = {state_out: wp.from_numpy(np.array([1.0, 1.0, 1.0]).astype(np.float32), dtype=wp.float32, device=device)} tape.backward(grads=grads) assert_np_equal(state_in.grad.numpy(), np.array([1.0, 1.0, 1.0]).astype(np.float32)) @wp.kernel def compare_2darrays(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float), z: wp.array2d(dtype=int)): i, j = wp.tid() if x[i, j] == y[i, j]: z[i, j] = 1 @wp.kernel def compare_3darrays(x: wp.array3d(dtype=float), y: wp.array3d(dtype=float), z: wp.array3d(dtype=int)): i, j, k = wp.tid() if x[i, j, k] == y[i, j, k]: z[i, j, k] = 1 def test_transpose(test, device): # test default transpose in non-square 2d case # wp does not support copying from/to non-contiguous arrays so check in kernel np_arr = np.array([[1, 2], [3, 4], [5, 6]], dtype=float) arr = wp.array(np_arr, dtype=float, device=device) arr_transpose = arr.transpose() arr_compare = wp.array(np_arr.transpose(), dtype=float, device=device) check = wp.zeros(shape=(2, 3), dtype=int, device=device) wp.launch(compare_2darrays, dim=(2, 3), inputs=[arr_transpose, arr_compare, check], device=device) assert_np_equal(check.numpy(), np.ones((2, 3), dtype=int)) # test transpose in square 3d case # wp does not support copying from/to non-contiguous arrays so check in kernel np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float) arr = wp.array3d(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) arr_transpose = arr.transpose((0, 2, 1)) arr_compare = wp.array3d(np_arr.transpose((0, 2, 1)), dtype=float, device=device) check = wp.zeros(shape=(3, 2, 2), dtype=int, device=device) wp.launch(compare_3darrays, dim=(3, 2, 2), inputs=[arr_transpose, arr_compare, check], device=device) assert_np_equal(check.numpy(), np.ones((3, 2, 2), dtype=int)) # test transpose in square 3d case without axes supplied arr_transpose = arr.transpose() arr_compare = wp.array3d(np_arr.transpose(), dtype=float, device=device) check = wp.zeros(shape=(2, 2, 3), dtype=int, device=device) wp.launch(compare_3darrays, dim=(2, 2, 3), inputs=[arr_transpose, arr_compare, check], device=device) assert_np_equal(check.numpy(), np.ones((2, 2, 3), dtype=int)) # test transpose in 1d case (should be noop) np_arr = np.array([1, 2, 3], dtype=float) arr = wp.array(np_arr, dtype=float, device=device) assert_np_equal(arr.transpose().numpy(), np_arr.transpose()) def test_fill_scalar(test, device): dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a1 = wp.zeros(dim_x, dtype=wptype, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # fill with int value fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) # fill with Warp scalar value fill_value = wptype(17) a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype)) def test_fill_vector(test, device): # test filling a vector array with scalar or vector values (vec_type, list, or numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # vector types vector_types = [ wp.types.vector(2, wptype), wp.types.vector(3, wptype), wp.types.vector(4, wptype), wp.types.vector(5, wptype), ] for vec_type in vector_types: vec_len = vec_type._length_ a1 = wp.zeros(dim_x, dtype=vec_type, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device) assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # fill with int scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # vector values can be passed as a list, numpy array, or Warp vector instance fill_list = [17, 42, 99, 101, 127][:vec_len] fill_arr = np.array(fill_list, dtype=nptype) fill_vec = vec_type(fill_list) expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len)) # fill with list of vector length a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with numpy array of vector length a1.fill_(fill_arr) a2.fill_(fill_arr) a3.fill_(fill_arr) a4.fill_(fill_arr) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with vec instance a1.fill_(fill_vec) a2.fill_(fill_vec) a3.fill_(fill_vec) a4.fill_(fill_vec) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) if wptype in wp.types.float_types: # fill with float scalar fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # fill with float list of vector length fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len] a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len)) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) def test_fill_matrix(test, device): # test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # matrix types matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mat_type in matrix_types: mat_len = mat_type._length_ mat_shape = mat_type._shape_ a1 = wp.zeros(dim_x, dtype=mat_type, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device) assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # fill with scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance if wptype != wp.bool: fill_arr1 = np.arange(mat_len, dtype=nptype) else: fill_arr1 = np.ones(mat_len, dtype=nptype) fill_arr2 = fill_arr1.reshape(mat_shape) fill_list1 = list(fill_arr1) fill_list2 = [list(row) for row in fill_arr2] fill_mat = mat_type(fill_arr1) expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape)) expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape)) expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape)) expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape)) # fill with 1d numpy array a1.fill_(fill_arr1) a2.fill_(fill_arr1) a3.fill_(fill_arr1) a4.fill_(fill_arr1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with 2d numpy array a1.fill_(fill_arr2) a2.fill_(fill_arr2) a3.fill_(fill_arr2) a4.fill_(fill_arr2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with flat list a1.fill_(fill_list1) a2.fill_(fill_list1) a3.fill_(fill_list1) a4.fill_(fill_list1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with nested list a1.fill_(fill_list2) a2.fill_(fill_list2) a3.fill_(fill_list2) a4.fill_(fill_list2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with mat instance a1.fill_(fill_mat) a2.fill_(fill_mat) a3.fill_(fill_mat) a4.fill_(fill_mat) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) @wp.struct class FillStruct: # scalar members (make sure to test float16) i1: wp.int8 i2: wp.int16 i4: wp.int32 i8: wp.int64 f2: wp.float16 f4: wp.float32 f8: wp.float16 # vector members (make sure to test vectors of float16) v2: wp.types.vector(2, wp.int64) v3: wp.types.vector(3, wp.float32) v4: wp.types.vector(4, wp.float16) v5: wp.types.vector(5, wp.uint8) # matrix members (make sure to test matrices of float16) m2: wp.types.matrix((2, 2), wp.float64) m3: wp.types.matrix((3, 3), wp.int32) m4: wp.types.matrix((4, 4), wp.float16) m5: wp.types.matrix((5, 5), wp.int8) # arrays a1: wp.array(dtype=float) a2: wp.array2d(dtype=float) a3: wp.array3d(dtype=float) a4: wp.array4d(dtype=float) def test_fill_struct(test, device): dim_x = 4 nptype = FillStruct.numpy_dtype() a1 = wp.zeros(dim_x, dtype=FillStruct, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) s = FillStruct() # fill with default struct value (should be all zeros) a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # scalars s.i1 = -17 s.i2 = 42 s.i4 = 99 s.i8 = 101 s.f2 = -1.25 s.f4 = 13.37 s.f8 = 0.125 # vectors s.v2 = [21, 22] s.v3 = [31, 32, 33] s.v4 = [41, 42, 43, 44] s.v5 = [51, 52, 53, 54, 55] # matrices s.m2 = [[61, 62]] * 2 s.m3 = [[71, 72, 73]] * 3 s.m4 = [[81, 82, 83, 84]] * 4 s.m5 = [[91, 92, 93, 94, 95]] * 5 # arrays s.a1 = wp.zeros((2,) * 1, dtype=float, device=device) s.a2 = wp.zeros((2,) * 2, dtype=float, device=device) s.a3 = wp.zeros((2,) * 3, dtype=float, device=device) s.a4 = wp.zeros((2,) * 4, dtype=float, device=device) # fill with custom struct value a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) ns = s.numpy_value() expected1 = np.empty(a1.shape, dtype=nptype) expected2 = np.empty(a2.shape, dtype=nptype) expected3 = np.empty(a3.shape, dtype=nptype) expected4 = np.empty(a4.shape, dtype=nptype) expected1.fill(ns) expected2.fill(ns) expected3.fill(ns) expected4.fill(ns) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # test clearing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) def test_fill_slices(test, device): # test fill_ and zero_ for non-contiguous arrays # Note: we don't need to test the whole range of dtypes (vectors, matrices, structs) here dim_x = 8 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a1 = wp.zeros(dim_x, dtype=wptype, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # partititon each array into even and odd slices a1a = a1[::2] a1b = a1[1::2] a2a = a2[::2] a2b = a2[1::2] a3a = a3[::2] a3b = a3[1::2] a4a = a4[::2] a4b = a4[1::2] # fill even slices fill_a = 17 a1a.fill_(fill_a) a2a.fill_(fill_a) a3a.fill_(fill_a) a4a.fill_(fill_a) # ensure filled slices are correct assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) # ensure unfilled slices are unaffected assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype)) assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype)) assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype)) assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype)) # fill odd slices fill_b = 42 a1b.fill_(fill_b) a2b.fill_(fill_b) a3b.fill_(fill_b) a4b.fill_(fill_b) # ensure filled slices are correct assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype)) assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype)) assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype)) assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype)) # ensure unfilled slices are unaffected assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) # clear even slices a1a.zero_() a2a.zero_() a3a.zero_() a4a.zero_() # ensure cleared slices are correct assert_np_equal(a1a.numpy(), np.zeros(a1a.shape, dtype=nptype)) assert_np_equal(a2a.numpy(), np.zeros(a2a.shape, dtype=nptype)) assert_np_equal(a3a.numpy(), np.zeros(a3a.shape, dtype=nptype)) assert_np_equal(a4a.numpy(), np.zeros(a4a.shape, dtype=nptype)) # ensure uncleared slices are unaffected assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype)) assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype)) assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype)) assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype)) # re-fill even slices a1a.fill_(fill_a) a2a.fill_(fill_a) a3a.fill_(fill_a) a4a.fill_(fill_a) # clear odd slices a1b.zero_() a2b.zero_() a3b.zero_() a4b.zero_() # ensure cleared slices are correct assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype)) assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype)) assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype)) assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype)) # ensure uncleared slices are unaffected assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) def test_full_scalar(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # fill with int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(shape, fill_value, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(shape, fill_value, dtype=nptype)) # fill with int value and automatically inferred dtype fill_value = 42 a = wp.full(shape, fill_value, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wp.int32) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, np.int32) assert_np_equal(na, np.full(shape, fill_value, dtype=np.int32)) # fill with float value and automatically inferred dtype fill_value = 13.37 a = wp.full(shape, fill_value, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wp.float32) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, np.float32) assert_np_equal(na, np.full(shape, fill_value, dtype=np.float32)) def test_full_vector(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim # full from scalar for veclen in [2, 3, 4, 5]: npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) # fill with scalar int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape)) if wptype in wp.types.float_types: # fill with scalar float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape)) # fill with vector value and specific dtype fill_vec = vectype(42) a = wp.full(shape, fill_vec, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape)) # fill with vector value and automatically inferred dtype a = wp.full(shape, fill_vec, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape)) fill_lists = [ [17, 42], [17, 42, 99], [17, 42, 99, 101], [17, 42, 99, 101, 127], ] # full from list and numpy array for fill_list in fill_lists: veclen = len(fill_list) npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) # fill with list and specific dtype a = wp.full(shape, fill_list, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) expected = np.tile(np.array(fill_list, dtype=nptype), a.size).reshape(npshape) assert_np_equal(na, expected) fill_arr = np.array(fill_list, dtype=nptype) # fill with numpy array and specific dtype a = wp.full(shape, fill_arr, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with numpy array and automatically infer dtype a = wp.full(shape, fill_arr, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertTrue(wp.types.types_equal(a.dtype, vectype)) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with list and automatically infer dtype a = wp.full(shape, fill_list, device=device) na = a.numpy() test.assertEqual(a.shape, shape) # check that the inferred dtype is a vector # Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform # (e.g. int64 on Linux and int32 on Windows). test.assertEqual(a.dtype._wp_generic_type_str_, "vec_t") test.assertEqual(a.dtype._length_, veclen) expected = np.tile(np.array(fill_list), a.size).reshape(npshape) assert_np_equal(na, expected) def test_full_matrix(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: npshape = (*shape, *mattype._shape_) # fill with scalar int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape)) if wptype in wp.types.float_types: # fill with scalar float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape)) # fill with matrix value and specific dtype fill_mat = mattype(42) a = wp.full(shape, fill_mat, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape)) # fill with matrix value and automatically inferred dtype fill_mat = mattype(42) a = wp.full(shape, fill_mat, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape)) # fill with 1d numpy array and specific dtype if wptype != wp.bool: fill_arr1d = np.arange(mattype._length_, dtype=nptype) else: fill_arr1d = np.ones(mattype._length_, dtype=nptype) a = wp.full(shape, fill_arr1d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) expected = np.tile(fill_arr1d, a.size).reshape(npshape) assert_np_equal(na, expected) # fill with 2d numpy array and specific dtype fill_arr2d = fill_arr1d.reshape(mattype._shape_) a = wp.full(shape, fill_arr2d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with 2d numpy array and automatically infer dtype a = wp.full(shape, fill_arr2d, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertTrue(wp.types.types_equal(a.dtype, mattype)) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with flat list and specific dtype fill_list1d = list(fill_arr1d) a = wp.full(shape, fill_list1d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with nested list and specific dtype fill_list2d = [list(row) for row in fill_arr2d] a = wp.full(shape, fill_list2d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) mat_lists = [ # square matrices [[1, 2], [3, 4]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], # non-square matrices [[1, 2, 3, 4], [5, 6, 7, 8]], [[1, 2], [3, 4], [5, 6], [7, 8]], ] # fill with nested lists and automatically infer dtype for fill_list in mat_lists: num_rows = len(fill_list) num_cols = len(fill_list[0]) npshape = (*shape, num_rows, num_cols) a = wp.full(shape, fill_list, device=device) na = a.numpy() test.assertEqual(a.shape, shape) # check that the inferred dtype is a correctly shaped matrix # Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform # (e.g. int64 on Linux and int32 on Windows). test.assertEqual(a.dtype._wp_generic_type_str_, "mat_t") test.assertEqual(a.dtype._shape_, (num_rows, num_cols)) expected = np.tile(np.array(fill_list).flatten(), a.size).reshape(npshape) assert_np_equal(na, expected) def test_full_struct(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim s = FillStruct() # fill with default struct (should be zeros) a = wp.full(shape, s, dtype=FillStruct, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) assert_np_equal(na, np.zeros(a.shape, dtype=FillStruct.numpy_dtype())) # scalars s.i1 = -17 s.i2 = 42 s.i4 = 99 s.i8 = 101 s.f2 = -1.25 s.f4 = 13.37 s.f8 = 0.125 # vectors s.v2 = [21, 22] s.v3 = [31, 32, 33] s.v4 = [41, 42, 43, 44] s.v5 = [51, 52, 53, 54, 55] # matrices s.m2 = [[61, 62]] * 2 s.m3 = [[71, 72, 73]] * 3 s.m4 = [[81, 82, 83, 84]] * 4 s.m5 = [[91, 92, 93, 94, 95]] * 5 # arrays s.a1 = wp.zeros((2,) * 1, dtype=float, device=device) s.a2 = wp.zeros((2,) * 2, dtype=float, device=device) s.a3 = wp.zeros((2,) * 3, dtype=float, device=device) s.a4 = wp.zeros((2,) * 4, dtype=float, device=device) # fill with initialized struct and explicit dtype a = wp.full(shape, s, dtype=FillStruct, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) expected = np.empty(shape, dtype=FillStruct.numpy_dtype()) expected.fill(s.numpy_value()) assert_np_equal(na, expected) # fill with initialized struct and automatically inferred dtype a = wp.full(shape, s, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) assert_np_equal(na, expected) def test_ones_scalar(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a = wp.ones(shape, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.ones(shape, dtype=nptype)) def test_ones_vector(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for veclen in [2, 3, 4, 5]: npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) a = wp.ones(shape, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.ones(npshape, dtype=nptype)) def test_ones_matrix(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: npshape = (*shape, *mattype._shape_) a = wp.ones(shape, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.ones(npshape, dtype=nptype)) def test_ones_like_scalar(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # source array a = wp.zeros(shape, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.zeros(shape, dtype=nptype)) # ones array b = wp.ones_like(a) nb = b.numpy() test.assertEqual(b.shape, shape) test.assertEqual(b.dtype, wptype) test.assertEqual(nb.shape, shape) test.assertEqual(nb.dtype, nptype) assert_np_equal(nb, np.ones(shape, dtype=nptype)) def test_ones_like_vector(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for veclen in [2, 3, 4, 5]: npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) # source array a = wp.zeros(shape, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.zeros(npshape, dtype=nptype)) # ones array b = wp.ones_like(a) nb = b.numpy() test.assertEqual(b.shape, shape) test.assertEqual(b.dtype, vectype) test.assertEqual(nb.shape, npshape) test.assertEqual(nb.dtype, nptype) assert_np_equal(nb, np.ones(npshape, dtype=nptype)) def test_ones_like_matrix(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: npshape = (*shape, *mattype._shape_) # source array a = wp.zeros(shape, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.zeros(npshape, dtype=nptype)) # ones array b = wp.ones_like(a) nb = b.numpy() test.assertEqual(b.shape, shape) test.assertEqual(b.dtype, mattype) test.assertEqual(nb.shape, npshape) test.assertEqual(nb.dtype, nptype) assert_np_equal(nb, np.ones(npshape, dtype=nptype)) def test_round_trip(test, device): rng = np.random.default_rng(123) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a_np = rng.standard_normal(size=dim_x).astype(nptype) a = wp.array(a_np, device=device) test.assertEqual(a.dtype, wptype) assert_np_equal(a.numpy(), a_np) v_np = rng.standard_normal(size=(dim_x, 3)).astype(nptype) v = wp.array(v_np, dtype=wp.types.vector(3, wptype), device=device) assert_np_equal(v.numpy(), v_np) def test_empty_array(test, device): # Test whether common operations work with empty (zero-sized) arrays # without throwing exceptions. def test_empty_ops(ndim, nrows, ncols, wptype, nptype): shape = (0,) * ndim dtype_shape = () if wptype in wp.types.scalar_types: # scalar, vector, or matrix if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ fill_value = wptype(42) else: # struct fill_value = wptype() # create a zero-sized array a = wp.empty(shape, dtype=wptype, device=device, requires_grad=True) test.assertEqual(a.ptr, None) test.assertEqual(a.size, 0) test.assertEqual(a.shape, shape) test.assertEqual(a.grad.ptr, None) test.assertEqual(a.grad.size, 0) test.assertEqual(a.grad.shape, shape) # all of these methods should succeed with zero-sized arrays a.zero_() a.fill_(fill_value) b = a.flatten() b = a.reshape((0,)) b = a.transpose() b = a.contiguous() b = wp.empty_like(a) b = wp.zeros_like(a) b = wp.full_like(a, fill_value) b = wp.clone(a) wp.copy(a, b) a.assign(b) na = a.numpy() test.assertEqual(na.size, 0) test.assertEqual(na.shape, (*shape, *dtype_shape)) test.assertEqual(na.dtype, nptype) test.assertEqual(a.list(), []) for ndim in range(1, 5): # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_ops(ndim, 0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_ops(ndim, 0, ncols, wptype, nptype) # square matrices test_empty_ops(ndim, ncols, ncols, wptype, nptype) # non-square matrices test_empty_ops(ndim, 2, 3, wptype, nptype) test_empty_ops(ndim, 3, 2, wptype, nptype) test_empty_ops(ndim, 3, 4, wptype, nptype) test_empty_ops(ndim, 4, 3, wptype, nptype) # test with structs test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype()) def test_empty_from_numpy(test, device): # Test whether wrapping an empty (zero-sized) numpy array works correctly def test_empty_from_data(ndim, nrows, ncols, wptype, nptype): shape = (0,) * ndim dtype_shape = () if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ npshape = (*shape, *dtype_shape) na = np.empty(npshape, dtype=nptype) a = wp.array(na, dtype=wptype, device=device) test.assertEqual(a.size, 0) test.assertEqual(a.shape, shape) for ndim in range(1, 5): # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_from_data(ndim, 0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_from_data(ndim, 0, ncols, wptype, nptype) # square matrices test_empty_from_data(ndim, ncols, ncols, wptype, nptype) # non-square matrices test_empty_from_data(ndim, 2, 3, wptype, nptype) test_empty_from_data(ndim, 3, 2, wptype, nptype) test_empty_from_data(ndim, 3, 4, wptype, nptype) test_empty_from_data(ndim, 4, 3, wptype, nptype) def test_empty_from_list(test, device): # Test whether creating an array from an empty Python list works correctly def test_empty_from_data(nrows, ncols, wptype): if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) a = wp.array([], dtype=wptype, device=device) test.assertEqual(a.size, 0) test.assertEqual(a.shape, (0,)) # test with scalars, vectors, and matrices for wptype in wp.types.scalar_types: # scalars test_empty_from_data(0, 0, wptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_from_data(0, ncols, wptype) # square matrices test_empty_from_data(ncols, ncols, wptype) # non-square matrices test_empty_from_data(2, 3, wptype) test_empty_from_data(3, 2, wptype) test_empty_from_data(3, 4, wptype) test_empty_from_data(4, 3, wptype) def test_to_list_scalar(test, device): dim = 3 fill_value = 42 for ndim in range(1, 5): shape = (dim,) * ndim for wptype in wp.types.scalar_types: a = wp.full(shape, fill_value, dtype=wptype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_vector(test, device): dim = 3 for ndim in range(1, 5): shape = (dim,) * ndim for veclen in [2, 3, 4, 5]: for wptype in wp.types.scalar_types: vectype = wp.types.vector(veclen, wptype) fill_value = vectype(42) a = wp.full(shape, fill_value, dtype=vectype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_matrix(test, device): dim = 3 for ndim in range(1, 5): shape = (dim,) * ndim for wptype in wp.types.scalar_types: matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: fill_value = mattype(42) a = wp.full(shape, fill_value, dtype=mattype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_struct(test, device): @wp.struct class Inner: h: wp.float16 v: wp.vec3 @wp.struct class ListStruct: i: int f: float h: wp.float16 vi: wp.vec2i vf: wp.vec3f vh: wp.vec4h mi: wp.types.matrix((2, 2), int) mf: wp.types.matrix((3, 3), float) mh: wp.types.matrix((4, 4), wp.float16) inner: Inner a1: wp.array(dtype=int) a2: wp.array2d(dtype=float) a3: wp.array3d(dtype=wp.float16) bool: wp.bool dim = 3 s = ListStruct() s.i = 42 s.f = 2.5 s.h = -1.25 s.vi = wp.vec2i(1, 2) s.vf = wp.vec3f(0.1, 0.2, 0.3) s.vh = wp.vec4h(1.0, 2.0, 3.0, 4.0) s.mi = [[1, 2], [3, 4]] s.mf = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] s.mh = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] s.inner = Inner() s.inner.h = 1.5 s.inner.v = [1, 2, 3] s.a1 = wp.empty(1, dtype=int, device=device) s.a2 = wp.empty((1, 1), dtype=float, device=device) s.a3 = wp.empty((1, 1, 1), dtype=wp.float16, device=device) s.bool = True for ndim in range(1, 5): shape = (dim,) * ndim a = wp.full(shape, s, dtype=ListStruct, device=device) l = a.list() for i in range(a.size): test.assertEqual(l[i].i, s.i) test.assertEqual(l[i].f, s.f) test.assertEqual(l[i].h, s.h) test.assertEqual(l[i].vi, s.vi) test.assertEqual(l[i].vf, s.vf) test.assertEqual(l[i].vh, s.vh) test.assertEqual(l[i].mi, s.mi) test.assertEqual(l[i].mf, s.mf) test.assertEqual(l[i].mh, s.mh) test.assertEqual(l[i].bool, s.bool) test.assertEqual(l[i].inner.h, s.inner.h) test.assertEqual(l[i].inner.v, s.inner.v) test.assertEqual(l[i].a1.dtype, s.a1.dtype) test.assertEqual(l[i].a1.ndim, s.a1.ndim) test.assertEqual(l[i].a2.dtype, s.a2.dtype) test.assertEqual(l[i].a2.ndim, s.a2.ndim) test.assertEqual(l[i].a3.dtype, s.a3.dtype) test.assertEqual(l[i].a3.ndim, s.a3.ndim) @wp.kernel def kernel_array_to_bool(array_null: wp.array(dtype=float), array_valid: wp.array(dtype=float)): if not array_null: # always succeed wp.expect_eq(0, 0) else: # force failure wp.expect_eq(1, 2) if array_valid: # always succeed wp.expect_eq(0, 0) else: # force failure wp.expect_eq(1, 2) def test_array_to_bool(test, device): arr = wp.zeros(8, dtype=float, device=device) wp.launch(kernel_array_to_bool, dim=1, inputs=[None, arr], device=device) @wp.struct class InputStruct: param1: int param2: float param3: wp.vec3 param4: wp.array(dtype=float) @wp.struct class OutputStruct: param1: int param2: float param3: wp.vec3 @wp.kernel def struct_array_kernel(inputs: wp.array(dtype=InputStruct), outputs: wp.array(dtype=OutputStruct)): tid = wp.tid() wp.expect_eq(inputs[tid].param1, tid) wp.expect_eq(inputs[tid].param2, float(tid * tid)) wp.expect_eq(inputs[tid].param3[0], 1.0) wp.expect_eq(inputs[tid].param3[1], 2.0) wp.expect_eq(inputs[tid].param3[2], 3.0) wp.expect_eq(inputs[tid].param4[0], 1.0) wp.expect_eq(inputs[tid].param4[1], 2.0) wp.expect_eq(inputs[tid].param4[2], 3.0) o = OutputStruct() o.param1 = inputs[tid].param1 o.param2 = inputs[tid].param2 o.param3 = inputs[tid].param3 outputs[tid] = o def test_array_of_structs(test, device): num_items = 10 l = [] for i in range(num_items): s = InputStruct() s.param1 = i s.param2 = float(i * i) s.param3 = wp.vec3(1.0, 2.0, 3.0) s.param4 = wp.array([1.0, 2.0, 3.0], dtype=float, device=device) l.append(s) # initialize array from list of structs inputs = wp.array(l, dtype=InputStruct, device=device) outputs = wp.zeros(num_items, dtype=OutputStruct, device=device) # pass to our compute kernel wp.launch(struct_array_kernel, dim=num_items, inputs=[inputs, outputs], device=device) out_numpy = outputs.numpy() out_list = outputs.list() out_cptr = outputs.to("cpu").cptr() for i in range(num_items): test.assertEqual(out_numpy[i][0], l[i].param1) test.assertEqual(out_numpy[i][1], l[i].param2) assert_np_equal(out_numpy[i][2], np.array(l[i].param3)) # test named slices of numpy structured array test.assertEqual(out_numpy["param1"][i], l[i].param1) test.assertEqual(out_numpy["param2"][i], l[i].param2) assert_np_equal(out_numpy["param3"][i], np.array(l[i].param3)) test.assertEqual(out_list[i].param1, l[i].param1) test.assertEqual(out_list[i].param2, l[i].param2) test.assertEqual(out_list[i].param3, l[i].param3) test.assertEqual(out_cptr[i].param1, l[i].param1) test.assertEqual(out_cptr[i].param2, l[i].param2) test.assertEqual(out_cptr[i].param3, l[i].param3) @wp.struct class GradStruct: param1: int param2: float param3: wp.vec3 @wp.kernel def test_array_of_structs_grad_kernel(inputs: wp.array(dtype=GradStruct), loss: wp.array(dtype=float)): tid = wp.tid() wp.atomic_add(loss, 0, inputs[tid].param2 * 2.0) def test_array_of_structs_grad(test, device): num_items = 10 l = [] for i in range(num_items): g = GradStruct() g.param2 = float(i) l.append(g) a = wp.array(l, dtype=GradStruct, device=device, requires_grad=True) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) with wp.Tape() as tape: wp.launch(test_array_of_structs_grad_kernel, dim=num_items, inputs=[a, loss], device=device) tape.backward(loss) grads = a.grad.numpy() assert_np_equal(grads["param2"], np.full(num_items, 2.0, dtype=np.float32)) @wp.struct class NumpyStruct: x: int v: wp.vec3 def test_array_of_structs_from_numpy(test, device): num_items = 10 na = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype()) na["x"] = 17 na["v"] = (1, 2, 3) a = wp.array(data=na, dtype=NumpyStruct, device=device) assert_np_equal(a.numpy(), na) def test_array_of_structs_roundtrip(test, device): num_items = 10 value = NumpyStruct() value.x = 17 value.v = wp.vec3(1.0, 2.0, 3.0) # create Warp structured array a = wp.full(num_items, value, device=device) # convert to NumPy structured array na = a.numpy() expected = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype()) expected["x"] = value.x expected["v"] = value.v assert_np_equal(na, expected) # modify a field na["x"] = 42 # convert back to Warp array a = wp.from_numpy(na, NumpyStruct, device=device) expected["x"] = 42 assert_np_equal(a.numpy(), expected) def test_array_from_numpy(test, device): arr = np.array((1.0, 2.0, 3.0), dtype=float) result = wp.from_numpy(arr, device=device) expected = wp.array((1.0, 2.0, 3.0), dtype=wp.float32, shape=(3,)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.vec3, device=device) expected = wp.array(((1.0, 2.0, 3.0),), dtype=wp.vec3, shape=(1,)) assert_np_equal(result.numpy(), expected.numpy()) # -------------------------------------------------------------------------- arr = np.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=float) result = wp.from_numpy(arr, device=device) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.vec3, shape=(2,)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, device=device) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.float32, shape=(2, 3)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, shape=(6,), device=device) expected = wp.array((1.0, 2.0, 3.0, 4.0, 5.0, 6.0), dtype=wp.float32, shape=(6,)) assert_np_equal(result.numpy(), expected.numpy()) # -------------------------------------------------------------------------- arr = np.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=float, ) result = wp.from_numpy(arr, device=device) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.mat44, shape=(2,), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, device=device) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.float32, shape=(2, 4, 4), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.vec4, device=device).reshape((8,)) # Reshape from (2, 4) expected = wp.array( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), dtype=wp.vec4, shape=(8,), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, shape=(32,), device=device) expected = wp.array( ( 1.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 5.0, 6.0, 7.0, 8.0, ), dtype=wp.float32, shape=(32,), ) assert_np_equal(result.numpy(), expected.numpy()) def test_array_from_cai(test, device): import torch @wp.kernel def first_row_plus_one(x: wp.array2d(dtype=float)): i, j = wp.tid() if i == 0: x[i, j] += 1.0 # start with torch tensor arr = torch.zeros((3, 3)) torch_device = wp.device_to_torch(device) arr_torch = arr.to(torch_device) # wrap as warp array via __cuda_array_interface__ arr_warp = wp.array(arr_torch, device=device) wp.launch(kernel=first_row_plus_one, dim=(3, 3), inputs=[arr_warp], device=device) # re-wrap as torch array arr_torch = wp.to_torch(arr_warp) # transpose arr_torch = torch.as_strided(arr_torch, size=(3, 3), stride=(arr_torch.stride(1), arr_torch.stride(0))) # re-wrap as warp array with new strides arr_warp = wp.array(arr_torch, device=device) wp.launch(kernel=first_row_plus_one, dim=(3, 3), inputs=[arr_warp], device=device) assert_np_equal(arr_warp.numpy(), np.array([[2, 1, 1], [1, 0, 0], [1, 0, 0]])) devices = get_test_devices() class TestArray(unittest.TestCase): def test_array_new_del(self): # test the scenario in which an array instance is created but not initialized before gc instance = wp.array.__new__(wp.array) instance.__del__() add_function_test(TestArray, "test_shape", test_shape, devices=devices) add_function_test(TestArray, "test_negative_shape", test_negative_shape, devices=devices) add_function_test(TestArray, "test_flatten", test_flatten, devices=devices) add_function_test(TestArray, "test_reshape", test_reshape, devices=devices) add_function_test(TestArray, "test_slicing", test_slicing, devices=devices) add_function_test(TestArray, "test_transpose", test_transpose, devices=devices) add_function_test(TestArray, "test_view", test_view, devices=devices) add_function_test(TestArray, "test_clone_adjoint", test_clone_adjoint, devices=devices) add_function_test(TestArray, "test_assign_adjoint", test_assign_adjoint, devices=devices) add_function_test(TestArray, "test_1d_array", test_1d, devices=devices) add_function_test(TestArray, "test_2d_array", test_2d, devices=devices) add_function_test(TestArray, "test_3d_array", test_3d, devices=devices) add_function_test(TestArray, "test_4d_array", test_4d, devices=devices) add_function_test(TestArray, "test_4d_array_transposed", test_4d_transposed, devices=devices) add_function_test(TestArray, "test_fill_scalar", test_fill_scalar, devices=devices) add_function_test(TestArray, "test_fill_vector", test_fill_vector, devices=devices) add_function_test(TestArray, "test_fill_matrix", test_fill_matrix, devices=devices) add_function_test(TestArray, "test_fill_struct", test_fill_struct, devices=devices) add_function_test(TestArray, "test_fill_slices", test_fill_slices, devices=devices) add_function_test(TestArray, "test_full_scalar", test_full_scalar, devices=devices) add_function_test(TestArray, "test_full_vector", test_full_vector, devices=devices) add_function_test(TestArray, "test_full_matrix", test_full_matrix, devices=devices) add_function_test(TestArray, "test_full_struct", test_full_struct, devices=devices) add_function_test(TestArray, "test_ones_scalar", test_ones_scalar, devices=devices) add_function_test(TestArray, "test_ones_vector", test_ones_vector, devices=devices) add_function_test(TestArray, "test_ones_matrix", test_ones_matrix, devices=devices) add_function_test(TestArray, "test_ones_like_scalar", test_ones_like_scalar, devices=devices) add_function_test(TestArray, "test_ones_like_vector", test_ones_like_vector, devices=devices) add_function_test(TestArray, "test_ones_like_matrix", test_ones_like_matrix, devices=devices) add_function_test(TestArray, "test_empty_array", test_empty_array, devices=devices) add_function_test(TestArray, "test_empty_from_numpy", test_empty_from_numpy, devices=devices) add_function_test(TestArray, "test_empty_from_list", test_empty_from_list, devices=devices) add_function_test(TestArray, "test_to_list_scalar", test_to_list_scalar, devices=devices) add_function_test(TestArray, "test_to_list_vector", test_to_list_vector, devices=devices) add_function_test(TestArray, "test_to_list_matrix", test_to_list_matrix, devices=devices) add_function_test(TestArray, "test_to_list_struct", test_to_list_struct, devices=devices) add_function_test(TestArray, "test_lower_bound", test_lower_bound, devices=devices) add_function_test(TestArray, "test_round_trip", test_round_trip, devices=devices) add_function_test(TestArray, "test_array_to_bool", test_array_to_bool, devices=devices) add_function_test(TestArray, "test_array_of_structs", test_array_of_structs, devices=devices) add_function_test(TestArray, "test_array_of_structs_grad", test_array_of_structs_grad, devices=devices) add_function_test(TestArray, "test_array_of_structs_from_numpy", test_array_of_structs_from_numpy, devices=devices) add_function_test(TestArray, "test_array_of_structs_roundtrip", test_array_of_structs_roundtrip, devices=devices) add_function_test(TestArray, "test_array_from_numpy", test_array_from_numpy, devices=devices) try: import torch # check which Warp devices work with Torch # CUDA devices may fail if Torch was not compiled with CUDA support torch_compatible_devices = [] torch_compatible_cuda_devices = [] for d in devices: try: t = torch.arange(10, device=wp.device_to_torch(d)) t += 1 torch_compatible_devices.append(d) if d.is_cuda: torch_compatible_cuda_devices.append(d) except Exception as e: print(f"Skipping Array tests that use Torch on device '{d}' due to exception: {e}") add_function_test(TestArray, "test_array_from_cai", test_array_from_cai, devices=torch_compatible_cuda_devices) except Exception as e: print(f"Skipping Array tests that use Torch due to exception: {e}") if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
85,239
Python
34.281457
126
0.566243
NVIDIA/warp/warp/tests/test_streams.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.unittest_utils import * from warp.utils import check_iommu @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 @wp.kernel def inc_new(src: wp.array(dtype=float), dst: wp.array(dtype=float)): tid = wp.tid() dst[tid] = src[tid] + 1.0 @wp.kernel def sum(a: wp.array(dtype=float), b: wp.array(dtype=float), c: wp.array(dtype=float)): tid = wp.tid() c[tid] = a[tid] + b[tid] # number of elements to use for testing N = 10 * 1024 * 1024 def test_stream_set(test, device): device = wp.get_device(device) old_stream = device.stream new_stream = wp.Stream(device) try: wp.set_stream(new_stream, device) test.assertTrue(device.has_stream) test.assertEqual(device.stream, new_stream) finally: # restore original stream wp.set_stream(old_stream, device) def test_stream_arg_explicit_sync(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.full(N, 42, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) old_stream = wp.get_stream(device) new_stream = wp.Stream(device) # allocations need to be explicitly synced before launching work using stream arguments new_stream.wait_stream(old_stream) # launch work on new stream wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) wp.copy(b, a, stream=new_stream) wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) wp.copy(c, a, stream=new_stream) wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) assert_np_equal(a.numpy(), np.full(N, fill_value=3.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) def test_stream_scope_implicit_sync(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.full(N, 42, dtype=float) c = wp.empty(N, dtype=float) old_stream = wp.get_stream() new_stream = wp.Stream() # launch work on new stream # allocations are implicitly synced when entering wp.ScopedStream with wp.ScopedStream(new_stream): assert wp.get_stream() == new_stream wp.launch(inc, dim=a.size, inputs=[a]) wp.copy(b, a) wp.launch(inc, dim=a.size, inputs=[a]) wp.copy(c, a) wp.launch(inc, dim=a.size, inputs=[a]) assert wp.get_stream() == old_stream assert_np_equal(a.numpy(), np.full(N, fill_value=3.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) def test_stream_arg_synchronize(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) wp.launch(inc, dim=N, inputs=[a], device=device) # b and c depend on a wp.synchronize_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) # d depends on b and c wp.synchronize_stream(stream2) wp.synchronize_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d], device=device) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_arg_wait_event(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) event1 = wp.Event(device) event2 = wp.Event(device) event3 = wp.Event(device) wp.launch(inc, dim=N, inputs=[a], stream=stream1) stream1.record_event(event1) # b and c depend on a stream2.wait_event(event1) stream3.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) stream2.record_event(event2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) stream3.record_event(event3) # d depends on b and c stream1.wait_event(event2) stream1.wait_event(event3) wp.launch(sum, dim=N, inputs=[b, c, d], stream=stream1) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_arg_wait_stream(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) wp.launch(inc, dim=N, inputs=[a], stream=stream1) # b and c depend on a stream2.wait_stream(stream1) stream3.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) # d depends on b and c stream1.wait_stream(stream2) stream1.wait_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d], stream=stream1) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_synchronize(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream2 = wp.Stream() stream3 = wp.Stream() wp.launch(inc, dim=N, inputs=[a]) # b and c depend on a wp.synchronize_stream() with wp.ScopedStream(stream2): wp.launch(inc_new, dim=N, inputs=[a, b]) with wp.ScopedStream(stream3): wp.launch(inc_new, dim=N, inputs=[a, c]) # d depends on b and c wp.synchronize_stream(stream2) wp.synchronize_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_wait_event(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream2 = wp.Stream() stream3 = wp.Stream() event1 = wp.Event() event2 = wp.Event() event3 = wp.Event() wp.launch(inc, dim=N, inputs=[a]) wp.record_event(event1) # b and c depend on a with wp.ScopedStream(stream2): wp.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, b]) wp.record_event(event2) with wp.ScopedStream(stream3): wp.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, c]) wp.record_event(event3) # d depends on b and c wp.wait_event(event2) wp.wait_event(event3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_wait_stream(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream1 = wp.get_stream() stream2 = wp.Stream() stream3 = wp.Stream() wp.launch(inc, dim=N, inputs=[a]) # b and c depend on a with wp.ScopedStream(stream2): wp.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b]) with wp.ScopedStream(stream3): wp.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, c]) # d depends on b and c wp.wait_stream(stream2) wp.wait_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_event_synchronize(test, device): stream = wp.get_stream(device) a_host = wp.empty(N, dtype=float, device="cpu", pinned=True) b_host = wp.empty(N, dtype=float, device="cpu", pinned=True) # initialize GPU array and do an asynchronous readback a = wp.full(N, 17, dtype=float, device=device) wp.copy(a_host, a) a_event = stream.record_event() b = wp.full(N, 42, dtype=float, device=device) wp.copy(b_host, b) b_event = stream.record_event() wp.synchronize_event(a_event) assert_np_equal(a_host.numpy(), np.full(N, fill_value=17.0)) wp.synchronize_event(b_event) assert_np_equal(b_host.numpy(), np.full(N, fill_value=42.0)) def test_event_elapsed_time(test, device): stream = wp.get_stream(device) e1 = wp.Event(device, enable_timing=True) e2 = wp.Event(device, enable_timing=True) a = wp.zeros(N, dtype=float, device=device) stream.record_event(e1) wp.launch(inc, dim=N, inputs=[a], device=device) stream.record_event(e2) elapsed = wp.get_event_elapsed_time(e1, e2) test.assertGreater(elapsed, 0) devices = get_selected_cuda_test_devices() class TestStreams(unittest.TestCase): def test_stream_exceptions(self): cpu_device = wp.get_device("cpu") # Can't set the stream on a CPU device with self.assertRaises(RuntimeError): stream0 = wp.Stream() cpu_device.stream = stream0 # Can't create a stream on the CPU with self.assertRaises(RuntimeError): wp.Stream(device="cpu") # Can't create an event with CPU device with self.assertRaises(RuntimeError): wp.Event(device=cpu_device) # Can't get the stream on a CPU device with self.assertRaises(RuntimeError): cpu_stream = cpu_device.stream # noqa: F841 @unittest.skipUnless(len(wp.get_cuda_devices()) > 1, "Requires at least two CUDA devices") @unittest.skipUnless(check_iommu(), "IOMMU seems enabled") def test_stream_arg_graph_mgpu(self): wp.load_module(device="cuda:0") wp.load_module(device="cuda:1") # Peer-to-peer copies are not possible during graph capture if the arrays were # allocated using pooled allocators and mempool access is not enabled. # Here, we force default CUDA allocators and pre-allocate the memory. with wp.ScopedMempool("cuda:0", False), wp.ScopedMempool("cuda:1", False): # resources on GPU 0 stream0 = wp.get_stream("cuda:0") a0 = wp.zeros(N, dtype=float, device="cuda:0") b0 = wp.empty(N, dtype=float, device="cuda:0") c0 = wp.empty(N, dtype=float, device="cuda:0") # resources on GPU 1 stream1 = wp.get_stream("cuda:1") a1 = wp.zeros(N, dtype=float, device="cuda:1") # start recording on stream0 wp.capture_begin(stream=stream0, force_module_load=False) try: # branch into stream1 stream1.wait_stream(stream0) # launch concurrent kernels on each stream wp.launch(inc, dim=N, inputs=[a0], stream=stream0) wp.launch(inc, dim=N, inputs=[a1], stream=stream1) # wait for stream1 to finish stream0.wait_stream(stream1) # copy values from stream1 wp.copy(b0, a1, stream=stream0) # compute sum wp.launch(sum, dim=N, inputs=[a0, b0, c0], stream=stream0) finally: # finish recording on stream0 g = wp.capture_end(stream=stream0) # replay num_iters = 10 for _ in range(num_iters): wp.capture_launch(g, stream=stream0) # check results assert_np_equal(c0.numpy(), np.full(N, fill_value=2 * num_iters)) @unittest.skipUnless(len(wp.get_cuda_devices()) > 1, "Requires at least two CUDA devices") @unittest.skipUnless(check_iommu(), "IOMMU seems enabled") def test_stream_scope_graph_mgpu(self): wp.load_module(device="cuda:0") wp.load_module(device="cuda:1") # Peer-to-peer copies are not possible during graph capture if the arrays were # allocated using pooled allocators and mempool access is not enabled. # Here, we force default CUDA allocators and pre-allocate the memory. with wp.ScopedMempool("cuda:0", False), wp.ScopedMempool("cuda:1", False): # resources on GPU 0 with wp.ScopedDevice("cuda:0"): stream0 = wp.get_stream() a0 = wp.zeros(N, dtype=float) b0 = wp.empty(N, dtype=float) c0 = wp.empty(N, dtype=float) # resources on GPU 1 with wp.ScopedDevice("cuda:1"): stream1 = wp.get_stream() a1 = wp.zeros(N, dtype=float) # capture graph with wp.ScopedDevice("cuda:0"): # start recording wp.capture_begin(force_module_load=False) try: with wp.ScopedDevice("cuda:1"): # branch into stream1 wp.wait_stream(stream0) wp.launch(inc, dim=N, inputs=[a1]) wp.launch(inc, dim=N, inputs=[a0]) # wait for stream1 to finish wp.wait_stream(stream1) # copy values from stream1 wp.copy(b0, a1) # compute sum wp.launch(sum, dim=N, inputs=[a0, b0, c0]) finally: # finish recording g = wp.capture_end() # replay with wp.ScopedDevice("cuda:0"): num_iters = 10 for _ in range(num_iters): wp.capture_launch(g) # check results assert_np_equal(c0.numpy(), np.full(N, fill_value=2 * num_iters)) add_function_test(TestStreams, "test_stream_set", test_stream_set, devices=devices) add_function_test(TestStreams, "test_stream_arg_explicit_sync", test_stream_arg_explicit_sync, devices=devices) add_function_test(TestStreams, "test_stream_scope_implicit_sync", test_stream_scope_implicit_sync, devices=devices) add_function_test(TestStreams, "test_stream_arg_synchronize", test_stream_arg_synchronize, devices=devices) add_function_test(TestStreams, "test_stream_arg_wait_event", test_stream_arg_wait_event, devices=devices) add_function_test(TestStreams, "test_stream_arg_wait_stream", test_stream_arg_wait_stream, devices=devices) add_function_test(TestStreams, "test_stream_scope_synchronize", test_stream_scope_synchronize, devices=devices) add_function_test(TestStreams, "test_stream_scope_wait_event", test_stream_scope_wait_event, devices=devices) add_function_test(TestStreams, "test_stream_scope_wait_stream", test_stream_scope_wait_stream, devices=devices) add_function_test(TestStreams, "test_event_synchronize", test_event_synchronize, devices=devices) add_function_test(TestStreams, "test_event_elapsed_time", test_event_elapsed_time, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
16,901
Python
33.849484
115
0.610911
NVIDIA/warp/warp/tests/test_smoothstep.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest from dataclasses import dataclass from typing import Any import numpy as np import warp as wp from warp.tests.unittest_utils import * @dataclass class TestData: a: Any b: Any t: float expected: Any expected_adj_a: Any = None expected_adj_b: Any = None expected_adj_t: float = None def check_backwards(self): return self.expected_adj_a is not None and self.expected_adj_b is not None and self.expected_adj_t is not None TEST_DATA = { wp.float32: ( TestData( a=1.0, b=2.0, t=1.5, expected=0.5, expected_adj_a=-0.75, expected_adj_b=-0.75, expected_adj_t=1.5, ), TestData( a=-1.0, b=2.0, t=-0.25, expected=0.15625, expected_adj_a=-0.28125, expected_adj_b=-0.09375, expected_adj_t=0.375, ), TestData( a=0.0, b=1.0, t=9.9, expected=1.0, expected_adj_a=0.0, expected_adj_b=0.0, expected_adj_t=0.0, ), TestData( a=0.0, b=1.0, t=-9.9, expected=0.0, expected_adj_a=0.0, expected_adj_b=0.0, expected_adj_t=0.0, ), ), } def test_smoothstep(test, device): def make_kernel_fn(data_type): def fn( a: wp.array(dtype=data_type), b: wp.array(dtype=data_type), t: wp.array(dtype=float), out: wp.array(dtype=data_type), ): out[0] = wp.smoothstep(a[0], b[0], t[0]) return fn for data_type in TEST_DATA: kernel_fn = make_kernel_fn(data_type) kernel = wp.Kernel( func=kernel_fn, key=f"test_smoothstep{data_type.__name__}_kernel", ) for test_data in TEST_DATA[data_type]: a = wp.array( [test_data.a], dtype=data_type, device=device, requires_grad=True, ) b = wp.array( [test_data.b], dtype=data_type, device=device, requires_grad=True, ) t = wp.array( [test_data.t], dtype=float, device=device, requires_grad=True, ) out = wp.array( [0] * wp.types.type_length(data_type), dtype=data_type, device=device, requires_grad=True, ) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[a, b, t, out], device=device, ) assert_np_equal( out.numpy(), np.array([test_data.expected]), tol=1e-6, ) if test_data.check_backwards(): tape.backward(out) assert_np_equal( tape.gradients[a].numpy(), np.array([test_data.expected_adj_a]), tol=1e-6, ) assert_np_equal( tape.gradients[b].numpy(), np.array([test_data.expected_adj_b]), tol=1e-6, ) assert_np_equal( tape.gradients[t].numpy(), np.array([test_data.expected_adj_t]), tol=1e-6, ) devices = get_test_devices() class TestSmoothstep(unittest.TestCase): pass add_function_test(TestSmoothstep, "test_smoothstep", test_smoothstep, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
4,385
Python
25.263473
118
0.474344
NVIDIA/warp/warp/tests/test_linear_solvers.py
import unittest import numpy as np import warp as wp from warp.optim.linear import bicgstab, cg, cr, gmres, preconditioner from warp.tests.unittest_utils import * wp.init() # For runtime.core.is_cutlass_enabled() def _check_linear_solve(test, A, b, func, *args, **kwargs): # test from zero x = wp.zeros_like(b) with wp.ScopedDevice(A.device): niter, err, atol = func(A, b, x, *args, use_cuda_graph=True, **kwargs) test.assertLessEqual(err, atol) # test with warm start with wp.ScopedDevice(A.device): niter_warm, err, atol = func(A, b, x, *args, use_cuda_graph=False, **kwargs) test.assertLessEqual(err, atol) if func in [cr, gmres]: # monotonic convergence test.assertLess(niter_warm, niter) # In CG and BiCGSTAB residual norm is evaluating from running residual # rather then being computed from scratch as Ax - b # This can lead to accumulated inaccuracies over iterations, esp in float32 residual = A.numpy() @ x.numpy() - b.numpy() err_np = np.linalg.norm(residual) if A.dtype == wp.float64: test.assertLessEqual(err_np, 2.0 * atol) else: test.assertLessEqual(err_np, 32.0 * atol) def _least_square_system(rng, n: int): C = rng.uniform(low=-100, high=100, size=(n, n)) f = rng.uniform(low=-100, high=100, size=(n,)) A = C @ C.T b = C @ f return A, b def _make_spd_system(n: int, seed: int, dtype, device): rng = np.random.default_rng(seed) A, b = _least_square_system(rng, n) return wp.array(A, dtype=dtype, device=device), wp.array(b, dtype=dtype, device=device) def _make_nonsymmetric_system(n: int, seed: int, dtype, device): rng = np.random.default_rng(seed) s = rng.uniform(low=0.1, high=10, size=(n,)) A, b = _least_square_system(rng, n) A = A @ np.diag(s) return wp.array(A, dtype=dtype, device=device), wp.array(b, dtype=dtype, device=device) def _make_indefinite_system(n: int, seed: int, dtype, device): rng = np.random.default_rng(seed) s = rng.uniform(low=0.1, high=10, size=(n,)) A, b = _least_square_system(rng, n) A = A @ np.diag(s) return wp.array(A, dtype=dtype, device=device), wp.array(b, dtype=dtype, device=device) def _make_identity_system(n: int, seed: int, dtype, device): rng = np.random.default_rng(seed) A = np.eye(n) b = rng.uniform(low=-1.0, high=1.0, size=(n,)) return wp.array(A, dtype=dtype, device=device), wp.array(b, dtype=dtype, device=device) def test_cg(test, device): A, b = _make_spd_system(n=64, seed=123, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, cg, maxiter=1000) _check_linear_solve(test, A, b, cg, M=M, maxiter=1000) A, b = _make_spd_system(n=16, seed=321, device=device, dtype=wp.float32) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, cg, maxiter=1000) _check_linear_solve(test, A, b, cg, M=M, maxiter=1000) A, b = _make_identity_system(n=5, seed=321, device=device, dtype=wp.float32) _check_linear_solve(test, A, b, cg, maxiter=30) def test_cr(test, device): A, b = _make_spd_system(n=64, seed=123, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, cr, maxiter=1000) _check_linear_solve(test, A, b, cr, M=M, maxiter=1000) A, b = _make_spd_system(n=16, seed=321, device=device, dtype=wp.float32) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, cr, maxiter=1000) _check_linear_solve(test, A, b, cr, M=M, maxiter=1000) A, b = _make_identity_system(n=5, seed=321, device=device, dtype=wp.float32) _check_linear_solve(test, A, b, cr, maxiter=30) def test_bicgstab(test, device): A, b = _make_nonsymmetric_system(n=64, seed=123, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, bicgstab, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000, is_left_preconditioner=True) A, b = _make_nonsymmetric_system(n=16, seed=321, device=device, dtype=wp.float32) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, bicgstab, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000, is_left_preconditioner=True) A, b = _make_indefinite_system(n=64, seed=121, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, bicgstab, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000) _check_linear_solve(test, A, b, bicgstab, M=M, maxiter=1000, is_left_preconditioner=True) A, b = _make_identity_system(n=5, seed=321, device=device, dtype=wp.float32) _check_linear_solve(test, A, b, bicgstab, maxiter=30) def test_gmres(test, device): A, b = _make_nonsymmetric_system(n=64, seed=456, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, gmres, maxiter=1000, tol=1.0e-3) _check_linear_solve(test, A, b, gmres, M=M, maxiter=1000, tol=1.0e-5) _check_linear_solve(test, A, b, gmres, M=M, maxiter=1000, tol=1.0e-5, is_left_preconditioner=True) A, b = _make_nonsymmetric_system(n=64, seed=654, device=device, dtype=wp.float64) M = preconditioner(A, "diag") _check_linear_solve(test, A, b, gmres, maxiter=1000, tol=1.0e-3) _check_linear_solve(test, A, b, gmres, M=M, maxiter=1000, tol=1.0e-5) _check_linear_solve(test, A, b, gmres, M=M, maxiter=1000, tol=1.0e-5, is_left_preconditioner=True) A, b = _make_identity_system(n=5, seed=123, device=device, dtype=wp.float32) _check_linear_solve(test, A, b, gmres, maxiter=120) class TestLinearSolvers(unittest.TestCase): pass devices = get_test_devices() if not wp.context.runtime.core.is_cutlass_enabled(): devices = [d for d in devices if not d.is_cuda] print("Skipping CUDA linear solver tests because CUTLASS is not supported in this build") if wp.context.runtime.core.is_debug_enabled(): # cutlass-based matmul is *very* slow in debug mode -- skip devices = [d for d in devices if not d.is_cuda] print("Skipping CUDA linear solver tests in debug mode") add_function_test(TestLinearSolvers, "test_cg", test_cg, devices=devices) add_function_test(TestLinearSolvers, "test_cr", test_cr, devices=devices) add_function_test(TestLinearSolvers, "test_bicgstab", test_bicgstab, devices=devices) add_function_test(TestLinearSolvers, "test_gmres", test_gmres, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
6,759
Python
34.578947
102
0.662968
NVIDIA/warp/warp/tests/test_math.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest from typing import NamedTuple import numpy as np import warp as wp from warp.tests.unittest_utils import add_function_test, assert_np_equal, get_test_devices class ScalarFloatValues(NamedTuple): degrees: wp.float32 = None radians: wp.float32 = None @wp.kernel def scalar_float_kernel( i: int, x: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32), ): if i == 0: out[0] = wp.degrees(x[0]) elif i == 1: out[0] = wp.radians(x[0]) def test_scalar_math(test, device): float_values = ScalarFloatValues(degrees=(0.123,), radians=(123.0,)) float_results_expected = ScalarFloatValues(degrees=7.047381, radians=2.146755) adj_float_results_expected = ScalarFloatValues(degrees=57.29578, radians=0.017453) for i, values in enumerate(float_values): x = wp.array([values[0]], dtype=wp.float32, requires_grad=True, device=device) out = wp.array([0.0], dtype=wp.float32, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(scalar_float_kernel, dim=1, inputs=[i, x, out], device=device) assert_np_equal(out.numpy(), np.array([float_results_expected[i]]), tol=1e-6) tape.backward(out) assert_np_equal(tape.gradients[x].numpy(), np.array([adj_float_results_expected[i]]), tol=1e-6) devices = get_test_devices() class TestMath(unittest.TestCase): def test_vec_type(self): vec5 = wp.vec(length=5, dtype=float) v = vec5() w = vec5() a = vec5(1.0) b = vec5(0.0, 0.0, 0.0, 0.0, 0.0) c = vec5(0.0) v[0] = 1.0 v.x = 0.0 v[1:] = [1.0, 1.0, 1.0, 1.0] w[0] = 1.0 w[1:] = [0.0, 0.0, 0.0, 0.0] self.assertEqual(v[0], w[1], "vec setter error") self.assertEqual(v.x, w.y, "vec setter error") for x in v[1:]: self.assertEqual(x, 1.0, "vec slicing error") self.assertEqual(b, c, "vec equality error") self.assertEqual(str(v), "[0.0, 1.0, 1.0, 1.0, 1.0]", "vec to string error") def test_mat_type(self): mat55 = wp.mat(shape=(5, 5), dtype=float) m1 = mat55() m2 = mat55() for i in range(5): for j in range(5): if i == j: m1[i, j] = 1.0 else: m1[i, j] = 0.0 for i in range(5): m2[i] = [1.0, 1.0, 1.0, 1.0, 1.0] a = mat55(1.0) # fmt: off b = mat55( 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, ) # fmt: on self.assertEqual(m1, b, "mat element setting error") self.assertEqual(m2, a, "mat row setting error") self.assertEqual(m1[0, 0], 1.0, "mat element getting error") self.assertEqual(m2[0], [1.0, 1.0, 1.0, 1.0, 1.0], "mat row getting error") self.assertEqual( str(b), "[[1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0]]", "mat to string error", ) add_function_test(TestMath, "test_scalar_math", test_scalar_math, devices=devices) if __name__ == "__main__": wp.build.clear_kernel_cache() unittest.main(verbosity=2)
3,857
Python
29.864
158
0.562095