file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/csvreader.py
import omni.ext import omni.ui as ui import omni.kit.commands from pxr import UsdGeom from omni.kit.window.file_importer import get_file_importer from typing import List, Tuple, Callable, Dict import csv from .cameragenerator import CameraGenerator class CSVReader(): def __init__(self): pass def import_handler(self,filename: str, dirname: str, selections: List[str] = []): print(f"> Import '{filename}' from '{dirname}' or selected files '{selections}'") self.openCSV(dirname+filename) def on_open_file(self): file_importer = get_file_importer() file_importer.show_window( title="Import File", # The callback function called after the user has selected a file. import_handler=self.import_handler ) #write a function that opens a CSV file, reads the data, and stores it in variables named shot_name, focal_length, aperture, distance def openCSV(self,selections): with open(selections) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 else: shot_name = row[0] print (f'Shot Name: {shot_name}.') focal_length = row[1] print (f'Focal Length: {focal_length}.') aperture = row[2] print (f'Aperture: {aperture}.') distance = row[3] print (f'Distance: {distance}.') #do something with the csv data. in this case, generate a camera cameraGenerator = CameraGenerator() cameraGenerator.generate_camera(str(shot_name), float(focal_length), float(aperture), float(distance)) line_count += 1
1,960
Python
34.017857
137
0.560714
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/cameragenerator.py
import omni.ext import omni.ui as ui import omni.kit.commands from pxr import UsdGeom from omni.kit.window.file_importer import get_file_importer class CameraGenerator(): def __init__(self): pass def generate_camera(self, shot_name, focal_length, aperture, distance): #generate camera omni.kit.commands.execute("CreatePrimWithDefaultXform", prim_type="Camera", prim_path="/World/"+shot_name, attributes={ "projection": UsdGeom.Tokens.perspective, "focalLength": focal_length, "horizontalAperture": aperture, } ) #move camera omni.kit.commands.execute('TransformMultiPrimsSRTCpp', count=1, paths=['/World/'+shot_name], new_translations=[0, 0, distance*1000], new_rotation_eulers=[-0.0, -0.0, -0.0], new_rotation_orders=[1, 0, 2], new_scales=[1.0, 1.0, 1.0], old_translations=[0.0, 0.0, 0.0], old_rotation_eulers=[0.0, -0.0, -0.0], old_rotation_orders=[1, 0, 2], old_scales=[1.0, 1.0, 1.0], usd_context_name='', time_code=0.0)
1,526
Python
38.153845
75
0.439712
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/docs/README.md
# Camera Studio This extension allows to open a CSV file containing information about Camera Settings and generate in-scene Cameras accordingly. Usage: The extension generates cameras with the following settings: -Shot Name -Focal Length (in mm) -Horizontal Aperture (in mm) -Distance from the subject the camera should be placed at the scene (in meters) 1) Create your .csv file with the following header: shot_name,focal_length,aperture,distance e.g. shot_name,focal_length,aperture,distance establishing_shot,24,2.8,4 wide_shot,14,2.0,4 over_the_shoulder_shot,50,2.8,0.5 point_of_view_shot,85,2.8,0.5 low_angle_shot,24,1.8,0.5 high_angle_shot,100,2.8,1.5 2) Open the .csv file via the Extension. 3) The extension will generate the cameras in your scene with the desired shots configured.
799
Markdown
26.586206
128
0.777222
Mariuxtheone/omni-openai-gpt3-snippet-extension/README.md
# NVIDIA Omniverse OpenAI GPT-3 Snippet Extension ![Screenshot](exts/omni.openai.snippet/data/screenshot.jpg) This is an Extension that adds a simple snippet UI to NVIDIA Omniverse which allows you to generate GPT-3 based snippets. ## 1) Dependencies In order to use this extension, you will need to install the following dependencies: - openai python library: `pip install openai` - pyperclip: `pip install pyperclip` ## 2) Installation 1) Install the Extension in your Omniverse app. 2) We need to create a folder to include the OPEN AI API key and the path to the main Python modules repository on our device, since Omniverse doesn't use the Python global PYTHONHOME and PYTHONPATH. 3) To do this, in the omni\openai\snippet\ folder, create a new file called `apikeys.py` 4) in the `apikeys.py` file, add the following lines: ``` apikey = "YOUR_OPENAI_API_KEY_GOES_HERE" pythonpath = "The file path where you have installed your main python modules" ``` so `apikeys.py` should look like this: ``` apikey = "sk-123Mb38gELphag234GDyYT67FJwa3334FPRZQZ2Aq5f1o" (this is a fake API key, good try!) pythonpath = "C:/Users/yourusername/AppData/Local/Packages/PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0/LocalCache/local-packages/Python310/site-packages" ``` ## 3) Enable and Usage To use the extension, enable it from the Extension Window and then click the "Generate Snippet" button. The generated snippet will be copied to your clipboard and you can past anywhere you want. ## 4) IMPORTANT DISCLAIMER 1) OpenAI is a third party API and you will need to create an account with OpenAI to use it. Consider that there's a cost associated with using the API. 2) The extension by default generate snippets up to 40 Tokens. If you want to generate more tokens, you will need to edit the variable `openaitokensresponse` 3) The extension by default uses the GPT-3 Engine "DaVinci" `text-davinci-001` which is the most powerful, but also, most expensive engine. If you want to use a different engine, you will need to edit the variable `engine` in `openai.Completion.create()`.
2,095
Markdown
43.595744
255
0.77327
Mariuxtheone/omni-openai-gpt3-snippet-extension/exts/omni.openai.snippet/omni/openai/snippet/extension.py
import omni.ext import omni.ui as ui #create a file apikeys.py in the same folder as extension.py and add 2 variables: # API_KEY: "your openai api key" # PYTHON_PATH: "the path of the python folder where the openai python library is installed" from .apikeys import apikey from .apikeys import pythonpath import pyperclip import sys sys.path.append(pythonpath) import openai #tokens used in the OpenAI API response openaitokensresponse = 40 # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.openai.snippet] MyExtension startup") self._window = ui.Window("OpenAI GPT-3 Text Generator", width=300, height=300) with self._window.frame: with ui.VStack(): prompt_label = ui.Label("Your Prompt:") prompt_field = ui.StringField(multiline=True) result_label = ui.Label("OpenAI GPT-3 Result:") label_style = {"Label": {"font_size": 16, "color": 0xFF00FF00,}} result_actual_label = ui.Label("The OpenAI generated text will show up here", style=label_style, word_wrap=True) def on_click(): # Load your API key from an environment variable or secret management service #openai.api_key = "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" openai.api_key = apikey my_prompt = prompt_field.model.get_value_as_string().replace("\n", " ") response = openai.Completion.create(engine="text-davinci-001", prompt=my_prompt, max_tokens=openaitokensresponse) #parse response as json and extract text text = response["choices"][0]["text"] pyperclip.copy(text) result_actual_label.text = "" result_actual_label.text = text ui.Button("Generate and Copy to Clipboard", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.openai.snippet] MyExtension shutdown")
2,609
Python
40.428571
133
0.617478
echo3Dco/NVIDIAOmniverse-echo3D-extension/README.md
# Echo3D Omniverse Extension An extension that allows Nvidia Omniverse users to easily import their echo3D assets into their projects, as well as search for new assets in the echo3D public library. Installation steps can be found at https://docs.echo3d.com/nvidia-omniverse/installation
289
Markdown
47.333325
168
0.820069
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/echo3d/search/extension.py
import json import os import asyncio import ssl import certifi import aiohttp import omni.ext import omni.ui as ui import omni.kit.commands import urllib from omni.ui import color as cl # GLOBAL VARIABLES # IMAGES_PER_PAGE = 3 current_search_page = 0 current_project_page = 0 searchJsonData = [] projectJsonData = [] # UI Elements for the thumbnails search_image_widgets = [ui.Image() for _ in range(IMAGES_PER_PAGE)] project_image_widgets = [ui.Button() for _ in range(IMAGES_PER_PAGE)] # Hardcoded echo3D images script_dir = os.path.dirname(os.path.abspath(__file__)) logo_image_filename = 'echo3D_Logo.png' logo_image_path = os.path.join(script_dir, logo_image_filename) cloud_image_filename = 'cloud_background_transparent.png' cloud_image_path = os.path.join(script_dir, cloud_image_filename) # State variables to hold the style associated with each thumbnail project_button_styles = [ { "border_radius": 5, "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP } } for _ in range(IMAGES_PER_PAGE)] search_button_styles = [ { "border_radius": 5, "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP } } for _ in range(IMAGES_PER_PAGE)] arrowStyle = { ":disabled": { "background_color": cl("#1f212460") }, "Button.Label:disabled": { "color": cl("#FFFFFF40") } } ########################################################################################################### # # # An extension for Nvidia Omniverse that allows users to connect to their echo3D projects in order to # # stream their existing assets into the Omniverse Viewport, as well as search for new assets in the # # echo3D public asset library to add to their projects. # # # ########################################################################################################### class Echo3dSearchExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[echo3D] echo3D startup") ############################################### # Define Functions for Search Feature # ############################################### # Load in new image thumbnails when clicks the previous/next buttons def update_search_images(searchJsonData): start_index = current_search_page * IMAGES_PER_PAGE end_index = start_index + IMAGES_PER_PAGE print(start_index) print(end_index) for i in range(start_index, end_index): if i < len(searchJsonData): search_button_styles[i % IMAGES_PER_PAGE] = {"Button.Image": { "color": cl("#FFFFFF"), "image_url": searchJsonData[i]["thumbnail"], "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i % IMAGES_PER_PAGE].style = search_button_styles[i % IMAGES_PER_PAGE] search_image_widgets[i % IMAGES_PER_PAGE].enabled = True else: global cloud_image_path search_button_styles[i % IMAGES_PER_PAGE] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i % IMAGES_PER_PAGE].style = search_button_styles[i % IMAGES_PER_PAGE] search_image_widgets[i % IMAGES_PER_PAGE].enabled = False # Update state variables to reflect change of page, disable arrow buttons, update the thumbnails shown def on_click_left_arrow_search(): global current_search_page current_search_page -= 1 if (current_search_page == 0): searchLeftArrow.enabled = False searchRightArrow.enabled = True global searchJsonData update_search_images(searchJsonData) def on_click_right_arrow_search(): global current_search_page current_search_page += 1 global searchJsonData if ((current_search_page + 1) * IMAGES_PER_PAGE >= len(searchJsonData)): searchRightArrow.enabled = False searchLeftArrow.enabled = True update_search_images(searchJsonData) async def on_click_search_image(index): global searchJsonData global current_search_page selectedEntry = searchJsonData[current_search_page * IMAGES_PER_PAGE + index] url = selectedEntry["glb_location_url"] filename = selectedEntry["name"] + '.glb' folder_path = os.path.join(os.path.dirname(__file__), "temp_files") file_path = os.path.join(folder_path, filename) if not os.path.exists(folder_path): os.makedirs(folder_path) async with aiohttp.ClientSession() as session: async with session.get(url) as response: response.raise_for_status() content = await response.read() with open(file_path, "wb") as file: file.write(content) omni.kit.commands.execute('CreateReferenceCommand', path_to='/World/' + os.path.splitext(filename)[0].replace(" ", "_"), asset_path=file_path, usd_context=omni.usd.get_context()) api_url = "https://api.echo3d.com/upload" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), "data": "filePath:null", "type": "upload", "target_type": "2", "hologram_type": "2", "file_size": str(os.path.getsize(file_path)), "file_model": open(file_path, "rb") } async with session.post(url=api_url, data=data) as uploadRequest: uploadRequest.raise_for_status() # Call the echo3D /search endpoint to get models and display the resulting thumbnails def on_click_search(): global current_search_page current_search_page = 0 searchLeftArrow.enabled = False searchRightArrow.enabled = False searchTerm = searchInput.model.get_value_as_string() api_url = "https://api.echo3d.com/search" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), "keywords": searchTerm, "include2Dcontent": "false" } encoded_data = urllib.parse.urlencode(data).encode('utf-8') request = urllib.request.Request(api_url, data=encoded_data) response = urllib.request.urlopen(request, context=ssl.create_default_context(cafile=certifi.where())) librarySearchRequest = response.read().decode('utf-8') global searchJsonData searchJsonData = json.loads(librarySearchRequest) searchJsonData = [data for data in searchJsonData if "glb_location_url" in data and data["source"] == 'poly'] global search_image_widgets global search_button_styles for i in range(IMAGES_PER_PAGE): if i < len(searchJsonData): search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF"), "image_url": searchJsonData[i]["thumbnail"], "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = True searchRightArrow.enabled = len(searchJsonData) > IMAGES_PER_PAGE else: global cloud_image_path search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = False # Clear all the thumbnails and search term def on_reset_search(): global current_search_page current_search_page = 0 searchInput.model.set_value("") global search_image_widgets for i in range(IMAGES_PER_PAGE): global cloud_image_path search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = False ################################################# # Define Functions for Project Querying # ################################################# # Load in new image thumbnails when clicks the previous/next buttons def update_project_images(projectJsonData): start_index = current_project_page * IMAGES_PER_PAGE end_index = start_index + IMAGES_PER_PAGE for i in range(start_index, end_index): if i < len(projectJsonData): baseUrl = 'https://storage.echo3d.co/' + apiKeyInput.model.get_value_as_string() + "/" imageFilename = projectJsonData[i]["additionalData"]["screenshotStorageID"] project_button_styles[i % IMAGES_PER_PAGE] = {"Button.Image": { "color": cl("#FFFFFF"), "image_url": baseUrl + imageFilename, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i % IMAGES_PER_PAGE].style = project_button_styles[i % IMAGES_PER_PAGE] project_image_widgets[i % IMAGES_PER_PAGE].enabled = True else: global cloud_image_path project_button_styles[i % IMAGES_PER_PAGE] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i % IMAGES_PER_PAGE].style = project_button_styles[i % IMAGES_PER_PAGE] project_image_widgets[i % IMAGES_PER_PAGE].enabled = False # Update state variables to reflect change of page, disable arrow buttons, update the thumbnails shown def on_click_left_arrow_project(): global current_project_page current_project_page -= 1 if (current_project_page == 0): projectLeftArrow.enabled = False projectRightArrow.enabled = True global projectJsonData update_project_images(projectJsonData) def on_click_right_arrow_project(): global current_project_page current_project_page += 1 global projectJsonData if ((current_project_page + 1) * IMAGES_PER_PAGE >= len(projectJsonData)): projectRightArrow.enabled = False projectLeftArrow.enabled = True update_project_images(projectJsonData) # When a user clicks a thumbnail, download the corresponding .usdz file if it exists and # instantiate it in the scene. Otherwise use the .glb file def on_click_project_image(index): global projectJsonData global current_project_page selectedEntry = projectJsonData[current_project_page * IMAGES_PER_PAGE + index] usdzStorageID = selectedEntry["additionalData"]["usdzHologramStorageID"] usdzFilename = selectedEntry["additionalData"]["usdzHologramStorageFilename"] if (usdzFilename): open_project_asset_from_filename(usdzFilename, usdzStorageID) else: glbStorageID = selectedEntry["hologram"]["storageID"] glbFilename = selectedEntry["hologram"]["filename"] open_project_asset_from_filename(glbFilename, glbStorageID) # Directly instantiate previously cached files from the session, or download them from the echo3D API def open_project_asset_from_filename(filename, storageId): folder_path = os.path.join(os.path.dirname(__file__), "temp_files") if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, filename) cachedUpload = os.path.exists(file_path) if (not cachedUpload): apiKey = apiKeyInput.model.get_value_as_string() secKey = secKeyInput.model.get_value_as_string() storageId = urllib.parse.quote(storageId) url = f'https://api.echo3d.com/query?key={apiKey}&secKey={secKey}&file={storageId}' response = urllib.request.urlopen(url, context=ssl.create_default_context(cafile=certifi.where())) response_data = response.read() with open(file_path, "wb") as file: file.write(response_data) omni.kit.commands.execute('CreateReferenceCommand', path_to='/World/' + os.path.splitext(filename)[0], asset_path=file_path, usd_context=omni.usd.get_context()) # Call the echo3D /query endpoint to get models and display the resulting thumbnails def on_click_load_project(): global current_project_page current_project_page = 0 projectLeftArrow.enabled = False projectRightArrow.enabled = False api_url = "https://api.echo3d.com/query" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), } encoded_data = urllib.parse.urlencode(data).encode('utf-8') request = urllib.request.Request(api_url, data=encoded_data) try: with urllib.request.urlopen(request, context=ssl.create_default_context(cafile=certifi.where())) as response: response_data = response.read().decode('utf-8') response_json = json.loads(response_data) values = list(response_json["db"].values()) entriesWithScreenshot = [data for data in values if "additionalData" in data and "screenshotStorageID" in data["additionalData"]] global projectJsonData projectJsonData = entriesWithScreenshot global project_image_widgets global project_button_styles sampleModels = ["6af76ce2-2f57-4ed0-82d8-42652f0eddbe.png", "d2398ecf-566b-4fde-b8cb-46b2fd6add1d.png", "d686a655-e800-430d-bfd2-e38cdfb0c9e9.png"] for i in range(IMAGES_PER_PAGE): if i < len(projectJsonData): imageFilename = projectJsonData[i]["additionalData"]["screenshotStorageID"] if (imageFilename in sampleModels): baseUrl = 'https://storage.echo3d.co/0_model_samples/' else: baseUrl = 'https://storage.echo3d.co/' + apiKeyInput.model.get_value_as_string() + "/" project_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF"), "image_url": baseUrl + imageFilename, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i].style = project_button_styles[i] project_image_widgets[i].enabled = True projectRightArrow.enabled = len(projectJsonData) > IMAGES_PER_PAGE else: global cloud_image_path project_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i].style = project_button_styles[i] project_image_widgets[i].enabled = False searchButton.enabled = True clearButton.enabled = True searchInput.enabled = True disabledStateCover.style = {"background_color": cl("#32343400")} loadError.visible = False except Exception as e: loadError.visible = True print(str(e) + ". Ensure that your API Key and Security Key are entered correctly.") # Display the UI self._window = ui.Window("Echo3D", width=400, height=478) with self._window.frame: with ui.VStack(): script_dir = os.path.dirname(os.path.abspath(__file__)) logo_image_filename = 'echo3D_Logo.png' logo_image_path = os.path.join(script_dir, logo_image_filename) ui.Spacer(height=5) with ui.Frame(height=25): ui.Image(logo_image_path) ui.Spacer(height=8) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("API Key:") apiKeyInput = ui.StringField() ui.Spacer(width=5) ui.Spacer(height=3) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("Security Key:") secKeyInput = ui.StringField() with ui.Frame(width=5): ui.Label("") ui.Spacer(height=3) with ui.Frame(height=20): ui.Button("Load Project", clicked_fn=on_click_load_project) loadError = ui.Label("Error: Cannot Load Project. Correct your keys and try again.", visible=False, height=20, style={"color": cl("#FF0000")}, alignment=ui.Alignment.CENTER) ui.Spacer(height=3) # Overlay the disabled elements to indicate their state with ui.ZStack(): with ui.VStack(): with ui.HStack(height=5): ui.Spacer(width=5) ui.Line(name='default', style={"color": cl.gray}) ui.Spacer(width=5) ui.Spacer(height=3) with ui.HStack(height=20): ui.Spacer(width=5) ui.Label("Assets in Project:") global project_image_widgets with ui.HStack(height=80): with ui.Frame(height=80, width=10): projectLeftArrow = ui.Button("<", clicked_fn=on_click_left_arrow_project, enabled=False, style=arrowStyle) for i in range(IMAGES_PER_PAGE): with ui.Frame(height=80): project_image_widgets[i] = ui.Button("", clicked_fn=lambda index=i: on_click_project_image(index), style=project_button_styles[i], enabled=False) with ui.Frame(height=80, width=10): projectRightArrow = ui.Button(">", clicked_fn=on_click_right_arrow_project, enabled=False, style=arrowStyle) ui.Spacer(height=10) with ui.HStack(height=5): ui.Spacer(width=5) ui.Line(name='default', style={"color": cl.gray}) ui.Spacer(width=5) ui.Spacer(height=5) with ui.HStack(height=20): ui.Spacer(width=5) ui.Label("Public Search Results:") global search_image_widgets with ui.HStack(height=80): with ui.Frame(height=80, width=10): searchLeftArrow = ui.Button("<", clicked_fn=on_click_left_arrow_search, enabled=False, style=arrowStyle) for i in range(IMAGES_PER_PAGE): with ui.Frame(height=80): search_image_widgets[i] = ui.Button("", clicked_fn=lambda idx=i: asyncio.ensure_future( on_click_search_image(idx)), style=search_button_styles[i], enabled=False) with ui.Frame(height=80, width=10): searchRightArrow = ui.Button(">", clicked_fn=on_click_right_arrow_search, enabled=False, style=arrowStyle) ui.Spacer(height=10) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("Keywords:") searchInput = ui.StringField(enabled=False) with ui.Frame(width=5): ui.Label("") ui.Spacer(height=5) with ui.VStack(): with ui.Frame(height=20): searchButton = ui.Button("Search", clicked_fn=on_click_search, enabled=False) with ui.Frame(height=20): clearButton = ui.Button("Clear", clicked_fn=on_reset_search, enabled=False) disabledStateCover = ui.Rectangle(style={"background_color": cl("#323434A0")}, height=500) def on_shutdown(self): # Clear all temporary download files folder_path = os.path.join(os.path.dirname(__file__), "temp_files") if os.path.exists(folder_path): file_list = os.listdir(folder_path) for file_name in file_list: file_path = os.path.join(folder_path, file_name) if os.path.isfile(file_path): os.remove(file_path) print("[echo3D] echo3D shutdown")
26,601
Python
49.670476
120
0.477012
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/docs/README.md
# echo3D Connector [echo3d.search] Manage and search 3D assets in your Omniverse experiences with the echo3D Connector. echo3D is a cloud platform for 3D asset management that provides tools and server-side infrastructure to help developers & companies manage and deploy 3D/AR/VR assets. echo3D offers a 3D-first content management system (CMS) and delivery network (CDN) that enables developers to build a 3D/AR/VR app backend in minutes and allows content creators to easily manage and publish 3D content to their Omniverse experience without involving development teams. ### Connecting an echo3D Project To begin, copy your echo3D API Key and Secret Key (if enabled) into the corresponding boxes in the Omniverse Extension. The API Key can be found in the header of the echo3D console, and the Secret Key can be found on the Security Tab of the Settings Page of the console. ### Loading Assets Simply click any of your project assets to add them to the Omniverse Viewer Additionally, you can search for publicly available assets by entering a keyword into the search bar. Note that clicking on them and importing them into the Omniverse Viewer will also automatically upload the asset to your echo3D project. ### Any other questions? - Reach out to [email protected] - or join at https://go.echo3d.co/join ### License This asset is governed by the license agreement at echo3D.com/terms. ### Preview
1,411
Markdown
57.833331
285
0.796598
ngzhili/SynTable/visualize_annotations.py
""" Visualises SynTable generated annotations: """ # Run python ./visualize_annotations.py --dataset './sample_data' --ann_json './sample_data/annotation_final.json' import json import cv2 import numpy as np import os, shutil import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import pyplot as plt from PIL import Image import networkx as nx import argparse import pycocotools.mask as mask_util from matplotlib.colors import ListedColormap import seaborn as sns import matplotlib.patches as mpatches # visualize annotations def apply_mask(image, mask): # Convert to numpy arrays image = np.array(image) mask = np.array(mask) # Convert grayscale image to RGB mask = np.stack((mask,)*3, axis=-1) # Multiply arrays rgb_result= image*mask # First create the image with alpha channel rgba = cv2.cvtColor(rgb_result, cv2.COLOR_RGB2RGBA) # Then assign the mask to the last channel of the image # rgba[:, :, 3] = alpha_data # Make image transparent white anywhere it is transparent rgba[rgba[...,-1]==0] = [255,255,255,0] return rgba def compute_occluded_masks(mask1, mask2): """Computes occlusions between two sets of masks. masks1, masks2: [Height, Width, instances] """ # If either set of masks is empty return empty result #if masks1.shape[-1] == 0 or masks2.shape[-1] == 0: #return np.zeros((masks1.shape[-1], masks2.shape[-1])) # flatten masks and compute their areas #masks1 = np.reshape(masks1 > .5, (-1, masks1.shape[-1])).astype(np.float32) #masks2 = np.reshape(masks2 > .5, (-1, masks2.shape[-1])).astype(np.float32) #area1 = np.sum(masks1, axis=0) #area2 = np.sum(masks2, axis=0) # intersections and union #intersections_mask = np.dot(masks1.T, masks2) mask1_area = np.count_nonzero( mask1 ) mask2_area = np.count_nonzero( mask2 ) intersection_mask = np.logical_and( mask1, mask2 ) intersection = np.count_nonzero( np.logical_and( mask1, mask2 ) ) iou = intersection/(mask1_area+mask2_area-intersection) return iou, intersection_mask.astype(float) def convert_png(image): image = Image.fromarray(np.uint8(image)) image = image.convert('RGBA') # Transparency newImage = [] for item in image.getdata(): if item[:3] == (0, 0, 0): newImage.append((0, 0, 0, 0)) else: newImage.append(item) image.putdata(newImage) return image def rle2mask(mask_rle, shape=(480,640)): ''' mask_rle: run-length as string formated (start length) shape: (width,height) of array to return Returns numpy array, 1 - mask, 0 - background ''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape).T def segmToRLE(segm, img_size): h, w = img_size if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif type(segm["counts"]) == list: # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = segm return rle # Convert 1-channel groundtruth data to visualization image data def normalize_greyscale_image(image_data): image_data = np.reciprocal(image_data) image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) image_data *= 255 image_data = image_data.astype(np.uint8) return image_data if __name__ == '__main__': parser = argparse.ArgumentParser(description='Visualise Annotations') parser.add_argument('--dataset', type=str, help='dataset to visualise') parser.add_argument('--ann_json', type=str, help='dataset annotation to visualise') args = parser.parse_args() data_dir = args.dataset ann_json = args.ann_json # Opening JSON file f = open(ann_json) # returns JSON object as a dictionary data = json.load(f) f.close() referenceDict = {} for i, ann in enumerate(data['annotations']): image_id = ann["image_id"] ann_id = ann["id"] # print(ann_id) if image_id not in referenceDict: referenceDict.update({image_id:{"rgb":None,"depth":None, "amodal":[], "visible":[], "occluded":[],"occluded_rate":[],"category_id":[],"object_name":[]}}) # print(referenceDict) referenceDict[image_id].update({"rgb":data["images"][i]["file_name"]}) referenceDict[image_id].update({"depth":data["images"][i]["depth_file_name"]}) # referenceDict[image_id].update({"occlusion_order":data["images"][i]["occlusion_order_file_name"]}) referenceDict[image_id]["amodal"].append(ann["segmentation"]) referenceDict[image_id]["visible"].append(ann["visible_mask"]) referenceDict[image_id]["occluded"].append(ann["occluded_mask"]) referenceDict[image_id]["occluded_rate"].append(ann["occluded_rate"]) referenceDict[image_id]["category_id"].append(ann["category_id"]) # referenceDict[image_id]["object_name"].append(ann["object_name"]) else: # if not (referenceDict[image_id]["rgb"] or referenceDict[image_id]["depth"]): # referenceDict[image_id].update({"rgb":data["images"][i]["file_name"]}) # referenceDict[image_id].update({"depth":data["images"][i]["depth_file_name"]}) referenceDict[image_id]["amodal"].append(ann["segmentation"]) referenceDict[image_id]["visible"].append(ann["visible_mask"]) referenceDict[image_id]["occluded"].append(ann["occluded_mask"]) referenceDict[image_id]["occluded_rate"].append(ann["occluded_rate"]) referenceDict[image_id]["category_id"].append(ann["category_id"]) # referenceDict[image_id]["object_name"].append(ann["object_name"]) # Create visualise directory vis_dir = os.path.join(data_dir,"visualise_dataset") if os.path.exists(vis_dir): # remove contents if exist for filename in os.listdir(vis_dir): file_path = os.path.join(vis_dir, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) else: os.makedirs(vis_dir) # query_img_id_list = [1,50,100] query_img_id_list = [i for i in range(1,len(referenceDict)+1)] # visualise all images for id in query_img_id_list: if id in referenceDict: ann_dic = referenceDict[id] vis_dir_img = os.path.join(vis_dir,str(id)) if not os.path.exists(vis_dir_img): os.makedirs(vis_dir_img) # visualise rgb image rgb_path = os.path.join(data_dir,ann_dic["rgb"]) rgb_img = cv2.imread(rgb_path, cv2.IMREAD_UNCHANGED) # visualise depth image depth_path = os.path.join(data_dir,ann_dic["depth"]) from PIL import Image im = Image.open(depth_path) im = np.array(im) depth_img = Image.fromarray(normalize_greyscale_image(im.astype("float32"))) file = os.path.join(vis_dir_img,f"depth_{id}.png") depth_img.save(file, "PNG") # visualise occlusion masks on rgb image occ_img_list = ann_dic["occluded"] if len(occ_img_list) > 0: occ_img = rgb_img.copy() overlay = rgb_img.copy() combined_mask = np.zeros((occ_img.shape[0],occ_img.shape[1])) # iterate through all occlusion masks for i, occMask in enumerate(occ_img_list): occluded_mask = mask_util.decode(occMask) if ann_dic["category_id"][i] == 0: occ_img_back = rgb_img.copy() overlay_back = rgb_img.copy() occluded_mask = occluded_mask.astype(bool) # boolean mask overlay_back[occluded_mask] = [0, 0, 255] # print(np.unique(occluded_mask)) alpha =0.5 occ_img_back = cv2.addWeighted(overlay_back, alpha, occ_img_back, 1 - alpha, 0, occ_img_back) occ_save_path = f"{vis_dir_img}/rgb_occlusion_{id}_background.png" cv2.imwrite(occ_save_path, occ_img_back) else: combined_mask += occluded_mask combined_mask = combined_mask.astype(bool) # boolean mask overlay[combined_mask] = [0, 0, 255] alpha =0.5 occ_img = cv2.addWeighted(overlay, alpha, occ_img, 1 - alpha, 0, occ_img) occ_save_path = f"{vis_dir_img}/rgb_occlusion_{id}.png" cv2.imwrite(occ_save_path, occ_img) combined_mask = combined_mask.astype('uint8') occ_save_path = f"{vis_dir_img}/occlusion_mask_{id}.png" cv2.imwrite(occ_save_path, combined_mask*255) cols = 4 rows = len(occ_img_list) // cols + 1 from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, occMask in enumerate(occ_img_list): occ_mask = mask_util.decode(occMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(occ_mask) plt.tight_layout() plt.suptitle(f"Occlusion Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/occ_masks_{id}.png') plt.close() # visualise visible masks on rgb image vis_img_list = ann_dic["visible"] if len(vis_img_list) > 0: vis_img = rgb_img.copy() overlay = rgb_img.copy() # iterate through all occlusion masks for i, visMask in enumerate(vis_img_list): visible_mask = mask_util.decode(visMask) if ann_dic["category_id"][i] == 0: vis_img_back = rgb_img.copy() overlay_back = rgb_img.copy() visible_mask = visible_mask.astype(bool) # boolean mask overlay_back[visible_mask] = [0, 0, 255] alpha =0.5 vis_img_back = cv2.addWeighted(overlay_back, alpha, vis_img_back, 1 - alpha, 0, vis_img_back) vis_save_path = f"{vis_dir_img}/rgb_visible_mask_{id}_background.png" cv2.imwrite(vis_save_path, vis_img_back) else: vis_combined_mask = visible_mask.astype(bool) # boolean mask colour = list(np.random.choice(range(256), size=3)) overlay[vis_combined_mask] = colour alpha = 0.5 vis_img = cv2.addWeighted(overlay, alpha, vis_img, 1 - alpha, 0, vis_img) vis_save_path = f"{vis_dir_img}/rgb_visible_mask_{id}.png" cv2.imwrite(vis_save_path,vis_img) cols = 4 rows = len(vis_img_list) // cols + 1 # print(len(amodal_img_list)) # print(cols,rows) from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, visMask in enumerate(vis_img_list): vis_mask = mask_util.decode(visMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(vis_mask) plt.tight_layout() plt.suptitle(f"Visible Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/vis_masks_{id}.png') plt.close() # visualise amodal masks # img_dir_path = f"{output_dir}/visualize_occlusion_masks/" # img_list = sorted(os.listdir(img_dir_path), key=lambda x: float(x[4:-4])) amodal_img_list = ann_dic["amodal"] if len(amodal_img_list) > 0: cols = 4 rows = len(amodal_img_list) // cols + 1 # print(len(amodal_img_list)) # print(cols,rows) from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, amoMask in enumerate(amodal_img_list): amodal_mask = mask_util.decode(amoMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(amodal_mask) plt.tight_layout() plt.suptitle(f"Amodal Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/amodal_masks_{id}.png') plt.close() # get rgb_path rgb_path = os.path.join(data_dir,ann_dic["rgb"]) rgb_img = cv2.imread(rgb_path, cv2.IMREAD_UNCHANGED) occ_order = False if occ_order: # get occlusion order adjacency matrix npy_path = os.path.join(data_dir,ann_dic["occlusion_order"]) occlusion_order_adjacency_matrix = np.load(npy_path) print(f"Calculating Directed Graph for Scene:{id}") # vis_img = cv2.imread(f"{vis_dir}/visuals/{scene_index}.png", cv2.IMREAD_UNCHANGED) rows = cols = len(ann_dic["visible"]) # number of objects obj_rgb_mask_list = [] for i in range(1,len(ann_dic["visible"])+1): visMask = ann_dic["visible"][i-1] visible_mask = mask_util.decode(visMask) rgb_crop = apply_mask(rgb_img, visible_mask) rgb_crop = convert_png(rgb_crop) def bbox(im): a = np.array(im)[:,:,:3] # keep RGB only m = np.any(a != [0,0,0], axis=2) coords = np.argwhere(m) y0, x0, y1, x1 = *np.min(coords, axis=0), *np.max(coords, axis=0) return (x0, y0, x1+1, y1+1) # print(bbox(rgb_crop)) obj_rgb_mask = rgb_crop.crop(bbox(rgb_crop)) obj_rgb_mask_list.append(obj_rgb_mask) # add obj_rgb_mask # get contours (presumably just one around the nonzero pixels) # for instance segmentation mask # contours = cv2.findContours(visible_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # contours = contours[0] if len(contours) == 2 else contours[1] # for cntr in contours: # x,y,w,h = cv2.boundingRect(cntr) # cv2.putText(img=vis_img, text=str(i), org=(x+w//2, y+h//2), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=0.5, color=(0, 0, 0),thickness=1) """ === Generate Directed Graph === """ # print("Occlusion Order Adjacency Matrix:\n",occlusion_order_adjacency_matrix) # f, (ax1,ax2) = plt.subplots(1,2) # show_graph_with_labels(overlap_adjacency_matrix,ax1) labels = [i for i in range(1,len(occlusion_order_adjacency_matrix)+1)] labels_dict = {} for i in range(len(occlusion_order_adjacency_matrix)): labels_dict.update({i:labels[i]}) rows, cols = np.where(occlusion_order_adjacency_matrix == 1) rows += 1 cols += 1 edges = zip(rows.tolist(), cols.tolist()) nodes_list = [i for i in range(1, len(occlusion_order_adjacency_matrix)+1)] # Initialise directed graph G G = nx.DiGraph() G.add_nodes_from(nodes_list) G.add_edges_from(edges) # pos=nx.spring_layout(G,k=1/sqrt(N)) is_planar, P = nx.check_planarity(G) if is_planar: pos=nx.planar_layout(G) else: # pos=nx.draw(G) N = len(G.nodes()) pos=nx.spring_layout(G,k=3/sqrt(N)) print("Nodes:",G.nodes()) print("Edges:",G.edges()) # print(G.in_edges()) # print(G.out_edges()) # get start nodes start_nodes = [node for (node,degree) in G.in_degree if degree == 0] print("start_nodes:",start_nodes) # get end nodes end_nodes = [node for (node,degree) in G.out_degree if degree == 0] for node in end_nodes: if node in start_nodes: end_nodes.remove(node) print("end_nodes:",end_nodes) # get intermediate notes intermediate_nodes = [i for i in nodes_list if i not in (start_nodes) and i not in (end_nodes)] print("intermediate_nodes:",intermediate_nodes) print("(Degree of clustering) Number of Weakly Connected Components:",nx.number_weakly_connected_components(G)) # largest_wcc = max(nx.weakly_connected_components(G), key=len) # largest_wcc_size = len(largest_wcc) # print("(Scene Complexity) Sizes of Weakly Connected Component:",largest_wcc_size) wcc_list = list(nx.weakly_connected_components(G)) wcc_len = [] for component in wcc_list: wcc_len.append(len(component)) print("(Scene Complexity/Degree of overlapping regions) Sizes of Weakly Connected Components:",wcc_len) dag_longest_path_length = nx.dag_longest_path_length(G) print("(Minimum no. of depth layers to order all regions in WCC) Longest directed path of Weakly Connected Components:",dag_longest_path_length) # nx.draw(gr, node_size=500, with_labels=True) node_color_list = [] node_size_list = [] for node in nodes_list: if node in start_nodes: node_color_list.append('green') node_size_list.append(500) elif node in end_nodes: node_color_list.append('yellow') node_size_list.append(300) else: node_color_list.append('#1f78b4') node_size_list.append(300) options = { 'node_color': node_color_list, 'node_size': node_size_list, 'width': 1, 'arrowstyle': '-|>', 'arrowsize': 10 } fig1 = plt.figure(figsize=(20, 6), dpi=80) plt.subplot(1,3,1) # nx.draw_planar(G, pos, with_labels = True, arrows=True, **options) nx.draw_networkx(G,pos, with_labels= True, arrows=True, **options) dag = nx.is_directed_acyclic_graph(G) print(f"Is Directed Acyclic Graph (DAG)?: {dag}") colors = ["green", "#1f78b4", "yellow"] texts = ["Top Layer", "Intermediate Layers", "Bottom Layer"] patches = [ plt.plot([],[], marker="o", ms=10, ls="", mec=None, color=colors[i], label="{:s}".format(texts[i]) )[0] for i in range(len(texts)) ] plt.legend(handles=patches, bbox_to_anchor=(0.5, -0.05), loc='center', ncol=3, fancybox=True, shadow=True, facecolor="w", numpoints=1, fontsize=10) plt.title("Directed Occlusion Order Graph") # plt.subplot(1,2,2) # plt.imshow(vis_img) # plt.imshow(vis_img) # plt.title(f"Visible Masks Scene {scene_index}") plt.axis('off') # plt.show() # plt.savefig(f"{output_dir}/vis_img_{i}.png") # cv2.imwrite(f"{output_dir}/scene_{scene_index}.png", vis_img) # plt.show() # fig2 = plt.figure(figsize=(16, 6), dpi=80) plt.subplot(1,3,2) options = { 'node_color': "white", # 'node_size': node_size_list, 'width': 1, 'arrowstyle': '-|>', 'arrowsize': 10 } # nx.draw_networkx(G, arrows=True, **options) # nx.draw(G, with_labels = True,arrows=True, connectionstyle='arc3, rad = 0.1') # nx.draw_spring(G, with_labels = True,arrows=True, connectionstyle='arc3, rad = 0.5') N = len(G.nodes()) from math import sqrt if is_planar: pos=nx.planar_layout(G) else: # pos=nx.draw(G) N = len(G.nodes()) pos=nx.spring_layout(G,k=3/sqrt(N)) nx.draw_networkx(G,pos, with_labels= False, arrows=True, **options) plt.title("Visualisation of Occlusion Order Graph") # draw with images on nodes # nx.draw_networkx(G,pos,width=3,edge_color="r",alpha=0.6) ax=plt.gca() fig=plt.gcf() trans = ax.transData.transform trans2 = fig.transFigure.inverted().transform imsize = 0.05 # this is the image size node_size_list = [] for n in G.nodes(): (x,y) = pos[n] xx,yy = trans((x,y)) # figure coordinates xa,ya = trans2((xx,yy)) # axes coordinates # a = plt.axes([xa-imsize/2.0,ya-imsize/2.0, imsize, imsize ]) a = plt.axes([xa-imsize/2.0,ya-imsize/2.0, imsize, imsize ]) a.imshow(obj_rgb_mask_list[n-1]) a.set_aspect('equal') a.axis('off') # fig.patch.set_visible(False) ax.axis('off') plt.subplot(1,3,3) plt.imshow(rgb_img) plt.axis('off') plt.title(f"RGB Scene {id}") # plt.tight_layout() # plt.show() plt.savefig(f'{vis_dir_img}/occlusion_order_{id}.png') plt.close() m = occlusion_order_adjacency_matrix.astype(int) unique_chars, matrix = np.unique(m, return_inverse=True) color_dict = {1: 'darkred', 0: 'white'} plt.figure(figsize=(20,20)) sns.set(font_scale=2) ax1 = sns.heatmap(matrix.reshape(m.shape), annot=m, annot_kws={'fontsize': 20}, fmt='', linecolor='dodgerblue', lw=5, square=True, clip_on=False, cmap=ListedColormap([color_dict[char] for char in unique_chars]), xticklabels=np.arange(m.shape[1]) + 1, yticklabels=np.arange(m.shape[0]) + 1, cbar=False) ax1.tick_params(labelrotation=0) ax1.tick_params(axis='both', which='major', labelsize=20, labelbottom = False, bottom=False, top = False, labeltop=True) plt.xlabel("Occludee") ax1.xaxis.set_ticks_position('top') ax1.xaxis.set_label_position('top') plt.ylabel("Occluder") # plt.show() plt.savefig(f'{vis_dir_img}/occlusion_order_adjacency_matrix_{id}.png') plt.close()
25,100
Python
44.227027
160
0.5149
ngzhili/SynTable/README.md
# SynTable - A Synthetic Data Generation Pipeline for Cluttered Tabletop Scenes This repository contains the official implementation of the paper **"SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes"**. Zhili Ng*, Haozhe Wang*, Zhengshen Zhang*, Francis Eng Hock Tay, Marcelo H. Ang Jr. *equal contributions [[arXiv]](https://arxiv.org/abs/2307.07333) [[Website]](https://sites.google.com/view/syntable/home) [[Dataset]](https://doi.org/10.5281/zenodo.10565517) [[Demo Video]](https://youtu.be/zHM8H58Kn3E) [[Modified UOAIS-v2]](https://github.com/ngzhili/uoais-v2?tab=readme-ov-file) [![Dataset DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10565517.svg)](https://doi.org/10.5281/zenodo.10565517) ![teaser](./readme_images/teaser.png) SynTable is a robust custom data generation pipeline that creates photorealistic synthetic datasets of Cluttered Tabletop Scenes. For each scene, it includes metadata such as - [x] RGB image of scene - [x] depth image of Scene - [x] scene instance segmentation masks - [x] object amodal (visible + invisible) rgb - [x] object amodal (visible + invisible) masks - [x] object modal (visible) masks - [x] object occlusion (invisible) masks - [x] object occlusion rate - [x] object visible bounding box - [x] tabletop visible masks - [x] background visible mask (background excludes tabletop and objects) - [x] occlusion ordering adjacency matrix (OOAM) of objects on tabletop ## **Installation** 1. Install [NVIDIA Isaac Sim 2022.1.1 version](https://developer.nvidia.com/isaac-sim) on Omniverse 2. Change Directory to isaac_sim-2022.1.1 directory ``` bash cd '/home/<username>/.local/share/ov/pkg/isaac_sim-2022.1.1/tools' ``` 3. Clone the repo ``` bash git clone https://github.com/ngzhili/SynTable.git ``` 4. Install Dependencies into isaac sim's python - Get issac sim source code directory path in command line. ``` bash SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )" echo $SCRIPT_DIR ``` - Get isaac sim's python path ``` bash python_exe=${PYTHONEXE:-"${SCRIPT_DIR}/kit/python/bin/python3"} echo $python_exe ``` - Run isaac sim's python ``` bash $python_exe ``` - while running isaac sim's python in bash, install pycocotools and opencv-python into isaac sim's python ``` bash import pip package_names=['pycocotools', 'opencv-python'] #packages to install pip.main(['install'] + package_names + ['--upgrade']) ``` 5. Copy the mount_dir folder to your home directory (anywhere outside of isaac sim source code) ``` bash cp -r SynTable/mount_dir /home/<username> ``` ## **Adding object models to nucleus** 1. You can download the .USD object models to be used for generating the tabletop datasets [here](https://mega.nz/folder/1nJAwQxA#1P3iUtqENKCS66uQYXk1vg). 2. Upload the downloaded syntable_nucleus folder into Omniverse Nucleus into /Users directory. 3. Ensure that the file paths in the config file are correct before running the generate dataset commands. ## **Generate Synthetic Dataset** Note: Before generating the synthetic dataset, please ensure that you uploaded all object models to isaac sim nucleus and their paths in the config file is correct. 1. Change Directory to Isaac SIM source code ``` bash cd /home/<username>/.local/share/ov/pkg/isaac_sim-2022.1.1 ``` 2. Run Syntable Pipeline (non-headless) ``` bash ./python.sh SynTable/syntable_composer/src/main1.py --input */parameters/train_config_syntable1.yaml --output */dataset/train --mount '/home/<username>/mount_dir' --num_scenes 3 --num_views 3 --overwrite --save_segmentation_data ``` ### **Types of Flags** | Flag | Description | | :--- | :----: | | ```--input``` | Path to input parameter file. | | ```--mount``` | Path to mount symbolized in parameter files via '*'. | | ```--headless``` | Will not launch Isaac SIM window. | | ```--nap``` | Will nap Isaac SIM after the first scene is generated. | | ```--overwrite``` | Overwrites dataset in output directory. | | ```--output``` | Output directory. Overrides 'output_dir' param. | | ```--num-scenes``` | Number of scenes in dataset. Overrides 'num_scenes' param. | | ```--num-views``` | Number of views to generate per scene. Overrides 'num_views' param. | | ```--save-segmentation-data``` | Saves visualisation of annotations into output directory. False by default. | ## Generated dataset - SynTable data generation pipeline generates dataset in COCO - Common Objects in Context format. ## **Folder Structure of Generated Synthetic Dataset** . ├── ... ├── SynTable-Sim # Generated dataset │ ├── data # folder to store RGB, Depth, OOAM │ │ └── mono │ │ ├── rgb │ │ │ ├── 0_0.png # file naming convention follows sceneNum_viewNum.png │ │ │ └── 0_1.png │ │ ├── depth │ │ │ ├── 0_0.png │ │ │ └── 0_1.png │ │ └── occlusion order │ │ ├── 0_0.npy │ │ └── 0_1.npy │ ├── parameters # parameters used for generation of annotations │ └── train.json # Annotation COCO.JSON └── ... ## **Visualise Annotations** 1. Create python venv and install dependencies ``` python3.8 -m venv env source env/bin/activate pip install -r requirements.txt ``` 2. Visualise sample annotations (creates a visualise_dataset directory in dataset directory, then saves annotation visualisations there) ``` python ./visualize_annotations.py --dataset './sample_data' --ann_json './sample_data/annotation_final.json' ``` ## **Sample Visualisation of Annotations** ![sample_annotations1](./readme_images/1.png) ![sample_annotations2](./readme_images/2.png) ## **References** We have heavily modified the Python SDK source code from NVIDA Isaac Sim's Replicator Composer. ## **Citation** If you find our work useful for your research, please consider citing the following BibTeX entry: ``` @misc{ng2023syntable, title={SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes}, author={Zhili Ng and Haozhe Wang and Zhengshen Zhang and Francis Tay Eng Hock and Marcelo H. Ang Jr au2}, year={2023}, eprint={2307.07333}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
6,703
Markdown
40.9
232
0.654781
ngzhili/SynTable/syntable_composer/src/main.py
import argparse import os import shutil import signal import sys from omni.isaac.kit import SimulationApp config1 = {"headless": False} kit = SimulationApp(config1) from distributions import Distribution from input import Parser from output import Metrics, Logger, OutputManager from sampling import Sampler from scene import SceneManager class Composer: def __init__(self, params, index, output_dir): """ Construct Composer. Start simulator and prepare for generation. """ self.params = params self.index = index self.output_dir = output_dir self.sample = Sampler().sample # Set-up output directories self.setup_data_output() # Start Simulator Logger.content_log_path = self.content_log_path Logger.start_log_entry("start-up") Logger.print("Isaac Sim starting up...") config = {"headless": self.sample("headless")} if self.sample("path_tracing"): config["renderer"] = "PathTracing" config["samples_per_pixel_per_frame"] = self.sample("samples_per_pixel_per_frame") else: config["renderer"] = "RayTracedLighting" #self.sim_app = SimulationApp(config) self.sim_app = kit from omni.isaac.core import SimulationContext self.scene_units_in_meters = self.sample("scene_units_in_meters") self.sim_context = SimulationContext(physics_dt=1.0 / 60.0, stage_units_in_meters=self.scene_units_in_meters) # need to initialize physics getting any articulation..etc self.sim_context.initialize_physics() self.sim_context.play() self.num_scenes = self.sample("num_scenes") self.sequential = self.sample("sequential") self.scene_manager = SceneManager(self.sim_app, self.sim_context) self.output_manager = OutputManager( self.sim_app, self.sim_context, self.scene_manager, self.output_data_dir, self.scene_units_in_meters ) # Set-up exit message signal.signal(signal.SIGINT, self.handle_exit) Logger.finish_log_entry() def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.sim_context.clear_instance() self.sim_app.close() sys.exit() def generate_scene(self): """ Generate 1 dataset scene. Returns captured groundtruth data. """ self.scene_manager.prepare_scene(self.index) self.scene_manager.populate_scene() if self.sequential: sequence_length = self.sample("sequence_step_count") step_time = self.sample("sequence_step_time") for step in range(sequence_length): self.scene_manager.update_scene(step_time=step_time, step_index=step) groundtruth = self.output_manager.capture_groundtruth( self.index, step_index=step, sequence_length=sequence_length ) if step == 0: Logger.print("stepping through scene...") else: self.scene_manager.update_scene() groundtruth = self.output_manager.capture_groundtruth(self.index) self.scene_manager.finish_scene() return groundtruth def setup_data_output(self): """ Create output directories and copy input files to output. """ # Overwrite output directory, if needed if self.params["overwrite"]: shutil.rmtree(self.output_dir, ignore_errors=True) # Create output directory os.makedirs(self.output_dir, exist_ok=True) # Create output directories, as needed self.output_data_dir = os.path.join(self.output_dir, "data") self.parameter_dir = os.path.join(self.output_dir, "parameters") self.parameter_profiles_dir = os.path.join(self.parameter_dir, "profiles") self.log_dir = os.path.join(self.output_dir, "log") self.content_log_path = os.path.join(self.log_dir, "sampling_log.yaml") os.makedirs(self.output_data_dir, exist_ok=True) os.makedirs(self.parameter_profiles_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) # Copy input parameters file to output input_file_name = os.path.basename(self.params["file_path"]) input_file_copy = os.path.join(self.parameter_dir, input_file_name) shutil.copy(self.params["file_path"], input_file_copy) # Copy profile parameters file(s) to output if self.params["profile_files"]: for profile_file in self.params["profile_files"]: profile_file_name = os.path.basename(profile_file) profile_file_copy = os.path.join(self.parameter_profiles_dir, profile_file_name) shutil.copy(profile_file, profile_file_copy) def get_output_dir(params): """ Determine output directory. """ if params["output_dir"].startswith("/"): output_dir = params["output_dir"] elif params["output_dir"].startswith("*"): output_dir = os.path.join(Distribution.mount, params["output_dir"][2:]) else: output_dir = os.path.join(os.path.dirname(__file__), "..", "datasets", params["output_dir"]) return output_dir def get_starting_index(params, output_dir): """ Determine starting index of dataset. """ if params["overwrite"]: return 0 output_data_dir = os.path.join(output_dir, "data") if not os.path.exists(output_data_dir): return 0 def find_min_missing(indices): if indices: indices.sort() for i in range(indices[-1]): if i not in indices: return i return indices[-1] else: return -1 camera_dirs = [os.path.join(output_data_dir, sub_dir) for sub_dir in os.listdir(output_data_dir)] min_indices = [] for camera_dir in camera_dirs: data_dirs = [os.path.join(camera_dir, sub_dir) for sub_dir in os.listdir(camera_dir)] for data_dir in data_dirs: indices = [] for filename in os.listdir(data_dir): try: if "_" in filename: index = int(filename[: filename.rfind("_")]) else: index = int(filename[: filename.rfind(".")]) indices.append(index) except: pass min_index = find_min_missing(indices) min_indices.append(min_index) if min_indices: minest_index = min(min_indices) return minest_index + 1 else: return 0 def assert_dataset_complete(params, index): """ Check if dataset is already complete. """ num_scenes = params["num_scenes"] if index >= num_scenes: print( 'Dataset is completed. Number of generated samples {} satifies "num_scenes" {}.'.format(index, num_scenes) ) sys.exit() else: print("Starting at index ", index) def define_arguments(): """ Define command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument("--input", default="parameters/warehouse.yaml", help="Path to input parameter file") parser.add_argument( "--visualize-models", "--visualize_models", action="store_true", help="Output visuals of all object models defined in input parameter file, instead of outputting a dataset.", ) parser.add_argument("--mount", default="/tmp/composer", help="Path to mount symbolized in parameter files via '*'.") parser.add_argument("--headless", action="store_true", help="Will not launch Isaac SIM window.") parser.add_argument("--nap", action="store_true", help="Will nap Isaac SIM after the first scene is generated.") parser.add_argument("--overwrite", action="store_true", help="Overwrites dataset in output directory.") parser.add_argument("--output", type=str, help="Output directory. Overrides 'output_dir' param.") parser.add_argument( "--num-scenes", "--num_scenes", type=int, help="Num scenes in dataset. Overrides 'num_scenes' param." ) parser.add_argument( "--nucleus-server", "--nucleus_server", type=str, help="Nucleus Server URL. Overrides 'nucleus_server' param." ) return parser if __name__ == "__main__": # Create argument parser parser = define_arguments() args, _ = parser.parse_known_args() # Parse input parameter file parser = Parser(args) params = parser.params Sampler.params = params # Determine output directory output_dir = get_output_dir(params) # Run Composer in Visualize mode if args.visualize_models: from visualize import Visualizer visuals = Visualizer(parser, params, output_dir) visuals.visualize_models() # Handle shutdown visuals.composer.sim_context.clear_instance() visuals.composer.sim_app.close() sys.exit() # Set verbose mode Logger.verbose = params["verbose"] # Get starting index of dataset index = get_starting_index(params, output_dir) # Check if dataset is already complete assert_dataset_complete(params, index) # Initialize composer composer = Composer(params, index, output_dir) metrics = Metrics(composer.log_dir, composer.content_log_path) # Generate dataset while composer.index < params["num_scenes"]: composer.generate_scene() composer.index += 1 # Handle shutdown composer.output_manager.data_writer.stop_threads() composer.sim_context.clear_instance() composer.sim_app.close() # Output performance metrics metrics.output_performance_metrics()
9,745
Python
33.807143
120
0.626783
ngzhili/SynTable/syntable_composer/src/helper_functions.py
""" SynTable Replicator Composer Helper Functions """ import numpy as np import pycocotools.mask as mask_util import cv2 def compute_occluded_masks(mask1, mask2): """Computes occlusions between two sets of masks. masks1, masks2: [Height, Width, instances] """ # intersections and union mask1_area = np.count_nonzero(mask1) mask2_area = np.count_nonzero(mask2) intersection_mask = np.logical_and(mask1, mask2) intersection = np.count_nonzero(np.logical_and(mask1, mask2)) iou = intersection/(mask1_area+mask2_area-intersection) return iou, intersection_mask.astype(float) class GenericMask: """ Attribute: polygons (list[ndarray]): list[ndarray]: polygons for this mask. Each ndarray has format [x, y, x, y, ...] mask (ndarray): a binary mask """ def __init__(self, mask_or_polygons, height, width): self._mask = self._polygons = self._has_holes = None self.height = height self.width = width m = mask_or_polygons if isinstance(m, dict): # RLEs assert "counts" in m and "size" in m if isinstance(m["counts"], list): # uncompressed RLEs h, w = m["size"] assert h == height and w == width m = mask_util.frPyObjects(m, h, w) self._mask = mask_util.decode(m)[:, :] return if isinstance(m, list): # list[ndarray] self._polygons = [np.asarray(x).reshape(-1) for x in m] return if isinstance(m, np.ndarray): # assumed to be a binary mask assert m.shape[1] != 2, m.shape assert m.shape == (height, width), m.shape self._mask = m.astype("uint8") return raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) @property def mask(self): if self._mask is None: self._mask = self.polygons_to_mask(self._polygons) return self._mask @property def polygons(self): if self._polygons is None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) return self._polygons @property def has_holes(self): if self._has_holes is None: if self._mask is not None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) else: self._has_holes = False # if original format is polygon, does not have holes return self._has_holes def mask_to_polygons(self, mask): # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level # hierarchy. External contours (boundary) of the object are placed in hierarchy-1. # Internal contours (holes) are placed in hierarchy-2. # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) hierarchy = res[-1] if hierarchy is None: # empty mask return [], False has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] res = [x.flatten() for x in res] # These coordinates from OpenCV are integers in range [0, W-1 or H-1]. # We add 0.5 to turn them into real-value coordinate space. A better solution # would be to first +0.5 and then dilate the returned polygon by 0.5. res = [x + 0.5 for x in res if len(x) >= 6] return res, has_holes def polygons_to_mask(self, polygons): rle = mask_util.frPyObjects(polygons, self.height, self.width) rle = mask_util.merge(rle) return mask_util.decode(rle)[:, :] def area(self): return self.mask.sum() def bbox(self): try: p = mask_util.frPyObjects(self.polygons, self.height, self.width) p = mask_util.merge(p) bbox = mask_util.toBbox(p) bbox[2] += bbox[0] bbox[3] += bbox[1] except: print(f"Encountered error while generating bounding boxes from mask polygons: {self.polygons}") print("self.polygons:",self.polygons) bbox = np.array([0,0,0,0]) return bbox def bbox_from_binary_mask(binary_mask): """ Returns the smallest bounding box containing all pixels marked "1" in the given image mask. :param binary_mask: A binary image mask with the shape [H, W]. :return: The bounding box represented as [x, y, width, height] """ # Find all columns and rows that contain 1s rows = np.any(binary_mask, axis=1) cols = np.any(binary_mask, axis=0) # Find the min and max col/row index that contain 1s rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] # Calc height and width h = rmax - rmin + 1 w = cmax - cmin + 1 return [int(cmin), int(rmin), int(w), int(h)]
5,066
Python
36.533333
107
0.595934
ngzhili/SynTable/syntable_composer/src/main1.py
""" SynTable Replicator Composer Main """ # import dependencies import argparse from ntpath import join import os import shutil import signal import sys import numpy as np import random import math import gc import json import datetime import time import glob import cv2 from omni.isaac.kit import SimulationApp from distributions import Distribution from input.parse1 import Parser from output import Metrics, Logger from output.output1 import OutputManager from sampling.sample1 import Sampler from scene.scene1 import SceneManager from helper_functions import compute_occluded_masks from omni.isaac.kit.utils import set_carb_setting from scene.light1 import Light class Composer: def __init__(self, params, index, output_dir): """ Construct Composer. Start simulator and prepare for generation. """ self.params = params self.index = index self.output_dir = output_dir self.sample = Sampler().sample # Set-up output directories self.setup_data_output() # Start Simulator Logger.content_log_path = self.content_log_path Logger.start_log_entry("start-up") Logger.print("Isaac Sim starting up...") config = {"headless": self.sample("headless")} if self.sample("path_tracing"): config["renderer"] = "PathTracing" config["samples_per_pixel_per_frame"] = self.sample("samples_per_pixel_per_frame") else: config["renderer"] = "RayTracedLighting" self.sim_app = SimulationApp(config) from omni.isaac.core import SimulationContext self.scene_units_in_meters = self.sample("scene_units_in_meters") self.sim_context = SimulationContext(physics_dt=1.0/60, #1.0 / 60.0, rendering_dt =1.0/60, #1.0 / 60.0, stage_units_in_meters=self.scene_units_in_meters) # need to initialize physics getting any articulation..etc self.sim_context.initialize_physics() self.sim_context.play() self.num_scenes = self.sample("num_scenes") self.sequential = self.sample("sequential") self.scene_manager = SceneManager(self.sim_app, self.sim_context) self.output_manager = OutputManager( self.sim_app, self.sim_context, self.scene_manager, self.output_data_dir, self.scene_units_in_meters ) # Set-up exit message signal.signal(signal.SIGINT, self.handle_exit) Logger.finish_log_entry() def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.sim_context.clear_instance() self.sim_app.close() sys.exit() def generate_scene(self, img_index, ann_index, img_list,ann_list,regen_scene): """ Generate 1 dataset scene. Returns captured groundtruth data. """ amodal = True self.scene_manager.prepare_scene(self.index) # reload table into scene self.scene_manager.reload_table() kit = self.sim_app # if generate amodal annotations if amodal: roomTableSize = self.scene_manager.roomTableSize roomTableHeight = roomTableSize[-1] spawnLowerBoundOffset = 0.2 spawnUpperBoundOffset = 1 # calculate tableBounds to constraint objects' spawn locations to be within tableBounds x_width = roomTableSize[0] /2 y_length = roomTableSize[1] /2 min_val = (-x_width*0.6, -y_length*0.6, roomTableHeight+spawnLowerBoundOffset) max_val = (x_width*0.6, y_length*0.6, roomTableHeight+spawnUpperBoundOffset) tableBounds = [min_val,max_val] self.scene_manager.populate_scene(tableBounds=tableBounds) # populate the scene once else: self.scene_manager.populate_scene() if self.sequential: sequence_length = self.sample("sequence_step_count") step_time = self.sample("sequence_step_time") for step in range(sequence_length): self.scene_manager.update_scene(step_time=step_time, step_index=step) groundtruth = self.output_manager.capture_groundtruth( self.index, step_index=step, sequence_length=sequence_length ) if step == 0: Logger.print("stepping through scene...") # if generate amodal annotations elif amodal: # simulate physical dropping of objects self.scene_manager.update_scene() # refresh UI rendering self.sim_context.render() # pause simulation self.sim_context.pause() # stop all object motion and remove objects not on tabletop objects = self.scene_manager.objs.copy() objects_filtered = [] # remove objects outside tabletop regions after simulation for obj in objects: obj.coord, quaternion = obj.xform_prim.get_world_pose() obj.coord = np.array(obj.coord, dtype=np.float32) # if object is not on tabletop after simulation, remove object if (abs(obj.coord[0]) > (roomTableSize[0]/2)) \ or (abs(obj.coord[1]) > (roomTableSize[1]/2)) \ or (abs(obj.coord[2]) < roomTableSize[2]): # remove object by turning off visibility of object obj.off_prim() # else object on tabletop, add obj to filtered list else: objects_filtered.append(obj) self.scene_manager.objs = objects_filtered # if no objects left on tabletop, regenerate scene if len(self.scene_manager.objs) == 0: print("No objects found on tabletop, regenerating scene.") self.scene_manager.finish_scene() return None, img_index, ann_index, img_list, ann_list, regen_scene else: regen_scene = False print("\nNumber of Objects on tabletop:", len(self.scene_manager.objs)) # get camera coordinates based on hemisphere of radus r and tabletop height def camera_orbit_coord(r = 12, tableTopHeight=10): """ constraints camera loc to a hemi-spherical orbit around tabletop origin origin z of hemisphere is offset by tabletopheight + 1m """ u = random.uniform(0,1) v = random.uniform(0,1) phi = math.acos(1.0 - v) # phi: [0,0.5*pi] theta = 2.0 * math.pi * u # theta: [0,2*pi] x = r * math.cos(theta) * math.sin(phi) y = r * math.sin(theta) * math.sin(phi) z = r * math.cos(phi) + tableTopHeight # add table height offset return np.array([x,y,z]) # Randomly move camera and light coordinates to be constrainted between 2 concentric hemispheres above tabletop numViews = self.params["num_views"] # get hemisphere radius bounds autoHemisphereRadius = self.sample("auto_hemisphere_radius") if not autoHemisphereRadius: camHemisphereRadiusMin = self.sample("cam_hemisphere_radius_min") camHemisphereRadiusMax = self.sample("cam_hemisphere_radius_max") lightHemisphereRadiusMin = self.sample("spherelight_hemisphere_radius_min") lightHemisphereRadiusMax = self.sample("spherelight_hemisphere_radius_max") else: camHemisphereRadiusMin = max(x_width,y_length) * 0.8 camHemisphereRadiusMax = camHemisphereRadiusMin + 0.7*camHemisphereRadiusMin lightHemisphereRadiusMin = camHemisphereRadiusMax + 0.1 lightHemisphereRadiusMax = lightHemisphereRadiusMin + 1 print(x_width,y_length) print("\n===Camera & Light Hemisphere Parameters===") print(f"autoHemisphereRadius:{autoHemisphereRadius}") print(f"camHemisphereRadiusMin = {camHemisphereRadiusMin}") print(f"camHemisphereRadiusMax = {camHemisphereRadiusMax}") print(f"lightHemisphereRadiusMin = {lightHemisphereRadiusMin}") print(f"lightHemisphereRadiusMax = {lightHemisphereRadiusMax}") Logger.print(f"\n=== Capturing Groundtruth for each viewport in scene ===\n") for view_id in range(numViews): random.seed(None) Logger.print(f"\n==> Scene: {self.index}, View: {view_id} <==\n") # resample radius of camera hemisphere between min and max radii bounds r = random.uniform(camHemisphereRadiusMin,camHemisphereRadiusMax) print('sampled radius r of camera hemisphere:',r) # resample camera coordinates and rotate camera to look at tabletop surface center cam_coord_w = camera_orbit_coord(r=r,tableTopHeight=roomTableHeight+0.2) print("sampled camera coordinate:",cam_coord_w) self.scene_manager.camera.translate(cam_coord_w) self.scene_manager.camera.translate_rotate(target=(0,0,roomTableHeight)) #target coordinates # initialise ambient lighting as 0 (for ray tracing), path tracing not affected rtx_mode = "/rtx" ambient_light_intensity = 0 #random.uniform(0.2,3.5) set_carb_setting(kit._carb_settings, rtx_mode + "/sceneDb/ambientLightIntensity", ambient_light_intensity) # Enable indirect diffuse GI (for ray tracing) set_carb_setting(kit._carb_settings, rtx_mode + "/indirectDiffuse/enabled", True) # Reset and delete all lights from omni.isaac.core.utils import prims for light in self.scene_manager.lights: prims.delete_prim(light.path) # Resample number of lights in viewport self.scene_manager.lights = [] for grp_index, group in enumerate(self.scene_manager.sample("groups")): # adjust ceiling light parameters if group == "ceilinglights": for lightIndex, light in enumerate(self.scene_manager.ceilinglights): if lightIndex == 0: new_intensity = light.sample("light_intensity") if light.sample("light_temp_enabled"): new_temp = light.sample("light_temp") # change light intensity light.attributes["intensity"] = new_intensity light.prim.GetAttribute("intensity").Set(light.attributes["intensity"]) # change light temperature if light.sample("light_temp_enabled"): light.attributes["colorTemperature"] = new_temp light.prim.GetAttribute("colorTemperature").Set(light.attributes["colorTemperature"]) # adjust spherical light parameters if group == "lights": num_lights = self.scene_manager.sample("light_count", group=group) for i in range(num_lights): path = "{}/Lights/lights_{}".format( self.scene_manager.scene_path, len(self.scene_manager.lights)) light = Light(self.scene_manager.sim_app, self.scene_manager.sim_context, path, self.scene_manager.camera, group) # change light intensity light.attributes["intensity"] = light.sample("light_intensity") light.prim.GetAttribute("intensity").Set(light.attributes["intensity"]) # change light temperature if light.sample("light_temp_enabled"): light.attributes["colorTemperature"] =light.sample("light_temp") light.prim.GetAttribute("colorTemperature").Set(light.attributes["colorTemperature"]) # change light coordinates light_coord_w = camera_orbit_coord(r=random.uniform(lightHemisphereRadiusMin,lightHemisphereRadiusMax),tableTopHeight=roomTableHeight+0.2) light.translate(light_coord_w) light.coord, quaternion = light.xform_prim.get_world_pose() light.coord = np.array(light.coord, dtype=np.float32) self.scene_manager.lights.append(light) print(f"Number of sphere lights in scene: {len(self.scene_manager.lights)}") # capture groundtruth of entire viewpoint groundtruth, img_index, ann_index, img_list, ann_list = \ self.output_manager.capture_amodal_groundtruth(self.index, self.scene_manager, img_index, ann_index, view_id, img_list, ann_list ) else: self.scene_manager.update_scene() groundtruth = self.output_manager.capture_groundtruth(self.index) # finish the scene and reset prims in scene self.scene_manager.finish_scene() return groundtruth, img_index, ann_index, img_list, ann_list, regen_scene def setup_data_output(self): """ Create output directories and copy input files to output. """ # Overwrite output directory, if needed if self.params["overwrite"]: shutil.rmtree(self.output_dir, ignore_errors=True) # Create output directory os.makedirs(self.output_dir, exist_ok=True) # Create output directories, as needed self.output_data_dir = os.path.join(self.output_dir, "data") self.parameter_dir = os.path.join(self.output_dir, "parameters") self.parameter_profiles_dir = os.path.join(self.parameter_dir, "profiles") self.log_dir = os.path.join(self.output_dir, "log") self.content_log_path = os.path.join(self.log_dir, "sampling_log.yaml") os.makedirs(self.output_data_dir, exist_ok=True) os.makedirs(self.parameter_profiles_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) # Copy input parameters file to output input_file_name = os.path.basename(self.params["file_path"]) input_file_copy = os.path.join(self.parameter_dir, input_file_name) shutil.copy(self.params["file_path"], input_file_copy) # Copy profile parameters file(s) to output if self.params["profile_files"]: for profile_file in self.params["profile_files"]: profile_file_name = os.path.basename(profile_file) profile_file_copy = os.path.join(self.parameter_profiles_dir, profile_file_name) shutil.copy(profile_file, profile_file_copy) def get_output_dir(params): """ Determine output directory to store datasets. """ if params["output_dir"].startswith("/"): output_dir = params["output_dir"] elif params["output_dir"].startswith("*"): output_dir = os.path.join(Distribution.mount, params["output_dir"][2:]) else: output_dir = os.path.join(os.path.dirname(__file__), "..", "datasets", params["output_dir"]) return output_dir def get_starting_index(params, output_dir): """ Determine starting index of dataset. """ if params["overwrite"]: return 0 output_data_dir = os.path.join(output_dir, "data") if not os.path.exists(output_data_dir): return 0 def find_min_missing(indices): if indices: indices.sort() for i in range(indices[-1]): if i not in indices: return i return indices[-1] else: return -1 camera_dirs = [os.path.join(output_data_dir, sub_dir) for sub_dir in os.listdir(output_data_dir)] min_indices = [] for camera_dir in camera_dirs: data_dirs = [os.path.join(camera_dir, sub_dir) for sub_dir in os.listdir(camera_dir)] for data_dir in data_dirs: indices = [] for filename in os.listdir(data_dir): try: if "_" in filename: index = int(filename[: filename.rfind("_")]) else: index = int(filename[: filename.rfind(".")]) indices.append(index) except: pass min_index = find_min_missing(indices) min_indices.append(min_index) if min_indices: minest_index = min(min_indices) return minest_index + 1 else: return 0 def assert_dataset_complete(params, index): """ Check if dataset is already complete. """ num_scenes = params["num_scenes"] if index >= num_scenes: print( 'Dataset is completed. Number of generated samples {} satifies "num_scenes" {}.'.format(index, num_scenes) ) sys.exit() else: print("Starting at index ", index) def define_arguments(): """ Define command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument("--input", default="parameters/warehouse.yaml", help="Path to input parameter file") parser.add_argument( "--visualize-models", "--visualize_models", action="store_true", help="Output visuals of all object models defined in input parameter file, instead of outputting a dataset.", ) parser.add_argument("--mount", default="/tmp/composer", help="Path to mount symbolized in parameter files via '*'.") parser.add_argument("--headless", action="store_true", help="Will not launch Isaac SIM window.") parser.add_argument("--nap", action="store_true", help="Will nap Isaac SIM after the first scene is generated.") parser.add_argument("--overwrite", action="store_true", help="Overwrites dataset in output directory.") parser.add_argument("--output", type=str, help="Output directory. Overrides 'output_dir' param.") parser.add_argument( "--num-scenes", "--num_scenes", type=int, help="Num scenes in dataset. Overrides 'num_scenes' param." ) parser.add_argument( "--num-views", "--num_views", type=int, help="Num Views in scenes. Overrides 'num_views' param." ) parser.add_argument( "--save-segmentation-data", "--save_segmentation_data", action="store_true", help="Save Segmentation data as PNG, Depth image as .pfm. Overrides 'save_segmentation_data' param." ) parser.add_argument( "--nucleus-server", "--nucleus_server", type=str, help="Nucleus Server URL. Overrides 'nucleus_server' param." ) return parser if __name__ == "__main__": # Create argument parser parser = define_arguments() args, _ = parser.parse_known_args() # Parse input parameter file parser = Parser(args) params = parser.params #print("params:",params) Sampler.params = params sample = Sampler().sample # Determine output directory output_dir = get_output_dir(params) # Run Composer in Visualize mode if args.visualize_models: from visualize import Visualizer visuals = Visualizer(parser, params, output_dir) visuals.visualize_models() # Handle shutdown visuals.composer.sim_context.clear_instance() visuals.composer.sim_app.close() sys.exit() # Set verbose mode Logger.verbose = params["verbose"] # Get starting index of dataset index = get_starting_index(params, output_dir) # if not overwrite json_files = [] if not params["overwrite"] and os.path.isdir(output_dir): # Check if annotation_final.json is present, continue from last scene index json_files = [pos_json for pos_json in os.listdir(output_dir) if pos_json.endswith('.json')] if len(json_files)>0: last_scene_index = -1 last_json_path = "" for i in json_files: if i != "annotation_final.json": json_index = int(i.split('_')[-1].split('.')[0]) if json_index >= last_scene_index: last_scene_index = json_index last_json_path = os.path.join(output_dir,i) # get current index index = last_scene_index + 1 # read latest json file f = open(last_json_path) data = json.load(f) last_img_index = max(data['images'][-1]['id'],-1) last_ann_index = max(data['annotations'][-1]['id'],-1) f.close() # remove images more than last scene index, these images do not have annotations img_files = [img_path for img_path in os.listdir(output_dir) if img_path.endswith('.png')] for path, subdirs, files in os.walk(output_dir): for name in files: if name.endswith('.png') or name.endswith('.pfm'): img_scene = int(name.split("_")[0]) if img_scene > last_scene_index: img_path = os.path.join(path, name) os.remove(img_path) print(f"Removing Images from scene {index} onwards.") print(f"Continuing from scene {index}.") # Check if dataset is already complete assert_dataset_complete(params, index) # Initialize composer composer = Composer(params, index, output_dir) metrics = Metrics(composer.log_dir, composer.content_log_path) if not params["overwrite"] and os.path.isdir(output_dir) and len(json_files) > 0: img_index, ann_index = last_img_index+1, last_ann_index+1 else: img_index, ann_index = 1, 1 img_list, ann_list = [],[] total_st = time.time() # Generate dataset while composer.index < params["num_scenes"]: # get the start time st = time.time() regen_scene = True while regen_scene: _, img_index, ann_index, img_list, ann_list, regen_scene = composer.generate_scene(img_index, ann_index,img_list,ann_list,regen_scene) # remove all images not are not saved in json/csv scene_no = composer.index if (scene_no % params["checkpoint_interval"]) == 0 and (scene_no != 0): # save every 2 generated scenes gc.collect() # Force the garbage collector for releasing an unreferenced memory date_created = str(datetime.datetime.now()) # create annotation file coco_json = { "info": { "description": "SynTable", "url": "nil", "version": "0.1.0", "year": 2022, "contributor": "SynTable", "date_created": date_created }, "licenses": [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ], "categories": [ { "id": 1, "name": "object", "supercategory": "shape" } ], "images":img_list, "annotations":ann_list} # if save background segmentation if params["save_background"]: coco_json["categories"].append({ "id": 0, "name": "background", "supercategory": "shape" }) # save annotation dict with open(f'{output_dir}/annotation_{scene_no}.json', 'w') as write_file: json.dump(coco_json, write_file, indent=4) print(f"\n[Checkpoint] Finished scene {scene_no}, saving annotations to {output_dir}/annotation_{scene_no}.json") if (scene_no + 1) != params["num_scenes"]: # reset lists to prevent memory error img_list, ann_list = [],[] coco_json = {} composer.index += 1 # get the end time et = time.time() # get the execution time elapsed_time = time.time() - st print(f'\nExecution time for scene {scene_no}:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) date_created = str(datetime.datetime.now()) # create annotation file coco_json = { "info": { "description": "SynTable", "url": "nil", "version": "0.1.0", "year": 2022, "contributor": "SynTable", "date_created": date_created }, "licenses": [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ], "categories": [ { "id": 1, "name": "object", "supercategory": "shape" } ], "images":img_list, "annotations":ann_list} # if save background segmentation if params["save_background"]: coco_json["categories"].append({ "id": 0, "name": "background", "supercategory": "shape" }) # save json with open(f'{output_dir}/annotation_{scene_no}.json', 'w') as write_file: json.dump(coco_json, write_file, indent=4) print(f"\n[End] Finished last scene {scene_no}, saving annotations to {output_dir}/annotation_{scene_no}.json") # reset lists to prevent out of memory (oom) error del img_list del ann_list del coco_json gc.collect() # Force the garbage collector for releasing an unreferenced memory elapsed_time = time.time() - total_st print(f'\nExecution time for all {params["num_scenes"]} scenes * {params["num_views"]} views:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) # Handle shutdown composer.output_manager.data_writer.stop_threads() composer.sim_context.clear_instance() composer.sim_app.close() # Output performance metrics metrics.output_performance_metrics() # concatenate all coco.json checkpoint files to final coco.json final_json_path = f'{output_dir}/annotation_final.json' json_files = [os.path.join(output_dir,pos_json) for pos_json in os.listdir(output_dir) if (pos_json.endswith('.json') and os.path.join(output_dir,pos_json) != final_json_path)] json_files = sorted(json_files, key=lambda x: int(x.split("_")[-1].split(".")[0])) coco_json = {"info":{},"licenses":[],"categories":[],"images":[],"annotations":[]} for i, file in enumerate(json_files): if file != final_json_path: f = open(file) data = json.load(f) if i == 0: coco_json["info"] = data["info"] coco_json["licenses"] = data["licenses"] coco_json["categories"] = data["categories"] coco_json["images"].extend(data["images"]) coco_json["annotations"].extend(data["annotations"]) f.close() with open(final_json_path, 'w') as write_file: json.dump(coco_json, write_file, indent=4) # visualize annotations if params["save_segmentation_data"]: print("[INFO] Generating occlusion masks...") rgb_dir = f"{output_dir}/data/mono/rgb" occ_dir = f"{output_dir}/data/mono/occlusion" instance_dir = f"{output_dir}/data/mono/instance" vis_dir = f"{output_dir}/data/mono/visualize" vis_occ_dir = f"{vis_dir}/occlusion" vis_instance_dir = f"{vis_dir}/instance" # make visualisation output directory for dir in [vis_dir,vis_occ_dir, vis_instance_dir]: if not os.path.exists(dir): os.makedirs(dir) # iterate through scenes rgb_paths = [pos_json for pos_json in os.listdir(rgb_dir) if pos_json.endswith('.png')] for scene_index in range(0,params["num_scenes"]): # scene_index = str(scene_index_raw) +"_"+str(view_id) for view_id in range(0,params["num_views"]): rgb_img_list = glob.glob(f"{rgb_dir}/{scene_index}_{view_id}.png") rgb_img = cv2.imread(rgb_img_list[0], cv2.IMREAD_UNCHANGED) occ_img_list = glob.glob(f"{occ_dir}/{scene_index}_{view_id}_*.png") #occ_mask_list = [] if len(occ_img_list) > 0: occ_img = rgb_img.copy() overlay = rgb_img.copy() combined_mask = np.zeros((occ_img.shape[0],occ_img.shape[1])) background = f"{occ_dir}/{scene_index}_background.png" # iterate through all occlusion masks for i in range(len(occ_img_list)): occ_mask_path = occ_img_list[i] if occ_mask_path == background: occ_img_back = rgb_img.copy() overlay_back = rgb_img.copy() occluded_mask = cv2.imread(occ_mask_path, cv2.IMREAD_UNCHANGED) occluded_mask = occluded_mask.astype(bool) # boolean mask overlay_back[occluded_mask] = [0, 0, 255] alpha =0.5 occ_img_back = cv2.addWeighted(overlay_back, alpha, occ_img_back, 1 - alpha, 0, occ_img_back) occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}_background.png" cv2.imwrite(occ_save_path, occ_img_back) else: occluded_mask = cv2.imread(occ_mask_path, cv2.IMREAD_UNCHANGED) combined_mask += occluded_mask combined_mask = combined_mask.astype(bool) # boolean mask overlay[combined_mask] = [0, 0, 255] alpha =0.5 occ_img = cv2.addWeighted(overlay, alpha, occ_img, 1 - alpha, 0, occ_img) occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}.png" cv2.imwrite(occ_save_path, occ_img) combined_mask = combined_mask.astype('uint8') occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}_mask.png" cv2.imwrite(occ_save_path, combined_mask*255) vis_img_list = glob.glob(f"{instance_dir}/{scene_index}_{view_id}_*.png") if len(vis_img_list) > 0: vis_img = rgb_img.copy() overlay = rgb_img.copy() background = f"{instance_dir}/{scene_index}_{view_id}_background.png" # iterate through all occlusion masks for i in range(len(vis_img_list)): vis_mask_path = vis_img_list[i] if vis_mask_path == background: vis_img_back = rgb_img.copy() overlay_back = rgb_img.copy() visible_mask = cv2.imread(vis_mask_path, cv2.IMREAD_UNCHANGED) visible_mask = visible_mask.astype(bool) # boolean mask overlay_back[visible_mask] = [0, 0, 255] alpha =0.5 vis_img_back = cv2.addWeighted(overlay_back, alpha, vis_img_back, 1 - alpha, 0, vis_img_back) vis_save_path = f"{vis_instance_dir}/{scene_index}_{view_id}_background.png" cv2.imwrite(vis_save_path, vis_img_back) else: visible_mask = cv2.imread(vis_mask_path, cv2.IMREAD_UNCHANGED) vis_combined_mask = visible_mask.astype(bool) # boolean mask colour = list(np.random.choice(range(256), size=3)) overlay[vis_combined_mask] = colour alpha =0.5 vis_img = cv2.addWeighted(overlay, alpha, vis_img, 1 - alpha, 0, vis_img) vis_save_path = f"{vis_instance_dir}/{scene_index}_{view_id}.png" cv2.imwrite(vis_save_path,vis_img)
33,426
Python
43.274172
185
0.55397
ngzhili/SynTable/syntable_composer/src/input/parse.py
import copy import numpy as np import os import yaml from distributions import Distribution, Choice, Normal, Range, Uniform, Walk class Parser: """ For parsing the input parameterization to Composer. """ def __init__(self, args): """ Construct Parser. Parse input file. """ self.args = args self.global_group = "[[global]]" self.param_suffix_to_file_type = { "model": [".usd", ".usdz", ".usda", ".usdc"], "texture": [".png", ".jpg", ".jpeg", ".hdr", ".exr"], "material": [".mdl"], } self.no_eval_check_params = {"output_dir", "nucleus_server", "inherit", "profiles"} Distribution.mount = args.mount Distribution.param_suffix_to_file_type = self.param_suffix_to_file_type self.default_params = self.parse_param_set("parameters/profiles/default.yaml", default=True) additional_params_to_default_set = {"inherit": "", "profiles": [], "file_path": "", "profile_files": []} self.default_params = {**additional_params_to_default_set, **self.default_params} self.initialize_params(self.default_params) self.params = self.parse_input(self.args.input) def evaluate_param(self, key, val): """ Evaluate a parameter value in Python """ # Skip evaluation on certain parameter with string values if not self.param_is_evaluated(key, val): return val if type(val) is str and len(val) > 0: val = eval(val) if type(val) in (tuple, list): try: val = np.array(val, dtype=np.float32) except: pass if isinstance(val, Distribution): val.setup(key) if type(val) in (tuple, list): elems = val val = [self.evaluate_param(key, sub_elem) for sub_elem in elems] return val def param_is_evaluated(self, key, val): if type(val) is np.ndarray: return True return not (key in self.no_eval_check_params or not val or (type(val) is str and val.startswith("/"))) def initialize_params(self, params, default=False): """ Evaluate parameter values in Python. Verify parameter name and value type. """ for key, val in params.items(): if type(val) is dict: self.initialize_params(val) else: # Evaluate parameter try: val = self.evaluate_param(key, val) params[key] = val except Exception: raise ValueError("Unable to evaluate parameter '{}' with value '{}'".format(key, val)) # Verify parameter if not default: if key.startswith("obj") or key.startswith("light"): default_param_set = self.default_params["groups"][self.global_group] else: default_param_set = self.default_params # Verify parameter name if key not in default_param_set and key: raise ValueError("Parameter '{}' is not a parameter.".format(key)) # Verify parameter value type default_val = default_param_set[key] if isinstance(val, Distribution): val_type = val.get_type() else: val_type = type(val) if isinstance(default_val, Distribution): default_val_type = default_val.get_type() else: default_val_type = type(default_val) if default_val_type in (int, float): # Integer and Float equivalence default_val_type = [int, float] elif default_val_type in (tuple, list, np.ndarray): # Tuple, List, and Array equivalence default_val_type = [tuple, list, np.ndarray] else: default_val_type = [default_val_type] if val_type not in default_val_type: raise ValueError( "Parameter '{}' has incorrect value type {}. Value type must be in {}.".format( key, val_type, default_val_type ) ) def verify_nucleus_paths(self, params): """ Verify parameter values that point to Nucleus server file paths. """ import omni.client for key, val in params.items(): if type(val) is dict: self.verify_nucleus_paths(val) # Check Nucleus server file path of certain parameters elif key.endswith(("model", "texture", "material")) and not isinstance(val, Distribution) and val: # Check path starts with "/" if not val.startswith("/"): raise ValueError( "Parameter '{}' has path '{}' which must start with a forward slash.".format(key, val) ) # Check file type param_file_type = val[val.rfind(".") :].lower() correct_file_types = self.param_suffix_to_file_type.get(key[key.rfind("_") + 1 :], []) if param_file_type not in correct_file_types: raise ValueError( "Parameter '{}' has path '{}' with incorrect file type. File type must be one of {}.".format( key, val, correct_file_types ) ) # Check file can be found file_path = self.nucleus_server + val (exists_result, _, _) = omni.client.read_file(file_path) is_file = exists_result.name.startswith("OK") if not is_file: raise ValueError( "Parameter '{}' has path '{}' not found on '{}'.".format(key, val, self.nucleus_server) ) def override_params(self, params): """ Override params with CLI args. """ if self.args.output: params["output_dir"] = self.args.output if self.args.num_scenes is not None: params["num_scenes"] = self.args.num_scenes if self.args.mount: params["mount"] = self.args.mount params["overwrite"] = self.args.overwrite params["headless"] = self.args.headless params["nap"] = self.args.nap params["visualize_models"] = self.args.visualize_models def parse_param_set(self, input, parse_from_file=True, default=False): """ Parse input parameter file. """ if parse_from_file: # Determine parameter file path if input.startswith("/"): input_file = input elif input.startswith("*"): input_file = os.path.join(Distribution.mount, input[2:]) else: input_file = os.path.join(os.path.dirname(__file__), "../../", input) # Read parameter file with open(input_file, "r") as f: params = yaml.safe_load(f) # Add a parameter for the input file path params["file_path"] = input_file else: params = input # Process parameter groups groups = {} groups[self.global_group] = {} for key, val in list(params.items()): # Add group if type(val) is dict: if key in groups: raise ValueError("Parameter group name is not unique: {}".format(key)) groups[key] = val params.pop(key) # Add param to global group if key.startswith("obj_") or key.startswith("light_"): groups[self.global_group][key] = val params.pop(key) params["groups"] = groups return params def parse_params(self, params): """ Parse params into a final parameter set. """ import omni.client # Add a global group, if needed if self.global_group not in params["groups"]: params["groups"][self.global_group] = {} # Parse all profile parameter sets profile_param_sets = [self.parse_param_set(profile) for profile in params.get("profiles", [])[::-1]] # Set default as lowest param set and input file param set as highest param_sets = [copy.deepcopy(self.default_params)] + profile_param_sets + [params] # Union parameters sets final_params = param_sets[0] for params in param_sets[1:]: global_group_params = params["groups"][self.global_group] sub_global_group_params = final_params["groups"][self.global_group] for group in params["groups"]: if group == self.global_group: continue group_params = params["groups"][group] if "inherit" in group_params: inherited_group = group_params["inherit"] if inherited_group not in final_params["groups"]: raise ValueError( "In group '{}' cannot find the inherited group '{}'".format(group, inherited_group) ) inherited_params = final_params["groups"][inherited_group] else: inherited_params = {} final_params["groups"][group] = { **sub_global_group_params, **inherited_params, **global_group_params, **group_params, } final_params["groups"][self.global_group] = { **final_params["groups"][self.global_group], **params["groups"][self.global_group], } final_groups = final_params["groups"].copy() final_params = {**final_params, **params} final_params["groups"] = final_groups # Remove non-final groups for group in list(final_params["groups"].keys()): if group not in param_sets[-1]["groups"]: final_params["groups"].pop(group) final_params["groups"].pop(self.global_group) params = final_params # Set profile file paths params["profile_files"] = [profile_params["file_path"] for profile_params in profile_param_sets] # Set Nucleus server and check connection if self.args.nucleus_server: params["nucleus_server"] = self.args.nucleus_server if "://" not in params["nucleus_server"]: params["nucleus_server"] = "omniverse://" + params["nucleus_server"] self.nucleus_server = params["nucleus_server"] (result, _) = omni.client.stat(self.nucleus_server) if not result.name.startswith("OK"): raise ConnectionError("Could not connect to the Nucleus server: {}".format(self.nucleus_server)) Distribution.nucleus_server = params["nucleus_server"] # Initialize params self.initialize_params(params) # Verify Nucleus server paths self.verify_nucleus_paths(params) return params def parse_input(self, input, parse_from_file=True): """ Parse all input parameter files. """ if parse_from_file: print("Parsing and checking input parameterization.") # Parse input parameter file params = self.parse_param_set(input, parse_from_file=parse_from_file) # Process params params = self.parse_params(params) # Override parameters with CLI args self.override_params(params) return params
11,936
Python
37.631068
117
0.528988
ngzhili/SynTable/syntable_composer/src/input/__init__.py
from .parse import Parser
26
Python
12.499994
25
0.807692
ngzhili/SynTable/syntable_composer/src/visualize/visualize.py
import numpy as np import os import sys from PIL import Image, ImageDraw, ImageFont from distributions import Choice, Walk from main import Composer from sampling import Sampler class Visualizer: """ For generating visuals of each input object model in the input parameterization. """ def __init__(self, parser, input_params, output_dir): """ Construct Visualizer. Parameterize Composer to generate the data needed to post-process into model visuals. """ self.parser = parser self.input_params = input_params self.output_dir = os.path.join(output_dir, "visuals") os.makedirs(self.output_dir, exist_ok=True) # Get all object models from input parameter file self.obj_models = self.get_all_obj_models() self.nucleus_server = self.input_params["nucleus_server"] # Copy model list to output file model_list = os.path.join(self.output_dir, "models.txt") with open(model_list, "w") as f: for obj_model in self.obj_models: f.write(obj_model) f.write("\n") # Filter obj models if not self.input_params["overwrite"]: self.filter_obj_models(self.obj_models) if not self.obj_models: print("All object model visuals are already created.") sys.exit() self.tile_width = 500 self.tile_height = 500 self.obj_size = 1 self.room_size = 10 * self.obj_size self.cam_distance = 4 * self.obj_size self.camera_coord = np.array((-self.cam_distance, 0, self.room_size / 2)) self.background_color = (160, 185, 190) self.group_name = "photoshoot" # Set hard-coded parameters self.params = {self.group_name: {}} self.set_obj_params() self.set_light_params() self.set_room_params() self.set_cam_params() self.set_other_params() # Parse parameters self.params = parser.parse_input(self.params, parse_from_file=False) # Set parameters Sampler.params = self.params # Initiate Composer self.composer = Composer(self.params, 0, self.output_dir) def visualize_models(self): """ Generate samples and post-process captured data into visuals. """ num_models = len(self.obj_models) for i, obj_model in enumerate(self.obj_models): print("Model {}/{} - {}".format(i, num_models, obj_model)) self.set_obj_model(obj_model) # Capture 4 angles per model outputs = [self.composer.generate_scene() for j in range(4)] image_matrix = self.process_outputs(outputs) self.save_visual(obj_model, image_matrix) def get_all_obj_models(self): """ Get all object models from input parameterization. """ obj_models = [] groups = self.input_params["groups"] for group_name, group in groups.items(): obj_count = group["obj_count"] group_models = group["obj_model"] if group_models and obj_count: if type(group_models) is Choice or type(group_models) is Walk: group_models = group_models.elems else: group_models = [group_models] obj_models.extend(group_models) # Remove repeats obj_models = list(set(obj_models)) return obj_models def filter_obj_models(self, obj_models): """ Filter out obj models that have already been visualized. """ existing_filenames = set([f for f in os.listdir(self.output_dir)]) for obj_model in obj_models: filename = self.model_to_filename(obj_model) if filename in existing_filenames: obj_models.remove(obj_model) def model_to_filename(self, obj_model): """ Map object model's Nucleus path to a filename. """ filename = obj_model.replace("/", "__") r_index = filename.rfind(".") filename = filename[:r_index] filename += ".jpg" return filename def process_outputs(self, outputs): """ Tile output data from scene into one image matrix. """ rgbs = [groundtruth["DATA"]["RGB"] for groundtruth in outputs] wireframes = [groundtruth["DATA"]["WIREFRAME"] for groundtruth in outputs] rgbs = [rgb[:, :, :3] for rgb in rgbs] top_row_matrix = np.concatenate(rgbs, axis=1) wireframes = [wireframe[:, :, :3] for wireframe in wireframes] bottom_row_matrix = np.concatenate(wireframes, axis=1) image_matrix = np.concatenate([top_row_matrix, bottom_row_matrix], axis=0) image_matrix = np.array(image_matrix, dtype=np.uint8) return image_matrix def save_visual(self, obj_model, image_matrix): """ Save image matrix as image. """ image = Image.fromarray(image_matrix, "RGB") font_path = os.path.join(os.path.dirname(__file__), "RobotoMono-Regular.ttf") font = ImageFont.truetype(font_path, 24) draw = ImageDraw.Draw(image) width, height = image.size draw.text((10, 10), obj_model, font=font) model_name = self.model_to_filename(obj_model) filename = os.path.join(self.output_dir, model_name) image.save(filename, "JPEG", quality=90) def set_cam_params(self): """ Set camera parameters. """ self.params["camera_coord"] = str(self.camera_coord.tolist()) self.params["camera_rot"] = str((0, 0, 0)) self.params["focal_length"] = 50 def set_room_params(self): """ Set room parameters. """ self.params["scenario_room_enabled"] = str(True) self.params["floor_size"] = str(self.room_size) self.params["wall_height"] = str(self.room_size) self.params["floor_color"] = str(self.background_color) self.params["wall_color"] = str(self.background_color) self.params["ceiling_color"] = str(self.background_color) self.params["floor_reflectance"] = str(0) self.params["wall_reflectance"] = str(0) self.params["ceiling_reflectance"] = str(0) def set_obj_params(self): """ Set object parameters. """ group = self.params[self.group_name] group["obj_coord_camera_relative"] = str(False) group["obj_rot_camera_relative"] = str(False) group["obj_coord"] = str((0, 0, self.room_size / 2)) group["obj_rot"] = "Walk([(25, -25, -45), (-25, 25, -225), (-25, 25, -45), (25, -25, -225)])" group["obj_size"] = str(self.obj_size) group["obj_count"] = str(1) def set_light_params(self): """ Set light parameters. """ group = self.params[self.group_name] group["light_count"] = str(4) group["light_coord_camera_relative"] = str(False) light_offset = 2 * self.obj_size light_coords = [ self.camera_coord + (0, -light_offset, 0), self.camera_coord + (0, 0, light_offset), self.camera_coord + (0, light_offset, 0), self.camera_coord + (0, 0, -light_offset), ] light_coords = str([tuple(coord.tolist()) for coord in light_coords]) group["light_coord"] = "Walk(" + light_coords + ")" group["light_intensity"] = str(40000) group["light_radius"] = str(0.50) group["light_color"] = str([200, 200, 200]) def set_other_params(self): """ Set other parameters. """ self.params["img_width"] = str(self.tile_width) self.params["img_height"] = str(self.tile_height) self.params["write_data"] = str(False) self.params["verbose"] = str(False) self.params["rgb"] = str(True) self.params["wireframe"] = str(True) self.params["nucleus_server"] = str(self.nucleus_server) self.params["pause"] = str(0.5) self.params["path_tracing"] = True def set_obj_model(self, obj_model): """ Set obj_model parameter. """ group = self.params["groups"][self.group_name] group["obj_model"] = str(obj_model)
8,145
Python
34.885462
123
0.590055
ngzhili/SynTable/syntable_composer/src/visualize/__init__.py
from .visualize import Visualizer
35
Python
10.999996
33
0.828571
ngzhili/SynTable/syntable_composer/src/sampling/__init__.py
from .sample import Sampler
28
Python
13.499993
27
0.821429
ngzhili/SynTable/syntable_composer/src/sampling/sample1.py
import numpy as np from distributions import Distribution from output import Logger class Sampler: """ For managing parameter sampling. """ # Static variable of parameter set params = None def __init__(self, group=None): """ Construct a Sampler. Potentially set an associated group. """ self.group = group def evaluate(self, val): """ Evaluate a parameter into a primitive. """ if isinstance(val, Distribution): val = val.sample() elif isinstance(val, (list, tuple)): elems = val val = [self.evaluate(sub_elem) for sub_elem in elems] is_numeric = all([type(elem) == int or type(elem) == float for elem in val]) if is_numeric: val = np.array(val, dtype=np.float32) return val def sample(self, key, group=None,tableBounds=None): """ Sample a parameter. """ if group is None: group = self.group if key.startswith("obj") or key.startswith("light") and group: param_set = Sampler.params["groups"][group] else: param_set = Sampler.params if key in param_set: val = param_set[key] else: print('Warning key "{}" in group "{}" not found in parameter set.'.format(key, group)) return None if key == "obj_coord" and group != "table" and tableBounds: min_val = tableBounds[0] max_val = tableBounds[1] val.min_val = min_val val.max_val = max_val val = self.evaluate(val) Logger.write_parameter(key, val, group=group) return val
1,686
Python
28.086206
98
0.561684
ngzhili/SynTable/syntable_composer/src/scene/scene1.py
import time import numpy as np from random import randint from output import Logger # from sampling import Sampler from sampling.sample1 import Sampler # from scene import Camera, Light from scene.light1 import Light from scene.camera1 import Camera from scene.object1 import Object from scene.room1 import Room def randomNumObjList(num_objs, total_sum): """ Function to sample a list of m random non-negative integers whose sum is n """ # Create an array of size m where every element is initialized to 0 arr = [0] * num_objs # To make the sum of the final list as n for i in range(total_sum) : # Increment any random element from the array by 1 # arr[randint(0, n) % m] += 1 arr[randint(0, num_objs-1)] += 1 return arr class SceneManager: """ For managing scene set-up and generation. """ def __init__(self, sim_app, sim_context): """ Construct SceneManager. Set-up scenario in Isaac Sim. """ import omni self.sim_app = sim_app self.sim_context = sim_context self.stage = omni.usd.get_context().get_stage() self.sample = Sampler().sample self.scene_path = "/World/Scene" self.scenario_label = "[[scenario]]" self.play_frame = False self.objs = [] self.lights = [] self.camera = Camera(self.sim_app, self.sim_context, "/World/CameraRig", None, group=None) self.setup_scenario() def setup_scenario(self): """ Load in base scenario(s) """ import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import stage from omni.isaac.core.utils.stage import get_stage_units cached_physics_dt = self.sim_context.get_physics_dt() cached_rendering_dt = self.sim_context.get_rendering_dt() cached_stage_units = get_stage_units() self.room = None if self.sample("scenario_room_enabled"): # Generate a parameterizable room self.room = Room(self.sim_app, self.sim_context) # add table from scene.room_face1 import RoomTable group = "table" path = "/World/Room/table_{}".format(1) ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = RoomTable(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group=group) roomTableMinBounds, roomTableMaxBounds = obj.get_bounds() roomTableSize = roomTableMaxBounds - roomTableMinBounds # (x,y,z size of table) roomTableHeight = roomTableSize[-1] roomTableZCenter = roomTableHeight/2 obj.translate(np.array([0,0,roomTableZCenter])) self.roomTableSize = roomTableSize self.roomTable = obj else: # Load in a USD scenario self.load_scenario_model() # Re-initialize context after we open a stage self.sim_context = SimulationContext( physics_dt=cached_physics_dt, rendering_dt=cached_rendering_dt, stage_units_in_meters=cached_stage_units ) self.stage = omni.usd.get_context().get_stage() # Set the up axis to the z axis stage.set_stage_up_axis("z") # Set scenario label to stage prims self.set_scenario_label() # Reset rendering settings self.sim_app.reset_render_settings() def set_scenario_label(self): """ Set scenario label to all prims in stage. """ from pxr import Semantics for prim in self.stage.Traverse(): path = prim.GetPath() # print(path) if path == "/World": continue if not prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() else: sem = Semantics.SemanticsAPI.Get(prim, "Semantics") continue typeAttr = sem.GetSemanticTypeAttr() dataAttr = sem.GetSemanticDataAttr() typeAttr.Set("class") dataAttr.Set(self.scenario_label) def load_scenario_model(self): """ Load in a USD scenario. """ from omni.isaac.core.utils.stage import open_stage # Load in base scenario from Nucleus if self.sample("scenario_model"): scenario_ref = self.sample("nucleus_server") + self.sample("scenario_model") open_stage(scenario_ref) def populate_scene(self, tableBounds=None): """ Populate a sample's scene a camera, objects, and lights. """ # Update camera self.camera.place_in_scene() # Iterate through each group self.objs = [] self.lights = [] self.ceilinglights = [] if self.sample("randomise_num_of_objs_in_scene"): MaxObjInScene = self.sample("max_obj_in_scene") numUniqueObjs = len([i for i in self.sample("groups") if i.lower().startswith("object")]) ObjNumList = randomNumObjList(numUniqueObjs, MaxObjInScene) for grp_index, group in enumerate(self.sample("groups")): # spawn objects to scene if group not in ["table","lights","ceilinglights","backgroundobject"]: # do not add Roomtable here if self.sample("randomise_num_of_objs_in_scene"): num_objs = ObjNumList[grp_index] # get number of objects to be generated else: num_objs = self.sample("obj_count", group=group) for i in range(num_objs): path = "{}/Objects/object_{}".format(self.scene_path, len(self.objs)) ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = Object(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group,tableBounds=tableBounds) self.objs.append(obj) elif group == "ceilinglights": # Spawn lights num_lights = self.sample("light_count", group=group) for i in range(num_lights): path = "{}/Ceilinglights/ceilinglights_{}".format(self.scene_path, len(self.ceilinglights)) light = Light(self.sim_app, self.sim_context, path, self.camera, group) self.ceilinglights.append(light) elif group == "lights": # Spawn lights num_lights = self.sample("light_count", group=group) for i in range(num_lights): path = "{}/Lights/lights_{}".format(self.scene_path, len(self.lights)) light = Light(self.sim_app, self.sim_context, path, self.camera, group) self.lights.append(light) # Update room if self.room: self.room.update() self.roomTable.add_material() # Add skybox, if needed self.add_skybox() def update_scene(self, step_time=None, step_index=0): """ Update Omniverse after scene is generated. """ from omni.isaac.core.utils.stage import is_stage_loading # Step positions of objs and lights if step_time: self.camera.step(step_time) for obj in self.objs: obj.step(step_time) for light in self.lights: light.step(step_time) # Wait for scene to finish loading while is_stage_loading(): self.sim_context.render() # Determine if scene is played scene_assets = self.objs + self.lights self.play_frame = any([asset.physics for asset in scene_assets]) # Play scene, if needed if self.play_frame and step_index == 0: Logger.print("\nPhysically simulating...") self.sim_context.play() render = not self.sample("headless") sim_time = self.sample("physics_simulate_time") frames_to_simulate = int(sim_time * 60) + 1 for i in range(frames_to_simulate): self.sim_context.step(render=render) # Napping if self.sample("nap"): print("napping") while True: self.sim_context.render() # Update if step_index == 0: Logger.print("\nLoading textures...") self.sim_context.render() # Pausing if step_index == 0: pause_time = self.sample("pause") start_time = time.time() while time.time() - start_time < pause_time: self.sim_context.render() def add_skybox(self): """ Add a DomeLight that creates a textured skybox, if needed. """ from pxr import UsdGeom, UsdLux from omni.isaac.core.utils.prims import create_prim sky_texture = self.sample("sky_texture") sky_light_intensity = self.sample("sky_light_intensity") if sky_texture: create_prim( prim_path="{}/Lights/skybox".format(self.scene_path), prim_type="DomeLight", attributes={ UsdLux.Tokens.intensity: sky_light_intensity, UsdLux.Tokens.specular: 1, UsdLux.Tokens.textureFile: self.sample("nucleus_server") + sky_texture, UsdLux.Tokens.textureFormat: UsdLux.Tokens.latlong, UsdGeom.Tokens.visibility: "inherited", }, ) def prepare_scene(self, index): """ Scene preparation step. """ self.valid_sample = True Logger.start_log_entry(index) Logger.print("===== Generating Scene: " + str(index) + " =====\n") def finish_scene(self): """ Scene finish step. Clean-up variables, Isaac Sim stage. """ from omni.isaac.core.utils.prims import delete_prim self.objs = [] self.lights = [] self.ceilinglights = [] delete_prim(self.scene_path) delete_prim("/Looks") self.sim_context.stop() self.sim_context.render() self.play_frame = False Logger.finish_log_entry() def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def reload_table(self): from omni.isaac.core.utils.prims import delete_prim from scene.room_face1 import RoomTable group = "table" path = "/World/Room/table_{}".format(1) delete_prim(path) # delete old tables ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = RoomTable(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group=group) roomTableMinBounds, roomTableMaxBounds = obj.get_bounds() roomTableSize = roomTableMaxBounds - roomTableMinBounds # (x,y,z size of table) roomTableHeight = roomTableSize[-1] roomTableZCenter = roomTableHeight/2 obj.translate(np.array([0,0,roomTableZCenter])) self.roomTableSize = roomTableSize self.roomTable = obj
11,333
Python
35.679612
136
0.578752
ngzhili/SynTable/syntable_composer/src/scene/room_face1.py
from scene.object1 import Object import numpy as np import os class RoomFace(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, coord, rotation, scaling): """ Construct Object. """ self.coord = coord self.rotation = rotation self.scaling = scaling super().__init__(sim_app, sim_context, "", path, prefix, None, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.prims import move_prim from pxr import PhysxSchema, UsdPhysics if self.prefix == "floor": # Create invisible ground plane path = "/World/Room/ground" planeGeom = PhysxSchema.Plane.Define(self.stage, path) planeGeom.CreatePurposeAttr().Set("guide") planeGeom.CreateAxisAttr().Set("Z") prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(prim) # Create plane from omni.kit.primitive.mesh import CreateMeshPrimWithDefaultXformCommand CreateMeshPrimWithDefaultXformCommand(prim_type="Plane").do() move_prim(path_from="/Plane", path_to=self.path) self.prim = self.stage.GetPrimAtPath(self.path) self.xform_prim = XFormPrim(self.path) def place_in_scene(self): """ Scale, rotate, and translate asset. """ self.translate(self.coord) self.rotate(self.rotation) self.scale(self.scaling) def step(self): """ Room Face does not update in a scene's sequence. """ return class RoomTable(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, ref, path, prefix, camera, group): super().__init__(sim_app, sim_context, ref, path, prefix, camera, group, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims # print(self.path) # Create object self.prim = prims.create_prim(self.path, "Xform", semantic_label="[[scenario]]") self.xform_prim = XFormPrim(self.path) nested_path = os.path.join(self.path, "nested_prim") self.nested_prim = prims.create_prim(nested_path, "Xform", usd_path=self.ref, semantic_label="[[scenario]]") self.nested_xform_prim = XFormPrim(nested_path) self.add_material() self.add_collision()
2,607
Python
31.6
116
0.624473
ngzhili/SynTable/syntable_composer/src/scene/asset1.py
from abc import ABC, abstractmethod import math import numpy as np from scipy.spatial.transform import Rotation from output import Logger from sampling.sample1 import Sampler class Asset(ABC): """ For managing an asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, name, group=None, camera=None): """ Construct Asset. """ self.sim_app = sim_app self.sim_context = sim_context self.path = path self.camera = camera self.name = name self.prefix = prefix self.stage = self.sim_context.stage self.sample = Sampler(group=group).sample self.class_name = self.__class__.__name__ if self.class_name != "RoomFace": self.vel = self.sample(self.concat("vel")) self.rot_vel = self.sample(self.concat("rot_vel")) self.accel = self.sample(self.concat("accel")) self.rot_accel = self.sample(self.concat("rot_accel")) self.label = group self.physics = False @abstractmethod def place_in_scene(self): """ Place asset in scene. """ pass def is_given(self, param): """ Is a parameter value is given. """ if type(param) in (np.ndarray, list, tuple, str): return len(param) > 0 elif type(param) is float: return not math.isnan(param) else: return param is not None def translate(self, coord, xform_prim=None): """ Translate asset. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(position=coord) def scale(self, scaling, xform_prim=None): """ Scale asset uniformly across all axes. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_local_scale(scaling) def rotate(self, rotation, xform_prim=None): """ Rotate asset. """ from omni.isaac.core.utils.rotations import euler_angles_to_quat if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(orientation=euler_angles_to_quat(rotation.tolist(), degrees=True)) def is_coord_camera_relative(self): return self.sample(self.concat("coord_camera_relative")) def is_rot_camera_relative(self): return self.sample(self.concat("rot_camera_relative")) def concat(self, parameter_suffix): """ Concatenate the parameter prefix and suffix. """ return self.prefix + "_" + parameter_suffix def get_initial_coord(self,tableBounds=None): """ Get coordinates of asset across 3 axes. """ if self.is_coord_camera_relative(): cam_coord = self.camera.coords[0] cam_rot = self.camera.rotation horiz_fov = -1 * self.camera.intrinsics[0]["horiz_fov"] vert_fov = self.camera.intrinsics[0]["vert_fov"] radius = self.sample(self.concat("distance")) theta = horiz_fov * self.sample(self.concat("horiz_fov_loc")) / 2 phi = vert_fov * self.sample(self.concat("vert_fov_loc")) / 2 # Convert from polar to cartesian rads = np.radians(cam_rot[2] + theta) x = cam_coord[0] + radius * np.cos(rads) y = cam_coord[1] + radius * np.sin(rads) rads = np.radians(cam_rot[0] + phi) z = cam_coord[2] + radius * np.sin(rads) coord = np.array([x, y, z]) elif tableBounds: coord = self.sample(self.concat("coord"),tableBounds=tableBounds) else: coord = self.sample(self.concat("coord")) pretty_coord = tuple([round(v, 1) for v in coord.tolist()]) return coord def get_initial_rotation(self): """ Get rotation of asset across 3 axes. """ rotation = self.sample(self.concat("rot")) rotation = np.array(rotation) if self.is_rot_camera_relative(): cam_rot = self.camera.rotation rotation += cam_rot return rotation def step(self, step_time): """ Step asset forward in its sequence. """ from omni.isaac.core.utils.rotations import quat_to_euler_angles if self.class_name != "Camera": self.coord, quaternion = self.xform_prim.get_world_pose() self.coord = np.array(self.coord, dtype=np.float32) self.rotation = np.degrees(quat_to_euler_angles(quaternion)) vel_vector = self.vel accel_vector = self.accel if self.sample(self.concat("movement") + "_" + self.concat("relative")): radians = np.radians(self.rotation) direction_cosine_matrix = Rotation.from_rotvec(radians).as_matrix() vel_vector = direction_cosine_matrix.dot(vel_vector) accel_vector = direction_cosine_matrix.dot(accel_vector) self.coord += vel_vector * step_time + 0.5 * accel_vector * step_time ** 2 self.translate(self.coord) self.rotation += self.rot_vel * step_time + 0.5 * self.rot_accel * step_time ** 2 self.rotate(self.rotation)
5,129
Python
32.529412
100
0.594463
ngzhili/SynTable/syntable_composer/src/scene/__init__.py
from .asset import * from .room import Room from .scene import SceneManager
77
Python
14.599997
31
0.779221
ngzhili/SynTable/syntable_composer/src/scene/room.py
import numpy as np from sampling import Sampler from scene import RoomFace class Room: """ For managing a parameterizable rectangular prism centered at the origin. """ def __init__(self, sim_app, sim_context): """ Construct Room. Generate room in Isaac SIM. """ self.sim_app = sim_app self.sim_context = sim_context self.stage = self.sim_context.stage self.sample = Sampler().sample self.room = self.scenario_room() def scenario_room(self): """ Generate and return assets creating a rectangular prism at the origin. """ wall_height = self.sample("wall_height") floor_size = self.sample("floor_size") self.room_faces = [] faces = [] coords = [] scalings = [] rotations = [] if self.sample("floor"): faces.append("floor") coords.append((0, 0, 0)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) if self.sample("wall"): faces.extend(4 * ["wall"]) coords.append((floor_size / 2, 0, wall_height / 2)) coords.append((0, floor_size / 2, wall_height / 2)) coords.append((-floor_size / 2, 0, wall_height / 2)) coords.append((0, -floor_size / 2, wall_height / 2)) scalings.extend(4 * [(floor_size / 100, wall_height / 100, 1)]) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) if self.sample("ceiling"): faces.append("ceiling") coords.append((0, 0, wall_height)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) room = [] for i, face in enumerate(faces): coord = np.array(coords[i]) rotation = np.array(rotations[i]) scaling = np.array(scalings[i]) path = "/World/Room/{}_{}".format(face, i) room_face = RoomFace(self.sim_app, self.sim_context, path, face, coord, rotation, scaling) room.append(room_face) return room def update(self): """ Update room components. """ for room_face in self.room: room_face.add_material()
2,363
Python
30.945946
102
0.544223
ngzhili/SynTable/syntable_composer/src/scene/camera1.py
import math import numpy as np import carb from scene.asset1 import Asset from output import Logger # from sampling import Sampler from sampling.sample1 import Sampler class Camera(Asset): """ For managing a camera in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Camera. """ self.sample = Sampler(group=group).sample self.stereo = self.sample("stereo") if self.stereo: name = "stereo_cams" else: name = "mono_cam" super().__init__(sim_app, sim_context, path, "camera", name, camera=camera, group=group) self.load_camera() def is_coord_camera_relative(self): return False def is_rot_camera_relative(self): return False def load_camera(self): """ Create a camera in Isaac Sim. """ import omni from pxr import Sdf, UsdGeom from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims self.prim = prims.create_prim(self.path, "Xform") self.xform_prim = XFormPrim(self.path) self.camera_rig = UsdGeom.Xformable(self.prim) camera_prim_paths = [] if self.stereo: camera_prim_paths.append(self.path + "/LeftCamera") camera_prim_paths.append(self.path + "/RightCamera") else: camera_prim_paths.append(self.path + "/MonoCamera") self.cameras = [ self.stage.DefinePrim(Sdf.Path(camera_prim_path), "Camera") for camera_prim_path in camera_prim_paths ] focal_length = self.sample("focal_length") focus_distance = self.sample("focus_distance") horiz_aperture = self.sample("horiz_aperture") vert_aperture = self.sample("vert_aperture") f_stop = self.sample("f_stop") for camera in self.cameras: camera = UsdGeom.Camera(camera) camera.GetFocalLengthAttr().Set(focal_length) camera.GetFocusDistanceAttr().Set(focus_distance) camera.GetHorizontalApertureAttr().Set(horiz_aperture) camera.GetVerticalApertureAttr().Set(vert_aperture) camera.GetFStopAttr().Set(f_stop) # Set viewports carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/width", -1) carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/height", -1) self.viewports = [] for i in range(len(self.cameras)): if i == 0: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().get_instance("Viewport") else: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().create_instance() viewport_window = omni.kit.viewport_legacy.get_viewport_interface().get_viewport_window(viewport_handle) viewport_window.set_texture_resolution(self.sample("img_width"), self.sample("img_height")) viewport_window.set_active_camera(camera_prim_paths[i]) if self.stereo: if i == 0: viewport_name = "left" else: viewport_name = "right" else: viewport_name = "mono" self.viewports.append((viewport_name, viewport_window)) self.sim_context.render() self.sim_app.update() # Set viewport window size if self.stereo: left_viewport = omni.ui.Workspace.get_window("Viewport") right_viewport = omni.ui.Workspace.get_window("Viewport 2") right_viewport.dock_in(left_viewport, omni.ui.DockPosition.RIGHT) self.intrinsics = [self.get_intrinsics(camera) for camera in self.cameras] # print(self.intrinsics) def translate(self, coord): """ Translate each camera asset. Find stereo positions, if needed. """ self.coord = coord if self.sample("stereo"): self.coords = self.get_stereo_coords(self.coord, self.rotation) else: self.coords = [self.coord] for i, camera in enumerate(self.cameras): viewport_name, viewport_window = self.viewports[i] viewport_window.set_camera_position( str(camera.GetPath()), self.coords[i][0], self.coords[i][1], self.coords[i][2], True ) def rotate(self, rotation): """ Rotate each camera asset. """ from pxr import UsdGeom self.rotation = rotation for i, camera in enumerate(self.cameras): offset_cam_rot = self.rotation + np.array((90, 0, 270), dtype=np.float32) UsdGeom.XformCommonAPI(camera).SetRotate(offset_cam_rot.tolist()) def place_in_scene(self): """ Place camera in scene. """ rotation = self.get_initial_rotation() self.rotate(rotation) coord = self.get_initial_coord() self.translate(coord) self.step(0) def get_stereo_coords(self, coord, rotation): """ Convert camera center coord and rotation and return stereo camera coords. """ coords = [] for i in range(len(self.cameras)): sign = 1 if i == 0 else -1 theta = np.radians(rotation[0] + sign * 90) phi = np.radians(rotation[1]) radius = self.sample("stereo_baseline") / 2 # Add offset such that center of stereo cameras is at cam_coord x = coord[0] + radius * np.cos(theta) * np.cos(phi) y = coord[1] + radius * np.sin(theta) * np.cos(phi) z = coord[2] + radius * sign * np.sin(phi) coords.append(np.array((x, y, z))) return coords def get_intrinsics(self, camera): """ Compute, print, and return camera intrinsics. """ from omni.syntheticdata import helpers width = self.sample("img_width") height = self.sample("img_height") aspect_ratio = width / height camera.GetAttribute("clippingRange").Set((0.01, 1000000)) # set clipping range near, far = camera.GetAttribute("clippingRange").Get() focal_length = camera.GetAttribute("focalLength").Get() horiz_aperture = camera.GetAttribute("horizontalAperture").Get() vert_aperture = camera.GetAttribute("verticalAperture").Get() horiz_fov = 2 * math.atan(horiz_aperture / (2 * focal_length)) horiz_fov = np.degrees(horiz_fov) vert_fov = 2 * math.atan(vert_aperture / (2 * focal_length)) vert_fov = np.degrees(vert_fov) fx = width * focal_length / horiz_aperture fy = height * focal_length / vert_aperture cx = width * 0.5 cy = height * 0.5 proj_mat = helpers.get_projection_matrix(np.radians(horiz_fov), aspect_ratio, near, far) with np.printoptions(precision=2, suppress=True): proj_mat_str = str(proj_mat) Logger.print("") Logger.print("Camera intrinsics") Logger.print("- width, height: {}, {}".format(round(width), round(height))) Logger.print("- focal_length: {}".format(focal_length, 2)) Logger.print( "- horiz_aperture, vert_aperture: {}, {}".format(round(horiz_aperture, 2), round(vert_aperture, 2)) ) Logger.print("- horiz_fov, vert_fov: {}, {}".format(round(horiz_fov, 2), round(vert_fov, 2))) Logger.print("- focal_x, focal_y: {}, {}".format(round(fx, 2), round(fy, 2))) Logger.print("- proj_mat: \n {}".format(str(proj_mat_str))) Logger.print("") cam_intrinsics = { "width": width, "height": height, "focal_length": focal_length, "horiz_aperture": horiz_aperture, "vert_aperture": vert_aperture, "horiz_fov": horiz_fov, "vert_fov": vert_fov, "fx": fx, "fy": fy, "cx": cx, "cy": cy, "proj_mat": proj_mat, "near":near, "far":far } return cam_intrinsics def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def translate_rotate(self,target=(0,0,0)): """ Translate each camera asset. Find stereo positions, if needed. """ for i, camera in enumerate(self.cameras): viewport_name, viewport_window = self.viewports[i] viewport_window.set_camera_target(str(camera.GetPath()), target[0], target[1], target[2], True)
8,574
Python
34.878661
116
0.586774
ngzhili/SynTable/syntable_composer/src/scene/light1.py
from sampling.sample1 import Sampler from scene.asset1 import Asset class Light(Asset): """ For managing a light asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Light. """ self.sample = Sampler(group=group).sample self.distant = self.sample("light_distant") self.directed = self.sample("light_directed") if self.distant: name = "distant_light" elif self.directed: name = "directed_light" else: name = "sphere_light" super().__init__(sim_app, sim_context, path, "light", name, camera=camera, group=group) self.load_light() self.place_in_scene() def place_in_scene(self): """ Place light in scene. """ self.coord = self.get_initial_coord() self.translate(self.coord) self.rotation = self.get_initial_rotation() self.rotate(self.rotation) def load_light(self): """ Create a light in Isaac Sim. """ from pxr import Sdf from omni.usd.commands import ChangePropertyCommand from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims intensity = self.sample("light_intensity") color = tuple(self.sample("light_color") / 255) temp_enabled = self.sample("light_temp_enabled") temp = self.sample("light_temp") radius = self.sample("light_radius") focus = self.sample("light_directed_focus") focus_softness = self.sample("light_directed_focus_softness") width = self.sample("light_width") height = self.sample("light_height") attributes = {} if self.distant: light_shape = "DistantLight" elif self.directed: light_shape = "RectLight" attributes["width"] = width attributes["height"] = height else: light_shape = "SphereLight" attributes["radius"] = radius attributes["intensity"] = intensity attributes["color"] = color if temp_enabled: attributes["enableColorTemperature"] = True attributes["colorTemperature"] = temp self.attributes = attributes # added self.prim = prims.create_prim(self.path, light_shape, attributes=attributes) self.xform_prim = XFormPrim(self.path) if self.directed: ChangePropertyCommand(prop_path=Sdf.Path(self.path + ".shaping:focus"), value=focus, prev=0.0).do() ChangePropertyCommand( prop_path=Sdf.Path(self.path + ".shaping:cone:softness"), value=focus_softness, prev=0.0 ) def off_prim(self): """ Turn Object Visibility off """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, False)
2,880
Python
34.134146
111
0.599653
ngzhili/SynTable/syntable_composer/src/scene/object1.py
import numpy as np import os from scene.asset1 import Asset class Object(Asset): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, ref, path, prefix, camera, group,tableBounds=None): """ Construct Object. """ self.tableBounds = tableBounds self.ref = ref name = self.ref[self.ref.rfind("/") + 1 : self.ref.rfind(".")] super().__init__(sim_app, sim_context, path, prefix, name, camera=camera, group=group) self.load_asset() self.place_in_scene() if self.class_name != "RoomFace" and self.sample("obj_physics"): self.add_physics() def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims #print(self.path) # Create object self.prim = prims.create_prim(self.path, "Xform", semantic_label=self.label) self.xform_prim = XFormPrim(self.path) nested_path = os.path.join(self.path, "nested_prim") self.nested_prim = prims.create_prim(nested_path, "Xform", usd_path=self.ref, semantic_label=self.label) self.nested_xform_prim = XFormPrim(nested_path) self.add_material() def place_in_scene(self): """ Scale, rotate, and translate asset. """ # Get asset dimensions min_bound, max_bound = self.get_bounds() size = max_bound - min_bound # Get asset scaling obj_size_is_enabled = self.sample("obj_size_enabled") if obj_size_is_enabled: obj_size = self.sample("obj_size") max_size = max(size) self.scaling = obj_size / max_size else: self.scaling = self.sample("obj_scale") # Offset nested asset obj_centered = self.sample("obj_centered") if obj_centered: offset = (max_bound + min_bound) / 2 self.translate(-offset, xform_prim=self.nested_xform_prim) # Scale asset self.scaling = np.array([self.scaling, self.scaling, self.scaling]) self.scale(self.scaling) # Get asset coord and rotation self.coord = self.get_initial_coord(tableBounds=self.tableBounds) self.rotation = self.get_initial_rotation() # Rotate asset self.rotate(self.rotation) # Place asset self.translate(self.coord) def get_bounds(self): """ Compute min and max bounds of an asset. """ from omni.isaac.core.utils.bounds import compute_aabb, create_bbox_cache, recompute_extents # recompute_extents(self.nested_prim) cache = create_bbox_cache() bound = compute_aabb(cache, self.path).tolist() min_bound = np.array(bound[:3]) max_bound = np.array(bound[3:]) return min_bound, max_bound def add_material(self): """ Add material to asset, if needed. """ from pxr import UsdShade material = self.sample(self.concat("material")) color = self.sample(self.concat("color")) texture = self.sample(self.concat("texture")) texture_scale = self.sample(self.concat("texture_scale")) texture_rot = self.sample(self.concat("texture_rot")) reflectance = self.sample(self.concat("reflectance")) metallic = self.sample(self.concat("metallicness")) mtl_prim_path = None if self.is_given(material): # Load a material mtl_prim_path = self.load_material_from_nucleus(material) elif self.is_given(color) or self.is_given(texture): # Load a new material mtl_prim_path = self.create_material() if mtl_prim_path: # print(f"Adding {mtl_prim_path} to {self.path}") # Update material properties and assign to asset mtl_prim = self.update_material( mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic ) UsdShade.MaterialBindingAPI(self.prim).Bind(mtl_prim, UsdShade.Tokens.strongerThanDescendants) def load_material_from_nucleus(self, material): """ Create material from Nucleus path. """ from pxr import Sdf from omni.usd.commands import CreateMdlMaterialPrimCommand mtl_url = self.sample("nucleus_server") + material left_index = material.rfind("/") + 1 if "/" in material else 0 right_index = material.rfind(".") if "." in material else -1 mtl_name = material[left_index:right_index] left_index = self.path.rfind("/") + 1 if "/" in self.path else 0 path_name = self.path[left_index:] mtl_prim_path = "/Looks/" + mtl_name + "_" + path_name mtl_prim_path = Sdf.Path(mtl_prim_path.replace("-", "_")) CreateMdlMaterialPrimCommand(mtl_url=mtl_url, mtl_name=mtl_name, mtl_path=mtl_prim_path).do() return mtl_prim_path def create_material(self): """ Create a OmniPBR material with provided properties and assign to asset. """ from pxr import Sdf import omni from omni.isaac.core.utils.prims import move_prim from omni.kit.material.library import CreateAndBindMdlMaterialFromLibrary mtl_created_list = [] CreateAndBindMdlMaterialFromLibrary( mdl_name="OmniPBR.mdl", mtl_name="OmniPBR", mtl_created_list=mtl_created_list ).do() mtl_prim_path = Sdf.Path(mtl_created_list[0]) new_mtl_prim_path = omni.usd.get_stage_next_free_path(self.stage, "/Looks/OmniPBR", False) move_prim(path_from=mtl_prim_path, path_to=new_mtl_prim_path) mtl_prim_path = new_mtl_prim_path return mtl_prim_path def update_material(self, mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic): """ Update properties of an existing material. """ import omni from pxr import Sdf, UsdShade mtl_prim = UsdShade.Material(self.stage.GetPrimAtPath(mtl_prim_path)) if self.is_given(color): color = tuple(color / 255) omni.usd.create_material_input(mtl_prim, "diffuse_color_constant", color, Sdf.ValueTypeNames.Color3f) omni.usd.create_material_input(mtl_prim, "diffuse_tint", color, Sdf.ValueTypeNames.Color3f) if self.is_given(texture): texture = self.sample("nucleus_server") + texture omni.usd.create_material_input(mtl_prim, "diffuse_texture", texture, Sdf.ValueTypeNames.Asset) if self.is_given(texture_scale): texture_scale = 1 / texture_scale omni.usd.create_material_input( mtl_prim, "texture_scale", (texture_scale, texture_scale), Sdf.ValueTypeNames.Float2 ) if self.is_given(texture_rot): omni.usd.create_material_input(mtl_prim, "texture_rotate", texture_rot, Sdf.ValueTypeNames.Float) if self.is_given(reflectance): roughness = 1 - reflectance omni.usd.create_material_input( mtl_prim, "reflection_roughness_constant", roughness, Sdf.ValueTypeNames.Float ) if self.is_given(metallic): omni.usd.create_material_input(mtl_prim, "metallic_constant", metallic, Sdf.ValueTypeNames.Float) return mtl_prim def add_physics(self): """ Make asset a rigid body to enable gravity and collision. """ from omni.isaac.core.utils.prims import get_all_matching_child_prims, get_prim_at_path from omni.physx.scripts import utils from pxr import UsdPhysics def is_rigid_body(prim_path): prim = get_prim_at_path(prim_path) if prim.HasAPI(UsdPhysics.RigidBodyAPI): return True return False has_physics_already = len(get_all_matching_child_prims(self.path, predicate=is_rigid_body)) > 0 if has_physics_already: self.physics = True return utils.setRigidBody(self.prim, "convexHull", False) # Set mass to 1 kg mass_api = UsdPhysics.MassAPI.Apply(self.prim) mass_api.CreateMassAttr(1) self.physics = True def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def off_physics_prim(self): """ Turn Off Object Physics """ self.vel = (0,0,0) self.rot_vel = (0,0,0) self.accel = (0,0,0) self.rot_accel = (0,0,0) self.physics = False def off_prim(self): """ Turn Object Visibility off """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, False) #print("\nTurn off visibility of prim;",self.prim) #print("\n") def on_prim(self): """ Turn Object Visibility on """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, True) #print("\nTurn on visibility of prim;",self.prim) #print("\n") def add_collision(self): """ Turn Object Collision on """ from pxr import UsdPhysics # prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(self.prim)
9,291
Python
35.582677
113
0.613712
ngzhili/SynTable/syntable_composer/src/scene/asset/room_face.py
from scene.asset import Object class RoomFace(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, coord, rotation, scaling): """ Construct Object. """ self.coord = coord self.rotation = rotation self.scaling = scaling super().__init__(sim_app, sim_context, "", path, prefix, None, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.prims import move_prim from pxr import PhysxSchema, UsdPhysics if self.prefix == "floor": # Create invisible ground plane path = "/World/Room/ground" planeGeom = PhysxSchema.Plane.Define(self.stage, path) planeGeom.CreatePurposeAttr().Set("guide") planeGeom.CreateAxisAttr().Set("Z") prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(prim) # Create plane from omni.kit.primitive.mesh import CreateMeshPrimWithDefaultXformCommand CreateMeshPrimWithDefaultXformCommand(prim_type="Plane").do() move_prim(path_from="/Plane", path_to=self.path) self.prim = self.stage.GetPrimAtPath(self.path) self.xform_prim = XFormPrim(self.path) def place_in_scene(self): """ Scale, rotate, and translate asset. """ self.translate(self.coord) self.rotate(self.rotation) self.scale(self.scaling) def step(self): """ Room Face does not update in a scene's sequence. """ return
1,656
Python
30.865384
85
0.622585
ngzhili/SynTable/syntable_composer/src/scene/asset/__init__.py
from .asset import Asset from .camera import Camera from .object import Object from .light import Light from .room_face import RoomFace
136
Python
21.83333
31
0.808824
ngzhili/SynTable/syntable_composer/src/distributions/choice.py
import numpy as np import os from distributions import Distribution class Choice(Distribution): """ For sampling from a list of elems. """ def __init__(self, input, p=None, filter_list=None): """ Construct Choice distribution. """ self.input = input self.p = p self.filter_list = filter_list if self.p: self.p = np.array(self.p) self.p = self.p / np.sum(self.p) def __repr__(self): return "Choice(name={}, input={}, p={}, filter_list={})".format(self.name, self.input, self.p, self.filter_list) def setup(self, name): """ Process input into a list of elems, with filter_list elems removed. """ self.name = name self.valid_file_types = Distribution.param_suffix_to_file_type.get(self.name[self.name.rfind("_") + 1 :], []) self.elems = self.get_elem_list(self.input) if self.filter_list: filter_listed_elems = self.get_elem_list(self.filter_list) elem_set = set(self.elems) for elem in filter_listed_elems: if elem in elem_set: self.elems.remove(self.elems) self.elems = self.unpack_elem_list(self.elems) self.verify_args() def verify_args(self): """ Verify elem list derived from input args. """ if len(self.elems) == 0: raise ValueError(repr(self) + " has no elems.") if self.p != None: if len(self.elems) != len(self.p): raise ValueError( repr(self) + " must have equal num p weights '{}' and num elems '{}'".format(len(self.elems), len(self.p)) ) if len(self.elems) > 1: type_checks = [] for elem in self.elems: if type(elem) in (int, float): # Integer and Float equivalence elem_types = [int, float] elif type(elem) in (tuple, list, np.ndarray): # Tuple and List equivalence elem_types = [tuple, list, np.ndarray] else: elem_types = [type(elem)] type_check = type(self.elems[0]) in elem_types type_checks.append(type_check) all_elems_same_val_type = all(type_checks) if not all_elems_same_val_type: raise ValueError(repr(self) + " must have elems that are all the same value type.") def sample(self): """ Samples from the list of elems. """ # print(self.__repr__()) # print('len(self.elems):',len(self.elems)) # print("self.elems:",self.elems) if self.elems: index = np.random.choice(len(self.elems), p=self.p) sample = self.elems[index] if type(sample) in (tuple, list): sample = np.array(sample) return sample else: return None def get_type(self): """ Get value type of elem list, which are all the same. """ return type(self.elems[0]) def get_elem_list(self, input): """ Process input into a list of elems. """ elems = [] if type(input) is str and input[-4:] == ".txt": input_file = input file_elems = self.parse_input_file(input_file) elems.extend(file_elems) elif type(input) is list: for elem in input: list_elems = self.get_elem_list(elem) elems.extend(list_elems) else: elem = input if type(elem) in (tuple, list): elem = np.array(elem) elems.append(input) return elems def parse_input_file(self, input_file): """ Parse an input file into a list of elems. """ if input_file.startswith("/"): input_file = input_file elif input_file.startswith("*"): input_file = os.path.join(Distribution.mount, input_file[2:]) else: input_file = os.path.join(os.path.dirname(__file__), "../../", input_file) if not os.path.exists(input_file): raise ValueError(repr(self) + " is unable to find file '{}'".format(input_file)) with open(input_file) as f: lines = f.readlines() lines = [line.strip() for line in lines] file_elems = [] for elem in lines: if elem and not elem.startswith("#"): try: elem = eval(elem) if type(elem) in (tuple, list): try: elem = np.array(elem, dtype=np.float32) except: pass except Exception as e: pass file_elems.append(elem) return file_elems def unpack_elem_list(self, elems): """ Unpack all potential Nucleus server directories referenced in the parameter values. """ all_unpacked_elems = [] for elem in elems: unpacked_elems = [elem] if type(elem) is str: if not elem.startswith("/"): raise ValueError(repr(self) + " with path elem '{}' must start with a forward slash.".format(elem)) directory_elems = self.get_directory_elems(elem) if directory_elems: directory = elem unpacked_elems = self.unpack_directory(directory_elems, directory) # if "." in elem: # file_type = elem[elem.rfind(".") :].lower() # if file_type not in self.valid_file_types: # raise ValueError( # repr(self) # + " has elem '{}' with incorrect file type. File type must be in '{}'.".format( # elem, self.valid_file_types # ) # ) all_unpacked_elems.extend(unpacked_elems) elems = all_unpacked_elems return elems def unpack_directory(self, directory_elems, directory): """ Unpack a directory on Nucleus into a list of file paths. """ unpacked_elems = [] for directory_elem in directory_elems: directory_elem = os.path.join(directory, directory_elem) file_type = directory_elem[directory_elem.rfind(".") :].lower() if file_type in self.valid_file_types: elem = os.path.join(directory, directory_elem) unpacked_elems.append(elem) else: sub_directory_elems = self.get_directory_elems(directory_elem) if sub_directory_elems: # Recurse on subdirectories unpacked_elems.extend(self.unpack_directory(sub_directory_elems, directory_elem)) return unpacked_elems def get_directory_elems(self, elem): """ Grab files in a potential Nucleus server directory. """ import omni.client elem_can_be_nucleus_dir = "." not in os.path.basename(elem) if elem_can_be_nucleus_dir: (_, directory_elems) = omni.client.list(self.nucleus_server + elem) directory_elems = [str(elem.relative_path) for elem in directory_elems] return directory_elems else: return ()
7,523
Python
35
120
0.516682
ngzhili/SynTable/syntable_composer/src/distributions/__init__.py
from .distribution import Distribution from .choice import Choice from .normal import Normal from .range import Range from .uniform import Uniform from .walk import Walk
172
Python
18.22222
38
0.813953
ngzhili/SynTable/syntable_composer/src/distributions/distribution.py
from abc import ABC, abstractmethod class Distribution: # Static variables mount = None nucleus_server = None param_suffix_to_file_type = None @abstractmethod def __init__(self): pass @abstractmethod def setup(self): pass @abstractmethod def verify_args(self): pass @abstractmethod def sample(self): pass @abstractmethod def get_type(self): pass
451
Python
13.580645
36
0.59867
ngzhili/SynTable/syntable_composer/src/distributions/normal.py
import numpy as np from distributions import Distribution class Normal(Distribution): """ For sampling a Gaussian. """ def __init__(self, mean, var, min=None, max=None): """ Construct Normal distribution. """ self.mean = mean self.var = var self.min_val = min self.max_val = max def __repr__(self): return "Normal(name={}, mean={}, var={}, min_bound={}, max_bound={})".format( self.name, self.mean, self.var, self.min_val, self.max_val ) def setup(self, name): """ Parse input arguments. """ self.name = name self.std_dev = np.sqrt(self.var) self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_arg_i(mean, var, min_val, max_val): """ Verify number values. """ if type(mean) not in (int, float): raise ValueError(repr(self) + " has incorrect mean type.") if type(var) not in (int, float): raise ValueError(repr(self) + " has incorrect variance type.") if var < 0: raise ValueError(repr(self) + " must have non-negative variance.") if min_val != None and type(min_val) not in (int, float): raise ValueError(repr(self) + " has incorrect min type.") if max_val != None and type(max_val) not in (int, float): raise ValueError(repr(self) + " has incorrect max type.") return True valid = False if type(self.mean) in (tuple, list) and type(self.var) in (tuple, list): if len(self.mean) != len(self.var): raise ValueError(repr(self) + " must have mean and variance with same length.") if self.min_val and len(self.min_val) != len(self.mean): raise ValueError(repr(self) + " must have mean and min bound with same length.") if self.max_val and len(self.max_val) != len(self.mean): raise ValueError(repr(self) + " must have mean and max bound with same length.") valid = all( [ verify_arg_i( self.mean[i], self.var[i], self.min_val[i] if self.min_val else None, self.max_val[i] if self.max_val else None, ) for i in range(len(self.mean)) ] ) else: valid = verify_arg_i(self.mean, self.var, self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from Gaussian. """ sample = np.random.normal(self.mean, self.std_dev) if self.min_val is not None or self.max_val is not None: sample = np.clip(sample, a_min=self.min_val, a_max=self.max_val) return sample def get_type(self): if type(self.mean) in (tuple, list): return tuple else: return float
3,091
Python
32.978022
96
0.524426
ngzhili/SynTable/syntable_composer/src/distributions/range.py
import numpy as np from distributions import Distribution class Range(Distribution): """ For sampling from a range of integers. """ def __init__(self, min_val, max_val): """ Construct Range distribution. """ self.min_val = min_val self.max_val = max_val def __repr__(self): return "Range(name={}, min={}, max={})".format(self.name, self.min_val, self.max_val) def setup(self, name): """ Parse input arguments. """ self.name = name self.range = range(self.min_val, self.max_val + 1) self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_args_i(min_val, max_val): """ Verify number values. """ valid = False if type(min_val) is int and type(max_val) is int: valid = min_val <= max_val return valid valid = False if type(self.min_val) in (tuple, list) and type(self.max_val) in (tuple, list): if len(self.min_val) != len(self.max_val): raise ValueError(repr(self) + " must have min and max with same length.") valid = all([verify_args_i(self.min_val[i], self.max_val[i]) for i in range(len(self.min_val))]) else: valid = verify_args_i(self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from discrete range. """ return np.random.choice(self.range) def get_type(self): """ Get value type. """ if type(self.min_val) in (tuple, list): return tuple else: return int
1,707
Python
26.548387
108
0.54833
ngzhili/SynTable/syntable_composer/src/distributions/uniform.py
import numpy as np from distributions import Distribution class Uniform(Distribution): """ For sampling uniformly from a continuous range. """ def __init__(self, min_val, max_val): """ Construct Uniform distribution.""" self.min_val = min_val self.max_val = max_val def __repr__(self): return "Uniform(name={}, min={}, max={})".format(self.name, self.min_val, self.max_val) def setup(self, name): """ Parse input arguments. """ self.name = name self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_args_i(min_val, max_val): """ Verify number values. """ valid = False if type(min_val) in (int, float) and type(max_val) in (int, float): valid = min_val <= max_val return valid valid = False if type(self.min_val) in (tuple, list) and type(self.max_val) in (tuple, list): if len(self.min_val) != len(self.max_val): raise ValueError(repr(self) + " must have min and max with same length.") valid = all([verify_args_i(self.min_val[i], self.max_val[i]) for i in range(len(self.min_val))]) else: valid = verify_args_i(self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from continuous range. """ return np.random.uniform(self.min_val, self.max_val) def get_type(self): """ Get value type. """ if type(self.min_val) in (tuple, list): return tuple else: return float
1,700
Python
27.35
108
0.554118
ngzhili/SynTable/syntable_composer/src/distributions/walk.py
import numpy as np from distributions import Choice class Walk(Choice): """ For sampling from a list of elems without replacement. """ def __init__(self, input, filter_list=None, ordered=True): """ Constructs a Walk distribution. """ super().__init__(input, filter_list=filter_list) self.ordered = ordered self.completed = False self.index = 0 def __repr__(self): return "Walk(name={}, input={}, filter_list={}, ordered={})".format( self.name, self.input, self.filter_list, self.ordered ) def setup(self, name): """ Parse input arguments. """ self.name = name if not self.ordered: self.sampled_indices = list(range(len(self.elems))) super().setup(name) def sample(self): """ Samples from list of elems and updates the index tracker. """ if self.ordered: self.index %= len(self.elems) sample = self.elems[self.index] self.index += 1 else: if len(self.sampled_indices) == 0: self.sampled_indices = list(range(len(self.elems))) self.index = np.choice(self.sampled_indices) self.sampled_indices.remove(self.index) sample = self.elems[self.index] if type(sample) in (tuple, list): sample = np.array(sample) return sample
1,416
Python
26.249999
76
0.567797
ngzhili/SynTable/syntable_composer/src/output/disparity.py
import numpy as np class DisparityConverter: """ For converting stereo depth maps to stereo disparity maps. """ def __init__(self, depth_l, depth_r, fx, fy, cx, cy, baseline): """ Construct DisparityConverter. """ self.depth_l = np.array(depth_l, dtype=np.float32) self.depth_r = np.array(depth_r, dtype=np.float32) self.fx = fx self.fy = fy self.cx = cx self.cy = cy self.baseline = baseline def compute_disparity(self): """ Computes a disparity map from left and right depth maps. """ # List all valid depths in the depth map (y, x) = np.nonzero(np.invert(np.isnan(self.depth_l))) depth_l = self.depth_l[y, x] depth_r = self.depth_r[y, x] # Compute disparity maps disp_lr = self.depth_to_disparity(x, depth_l, self.baseline) disp_rl = self.depth_to_disparity(x, depth_r, -self.baseline) # Use numpy vectorization to get pixel coordinates disp_l, disp_r = np.zeros(self.depth_l.shape), np.zeros(self.depth_r.shape) disp_l[y, x] = np.abs(disp_lr) disp_r[y, x] = np.abs(disp_rl) disp_l = np.array(disp_l, dtype=np.float32) disp_r = np.array(disp_r, dtype=np.float32) return disp_l, disp_r def depth_to_disparity(self, x, depth, baseline_offset): """ Convert depth map to disparity map. """ # Backproject image to 3D world x_est = (x - self.cx) * (depth / self.fx) # Add baseline offset to 3D world position x_est += baseline_offset # Project to the other stereo image domain x_pt = self.cx + (x_est / depth * self.fx) # Compute disparity with the x-axis only since the left and right images are rectified disp = x_pt - x return disp
1,827
Python
32.236363
94
0.595512
ngzhili/SynTable/syntable_composer/src/output/log.py
import datetime import os import time import yaml class Logger: """ For logging parameter samples and dataset generation metadata. """ # Static variables set outside class verbose = None content_log_path = None def start_log_entry(index): """ Initialize a sample's log message. """ Logger.start_time = time.time() Logger.log_entry = [{}] Logger.log_entry[0]["index"] = index Logger.log_entry[0]["metadata"] = {"params": [], "lines": []} Logger.log_entry[0]["metadata"]["timestamp"] = str(datetime.datetime.now()) if Logger.verbose: print() def finish_log_entry(): """ Output a sample's log message to the end of the content log. """ duration = time.time() - Logger.start_time Logger.log_entry[0]["time_elapsed"] = duration if Logger.content_log_path: with open(Logger.content_log_path, "a") as f: yaml.safe_dump(Logger.log_entry, f) def write_parameter(key, val, group=None): """ Record a sample parameter value. """ if key == "groups": return param_dict = {} param_dict["parameter"] = key param_dict["val"] = str(val) param_dict["group"] = group Logger.log_entry[0]["metadata"]["params"].append(param_dict) def print(line, force_print=False): """ Record a string and potentially output it to console. """ Logger.log_entry[0]["metadata"]["lines"].append(line) if Logger.verbose or force_print: line = str(line) print(line)
1,615
Python
27.350877
83
0.580805
ngzhili/SynTable/syntable_composer/src/output/__init__.py
from .writer import DataWriter from .disparity import DisparityConverter from .metrics import Metrics from .log import Logger from .output import OutputManager
161
Python
22.142854
41
0.838509
ngzhili/SynTable/syntable_composer/src/output/metrics.py
import os import yaml class Metrics: """ For managing performance metrics of dataset generation. """ def __init__(self, log_dir, content_log_path): """ Construct Metrics. """ self.metric_path = os.path.join(log_dir, "metrics.txt") self.content_log_path = content_log_path def output_performance_metrics(self): """ Collect per-scene metrics and calculate and output summary metrics. """ with open(self.content_log_path, "r") as f: log = yaml.safe_load(f) durations = [] for log_entry in log: if type(log_entry["index"]) is int: durations.append(log_entry["time_elapsed"]) durations.sort() metric_packet = {} n = len(durations) metric_packet["time_per_sample_min"] = durations[0] metric_packet["time_per_sample_first_quartile"] = durations[n // 4] metric_packet["time_per_sample_median"] = durations[n // 2] metric_packet["time_per_sample_third_quartile"] = durations[3 * n // 4] metric_packet["time_per_sample_max"] = durations[-1] metric_packet["time_per_sample_mean"] = sum(durations) / n with open(self.metric_path, "w") as f: yaml.safe_dump(metric_packet, f)
1,273
Python
31.666666
83
0.598586
ngzhili/SynTable/syntable_composer/src/output/output.py
import copy import numpy as np import carb from output import DataWriter, DisparityConverter, Logger from sampling import Sampler class OutputManager: """ For managing Composer outputs, including sending data to the data writer. """ def __init__(self, sim_app, sim_context, scene_manager, output_data_dir, scene_units_in_meters): """ Construct OutputManager. Start data writer threads. """ from omni.isaac.synthetic_utils import SyntheticDataHelper self.sim_app = sim_app self.sim_context = sim_context self.scene_manager = scene_manager self.output_data_dir = output_data_dir self.scene_units_in_meters = scene_units_in_meters self.camera = self.scene_manager.camera self.viewports = self.camera.viewports self.stage = self.sim_context.stage self.sample = Sampler().sample self.groundtruth_visuals = self.sample("groundtruth_visuals") self.label_to_class_id = self.get_label_to_class_id() max_queue_size = 500 self.write_data = self.sample("write_data") if self.write_data: self.data_writer = DataWriter(self.output_data_dir, self.sample("num_data_writer_threads"), max_queue_size) self.data_writer.start_threads() self.sd_helper = SyntheticDataHelper() self.gt_list = [] if self.sample("rgb") or ( self.sample("bbox_2d_tight") or self.sample("bbox_2d_loose") or self.sample("bbox_3d") and self.groundtruth_visuals ): self.gt_list.append("rgb") if (self.sample("depth")) or (self.sample("disparity") and self.sample("stereo")): self.gt_list.append("depthLinear") if self.sample("instance_seg"): self.gt_list.append("instanceSegmentation") if self.sample("semantic_seg"): self.gt_list.append("semanticSegmentation") if self.sample("bbox_2d_tight"): self.gt_list.append("boundingBox2DTight") if self.sample("bbox_2d_loose"): self.gt_list.append("boundingBox2DLoose") if self.sample("bbox_3d"): self.gt_list.append("boundingBox3D") for viewport_name, viewport_window in self.viewports: self.sd_helper.initialize(sensor_names=self.gt_list, viewport=viewport_window) self.sim_app.update() self.carb_settings = carb.settings.acquire_settings_interface() def get_label_to_class_id(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def capture_groundtruth(self, index, step_index=0, sequence_length=0): """ Capture groundtruth data from Isaac Sim. Send data to data writer. """ depths = [] all_viewport_data = [] for i in range(len(self.viewports)): self.sim_context.render() self.sim_context.render() viewport_name, viewport_window = self.viewports[i] num_digits = len(str(self.sample("num_scenes") - 1)) id = str(index) id = id.zfill(num_digits) if self.sample("sequential"): num_digits = len(str(sequence_length - 1)) suffix_id = str(step_index) suffix_id = suffix_id.zfill(num_digits) id = id + "_" + suffix_id groundtruth = { "METADATA": { "image_id": id, "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } # Collect Groundtruth self.sim_context.render() self.sim_context.render() gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.2)) # RGB if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth (for Disparity) if "depthLinear" in gt["state"]: depth_data = copy.deepcopy(gt["depthLinear"]).squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters depths.append(depth_data) if i == 0 or self.sample("groundtruth_stereo"): # Depth if "depthLinear" in gt["state"]: if self.sample("depth"): depth_data = gt["depthLinear"].squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters groundtruth["DATA"]["DEPTH"] = depth_data groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DEPTH"]["NPY"] = True # Instance Segmentation if "instanceSegmentation" in gt["state"]: instance_data = gt["instanceSegmentation"][0] groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True # Semantic Segmentation if "semanticSegmentation" in gt["state"]: semantic_data = gt["semanticSegmentation"] semantic_data = self.sd_helper.get_mapped_semantic_data( semantic_data, self.label_to_class_id, remap_using_base_class=True ) semantic_data = np.array(semantic_data) semantic_data[semantic_data == 65535] = 0 # deals with invalid semantic id groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data.shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data.shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["SEMANTIC"]["NPY"] = True # 2D Tight BBox if "boundingBox2DTight" in gt["state"]: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = True # 2D Loose BBox if "boundingBox2DLoose" in gt["state"]: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = True # 3D BBox if "boundingBox3D" in gt["state"]: groundtruth["DATA"]["BBOX3D"] = gt["boundingBox3D"] groundtruth["METADATA"]["BBOX3D"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX3D"]["NPY"] = True all_viewport_data.append(groundtruth) # Wireframe if self.sample("wireframe"): self.carb_settings.set("/rtx/wireframe/mode", 2.0) # Need two updates for all viewports to have wireframe properly self.sim_context.render() self.sim_context.render() for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] gt = copy.deepcopy(self.sd_helper.get_groundtruth(["rgb"], viewport_window)) all_viewport_data[i]["DATA"]["WIREFRAME"] = gt["rgb"] self.carb_settings.set("/rtx/wireframe/mode", 0) self.sim_context.render() for i in range(len(self.viewports)): if self.write_data: self.data_writer.q.put(copy.deepcopy(all_viewport_data[i])) # Disparity if self.sample("disparity") and self.sample("stereo"): depth_l, depth_r = depths cam_intrinsics = self.camera.intrinsics[0] disp_convert = DisparityConverter( depth_l, depth_r, cam_intrinsics["fx"], cam_intrinsics["fy"], cam_intrinsics["cx"], cam_intrinsics["cy"], self.sample("stereo_baseline"), ) disp_l, disp_r = disp_convert.compute_disparity() disparities = [disp_l, disp_r] for i in range(len(self.viewports)): if i == 0 or self.sample("groundtruth_stereo"): viewport_name, viewport_window = self.viewports[i] groundtruth = { "METADATA": {"image_id": id, "viewport_name": viewport_name, "DISPARITY": {}}, "DATA": {}, } disparity_data = disparities[i] groundtruth["DATA"]["DISPARITY"] = disparity_data groundtruth["METADATA"]["DISPARITY"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DISPARITY"]["NPY"] = True if self.write_data: self.data_writer.q.put(copy.deepcopy(groundtruth)) return groundtruth
10,140
Python
41.970339
126
0.537673
ngzhili/SynTable/syntable_composer/src/output/writer.py
import atexit import numpy as np import os from PIL import Image import queue import sys import threading class DataWriter: """ For processing and writing output data to files. """ def __init__(self, data_dir, num_worker_threads, max_queue_size=500): """ Construct DataWriter. """ from omni.isaac.synthetic_utils import visualization self.visualization = visualization atexit.register(self.stop_threads) self.data_dir = data_dir # Threading for multiple scenes self.num_worker_threads = num_worker_threads # Initialize queue with a specified size self.q = queue.Queue(max_queue_size) self.threads = [] def start_threads(self): """ Start worker threads. """ for _ in range(self.num_worker_threads): t = threading.Thread(target=self.worker, daemon=True) t.start() self.threads.append(t) def stop_threads(self): """ Waits for all tasks to be completed before stopping worker threads. """ print("Finish writing data...") # Block until all tasks are done self.q.join() print("Done.") def worker(self): """ Processes task from queue. Each tasks contains groundtruth data and metadata which is used to transform the output and write it to disk. """ while True: groundtruth = self.q.get() if groundtruth is None: break filename = groundtruth["METADATA"]["image_id"] viewport_name = groundtruth["METADATA"]["viewport_name"] for gt_type, data in groundtruth["DATA"].items(): if gt_type == "RGB": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "WIREFRAME": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DEPTH": if groundtruth["METADATA"]["DEPTH"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DEPTH"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DISPARITY": if groundtruth["METADATA"]["DISPARITY"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DISPARITY"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "INSTANCE": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["INSTANCE"]["WIDTH"], groundtruth["METADATA"]["INSTANCE"]["HEIGHT"], groundtruth["METADATA"]["INSTANCE"]["COLORIZE"], groundtruth["METADATA"]["INSTANCE"]["NPY"], ) elif gt_type == "SEMANTIC": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["SEMANTIC"]["WIDTH"], groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"], groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"], groundtruth["METADATA"]["SEMANTIC"]["NPY"], ) elif gt_type in ["BBOX2DTIGHT", "BBOX2DLOOSE", "BBOX3D"]: self.save_bbox( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["DATA"]["RGB"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type == "CAMERA": self.camera_folder = self.data_dir + "/" + str(viewport_name) + "/camera/" np.save(self.camera_folder + filename + ".npy", data) elif gt_type == "POSES": self.poses_folder = self.data_dir + "/" + str(viewport_name) + "/poses/" np.save(self.poses_folder + filename + ".npy", data) else: raise NotImplementedError self.q.task_done() def save_segmentation( self, viewport_name, data_type, data, filename, width=1280, height=720, display_rgb=True, save_npy=True ): """ Save segmentation mask data and visuals. """ # Save ground truth data as 16-bit single channel png if save_npy: if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG", bits=16) # Save ground truth data as visuals if display_rgb: image_data = np.frombuffer(data, dtype=np.uint8).reshape(*data.shape, -1) image_data += 1 if data_type == "SEMANTIC": # Move close values apart to allow color values to separate more image_data = np.array((image_data * 17) % 256, dtype=np.uint8) color_image = self.visualization.colorize_segmentation(image_data, width, height, 3, None) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance", "visuals") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic", "visuals") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_image(self, viewport_name, img_type, image_data, filename): """ Save rgb data, depth visuals, and disparity visuals. """ # Convert 1-channel groundtruth data to visualization image data def normalize_greyscale_image(image_data): image_data = np.reciprocal(image_data) image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) image_data *= 255 image_data = image_data.astype(np.uint8) return image_data # Save image data as png if img_type == "RGB": data_folder = os.path.join(self.data_dir, viewport_name, "rgb") image_data = image_data[:, :, :3] img = Image.fromarray(image_data, "RGB") elif img_type == "WIREFRAME": data_folder = os.path.join(self.data_dir, viewport_name, "wireframe") image_data = np.average(image_data, axis=2) image_data = image_data.astype(np.uint8) img = Image.fromarray(image_data, "L") elif img_type == "DEPTH": image_data = image_data * 100 image_data = normalize_greyscale_image(image_data) data_folder = os.path.join(self.data_dir, viewport_name, "depth", "visuals") img = Image.fromarray(image_data, mode="L") elif img_type == "DISPARITY": image_data = normalize_greyscale_image(image_data) data_folder = os.path.join(self.data_dir, viewport_name, "disparity", "visuals") img = Image.fromarray(image_data, mode="L") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG") def save_bbox(self, viewport_name, data_type, data, filename, display_rgb=True, rgb_data=None, save_npy=True): """ Save bbox data and visuals. """ # Save ground truth data as npy if save_npy: if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight") elif data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose") elif data_type == "BBOX3D": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_3d") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename) np.save(file, data) # Save ground truth data and rgb data as visuals if display_rgb and rgb_data is not None: color_image = self.visualization.colorize_bboxes(data, rgb_data) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight", "visuals") if data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose", "visuals") if data_type == "BBOX3D": # 3D BBox visuals are not yet supported return os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_PFM(self, viewport_name, data_type, data, filename): """ Save Depth and Disparity data. """ if data_type == "DEPTH": data_folder = os.path.join(self.data_dir, viewport_name, "depth") elif data_type == "DISPARITY": data_folder = os.path.join(self.data_dir, viewport_name, "disparity") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".pfm") self.write_PFM(file, data) def write_PFM(self, file, image, scale=1): """ Convert numpy matrix into PFM and save. """ file = open(file, "wb") color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write(b"PF\n" if color else b"Pf\n") file.write(b"%d %d\n" % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write(b"%f\n" % scale) image.tofile(file)
11,473
Python
41.496296
152
0.537784
ngzhili/SynTable/syntable_composer/src/output/output1.py
import os import copy import numpy as np import cv2 import carb import datetime from output import DisparityConverter, Logger # from sampling import Sampler from sampling.sample1 import Sampler # from omni.isaac.core.utils import prims from output.writer1 import DataWriter from helper_functions import compute_occluded_masks, GenericMask, bbox_from_binary_mask # Added import pycocotools.mask as mask_util class OutputManager: """ For managing Composer outputs, including sending data to the data writer. """ def __init__(self, sim_app, sim_context, scene_manager, output_data_dir, scene_units_in_meters): """ Construct OutputManager. Start data writer threads. """ from omni.isaac.synthetic_utils.syntheticdata import SyntheticDataHelper self.sim_app = sim_app self.sim_context = sim_context self.scene_manager = scene_manager self.output_data_dir = output_data_dir self.scene_units_in_meters = scene_units_in_meters self.camera = self.scene_manager.camera self.viewports = self.camera.viewports self.stage = self.sim_context.stage self.sample = Sampler().sample self.groundtruth_visuals = self.sample("groundtruth_visuals") self.label_to_class_id = self.get_label_to_class_id1() max_queue_size = 500 self.save_segmentation_data = self.sample("save_segmentation_data") self.write_data = self.sample("write_data") if self.write_data: self.data_writer = DataWriter(self.output_data_dir, self.sample("num_data_writer_threads"), self.save_segmentation_data, max_queue_size) self.data_writer.start_threads() self.sd_helper = SyntheticDataHelper() self.gt_list = [] if self.sample("rgb") or ( self.sample("bbox_2d_tight") or self.sample("bbox_2d_loose") or self.sample("bbox_3d") and self.groundtruth_visuals ): self.gt_list.append("rgb") if (self.sample("depth")) or (self.sample("disparity") and self.sample("stereo")): self.gt_list.append("depthLinear") if self.sample("instance_seg"): self.gt_list.append("instanceSegmentation") if self.sample("semantic_seg"): self.gt_list.append("semanticSegmentation") if self.sample("bbox_2d_tight"): self.gt_list.append("boundingBox2DTight") if self.sample("bbox_2d_loose"): self.gt_list.append("boundingBox2DLoose") if self.sample("bbox_3d"): self.gt_list.append("boundingBox3D") for viewport_name, viewport_window in self.viewports: self.sd_helper.initialize(sensor_names=self.gt_list, viewport=viewport_window) self.sim_app.update() self.carb_settings = carb.settings.acquire_settings_interface() def get_label_to_class_id(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def get_label_to_class_id1(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def capture_amodal_groundtruth(self, index, scene_manager, img_index, ann_index, view_id, img_list, ann_list, step_index=0, sequence_length=0): """ Capture groundtruth data from Isaac Sim. Send data to data writer. """ num_objects = len(scene_manager.objs) # get number of objects in scene objects = scene_manager.objs # get all objects in scene depths = [] all_viewport_data = [] for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] num_digits = len(str(self.sample("num_scenes") - 1)) img_id = str(index) + "_" + str(view_id) groundtruth = { "METADATA": { "image_id": img_id, "viewport_name": viewport_name, "RGB":{}, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } """ ================================================================= ===== Collect Viewport's RGB/DEPTH and object visible masks ===== ================================================================= """ gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.1)) # RGB if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth (for Disparity) if "depthLinear" in gt["state"]: depth_data = copy.deepcopy(gt["depthLinear"]).squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters depths.append(depth_data) if i == 0 or self.sample("groundtruth_stereo"): # Depth if "depthLinear" in gt["state"]: if self.sample("depth"): depth_data = gt["depthLinear"].squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters groundtruth["DATA"]["DEPTH"] = depth_data groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DEPTH"]["NPY"] = True # Instance Segmentation if "instanceSegmentation" in gt["state"]: semantics = list(self.label_to_class_id.keys()) instance_data, instance_mappings = self.sd_helper.sensor_helpers["instanceSegmentation"]( viewport_window, parsed=False, return_mapping=True) instances_list = [(im[0], im[4], im["semanticLabel"]) for im in instance_mappings][::-1] max_instance_id_list = max([max(il[1]) for il in instances_list]) max_instance_id = instance_data.max() lut = np.zeros(max(max_instance_id, max_instance_id_list) + 1, dtype=np.uint32) for uid, il, sem in instances_list: if sem in semantics and sem != "[[scenario]]": lut[np.array(il)] = uid instance_data = np.take(lut, instance_data) if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True # get visible instance segmentation of all objects in scene instance_map = list(np.unique(instance_data))[1:] org_instance_data_np = np.array(instance_data) org_instance_data = instance_data instance_mappings_dict ={} for obj_prim in instance_mappings: inst_id = obj_prim[0] inst_path = obj_prim[1] instance_mappings_dict[inst_path]= inst_id all_viewport_data.append(groundtruth) """ ==== define image info dict ==== """ height, width, _ = gt["rgb"].shape date_captured = str(datetime.datetime.now()) image_info = { "id": img_index, "file_name": f"data/mono/rgb/{img_id}.png", "depth_file_name": f"data/mono/depth/{img_id}.png", "occlusion_order_file_name": f"data/mono/occlusion_order/{img_id}.npy", "width": width, "height": height, "date_captured": date_captured, "license": 1, "coco_url": "", "flickr_url": "" } """ ===================================== ===== Collect Background Masks ====== ===================================== """ if self.sample("save_background"): groundtruth = { "METADATA": { "image_id": str(img_index) + "_background", "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "AMODAL": {}, "OCCLUSION": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } ann_info = { "id": ann_index, "image_id": img_index, "category_id": 0, "bbox": [], "height": height, "width": width, "object_name":"", "iscrowd": 0, "segmentation": { "size": [ height, width ], "counts": "", "area": 0 }, "area": 0, "visible_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "visible_bbox": [], "occluded_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "occluded_rate": 0.0 } ann_info["object_name"] = "background" """ ===== extract visible mask ===== """ curr_instance_data_np = org_instance_data_np.copy() # find pixels that belong to background class instance_id = 0 curr_instance_data_np[np.where(org_instance_data != instance_id)] = 0 curr_instance_data_np[np.where(org_instance_data == instance_id)] = 1 background_visible_mask = curr_instance_data_np.astype(np.uint8) """ ===== extract amodal mask ===== """ # background assumed to be binary mask of np.ones background_amodal_mask = np.ones(background_visible_mask.shape).astype(np.uint8) # get object amodal mask """ ===== calculate occlusion mask ===== """ background_occ_mask = cv2.absdiff(background_amodal_mask, background_visible_mask) """ ===== calculate occlusion rate ===== """ # assumes binary mask (True == 1) background_occ_mask_pixel_count = background_occ_mask.sum() background_amodal_mask_pixel_count = background_amodal_mask.sum() occlusion_rate = round(background_occ_mask_pixel_count / background_amodal_mask_pixel_count, 2) if occlusion_rate < 1: # fully occluded objects are not considered if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = background_visible_mask groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = background_visible_mask.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = background_visible_mask.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True groundtruth["DATA"]["AMODAL"] = background_amodal_mask groundtruth["METADATA"]["AMODAL"]["WIDTH"] = background_amodal_mask.shape[1] groundtruth["METADATA"]["AMODAL"]["HEIGHT"] = background_amodal_mask.shape[0] groundtruth["METADATA"]["AMODAL"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["AMODAL"]["NPY"] = True #if occlusion_rate > 0: # if object is occluded, save occlusion mask if self.save_segmentation_data: # print(background_occ_mask) # print(background_occ_mask.shape) groundtruth["DATA"]["OCCLUSION"] = background_occ_mask groundtruth["METADATA"]["OCCLUSION"]["WIDTH"] = background_occ_mask.shape[1] groundtruth["METADATA"]["OCCLUSION"]["HEIGHT"] = background_occ_mask.shape[0] groundtruth["METADATA"]["OCCLUSION"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["OCCLUSION"]["NPY"] = True # Assign Mask to Generic Mask Class background_amodal_mask_class = GenericMask(background_amodal_mask.astype("uint8"),height, width) background_visible_mask_class = GenericMask(background_visible_mask.astype("uint8"),height, width) background_occ_mask_class = GenericMask(background_occ_mask.astype("uint8"),height, width) # Encode binary masks to bytes background_amodal_mask= mask_util.encode(np.array(background_amodal_mask[:, :, None], order="F", dtype="uint8"))[0] background_visible_mask= mask_util.encode(np.array(background_visible_mask[:, :, None], order="F", dtype="uint8"))[0] background_occ_mask= mask_util.encode(np.array(background_occ_mask[:, :, None], order="F", dtype="uint8"))[0] # append annotations to dict ann_info["segmentation"]["counts"] = background_amodal_mask['counts'].decode('UTF-8') # amodal mask ann_info["visible_mask"]["counts"] = background_visible_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["occluded_mask"]["counts"] =background_occ_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["visible_bbox"] = list(background_visible_mask_class.bbox()) ann_info["bbox"] = list(background_visible_mask_class.bbox()) ann_info["segmentation"]["area"] = int(background_amodal_mask_class.area()) ann_info["visible_mask"]["area"] = int(background_visible_mask_class.area()) ann_info["occluded_mask"]["area"] = int(background_occ_mask_class.area()) ann_info["occluded_rate"] = occlusion_rate ann_index += 1 all_viewport_data.append(groundtruth) ann_list.append(ann_info) img_list.append(image_info) """ ================================================= ===== Collect Object Amodal/Occlusion Masks ===== ================================================= """ # turn off visibility of all objects for obj in objects: obj.off_prim() visible_obj_paths = instance_mappings_dict.keys() """ ======= START OBJ LOOP ======= """ obj_visible_mask_list = [] obj_occlusion_mask_list = [] # loop through objects and capture mask of each object for obj in objects: # turn on visibility of object obj.on_prim() ann_info = { "id": ann_index, "image_id": img_index, "category_id": 1, "bbox": [], "width": width, "height": height, "object_name":"", "iscrowd": 0, "segmentation": { "size": [ height, width ], "counts": "", "area": 0 }, "area": 0, "visible_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "visible_bbox": [], "occluded_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "occluded_rate": 0.0 } ann_info["object_name"] = obj.name """ ===== get object j index and attributes ===== """ obj_path = obj.path obj_index = int(obj.path.split("/")[-1].split("_")[1]) id = f"{img_id}_{obj_index}" #image id obj_nested_prim_path = obj_path+"/nested_prim" if obj_nested_prim_path in instance_mappings_dict: instance_id = instance_mappings_dict[obj_nested_prim_path] else: print(f"{obj_nested_prim_path} does not exist") instance_id = -1 print(f"instance_mappings_dict:{instance_mappings_dict}") """ ===== Check if Object j is visible from viewport ===== """ # Remove Fully Occluded Objects from viewport if obj_path in visible_obj_paths and instance_id in instance_map: # if object is fully occluded pass else: # object is not visible, skipping object obj.off_prim() continue groundtruth = { "METADATA": { "image_id": id, "viewport_name": viewport_name, "RGB":{}, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "AMODAL": {}, "OCCLUSION": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } """ ===== extract visible mask of object j ===== """ curr_instance_data_np = org_instance_data_np.copy() if instance_id != 0: # find object instance segmentation curr_instance_data_np[np.where(org_instance_data_np != instance_id)] = 0 curr_instance_data_np[np.where(org_instance_data_np == instance_id)] = 1 obj_visible_mask = curr_instance_data_np.astype(np.uint8) """ ===== extract amodal mask of object j ===== """ # Collect Groundtruth gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.01)) obj.off_prim() # turn off visibility of object # RGB if self.save_segmentation_data: if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] if i == 0 or self.sample("groundtruth_stereo"): # Instance Segmentation if "instanceSegmentation" in gt["state"]: semantics = list(self.label_to_class_id.keys()) instance_data, instance_mappings = self.sd_helper.sensor_helpers["instanceSegmentation"]( viewport_window, parsed=False, return_mapping=True) instances_list = [(im[0], im[4], im["semanticLabel"]) for im in instance_mappings][::-1] max_instance_id_list = max([max(il[1]) for il in instances_list]) max_instance_id = instance_data.max() lut = np.zeros(max(max_instance_id, max_instance_id_list) + 1, dtype=np.uint32) for uid, il, sem in instances_list: if sem in semantics and sem != "[[scenario]]": lut[np.array(il)] = uid instance_data = np.take(lut, instance_data) # get object amodal mask obj_amodal_mask = instance_data.astype(np.uint8) obj_amodal_mask[np.where(instance_data > 0)] = 1 """ ===== calculate occlusion mask of object j ===== """ obj_occ_mask = cv2.absdiff(obj_amodal_mask, obj_visible_mask) """ ===== calculate occlusion rate of object j ===== """ # assumes binary mask (True == 1) obj_occ_mask_pixel_count = obj_occ_mask.sum() obj_amodal_mask_pixel_count = obj_amodal_mask.sum() occlusion_rate = round(obj_occ_mask_pixel_count / obj_amodal_mask_pixel_count, 2) """ ===== Save Segmentation Masks ==== """ if occlusion_rate < 1: # fully occluded objects are not considered # append visible and occlusion masks for generation of occlusion order matrix obj_visible_mask_list.append(obj_visible_mask) obj_occlusion_mask_list.append(obj_occ_mask) if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = obj_visible_mask groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = obj_visible_mask.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = obj_visible_mask.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True groundtruth["DATA"]["AMODAL"] = instance_data groundtruth["METADATA"]["AMODAL"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["AMODAL"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["AMODAL"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["AMODAL"]["NPY"] = True # if occlusion_rate > 0: # if object is occluded, save occlusion mask groundtruth["DATA"]["OCCLUSION"] = obj_occ_mask groundtruth["METADATA"]["OCCLUSION"]["WIDTH"] = obj_occ_mask.shape[1] groundtruth["METADATA"]["OCCLUSION"]["HEIGHT"] = obj_occ_mask.shape[0] groundtruth["METADATA"]["OCCLUSION"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["OCCLUSION"]["NPY"] = True ann_info["visible_bbox"] = bbox_from_binary_mask(obj_visible_mask) ann_info["bbox"] = ann_info["visible_bbox"] """ ===== Add Segmentation Mask into COCO.JSON ===== """ instance_mask_class = GenericMask(instance_data.astype("uint8"),height, width) obj_visible_mask_class = GenericMask(obj_visible_mask.astype("uint8"),height, width) obj_occ_mask_class = GenericMask(obj_occ_mask.astype("uint8"),height, width) # Encode binary masks to bytes instance_data= mask_util.encode(np.array(instance_data[:, :, None], order="F", dtype="uint8"))[0] obj_visible_mask= mask_util.encode(np.array(obj_visible_mask[:, :, None], order="F", dtype="uint8"))[0] obj_occ_mask= mask_util.encode(np.array(obj_occ_mask[:, :, None], order="F", dtype="uint8"))[0] # append annotations to dict ann_info["segmentation"]["counts"] = instance_data['counts'].decode('UTF-8') # amodal mask ann_info["visible_mask"]["counts"] = obj_visible_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["occluded_mask"]["counts"] = obj_occ_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["segmentation"]["area"] = int(instance_mask_class.area()) ann_info["visible_mask"]["area"] = int(obj_visible_mask_class.area()) ann_info["occluded_mask"]["area"] = int(obj_occ_mask_class.area()) ann_info["occluded_rate"] = occlusion_rate ann_index += 1 all_viewport_data.append(groundtruth) ann_list.append(ann_info) img_list.append(image_info) """ ======= END OBJ LOOP ======= """ # Wireframe if self.sample("wireframe"): self.carb_settings.set("/rtx/wireframe/mode", 2.0) # Need two updates for all viewports to have wireframe properly self.sim_context.render() self.sim_context.render() for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] gt = copy.deepcopy(self.sd_helper.get_groundtruth(["rgb"], viewport_window)) all_viewport_data[i]["DATA"]["WIREFRAME"] = gt["rgb"] self.carb_settings.set("/rtx/wireframe/mode", 0) self.sim_context.render() for j in range(len(all_viewport_data)): if self.write_data: self.data_writer.q.put(copy.deepcopy(all_viewport_data[j])) # Disparity if self.sample("disparity") and self.sample("stereo"): depth_l, depth_r = depths cam_intrinsics = self.camera.intrinsics[0] disp_convert = DisparityConverter( depth_l, depth_r, cam_intrinsics["fx"], cam_intrinsics["fy"], cam_intrinsics["cx"], cam_intrinsics["cy"], self.sample("stereo_baseline"), ) disp_l, disp_r = disp_convert.compute_disparity() disparities = [disp_l, disp_r] for i in range(len(self.viewports)): if i == 0 or self.sample("groundtruth_stereo"): viewport_name, viewport_window = self.viewports[i] groundtruth = { "METADATA": {"image_id": id, "viewport_name": viewport_name, "DISPARITY": {}}, "DATA": {}, } disparity_data = disparities[i] groundtruth["DATA"]["DISPARITY"] = disparity_data groundtruth["METADATA"]["DISPARITY"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DISPARITY"]["NPY"] = True if self.write_data: self.data_writer.q.put(copy.deepcopy(groundtruth)) # turn on visibility of all objects (for next camera viewport) for obj in objects: obj.on_prim() # generate occlusion ordering for current viewport rows = cols = len(obj_visible_mask_list) occlusion_adjacency_matrix = np.zeros((rows,cols)) # A(i,j), col j, row i. row i --> col j for i in range(0,len(obj_visible_mask_list)): visible_mask_i = obj_visible_mask_list[i] # occluder for j in range(0,len(obj_visible_mask_list)): if j != i: occluded_mask_j = obj_occlusion_mask_list[j] # occludee iou, _ = compute_occluded_masks(visible_mask_i,occluded_mask_j) if iou > 0: # object i's visible mask is overlapping object j's occluded mask occlusion_adjacency_matrix[i][j] = 1 data_folder = os.path.join(self.output_data_dir, viewport_name, "occlusion_order") os.makedirs(data_folder, exist_ok=True) filename = os.path.join(data_folder, f"{img_id}.npy") # save occlusion adjacency matrix np.save(filename, occlusion_adjacency_matrix) # increment img index (next viewport) img_index += 1 return groundtruth, img_index, ann_index, img_list, ann_list
30,498
Python
48.75367
148
0.474457
ngzhili/SynTable/syntable_composer/datasets/dataset/parameters/warehouse.yaml
# dropped warehouse objects objects: obj_model: Choice(["assets/models/warehouse.txt"]) obj_count: Range(5, 15) obj_size_enabled: False obj_scale: Uniform(0.75, 1.25) obj_vert_fov_loc: Uniform(0, 0.5) obj_distance: Uniform(3, 10) obj_rot: (Normal(0, 45), Normal(0, 45), Uniform(0, 360)) obj_class_id: 1 obj_physics: True # colorful ceiling lights lights: light_count: Range(0, 2) light_coord_camera_relative: False light_coord: (Uniform(-2, 2), Uniform(-2, 2), 5) light_color: Uniform((0, 0, 0), (255, 255, 255)) light_intensity: Uniform(0, 300000) light_radius: 1 # warehouse scenario scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 # camera camera_coord: (0, 0, Uniform(.20, 1)) camera_rot: (Normal(0, 1), 0, Uniform(0, 360)) # output output_dir: dataset num_scenes: 10 img_width: 1920 img_height: 1080 rgb: True depth: True semantic_seg: True groundtruth_visuals: True # simulate physics_simulate_time: 2
1,029
YAML
16.457627
93
0.688047
ngzhili/SynTable/syntable_composer/parameters/flying_things_4d.yaml
# object groups inherited from flying_things_3d objs: inherit: objs objs_color_dr: inherit: objs_color_dr objs_texture_dr: inherit: objs_texture_dr objs_material_dr: inherit: objs_material_dr midground_shapes: inherit: midground_shapes midground_shapes_material_dr: inherit: midground_shapes_material_dr background_shapes: inherit: background_shapes background_plane: obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) inherit: background_plane # global object movement parameters obj_vel: Normal((0, 0, 0), (1, 1, 1)) obj_rot_vel: Normal((0, 0, 0), (20, 20, 20)) # light groups inherited from flying_things_3d lights: inherit: lights lights_color: inherit: lights_color distant_light: inherit: distant_light camera_light: inherit: camera_light # camera movement parameters (uncomment to add) # camera_vel: Normal((.30, 0, 0), (.10, .10, .10)) # camera_accel: Normal((0, 0, 0), (.05, .05, .05)) # camera_rot_vel: Normal((0, 0, 0), (.05, .05, .05)) # camera_movement_camera_relative: True # sequence parameters sequential: True sequence_step_count: 20 sequence_step_time: Uniform(0.5, 1) profiles: - parameters/flying_things_3d.yaml - parameters/profiles/base_groups.yaml
1,206
YAML
20.553571
52
0.707297
ngzhili/SynTable/syntable_composer/parameters/flying_things_3d.yaml
# flying objects objs: obj_count: Range(0, 15) inherit: flying_objs # flying objects (color randomized) objs_color_dr: obj_color: Uniform((0, 0, 0), (255, 255, 255)) obj_count: Range(0, 10) inherit: flying_objs # flying objects (texture randomized) objs_texture_dr: obj_texture: Choice(["assets/textures/patterns.txt", "assets/textures/synthetic.txt"]) obj_texture_scale: Choice([0.1, 1]) obj_count: Range(0, 10) inherit: flying_objs # flying objects (material randomized) objs_material_dr: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 10) inherit: flying_objs # flying midground shapes (texture randomized) midground_shapes: obj_texture: Choice(["assets/textures/patterns.txt", "assets/textures/synthetic.txt"]) obj_texture_scale: Choice([0.01, 1]) obj_count: Range(0, 5) inherit: flying_shapes # flying midground shapes (material randomized) midground_shapes_material_dr: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 5) inherit: flying_shapes # flying background shapes (material randomized) background_shapes: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 10) obj_horiz_fov_loc: Uniform(-0.7, 0.7) obj_vert_fov_loc: Uniform(-0.3, 0.7) obj_size: Uniform(3, 5) obj_distance: Uniform(20, 30) inherit: flying_shapes # background plane background_plane: obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Shapes/plane.usd obj_material: Choice("assets/materials/materials.txt") obj_texture_rot: Uniform(0, 360) obj_count: 1 obj_size: 5000 obj_distance: Uniform(30, 40) obj_horiz_fov_loc: 0 obj_vert_fov_loc: 0 obj_rot: Normal((0, 90, 0), (10, 10, 10)) obj_class_id: 0 # flying lights lights: light_count: Range(1, 2) light_color: (200, 200, 200) inherit: flying_lights # flying lights (colorful) lights_color: light_count: Range(0, 2) light_color: Choice([(255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255), (0, 255, 255)]) inherit: flying_lights # sky light distant_light: light_distant: True light_count: 1 light_color: Uniform((0, 0, 0), (255, 255, 255)) light_intensity: Uniform(2000, 10000) light_rot: Normal((0, 0, 0), (20, 20, 20)) # light at camera coordinate camera_light: light_count: 1 light_color: Uniform((0, 0, 0), (255, 255, 255)) light_coord_camera_relative: True light_distance: 0 light_intensity: Uniform(0, 100000) light_radius: .50 # randomized floor scenario_room_enabled: True scenario_class_id: 0 floor: True wall: False ceiling: False floor_size: 50 floor_material: Choice("assets/materials/materials.txt") # camera focal_length: 40 stereo: True stereo_baseline: .20 camera_coord: Uniform((-2, -2, 1), (2, 2, 4)) camera_rot: Normal((0, 0, 0), (3, 3, 20)) # output img_width: 1920 img_height: 1080 rgb: True disparity: True instance_seg: True semantic_seg: True bbox_2d_tight: True groundtruth_visuals: True groundtruth_stereo: False profiles: - parameters/profiles/base_groups.yaml
3,052
YAML
19.085526
94
0.695282
ngzhili/SynTable/syntable_composer/parameters/profiles/default.yaml
# Default parameters. Do not edit, move, or delete. # default object parameters obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Forklift/forklift.usd obj_color: () obj_texture: "" obj_material: "" obj_metallicness: float("NaN") obj_reflectance: float("NaN") obj_size_enabled: True obj_size: 1 obj_scale: 1 obj_texture_scale: 1 obj_texture_rot: 0 obj_rot: (0, 0, 0) obj_coord: (0, 0, 0) obj_centered: True obj_physics: False obj_rot_camera_relative: True obj_coord_camera_relative: True obj_count: 0 obj_distance: Uniform(300, 800) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-1, 1) obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) obj_accel: (0, 0, 0) obj_rot_accel: (0, 0, 0) obj_movement_obj_relative: False obj_class_id: 1 # default light parameters light_intensity: 100000 light_radius: 0.25 light_temp_enabled: False light_color: (255, 255, 255) light_temp: 6500 light_directed: False light_directed_focus: 20 light_directed_focus_softness: 0 light_distant: False light_camera_relative: True light_rot: (0, 0, 0) light_coord: (0, 0, 0) light_count: 0 light_distance: Uniform(3, 8) light_horiz_fov_loc: Uniform(-1, 1) light_vert_fov_loc: Uniform(-1, 1) light_coord_camera_relative: True light_rot_camera_relative: True light_vel: (0, 0, 0) light_rot_vel: (0, 0, 0) light_accel: (0, 0, 0) light_rot_accel: (0, 0, 0) light_movement_light_relative: False # default scenario parameters scenario_room_enabled: False scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 sky_texture: "" sky_light_intensity: 1000 floor: True wall: True ceiling: True wall_height: 20 floor_size: 20 floor_color: () wall_color: () ceiling_color: () floor_texture: "" wall_texture: "" ceiling_texture: "" floor_texture_scale: 1 wall_texture_scale: 1 ceiling_texture_scale: 1 floor_texture_rot: 0 wall_texture_rot: 0 ceiling_texture_rot: 0 floor_material: "" wall_material: "" ceiling_material: "" floor_reflectance: float("NaN") wall_reflectance: float("NaN") ceiling_reflectance: float("NaN") floor_metallicness: float("NaN") wall_metallicness: float("NaN") ceiling_metallicness: float("NaN") # default camera parameters focal_length: 18.15 focus_distance: 4 horiz_aperture: 20.955 vert_aperture: 15.2908 f_stop: 0 stereo: False stereo_baseline: 20 camera_coord: (0, 0, 50) camera_rot: (0, 0, 0) camera_vel: (0, 0, 0) camera_rot_vel: (0, 0, 0) camera_accel: (0, 0, 0) camera_rot_accel: (0, 0, 0) camera_movement_camera_relative: False # default output parameters output_dir: dataset num_scenes: 10 img_width: 1280 img_height: 720 write_data: True num_data_writer_threads: 4 sequential: False sequence_step_count: 10 sequence_step_time: 1 rgb: True depth: False disparity: False instance_seg: False semantic_seg: False bbox_2d_tight: False bbox_2d_loose: False bbox_3d: False wireframe: False groundtruth_stereo: False groundtruth_visuals: False # default model store parameters nucleus_server: localhost # default debug parameters pause: 0 verbose: True # simulation parameters physics_simulate_time: 1 scene_units_in_meters: 1 path_tracing: False samples_per_pixel_per_frame: 32
3,194
YAML
15.554404
93
0.725736
ngzhili/SynTable/syntable_composer/parameters/profiles/base_groups.yaml
flying_objs: obj_model: Choice(["assets/models/warehouse.txt", "assets/models/hospital.txt", "assets/models/office.txt"]) obj_size: Uniform(.50, .75) obj_distance: Uniform(4, 20) flying_shapes: obj_model: Choice(["assets/models/shapes.txt"]) obj_size: Uniform(1, 2) obj_distance: Uniform(15, 25) flying_lights: light_intensity: Uniform(0, 100000) light_radius: Uniform(.50, 1) light_vert_fov_loc: Uniform(0, 1) light_distance: Uniform(4, 15) # global parameters obj_rot: Uniform((0, 0, 0), (360, 360, 360)) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-0.7, 1) obj_metallicness: Uniform(0.1, 0.8) obj_reflectance: Uniform(0.1, 0.8)
679
YAML
20.249999
110
0.680412
selinaxiao/MeshToUsd/exts/mesh.to.usd/mesh/to/usd/extension.py
import omni.ext import omni.ui as ui import omni.usd #from .MeshGen.sdf_to_mesh import mc_result from pxr import Gf, Sdf # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[mesh.to.usd] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MeshToUsdExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[mesh.to.usd] mesh to usd startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def process(path): infile = open(path,'r') lines = infile.readlines() for i in range(len(lines)): lines[i] = lines[i].replace('\n','').split(' ')[1:] if [] in lines: lines.remove([]) idx1 = lines.index(['Normals']) verts = lines[1:idx1] float_verts = [] for i in range(len(verts)): float_verts.append(Gf.Vec3f(float(verts[i][0]), float(verts[i][1]), float(verts[i][2]))) idx2 = lines.index(['Faces']) normals = lines[idx1+1:idx2] float_norms = [] print(normals) for i in range(len(normals)): float_norms.append(Gf.Vec3f(float(normals[i][0]), float(normals[i][1]), float(normals[i][2]))) float_norms.append(Gf.Vec3f(float(normals[i][0]), float(normals[i][1]), float(normals[i][2]))) float_norms.append(Gf.Vec3f(float(normals[i][0]), float(normals[i][1]), float(normals[i][2]))) faces = lines[idx2+1:] int_faces = [] for i in range(len(faces)): int_faces.append(int(faces[i][0]) - 1) int_faces.append(int(faces[i][1]) - 1) int_faces.append(int(faces[i][2]) - 1) print(type(float_verts)) print(float_verts) return float_verts, int_faces, float_norms def assemble(): stage = omni.usd.get_context().get_stage() if(not stage.GetPrimAtPath(Sdf.Path('/World/Trial')).IsValid()): omni.kit.commands.execute('CreateMeshPrimWithDefaultXform', prim_type='Cube', prim_path=None, select_new_prim=True, prepend_default_prim=True) omni.kit.commands.execute('MovePrim', path_from='/World/Cube', path_to='/World/Trial', destructive=False) cube_prim = stage.GetPrimAtPath('/World/Trial') verts, faces, normals = process('C:/users/labuser/desktop/data transfer/meshtousd/exts/mesh.to.usd/mesh/to/usd/whyyyyyyyareumeaningless.obj') face_vert_count = [3]*(len(faces)//3) primvar = [(0,0)]*len(faces) print(type(cube_prim.GetAttribute('faceVertexIndices').Get())) print(cube_prim.GetAttribute('faceVertexIndices').Get()) print(type(face_vert_count)) cube_prim.GetAttribute('faceVertexCounts').Set(face_vert_count) cube_prim.GetAttribute('faceVertexIndices').Set(faces) cube_prim.GetAttribute('normals').Set(normals) cube_prim.GetAttribute('points').Set(verts) cube_prim.GetAttribute('primvars:st').Set(primvar) with ui.HStack(): ui.Button("TRANSFORMERS!!!", clicked_fn=assemble) def on_shutdown(self): print("[mesh.to.usd] mesh to usd shutdown")
4,616
Python
40.223214
161
0.513865
loupeteam/Omniverse_Beckhoff_Bridge_Extension/README.md
# Info This tool is provided by Loupe. https://loupe.team [email protected] 1-800-240-7042 # Description This is an extension that connects Beckhoff PLCs into the Omniverse ecosystem. It leverages [pyads](https://github.com/stlehmann/pyads) to set up an ADS client for communicating with PLCs. # Documentation Detailed documentation can be found in the extension readme file [here](exts/loupe.simulation.beckhoff_bridge/docs/README.md). # Licensing This software contains source code provided by NVIDIA Corporation. This code is subject to the terms of the [NVIDIA Omniverse License Agreement](https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html). Files are licensed as follows: ### Files created entirely by Loupe ([MIT License](LICENSE)): * `ads_driver.py` * `BeckhoffBridge.py` ### Files including Nvidia-generated code and modifications by Loupe (Nvidia Omniverse License Agreement AND MIT License; use must comply to whichever is most restrictive for any attribute): * `__init__.py` * `extension.py` * `global_variables.py` * `ui_builder.py` This software is intended for use with NVIDIA Omniverse apps, which are subject to the [NVIDIA Omniverse License Agreement](https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html) for use and distribution. This software also relies on [pyads](https://github.com/stlehmann/pyads), which is licensed under the MIT license.
1,470
Markdown
44.968749
274
0.782313
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/loupe/simulation/beckhoff_bridge/ads_driver.py
''' File: **ads_driver.py** Copyright (c) 2024 Loupe https://loupe.team This file is part of Omniverse_Beckhoff_Bridge_Extension, licensed under the MIT License. ''' import pyads class AdsDriver(): """ A class that represents an ADS driver. It contains a list of variables to read from the target device and provides methods to read and write data. Args: ams_net_id (str): The AMS Net ID of the target device. Attributes: ams_net_id (str): The AMS Net ID of the target device. _read_names (list): A list of names for reading data. _read_struct_def (dict): A dictionary that maps names to structure definitions. """ def __init__(self, ams_net_id): """ Initializes an instance of the AdsDriver class. Args: ams_net_id (str): The AMS Net ID of the target device. """ self.ams_net_id = ams_net_id self._read_names = list() self._read_struct_def = dict() def add_read(self, name : str, structure_def = None): """ Adds a variable to the list of data to read. Args: name (str): The name of the data to be read. "my_struct.my_array[0].my_var" structure_def (optional): The structure definition of the data. """ if name not in self._read_names: self._read_names.append(name) if structure_def is not None: if name not in self._read_struct_def: self._read_struct_def[name] = structure_def def write_data(self, data : dict ): """ Writes data to the target device. Args: data (dict): A dictionary containing the data to be written to the PLC e.g. data = {'MAIN.b_Execute': False, 'MAIN.str_TestString': 'Goodbye World', 'MAIN.r32_TestReal': 54.321} """ self._connection.write_list_by_name(data) def read_data(self): """ Reads all variables from the cyclic read list. Returns: dict: A dictionary containing the parsed data. """ if self._read_names.__len__() > 0: data = self._connection.read_list_by_name(self._read_names, structure_defs=self._read_struct_def) parsed_data = dict() for name in data.keys(): parsed_data = self._parse_name(parsed_data, name, data[name]) else: parsed_data = dict() return parsed_data def _parse_name(self, name_dict, name, value): """ Convert a variable from a flat name to a dictionary based structure. "my_struct.my_array[0].my_var: value" -> {"my_struct": {"my_array": [{"my_var": value}]}} Args: name_dict (dict): The dictionary to store the parsed data. name (str): The name of the data item. value: The value of the data item. Returns: dict: The updated name_dict. """ name_parts = name.split(".") if len(name_parts) > 1: if name_parts[0] not in name_dict: name_dict[name_parts[0]] = dict() if "[" in name_parts[1]: array_name, index = name_parts[1].split("[") index = int(index[:-1]) if array_name not in name_dict[name_parts[0]]: name_dict[name_parts[0]][array_name] = [] if index >= len(name_dict[name_parts[0]][array_name]): name_dict[name_parts[0]][array_name].extend([None] * (index - len(name_dict[name_parts[0]][array_name]) + 1)) name_dict[name_parts[0]][array_name][index] = self._parse_name(name_dict[name_parts[0]][array_name], "[" + str(index) + "]" + ".".join(name_parts[2:]), value) else: name_dict[name_parts[0]] = self._parse_name(name_dict[name_parts[0]], ".".join(name_parts[1:]), value) else: if "[" in name_parts[0]: array_name, index = name_parts[0].split("[") index = int(index[:-1]) if index >= len(name_dict): name_dict.extend([None] * (index - len(name_dict) + 1)) name_dict[index] = value return name_dict[index] else: name_dict[name_parts[0]] = value return name_dict def connect(self, ams_net_id = None): """ Connects to the target device. Args: ams_net_id (str): The AMS Net ID of the target device. This does not need to be provided if it was provided in the constructor and has not changed. """ if ams_net_id is not None: self.ams_net_id = ams_net_id self._connection = pyads.Connection(self.ams_net_id, pyads.PORT_TC3PLC1) self._connection.open() def disconnect(self): """ Disconnects from the target device. """ self._connection.close() def is_connected(self): """ Returns the connection state. Returns: bool: True if the connection is open, False otherwise. """ try: adsState, deviceState = self._connection.read_state() return True except Exception as e: return False
5,344
Python
32.40625
174
0.54491
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/loupe/simulation/beckhoff_bridge/BeckhoffBridge.py
''' File: **BeckhoffBridge.py** Copyright (c) 2024 Loupe https://loupe.team This file is part of Omniverse_Beckhoff_Bridge_Extension, licensed under the MIT License. ''' from typing import Callable import carb.events import omni.kit.app EVENT_TYPE_DATA_INIT = carb.events.type_from_string("loupe.simulation.beckhoff_bridge.DATA_INIT") EVENT_TYPE_DATA_READ = carb.events.type_from_string("loupe.simulation.beckhoff_bridge.DATA_READ") EVENT_TYPE_DATA_READ_REQ = carb.events.type_from_string("loupe.simulation.beckhoff_bridge.DATA_READ_REQ") EVENT_TYPE_DATA_WRITE_REQ = carb.events.type_from_string("loupe.simulation.beckhoff_bridge.DATA_WRITE_REQ") class Manager: """ BeckhoffBridge class provides an interface for interacting with the Beckhoff Bridge Extension. It can be used in Python scripts to read and write variables. Methods: register_init_callback( callback : Callable[[carb.events.IEvent], None] ): Registers a callback function for the DATA_INIT event. register_data_callback( callback : Callable[[carb.events.IEvent], None] ): Registers a callback function for the DATA_READ event. add_cyclic_read_variables( variable_name_array : list[str]): Adds variables to the cyclic read list. write_variable( name : str, value : any ): Writes a variable value to the Beckhoff Bridge. """ def __init__(self): """ Initializes the BeckhoffBridge object. """ self._event_stream = omni.kit.app.get_app().get_message_bus_event_stream() self._callbacks = [] def __del__(self): """ Cleans up the event subscriptions. """ for callback in self._callbacks: self._event_stream.remove_subscription(callback) def register_init_callback( self, callback : Callable[[carb.events.IEvent], None] ): """ Registers a callback function for the DATA_INIT event. The callback is triggered when the Beckhoff Bridge is initialized. The user should use this event to add cyclic read variables. This event may get called multiple times in normal operation due to the nature of how extensions are loaded. Args: callback (function): The callback function to be registered. Returns: None """ self._callbacks.append(self._event_stream.create_subscription_to_push_by_type(EVENT_TYPE_DATA_INIT, callback)) callback(None) def register_data_callback( self, callback : Callable[[carb.events.IEvent], None] ): """ Registers a callback function for the DATA_READ event. The callback is triggered when the Beckhoff Bridge receives new data. The payload contains the updated variables. Args: callback (Callable): The callback function to be registered. example callback: def on_message( event ): data = event.payload['data']['MAIN']['custom_struct']['var_array'] Returns: None """ self._callbacks.append(self._event_stream.create_subscription_to_push_by_type(EVENT_TYPE_DATA_READ, callback)) def add_cyclic_read_variables(self, variable_name_array : list[str]): """ Adds variables to the cyclic read list. Variables in the cyclic read list are read from the Beckhoff Bridge at a fixed interval. Args: variableList (list): List of variables to be added. ["MAIN.myStruct.myvar1", "MAIN.var2", ...] Returns: None """ self._event_stream.push(event_type=EVENT_TYPE_DATA_READ_REQ, payload={'variables': variable_name_array}) def write_variable(self, name : str, value : any ): """ Writes a variable value to the Beckhoff Bridge. Args: name (str): The name of the variable. "MAIN.myStruct.myvar1" value (basic type): The value to be written. 1, 2.5, "Hello", ... Returns: None """ payload = {"variables": [{'name': name, 'value': value}]} self._event_stream.push(event_type=EVENT_TYPE_DATA_WRITE_REQ, payload=payload)
4,182
Python
37.731481
137
0.649211
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/loupe/simulation/beckhoff_bridge/ui_builder.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.ui as ui import omni.timeline from carb.settings import get_settings from .ads_driver import AdsDriver from .global_variables import EXTENSION_NAME from .BeckhoffBridge import EVENT_TYPE_DATA_READ, EVENT_TYPE_DATA_READ_REQ, EVENT_TYPE_DATA_WRITE_REQ, EVENT_TYPE_DATA_INIT import threading from threading import RLock import json import time class UIBuilder: def __init__(self): # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() # Get the settings interface self.settings_interface = get_settings() # Internal status flags. self._thread_is_alive = True self._communication_initialized = False self._ui_initialized = False # Configuration parameters for the extension. # These are exposed on the UI. self._enable_communication = self.get_setting( 'ENABLE_COMMUNICATION', False ) self._refresh_rate = self.get_setting( 'REFRESH_RATE', 20 ) # Data stream where the extension will dump the data that it reads from the PLC. self._event_stream = omni.kit.app.get_app().get_message_bus_event_stream() self._ads_connector = AdsDriver(self.get_setting( 'PLC_AMS_NET_ID', '127.0.0.1.1.1')) self.write_queue = dict() self.write_lock = RLock() self.read_req = self._event_stream.create_subscription_to_push_by_type(EVENT_TYPE_DATA_READ_REQ, self.on_read_req_event) self.write_req = self._event_stream.create_subscription_to_push_by_type(EVENT_TYPE_DATA_WRITE_REQ, self.on_write_req_event) self._event_stream.push(event_type=EVENT_TYPE_DATA_INIT, payload={'data': {}}) self._thread = threading.Thread(target=self._update_plc_data) self._thread.start() ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ self._event_stream.push(event_type=EVENT_TYPE_DATA_INIT, payload={'data': {}}) if(not self._thread_is_alive): self._thread_is_alive = True self._thread = threading.Thread(target=self._update_plc_data) self._thread.start() def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ if(event.type == int(omni.timeline.TimelineEventType.STOP)): pass elif(event.type == int(omni.timeline.TimelineEventType.PLAY)): pass elif(event.type == int(omni.timeline.TimelineEventType.PAUSE)): pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions """ self.read_req.unsubscribe() self.write_req.unsubscribe() self._thread_is_alive = False self._thread.join() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ with ui.CollapsableFrame("Configuration", collapsed=False): with ui.VStack(spacing=5, height=0): with ui.HStack(spacing=5, height=0): ui.Label("Enable ADS Client") self._enable_communication_checkbox = ui.CheckBox(ui.SimpleBoolModel(self._enable_communication)) self._enable_communication_checkbox.model.add_value_changed_fn(self._toggle_communication_enable) with ui.HStack(spacing=5, height=0): ui.Label("Refresh Rate (ms)") self._refresh_rate_field = ui.IntField(ui.SimpleIntModel(self._refresh_rate)) self._refresh_rate_field.model.set_min(10) self._refresh_rate_field.model.set_max(10000) self._refresh_rate_field.model.add_value_changed_fn(self._on_refresh_rate_changed) with ui.HStack(spacing=5, height=0): ui.Label("PLC AMS Net Id") self._plc_ams_net_id_field = ui.StringField(ui.SimpleStringModel(self._ads_connector.ams_net_id)) self._plc_ams_net_id_field.model.add_value_changed_fn(self._on_plc_ams_net_id_changed) with ui.HStack(spacing=5, height=0): ui.Label("Settings") ui.Button("Load", clicked_fn=self.load_settings) ui.Button("Save", clicked_fn=self.save_settings) with ui.CollapsableFrame("Status", collapsed=False): with ui.VStack(spacing=5, height=0): with ui.HStack(spacing=5, height=0): ui.Label("Status") self._status_field = ui.StringField(ui.SimpleStringModel("n/a"), read_only=True) with ui.CollapsableFrame("Monitor", collapsed=False): with ui.VStack(spacing=5, height=0): with ui.HStack(spacing=5, height=100): ui.Label("Variables") self._monitor_field = ui.StringField(ui.SimpleStringModel("{}"), multiline=True, read_only=True) self._ui_initialized = True #################################### #################################### # UTILITY FUNCTIONS #################################### #################################### def on_read_req_event(self, event ): event_data = event.payload variables : list = event_data['variables'] for name in variables: self._ads_connector.add_read(name) def on_write_req_event(self, event ): variables = event.payload["variables"] for variable in variables: self.queue_write(variable['name'], variable['value']) def queue_write(self, name, value): with self.write_lock: self.write_queue[name] = value def _update_plc_data(self): thread_start_time = time.time() status_update_time = time.time() while self._thread_is_alive: # Sleep for the refresh rate sleepy_time = self._refresh_rate/1000 - (time.time() - thread_start_time) if sleepy_time > 0: time.sleep(sleepy_time) else: time.sleep(0.1) thread_start_time = time.time() # Check if the communication is enabled if not self._enable_communication: if self._ui_initialized: self._status_field.model.set_value("Disabled") self._monitor_field.model.set_value("{}") continue # Catch exceptions and log them to the status field try: # Start the communication if it is not initialized if (not self._communication_initialized) and (self._enable_communication): self._ads_connector.connect() self._communication_initialized = True elif (self._communication_initialized) and (not self._ads_connector.is_connected()): self._ads_connector.disconnect() if status_update_time < time.time(): if self._ads_connector.is_connected(): self._status_field.model.set_value("Connected") else: self._status_field.model.set_value("Attempting to connect...") # Write data to the PLC if there is data to write # If there is an exception, log it to the status field but continue reading data try: if self.write_queue: with self.write_lock: values = self.write_queue self.write_queue = dict() self._ads_connector.write_data(values) except Exception as e: if self._ui_initialized: self._status_field.model.set_value(f"Error writing data to PLC: {e}") status_update_time = time.time() + 1 # Read data from the PLC self._data = self._ads_connector.read_data() # Push the data to the event stream self._event_stream.push(event_type=EVENT_TYPE_DATA_READ, payload={'data': self._data}) # Update the monitor field if self._ui_initialized: json_formatted_str = json.dumps(self._data, indent=4) self._monitor_field.model.set_value(json_formatted_str) except Exception as e: if self._ui_initialized: self._status_field.model.set_value(f"Error reading data from PLC: {e}") status_update_time = time.time() + 1 time.sleep(1) #################################### #################################### # Manage Settings #################################### #################################### def get_setting(self, name, default_value=None ): setting = self.settings_interface.get("/persistent/" + EXTENSION_NAME + "/" + name) if setting is None: setting = default_value self.settings_interface.set("/persistent/" + EXTENSION_NAME + "/" + name, setting) return setting def set_setting(self, name, value ): self.settings_interface.set("/persistent/" + EXTENSION_NAME + "/" + name, value) def _on_plc_ams_net_id_changed(self, value): self._ads_connector.ams_net_id = value.get_value_as_string() self._communication_initialized = False def _on_refresh_rate_changed(self, value): self._refresh_rate = value.get_value_as_int() def _toggle_communication_enable(self, state): self._enable_communication = state.get_value_as_bool() if not self._enable_communication: self._communication_initialized = False def save_settings(self): self.set_setting('REFRESH_RATE', self._refresh_rate) self.set_setting('PLC_AMS_NET_ID', self._ads_connector.ams_net_id) self.set_setting('ENABLE_COMMUNICATION', self._enable_communication) def load_settings(self): self._refresh_rate = self.get_setting('REFRESH_RATE') self._ads_connector.ams_net_id = self.get_setting('PLC_AMS_NET_ID') self._enable_communication = self.get_setting('ENABLE_COMMUNICATION') self._refresh_rate_field.model.set_value(self._refresh_rate) self._plc_ams_net_id_field.model.set_value(self._ads_connector.ams_net_id) self._enable_communication_checkbox.model.set_value(self._enable_communication) self._communication_initialized = False
12,107
Python
41.335664
131
0.572148
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/config/extension.toml
[core] reloadable = true order = 0 [package] version = "0.1.0" category = "simulation" title = "Beckhoff Bridge" description = "A bridge for connecting Omniverse to Beckhoff PLCs over ADS" authors = ["Loupe"] repository = "https://github.com/loupeteam/Omniverse_Beckhoff_Bridge_Extension" keywords = ["Beckhoff", "Digital Twin", "ADS", "PLC"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" [dependencies] "omni.kit.uiapp" = {} [python.pipapi] requirements = ['pyads'] use_online_index = true [[python.module]] name = "loupe.simulation.beckhoff_bridge" public = true
639
TOML
21.857142
79
0.716745
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/docs/CHANGELOG.md
Changelog [0.1.0] - Created with based functionality to setup a connection and send/receive messages with other extensions.
125
Markdown
30.499992
105
0.8
loupeteam/Omniverse_Beckhoff_Bridge_Extension/exts/loupe.simulation.beckhoff_bridge/docs/README.md
# Beckhoff Bridge The Beckhoff Bridge is an [NVIDIA Omniverse](https://www.nvidia.com/en-us/omniverse/) extension for communicating with [Beckhoff PLCs](https://www.beckhoff.com/en-en/) using the [ADS protocol](https://infosys.beckhoff.com/english.php?content=../content/1033/cx8190_hw/5091854987.html&id=). # Installation ### Install from registry This is the preferred method. Open up the extensions manager by navigating to `Window / Extensions`. The extension is available as a "Third Party" extension. Search for `Beckhoff Bridge`, and click the slider to Enable it. Once enabled, the extension will be available as an option in the top menu banner of the Omniverse app. ### Install from source You can also install from source instead. In order to do so, follow these steps: - Clone the repo [here](https://github.com/loupeteam/Omniverse_Beckhoff_Bridge_Extension). - In your Omniverse app, open the extensions manager by navigating to `Window / Extensions`. - Open the general extension settings, and add a new entry into the `Extension Search Paths` table. This should be the local path to the root of the repo that was just cloned. - Back in the extensions manager, search for `BECKHOFF BRIDGE`, and enable it. - Once enabled, the extension will show up as an option in the top menu banner. # Configuration You can open the extension by clicking on `Beckhoff Bridge / Open Bridge Settings` from the top menu. The following configuration options are available: - Enable ADS Client: Enable or disable the ADS client from reading or writing data to the PLC. - Refresh Rate: The rate at which the ADS client will read data from the PLC in milliseconds. - PLC AMS Net ID: The AMS Net ID of the PLC to connect to. - Settings commands: These commands are used to load and save the extension settings as permanent parameters. The Save button backs up the current parameters, and the Load button restores them from the last saved values. # Usage Once the extension is enabled, the Beckhoff Bridge will attempt to connect to the PLC. ### Monitoring Extension Status The status of the extension can be viewed in the `Status` field. Here are the possible messages and their meaning: - `Disabled`: the enable checkbox is unchecked, and no communication is attempted. - `Attempting to connect...`: the ADS client is trying to connect to the PLC. Staying in this state for more than a few seconds indicates that there is a problem with the connection. - `Connected`: the ADS client has successfully established a connection with the PLC. - `Error writing data to the PLC: [...]`: an error occurred while performing an ADS variable write. - `Error reading data from the PLC: [...]`: an error occurred while performing an ADS variable read. ### Monitoring Variable Values Once variable reads are occurring, the `Monitor` pane will show a JSON string with the names and values of the variables being read. This is helpful for troubleshooting. ### Performing read/write operations The variables on the PLC that should be read or written are specified in a custom user extension or app that uses the API available from the `loupe.simulation.beckhoff_bridge` module. ```python from loupe.simulation.beckhoff_bridge import BeckhoffBridge # Instantiate the bridge and register lifecycle subscriptions beckhoff_bridge = BeckhoffBridge.Manager() beckhoff_bridge.register_init_callback(on_beckoff_init) beckhoff_bridge.register_data_callback(on_message) # This function gets called once on init, and should be used to subscribe to cyclic reads. def on_beckoff_init( event ): # Create a list of variable names to be read cyclically, and add to Manager variables = [ 'MAIN.custom_struct.var1', 'MAIN.custom_struct.var_array[0]', 'MAIN.custom_struct.var_array[1]'] beckhoff_bridge.add_cyclic_read_variables(variables) # This function is called every time the bridge receives new data def on_message( event ): # Read the event data, which includes values for the PLC variables requested data = event.payload['data']['MAIN']['custom_struct']['var_array'] # In the app's cyclic logic, writes can be performed as follows: def cyclic(): # Write the value `1` to PLC variable 'MAIN.custom_struct.var1' beckhoff_bridge.write_variable('MAIN.custom_struct.var1', 1) ```
4,351
Markdown
55.51948
326
0.759136
shazanfazal/Test-omniverse/exts/shazan.extension/shazan/extension/extension.py
import omni.ext import omni.ui as ui import omni.kit.commands as command # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[shazan.extension] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class ShazanExtensionExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[shazan.extension] shazan extension startup") self._window = ui.Window("Learning Extension", width=300, height=300) with self._window.frame: with ui.VStack(): def on_click(prim_type): command.execute("CreateMeshPrimWithDefaultXform",prim_type=prim_type) ui.Label("Create me the following") ui.Button("Create a Cone",clicked_fn=lambda: on_click("Cone")) ui.Button("Create a Cube",clicked_fn=lambda: on_click("Cube")) ui.Button("Create a Cylinder",clicked_fn=lambda: on_click("Cylinder")) ui.Button("Create a Disk",clicked_fn=lambda: on_click("Disk")) ui.Button("Create a Plane",clicked_fn=lambda: on_click("Plane")) ui.Button("Create a Sphere",clicked_fn=lambda: on_click("Sphere")) ui.Button("Create a Torus",clicked_fn=lambda: on_click("Torus")) def on_shutdown(self): print("[shazan.extension] shazan extension shutdown")
1,884
Python
47.333332
119
0.663482
pascal-roth/orbit_envs/README.md
<div style="display: flex;"> <img src="docs/example_matterport.png" alt="Matterport Mesh" style="width: 48%; padding: 5px;"> <img src="docs/example_carla.png" alt="Unreal Engine / Carla Mesh" style="width: 48%; padding: 5px;"> </div> --- # Omniverse Matterport3D and Unreal Engine Assets Extensions [![IsaacSim](https://img.shields.io/badge/IsaacSim-2023.1.0--hotfix.1-silver.svg)](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) [![Python](https://img.shields.io/badge/python-3.10-blue.svg)](https://docs.python.org/3/whatsnew/3.10.html) [![Linux platform](https://img.shields.io/badge/platform-linux--64-orange.svg)](https://releases.ubuntu.com/20.04/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![License](https://img.shields.io/badge/license-BSD--3-yellow.svg)](https://opensource.org/licenses/BSD-3-Clause) This repository contains the extensions for Matterport3D and Unreal Engine Assets. The extensions enable the easy loading of assets into Isaac Sim and have access to the semantic labels. They are developed as part of the ViPlanner project ([Paper](https://arxiv.org/abs/2310.00982) | [Code](https://github.com/leggedrobotics/viplanner)) and are based on the [Orbit](https://isaac-orbit.github.io/) framework. **Attention:** The central part of the extensions is currently updated to the latest orbit version. This repo contains a temporary solution sufficient for the demo script included in ViPlanner, found [here](https://github.com/leggedrobotics/viplanner/tree/main/omniverse). An updated version will be available soon. ## Installation To install the extensions, follow these steps: 1. Install Isaac Sim using the [Orbit installation guide](https://isaac-orbit.github.io/orbit/source/setup/installation.html). 2. Clone the orbit repo and link the extension. ``` git clone [email protected]:NVIDIA-Omniverse/orbit.git cd orbit/source/extensions ln -s {ORBIT_ENVS_PROJECT_DIR}/extensions/omni.isaac.matterport . ln -s {ORBIT_ENVS_PROJECT_DIR}/extensions/omni.isaac.carla . ``` 4. Then run the orbit installer script. ``` ./orbit.sh -i -e ``` ## Usage For the Matterport extension, a GUI interface is available. To use it, start the simulation: ``` ./orbit.sh -s ``` Then, in the GUI, go to `Window -> Extensions` and type `Matterport` in the search bar. You should see the Matterport3D extension. Enable it to open the GUI interface. To use both as part of an Orbit workflow, please refer to the [ViPlanner Demo](https://github.com/leggedrobotics/viplanner/tree/main/omniverse). ## <a name="CitingViPlanner"></a>Citing If you use this code in a scientific publication, please cite the following [paper](https://arxiv.org/abs/2310.00982): ``` @article{roth2023viplanner, title ={ViPlanner: Visual Semantic Imperative Learning for Local Navigation}, author ={Pascal Roth and Julian Nubert and Fan Yang and Mayank Mittal and Marco Hutter}, journal = {2024 IEEE International Conference on Robotics and Automation (ICRA)}, year = {2023}, month = {May}, } ``` ### License This code belongs to the Robotic Systems Lab, ETH Zurich. All right reserved **Authors: [Pascal Roth](https://github.com/pascal-roth)<br /> Maintainer: Pascal Roth, [email protected]** This repository contains research code, except that it changes often, and any fitness for a particular purpose is disclaimed.
3,457
Markdown
40.66265
172
0.74718
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/setup.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.matterport' python package.""" from setuptools import setup # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "trimesh", "PyQt5", "matplotlib>=3.5.0", "pandas", ] # Installation operation setup( name="omni-isaac-matterport", author="Pascal Roth", author_email="[email protected]", version="0.0.1", description="Extension to include Matterport 3D Datasets into Isaac (taken from https://niessner.github.io/Matterport/).", keywords=["robotics"], include_package_data=True, python_requires=">=3.7", install_requires=INSTALL_REQUIRES, packages=["omni.isaac.matterport"], classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7"], zip_safe=False, ) # EOF
967
Python
24.473684
126
0.688728
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/config/extension.toml
[package] version = "0.0.1" title = "Matterport extension" description="Extension to include Matterport 3D Datasets into Isaac" authors =["Pascal Roth"] repository = "https://github.com/leggedrobotics/omni_isaac_orbit" category = "robotics" keywords = ["kit", "robotics"] readme = "docs/README.md" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.orbit" = {} # Main python module this extension provides. [[python.module]] name = "omni.isaac.matterport" [[python.module]] name = "omni.isaac.matterport.scripts"
559
TOML
23.347825
68
0.710197
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/domains/__init__.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os DATA_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../../data")) from .matterport_importer import MatterportImporter from .matterport_raycast_camera import MatterportRayCasterCamera from .matterport_raycaster import MatterportRayCaster from .raycaster_cfg import MatterportRayCasterCfg __all__ = [ "MatterportRayCasterCamera", "MatterportImporter", "MatterportRayCaster", "MatterportRayCasterCfg", "DATA_DIR", ] # EoF
617
Python
23.719999
87
0.73906
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/domains/matterport_raycast_camera.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import os from typing import ClassVar, Sequence import carb import numpy as np import omni.isaac.orbit.utils.math as math_utils import pandas as pd import torch import trimesh import warp as wp from omni.isaac.matterport.domains import DATA_DIR from omni.isaac.orbit.sensors import RayCasterCamera, RayCasterCameraCfg from omni.isaac.orbit.utils.warp import raycast_mesh from tensordict import TensorDict class MatterportRayCasterCamera(RayCasterCamera): UNSUPPORTED_TYPES: ClassVar[dict] = { "rgb", "instance_id_segmentation", "instance_segmentation", "skeleton_data", "motion_vectors", "bounding_box_2d_tight", "bounding_box_2d_loose", "bounding_box_3d", } """Data types that are not supported by the ray-caster.""" face_id_category_mapping: ClassVar[dict] = {} """Mapping from face id to semantic category id.""" def __init__(self, cfg: RayCasterCameraCfg): # initialize base class super().__init__(cfg) def _check_supported_data_types(self, cfg: RayCasterCameraCfg): # check if there is any intersection in unsupported types # reason: we cannot obtain this data from simplified warp-based ray caster common_elements = set(cfg.data_types) & MatterportRayCasterCamera.UNSUPPORTED_TYPES if common_elements: raise ValueError( f"RayCasterCamera class does not support the following sensor types: {common_elements}." "\n\tThis is because these sensor types cannot be obtained in a fast way using ''warp''." "\n\tHint: If you need to work with these sensor types, we recommend using the USD camera" " interface from the omni.isaac.orbit.sensors.camera module." ) def _initialize_impl(self): super()._initialize_impl() # load categort id to class mapping (name and id of mpcat40 redcued class set) # More Information: https://github.com/niessner/Matterport/blob/master/data_organization.md#house_segmentations mapping = pd.read_csv(DATA_DIR + "/mappings/category_mapping.tsv", sep="\t") self.mapping_mpcat40 = torch.tensor(mapping["mpcat40index"].to_numpy(), device=self._device, dtype=torch.long) self._color_mapping() def _color_mapping(self): # load defined colors for mpcat40 mapping_40 = pd.read_csv(DATA_DIR + "/mappings/mpcat40.tsv", sep="\t") color = mapping_40["hex"].to_numpy() self.color = torch.tensor( [(int(color[i][1:3], 16), int(color[i][3:5], 16), int(color[i][5:7], 16)) for i in range(len(color))], device=self._device, dtype=torch.uint8, ) def _initialize_warp_meshes(self): # check if mesh is already loaded for mesh_prim_path in self.cfg.mesh_prim_paths: if ( mesh_prim_path in MatterportRayCasterCamera.meshes and mesh_prim_path in MatterportRayCasterCamera.face_id_category_mapping ): continue # find ply if os.path.isabs(mesh_prim_path): file_path = mesh_prim_path assert os.path.isfile(mesh_prim_path), f"No .ply file found under absolute path: {mesh_prim_path}" else: file_path = os.path.join(DATA_DIR, mesh_prim_path) assert os.path.isfile( file_path ), f"No .ply file found under relative path to extension data: {file_path}" # load ply curr_trimesh = trimesh.load(file_path) if mesh_prim_path not in MatterportRayCasterCamera.meshes: # Convert trimesh into wp mesh mesh_wp = wp.Mesh( points=wp.array(curr_trimesh.vertices.astype(np.float32), dtype=wp.vec3, device=self._device), indices=wp.array(curr_trimesh.faces.astype(np.int32).flatten(), dtype=int, device=self._device), ) # save mesh MatterportRayCasterCamera.meshes[mesh_prim_path] = mesh_wp if mesh_prim_path not in MatterportRayCasterCamera.face_id_category_mapping: # create mapping from face id to semantic categroy id # get raw face information faces_raw = curr_trimesh.metadata["_ply_raw"]["face"]["data"] carb.log_info(f"Raw face information of type {faces_raw.dtype}") # get face categories face_id_category_mapping = torch.tensor( [single_face[3] for single_face in faces_raw], device=self._device ) # save mapping MatterportRayCasterCamera.face_id_category_mapping[mesh_prim_path] = face_id_category_mapping def _update_buffers_impl(self, env_ids: Sequence[int]): """Fills the buffers of the sensor data.""" # increment frame count self._frame[env_ids] += 1 # compute poses from current view pos_w, quat_w = self._compute_camera_world_poses(env_ids) # update the data self._data.pos_w[env_ids] = pos_w self._data.quat_w_world[env_ids] = quat_w # note: full orientation is considered ray_starts_w = math_utils.quat_apply(quat_w.repeat(1, self.num_rays), self.ray_starts[env_ids]) ray_starts_w += pos_w.unsqueeze(1) ray_directions_w = math_utils.quat_apply(quat_w.repeat(1, self.num_rays), self.ray_directions[env_ids]) # ray cast and store the hits # TODO: Make ray-casting work for multiple meshes? # necessary for regular dictionaries. self.ray_hits_w, ray_depth, ray_normal, ray_face_ids = raycast_mesh( ray_starts_w, ray_directions_w, mesh=RayCasterCamera.meshes[self.cfg.mesh_prim_paths[0]], max_dist=self.cfg.max_distance, return_distance=any( [name in self.cfg.data_types for name in ["distance_to_image_plane", "distance_to_camera"]] ), return_normal="normals" in self.cfg.data_types, return_face_id="semantic_segmentation" in self.cfg.data_types, ) # update output buffers if "distance_to_image_plane" in self.cfg.data_types: # note: data is in camera frame so we only take the first component (z-axis of camera frame) distance_to_image_plane = ( math_utils.quat_apply( math_utils.quat_inv(quat_w).repeat(1, self.num_rays), (ray_depth[:, :, None] * ray_directions_w), ) )[:, :, 0] self._data.output["distance_to_image_plane"][env_ids] = distance_to_image_plane.view(-1, *self.image_shape) if "distance_to_camera" in self.cfg.data_types: self._data.output["distance_to_camera"][env_ids] = ray_depth.view(-1, *self.image_shape) if "normals" in self.cfg.data_types: self._data.output["normals"][env_ids] = ray_normal.view(-1, *self.image_shape, 3) if "semantic_segmentation" in self._data.output.keys(): # noqa: SIM118 # get the category index of the hit faces (category index from unreduced set = ~1600 classes) face_id = MatterportRayCasterCamera.face_id_category_mapping[self.cfg.mesh_prim_paths[0]][ ray_face_ids.flatten().type(torch.long) ] # map category index to reduced set face_id_mpcat40 = self.mapping_mpcat40[face_id.type(torch.long) - 1] # get the color of the face face_color = self.color[face_id_mpcat40] # reshape and transpose to get the correct orientation self._data.output["semantic_segmentation"][env_ids] = face_color.view(-1, *self.image_shape, 3) def _create_buffers(self): """Create the buffers to store data.""" # prepare drift self.drift = torch.zeros(self._view.count, 3, device=self.device) # create the data object # -- pose of the cameras self._data.pos_w = torch.zeros((self._view.count, 3), device=self._device) self._data.quat_w_world = torch.zeros((self._view.count, 4), device=self._device) # -- intrinsic matrix self._data.intrinsic_matrices = torch.zeros((self._view.count, 3, 3), device=self._device) self._data.intrinsic_matrices[:, 2, 2] = 1.0 self._data.image_shape = self.image_shape # -- output data # create the buffers to store the annotator data. self._data.output = TensorDict({}, batch_size=self._view.count, device=self.device) self._data.info = [{name: None for name in self.cfg.data_types}] * self._view.count for name in self.cfg.data_types: if name in ["distance_to_image_plane", "distance_to_camera"]: shape = (self.cfg.pattern_cfg.height, self.cfg.pattern_cfg.width) dtype = torch.float32 elif name in ["normals"]: shape = (self.cfg.pattern_cfg.height, self.cfg.pattern_cfg.width, 3) dtype = torch.float32 elif name in ["semantic_segmentation"]: shape = (self.cfg.pattern_cfg.height, self.cfg.pattern_cfg.width, 3) dtype = torch.uint8 else: raise ValueError(f"Unknown data type: {name}") # store the data self._data.output[name] = torch.zeros((self._view.count, *shape), dtype=dtype, device=self._device)
9,752
Python
46.808823
119
0.608901
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/domains/raycaster_cfg.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.sensors.ray_caster import RayCasterCfg from omni.isaac.orbit.utils import configclass from .matterport_raycaster import MatterportRayCaster @configclass class MatterportRayCasterCfg(RayCasterCfg): """Configuration for the ray-cast sensor for Matterport Environments.""" class_type = MatterportRayCaster """Name of the specific matterport ray caster class."""
539
Python
27.421051
76
0.779221
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/domains/matterport_importer.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins # python import os from typing import TYPE_CHECKING # omni import carb import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils # isaac-orbit import omni.isaac.orbit.sim as sim_utils from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.orbit.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.matterport.config import MatterportImporterCfg # omniverse from omni.isaac.core.utils import extensions extensions.enable_extension("omni.kit.asset_converter") import omni.kit.asset_converter as converter class MatterportConverter: def __init__(self, input_obj: str, context: converter.impl.AssetConverterContext) -> None: self._input_obj = input_obj self._context = context # setup converter self.task_manager = converter.extension.AssetImporterExtension() return async def convert_asset_to_usd(self) -> None: # get usd file path and create directory base_path, _ = os.path.splitext(self._input_obj) # set task task = self.task_manager.create_converter_task( self._input_obj, base_path + ".usd", asset_converter_context=self._context ) success = await task.wait_until_finished() # print error if not success: detailed_status_code = task.get_status() detailed_status_error_string = task.get_error_message() carb.log_error( f"Failed to convert {self._input_obj} to {base_path + '.usd'} " f"with status {detailed_status_code} and error {detailed_status_error_string}" ) return class MatterportImporter(TerrainImporter): """ Default stairs environment for testing """ cfg: MatterportImporterCfg def __init__(self, cfg: MatterportImporterCfg) -> None: """ :param """ # store inputs self.cfg = cfg self.device = SimulationContext.instance().device # create a dict of meshes self.meshes = dict() self.warp_meshes = dict() self.env_origins = None self.terrain_origins = None # import the world if not self.cfg.terrain_type == "matterport": raise ValueError( "MatterportImporter can only import 'matterport' data. Given terrain type " f"'{self.cfg.terrain_type}'is not supported." ) if builtins.ISAAC_LAUNCHED_FROM_TERMINAL is False: self.load_world() else: carb.log_info("[INFO]: Loading in extension mode requires calling 'load_world_async'") if isinstance(self.cfg.num_envs, int): self.configure_env_origins() # set initial state of debug visualization self.set_debug_vis(self.cfg.debug_vis) # Converter self.converter: MatterportConverter = MatterportConverter(self.cfg.obj_filepath, self.cfg.asset_converter) return async def load_world_async(self) -> None: """Function called when clicking load button""" # create world await self.load_matterport() # update stage for any remaining process. await stage_utils.update_stage_async() # Now we are ready! carb.log_info("[INFO]: Setup complete...") return def load_world(self) -> None: """Function called when clicking load button""" # create world self.load_matterport_sync() # update stage for any remaining process. stage_utils.update_stage() # Now we are ready! carb.log_info("[INFO]: Setup complete...") return async def load_matterport(self) -> None: _, ext = os.path.splitext(self.cfg.obj_filepath) # if obj mesh --> convert to usd if ext == ".obj": await self.converter.convert_asset_to_usd() # add mesh to stage self.load_matterport_sync() def load_matterport_sync(self) -> None: base_path, _ = os.path.splitext(self.cfg.obj_filepath) assert os.path.exists(base_path + ".usd"), ( "Matterport load sync can only handle '.usd' files not obj files. " "Please use the async function to convert the obj file to usd first (accessed over the extension in the GUI)" ) self._xform_prim = prim_utils.create_prim( prim_path=self.cfg.prim_path + "/Matterport", translation=(0.0, 0.0, 0.0), usd_path=base_path + ".usd" ) # apply collider properties collider_cfg = sim_utils.CollisionPropertiesCfg(collision_enabled=True) sim_utils.define_collision_properties(self._xform_prim.GetPrimPath(), collider_cfg) # create physics material physics_material_cfg: sim_utils.RigidBodyMaterialCfg = self.cfg.physics_material # spawn the material physics_material_cfg.func(f"{self.cfg.prim_path}/physicsMaterial", self.cfg.physics_material) sim_utils.bind_physics_material(self._xform_prim.GetPrimPath(), f"{self.cfg.prim_path}/physicsMaterial") # add colliders and physics material if self.cfg.groundplane: ground_plane_cfg = sim_utils.GroundPlaneCfg(physics_material=self.cfg.physics_material) ground_plane = ground_plane_cfg.func("/World/GroundPlane", ground_plane_cfg) ground_plane.visible = False return
5,626
Python
33.734568
121
0.640775
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/domains/matterport_raycaster.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import os from typing import TYPE_CHECKING import numpy as np import trimesh import warp as wp from omni.isaac.matterport.domains import DATA_DIR from omni.isaac.orbit.sensors.ray_caster import RayCaster if TYPE_CHECKING: from .raycaster_cfg import MatterportRayCasterCfg class MatterportRayCaster(RayCaster): """A ray-casting sensor for matterport meshes. The ray-caster uses a set of rays to detect collisions with meshes in the scene. The rays are defined in the sensor's local coordinate frame. The sensor can be configured to ray-cast against a set of meshes with a given ray pattern. The meshes are parsed from the list of primitive paths provided in the configuration. These are then converted to warp meshes and stored in the `warp_meshes` list. The ray-caster then ray-casts against these warp meshes using the ray pattern provided in the configuration. .. note:: Currently, only static meshes are supported. Extending the warp mesh to support dynamic meshes is a work in progress. """ cfg: MatterportRayCasterCfg """The configuration parameters.""" def __init__(self, cfg: MatterportRayCasterCfg): """Initializes the ray-caster object. Args: cfg (MatterportRayCasterCfg): The configuration parameters. """ # initialize base class super().__init__(cfg) def _initialize_warp_meshes(self): # check if mesh is already loaded for mesh_prim_path in self.cfg.mesh_prim_paths: if mesh_prim_path in MatterportRayCaster.meshes: continue # find ply if os.path.isabs(mesh_prim_path): file_path = mesh_prim_path assert os.path.isfile(mesh_prim_path), f"No .ply file found under absolute path: {mesh_prim_path}" else: file_path = os.path.join(DATA_DIR, mesh_prim_path) assert os.path.isfile( file_path ), f"No .ply file found under relative path to extension data: {file_path}" # load ply curr_trimesh = trimesh.load(file_path) # Convert trimesh into wp mesh mesh_wp = wp.Mesh( points=wp.array(curr_trimesh.vertices.astype(np.float32), dtype=wp.vec3, device=self._device), indices=wp.array(curr_trimesh.faces.astype(np.int32).flatten(), dtype=int, device=self._device), ) # save mesh MatterportRayCaster.meshes[mesh_prim_path] = mesh_wp
2,745
Python
35.131578
114
0.654281
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/scripts/matterport_domains.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from typing import Dict import carb import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import omni import torch from omni.isaac.matterport.domains.matterport_raycast_camera import ( MatterportRayCasterCamera, ) from omni.isaac.orbit.sensors.camera import CameraData from omni.isaac.orbit.sensors.ray_caster import RayCasterCfg from omni.isaac.orbit.sim import SimulationContext from .ext_cfg import MatterportExtConfig mpl.use("Qt5Agg") class MatterportDomains: """ Load Matterport3D Semantics and make them available to Isaac Sim """ def __init__(self, cfg: MatterportExtConfig): """ Initialize MatterportSemWarp Args: path (str): path to Matterport3D Semantics """ self._cfg: MatterportExtConfig = cfg # setup camera list self.cameras: Dict[str, MatterportRayCasterCamera] = {} # setup camera visualization self.figures = {} # internal parameters self.callback_set = False self.vis_init = False self.prev_position = torch.zeros(3) self.prev_orientation = torch.zeros(4) # add callbacks for stage play/stop physx_interface = omni.physx.acquire_physx_interface() self._initialize_handle = physx_interface.get_simulation_event_stream_v2().create_subscription_to_pop_by_type( int(omni.physx.bindings._physx.SimulationEvent.RESUMED), self._initialize_callback ) self._invalidate_initialize_handle = ( physx_interface.get_simulation_event_stream_v2().create_subscription_to_pop_by_type( int(omni.physx.bindings._physx.SimulationEvent.STOPPED), self._invalidate_initialize_callback ) ) return ## # Public Methods ## def register_camera(self, cfg: RayCasterCfg): """ Register a camera to the MatterportSemWarp """ # append to camera list self.cameras[cfg.prim_path] = MatterportRayCasterCamera(cfg) ## # Callback Setup ## def _invalidate_initialize_callback(self, val): if self.callback_set: self._sim.remove_render_callback("matterport_update") self.callback_set = False def _initialize_callback(self, val): if self.callback_set: return # check for camera if len(self.cameras) == 0: carb.log_warn("No cameras added! Add cameras first, then enable the callback!") return # get SimulationContext if SimulationContext.instance(): self._sim: SimulationContext = SimulationContext.instance() else: carb.log_error("No Simulation Context found! Matterport Callback not attached!") # add callback self._sim.add_render_callback("matterport_update", callback_fn=self._update) self.callback_set = True ## # Callback Function ## def _update(self, dt: float): for camera in self.cameras.values(): camera.update(dt.payload["dt"]) if self._cfg.visualize: vis_prim = self._cfg.visualize_prim if self._cfg.visualize_prim else list(self.cameras.keys())[0] if torch.all(self.cameras[vis_prim].data.pos_w.cpu() == self.prev_position) and torch.all( self.cameras[vis_prim].data.quat_w_world.cpu() == self.prev_orientation ): return self._update_visualization(self.cameras[vis_prim].data) self.prev_position = self.cameras[vis_prim].data.pos_w.clone().cpu() self.prev_orientation = self.cameras[vis_prim].data.quat_w_world.clone().cpu() ## # Private Methods (Helper Functions) ## # Visualization helpers ### def _init_visualization(self, data: CameraData): """Initializes the visualization plane.""" # init depth figure self.n_bins = 500 # Number of bins in the colormap self.color_array = mpl.colormaps["gist_rainbow"](np.linspace(0, 1, self.n_bins)) # Colormap if "semantic_segmentation" in data.output.keys(): # noqa: SIM118 # init semantics figure fg_sem = plt.figure() ax_sem = fg_sem.gca() ax_sem.set_title("Semantic Segmentation") img_sem = ax_sem.imshow(data.output["semantic_segmentation"][0].cpu().numpy()) self.figures["semantics"] = {"fig": fg_sem, "axis": ax_sem, "img": img_sem} if "distance_to_image_plane" in data.output.keys(): # noqa: SIM118 # init semantics figure fg_depth = plt.figure() ax_depth = fg_depth.gca() ax_depth.set_title("Distance To Image Plane") img_depth = ax_depth.imshow(self.convert_depth_to_color(data.output["distance_to_image_plane"][0])) self.figures["depth"] = {"fig": fg_depth, "axis": ax_depth, "img": img_depth} if len(self.figures) > 0: plt.ion() # update flag self.vis_init = True def _update_visualization(self, data: CameraData) -> None: """ Updates the visualization plane. """ if self.vis_init is False: self._init_visualization(data) else: # SEMANTICS if "semantic_segmentation" in data.output.keys(): # noqa: SIM118 self.figures["semantics"]["img"].set_array(data.output["semantic_segmentation"][0].cpu().numpy()) self.figures["semantics"]["fig"].canvas.draw() self.figures["semantics"]["fig"].canvas.flush_events() # DEPTH if "distance_to_image_plane" in data.output.keys(): # noqa: SIM118 # cam_data.img_depth.set_array(cam_data.render_depth) self.figures["depth"]["img"].set_array( self.convert_depth_to_color(data.output["distance_to_image_plane"][0]) ) self.figures["depth"]["fig"].canvas.draw() self.figures["depth"]["fig"].canvas.flush_events() plt.pause(1e-6) def convert_depth_to_color(self, depth_img): depth_img = depth_img.cpu().numpy() depth_img[~np.isfinite(depth_img)] = depth_img.max() depth_img_flattend = np.clip(depth_img.flatten(), a_min=0, a_max=depth_img.max()) depth_img_flattend = np.round(depth_img_flattend / depth_img.max() * (self.n_bins - 1)).astype(np.int32) depth_colors = self.color_array[depth_img_flattend] depth_colors = depth_colors.reshape(depth_img.shape[0], depth_img.shape[1], 4) return depth_colors
6,788
Python
35.5
118
0.610784
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/scripts/ext_cfg.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python from dataclasses import dataclass from omni.isaac.matterport.config.importer_cfg import MatterportImporterCfg @dataclass class MatterportExtConfig: # config classes importer: MatterportImporterCfg = MatterportImporterCfg() # semantic and depth information (can be changed individually for each camera) visualize: bool = False visualize_prim: str = None # set value functions def set_friction_dynamic(self, value: float): self.importer.physics_material.dynamic_friction = value def set_friction_static(self, value: float): self.importer.physics_material.static_friction = value def set_restitution(self, value: float): self.importer.physics_material.restitution = value def set_friction_combine_mode(self, value: int): self.importer.physics_material.friction_combine_mode = value def set_restitution_combine_mode(self, value: int): self.importer.physics_material.restitution_combine_mode = value def set_improved_patch_friction(self, value: bool): self.importer.physics_material.improve_patch_friction = value def set_obj_filepath(self, value: str): self.importer.obj_filepath = value def set_prim_path(self, value: str): self.importer.prim_path = value def set_visualize(self, value: bool): self.visualize = value def set_visualization_prim(self, value: str): self.visualize_prim = value
1,596
Python
30.313725
82
0.716165
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/scripts/__init__.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .matterport_ext import MatterPortExtension __all__ = ["MatterPortExtension"]
225
Python
21.599998
53
0.746667
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/scripts/matterport_ext.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import asyncio import gc # python import os import carb # omni import omni import omni.client import omni.ext import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils # isaac-core import omni.ui as ui from omni.isaac.matterport.domains import MatterportImporter from omni.isaac.orbit.sensors.ray_caster import RayCasterCfg, patterns from omni.isaac.orbit.sim import SimulationCfg, SimulationContext # omni-isaac-ui from omni.isaac.ui.ui_utils import ( btn_builder, cb_builder, dropdown_builder, float_builder, get_style, int_builder, setup_ui_headers, str_builder, ) # omni-isaac-matterport from .ext_cfg import MatterportExtConfig from .matterport_domains import MatterportDomains EXTENSION_NAME = "Matterport Importer" def is_mesh_file(path: str) -> bool: _, ext = os.path.splitext(path.lower()) return ext in [".obj", ".usd"] def is_ply_file(path: str) -> bool: _, ext = os.path.splitext(path.lower()) return ext in [".ply"] def on_filter_obj_item(item) -> bool: if not item or item.is_folder: return not (item.name == "Omniverse" or item.path.startswith("omniverse:")) return is_mesh_file(item.path) def on_filter_ply_item(item) -> bool: if not item or item.is_folder: return not (item.name == "Omniverse" or item.path.startswith("omniverse:")) return is_ply_file(item.path) class MatterPortExtension(omni.ext.IExt): """Extension to load Matterport 3D Environments into Isaac Sim""" def on_startup(self, ext_id): self._ext_id = ext_id self._usd_context = omni.usd.get_context() self._window = omni.ui.Window( EXTENSION_NAME, width=400, height=500, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) # init config class and get path to extension self._config = MatterportExtConfig() self._extension_path = omni.kit.app.get_app().get_extension_manager().get_extension_path(ext_id) # set additional parameters self._input_fields: dict = {} # dictionary to store values of buttion, float fields, etc. self.domains: MatterportDomains = None # callback class for semantic rendering self.ply_proposal: str = "" # build ui self.build_ui() return ## # UI Build functions ## def build_ui(self, build_cam: bool = False, build_viz: bool = False): with self._window.frame: with ui.VStack(spacing=5, height=0): self._build_info_ui() self._build_import_ui() if build_cam: self._build_camera_ui() if build_viz: self._build_viz_ui() async def dock_window(): await omni.kit.app.get_app().next_update_async() def dock(space, name, location, pos=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, pos) return window tgt = ui.Workspace.get_window("Viewport") dock(tgt, EXTENSION_NAME, omni.ui.DockPosition.LEFT, 0.33) await omni.kit.app.get_app().next_update_async() self._task = asyncio.ensure_future(dock_window()) def _build_info_ui(self): title = EXTENSION_NAME doc_link = "https://github.com/leggedrobotics/omni_isaac_orbit" overview = "This utility is used to import Matterport3D Environments into Isaac Sim. " overview += "The environment and additional information are available at https://github.com/niessner/Matterport" overview += "\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) return def _build_import_ui(self): frame = ui.CollapsableFrame( title="Import Dataset", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5, height=0): # PhysicsMaterial self._input_fields["friction_dynamic"] = float_builder( "Dynamic Friction", default_val=self._config.importer.physics_material.dynamic_friction, tooltip=f"Sets the dynamic friction of the physics material (default: {self._config.importer.physics_material.dynamic_friction})", ) self._input_fields["friction_dynamic"].add_value_changed_fn( lambda m, config=self._config: config.set_friction_dynamic(m.get_value_as_float()) ) self._input_fields["friction_static"] = float_builder( "Static Friction", default_val=self._config.importer.physics_material.static_friction, tooltip=f"Sets the static friction of the physics material (default: {self._config.importer.physics_material.static_friction})", ) self._input_fields["friction_static"].add_value_changed_fn( lambda m, config=self._config: config.set_friction_static(m.get_value_as_float()) ) self._input_fields["restitution"] = float_builder( "Restitution", default_val=self._config.importer.physics_material.restitution, tooltip=f"Sets the restitution of the physics material (default: {self._config.importer.physics_material.restitution})", ) self._input_fields["restitution"].add_value_changed_fn( lambda m, config=self._config: config.set_restitution(m.get_value_as_float()) ) friction_restitution_options = ["average", "min", "multiply", "max"] dropdown_builder( "Friction Combine Mode", items=friction_restitution_options, default_val=friction_restitution_options.index( self._config.importer.physics_material.friction_combine_mode ), on_clicked_fn=lambda mode_str, config=self._config: config.set_friction_combine_mode(mode_str), tooltip=f"Sets the friction combine mode of the physics material (default: {self._config.importer.physics_material.friction_combine_mode})", ) dropdown_builder( "Restitution Combine Mode", items=friction_restitution_options, default_val=friction_restitution_options.index( self._config.importer.physics_material.restitution_combine_mode ), on_clicked_fn=lambda mode_str, config=self._config: config.set_restitution_combine_mode(mode_str), tooltip=f"Sets the friction combine mode of the physics material (default: {self._config.importer.physics_material.restitution_combine_mode})", ) cb_builder( label="Improved Patch Friction", tooltip=f"Sets the improved patch friction of the physics material (default: {self._config.importer.physics_material.improve_patch_friction})", on_clicked_fn=lambda m, config=self._config: config.set_improved_patch_friction(m), default_val=self._config.importer.physics_material.improve_patch_friction, ) # Set prim path for environment self._input_fields["prim_path"] = str_builder( "Prim Path of the Environment", tooltip="Prim path of the environment", default_val=self._config.importer.prim_path, ) self._input_fields["prim_path"].add_value_changed_fn( lambda m, config=self._config: config.set_prim_path(m.get_value_as_string()) ) # read import location def check_file_type(model=None): path = model.get_value_as_string() if is_mesh_file(path): self._input_fields["import_btn"].enabled = True self._make_ply_proposal(path) self._config.set_obj_filepath(path) else: self._input_fields["import_btn"].enabled = False carb.log_warn(f"Invalid path to .obj file: {path}") kwargs = { "label": "Input File", "default_val": self._config.importer.obj_filepath, "tooltip": "Click the Folder Icon to Set Filepath", "use_folder_picker": True, "item_filter_fn": on_filter_obj_item, "bookmark_label": "Included Matterport3D meshs", "bookmark_path": f"{self._extension_path}/data/mesh", "folder_dialog_title": "Select .obj File", "folder_button_title": "*.obj, *.usd", } self._input_fields["input_file"] = str_builder(**kwargs) self._input_fields["input_file"].add_value_changed_fn(check_file_type) self._input_fields["import_btn"] = btn_builder( "Import", text="Import", on_clicked_fn=self._start_loading ) self._input_fields["import_btn"].enabled = False return def _build_camera_ui(self): frame = ui.CollapsableFrame( title="Add Camera", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5, height=0): # get import location and save directory kwargs = { "label": "Input ply File", "default_val": self.ply_proposal, "tooltip": "Click the Folder Icon to Set Filepath", "use_folder_picker": True, "item_filter_fn": on_filter_ply_item, "bookmark_label": "Included Matterport3D Point-Cloud with semantic labels", "bookmark_path": f"{self._extension_path}/data/mesh", "folder_dialog_title": "Select .ply Point-Cloud File", "folder_button_title": "Select .ply Point-Cloud", } self._input_fields["input_ply_file"] = str_builder(**kwargs) # data fields parameters self._input_fields["camera_semantics"] = cb_builder( label="Enable Semantics", tooltip="Enable access to the semantics information of the mesh (default: True)", default_val=True, ) self._input_fields["camera_depth"] = cb_builder( label="Enable Distance to Camera Frame", tooltip="Enable access to the depth information of the mesh - no additional compute effort (default: True)", default_val=True, ) # add camera sensor for which semantics and depth should be rendered kwargs = { "label": "Camera Prim Path", "type": "stringfield", "default_val": "", "tooltip": "Enter Camera Prim Path", "use_folder_picker": False, } self._input_fields["camera_prim"] = str_builder(**kwargs) self._input_fields["camera_prim"].add_value_changed_fn(self.activate_load_camera) self._input_fields["cam_height"] = int_builder( "Camera Height in Pixels", default_val=480, tooltip="Set the height of the camera image plane in pixels (default: 480)", ) self._input_fields["cam_width"] = int_builder( "Camera Width in Pixels", default_val=640, tooltip="Set the width of the camera image plane in pixels (default: 640)", ) self._input_fields["load_camera"] = btn_builder( "Add Camera", text="Add Camera", on_clicked_fn=self._register_camera ) self._input_fields["load_camera"].enabled = False return def _build_viz_ui(self): frame = ui.CollapsableFrame( title="Visualization", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5, height=0): cb_builder( label="Visualization", tooltip=f"Visualize Semantics and/or Depth (default: {self._config.visualize})", on_clicked_fn=lambda m, config=self._config: config.set_visualize(m), default_val=self._config.visualize, ) dropdown_builder( "Shown Camera Prim", items=list(self.domains.cameras.keys()), default_val=0, on_clicked_fn=lambda mode_str, config=self._config: config.set_visualization_prim(mode_str), tooltip="Select the camera prim shown in the visualization window", ) ## # Shutdown Helpers ## def on_shutdown(self): if self._window: self._window = None gc.collect() stage_utils.clear_stage() if self.domains is not None and self.domains.callback_set: self.domains.set_domain_callback(True) ## # Path Helpers ## def _make_ply_proposal(self, path: str) -> None: """use default matterport datastructure to make proposal about point-cloud file - "env_id" - matterport_mesh - "id_nbr" - "id_nbr".obj - house_segmentations - "env_id".ply """ file_dir, file_name = os.path.split(path) ply_dir = os.path.join(file_dir, "../..", "house_segmentations") env_id = file_dir.split("/")[-3] try: ply_file = os.path.join(ply_dir, f"{env_id}.ply") os.path.isfile(ply_file) carb.log_verbose(f"Found ply file: {ply_file}") self.ply_proposal = ply_file except FileNotFoundError: carb.log_verbose("No ply file found in default matterport datastructure") ## # Load Mesh and Point-Cloud ## async def load_matterport(self): # simulation settings # check if simulation context was created earlier or not. if SimulationContext.instance(): SimulationContext.clear_instance() carb.log_warn("SimulationContext already loaded. Will clear now and init default SimulationContext") # create new simulation context self.sim = SimulationContext(SimulationCfg()) # initialize simulation await self.sim.initialize_simulation_context_async() # load matterport self._matterport = MatterportImporter(self._config.importer) await self._matterport.load_world_async() # reset the simulator # note: this plays the simulator which allows setting up all the physics handles. await self.sim.reset_async() await self.sim.pause_async() def _start_loading(self): path = self._config.importer.obj_filepath if not path: return # find obj, usd file if os.path.isabs(path): file_path = path assert os.path.isfile(file_path), f"No .obj or .usd file found under absolute path: {file_path}" else: file_path = os.path.join(self._extension_path, "data", path) assert os.path.isfile( file_path ), f"No .obj or .usd file found under relative path to extension data: {file_path}" self._config.set_obj_filepath(file_path) # update config carb.log_verbose("MatterPort 3D Mesh found, start loading...") asyncio.ensure_future(self.load_matterport()) carb.log_info("MatterPort 3D Mesh loaded") self.build_ui(build_cam=True) self._input_fields["import_btn"].enabled = False ## # Register Cameras ## def activate_load_camera(self, val): self._input_fields["load_camera"].enabled = True def _register_camera(self): ply_filepath = self._input_fields["input_ply_file"].get_value_as_string() if not is_ply_file(ply_filepath): carb.log_error("Given ply path is not valid! No camera created!") camera_path = self._input_fields["camera_prim"].get_value_as_string() if not prim_utils.is_prim_path_valid(camera_path): # create prim if no prim found prim_utils.create_prim(camera_path, "Xform") camera_semantics = self._input_fields["camera_semantics"].get_value_as_bool() camera_depth = self._input_fields["camera_depth"].get_value_as_bool() camera_width = self._input_fields["cam_width"].get_value_as_int() camera_height = self._input_fields["cam_height"].get_value_as_int() # Setup camera sensor data_types = [] if camera_semantics: data_types += ["semantic_segmentation"] if camera_depth: data_types += ["distance_to_image_plane"] camera_pattern_cfg = patterns.PinholeCameraPatternCfg( focal_length=24.0, horizontal_aperture=20.955, height=camera_height, width=camera_width, data_types=data_types, ) camera_cfg = RayCasterCfg( prim_path=camera_path, mesh_prim_paths=[ply_filepath], update_period=0, offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 0.0), rot=(1.0, 0.0, 0.0, 0.0)), debug_vis=True, pattern_cfg=camera_pattern_cfg, ) if self.domains is None: self.domains = MatterportDomains(self._config) # register camera self.domains.register_camera(camera_cfg) # initialize physics handles self.sim.reset() # allow for tasks self.build_ui(build_cam=True, build_viz=True) return
19,441
Python
40.190678
163
0.569621
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/config/importer_cfg.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING from omni.isaac.core.utils import extensions from omni.isaac.matterport.domains import MatterportImporter from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from typing_extensions import Literal extensions.enable_extension("omni.kit.asset_converter") from omni.kit.asset_converter.impl import AssetConverterContext # NOTE: hopefully will be soon changed to dataclass, then initialization can be improved asset_converter_cfg: AssetConverterContext = AssetConverterContext() asset_converter_cfg.ignore_materials = False # Don't import/export materials asset_converter_cfg.ignore_animations = False # Don't import/export animations asset_converter_cfg.ignore_camera = False # Don't import/export cameras asset_converter_cfg.ignore_light = False # Don't import/export lights asset_converter_cfg.single_mesh = False # By default, instanced props will be export as single USD for reference. If # this flag is true, it will export all props into the same USD without instancing. asset_converter_cfg.smooth_normals = True # Smoothing normals, which is only for assimp backend. asset_converter_cfg.export_preview_surface = False # Imports material as UsdPreviewSurface instead of MDL for USD export asset_converter_cfg.use_meter_as_world_unit = True # Sets world units to meters, this will also scale asset if it's centimeters model. asset_converter_cfg.create_world_as_default_root_prim = True # Creates /World as the root prim for Kit needs. asset_converter_cfg.embed_textures = True # Embedding textures into output. This is only enabled for FBX and glTF export. asset_converter_cfg.convert_fbx_to_y_up = False # Always use Y-up for fbx import. asset_converter_cfg.convert_fbx_to_z_up = True # Always use Z-up for fbx import. asset_converter_cfg.keep_all_materials = False # If it's to remove non-referenced materials. asset_converter_cfg.merge_all_meshes = False # Merges all meshes to single one if it can. asset_converter_cfg.use_double_precision_to_usd_transform_op = False # Uses double precision for all transform ops. asset_converter_cfg.ignore_pivots = False # Don't export pivots if assets support that. asset_converter_cfg.disabling_instancing = False # Don't export instancing assets with instanceable flag. asset_converter_cfg.export_hidden_props = False # By default, only visible props will be exported from USD exporter. asset_converter_cfg.baking_scales = False # Only for FBX. It's to bake scales into meshes. @configclass class MatterportImporterCfg(TerrainImporterCfg): class_type: type = MatterportImporter """The class name of the terrain importer.""" terrain_type: Literal["matterport"] = "matterport" """The type of terrain to generate. Defaults to "matterport". """ prim_path: str = "/World/Matterport" """The absolute path of the Matterport Environment prim. All sub-terrains are imported relative to this prim path. """ obj_filepath: str = MISSING asset_converter: AssetConverterContext = asset_converter_cfg groundplane: bool = True
3,241
Python
38.536585
88
0.779081
pascal-roth/orbit_envs/extensions/omni.isaac.matterport/omni/isaac/matterport/config/__init__.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .importer_cfg import AssetConverterContext, MatterportImporterCfg __all__ = ["MatterportImporterCfg", "AssetConverterContext"]
275
Python
26.599997
70
0.770909
pascal-roth/orbit_envs/extensions/omni.isaac.carla/setup.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.carla' python package.""" from setuptools import setup # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "opencv-python-headless", "PyQt5", ] # Installation operation setup( name="omni-isaac-carla", author="Pascal Roth", author_email="[email protected]", version="0.0.1", description="Extension to include 3D Datasets from the Carla Simulator.", keywords=["robotics"], include_package_data=True, python_requires=">=3.7", install_requires=INSTALL_REQUIRES, packages=["omni.isaac.carla"], classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7"], zip_safe=False, )
872
Python
24.67647
89
0.692661
pascal-roth/orbit_envs/extensions/omni.isaac.carla/config/extension.toml
[package] version = "0.0.1" title = "CARLA extension" description="Extension to include 3D Datasets from the Carla Simulator." authors =["Pascal Roth"] repository = "https://gitlab-master.nvidia.com/mmittal/omni_isaac_orbit" category = "robotics" keywords = ["kit", "robotics"] readme = "docs/README.md" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.orbit" = {} "omni.isaac.anymal" = {} # Main python module this extension provides. [[python.module]] name = "omni.isaac.carla" [[python.module]] name = "omni.isaac.carla.scripts"
580
TOML
23.208332
72
0.696552
pascal-roth/orbit_envs/extensions/omni.isaac.carla/omni/isaac/carla/scripts/__init__.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .loader import CarlaLoader __all__ = ["CarlaLoader"] # EoF
208
Python
16.416665
53
0.711538
pascal-roth/orbit_envs/extensions/omni.isaac.carla/omni/isaac/carla/scripts/loader.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import os from typing import List, Tuple # omniverse import carb import omni import omni.isaac.core.utils.prims as prim_utils import omni.isaac.debug_draw._debug_draw as omni_debug_draw import scipy.spatial.transform as tf import yaml # isaac-carla from omni.isaac.carla.configs import CarlaLoaderConfig # isaac-core from omni.isaac.core.materials import PhysicsMaterial from omni.isaac.core.objects.ground_plane import GroundPlane from omni.isaac.core.prims import GeometryPrim from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.semantics import add_update_semantics, remove_all_semantics from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR # isaac-orbit from omni.isaac.orbit.utils.configclass import class_to_dict from pxr import Gf, PhysxSchema, Usd class CarlaLoader: debug: bool = False def __init__(self, cfg: CarlaLoaderConfig) -> None: self._cfg = cfg # Load kit helper self.sim = SimulationContext( stage_units_in_meters=1.0, physics_dt=self._cfg.sim_cfg.dt, rendering_dt=self._cfg.sim_cfg.dt * self._cfg.sim_cfg.substeps, backend="torch", sim_params=class_to_dict(self._cfg.sim_cfg.physx), device=self._cfg.sim_cfg.device, ) # Set main camera set_camera_view([20 / self._cfg.scale, 20 / self._cfg.scale, 20 / self._cfg.scale], [0.0, 0.0, 0.0]) # Acquire draw interface self.draw_interface = omni_debug_draw.acquire_debug_draw_interface() self.material: PhysicsMaterial = None return def load(self) -> None: """Load the scene.""" # design scene assert os.path.isfile(self._cfg.usd_path), f"USD File not found: {self._cfg.usd_path}" self._design_scene() self.sim.reset() # modify mesh if self._cfg.cw_config_file: self._multiply_crosswalks() if self._cfg.people_config_file: self._insert_people() if self._cfg.vehicle_config_file: self._insert_vehicles() # assign semantic labels if self._cfg.sem_mesh_to_class_map: self._add_semantics() return """ Scene Helper Functions """ def _design_scene(self): """Add prims to the scene.""" self._xform_prim = prim_utils.create_prim( prim_path=self._cfg.prim_path, translation=(0.0, 0.0, 0.0), usd_path=self._cfg.usd_path, scale=(self._cfg.scale, self._cfg.scale, self._cfg.scale), ) # physics material self.material = PhysicsMaterial( "/World/PhysicsMaterial", static_friction=0.7, dynamic_friction=0.7, restitution=0 ) # enable patch-friction: yields better results! physx_material_api = PhysxSchema.PhysxMaterialAPI.Apply(self.material._prim) physx_material_api.CreateImprovePatchFrictionAttr().Set(True) physx_material_api.CreateFrictionCombineModeAttr().Set("max") physx_material_api.CreateRestitutionCombineModeAttr().Set("max") # assign each submesh it's own geometry prim --> important for raytracing to be able to identify the submesh submeshes = prim_utils.get_prim_children(self._xform_prim)[1].GetAllChildren() for submesh in submeshes: submesh_path = submesh.GetPath().pathString # create geometry prim GeometryPrim( prim_path=submesh_path, name="collision", position=None, orientation=None, collision=True, ).apply_physics_material(self.material) # physx_utils.setCollider(submesh, approximationShape="None") # "None" will use the base triangle mesh if available # Lights-1 prim_utils.create_prim( "/World/Light/GreySphere", "SphereLight", translation=(45 / self._cfg.scale, 100 / self._cfg.scale, 100 / self._cfg.scale), attributes={"radius": 10, "intensity": 30000.0, "color": (0.75, 0.75, 0.75)}, ) # Lights-2 prim_utils.create_prim( "/World/Light/WhiteSphere", "SphereLight", translation=(100 / self._cfg.scale, 100 / self._cfg.scale, 100 / self._cfg.scale), attributes={"radius": 10, "intensity": 30000.0, "color": (1.0, 1.0, 1.0)}, ) if self._cfg.axis_up == "Y" or self._cfg.axis_up == "y": world_prim = prim_utils.get_prim_at_path(self._cfg.prim_path) rot_quat = tf.Rotation.from_euler("XYZ", [90, 90, 0], degrees=True).as_quat() gf_quat = Gf.Quatf() gf_quat.real = rot_quat[3] gf_quat.imaginary = Gf.Vec3f(list(rot_quat[:3])) world_prim.GetAttribute("xformOp:orient").Set(gf_quat) if self._cfg.groundplane: _ = GroundPlane("/World/GroundPlane", z_position=0.0, physics_material=self.material, visible=False) return """ Assign Semantic Labels """ def _add_semantics(self): # remove all previous semantic labels remove_all_semantics(prim_utils.get_prim_at_path(self._cfg.prim_path + self._cfg.suffix), recursive=True) # get mesh prims mesh_prims, mesh_prims_name = self.get_mesh_prims(self._cfg.prim_path + self._cfg.suffix) carb.log_info(f"Total of {len(mesh_prims)} meshes in the scene, start assigning semantic class ...") # mapping from prim name to class with open(self._cfg.sem_mesh_to_class_map) as file: class_keywords = yaml.safe_load(file) # make all the string lower case mesh_prims_name = [mesh_prim_single.lower() for mesh_prim_single in mesh_prims_name] keywords_class_mapping_lower = { key: [value_single.lower() for value_single in value] for key, value in class_keywords.items() } # assign class to mesh in ISAAC def recursive_semUpdate(prim, sem_class_name: str, update_submesh: bool) -> bool: # Necessary for Park Mesh # FIXME: include all meshes leads to OgnSdStageInstanceMapping does not support more than 65535 semantic entities (2718824 requested) error since entities are restricted to int16 if ( prim.GetName() == "HierarchicalInstancedStaticMesh" ): # or "FoliageInstancedStaticMeshComponent" in prim.GetName(): add_update_semantics(prim, sem_class_name) update_submesh = True children = prim.GetChildren() if len(children) > 0: for child in children: update_submesh = recursive_semUpdate(child, sem_class_name, update_submesh) return update_submesh def recursive_meshInvestigator(mesh_idx, mesh_name, mesh_prim_list) -> bool: success = False for class_name, keywords in keywords_class_mapping_lower.items(): if any([keyword in mesh_name for keyword in keywords]): update_submesh = recursive_semUpdate(mesh_prim_list[mesh_idx], class_name, False) if not update_submesh: add_update_semantics(mesh_prim_list[mesh_idx], class_name) success = True break if not success: success_child = [] mesh_prims_children, mesh_prims_name_children = self.get_mesh_prims( mesh_prim_list[mesh_idx].GetPrimPath().pathString ) mesh_prims_name_children = [mesh_prim_single.lower() for mesh_prim_single in mesh_prims_name_children] for mesh_idx_child, mesh_name_child in enumerate(mesh_prims_name_children): success_child.append( recursive_meshInvestigator(mesh_idx_child, mesh_name_child, mesh_prims_children) ) success = any(success_child) return success mesh_list = [] for mesh_idx, mesh_name in enumerate(mesh_prims_name): success = recursive_meshInvestigator(mesh_idx=mesh_idx, mesh_name=mesh_name, mesh_prim_list=mesh_prims) if success: mesh_list.append(mesh_idx) missing = [i for x, y in zip(mesh_list, mesh_list[1:]) for i in range(x + 1, y) if y - x > 1] assert len(mesh_list) > 0, "No mesh is assigned a semantic class!" assert len(mesh_list) == len( mesh_prims_name ), f"Not all meshes are assigned a semantic class! Following mesh names are included yet: {[mesh_prims_name[miss_idx] for miss_idx in missing]}" carb.log_info("Semantic mapping done.") return """ Modify Mesh """ def _multiply_crosswalks(self) -> None: """Increase number of crosswalks in the scene.""" with open(self._cfg.cw_config_file) as stream: multipy_cfg: dict = yaml.safe_load(stream) # get the stage stage = omni.usd.get_context().get_stage() # get town prim town_prim = multipy_cfg.pop("town_prim") # init counter crosswalk_add_counter = 0 for key, value in multipy_cfg.items(): print(f"Execute crosswalk multiplication '{key}'") # iterate over the number of crosswalks to be created for copy_idx in range(value["factor"]): success = omni.usd.duplicate_prim( stage=stage, prim_path=os.path.join(self._cfg.prim_path, town_prim, value["cw_prim"]), path_to=os.path.join( self._cfg.prim_path, town_prim, value["cw_prim"] + f"_cp{copy_idx}" + value.get("suffix", "") ), duplicate_layers=True, ) assert success, f"Failed to duplicate crosswalk '{key}'" # get crosswalk prim prim_utils.get_prim_at_path( os.path.join( self._cfg.prim_path, town_prim, value["cw_prim"] + f"_cp{copy_idx}" + value.get("suffix", "") ) ).GetAttribute("xformOp:translate").Set( Gf.Vec3d(value["translation"][0], value["translation"][1], value["translation"][2]) * (copy_idx + 1) ) # update counter crosswalk_add_counter += 1 carb.log_info(f"Number of crosswalks added: {crosswalk_add_counter}") print(f"Number of crosswalks added: {crosswalk_add_counter}") return def _insert_vehicles(self): # load vehicle config file with open(self._cfg.vehicle_config_file) as file: vehicle_cfg: dict = yaml.safe_load(file) # get the stage stage = omni.usd.get_context().get_stage() # get town prim and all its meshes town_prim = vehicle_cfg.pop("town_prim") mesh_prims: dict = prim_utils.get_prim_at_path(f"{self._cfg.prim_path}/{town_prim}").GetChildren() mesh_prims_name = [mesh_prim_single.GetName() for mesh_prim_single in mesh_prims] # car counter car_add_counter = 0 for key, vehicle in vehicle_cfg.items(): print(f"Execute vehicle multiplication '{key}'") # get all meshs that include the keystring meshs = [ mesh_prim_single for mesh_prim_single in mesh_prims_name if vehicle["prim_part"] in mesh_prim_single ] # iterate over the number of vehicles to be created for idx, translation in enumerate(vehicle["translation"]): for single_mesh in meshs: success = omni.usd.duplicate_prim( stage=stage, prim_path=os.path.join(self._cfg.prim_path, town_prim, single_mesh), path_to=os.path.join(self._cfg.prim_path, town_prim, single_mesh + key + f"_cp{idx}"), duplicate_layers=True, ) assert success, f"Failed to duplicate vehicle '{key}'" # get vehicle prim prim_utils.get_prim_at_path( os.path.join(self._cfg.prim_path, town_prim, single_mesh + key + f"_cp{idx}") ).GetAttribute("xformOp:translate").Set(Gf.Vec3d(translation[0], translation[1], translation[2])) car_add_counter += 1 carb.log_info(f"Number of vehicles added: {car_add_counter}") print(f"Number of vehicles added: {car_add_counter}") return def _insert_people(self): # load people config file with open(self._cfg.people_config_file) as file: people_cfg: dict = yaml.safe_load(file) for key, person_cfg in people_cfg.items(): carb.log_verbose(f"Insert person '{key}'") self.insert_single_person( person_cfg["prim_name"], person_cfg["translation"], scale_people=1, # scale_people, usd_path=person_cfg.get("usd_path", "People/Characters/F_Business_02/F_Business_02.usd"), ) # TODO: movement of the people carb.log_info(f"Number of people added: {len(people_cfg)}") print(f"Number of people added: {len(people_cfg)}") return @staticmethod def insert_single_person( prim_name: str, translation: list, scale_people: float = 1.0, usd_path: str = "People/Characters/F_Business_02/F_Business_02.usd", ) -> None: person_prim = prim_utils.create_prim( prim_path=os.path.join("/World/People", prim_name), translation=tuple(translation), usd_path=os.path.join(ISAAC_NUCLEUS_DIR, usd_path), scale=(scale_people, scale_people, scale_people), ) if isinstance(person_prim.GetAttribute("xformOp:orient").Get(), Gf.Quatd): person_prim.GetAttribute("xformOp:orient").Set(Gf.Quatd(1.0, 0.0, 0.0, 0.0)) else: person_prim.GetAttribute("xformOp:orient").Set(Gf.Quatf(1.0, 0.0, 0.0, 0.0)) add_update_semantics(person_prim, "person") return @staticmethod def get_mesh_prims(env_prim: str) -> Tuple[List[Usd.Prim], List[str]]: def recursive_search(start_prim: str, mesh_prims: list): for curr_prim in prim_utils.get_prim_at_path(start_prim).GetChildren(): if curr_prim.GetTypeName() == "Xform" or curr_prim.GetTypeName() == "Mesh": mesh_prims.append(curr_prim) elif curr_prim.GetTypeName() == "Scope": mesh_prims = recursive_search(start_prim=curr_prim.GetPath().pathString, mesh_prims=mesh_prims) return mesh_prims assert prim_utils.is_prim_path_valid(env_prim), f"Prim path '{env_prim}' is not valid" mesh_prims = [] mesh_prims = recursive_search(env_prim, mesh_prims) # mesh_prims: dict = prim_utils.get_prim_at_path(self._cfg.prim_path + "/" + self._cfg.usd_name.split(".")[0]).GetChildren() mesh_prims_name = [mesh_prim_single.GetName() for mesh_prim_single in mesh_prims] return mesh_prims, mesh_prims_name # EoF
15,577
Python
39.149484
190
0.588688
pascal-roth/orbit_envs/extensions/omni.isaac.carla/omni/isaac/carla/configs/__init__.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # configs from .configs import DATA_DIR, CarlaLoaderConfig __all__ = [ # configs "CarlaLoaderConfig", # path "DATA_DIR", ] # EoF
289
Python
15.11111
53
0.66782
pascal-roth/orbit_envs/extensions/omni.isaac.carla/omni/isaac/carla/configs/configs.py
# Copyright (c) 2024 ETH Zurich (Robotic Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import os from dataclasses import dataclass DATA_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../../data")) @dataclass class SimCfg: """Simulation physics.""" dt = 0.005 # physics-dt:(s) substeps = 8 # rendering-dt = physics-dt * substeps (s) gravity = [0.0, 0.0, -9.81] # (m/s^2) enable_scene_query_support = False # disable scene query for more speed-up use_flatcache = True # output from simulation to flat cache use_gpu_pipeline = True # direct GPU access functionality device = "cpu" # device on which to run simulation/environment @dataclass class PhysxCfg: """PhysX solver parameters.""" worker_thread_count = 10 # note: unused solver_position_iteration_count = 4 # note: unused solver_velocity_iteration_count = 1 # note: unused enable_sleeping = True # note: unused max_depenetration_velocity = 1.0 # note: unused contact_offset = 0.002 # note: unused rest_offset = 0.0 # note: unused use_gpu = True # GPU dynamics pipeline and broad-phase type solver_type = 1 # 0: PGS, 1: TGS enable_stabilization = True # additional stabilization pass in solver # (m/s): contact with relative velocity below this will not bounce bounce_threshold_velocity = 0.5 # (m): threshold for contact point to experience friction force friction_offset_threshold = 0.04 # (m): used to decide if contacts are close enough to merge into a single friction anchor point friction_correlation_distance = 0.025 # GPU buffers parameters gpu_max_rigid_contact_count = 512 * 1024 gpu_max_rigid_patch_count = 80 * 1024 * 2 gpu_found_lost_pairs_capacity = 1024 * 1024 * 2 gpu_found_lost_aggregate_pairs_capacity = 1024 * 1024 * 32 gpu_total_aggregate_pairs_capacity = 1024 * 1024 * 2 gpu_max_soft_body_contacts = 1024 * 1024 gpu_max_particle_contacts = 1024 * 1024 gpu_heap_capacity = 128 * 1024 * 1024 gpu_temp_buffer_capacity = 32 * 1024 * 1024 gpu_max_num_partitions = 8 physx: PhysxCfg = PhysxCfg() @dataclass class CarlaLoaderConfig: # carla map root_path: str = "path_to_unreal_mesh" usd_name: str = "Town01_Opt.usd" suffix: str = "/Town01_Opt" # prim path for the carla map prim_path: str = "/World/Carla" # SimCfg sim_cfg: SimCfg = SimCfg() # scale scale: float = 0.01 # scale the scene to be in meters # up axis axis_up: str = "Y" # multiply crosswalks cw_config_file: str | None = os.path.join( DATA_DIR, "town01", "cw_multiply_cfg.yml" ) # if None, no crosswalks are added # mesh to semantic class mapping --> only if set, semantic classes will be added to the scene sem_mesh_to_class_map: str | None = os.path.join( DATA_DIR, "town01", "keyword_mapping.yml" ) # os.path.join(DATA_DIR, "park", "keyword_mapping.yml") os.path.join(DATA_DIR, "town01", "keyword_mapping.yml") # add Groundplane to the scene groundplane: bool = True # add people to the scene people_config_file: str | None = os.path.join(DATA_DIR, "town01", "people_cfg.yml") # if None, no people are added # multiply vehicles vehicle_config_file: str | None = os.path.join( DATA_DIR, "town01", "vehicle_cfg.yml" ) # if None, no vehicles are added @property def usd_path(self) -> str: return os.path.join(self.root_path, self.usd_name)
3,701
Python
36.393939
119
0.636585
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town02/cw_multiply_cfg.yml
# Definition of which crosswalks should be repeated how often along which axis # Adjusted for: TOWN02 # each entry has the following format: # name: # cw_prim: [str] prim of the crosswalk in the loaded town file # factor: [int] number how often the crosswalk should be repeated # translation: [float, float] vector along which the crosswalk should be repeated, defines the position of the first # repeated crosswalk, every following crosswalk will be placed at the position of the # previous one plus the translation vector # suffix: [str] optional, str will be added to the copied prim of the new crosswalk # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm town_prim: "Town02" cw_2: cw_prim: "Road_Crosswalk_Town02_8" factor: 4 translation: [+1500, 0, 0] cw_3: cw_prim: "Road_Crosswalk_Town02_10" factor: 2 translation: [-1500, 0, 0] cw_4: cw_prim: "Road_Crosswalk_Town02_9" factor: 4 translation: [+1500, 0, 0] suffix: "_neg" cw_5: cw_prim: "Road_Crosswalk_Town02_11" factor: 4 translation: [1500, 0, 0] cw_6_pos: cw_prim: "Road_Crosswalk_Town02_12" factor: 1 translation: [0, 0, 1500] cw_6_neg: cw_prim: "Road_Crosswalk_Town02_12" factor: 2 translation: [0, 0, -1500] cw_7_neg: cw_prim: "Road_Crosswalk_Town02_7" factor: 1 translation: [-1500, 0, 0] cw_7_pos: cw_prim: "Road_Crosswalk_Town02_7" factor: 1 translation: [1500, 0, 0] cw_8: cw_prim: "Road_Crosswalk_Town02_4" factor: 2 translation: [1500, 0, 0] cw_9: cw_prim: "Road_Crosswalk_Town02_3" factor: 4 translation: [1500, 0, 0] cw_10: cw_prim: "Road_Crosswalk_Town02_6" factor: 2 translation: [-1500, 0, 0] cw_11_neg: cw_prim: "Road_Crosswalk_Town02_1" factor: 4 translation: [-1500, 0, 0] cw_11_pos: cw_prim: "Road_Crosswalk_Town02_1" factor: 2 translation: [+1500, 0, 0] cw_12: cw_prim: "Road_Crosswalk_Town02_2" factor: 4 translation: [-1500, 0, 0] cw_13: cw_prim: "Road_Crosswalk_Town02_13" factor: 2 translation: [0, 0, +1500] cw_14_pos: cw_prim: "Road_Crosswalk_Town02_15" factor: 2 translation: [0, 0, +1500] cw_14_neg: cw_prim: "Road_Crosswalk_Town02_15" factor: 1 translation: [0, 0, -1500] cw_15: cw_prim: "Road_Crosswalk_Town02_16" factor: 2 translation: [0, 0, -1500] cw_16_neg: cw_prim: "Road_Crosswalk_Town02_17" factor: 2 translation: [0, 0, -1500] cw_16_pos: cw_prim: "Road_Crosswalk_Town02_17" factor: 4 translation: [0, 0, +1500] cw_17_neg: cw_prim: "Road_Crosswalk_Town02_19" factor: 4 translation: [0, 0, -1500] cw_17_pos: cw_prim: "Road_Crosswalk_Town02_19" factor: 1 translation: [0, 0, +1500] cw_18: cw_prim: "Road_Crosswalk_Town02_20" factor: 3 translation: [0, 0, +1500] # EoF
2,991
YAML
21.162963
120
0.641926
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town02/vehicle_cfg.yml
# Definition of where additional vehicles should be added # Adjusted for: TOWN02 # each entry has the following format: # name: # prim_part: [str] part of the prim of the vehicle that should be multiplied (every prim containing this string will be multiplied) # translation: [[float, float, float]] list of translations of the vehicle # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm # NOTE: for Town02, take "Vh_Car_SeatLeon_54" for vehicles along the x axis town_prim: "Town02" vehicle_1: prim_part: "Vh_Car_SeatLeon_54" translation: # horizontal road low - [3900, 0, 600] - [3900, 0, 3000] - [3900, 0, 3500] - [3900, 0, 4000] - [3900, 0, 6000] - [3900, 0, -1500] - [3900, 0, -4000] - [3900, 0, -7500] - [3900, 0, -8000] - [3500, 0, -10000] - [3500, 0, -7500] - [3500, 0, -3000] - [3500, 0, 1000] - [3500, 0, 5000] # horizontal road middle - [-10800, 0, 1000] - [-10800, 0, 5000] - [-10800, 0, -2500] # horizontal road high - [-15800, 0, 2000] - [-15800, 0, 4700] - [-16200, 0, 3400] - [-16200, 0, 0] - [-16200, 0, -3000] - [-16200, 0, -6000] - [-16200, 0, -9000] # EoF
1,436
YAML
28.937499
160
0.550139
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town02/keyword_mapping.yml
# Mapping mesh keywords to VIPlanner semantic classes road: - Road_Road - Road_Marking - ManholeCover - roadunique sidewalk: - Road_Sidewalk - SideWalkCube - Road_Grass # pedestrian terrain (between building, squares, ...) crosswalk: - Road_Crosswalk floor: - Pathwalk # way to the door of a building - PathWay # wat to the door of a building - curb - iron_plank - Cube - Floor vehicle: - Van - Vehicle - Car building: - NewBlueprint # roofs, windows, other parts of buildings - CityBuilding - Suburb - House - MergingBuilding - BuildingWall - garage - airConditioner - Office - Block - Apartment - ConstructBuilding - snacksStand - doghouse - streetCounter - fountain - container - pergola - GuardShelter - atm - awning - bus_stop - NewsStand - ironplank - kiosk - TownHall wall: - GardenWall - Wall - RepSpline # fences or walls to limit residential areas - RepeatedMeshesAlongSpline # should make the spline go around the building --> not working in isaac fence: - urbanFence - chain_barrier - picketFence - fence pole: - bollard - Lamppost - Parklight - CityLamp - Traffic_Light_Base - ElectricPole - PoleCylinder traffic_sign: - streetBillboard - RoundSign - roadsigns traffic_light: - TLights - TL_BotCover - SM_Charger - SM_FreewayLights bench: - bench vegetation: - tree - Stone - Cypress - PlantPot - TreePot - Maple - Beech - FanPalm - Sassafras - Pine_Bush - Hedge - Bush - palm - acer - plant_pit - arbusto_pine terrain: - dirtDebris # roughness in the terrain, street or sidewalk (traversable but more difficult) - GrassLeaf - Grass - LandscapeComponent - Ash water_surface: - TileLake sky: - terrain2 - sky dynamic: - Trashbag - advertise - creased_box - garbage - trashcan - clothes_line - barbecue - ConstructionCone - box - droppingasset - barrel static: - firehydrant - Gnome - metroMap - Bikeparking - StaticMesh # gate barrier - trampoline - wheelbarrow - NewspaperBox - swing - bin - big_plane - plane - slide - instancedfoliageactor - roadbillboard - prophitreacting_child # vending machines - prop_wateringcan furniture: - Campingtable - swingcouch - table - chair
2,344
YAML
15.061644
103
0.664249
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town01/cw_multiply_cfg.yml
# Definition of which crosswalks should be repeated how often along which axis # Adjusted for: TOWN01 # each entry has the following format: # name: # cw_prim: [str] prim of the crosswalk in the loaded town file # factor: [int] number how often the crosswalk should be repeated # translation: [float, float] vector along which the crosswalk should be repeated, defines the position of the first # repeated crosswalk, every following crosswalk will be placed at the position of the # previous one plus the translation vector # suffix: [str] optional, str will be added to the copied prim of the new crosswalk # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm town_prim: "Town01_Opt" cw_2: cw_prim: "Road_Crosswalk_Town01_2" factor: 2 translation: [0, 0, -1500] cw_3_pos: cw_prim: "Road_Crosswalk_Town01_3" factor: 6 translation: [1500, 0, 0] cw_3_neg: cw_prim: "Road_Crosswalk_Town01_3" factor: 1 translation: [-1500, 0, 0] suffix: "_neg" cw_4: cw_prim: "Road_Crosswalk_Town01_4" factor: 1 translation: [1500, 0, 0] cw_5: cw_prim: "Road_Crosswalk_Town01_5" factor: 3 translation: [1500, 0, 0] cw_6: cw_prim: "Road_Crosswalk_Town01_6" factor: 3 translation: [0, 0, -1500] cw_9: cw_prim: "Road_Crosswalk_Town01_9" factor: 2 translation: [0, 0, -1500] cw_10: cw_prim: "Road_Crosswalk_Town01_10" factor: 1 translation: [0, 0, 1500] cw_11: cw_prim: "Road_Crosswalk_Town01_11" factor: 1 translation: [0, 0, 1500] cw_14: cw_prim: "Road_Crosswalk_Town01_14" factor: 1 translation: [0, 0, 1500] cw_15: cw_prim: "Road_Crosswalk_Town01_15" factor: 2 translation: [0, 0, -1500] cw_18: cw_prim: "Road_Crosswalk_Town01_18" factor: 5 translation: [1500, 0, 0] cw_19: cw_prim: "Road_Crosswalk_Town01_19" factor: 2 translation: [1500, 0, 0] cw_21: cw_prim: "Road_Crosswalk_Town01_21" factor: 3 translation: [1500, 0, 0] cw_22: cw_prim: "Road_Crosswalk_Town01_22" factor: 5 translation: [1500, 0, 0] cw_24: cw_prim: "Road_Crosswalk_Town01_24" factor: 3 translation: [-1500, 0, 0] cw_26_pos: cw_prim: "Road_Crosswalk_Town01_26" factor: 5 translation: [1500, 0, 0] cw_26_neg: cw_prim: "Road_Crosswalk_Town01_26" factor: 3 translation: [-1500, 0, 0] suffix: "_neg" cw_28: cw_prim: "Road_Crosswalk_Town01_28" factor: 4 translation: [0, 0, 1500] cw_29: cw_prim: "Road_Crosswalk_Town01_29" factor: 4 translation: [0, 0, 1500] cw_30: cw_prim: "Road_Crosswalk_Town01_30" factor: 4 translation: [0, 0, 1500] cw_30_neg: cw_prim: "Road_Crosswalk_Town01_31" factor: 2 translation: [0, 0, -1500] cw_32: cw_prim: "Road_Crosswalk_Town01_32" factor: 6 translation: [0, 0, -1500] cw_33_pos: cw_prim: "Road_Crosswalk_Town01_33" factor: 4 translation: [1500, 0, 0] cw_33_neg: cw_prim: "Road_Crosswalk_Town01_33" factor: 3 translation: [-2500, 0, 0] suffix: "_neg" cw_34: cw_prim: "Road_Crosswalk_Town01_34" factor: 7 translation: [1500, 0, 0] cw_35: cw_prim: "Road_Crosswalk_Town01_35" factor: 1 translation: [1500, 0, 0] cw_36_pos: cw_prim: "Road_Crosswalk_Town01_36" factor: 1 translation: [0, 0, 1500] cw_36_neg: cw_prim: "Road_Crosswalk_Town01_36" factor: 5 translation: [0, 0, -1500] suffix: "_neg" cw_40: cw_prim: "Road_Crosswalk_Town01_40" factor: 4 translation: [1500, 0, 0] # EoF
3,635
YAML
20.017341
120
0.641541
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town01/vehicle_cfg.yml
# Definition of where additional vehicles should be added # Adjusted for: TOWN01 # each entry has the following format: # name: # prim_part: [str] part of the prim of the vehicle that should be multiplied (every prim containing this string will be multiplied) # translation: [[float, float, float]] list of translations of the vehicle # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm # NOTE: for Town01, take "ChevroletImpala_High_V4" for vehicles along the x axis and "JeepWranglerRubicon_36" # for vehicles along the y axis town_prim: "Town01_Opt" vehicle_1: prim_part: "ChevroletImpala_High_V4" translation: - [-15300, 0, -4000] - [-15300, 0, 0] - [-15300, 0, 15000] - [-15600, 0, 21000] - [9000, 0, 20500] - [9400, 0, 15000] - [9400, 0, 9000] - [9400, 0, 7000] - [9000, 0, 6000] - [9000, 0, 500] - [9000, 0, -4000] vehicle_2: prim_part: "JeepWranglerRubicon_36" translation: - [0, 0, -1500] - [3500, 0, -1500] - [5300, 0, -1900] - [9000, 0, -1900] - [16500, 0, -1500] - [22500, 0, -1900] - [25000, 0, 3800] - [20000, 0, 4200] - [17000, 0, 4200] - [12000, 0, 3800] - [7000, 0, 3800] - [7000, 0, 11100] - [11000, 0, 11500] - [16000, 0, 11100] - [20000, 0, 11100] - [26000, 0, 11500] - [26000, 0, 17800] - [23000, 0, 18200] - [18000, 0, 18200] - [14000, 0, 17800] - [13500, 0, 18200] - [10000, 0, 18200] - [9500, 0, 17800] - [4000, 0, 17800] - [2000, 0, 30800] - [-1000, 0, 31300] - [6000, 0, 31300] - [12000, 0, 30800] - [15000, 0, 30800] - [15600, 0, 30800] - [16400, 0, 30800] - [21000, 0, 31300] - [25000, 0, 31300] # EoF
1,904
YAML
26.214285
160
0.558824
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/town01/area_filter_cfg.yaml
# Definition of which areas should not be explored and used to sample points # Adjusted for: TOWN01 # each entry has the following format: # name: # x_low: [float] low number of the x axis # x_high: [float] high number of the x axis # y_low: [float] low number of the y axis # y_high: [float] high number of the y axis area_1: x_low: 208.9 x_high: 317.8 y_low: 100.5 y_high: 325.5 area_2: x_low: 190.3 x_high: 315.8 y_low: 12.7 y_high: 80.6 area_3: x_low: 123.56 x_high: 139.37 y_low: 10 y_high: 80.0
601
YAML
20.499999
76
0.570715
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/park/keyword_mapping.yml
sidewalk: - Sidewalk floor: - SM_ParkSquare05_4HISMA - SM_ParkSquare02_1HISMA - SM_ParkSquare05_4HISMA - SM_ParkSquare05_6HISMA - SM_ParkSquare05_3HISMA - SM_ParkSquare04_1HISMA - SM_ParkSquare05_1HISMA - SM_ParkSquare02_2HISMA - SM_ParkSquare11_1HISMA - SM_ParkSquare05_7HISMA - SM_ParkSquare05_8HISMA - SM_ParkSquare05_9HISMA - SM_ParkSquare05_5HISMA - SM_ParkSquare12_1HISMA - SM_ParkSquare05_2HISMA - TennisField - BaseballField - BasketballField - Asphalt - FootballField - SM_ParkSquare03_7HISMA_598 - SM_PoolHISMA - Border - Manhole - ParkPath - RoadDecal - MergedRoad bridge: - Bridge tunnel: - tunnel building: - CafeBuilding - House - Tribune - Pier - Bower stairs: - SM_ParkSquare03_3HISMA - SM_ParkSquare05_3HISMA - SM_ParkSquare07_1HISMA - SM_ParkSquare05_12HISMA - SM_ParkSquare03_2HISMA - SM_ParkSquare03_5HISMA - SM_ParkSquare03_5HISMA - SM_ParkSquare03_7HISMA - ParkSquare03_8HISMA - ParkSquare13_7HISMA - SM_ParkSquare03_2HISMA_687 - SM_ParkSquare03_1HISMA - SM_ParkSquare05_2HISMA wall: - SM_ParkSquare02_4HISMA - SM_ParkSquare01_5HISMA - SM_ParkSquare06_1HISMA - SM_ParkSquare02_8HISMA - SM_ParkSquare06_4HISMA - SM_ParkSquare10HISMA - SM_ParkSquare06_5HISMA - SM_ParkSquare06_3HISMA - SM_ParkSquare06_2HISMA - SM_ParkSquare02_7HISMA - SM_ParkSquare02_1HISMA - SM_ParkSquare03_6HISMA - SM_ParkSquare06_6HISMA - SM_ParkSquare12_2HISMA - SM_ParkSquare07_2HISMA - SM_ParkSquare01_3HISMA - SM_ParkSquare01_1HISMA - SM_ParkSquare07_3HISMA - SM_ParkSquare05_12HISMA - SM_ParkSquare02_6HISMA - SM_ParkSquare01_10HISMA - SM_ParkSquare02_3HISMA - SM_ParkSquare02_5HISMA - SM_ParkSquare02_5HISMA_209 - SM_ParkSquare12_3HISMA - SM_ParkSquare01_2HISMA - SM_ParkSquare01_9HISMA - SM_ParkSquare03_4HISMA - ParkSquare14_3HISMA - ParkSquare13_5HISMA - SM_ParkSquare02_2HISMA - SM_ParkSquare01_7HISMA - SM_ParkSquare01_4HISMA - ParkSquare01_11HISMA - SM_ParkSquare01_6HISMA - SM_ParkSquare01_8HISMA - ParkSquare13_7HISMA - BaseballGate - SM_Fountain01HISMA - MergedParkSquare fence: - ParkSquare14_3HISMA - ParkSquare13_1HISMA - ParkSquare14_2HISMA - ParkSquare13_3HISMA - ParkSquare13_2HISMA - Fence - ParkSquare13_3HISMA_600 - ParkSquare13_4HISMA_603 - ParkSquare13_5HISMA_605 - MergedPark03_10 - ParkSquare14_1HISMA - ParkSquare13_6HISMA pole: - LampPost - TrafficBarrel - TrashCan traffic_sign: - RoadSigns traffic_light: - TennisFloodlight - TrafficLight bench: - Bench vegetation: - BP_SplineMeshes # all spline meshes - Amur - Elm - Ivy - Maple - Amur - Bush - grass - Weeping - Rock terrain: - Landscape - SM_ParkSquare11_3HISMA - MergedGround - Instancedfoliageactor_2 - SM_ParkSquare11_2HISMA - MergedLeaks water_surface: - Plane - PlanarReflection ceiling: - SM_ParkSquare09_1HISMA - SM_ParkSquare09_3HISMA - SM_ParkSquare09_4HISMA dynamic: - DryLeaves06HISMA - DryLeaves07HISMA - LeakDecal - Newspaper static: - Statue - PlayGround # all playground meshes - TennisNet - TennisUmpiresChair - Umbrella - BasketballHoop - DrinkingFountain - FoodStalls - FoodballGate - RoadBlock - Sphere - Tribune - FootballGate furniture: - Table - CafeChair
3,370
YAML
17.221622
40
0.71454
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/warehouse/people_cfg.yml
person_1: prim_name: "Person_1" translation: [4.23985, -2.42198, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_2: prim_name: "Person_2" translation: [2.51653, 7.80822, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_03/male_adult_construction_03.usd person_3: prim_name: "Person_3" translation: [5.07179, 3.8561, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_05_new/male_adult_construction_05_new.usd person_4: prim_name: "Person_4" translation: [-3.2015, 11.79695, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_01/male_adult_construction_01.usd person_5: prim_name: "Person_5" translation: [-6.70566, 7.58019, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_02/male_adult_construction_02.usd person_6: prim_name: "Person_6" translation: [-5.12784, 2.43409, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_05/male_adult_construction_05.usd person_7: prim_name: "Person_7" translation: [-6.98476, -9.47249, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_8: prim_name: "Person_8" translation: [-1.63744, -3.43285, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_9: prim_name: "Person_9" translation: [6.15617, -8.3114, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_05/male_adult_construction_05.usd person_10: prim_name: "Person_10" translation: [5.34416, -7.47814, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_05_new/male_adult_construction_05_new.usd
1,905
YAML
30.766666
96
0.704462
pascal-roth/orbit_envs/extensions/omni.isaac.carla/data/warehouse/keyword_mapping.yml
floor: - SM_Floor1 - SM_Floor2 - SM_Floor3 - SM_Floor4 - SM_Floor5 - SM_Floor6 - groundplane wall: - FuseBox - SM_PillarA - SM_Sign - SM_Wall - S_Barcode bench: - Bench ceiling: - SM_Ceiling - PillarPartA - SM_Beam - SM_Bracket static: - LampCeiling - SM_FloorDecal - SM_FireExtinguisher furniture: - SM_Rack - SM_SignCVer - S_AisleSign - SM_Palette - SM_CardBox - SmallKLT - SM_PushCarta - SM_CratePlastic
468
YAML
10.725
23
0.617521
swadaskar/Isaac_Sim_Folder/PACKAGE-INFO.yaml
Package: isaac-sim-standalone Version: 2022.2.1-rc.14+2022.2.494.70497c06.tc.linux-x86_64.release Commit: 70497c064272778b550d785b89e618821248d0cf Time: Thu Mar 16 01:35:15 2023 CI Build ID: 14259040 Platform: linux-x86_64 CI Build Number: 2022.2.1-rc.14+2022.2.494.70497c06.tc
278
YAML
33.874996
67
0.794964
swadaskar/Isaac_Sim_Folder/environment.yml
name: isaac-sim channels: - defaults - pytorch - nvidia dependencies: - python=3.7 - pip - pytorch - torchvision - torchaudio - cuda-toolkit=11.7 - pip: - stable-baselines3==1.6.2 - tensorboard==2.11.0 - tensorboard-plugin-wit==1.8.1 - protobuf==3.20.3
297
YAML
15.555555
36
0.599327
swadaskar/Isaac_Sim_Folder/launcher.toml
#displayed application name name = "Isaac Sim" #displayed before application name in launcher productArea = "Omniverse" version = "2022.2.1" #unique identifier for component, all lower case, persists between versions slug = "isaac_sim" ## install and launch instructions by environment [defaults.windows-x86_64] url = "" entrypoint = "${productRoot}/isaac-sim.selector.bat" args = [] [defaults.windows-x86_64.environment] [defaults.windows-x86_64.install] pre-install = "" pre-install-args = [] install = "" install-args = [] post-install = "${productRoot}/omni.isaac.sim.post.install.bat" post-install-args = ">${productRoot}/omni.isaac.sim.post.install.log" [defaults.windows-x86_64.uninstall] pre-uninstall = "" pre-uninstall-args = [] uninstall = "" uninstall-args = [] post-uninstall = "" post-uninstall-args = [] [defaults.linux-x86_64] url = "" entrypoint = "${productRoot}/isaac-sim.selector.sh" args = [] [defaults.linux-x86_64.environment] [defaults.linux-x86_64.install] pre-install = "" pre-install-args = [] install = "" install-args = [] post-install = "${productRoot}/omni.isaac.sim.post.install.sh" post-install-args = ">${productRoot}/omni.isaac.sim.post.install.log" [defaults.linux-x86_64.uninstall] pre-uninstall = "" pre-uninstall-args = [] uninstall = "" uninstall-args = [] post-uninstall = "" post-uninstall-args = []
1,349
TOML
24
75
0.716827
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/config/extension.toml
[core] reloadable = true order = 0 [package] version = "0.3.0" category = "Simulation" title = "Isaac Dofbot Robot" description = "Isaac Dofbot Robot Helper Class" authors = ["NVIDIA"] repository = "" keywords = ["isaac"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" [dependencies] "omni.isaac.core" = {} "omni.isaac.motion_generation" = {} "omni.isaac.manipulators" = {} [[python.module]] name = "omni.isaac.dofbot"
457
TOML
17.319999
47
0.684902
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/omni/isaac/dofbot/kinematics_solver.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.motion_generation import ArticulationKinematicsSolver, interface_config_loader, LulaKinematicsSolver from omni.isaac.core.articulations import Articulation from typing import Optional class KinematicsSolver(ArticulationKinematicsSolver): """Kinematics Solver for Dofbot robot. This class loads a LulaKinematicsSovler object Args: robot_articulation (Articulation): An initialized Articulation object representing this Dofbot end_effector_frame_name (Optional[str]): The name of the Dofbot end effector. If None, an end effector link will be automatically selected. Defaults to None. """ def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config("DofBot") self._kinematics = LulaKinematicsSolver(**kinematics_config) if end_effector_frame_name is None: end_effector_frame_name = "link5" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,590
Python
47.21212
121
0.760377
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/omni/isaac/dofbot/tasks/pick_place.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.dofbot import DofBot from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.string import find_unique_string_name import numpy as np from typing import Optional class PickPlace(tasks.PickPlace): def __init__( self, name: str = "dofbot_pick_place", cube_initial_position: Optional[np.ndarray] = None, cube_initial_orientation: Optional[np.ndarray] = None, target_position: Optional[np.ndarray] = None, cube_size: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: """[summary] Args: name (str, optional): [description]. Defaults to "dofbot_pick_place". cube_initial_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_initial_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ if cube_initial_position is None: cube_initial_position = np.array([0.31, 0, 0.025 / 2.0]) / get_stage_units() if cube_size is None: cube_size = np.array([0.025, 0.025, 0.025]) / get_stage_units() if target_position is None: target_position = np.array([-0.31, 0.31, 0.025]) / get_stage_units() tasks.PickPlace.__init__( self, name=name, cube_initial_position=cube_initial_position, cube_initial_orientation=cube_initial_orientation, target_position=target_position, cube_size=cube_size, offset=offset, ) return def set_robot(self) -> DofBot: """[summary] Returns: DofBot: [description] """ dofbot_prim_path = find_unique_string_name( initial_name="/World/DofBot", is_unique_fn=lambda x: not is_prim_path_valid(x) ) dofbot_robot_name = find_unique_string_name( initial_name="my_dofbot", is_unique_fn=lambda x: not self.scene.object_exists(x) ) return DofBot(prim_path=dofbot_prim_path, name=dofbot_robot_name)
2,912
Python
41.838235
103
0.645604
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/omni/isaac/dofbot/tasks/follow_target.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.dofbot import DofBot from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.string import find_unique_string_name import numpy as np from typing import Optional class FollowTarget(tasks.FollowTarget): """[summary] Args: name (str, optional): [description]. Defaults to "dofbot_follow_target". target_prim_path (Optional[str], optional): [description]. Defaults to None. target_name (Optional[str], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. dofbot_prim_path (Optional[str], optional): [description]. Defaults to None. dofbot_robot_name (Optional[str], optional): [description]. Defaults to None. """ def __init__( self, name: str = "dofbot_follow_target", target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, dofbot_prim_path: Optional[str] = None, dofbot_robot_name: Optional[str] = None, ) -> None: if target_position is None: target_position = np.array([0, 0.1, 0.1]) / get_stage_units() tasks.FollowTarget.__init__( self, name=name, target_prim_path=target_prim_path, target_name=target_name, target_position=target_position, target_orientation=target_orientation, offset=offset, ) self._dofbot_prim_path = dofbot_prim_path self._dofbot_robot_name = dofbot_robot_name return def set_robot(self) -> DofBot: """[summary] Returns: DofBot: [description] """ if self._dofbot_prim_path is None: self._dofbot_prim_path = find_unique_string_name( initial_name="/World/DofBot", is_unique_fn=lambda x: not is_prim_path_valid(x) ) if self._dofbot_robot_name is None: self._dofbot_robot_name = find_unique_string_name( initial_name="my_dofbot", is_unique_fn=lambda x: not self.scene.object_exists(x) ) return DofBot(prim_path=self._dofbot_prim_path, name=self._dofbot_robot_name)
3,089
Python
41.328767
96
0.651667
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/omni/isaac/dofbot/controllers/rmpflow_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation class RMPFlowController(mg.MotionPolicyController): """[summary] Args: name (str): [description] robot_articulation (Articulation): [description] physics_dt (float, optional): [description]. Defaults to 1.0/60.0. """ def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: self.rmp_flow_config = mg.interface_config_loader.load_supported_motion_policy_config("DofBot", "RMPflow") self.rmp_flow = mg.lula.motion_policies.RmpFlow(**self.rmp_flow_config) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmp_flow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
1,870
Python
43.547618
114
0.705348
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/omni/isaac/dofbot/controllers/pick_place_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.core.articulations import Articulation from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.dofbot.controllers import RMPFlowController from typing import Optional, List class PickPlaceController(manipulators_controllers.PickPlaceController): """[summary] Args: name (str): [description] gripper (ParallelGripper): [description] robot_articulation(Articulation): [description] events_dt (Optional[List[float]], optional): [description]. Defaults to None. """ def __init__( self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, events_dt: Optional[List[float]] = None, ) -> None: if events_dt is None: events_dt = [0.01, 0.01, 1, 0.01, 0.01, 0.01, 0.01, 0.05, 0.01, 0.08] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, events_dt=events_dt, end_effector_initial_height=0.2 / get_stage_units(), ) return
1,854
Python
38.468084
89
0.677994
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/docs/CHANGELOG.md
# Changelog ## [0.3.0] - 2022-07-26 ### Removed - Removed GripperController class and used the new ParallelGripper class instead. ### Changed - Changed gripper_dof_indices argument in PickPlaceController to gripper. ### Added - Added deltas argument in Franka class for the gripper action deltas when openning or closing. ## [0.2.1] - 2022-07-22 ### Fixed - Bug with adding a custom usd for manipulator ## [0.2.0] - 2022-05-02 ### Changed - Changed InverseKinematicsSolver class to KinematicsSolver class, using the new LulaKinematicsSolver class in motion_generation ## [0.1.4] - 2022-04-21 ### Changed -Updated RmpFlowController class init alongside modifying motion_generation extension ## [0.1.3] - 2022-03-25 ### Changed - Updated RmpFlowController class alongside changes to motion_generation extension ## [0.1.2] - 2022-03-16 ### Changed - Replaced find_nucleus_server() with get_assets_root_path() ## [0.1.1] - 2021-12-02 ### Changed - Propagation of core api changes ## [0.1.0] - 2021-09-01 ### Added - Added Dofbot class
1,048
Markdown
21.319148
128
0.721374
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.dofbot/docs/index.rst
Dofbot Robot [omni.isaac.dofbot] ################################ Dofbot ============= .. automodule:: omni.isaac.dofbot.dofbot :inherited-members: :members: :undoc-members: :exclude-members: Dofbot Kinematics Solver ========================= .. automodule:: omni.isaac.dofbot.kinematics_solver :inherited-members: :members: Dofbot Controllers ================== .. automodule:: omni.isaac.dofbot.controllers :inherited-members: :imported-members: :members: :undoc-members: :exclude-members: Dofbot Tasks ============== .. automodule:: omni.isaac.dofbot.tasks :inherited-members: :imported-members: :members: :undoc-members: :exclude-members:
718
reStructuredText
16.119047
51
0.584958
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.repl/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.3" category = "Utility" title = "Isaac Sim REPL" description = "Extension that provides an interactive shell to a running omniverse app" authors = ["NVIDIA"] repository = "" keywords = ["isaac", "python", "repl"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" writeTarget.kit = true target.platform = ["linux-*"] [dependencies] "omni.kit.test" = {} [[python.module]] name = "prompt_toolkit" path = "pip_prebundle" [[python.module]] name = "omni.isaac.repl" [[python.module]] name = "omni.isaac.repl.tests" [settings] exts."omni.isaac.repl".host = "127.0.0.1" exts."omni.isaac.repl".port = 8223
695
TOML
18.885714
87
0.684892
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.repl/docs/CHANGELOG.md
# Changelog ## [1.0.3] - 2022-04-16 ### Fixed - ptpython was not fixed ## [1.0.2] - 2022-04-08 ### Fixed - Fix incorrect windows platform check ## [1.0.1] - 2022-04-08 ### Changed - Extenion only targets linux now due to asyncio add_reader limitation ## [1.0.0] - 2022-04-06 ### Added - Initial version of extension
323
Markdown
14.428571
70
0.647059
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.repl/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.repl extension. Then login using `telnet localhost 8223`. See exetnsion.toml for a full list of settings.
197
Markdown
38.599992
96
0.786802