file_path
stringlengths 20
202
| content
stringlengths 9
3.85M
| size
int64 9
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 3.33
100
| max_line_length
int64 8
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/CHANGELOG.md | # Changelog
## [0.4.0] - 2022-09-27
### Removed
- usd files local to extension
## [0.3.0] - 2022-07-26
### Removed
- Removed GripperController class and used the new ParallelGripper class instead.
### Changed
- Changed gripper_dof_indices argument in PickPlaceController to gripper
- Changed gripper_dof_indices argument in StackingController to gripper
### Added
- Added deltas argument in Franka class for the gripper action deltas when openning or closing.
## [0.2.1] - 2022-07-22
### Fixed
- Bug with adding a custom usd for manipulator
## [0.2.0] - 2022-05-02
### Changed
- Changed InverseKinematicsSolver class to KinematicsSolver class, using the new LulaKinematicsSolver class in motion_generation
## [0.1.4] - 2022-04-21
### Changed
- Updated RmpFlowController class init alongside modifying motion_generation extension
## [0.1.3] - 2022-04-13
### Changed
- Fix Franka units in gripper open config.
## [0.1.2] - 2022-03-25
### Changed
- Updated RmpFlowController class alongside changes to motion_generation extension
## [0.1.1] - 2022-03-16
### Changed
- Replaced find_nucleus_server() with get_assets_root_path()
## [0.1.0] - 2021-09-01
### Added
- Added Franka class and and Franka Task Follower Class
| 1,234 | Markdown | 21.87037 | 128 | 0.724473 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/README.md | # Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.franka extension | 106 | Markdown | 34.666655 | 97 | 0.811321 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/index.rst | Franka Robot [omni.isaac.franka]
################################
Franka
=============
.. automodule:: omni.isaac.franka.franka
:inherited-members:
:members:
:undoc-members:
:exclude-members:
Franka Kinematics Solver
=========================
.. automodule:: omni.isaac.franka.kinematics_solver
:inherited-members:
:members:
Franka Controllers
==================
.. automodule:: omni.isaac.franka.controllers
:inherited-members:
:imported-members:
:members:
:undoc-members:
:exclude-members:
Franka Tasks
=============
.. automodule:: omni.isaac.franka.tasks
:inherited-members:
:imported-members:
:members:
:undoc-members:
:exclude-members:
| 717 | reStructuredText | 16.095238 | 51 | 0.585774 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/config/extension.toml | [core]
reloadable = true
order = 0
[package]
version = "0.2.3"
category = "Simulation"
title = "Isaac Sim Debug Drawing"
description = "Persistent Debug Drawing Helpers"
authors = ["NVIDIA"]
repository = ""
keywords = ["isaac", "physics", "inspect",]
changelog = "docs/CHANGELOG.md"
readme = "docs/README.md"
icon = "data/icon.png"
writeTarget.kit = true
# Other extensions that must be loaded before this one
[dependencies]
"omni.graph" = {}
"omni.graph.tools" = {}
"omni.debugdraw" = {}
# needed to access drawing interfaces:
"omni.kit.renderer.core" = {}
"omni.kit.viewport.window" = {}
"omni.hydra.rtx" = {}
# The generated tests will make use of these modules
"omni.usd" = {}
"omni.kit.async_engine" = {}
[[python.module]]
name = "omni.isaac.debug_draw"
[[python.module]]
name = "omni.isaac.debug_draw.tests"
# Watch the .ogn files for hot reloading (only for Python files)
[fswatcher.patterns]
include = ["*.ogn", "*.py"]
exclude = ["Ogn*Database.py"]
[[native.plugin]]
path = "bin/*.plugin"
recursive = false | 1,022 | TOML | 21.733333 | 64 | 0.68591 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/ogn/OgnDebugDrawPointCloudDatabase.py | """Support for simplified access to data on nodes of type omni.isaac.debug_draw.DebugDrawPointCloud
Take a point cloud as input and display it in the scene.
"""
import omni.graph.core as og
import omni.graph.core._omni_graph_core as _og
import omni.graph.tools.ogn as ogn
import carb
import numpy
class OgnDebugDrawPointCloudDatabase(og.Database):
"""Helper class providing simplified access to data on nodes of type omni.isaac.debug_draw.DebugDrawPointCloud
Class Members:
node: Node being evaluated
Attribute Value Properties:
Inputs:
inputs.color
inputs.depthTest
inputs.execIn
inputs.pointCloudData
inputs.transform
inputs.width
"""
# This is an internal object that provides per-class storage of a per-node data dictionary
PER_NODE_DATA = {}
# This is an internal object that describes unchanging attributes in a generic way
# The values in this list are in no particular order, as a per-attribute tuple
# Name, Type, ExtendedTypeIndex, UiName, Description, Metadata,
# Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg
# You should not need to access any of this data directly, use the defined database interfaces
INTERFACE = og.Database._get_interface([
('inputs:color', 'color4f', 0, None, 'Color of points', {ogn.MetadataKeys.DEFAULT: '[0.75, 0.75, 1, 1]'}, True, [0.75, 0.75, 1, 1], False, ''),
('inputs:depthTest', 'bool', 0, 'Depth Test Points', 'If true, the points will not render when behind other objects.', {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, False, ''),
('inputs:execIn', 'execution', 0, None, 'The input execution port', {}, True, None, False, ''),
('inputs:pointCloudData', 'point3f[]', 0, None, 'Buffer of 3d points containing point cloud data', {ogn.MetadataKeys.DEFAULT: '[]'}, True, [], False, ''),
('inputs:transform', 'matrix4d', 0, None, 'The matrix to transform the points by', {}, True, [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]], False, ''),
('inputs:width', 'float', 0, None, 'Size of points', {ogn.MetadataKeys.DEFAULT: '0.02'}, True, 0.02, False, ''),
])
@classmethod
def _populate_role_data(cls):
"""Populate a role structure with the non-default roles on this node type"""
role_data = super()._populate_role_data()
role_data.inputs.color = og.Database.ROLE_COLOR
role_data.inputs.execIn = og.Database.ROLE_EXECUTION
role_data.inputs.pointCloudData = og.Database.ROLE_POINT
role_data.inputs.transform = og.Database.ROLE_MATRIX
return role_data
class ValuesForInputs(og.DynamicAttributeAccess):
LOCAL_PROPERTY_NAMES = {"color", "depthTest", "execIn", "transform", "width", "_setting_locked", "_batchedReadAttributes", "_batchedReadValues"}
"""Helper class that creates natural hierarchical access to input attributes"""
def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface):
"""Initialize simplified access for the attribute data"""
context = node.get_graph().get_default_graph_context()
super().__init__(context, node, attributes, dynamic_attributes)
self._batchedReadAttributes = [self._attributes.color, self._attributes.depthTest, self._attributes.execIn, self._attributes.transform, self._attributes.width]
self._batchedReadValues = [[0.75, 0.75, 1, 1], True, None, [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], 0.02]
@property
def pointCloudData(self):
data_view = og.AttributeValueHelper(self._attributes.pointCloudData)
return data_view.get()
@pointCloudData.setter
def pointCloudData(self, value):
if self._setting_locked:
raise og.ReadOnlyError(self._attributes.pointCloudData)
data_view = og.AttributeValueHelper(self._attributes.pointCloudData)
data_view.set(value)
self.pointCloudData_size = data_view.get_array_size()
@property
def color(self):
return self._batchedReadValues[0]
@color.setter
def color(self, value):
self._batchedReadValues[0] = value
@property
def depthTest(self):
return self._batchedReadValues[1]
@depthTest.setter
def depthTest(self, value):
self._batchedReadValues[1] = value
@property
def execIn(self):
return self._batchedReadValues[2]
@execIn.setter
def execIn(self, value):
self._batchedReadValues[2] = value
@property
def transform(self):
return self._batchedReadValues[3]
@transform.setter
def transform(self, value):
self._batchedReadValues[3] = value
@property
def width(self):
return self._batchedReadValues[4]
@width.setter
def width(self, value):
self._batchedReadValues[4] = value
def __getattr__(self, item: str):
if item in self.LOCAL_PROPERTY_NAMES:
return object.__getattribute__(self, item)
else:
return super().__getattr__(item)
def __setattr__(self, item: str, new_value):
if item in self.LOCAL_PROPERTY_NAMES:
object.__setattr__(self, item, new_value)
else:
super().__setattr__(item, new_value)
def _prefetch(self):
readAttributes = self._batchedReadAttributes
newValues = _og._prefetch_input_attributes_data(readAttributes)
if len(readAttributes) == len(newValues):
self._batchedReadValues = newValues
class ValuesForOutputs(og.DynamicAttributeAccess):
LOCAL_PROPERTY_NAMES = { }
"""Helper class that creates natural hierarchical access to output attributes"""
def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface):
"""Initialize simplified access for the attribute data"""
context = node.get_graph().get_default_graph_context()
super().__init__(context, node, attributes, dynamic_attributes)
self._batchedWriteValues = { }
def _commit(self):
_og._commit_output_attributes_data(self._batchedWriteValues)
self._batchedWriteValues = { }
class ValuesForState(og.DynamicAttributeAccess):
"""Helper class that creates natural hierarchical access to state attributes"""
def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface):
"""Initialize simplified access for the attribute data"""
context = node.get_graph().get_default_graph_context()
super().__init__(context, node, attributes, dynamic_attributes)
def __init__(self, node):
super().__init__(node)
dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT)
self.inputs = OgnDebugDrawPointCloudDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes)
dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT)
self.outputs = OgnDebugDrawPointCloudDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes)
dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE)
self.state = OgnDebugDrawPointCloudDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
| 7,785 | Python | 48.910256 | 202 | 0.642518 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/ogn/tests/TestOgnDebugDrawPointCloud.py | import omni.kit.test
import omni.graph.core as og
import omni.graph.core.tests as ogts
import os
class TestOgn(ogts.OmniGraphTestCase):
async def test_data_access(self):
from omni.isaac.debug_draw.ogn.OgnDebugDrawPointCloudDatabase import OgnDebugDrawPointCloudDatabase
test_file_name = "OgnDebugDrawPointCloudTemplate.usda"
usd_path = os.path.join(os.path.dirname(__file__), "usd", test_file_name)
if not os.path.exists(usd_path):
self.assertTrue(False, f"{usd_path} not found for loading test")
(result, error) = await ogts.load_test_file(usd_path)
self.assertTrue(result, f'{error} on {usd_path}')
test_node = og.Controller.node("/TestGraph/Template_omni_isaac_debug_draw_DebugDrawPointCloud")
database = OgnDebugDrawPointCloudDatabase(test_node)
self.assertTrue(test_node.is_valid())
node_type_name = test_node.get_type_name()
self.assertEqual(og.GraphRegistry().get_node_type_version(node_type_name), 1)
def _attr_error(attribute: og.Attribute, usd_test: bool) -> str:
test_type = "USD Load" if usd_test else "Database Access"
return f"{node_type_name} {test_type} Test - {attribute.get_name()} value error"
self.assertTrue(test_node.get_attribute_exists("inputs:color"))
attribute = test_node.get_attribute("inputs:color")
db_value = database.inputs.color
expected_value = [0.75, 0.75, 1, 1]
actual_value = og.Controller.get(attribute)
ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True))
ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
self.assertTrue(test_node.get_attribute_exists("inputs:depthTest"))
attribute = test_node.get_attribute("inputs:depthTest")
db_value = database.inputs.depthTest
expected_value = True
actual_value = og.Controller.get(attribute)
ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True))
ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
self.assertTrue(test_node.get_attribute_exists("inputs:execIn"))
attribute = test_node.get_attribute("inputs:execIn")
db_value = database.inputs.execIn
self.assertTrue(test_node.get_attribute_exists("inputs:pointCloudData"))
attribute = test_node.get_attribute("inputs:pointCloudData")
db_value = database.inputs.pointCloudData
expected_value = []
actual_value = og.Controller.get(attribute)
ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True))
ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
self.assertTrue(test_node.get_attribute_exists("inputs:transform"))
attribute = test_node.get_attribute("inputs:transform")
db_value = database.inputs.transform
expected_value = [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
actual_value = og.Controller.get(attribute)
ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True))
ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
self.assertTrue(test_node.get_attribute_exists("inputs:width"))
attribute = test_node.get_attribute("inputs:width")
db_value = database.inputs.width
expected_value = 0.02
actual_value = og.Controller.get(attribute)
ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True))
ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
| 3,705 | Python | 51.197182 | 107 | 0.676923 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/tests/test_debug_draw.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
from omni.isaac.debug_draw import _debug_draw
import random
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class TestDebugDraw(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
self._draw = _debug_draw.acquire_debug_draw_interface()
pass
# After running each test
async def tearDown(self):
await omni.kit.app.get_app().next_update_async()
pass
# Actual test, notice it is "async" function, so "await" can be used if needed
async def test_draw_points(self):
N = 10000
point_list_1 = [
(random.uniform(-1000, 1000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N)
]
point_list_2 = [
(random.uniform(-1000, 1000), random.uniform(1000, 3000), random.uniform(-1000, 1000)) for _ in range(N)
]
point_list_3 = [
(random.uniform(-1000, 1000), random.uniform(-3000, -1000), random.uniform(-1000, 1000)) for _ in range(N)
]
colors = [(random.uniform(0.5, 1), random.uniform(0.5, 1), random.uniform(0.5, 1), 1) for _ in range(N)]
sizes = [random.randint(1, 50) for _ in range(N)]
self._draw.draw_points(point_list_1, [(1, 0, 0, 1)] * N, [10] * N)
self._draw.draw_points(point_list_2, [(0, 1, 0, 1)] * N, [10] * N)
self._draw.draw_points(point_list_3, colors, sizes)
self.assertEqual(self._draw.get_num_points(), 3 * N)
self._draw.clear_points()
self.assertEqual(self._draw.get_num_points(), 0)
pass
async def test_draw_lines(self):
N = 10000
point_list_1 = [
(random.uniform(1000, 3000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N)
]
point_list_2 = [
(random.uniform(1000, 3000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N)
]
colors = [(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1), 1) for _ in range(N)]
sizes = [random.randint(1, 25) for _ in range(N)]
self._draw.draw_lines(point_list_1, point_list_2, colors, sizes)
self.assertEqual(self._draw.get_num_lines(), N)
self._draw.clear_lines()
self.assertEqual(self._draw.get_num_lines(), 0)
pass
async def test_draw_spline(self):
point_list_1 = [
(random.uniform(-300, -100), random.uniform(-100, 100), random.uniform(-100, 100)) for _ in range(10)
]
self._draw.draw_lines_spline(point_list_1, (1, 1, 1, 1), 10, False)
point_list_2 = [
(random.uniform(-300, -100), random.uniform(-100, 100), random.uniform(-100, 100)) for _ in range(10)
]
self._draw.draw_lines_spline(point_list_2, (1, 1, 1, 1), 5, True)
self.assertGreater(self._draw.get_num_lines(), 0)
self._draw.clear_lines()
self.assertEqual(self._draw.get_num_lines(), 0)
pass
| 3,735 | Python | 44.560975 | 142 | 0.627041 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/tests/__init__.py | # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
"""
Presence of this file allows the tests directory to be imported as a module so that all of its contents
can be scanned to automatically add tests that are placed into this directory.
"""
| 624 | Python | 47.076919 | 103 | 0.799679 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/ogn.rst |
DebugDrawPointCloud
-------------------
['Take a point cloud as input and display it in the scene.']
**Inputs**
- **execIn** (*execution*): The input execution port.
- **depthTest** (*bool*): If true, the points will not render when behind other objects. Default to True.
- **transform** (*matrixd[4]*): The matrix to transform the points by.
- **pointCloudData** (*pointf[3][]*): Buffer of 3d points containing point cloud data. Default to [].
- **color** (*colorf[4]*): Color of points. Default to [0.75, 0.75, 1, 1].
- **width** (*float*): Size of points. Default to 0.02. | 608 | reStructuredText | 39.599997 | 109 | 0.616776 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/CHANGELOG.md | # Changelog
## [0.2.3] - 2023-01-19
### Fixed
- crash when trying to draw without a valid renderer
## [0.2.2] - 2022-12-14
### Fixed
- crash when deleting
## [0.2.1] - 2022-10-18
### Changed
- Debug Draw Point Cloud takes transform
- PrimitiveDrawingHelper::setVertices with poistion only
## [0.2.0] - 2022-10-06
### Added
- Debug Draw Point Cloud node
- PrimitiveDrawingHelper::setVertices with constant color and width
### Changed
- antialiasingWidth to 1 in PrimitiveDrawingHelper::draw()
## [0.1.4] - 2022-10-02
### Fixed
- Crash when stage was not ready
## [0.1.3] - 2022-09-07
### Fixed
- Fixes for kit 103.5
## [0.1.2] - 2022-03-07
### Added
- Added flag to disable depth check
## [0.1.1] - 2021-08-20
### Added
- world space flag to specify if width value is in world coordinates.
## [0.1.0] - 2021-07-27
### Added
- Initial version of extension
| 869 | Markdown | 17.913043 | 71 | 0.667434 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/index.rst | Debug Drawing [omni.isaac.debug_draw]
###########################################
.. automodule:: omni.isaac.debug_draw._debug_draw
:platform: Windows-x86_64, Linux-x86_64
:members:
:undoc-members:
:show-inheritance:
:imported-members:
:exclude-members:
Omnigraph Nodes
=======================
.. include:: ogn.rst | 344 | reStructuredText | 20.562499 | 49 | 0.543605 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/config/extension.toml | [core]
reloadable = true
order = 0
[package]
version = "0.4.0"
category = "Simulation"
title = "Simulated Environments for use in Isaac Sim"
description = "Extension for programming simple environments for robots"
authors = ["NVIDIA"]
repository = ""
keywords = ["isaac", "samples", "environments"]
changelog = "docs/CHANGELOG.md"
readme = "docs/README.md"
icon = "data/icon.png"
[dependencies]
"omni.isaac.core" = {}
[[python.module]]
name = "omni.isaac.benchmark_environments"
[[python.module]]
name = "omni.isaac.benchmark_environments.tests"
| 550 | TOML | 21.039999 | 72 | 0.72 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/objects.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from pxr import Gf
import numpy as np
from scipy.spatial.transform import Rotation as R
from .object_interface import Object
"""
An Object allows the manipulation of a group of prims as a single unit. A subclass of Object must implement
the construct() method to specify what prims comprise an object, and what their relative positions are.
When an Object is created, the base pose is specified in the constructor. Inside the construct() method,
the position of each prim in the object is specified relative to that base pose.
For example, the Cubby Object is constructed from a set of blocks that have translations specified relative to
the base of the Cubby. The relative rotation is not specified, and so is assumed to be the identity.
Target, Block, Sphere, and Capsule are the most basic possible variants of Object, as they are comprised of
just a single prim.
"""
class Target(Object):
def construct(self, **kwargs):
size = kwargs.get("size", 0.05)
target_color = kwargs.get("target_color", np.array([1.0, 0, 0]))
self.create_target(target_size=size, target_color=target_color)
def get_target(self, make_visible=True):
target = self.targets[0]
target.set_visibility(make_visible)
return target
class Block(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 0.10 * np.ones(3))
# self.scales = kwargs.get("scales", np.array([1.0, 1.0, 1.0]))
self.create_block(self.size)
def get_component(self):
return self.components[0]
class Sphere(Object):
def construct(self, **kwargs):
self.radius = kwargs.get("radius", 0.10)
self.create_sphere(self.radius)
def get_geom(self):
return self.components[0]
class Capsule(Object):
def construct(self, **kwargs):
self.radius = kwargs.get("radius", 0.05)
self.height = kwargs.get("height", 0.10)
self.create_capsule(self.radius, self.height)
def get_geom(self):
return self.components[0]
class Cubbies(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 1)
self.num_rows = kwargs.get("num_rows", 3)
self.num_cols = kwargs.get("num_cols", 3)
self.height = kwargs.get("height", 1.00) # z axis
self.width = kwargs.get("width", 1.00) # y axis
self.depth = kwargs.get("depth", 0.30) # x axis
self.target_depth = kwargs.get("target_depth", self.depth / 2)
self.cub_height = self.height / self.num_rows
self.cub_width = self.width / self.num_cols
back = self.create_block(
self.size * np.array([0.01, self.width, self.height]),
relative_translation=np.array([self.depth / 2, 0, self.height / 2]),
)
for i in range(self.num_rows + 1):
shelf = self.create_block(
self.size * np.array([self.depth, self.width, 0.01]),
relative_translation=np.array([0, 0, self.cub_height * i]),
)
for i in range(self.num_cols + 1):
shelf = self.create_block(
self.size * np.array([self.depth, 0.01, self.height]),
relative_translation=np.array([0, self.cub_width * i - self.width / 2, self.height / 2]),
)
# Put a target in each shelf.
target_x_offset = self.target_depth - self.depth / 2
target_start = np.array([target_x_offset, -self.width / 2 + self.cub_width / 2, self.cub_height / 2])
target_rot = R.from_rotvec([0, np.pi / 2, 0]).as_matrix()
for i in range(self.num_rows):
for j in range(self.num_cols):
pos = target_start + np.array([0, self.cub_width * j, self.cub_height * i])
target = self.create_target(relative_translation=pos, relative_rotation=target_rot)
class Cage(Object):
def construct(self, **kwargs):
self.ceiling_height = kwargs.get("ceiling_height", 0.75)
self.ceiling_thickenss = kwargs.get("ceiling_thickness", 0.01)
self.cage_width = kwargs.get("cage_width", 0.3)
self.cage_length = kwargs.get("cage_length", 0.3)
self.num_pillars = kwargs.get("num_pillars", 3)
self.pillar_thickness = kwargs.get("pillar_thickness", 0.1)
self.target_scalar = kwargs.get("target_scalar", 1.15)
ceiling = self.create_block(
np.array([2 * self.cage_width, 2 * self.cage_length, self.ceiling_thickenss]),
np.array([0, 0, self.ceiling_height]),
np.eye(3),
)
for i in range(self.num_pillars):
angle = 2 * (i + 0.5) * np.pi / self.num_pillars
pillar_x = self.cage_width * np.cos(angle)
pillar_y = self.cage_length * np.sin(angle)
pillar = self.create_block(
np.array([self.pillar_thickness, self.pillar_thickness, self.ceiling_height]),
np.array([pillar_x, pillar_y, self.ceiling_height / 2]),
np.eye(3),
)
for angle in np.arange(0, 2 * np.pi, 0.1):
target_x = (self.cage_width + self.pillar_thickness) * self.target_scalar * np.cos(angle)
target_y = (self.cage_length + self.pillar_thickness) * self.target_scalar * np.sin(angle)
self.create_target(np.array([target_x, target_y, self.ceiling_height / 2]))
class Windmill(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 1) # scales entire windmill
self.num_blades = kwargs.get("num_blades", 2)
self.blade_width = kwargs.get("blade_width", 0.01) # y axis
self.blade_height = kwargs.get("blade_height", 1.00) # z axis
self.blade_depth = kwargs.get("blade_depth", 0.01) # x axis
for i in range(self.num_blades):
rot = R.from_rotvec([i * np.pi / self.num_blades, 0, 0])
blade = self.create_block(
self.size * np.array([self.blade_depth, self.blade_width, self.blade_height]),
relative_rotation=rot.as_matrix(),
)
class Window(Object):
def construct(self, **kwargs):
self.width = kwargs.get("width", 1.00) # y axis
self.depth = kwargs.get("depth", 0.05) # x axis
self.height = kwargs.get("height", 1.00) # z axis
self.size = kwargs.get("size", 1) # scales entire window
self.window_width = kwargs.get("window_width", 0.50)
self.window_height = kwargs.get("window_height", 0.50)
side_width = (self.width - self.window_width) / 2
side = self.create_block(
self.size * np.array([self.depth, side_width, self.height]),
relative_translation=np.array([0, -self.width / 2 + side_width / 2, 0]),
)
side = self.create_block(
self.size * np.array([self.depth, side_width, self.height]),
relative_translation=np.array([0, +self.width / 2 - side_width / 2, 0]),
)
top_height = (self.height - self.window_height) / 2
top = self.create_block(
self.size * np.array([self.depth, self.width, top_height]),
relative_translation=np.array([0, 0, self.height / 2 - top_height / 2]),
)
bottom = self.create_block(
self.size * np.array([self.depth, self.width, top_height]),
relative_translation=np.array([0, 0, -self.height / 2 + top_height / 2]),
)
self.center_target = self.create_target() # in center of window
self.behind_target = self.create_target(relative_translation=np.array([self.depth, 0, 0]))
self.front_target = self.create_target(relative_translation=np.array([-self.depth, 0, 0]))
| 8,135 | Python | 37.928229 | 111 | 0.613645 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/environment_interface.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
import omni.usd
from pxr import UsdPhysics, PhysxSchema
"""
Environments have a set of Objects in them that can move or change over time.
The default environment doesn't have any objects in it.
Subclasses of Environment implement
build_environment: instantiate all objects/targets in the environment according to **kwargs
update: called every frame, update moves all moving elements of the environment and does any necessary maintainence
get_new_scenario: return a series of targets that the robot should follow
Environments have random seeds to ensure repeatability. This means that all randomness in the environment should
be achieved through numpy's random module.
As a convention, environments are displaced from the robot along the positive x axis, and mostly centered about the y axis.
Some robots (such as the UR10) may need the environment to be rotated about the robot. The UR10's environment config file
rotates each environment by pi/2 about the z axis.
"""
class Environment:
def __init__(self, random_seed=0, **kwargs):
self._stage = omni.usd.get_context().get_stage()
self.objects = []
self.targetable_objects = []
self.random_seed = random_seed
np.random.seed(random_seed)
# get the frequency in Hz of the simulation
physxSceneAPI = None
for prim in self._stage.Traverse():
if prim.IsA(UsdPhysics.Scene):
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(prim)
if physxSceneAPI is not None:
self.fps = physxSceneAPI.GetTimeStepsPerSecondAttr().Get()
else:
self.fps = 60
self.timeout = 10 # simulated seconds before a test times out
self.camera_position = [-2.00, -1.00, 1.00]
self.camera_target = [0.50, 0, 0.50]
# Set thresholds for robot reaching translation/rotation targets
self.target_translation_thresh = 0.03
self.target_rotation_thresh = 0.1
self.name = ""
self.initial_robot_cspace_position = None
self.build_environment(**kwargs)
def get_timeout(self):
return self.timeout
def build_environment(self, **kwargs):
pass
def update(self):
# update positions of moving obstacles/targets in environment as a function of time
pass
def get_new_scenario(self):
"""
Returns
start_config (USD Geom): desired starting position of the robot (should be easy to reach to start the test)
if None, the robot should ignore this scenario
waypoints (USD Geom): desired goal position of the robot
if None, the robot will follow the start_target until timeout is reached
timeout (float): stop trial when timeout (seconds) have passes
"""
return None, [], self.timeout
def enable_collisions(self):
for obj in self.objects:
obj.set_enable_collisions(True)
def disable_collisions(self):
for obj in self.objects:
obj.set_enable_collisions(False)
def get_all_obstacles(self):
prims = []
for obj in self.objects:
prims.extend(obj.get_all_components())
return prims
def get_random_target(self, make_visible=True):
if len(self.targetable_objects) == 0:
return None
obj = np.random.choice(self.targetable_objects)
return obj.get_random_target(make_visible=make_visible)
def reset(self, new_seed=None):
if new_seed is not None:
self.random_seed = new_seed
self.first_update = True
np.random.seed(self.random_seed)
for obj in self.objects:
obj.reset()
def delete_all_objects(self):
for obj in self.targetable_objects:
obj.delete()
for obj in self.objects:
obj.delete()
def get_initial_robot_cspace_position(self):
return self.initial_robot_cspace_position
def get_target_thresholds(self):
return self.target_translation_thresh, self.target_rotation_thresh
def set_target_translation_threshold(self, thresh):
self.target_translation_thresh = thresh
def set_target_rotation_threshold(self, thresh):
self.target_rotation_thresh = thresh
| 4,765 | Python | 34.834586 | 126 | 0.670724 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/object_interface.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.client import delete
from pxr import UsdGeom, Gf, UsdPhysics
import numpy as np
import asyncio
import uuid
import omni.kit.app
from omni.isaac.core.utils.prims import delete_prim
from omni.isaac.core.utils.rotations import matrix_to_euler_angles, euler_angles_to_quat
from omni.isaac.core.objects import cuboid, sphere, capsule
from omni.isaac.core.prims import XFormPrim, GeometryPrimView
def matrix_to_quat(rot_mat):
return euler_angles_to_quat(matrix_to_euler_angles(rot_mat))
class Object:
"""
An Object is a collection of prims that move and change their properties together. A base Object has no prims
in it by default because the construct method is empty. The Object Class is inherited by specific types of
objects in objects.py and the construct function is implemented
Objects have a base translation and rotation. All prims that form the object have a
(fixed) translation and rotation that is relative to the base. The base pose can
be updated with set_base_pose, and the world coordinate positions of every prim will
be updated by their relative position to the base.
Objects have two lists of prims: self.components, and self.targets
self.components: prims that for the object that the robot must avoid
self.targets: possible targets to make a robot seek. Ex. the cubby object has possible targets
in each cubby that are transformed along with the base. A random target can be retrieved with
self.get_random_target()
Objects are made up of three primitives: capsules, spheres, and rectangular prisms
TODO: allow meshes to be loaded for an object
"""
def __init__(self, base_translation, base_rotation, color=np.array([1.0, 1.0, 0]), **kwargs):
self.initial_base_trans = base_translation
self.initial_base_rotation = base_rotation
self.components = []
self.color = color
self.targets = []
self.last_target = None
# make a random USD path for all the prims in this object
object_id = str(uuid.uuid4())
self.base_path = ("/scene/object-" + object_id).replace("-", "_")
self.base_xform = XFormPrim(self.base_path)
self.base_xform.set_world_pose(base_translation, matrix_to_quat(base_rotation))
self.construct(**kwargs)
self._geometry_view = GeometryPrimView(self.base_path + "/.*")
self._geometry_view.apply_collision_apis()
self.set_enable_collisions(False)
def construct(self, **kwargs):
pass
def get_random_target(self, make_visible=True):
if self.last_target is not None:
self.last_target.set_visibility(False)
if len(self.targets) > 0:
target = np.random.choice(self.targets)
target.set_visibility(make_visible)
self.last_target = target
return target
def get_all_components(self):
# get all prims that the robot should avoid
return self.components
def create_target(
self,
relative_translation=np.zeros(3),
relative_rotation=np.eye(3),
target_color=np.array([1.0, 0, 0]),
target_size=0.05,
):
path = self.base_path + "/target_" + str(len(self.targets))
target = cuboid.VisualCuboid(path, size=target_size, color=target_color)
target.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
target.set_visibility(False)
self.targets.append(target)
return target
def create_block(self, size, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/cuboid_" + str(len(self.components))
cube = cuboid.FixedCuboid(path, size=1.0, scale=size, color=self.color)
cube.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(cube)
return cube
def create_sphere(self, radius, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/sphere_" + str(len(self.components))
sphere = sphere.FixedSphere(path, radius=radius, color=self.color)
sphere.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(sphere)
return sphere
def create_capsule(self, radius, height, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/capsule_" + str(len(self.components))
capsule = capsule.FixedCapsule(path, radius=radius, height=height, color=self.color)
capsule.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(capsule)
return capsule
def set_base_pose(self, translation=np.zeros(3), rotation=np.eye(3)):
self.base_xform.set_world_pose(translation, matrix_to_quat(rotation))
def set_visibility(self, on=True):
for component in self.components:
component.set_visibility(on)
def set_enable_collisions(self, collisions_enabled=True):
if collisions_enabled:
self._geometry_view.enable_collision()
else:
self._geometry_view.disable_collision()
def delete(self):
for component in self.components:
delete_prim(component.prim_path)
self.components = []
for target in self.targets:
delete_prim(target.prim_path)
self.targets = []
def reset(self):
self.set_base_pose(self.initial_base_trans, self.initial_base_rotation)
for target in self.targets:
target.set_visibility(False)
| 6,127 | Python | 37.3 | 114 | 0.679615 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/environments.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
from scipy.spatial.transform import Rotation as R
from .environment_interface import Environment
from .objects import *
"""
The environment creator is used by the UI in Isaac Sim for the automatic discovery of environments
that appear in a drop down menu. Some environments may not be available for certain robots, and
the environment creator stores any relevant excluding of robots per environment.
The creator is also used to validate the choice of environment when testing from a standalone script.
"""
class EnvironmentCreator:
def __init__(self):
self.environments = ["Static Cage", "Cubby", "Window", "Evasion", "Guillotine"]
self.robot_exclusion_lists = {"Windmill": ["UR10"]}
self.policy_exclusion_list = {}
def create_environment(self, env_name, random_seed=0, **kwargs):
if env_name == "Cubby":
return CubbyEnv(random_seed=random_seed, **kwargs)
elif env_name == "Evasion":
return EvasionEnv(random_seed=random_seed, **kwargs)
elif env_name == "Window":
return WindowEnv(random_seed=random_seed, **kwargs)
elif env_name == "Windmill":
return WindmillEnv(random_seed=random_seed, **kwargs)
elif env_name == "Guillotine":
return GuillotineEnv(random_seed=random_seed, **kwargs)
elif env_name == "Static Cage":
return CageEnv(random_seed=random_seed, **kwargs)
elif env_name == "Empty":
return EmptyEnv(random_seed=random_seed, **kwargs)
else:
return None
def has_environment(self, env_name):
return env_name in self.environments
def get_environment_names(self):
return self.environments
def get_robot_exclusion_list(self, env_name):
# some robots should not be used in certain environments
return self.robot_exclusion_lists.get(env_name, [])
def get_motion_policy_exclusion_list(self, env_name):
# some motion policies should not be used in certain environments
# For example, global motion policies with slow update rates may not make sense
# for environments with quickly moving obstacles or targets.
return self.policy_exclusion_list.get(env_name, [])
"""
See comments above the Environment class in ./template_classes.py for information about the general behavior of all environments.
These comments explain some implementation details when implementing the Environment class.
Different environments are implemented below. Each environment has **kwargs that it can accept as an argument. Each robot has an environment
config file with the desired kwargs for each environment. Any kwargs that are explicitly listed in the environment config file
override the default kwargs seen in the kwargs.get() lines.
There is not a rigid style for naming kwargs or deciding what kwargs are in a certain environment. The environments are not made with the
assumption that every possible detail will be specified by a kwarg.
Most position information can be passed in as a kwarg, but the relative
positions of some objects may not be changeable. There are some magic numbers in the placement of certain objects when it would overcomplicate
things to use kwargs and it is not likely that the param will need to change.
Most parameters that are chosen arbitrarily, such as the speed of moving obstacles, are given as kwargs.
As a convention, environments are displaced from the robot along the positive x axis, and mostly centered about the y axis.
Some robots (such as the UR10) may need the environment to be rotated about the robot. The UR10's environment config file
rotates each environment by pi/2 about the z axis.
In general, the code for these environments are not written with the expectation that the user will never need to touch the code
for their desired custom behavior. The code serves as more of an example for how to create different behaviors in different
environments as needed.
"""
class CubbyEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Cubby")
initial_robot_cspace_position: If specified, this parameter can be accessed to
determine a good starting cspace position for a robot in this environment
timeout: simulated time (in seconds) before a test times out (default: 10)
collidable: turn on collision detection for the cubby (default: False)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
base_rotation: axis-angle rotation of the cubby base (default: [0,0,0])
base_offset: 3d translation of the cubby base (default [45.0,0,0])
depth: The depth of the cubby shelves (default 30)
target_depth: how deep the target is into the cubby (default half the depth)
"""
self.name = kwargs.get("name", "Cubby")
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.timeout = kwargs.get("timeout", 20)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
cub_rot = R.from_rotvec(kwargs.get("base_rotation", [0, 0, 0]))
base_offset = np.array(kwargs.get("base_offset", [0.45, 0.0, 0]))
depth = kwargs.get("depth", 0.30)
target_depth = kwargs.get("target_depth", depth / 2)
self.require_orientation = kwargs.get("require_orientation", True) # add an orientation target
cub_pos = base_offset + np.array([0, 0, 0.20])
c = Cubbies(cub_pos, cub_rot.as_matrix(), require_orientation=False, depth=depth, target_depth=target_depth)
target_pos = cub_pos / 2 + np.array([0.0, 0.0, c.height / 2])
self.start_target = Target(
target_pos,
R.from_rotvec([0, np.pi, 0]).as_matrix(),
target_color=np.array([0, 0, 1.0]),
require_orientation=True,
)
base_pos = base_offset + np.array([0, 0, 0.10])
cubby_base = Block(base_pos, cub_rot.as_matrix(), size=np.array([c.depth, c.width, 0.20]))
self.objects.append(c)
self.objects.append(cubby_base)
self.targetable_objects.append(c)
def get_new_scenario(self):
t1 = self.get_random_target(make_visible=False)
t2 = self.get_random_target(make_visible=False)
while t2 == t1:
t2 = self.get_random_target(make_visible=False)
waypoints = [t1, t2]
return self.start_target.get_target(make_visible=True), waypoints, self.timeout
class EvasionEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Evasion")
timeout: simulated time (in seconds) before a test times out (default: 300)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
target_speed: speed of the target along a sinusoidal path in rad/sec (default: .2)
block_speeds: 6d vector of speeds for the blocks moving along
sinusoidal paths in rad/sec (default: np.linspace(.1, .3, num=6))
block_sizes: 6d vector of the sizes of each block (default [15,15,15,15,15,15])
frames_per_update: number of frames that should pass before obstacle/target positions
are updated (default: 1) -- This approximates lag in perception
target_position_std_dev: standard deviation of target position offset from the set path
on every frame (default: 0)
obstacle_position_std_dev: standard deviation of obstacle positions offset from their set
path on every frame (default: 0)
height: height of target/average heights of obstacles off the ground
"""
self.name = kwargs.get("name", "Evasion")
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.timeout = kwargs.get("timeout", 300)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.target_speed = kwargs.get("target_speed", 0.2) # rad/sec
# blocks move sinusoidally with the given frequencies
self.block_speeds = np.array(kwargs.get("block_speeds", np.linspace(0.1, 0.3, num=6)))
self.block_sizes = np.array(kwargs.get("block_sizes", [0.15] * 6), dtype=int) # the size of each block
# Update postions once every frame by default.
self.frames_per_update = kwargs.get("frames_per_update", 1)
# std_dev of gaussian noise to target position
self.target_position_std_dev = kwargs.get("target_position_std_dev", 0)
self.obstacle_position_std_dev = kwargs.get("obstacle_position_std_dev", 0)
height = kwargs.get("height", 0.50)
self.target = Target(np.array([0.60, 0.0, height]), np.eye(3))
self.objects.append(self.target)
self.blocks = []
for i, position in enumerate(np.linspace([0.40, -0.50, height], [0.40, 0.50, height], num=6)):
self.blocks.append(Block(position, np.eye(3), size=0.150 * np.ones(3)))
self.objects.extend(self.blocks)
self.first_update = True
def get_new_scenario(self):
self.first_update = True
return self.target.get_target(make_visible=True), [], self.timeout
def update(self):
if self.first_update:
self.frame_number = 0
self.first_update = False
else:
self.frame_number += 1
# Because robot perception can be slow, this slows down the world updates by a factor of self.frames_per_update.
t = (self.frame_number // self.frames_per_update) * self.frames_per_update
pos = (
self.target.initial_base_trans
+ np.array([0, 0.50 * np.sin(self.target_speed / self.fps * t), 0])
+ np.random.normal(0, self.target_position_std_dev)
)
self.target.set_base_pose(translation=pos)
for block, speed in zip(self.blocks, self.block_speeds):
pos = (
block.initial_base_trans
+ np.array([0, 0, 0.40 * np.sin(speed / self.fps * t)])
+ np.random.normal(0, self.obstacle_position_std_dev)
)
block.set_base_pose(translation=pos)
class WindmillEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Windmill")
timeout: simulated time (in seconds) before a test times out (default: 300)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
windmill_1_speed: rotational speed of windmill 1 in rad/sec (default: pi/15)
windmill_2_speed: rotational speed of windmill 2 in rad/sec (default: pi/15)
windmill_1_translation: translational position of windmill 1 (default [35,0,50])
windmill_2_translation: translational position of windmill 1 (default [40,0,50])
target_pos: position of target behind windmills (default [50,0,70])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Windmill")
self.timeout = kwargs.get("timeout", 300)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.speed1 = kwargs.get("windmill_1_speed", np.pi / 15)
self.speed2 = kwargs.get("windmill_2_speed", np.pi / 25)
self.bt1 = np.array(kwargs.get("windmill_1_translation", [0.40, 0, 0.50]))
self.bt2 = np.array(kwargs.get("windmill_2_translation", [0.45, 0, 0.50]))
self.br1 = np.eye(3)
self.br2 = np.eye(3)
self.t_pos = np.array(kwargs.get("target_pos", [0.50, 0, 0.70]))
self.env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.bt1 = self.env_rotation @ self.bt1
self.bt2 = self.env_rotation @ self.bt2
self.br1 = self.env_rotation @ self.br1
self.br2 = self.env_rotation @ self.br2
self.t_pos = self.env_rotation @ self.t_pos
self.rot_axs = self.env_rotation @ np.array([1, 0, 0])
self.w1 = Windmill(self.bt1, self.br1)
self.w2 = Windmill(self.bt2, self.br2, num_blades=3)
self.objects.append(self.w1)
self.objects.append(self.w2)
self.target = Target(self.t_pos, np.eye(3))
self.start_target = Target(self.w1.initial_base_trans / 2, np.eye(3), target_color=np.array([0, 0, 1.0]))
self.mid_target = Target(self.w1.initial_base_trans / 2, np.eye(3))
self.frame_number = 0
def update(self):
self.frame_number += 1
t = self.frame_number
p1 = self.w1.initial_base_trans
p2 = self.w2.initial_base_trans
rot1 = R.from_rotvec(self.speed1 / self.fps * t * self.rot_axs).as_matrix() @ self.w1.initial_base_rotation
rot2 = R.from_rotvec(self.speed2 / self.fps * t * self.rot_axs).as_matrix() @ self.w2.initial_base_rotation
self.w1.set_base_pose(p1, rot1)
self.w2.set_base_pose(p2, rot2)
def get_new_scenario(self):
sg = self.start_target.get_target(make_visible=True)
mg = self.mid_target.get_target()
tg = self.target.get_target()
return sg, [tg, mg, tg], self.timeout
class WindowEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Window")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
window_translation: translational position of window (default [45,-30, 50])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Window")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.window_trans = np.array(kwargs.get("window_translation", [0.45, -0.30, 0.50]))
self.window_rotation = np.eye(3)
env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.window_trans = env_rotation @ self.window_trans
self.window_rotation = env_rotation @ self.window_rotation
self.window = Window(self.window_trans, self.window_rotation, window_width=0.30, window_height=0.30)
self.start_target = Target(self.window_trans / 2, self.window_rotation, target_color=np.array([0, 0, 1.0]))
self.objects.append(self.window)
self.end_target = Target(np.array([*1.3 * self.window_trans[:2], self.window_trans[2]]), self.window_rotation)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.window.front_target,
self.window.center_target,
self.window.behind_target,
self.end_target.get_target(make_visible=False),
],
self.timeout,
)
class GuillotineEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Guillotine")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
wall_height: height of wall the robot has to reach through (default: 100)
windmill_speed: speed of windmill embedded in wall in rad/sec (default: pi/15)
window_translation: translational position of window embedded in wall (default [50,0, wall_height/2])
windmill_translation: translational position of windmill (default: [55,0,wall_height/2+30])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Guillotine")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.wall_height = kwargs.get("wall_height", 1.00)
self.speed = kwargs.get("windmill_speed", np.pi / 15)
self.window_trans = np.array(kwargs.get("window_translation", [0.50, 0, self.wall_height / 2]))
end_target_trans = np.array([1.5 * self.window_trans[0], 0, self.wall_height / 2])
self.window_rotation = np.eye(3)
self.windmill_trans = np.array(kwargs.get("windmill_translation", [0.55, 0, self.wall_height / 2 + 0.30]))
self.windmill_rot_axs = np.array([1, 0, 0])
self.windmill_rotation = self.window_rotation
self.env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.window_trans = self.env_rotation @ self.window_trans
self.window_rotation = self.env_rotation @ self.window_rotation
self.windmill_trans = self.env_rotation @ self.windmill_trans
self.windmill_rotation = self.env_rotation @ self.windmill_rotation
self.windmill_rot_axs = self.env_rotation @ self.windmill_rot_axs
self.window = Window(
self.window_trans,
self.window_rotation,
height=self.wall_height,
window_width=0.30,
window_height=0.30,
depth=0.20,
)
self.windmill = Windmill(self.windmill_trans, self.windmill_rotation, blade_width=0.10)
self.start_target = Target(self.window_trans / 2, self.window_rotation, target_color=np.array([0, 0, 1.0]))
self.objects.append(self.window)
self.objects.append(self.windmill)
self.end_target = Target(self.env_rotation @ end_target_trans, self.window_rotation)
self.frame_number = 0
self.camera_position = self.env_rotation @ np.array([2.00, -1.00, 1.00])
self.camera_target = self.env_rotation @ np.array([0, 0, 0.50])
def update(self):
self.frame_number += 1
t = self.frame_number
rot = (
R.from_rotvec(self.speed / self.fps * t * self.windmill_rot_axs).as_matrix()
@ self.windmill.initial_base_rotation
)
self.windmill.set_base_pose(self.windmill.initial_base_trans, rot)
end_tgt = self.end_target.initial_base_trans + self.env_rotation @ (
10 * np.array([0, np.cos(t * self.speed / self.fps), np.sin(t * self.speed / self.fps)])
)
self.end_target.set_base_pose(end_tgt, self.window_rotation)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.window.front_target,
self.window.center_target,
self.window.behind_target,
self.end_target.get_target(make_visible=True),
],
self.timeout,
)
class CageEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Cage")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
ceiling_height: height of ceiling of cage (default .75 m)
ceiling_thickness: thickness (along z axis) of ceiling (default .01 m)
cage_width: width (along x axis) of cage (default .35 m)
cage_length: length (along y axis) of cage (default .35 m)
num_pillars: number of pillars defining the "bars" of the cage. The pillars will be evenly
spaced by angle around the elipse defined by cage_width and cage_length
pillar_thickness: thickness of pillars (default .1 m)
target_scalar: a scalar defining the distance from the robot to the targets. Potential targets
are arranged in an ovoid around the robot with a width of target_scalar*cage_width and a length
of target_scalar*cage_length. A value of 1 would place some targets inside the pillars (default 1.15)
"""
self.name = kwargs.get("name", "Cage")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.ceiling_height = kwargs.get("ceiling_height", 0.75)
self.ceiling_thickenss = kwargs.get("ceiling_thickness", 0.01)
self.cage_width = kwargs.get("cage_width", 0.35)
self.cage_length = kwargs.get("cage_length", 0.35)
self.num_pillars = kwargs.get("num_pillars", 4)
self.pillar_thickness = kwargs.get("pillar_thickness", 0.1)
self.target_scalar = kwargs.get("target_scalar", 1.15)
self.objects = []
self.cage = Cage(
np.zeros(3),
np.eye(3),
ceiling_height=self.ceiling_height,
ceiling_thickness=self.ceiling_thickenss,
cage_width=self.cage_width,
cage_length=self.cage_length,
num_pillars=self.num_pillars,
pillar_thickness=self.pillar_thickness,
target_scalar=self.target_scalar,
)
self.objects.append(self.cage)
self.start_target = Target(
np.array([(self.cage_width - self.pillar_thickness / 2) / 1.25, 0, self.ceiling_height / 2]),
np.eye(3),
target_color=np.array([0, 0, 1.0]),
)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.cage.get_random_target(False),
self.cage.get_random_target(False),
self.cage.get_random_target(False),
],
self.timeout,
)
class EmptyEnv(Environment):
def build_environment(self, **kwargs):
self.name = "Empty"
def get_new_scenario(self):
return None, [], self.timeout
| 25,286 | Python | 43.363158 | 148 | 0.635371 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/docs/CHANGELOG.md | # Changelog
## [0.4.0] - 2022-07-06
### Added
- Added Cage environment
## [0.3.0] - 2022-05-09
### Changed
- Updated all hard coded USD object values to meters
## [0.2.0] - 2022-02-10
### Changed
- updated object instantiation to use Core API
## [0.1.2] - 2021-10-22
### Changed
- use delete_prim from omni.isaac.core
## [0.1.1] - 2021-10-09
### Changed
- Folder structure reorganized
## [0.1.0] - 2021-08-10
### Added
- Initial version of Isaac Sim Benchmark Environments Extension
| 494 | Markdown | 14.967741 | 63 | 0.653846 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/docs/README.md | # Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.benchmark_environments extension.
| 125 | Markdown | 24.199995 | 114 | 0.808 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/config/extension.toml | [core]
reloadable = true
order = 0
[package]
version = "0.5.9"
category = "Simulation"
title = "Isaac Sim URDF Importer"
description = "URDF Importer for Isaac Sim"
authors = ["NVIDIA"]
repository = ""
keywords = ["isaac", "urdf", "import"]
changelog = "docs/CHANGELOG.md"
readme = "docs/README.md"
icon = "data/icon.png"
writeTarget.kit = true
[dependencies]
"omni.kit.uiapp" = {}
"omni.isaac.ui" = {}
"omni.kit.window.filepicker" = {}
"omni.kit.window.content_browser" = {}
"omni.kit.viewport.utility" = {}
"omni.kit.pip_archive" = {} # pulls in pillow
"omni.physx" = {}
[[python.module]]
name = "omni.isaac.urdf"
[[python.module]]
name = "omni.isaac.urdf.tests"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_carter"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_franka"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_kaya"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_ur10"
[[native.plugin]]
path = "bin/*.plugin"
recursive = false
[[test]]
# this is to catch issues where our assimp is out of sync with the one that comes with
# asset importer as this can cause segfaults due to binary incompatibility.
dependencies = ["omni.kit.tool.asset_importer"]
stdoutFailPatterns.exclude = [
"*extension object is still alive, something holds a reference on it*", # exclude warning as failure
]
| 1,384 | TOML | 22.87931 | 104 | 0.70448 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/commands.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni.kit.commands
import omni.kit.utils
from omni.isaac.urdf import _urdf
import os
from pxr import Usd
from omni.client._omniclient import Result
import omni.client
class URDFCreateImportConfig(omni.kit.commands.Command):
"""
Returns an ImportConfig object that can be used while parsing and importing.
Should be used with `URDFParseFile` and `URDFParseAndImportFile` commands
Returns:
:obj:`omni.isaac.urdf._urdf.ImportConfig`: Parsed URDF stored in an internal structure.
"""
def __init__(self) -> None:
pass
def do(self) -> _urdf.ImportConfig:
return _urdf.ImportConfig()
def undo(self) -> None:
pass
class URDFParseFile(omni.kit.commands.Command):
"""
This command parses a given urdf and returns a UrdfRobot object
Args:
arg0 (:obj:`str`): The absolute path to where the urdf file is
arg1 (:obj:`omni.isaac.urdf._urdf.ImportConfig`): Import Configuration
Returns:
:obj:`omni.isaac.urdf._urdf.UrdfRobot`: Parsed URDF stored in an internal structure.
"""
def __init__(self, urdf_path: str = "", import_config: _urdf.ImportConfig = _urdf.ImportConfig()) -> None:
self._root_path, self._filename = os.path.split(os.path.abspath(urdf_path))
self._import_config = import_config
self._urdf_interface = _urdf.acquire_urdf_interface()
pass
def do(self) -> _urdf.UrdfRobot:
return self._urdf_interface.parse_urdf(self._root_path, self._filename, self._import_config)
def undo(self) -> None:
pass
class URDFParseAndImportFile(omni.kit.commands.Command):
"""
This command parses and imports a given urdf and returns a UrdfRobot object
Args:
arg0 (:obj:`str`): The absolute path to where the urdf file is
arg1 (:obj:`omni.isaac.urdf._urdf.ImportConfig`): Import Configuration
arg2 (:obj:`str`): destination path for robot usd. Default is "" which will load the robot in-memory on the open stage.
Returns:
:obj:`str`: Path to the robot on the USD stage.
"""
def __init__(self, urdf_path: str = "", import_config=_urdf.ImportConfig(), dest_path: str = "") -> None:
self.dest_path = dest_path
self._urdf_path = urdf_path
self._root_path, self._filename = os.path.split(os.path.abspath(urdf_path))
self._import_config = import_config
self._urdf_interface = _urdf.acquire_urdf_interface()
pass
def do(self) -> str:
status, imported_robot = omni.kit.commands.execute(
"URDFParseFile", urdf_path=self._urdf_path, import_config=self._import_config
)
if self.dest_path:
self.dest_path = self.dest_path.replace(
"\\", "/"
) # Omni client works with both slashes cross platform, making it standard to make it easier later on
result = omni.client.read_file(self.dest_path)
if result[0] != Result.OK:
stage = Usd.Stage.CreateNew(self.dest_path)
stage.Save()
return self._urdf_interface.import_robot(
self._root_path, self._filename, imported_robot, self._import_config, self.dest_path
)
def undo(self) -> None:
pass
omni.kit.commands.register_all_commands_in_module(__name__)
| 3,772 | Python | 33.614679 | 127 | 0.659332 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/docs/README.md | # Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.urdf extension.
| 107 | Markdown | 20.599996 | 96 | 0.785047 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/launch/carter_navigation.launch.py | ## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
## NVIDIA CORPORATION and its licensors retain all intellectual property
## and proprietary rights in and to this software, related documentation
## and any modifications thereto. Any use, reproduction, disclosure or
## distribution of this software and related documentation without an express
## license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument
from launch.actions import IncludeLaunchDescription
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node
def generate_launch_description():
use_sim_time = LaunchConfiguration("use_sim_time", default="True")
map_dir = LaunchConfiguration(
"map",
default=os.path.join(
get_package_share_directory("carter_navigation"), "maps", "carter_warehouse_navigation.yaml"
),
)
param_dir = LaunchConfiguration(
"params_file",
default=os.path.join(
get_package_share_directory("carter_navigation"), "params", "carter_navigation_params.yaml"
),
)
nav2_bringup_launch_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch")
rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz")
return LaunchDescription(
[
DeclareLaunchArgument("map", default_value=map_dir, description="Full path to map file to load"),
DeclareLaunchArgument(
"params_file", default_value=param_dir, description="Full path to param file to load"
),
DeclareLaunchArgument(
"use_sim_time", default_value="true", description="Use simulation (Omniverse Isaac Sim) clock if true"
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")),
launch_arguments={"namespace": "", "use_namespace": "False", "rviz_config": rviz_config_dir}.items(),
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource([nav2_bringup_launch_dir, "/bringup_launch.py"]),
launch_arguments={"map": map_dir, "use_sim_time": use_sim_time, "params_file": param_dir}.items(),
),
]
)
| 2,582 | Python | 42.77966 | 119 | 0.684741 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from .path_planning_task import FrankaPathPlanningTask
from .path_planning_controller import FrankaRrtController
class PathPlanning(BaseSample):
def __init__(self) -> None:
super().__init__()
self._controller = None
self._articulation_controller = None
def setup_scene(self):
world = self.get_world()
world.add_task(FrankaPathPlanningTask("Plan To Target Task"))
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
return
def world_cleanup(self):
self._controller = None
return
async def setup_post_load(self):
self._franka_task = list(self._world.get_current_tasks().values())[0]
self._task_params = self._franka_task.get_params()
my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._controller = FrankaRrtController(name="franka_rrt_controller", robot_articulation=my_franka)
self._articulation_controller = my_franka.get_articulation_controller()
return
async def _on_follow_target_event_async(self):
world = self.get_world()
self._pass_world_state_to_controller()
await world.play_async()
if not world.physics_callback_exists("sim_step"):
world.add_physics_callback("sim_step", self._on_follow_target_simulation_step)
def _pass_world_state_to_controller(self):
self._controller.reset()
for wall in self._franka_task.get_obstacles():
self._controller.add_obstacle(wall)
def _on_follow_target_simulation_step(self, step_size):
if self._franka_task.target_reached():
return
observations = self._world.get_observations()
actions = self._controller.forward(
target_end_effector_position=observations[self._task_params["target_name"]["value"]]["position"],
target_end_effector_orientation=observations[self._task_params["target_name"]["value"]]["orientation"],
)
kps, kds = self._franka_task.get_custom_gains()
self._articulation_controller.set_gains(kps, kds)
self._articulation_controller.apply_action(actions)
return
def _on_add_wall_event(self):
world = self.get_world()
current_task = list(world.get_current_tasks().values())[0]
cube = current_task.add_obstacle()
return
def _on_remove_wall_event(self):
world = self.get_world()
current_task = list(world.get_current_tasks().values())[0]
obstacle_to_delete = current_task.get_obstacle_to_delete()
current_task.remove_obstacle()
return
def _on_logging_event(self, val):
world = self.get_world()
data_logger = world.get_data_logger()
if not world.get_data_logger().is_started():
robot_name = self._task_params["robot_name"]["value"]
target_name = self._task_params["target_name"]["value"]
def frame_logging_func(tasks, scene):
return {
"joint_positions": scene.get_object(robot_name).get_joint_positions().tolist(),
"applied_joint_positions": scene.get_object(robot_name)
.get_applied_action()
.joint_positions.tolist(),
"target_position": scene.get_object(target_name).get_world_pose()[0].tolist(),
}
data_logger.add_data_frame_logging_func(frame_logging_func)
if val:
data_logger.start()
else:
data_logger.pause()
return
def _on_save_data_event(self, log_path):
world = self.get_world()
data_logger = world.get_data_logger()
data_logger.save(log_path=log_path)
data_logger.reset()
return
| 4,442 | Python | 38.669643 | 115 | 0.632823 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_task.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.core.tasks import BaseTask
from omni.isaac.franka import Franka
from omni.isaac.core.prims import XFormPrim
from omni.isaac.core.utils.prims import is_prim_path_valid
from omni.isaac.core.utils.string import find_unique_string_name
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.scenes.scene import Scene
from omni.isaac.core.objects import FixedCuboid, VisualCuboid
from omni.isaac.core.utils.stage import get_stage_units
from collections import OrderedDict
from typing import Optional, List, Tuple
import numpy as np
class PathPlanningTask(BaseTask):
def __init__(
self,
name: str,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
offset: Optional[np.ndarray] = None,
) -> None:
BaseTask.__init__(self, name=name, offset=offset)
self._robot = None
self._target_name = target_name
self._target = None
self._target_prim_path = target_prim_path
self._target_position = target_position
self._target_orientation = target_orientation
self._target_visual_material = None
self._obstacle_walls = OrderedDict()
if self._target_position is None:
self._target_position = np.array([0.8, 0.3, 0.4]) / get_stage_units()
return
def set_up_scene(self, scene: Scene) -> None:
"""[summary]
Args:
scene (Scene): [description]
"""
super().set_up_scene(scene)
scene.add_default_ground_plane()
if self._target_orientation is None:
self._target_orientation = euler_angles_to_quat(np.array([-np.pi, 0, np.pi]))
if self._target_prim_path is None:
self._target_prim_path = find_unique_string_name(
initial_name="/World/TargetCube", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
if self._target_name is None:
self._target_name = find_unique_string_name(
initial_name="target", is_unique_fn=lambda x: not self.scene.object_exists(x)
)
self.set_params(
target_prim_path=self._target_prim_path,
target_position=self._target_position,
target_orientation=self._target_orientation,
target_name=self._target_name,
)
self._robot = self.set_robot()
scene.add(self._robot)
self._task_objects[self._robot.name] = self._robot
self._move_task_objects_to_their_frame()
return
def set_params(
self,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]
Args:
target_prim_path (Optional[str], optional): [description]. Defaults to None.
target_name (Optional[str], optional): [description]. Defaults to None.
target_position (Optional[np.ndarray], optional): [description]. Defaults to None.
target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None.
"""
if target_prim_path is not None:
if self._target is not None:
del self._task_objects[self._target.name]
if is_prim_path_valid(target_prim_path):
self._target = self.scene.add(
XFormPrim(
prim_path=target_prim_path,
position=target_position,
orientation=target_orientation,
name=target_name,
)
)
else:
self._target = self.scene.add(
VisualCuboid(
name=target_name,
prim_path=target_prim_path,
position=target_position,
orientation=target_orientation,
color=np.array([1, 0, 0]),
size=1.0,
scale=np.array([0.03, 0.03, 0.03]) / get_stage_units(),
)
)
self._task_objects[self._target.name] = self._target
self._target_visual_material = self._target.get_applied_visual_material()
if self._target_visual_material is not None:
if hasattr(self._target_visual_material, "set_color"):
self._target_visual_material.set_color(np.array([1, 0, 0]))
else:
self._target.set_local_pose(position=target_position, orientation=target_orientation)
return
def get_params(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
params_representation = dict()
params_representation["target_prim_path"] = {"value": self._target.prim_path, "modifiable": True}
params_representation["target_name"] = {"value": self._target.name, "modifiable": True}
position, orientation = self._target.get_local_pose()
params_representation["target_position"] = {"value": position, "modifiable": True}
params_representation["target_orientation"] = {"value": orientation, "modifiable": True}
params_representation["robot_name"] = {"value": self._robot.name, "modifiable": False}
return params_representation
def get_task_objects(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
return self._task_objects
def get_observations(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
joints_state = self._robot.get_joints_state()
target_position, target_orientation = self._target.get_local_pose()
return {
self._robot.name: {
"joint_positions": np.array(joints_state.positions),
"joint_velocities": np.array(joints_state.velocities),
},
self._target.name: {"position": np.array(target_position), "orientation": np.array(target_orientation)},
}
def target_reached(self) -> bool:
"""[summary]
Returns:
bool: [description]
"""
end_effector_position, _ = self._robot.end_effector.get_world_pose()
target_position, _ = self._target.get_world_pose()
if np.mean(np.abs(np.array(end_effector_position) - np.array(target_position))) < (0.035 / get_stage_units()):
return True
else:
return False
def pre_step(self, time_step_index: int, simulation_time: float) -> None:
"""[summary]
Args:
time_step_index (int): [description]
simulation_time (float): [description]
"""
if self._target_visual_material is not None:
if hasattr(self._target_visual_material, "set_color"):
if self.target_reached():
self._target_visual_material.set_color(color=np.array([0, 1.0, 0]))
else:
self._target_visual_material.set_color(color=np.array([1.0, 0, 0]))
return
def add_obstacle(self, position: np.ndarray = None, orientation=None):
"""[summary]
Args:
position (np.ndarray, optional): [description]. Defaults to np.array([0.1, 0.1, 1.0]).
"""
# TODO: move to task frame if there is one
cube_prim_path = find_unique_string_name(
initial_name="/World/WallObstacle", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
cube_name = find_unique_string_name(initial_name="wall", is_unique_fn=lambda x: not self.scene.object_exists(x))
if position is None:
position = np.array([0.6, 0.1, 0.3]) / get_stage_units()
if orientation is None:
orientation = euler_angles_to_quat(np.array([0, 0, np.pi / 3]))
cube = self.scene.add(
VisualCuboid(
name=cube_name,
position=position + self._offset,
orientation=orientation,
prim_path=cube_prim_path,
size=1.0,
scale=np.array([0.1, 0.5, 0.6]) / get_stage_units(),
color=np.array([0, 0, 1.0]),
)
)
self._obstacle_walls[cube.name] = cube
return cube
def remove_obstacle(self, name: Optional[str] = None) -> None:
"""[summary]
Args:
name (Optional[str], optional): [description]. Defaults to None.
"""
if name is not None:
self.scene.remove_object(name)
del self._obstacle_walls[name]
else:
obstacle_to_delete = list(self._obstacle_walls.keys())[-1]
self.scene.remove_object(obstacle_to_delete)
del self._obstacle_walls[obstacle_to_delete]
return
def get_obstacles(self) -> List:
return list(self._obstacle_walls.values())
def get_obstacle_to_delete(self) -> None:
"""[summary]
Returns:
[type]: [description]
"""
obstacle_to_delete = list(self._obstacle_walls.keys())[-1]
return self.scene.get_object(obstacle_to_delete)
def obstacles_exist(self) -> bool:
"""[summary]
Returns:
bool: [description]
"""
if len(self._obstacle_walls) > 0:
return True
else:
return False
def cleanup(self) -> None:
"""[summary]
"""
obstacles_to_delete = list(self._obstacle_walls.keys())
for obstacle_to_delete in obstacles_to_delete:
self.scene.remove_object(obstacle_to_delete)
del self._obstacle_walls[obstacle_to_delete]
return
def get_custom_gains(self) -> Tuple[np.array, np.array]:
return None, None
class FrankaPathPlanningTask(PathPlanningTask):
def __init__(
self,
name: str,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
offset: Optional[np.ndarray] = None,
franka_prim_path: Optional[str] = None,
franka_robot_name: Optional[str] = None,
) -> None:
PathPlanningTask.__init__(
self,
name=name,
target_prim_path=target_prim_path,
target_name=target_name,
target_position=target_position,
target_orientation=target_orientation,
offset=offset,
)
self._franka_prim_path = franka_prim_path
self._franka_robot_name = franka_robot_name
self._franka = None
return
def set_robot(self) -> Franka:
"""[summary]
Returns:
Franka: [description]
"""
if self._franka_prim_path is None:
self._franka_prim_path = find_unique_string_name(
initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
if self._franka_robot_name is None:
self._franka_robot_name = find_unique_string_name(
initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x)
)
self._franka = Franka(prim_path=self._franka_prim_path, name=self._franka_robot_name)
return self._franka
def get_custom_gains(self) -> Tuple[np.array, np.array]:
return (
6 * np.array([1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e07, 1.0e07]),
10
* np.array(
[
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
1000000.0,
1000000.0,
]
),
)
| 12,634 | Python | 36.716418 | 120 | 0.56435 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.path_planning import PathPlanning
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder, str_builder, state_btn_builder
import carb
class PathPlanningExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Path Planning",
title="Path Planning Task",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html",
overview="This Example shows how to plan a path through a complicated static environment with the Franka robot in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.",
sample=PathPlanning(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=2,
)
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_task_controls_ui(frame)
frame = self.get_frame(index=1)
self.build_data_logging_ui(frame)
return
def _on_follow_target_button_event(self):
asyncio.ensure_future(self.sample._on_follow_target_event_async())
return
def _on_add_wall_button_event(self):
self.sample._on_add_wall_event()
self.task_ui_elements["Remove Wall"].enabled = True
return
def _on_remove_wall_button_event(self):
self.sample._on_remove_wall_event()
world = self.sample.get_world()
current_task = list(world.get_current_tasks().values())[0]
if not current_task.obstacles_exist():
self.task_ui_elements["Remove Wall"].enabled = False
return
def _on_logging_button_event(self, val):
self.sample._on_logging_event(val)
self.task_ui_elements["Save Data"].enabled = True
return
def _on_save_data_button_event(self):
self.sample._on_save_data_event(self.task_ui_elements["Output Directory"].get_value_as_string())
return
def post_reset_button_event(self):
self.task_ui_elements["Move To Target"].enabled = True
self.task_ui_elements["Remove Wall"].enabled = False
self.task_ui_elements["Add Wall"].enabled = True
self.task_ui_elements["Start Logging"].enabled = True
self.task_ui_elements["Save Data"].enabled = False
return
def post_load_button_event(self):
self.task_ui_elements["Move To Target"].enabled = True
self.task_ui_elements["Add Wall"].enabled = True
self.task_ui_elements["Start Logging"].enabled = True
self.task_ui_elements["Save Data"].enabled = False
return
def post_clear_button_event(self):
self.task_ui_elements["Move To Target"].enabled = False
self.task_ui_elements["Remove Wall"].enabled = False
self.task_ui_elements["Add Wall"].enabled = False
self.task_ui_elements["Start Logging"].enabled = False
self.task_ui_elements["Save Data"].enabled = False
return
def shutdown_cleanup(self):
return
def build_task_controls_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
# Update the Frame Title
frame.title = "Task Controls"
frame.visible = True
dict = {
"label": "Move To Target",
"type": "button",
"text": "Move To Target",
"tooltip": "Plan a Path and Move to Target",
"on_clicked_fn": self._on_follow_target_button_event,
}
self.task_ui_elements["Move To Target"] = btn_builder(**dict)
self.task_ui_elements["Move To Target"].enabled = False
dict = {
"label": "Add Wall",
"type": "button",
"text": "ADD",
"tooltip": "Add a Wall",
"on_clicked_fn": self._on_add_wall_button_event,
}
self.task_ui_elements["Add Wall"] = btn_builder(**dict)
self.task_ui_elements["Add Wall"].enabled = False
dict = {
"label": "Remove Wall",
"type": "button",
"text": "REMOVE",
"tooltip": "Remove Wall",
"on_clicked_fn": self._on_remove_wall_button_event,
}
self.task_ui_elements["Remove Wall"] = btn_builder(**dict)
self.task_ui_elements["Remove Wall"].enabled = False
def build_data_logging_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
frame.title = "Data Logging"
frame.visible = True
dict = {
"label": "Output Directory",
"type": "stringfield",
"default_val": os.path.join(os.getcwd(), "output_data.json"),
"tooltip": "Output Directory",
"on_clicked_fn": None,
"use_folder_picker": False,
"read_only": False,
}
self.task_ui_elements["Output Directory"] = str_builder(**dict)
dict = {
"label": "Start Logging",
"type": "button",
"a_text": "START",
"b_text": "PAUSE",
"tooltip": "Start Logging",
"on_clicked_fn": self._on_logging_button_event,
}
self.task_ui_elements["Start Logging"] = state_btn_builder(**dict)
self.task_ui_elements["Start Logging"].enabled = False
dict = {
"label": "Save Data",
"type": "button",
"text": "Save Data",
"tooltip": "Save Data",
"on_clicked_fn": self._on_save_data_button_event,
}
self.task_ui_elements["Save Data"] = btn_builder(**dict)
self.task_ui_elements["Save Data"].enabled = False
return
| 6,745 | Python | 39.154762 | 197 | 0.553595 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_controller.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.core.controllers import BaseController
from omni.isaac.motion_generation import PathPlannerVisualizer, PathPlanner
from omni.isaac.motion_generation.lula import RRT
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.core.articulations import Articulation
from omni.isaac.motion_generation import interface_config_loader
import omni.isaac.core.objects
import carb
from typing import Optional
import numpy as np
class PathPlannerController(BaseController):
def __init__(
self,
name: str,
path_planner_visualizer: PathPlannerVisualizer,
cspace_interpolation_max_dist: float = 0.5,
frames_per_waypoint: int = 30,
):
BaseController.__init__(self, name)
self._path_planner_visualizer = path_planner_visualizer
self._path_planner = path_planner_visualizer.get_path_planner()
self._cspace_interpolation_max_dist = cspace_interpolation_max_dist
self._frames_per_waypoint = frames_per_waypoint
self._plan = None
self._frame_counter = 1
def _make_new_plan(
self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None
) -> None:
self._path_planner.set_end_effector_target(target_end_effector_position, target_end_effector_orientation)
self._path_planner.update_world()
self._plan = self._path_planner_visualizer.compute_plan_as_articulation_actions(
max_cspace_dist=self._cspace_interpolation_max_dist
)
if self._plan is None or self._plan == []:
carb.log_warn("No plan could be generated to target pose: " + str(target_end_effector_position))
def forward(
self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None
) -> ArticulationAction:
if self._plan is None:
# This will only happen the first time the forward function is used
self._make_new_plan(target_end_effector_position, target_end_effector_orientation)
if len(self._plan) == 0:
# The plan is completed; return null action to remain in place
self._frame_counter = 1
return ArticulationAction()
if self._frame_counter % self._frames_per_waypoint != 0:
# Stop at each waypoint in the plan for self._frames_per_waypoint frames
self._frame_counter += 1
return self._plan[0]
else:
self._frame_counter += 1
return self._plan.pop(0)
def add_obstacle(self, obstacle: omni.isaac.core.objects, static: bool = False) -> None:
self._path_planner.add_obstacle(obstacle, static)
def remove_obstacle(self, obstacle: omni.isaac.core.objects) -> None:
self._path_planner.remove_obstacle(obstacle)
def reset(self) -> None:
# PathPlannerController will make one plan per reset
self._path_planner.reset()
self._plan = None
self._frame_counter = 1
def get_path_planner_visualizer(self) -> PathPlannerVisualizer:
return self._path_planner_visualizer
def get_path_planner(self) -> PathPlanner:
return self._path_planner
class FrankaRrtController(PathPlannerController):
def __init__(
self,
name,
robot_articulation: Articulation,
cspace_interpolation_max_dist: float = 0.5,
frames_per_waypoint: int = 30,
):
rrt_config = interface_config_loader.load_supported_path_planner_config("Franka", "RRT")
rrt = RRT(**rrt_config)
visualizer = PathPlannerVisualizer(robot_articulation, rrt)
PathPlannerController.__init__(self, name, visualizer, cspace_interpolation_max_dist, frames_per_waypoint)
| 4,221 | Python | 38.830188 | 116 | 0.685383 |
swadaskar/Isaac_Sim_Folder/extension_examples/unitree_quadruped/quadruped_example.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
self.delay=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, 1.25718, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.60277, -5.70312, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-5.3:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(screw_ee_pose.p - np.array([-3.70349, -4.41856, 0.56125])))<0.058:
self._task_event=2
elif self._task_event == 2:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 3:
pass
return
def post_reset(self):
self._task_event = 0
return
class QuadrupedExample(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
# static suspensions on the table
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.83704, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.54469, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.3843, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.22546, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-6.10203, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_06", np.array([0.001,0.001,0.001]), np.array([-5.96018, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_07", np.array([0.001,0.001,0.001]), np.array([-5.7941, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_08", np.array([0.001,0.001,0.001]), np.array([-5.63427, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_09", np.array([0.001,0.001,0.001]), np.array([-5.47625, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
# actions.joint_velocities = [0.0001,0.0001,0.0001,0.0001,0.0001,0.0001]
# actions.joint_velocities = [1,1,1,1,1,1]
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
# def do_screw_driving(self, locations, task_name=""):
# print(self.motion_task_counter)
# target_location = locations[self.motion_task_counter]
# print("Doing "+str(target_location["index"])+"th motion plan")
# actions, success = self.screw_my_controller.compute_inverse_kinematics(
# target_position=target_location["position"],
# target_orientation=target_location["orientation"],
# )
# if success:
# print("still homing on this location")
# controller_name = getattr(self,"screw_articulation_controller"+task_name)
# controller_name.apply_action(actions)
# else:
# carb.log_warn("IK did not converge to a solution. No action is being taken.")
# # check if reached location
# curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link")
# print("Curr:",curr_location.p)
# print("Goal:", target_location["goal_position"])
# print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
# if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
# self.motion_task_counter+=1
# print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]-=0
position[1]+=0
position[2]+=-0
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
# go forward
if current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.05477, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":3, "position": np.array([-0.96615-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.13459, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":4, "position": np.array([-1.10845-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-4.99229, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":5, "position": np.array([-1.10842-0.16, -0.39583, 0.29724]), "orientation": np.array([-0.00055, 0.0008, -0.82242, -0.56888]), "goal_position":np.array([-5.00127, -4.80822, 0.53949]), "goal_orientation":np.array([0.56437, 0.82479, 0.02914, 0.01902])}]
# {"index":0, "position": np.array([1.11096, -0.01839, 0.31929-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":1, "position": np.array([1.11096, -0.01839, 0.19845-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.44167]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":2, "position": np.array([1.11096, -0.01839, 0.31929]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
self.move_ur10(motion_plan)
if self.motion_task_counter==2 and not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
self.remove_part("World/Environment", "FSuspensionBack_01")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
if self.motion_task_counter==6:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
if not self.isDone[current_observations["task_event"]]:
if not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("Part removal done")
self.remove_part("World/UR10/ee_link", "qFSuspensionBack")
self.motion_task_counter=0
self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262]))
motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":4, "position": self.transform_for_screw_ur10(np.array([0.87215+0.16, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.66069, -4.84629,0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":5, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":6, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":8, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":9, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":10, "position": self.transform_for_screw_ur10(np.array([0.91167+0.16, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.69933, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":11, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":12, "position": self.transform_for_screw_ur10(np.array([-0.08295-0.16, -0.58914, 0.32041-0.15])), "orientation": np.array([0,0.70711, 0, -0.70711]), "goal_position":np.array([-3.70349, -4.41856, 0.56125]), "goal_orientation":np.array([0.70711,0,0.70711,0])}]
print(self.motion_task_counter)
self.do_screw_driving(motion_plan)
if self.motion_task_counter==13:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
print("done", self.motion_task_counter)
# remove engine and add engine
elif current_observations["task_event"] == 2:
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
print("task 2 delay")
elif current_observations["task_event"] == 3:
print("task 3")
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 35,604 | Python | 63.268953 | 441 | 0.605578 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/franka_nut_and_bolt_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt
class FrankaNutAndBoltExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Franka Nut and Bolt",
title="Franka Nut and Bolt",
doc_link="",
overview="Franka robot arms picking and screwing nuts onto bolts",
file_path=os.path.abspath(__file__),
sample=FrankaNutAndBolt(),
)
return
| 1,103 | Python | 38.42857 | 78 | 0.698096 |
swadaskar/Isaac_Sim_Folder/extension_examples/omnigraph_keyboard/omnigraph_keyboard_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.omnigraph_keyboard import OmnigraphKeyboard
class OmnigraphKeyboardExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
overview = "This Example shows how to change the size of a cube using the keyboard through omnigraph progrmaming in Isaac Sim."
overview += "\n\tKeybord Input:"
overview += "\n\t\ta: Grow"
overview += "\n\t\td: Shrink"
overview += "\n\nPress the 'Open in IDE' button to view the source code."
overview += "\nOpen Visual Scripting Window to see Omnigraph"
super().start_extension(
menu_name="Input Devices",
submenu_name="",
name="Omnigraph Keyboard",
title="NVIDIA Omnigraph Scripting Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_input_devices.html",
overview=overview,
file_path=os.path.abspath(__file__),
sample=OmnigraphKeyboard(),
)
| 1,557 | Python | 44.823528 | 135 | 0.696853 |
swadaskar/Isaac_Sim_Folder/extension_examples/omnigraph_keyboard/omnigraph_keyboard.py | # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import omni.ext
import numpy as np
import omni.graph.core as og
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.objects import VisualCuboid
class OmnigraphKeyboard(BaseSample):
def __init__(self) -> None:
super().__init__()
self._gamepad_gains = (40.0, 40.0, 2.0)
self._gamepad_deadzone = 0.15
def setup_scene(self):
world = self.get_world()
world.scene.add(
VisualCuboid(
prim_path="/Cube", # The prim path of the cube in the USD stage
name="cube", # The unique name used to retrieve the object from the scene later on
position=np.array([0, 0, 10.0]), # Using the current stage units which is cms by default.
size=10.0, # most arguments accept mainly numpy arrays.
color=np.array([0, 1.0, 1.0]), # RGB channels, going from 0-1
)
)
world.scene.add_default_ground_plane()
set_camera_view(eye=np.array([75, 75, 45]), target=np.array([0, 0, 0]))
# setup graph
keys = og.Controller.Keys
og.Controller.edit(
{"graph_path": "/controller_graph", "evaluator_name": "execution"},
{
keys.CREATE_NODES: [
("OnTick", "omni.graph.action.OnTick"),
("A", "omni.graph.nodes.ReadKeyboardState"),
("D", "omni.graph.nodes.ReadKeyboardState"),
("ToDouble1", "omni.graph.nodes.ToDouble"),
("ToDouble2", "omni.graph.nodes.ToDouble"),
("Negate", "omni.graph.nodes.Multiply"),
("DeltaAdd", "omni.graph.nodes.Add"),
("SizeAdd", "omni.graph.nodes.Add"),
("NegOne", "omni.graph.nodes.ConstantInt"),
("CubeWrite", "omni.graph.nodes.WritePrimAttribute"), # write prim property translate
("CubeRead", "omni.graph.nodes.ReadPrimAttribute"),
],
keys.SET_VALUES: [
("A.inputs:key", "A"),
("D.inputs:key", "D"),
("OnTick.inputs:onlyPlayback", True), # only tick when simulator is playing
("NegOne.inputs:value", -1),
("CubeWrite.inputs:name", "size"),
("CubeWrite.inputs:primPath", "/Cube"),
("CubeWrite.inputs:usePath", True),
("CubeRead.inputs:name", "size"),
("CubeRead.inputs:primPath", "/Cube"),
("CubeRead.inputs:usePath", True),
],
keys.CONNECT: [
("OnTick.outputs:tick", "CubeWrite.inputs:execIn"),
("A.outputs:isPressed", "ToDouble1.inputs:value"),
("D.outputs:isPressed", "ToDouble2.inputs:value"),
("ToDouble2.outputs:converted", "Negate.inputs:a"),
("NegOne.inputs:value", "Negate.inputs:b"),
("ToDouble1.outputs:converted", "DeltaAdd.inputs:a"),
("Negate.outputs:product", "DeltaAdd.inputs:b"),
("DeltaAdd.outputs:sum", "SizeAdd.inputs:a"),
("CubeRead.outputs:value", "SizeAdd.inputs:b"),
("SizeAdd.outputs:sum", "CubeWrite.inputs:value"),
],
},
)
def world_cleanup(self):
pass
| 3,957 | Python | 45.564705 | 106 | 0.544099 |
swadaskar/Isaac_Sim_Folder/extension_examples/isaac_demo/isaac_demo.py | from omni.isaac.examples.base_sample import BaseSample
import numpy as np
from omni.isaac.core.objects import DynamicCuboid
class IsaacDemo(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
fancy_cube = world.scene.add(
DynamicCuboid(
prim_path="/World/random_cube",
name="fancy_cube",
position=np.array([0, 0, 1.0]),
scale=np.array([0.5015, 0.5015, 0.5015]),
color=np.array([0, 0, 1.0]),
))
return
async def setup_post_load(self):
self._world = self.get_world()
self._cube = self._world.scene.get_object("fancy_cube")
self._world.add_physics_callback("sim_step", callback_fn=self.print_cube_info) #callback names have to be unique
return
# here we define the physics callback to be called before each physics step, all physics callbacks must take
# step_size as an argument
def print_cube_info(self, step_size):
position, orientation = self._cube.get_world_pose()
linear_velocity = self._cube.get_linear_velocity()
# will be shown on terminal
print("Cube position is : " + str(position))
print("Cube's orientation is : " + str(orientation))
print("Cube's linear velocity is : " + str(linear_velocity))
# # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
# #
# # NVIDIA CORPORATION and its licensors retain all intellectual property
# # and proprietary rights in and to this software, related documentation
# # and any modifications thereto. Any use, reproduction, disclosure or
# # distribution of this software and related documentation without an express
# # license agreement from NVIDIA CORPORATION is strictly prohibited.
# from omni.isaac.examples.base_sample import BaseSample
# # Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
# class HelloWorld(BaseSample):
# def __init__(self) -> None:
# super().__init__()
# return
# def setup_scene(self):
# world = self.get_world()
# world.scene.add_default_ground_plane()
# return
# async def setup_post_load(self):
# return
# async def setup_pre_reset(self):
# return
# async def setup_post_reset(self):
# return
# def world_cleanup(self):
# return
| 2,649 | Python | 15.060606 | 120 | 0.613439 |
swadaskar/Isaac_Sim_Folder/extension_examples/bin_filling/bin_filling.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.universal_robots.tasks import BinFilling as BinFillingTask
from omni.isaac.universal_robots.controllers import PickPlaceController
import numpy as np
class BinFilling(BaseSample):
def __init__(self) -> None:
super().__init__()
self._controller = None
self._articulation_controller = None
self._added_screws = False
def setup_scene(self):
world = self.get_world()
world.add_task(BinFillingTask(name="bin_filling"))
return
async def setup_post_load(self):
self._ur10_task = self._world.get_task(name="bin_filling")
self._task_params = self._ur10_task.get_params()
my_ur10 = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._controller = PickPlaceController(
name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10
)
self._articulation_controller = my_ur10.get_articulation_controller()
return
def _on_fill_bin_physics_step(self, step_size):
observations = self._world.get_observations()
actions = self._controller.forward(
picking_position=observations[self._task_params["bin_name"]["value"]]["position"],
placing_position=observations[self._task_params["bin_name"]["value"]]["target_position"],
current_joint_positions=observations[self._task_params["robot_name"]["value"]]["joint_positions"],
end_effector_offset=np.array([0, -0.098, 0.03]),
end_effector_orientation=euler_angles_to_quat(np.array([np.pi, 0, np.pi / 2.0])),
)
if not self._added_screws and self._controller.get_current_event() == 6 and not self._controller.is_paused():
self._controller.pause()
self._ur10_task.add_screws(screws_number=20)
self._added_screws = True
if self._controller.is_done():
self._world.pause()
self._articulation_controller.apply_action(actions)
return
async def on_fill_bin_event_async(self):
world = self.get_world()
world.add_physics_callback("sim_step", self._on_fill_bin_physics_step)
await world.play_async()
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
self._added_screws = False
return
def world_cleanup(self):
self._controller = None
self._added_screws = False
return
| 3,149 | Python | 40.999999 | 117 | 0.662115 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/simple_case.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
from omni.isaac.kit import SimulationApp
import numpy as np
import omni
# This sample loads a usd stage and starts simulation
CONFIG = {"width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting"}
# Set up command line arguments
parser = argparse.ArgumentParser("Usd Load sample")
parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless")
args, unknown = parser.parse_known_args()
# Start the omniverse application
CONFIG["headless"] = args.headless
simulation_app = SimulationApp(launch_config=CONFIG)
from omni.isaac.core import World
from omni.isaac.core.robots import Robot
from omni.isaac.core.utils.types import ArticulationAction
# open stage
omni.usd.get_context().open_stage("simple_case.usd")
# wait two frames so that stage starts loading
simulation_app.update()
simulation_app.update()
print("Loading stage...")
from omni.isaac.core.utils.stage import is_stage_loading
while is_stage_loading():
simulation_app.update()
print("Loading Complete")
world = World(stage_units_in_meters=1.0)
robot = world.scene.add(Robot(prim_path="/World/panda", name="robot"))
world.reset()
while simulation_app.is_running():
world.step(render=not args.headless)
# deal with pause/stop
if world.is_playing():
if world.current_time_step_index == 0:
world.reset()
# apply actions
robot.get_articulation_controller().apply_action(
ArticulationAction(joint_positions=np.random.random(9))
)
simulation_app.close()
| 2,016 | Python | 30.515625 | 111 | 0.745536 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/disassembly_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.user_examples.disassembly import Disassembly
class DisassemblyExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="Awesome example",
title="Awesome Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=Disassembly(),
)
return
| 1,221 | Python | 42.642856 | 135 | 0.710074 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/disassembly.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom, Gf
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
from omni.physx.scripts import utils
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
self.mp_goal_position = [np.array([-28.07654, 18.06421, 0]),
np.array([-25.04914, 18.06421, 0])]
self._task_event = 0
self.task_done = [False]*120
self.delay = 0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_show_without_robots_l.usd"
large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/Cover_Gripper/Cover_Gripper.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.73638,-17.06779, 0.81965]), orientation=np.array([0.70711, 0, 0, -0.70711]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_02 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_02")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_02/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_02/ee_link", translate=0.1611, direction="x")
self.ur10_02 = scene.add(
SingleManipulator(prim_path="/World/UR10_02", name="my_ur10_02", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-14.28725, -16.26194, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.ur10_02.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_01 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_01/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_01/ee_link", translate=0.1611, direction="x")
self.ur10_01 = scene.add(
SingleManipulator(prim_path="/World/UR10_01", name="my_ur10_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-14.28725, -18.32192, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.71653, -16.26185, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_01 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_01/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_01/ee_link", translate=0, direction="x")
self.screw_ur10_01 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_01", name="my_screw_ur10_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.7071, -18.31962, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.screw_ur10_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mobile_platform",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-16.80027, -17.26595, 0]),
orientation=np.array([0.70711, 0, 0, -0.70711])
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"delay": self.delay,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
}
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
# iteration 1
if self._task_event == 0:
print(self._task_event)
self._task_event =21
if self.task_done[self._task_event]:
self._task_event =21
self.task_done[self._task_event] = True
elif self._task_event == 21:
if np.mean(np.abs(ee_pose.p-np.array([-18.01444, -15.97435, 1.40075])))<0.01:
self._task_event = 60
elif self._task_event == 60:
if self.task_done[self._task_event]:
if self.delay == 320:
self._task_event = 11
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 11:
if self.task_done[self._task_event] and current_mp_position[1]<-24.98:
self._task_event =12
self.task_done[self._task_event] = True
elif self._task_event == 12:
print(np.mean(np.abs(current_mp_orientation-np.array([0,0,0,-1]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0,0,0,-1]))) < 0.503:
self._task_event = 13
self.task_done[self._task_event] = True
elif self._task_event == 13:
if self.task_done[self._task_event] and current_mp_position[0]<-36.3:
self._task_event =14
self.task_done[self._task_event] = True
elif self._task_event == 14:
print(np.mean(np.abs(current_mp_orientation-np.array([0.70711,0,0,0.70711]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0.70711,0,0,0.70711]))) < 0.0042:
self._task_event = 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]>17.3:
self._task_event +=1
self.task_done[self._task_event] = True
elif self._task_event == 2:
print(np.mean(np.abs(current_mp_orientation-np.array([1,0,0,0]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([1,0,0,0]))) < 0.008:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 3:
if self.task_done[self._task_event] and current_mp_position[0]>-20.25:
self._task_event +=1
self.task_done[self._task_event] = True
# disassembling parts
elif self._task_event == 4:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 5:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 6:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 7:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 8:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 9:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 10:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 11:
pass
# iteration 9
elif self._task_event == 22:
_, current_mp_orientation = self.moving_platform.get_world_pose()
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0, 0, 0.70711, 0.70711]))) < 0.035:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 23:
current_mp_position, _ = self.moving_platform.get_world_pose()
if self.task_done[self._task_event] and current_mp_position[0]<-36:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 24:
if self.count >100:
if self.task_done[self._task_event]:
self._task_event += 1
self.count=0
else:
self.count+=1
self.task_done[self._task_event] = True
elif self._task_event == 25:
if self.count >100:
if self.task_done[self._task_event]:
self._task_event += 1
self.count=0
else:
self.count+=1
self.task_done[self._task_event] = True
return
def post_reset(self):
self._task_event = 0
return
class Disassembly(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
# add main cover on table
self.add_part_custom("World","main_cover", "ymain_cover", np.array([0.001,0.001,0.001]), np.array([-18.7095, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
# add parts
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FFrame", "FFrame", np.array([1,1,1]), np.array([-5.82832, 0, 0]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","engine_no_rigid", "engine", np.array([1,1,1]), np.array([311.20868, 598.91546, 181.74458]), np.array([0.7,-0.1298,-0.10842,-0.69374]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionFront", "FSuspensionFront", np.array([1,1,1]), np.array([721.62154, 101.55373, 215.10539]), np.array([0.5564, -0.43637, -0.43637, 0.5564]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionFront", "FSuspensionFront_01", np.array([1,1,1]), np.array([797.10001, 103.5, 422.80001]), np.array([0.44177, -0.55212, -0.55212, 0.44177]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionBack", "FSuspensionBack", np.array([1,1,1]), np.array([443.3, 1348.4, 462.9]), np.array([0.09714, -0.03325, -0.76428, 0.63666]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","battery", "battery", np.array([1,1,1]), np.array([377.63, 788.49883, 270.90454]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","fuel", "fuel", np.array([1,1,1]), np.array([230.13538, 289.31525, 377.64262]), np.array([0.5,0.5,0.5,0.5]))
# self.add_part_custom("mobile_platform/platform/unfinished_stuff","main_cover", "main_cover", np.array([1,1,1]), np.array([596.47952, 1231.52815, -151.59531]), np.array([0.51452, 0.48504, -0.51452, -0.48504]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","lower_cover", "lower_cover", np.array([1,1,1]), np.array([435.65021, 418.57531,21.83379]), np.array([0.50942, 0.50942,0.4904, 0.4904]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","lower_cover", "lower_cover_01", np.array([1,1,1]), np.array([36.473, 415.8277, 25.66846]), np.array([0.5,0.5, 0.5, 0.5]))
# self.add_part_custom("mobile_platform/platform/unfinished_stuff","Seat", "Seat", np.array([1,1,1]), np.array([179.725, 448.55839, 383.33431]), np.array([0.5,0.5, 0.5, 0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_03", np.array([1,1,1]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_01", np.array([1,1,1]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_04", np.array([1,1,1]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_02", np.array([1,1,1]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.moving_platform = self._world.scene.get_object("moving_platform")
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
# add ee cover on robot
# self.add_part_custom("World/UR10/ee_link","main_cover", "main_cover", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5,0.5, -0.5, 0.5]))
# human body movements declaration
# self.set_new_transform("/World/male_human_01/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
# for i in range(4):
# if i==0:
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
# else:
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def set_new_transform(self, prim_path, translation, orientation):
dc = _dynamic_control.acquire_dynamic_control_interface()
# Get the prim you want to move
prim = dc.get_rigid_body(prim_path)
# Set the new location
new_location = Gf.Vec3f(translation[0], translation[1], translation[2]) # Replace with your desired location
new_rotation = Gf.Rotation(orientation[0], orientation[1], orientation[2], orientation[3]) # Replace with your desired rotation
# Create a new transform
new_transform = UsdGeom.TransformAPI(prim)
new_transform.SetTransform(UsdGeom.XformOp.Transform(Gf.Matrix4d(new_rotation.GetMatrix(), new_location)))
# Apply the new transform
dc.set_rigid_body_pose(prim, new_transform.GetLocalTransformation())
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.05:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
if current_observations["task_event"] == 0:
print("task 0")
print(current_observations["task_event"])
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
if current_observations["task_event"] == 21:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-1.09352, -0.27789, 0.19772-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.01392]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
{"index":4, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
{"index":5, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index":6, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":7, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":8, "position": np.array([0.11095, 0.94627, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":9, "position": np.array([0.11095, 0.94627, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":10, "position": np.array([0.11095, 0.94627, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":11, "position": np.array([0.11095, 0.94627, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":12, "position": np.array([0.11095, 0.94627, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":13, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":14, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":15, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index":16, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
{"index":17, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
{"index":18, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}]
self.move_ur10(motion_plan)
# remove world main cover and add ee main cover
if self.motion_task_counter==2 and not self.bool_done[20]:
self.bool_done[20] = True
self.remove_part_custom("World", "ymain_cover")
self.add_part_custom("World/UR10/ee_link","main_cover", "main_cover", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5,0.5, -0.5, 0.5]))
# remove ee main cover and add mobile platform main cover
if self.motion_task_counter==13 and not self.bool_done[21]:
self.bool_done[21] = True
self.remove_part_custom("World/UR10/ee_link", "main_cover")
self.add_part_custom("mobile_platform/platform/unfinished_stuff","main_cover", "xmain_cover", np.array([1,1,1]), np.array([596.47952, 1231.52815, -151.59531]), np.array([0.51452, 0.48504, -0.51452, -0.48504]))
if self.motion_task_counter==19:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# delay
elif current_observations["task_event"] == 60:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 60 delay:", current_observations["delay"])
# iteration 0
# go forward
elif current_observations["task_event"] == 11:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 11")
# turns
elif current_observations["task_event"] == 12:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 12")
# go forward
elif current_observations["task_event"] == 13:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 13")
# turn
elif current_observations["task_event"] == 14:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 14")
# iteration 1
# go forward
elif current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 1")
# turn
elif current_observations["task_event"] == 2:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 2")
# go forward
elif current_observations["task_event"] == 3:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 3")
# stop, remove and add part
elif current_observations["task_event"] == 10:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("engine")
# prims.delete_prim("/mobile_platform/platform/engine")
self.add_part_custom("World/Environment/disassembled_parts","engine_no_rigid", "qengine", np.array([1,1,1]), np.array([-19511.01549, 16368.42662, 451.93828]), np.array([0.99362,0,-0.11281,0]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 9:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("FSuspensionFront")
self.remove_part("FSuspensionFront_01")
self.remove_part("FSuspensionBack")
# self.add_part_custom("World/Environment/disassembled_parts","FSuspensionFront", "suspension_front", np.array([1,1,1]), np.array([-21252.07916, 16123.85255, -95.12237]), np.array([0.68988,-0.15515,0.17299,0.68562]))
# self.add_part_custom("World/Environment/disassembled_parts","FSuspensionFront", "suspension_front_1", np.array([1,1,1]), np.array([-21253.69102, 15977.78923, -98.17269]), np.array([0.68988,-0.15515,0.17299,0.68562]))
self.add_part_custom("World/Environment/disassembled_parts","FSuspensionBack", "suspension_back", np.array([1,1,1]), np.array([-21250.02819, 16296.28288, -79.20706]), np.array([0.69191,-0.16341,0.16465,0.6837]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 7:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("fuel")
self.add_part_custom("World/Environment/disassembled_parts","FFuelTank", "FFuelTank", np.array([1,1,1]), np.array([-23473.90962, 16316.56526, 266.94776]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 8:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("battery")
self.add_part_custom("World/Environment/disassembled_parts","battery", "qbattery", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 6:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("wheel_01")
self.remove_part("wheel_02")
self.remove_part("wheel_03")
self.remove_part("wheel_04")
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_01", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_02", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_03", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_04", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 5:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("lower_cover")
self.remove_part("lower_cover_01")
self.add_part_custom("World/Environment/disassembled_parts","lower_cover", "qlower_cover", np.array([1,1,1]), np.array([-20141.19845, 18913.49002, 272.27849]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","lower_cover", "qlower_cover_1", np.array([1,1,1]), np.array([-21228.07681, 18923.38351, 272.27849]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 4:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("xmain_cover")
self.add_part_custom("World/Environment/disassembled_parts","main_cover", "qmain_cover", np.array([1,1,1]), np.array([-23651.85127, 19384.76572, 102.60316]), np.array([0.70428,0.70428,0.06314,-0.06314]))
self.isDone[current_observations["task_event"]]=True
elif current_observations["task_event"] == 11:
print("delay")
elif current_observations["task_event"] == 12:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_world(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_world_pose(position=position, orientation=orientation)
return part
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, prim_path):
prims.delete_prim("/mobile_platform/platform/unfinished_stuff/"+prim_path)
def remove_part_custom(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 46,252 | Python | 63.062327 | 353 | 0.611887 |
swadaskar/Isaac_Sim_Folder/extension_examples/replay_follow_target/replay_follow_target_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.replay_follow_target import ReplayFollowTarget
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder, str_builder
class ReplayFollowTargetExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Replay Follow Target",
title="Replay Follow Target Task",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_data_logging.html",
overview="This Example shows how to use data logging to replay data collected\n\n from the follow target extension example.\n\n Press the 'Open in IDE' button to view the source code.",
sample=ReplayFollowTarget(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=2,
window_width=700,
)
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_data_logging_ui(frame)
return
def _on_replay_trajectory_button_event(self):
asyncio.ensure_future(
self.sample._on_replay_trajectory_event_async(self.task_ui_elements["Data File"].get_value_as_string())
)
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def _on_replay_scene_button_event(self):
asyncio.ensure_future(
self.sample._on_replay_scene_event_async(self.task_ui_elements["Data File"].get_value_as_string())
)
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def post_reset_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = True
self.task_ui_elements["Replay Scene"].enabled = True
return
def post_load_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = True
self.task_ui_elements["Replay Scene"].enabled = True
return
def post_clear_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def build_data_logging_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
frame.title = "Data Replay"
frame.visible = True
example_data_file = os.path.abspath(
os.path.join(os.path.abspath(__file__), "../../../../../data/example_data_file.json")
)
dict = {
"label": "Data File",
"type": "stringfield",
"default_val": example_data_file,
"tooltip": "Data File",
"on_clicked_fn": None,
"use_folder_picker": False,
"read_only": False,
}
self.task_ui_elements["Data File"] = str_builder(**dict)
dict = {
"label": "Replay Trajectory",
"type": "button",
"text": "Replay Trajectory",
"tooltip": "Replay Trajectory",
"on_clicked_fn": self._on_replay_trajectory_button_event,
}
self.task_ui_elements["Replay Trajectory"] = btn_builder(**dict)
self.task_ui_elements["Replay Trajectory"].enabled = False
dict = {
"label": "Replay Scene",
"type": "button",
"text": "Replay Scene",
"tooltip": "Replay Scene",
"on_clicked_fn": self._on_replay_scene_button_event,
}
self.task_ui_elements["Replay Scene"] = btn_builder(**dict)
self.task_ui_elements["Replay Scene"].enabled = False
return
| 4,564 | Python | 41.663551 | 197 | 0.586766 |
swadaskar/Isaac_Sim_Folder/extension_examples/replay_follow_target/replay_follow_target.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka.tasks import FollowTarget as FollowTargetTask
import numpy as np
class ReplayFollowTarget(BaseSample):
def __init__(self) -> None:
super().__init__()
self._articulation_controller = None
def setup_scene(self):
world = self.get_world()
world.add_task(FollowTargetTask())
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("replay_trajectory"):
world.remove_physics_callback("replay_trajectory")
if world.physics_callback_exists("replay_scene"):
world.remove_physics_callback("replay_scene")
return
async def setup_post_load(self):
self._franka_task = list(self._world.get_current_tasks().values())[0]
self._task_params = self._franka_task.get_params()
my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._articulation_controller = my_franka.get_articulation_controller()
self._data_logger = self._world.get_data_logger()
return
async def _on_replay_trajectory_event_async(self, data_file):
self._data_logger.load(log_path=data_file)
world = self.get_world()
await world.play_async()
world.add_physics_callback("replay_trajectory", self._on_replay_trajectory_step)
return
async def _on_replay_scene_event_async(self, data_file):
self._data_logger.load(log_path=data_file)
world = self.get_world()
await world.play_async()
world.add_physics_callback("replay_scene", self._on_replay_scene_step)
return
def _on_replay_trajectory_step(self, step_size):
if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames():
data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index)
self._articulation_controller.apply_action(
ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"])
)
return
def _on_replay_scene_step(self, step_size):
if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames():
target_name = self._task_params["target_name"]["value"]
data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index)
self._articulation_controller.apply_action(
ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"])
)
self._world.scene.get_object(target_name).set_world_pose(
position=np.array(data_frame.data["target_position"])
)
return
| 3,297 | Python | 42.973333 | 111 | 0.67061 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_factory/robo_factory.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.5124, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.02094, -16.52902, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, -9.96157, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.47898, -16.15971, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-16.69:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.005, -16.7606, 0.76714])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(ee_pose.p - np.array([-4.18372, 7.03628, 0.44567])))<0.058:
self._task_event=2
pass
elif self._task_event == 2:
pass
return
def post_reset(self):
self._task_event = 0
return
class RoboFactory(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
self.add_part_custom("engine_bringer/platform","fuel", "fuel", np.array([0.001,0.001,0.001]), np.array([-0.1769, 0.13468, 0.24931]), np.array([0.5,0.5,-0.5,-0.5]))
self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.90761, 0.03096, 0.69056]), np.array([0.48732, -0.51946, 0.50085, -0.49176]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
# actions.joint_velocities = [0.0001,0.0001,0.0001,0.0001,0.0001,0.0001]
# actions.joint_velocities = [1,1,1,1,1,1]
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0.00419
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
# go forward
if current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([0.90691+0.16, 0.01077, 0.19514]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.00386, -16.5233, 0.43633]), "goal_orientation":np.array([0,0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.97165+0.16, 0.01077, 0.19514]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.00686, -16.5233, 0.43633]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.97165+0.16, 0.01077, 0.31194]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.0686, -16.5233, 0.55313]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":3, "position": np.array([-1.09292-0.16, 0.24836, 0.52594]), "orientation": np.array([0,0,0.70711,0.70711]), "goal_position":np.array([-5.005, -16.7606, 0.76714]), "goal_orientation":np.array([0.70711, 0.70711, 0,0])}]
self.move_ur10(motion_plan)
ee_pose = self.give_location("/World/UR10/ee_link")
print(ee_pose)
if self.motion_task_counter==2 and not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("position:", ee_pose.p)
print("rotation:", ee_pose.r)
self.remove_part("engine_bringer/platform", "fuel")
self.add_part_custom("World/UR10/ee_link","fuel", "qfuel", np.array([0.001,0.001,0.001]), np.array([0.22927, -0.16445, -0.08733]), np.array([0.70711,0,-0.70711,0]))
if self.motion_task_counter==4:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
if not self.isDone[current_observations["task_event"]]:
if not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("Part removal done")
self.remove_part("World/UR10/ee_link", "qfuel")
self.motion_task_counter=0
self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([-0.03273, 0.09227, 0.58731]), np.array([0.70711,0.70711,0,0]))
def transform(points):
points[0]-=0.16
points[2]-=0.15
return points
motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":1, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":2, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":3, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":4, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":5, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":6, "position": self.transform_for_screw_ur10(transform(np.array([-0.04511, 0.7374, 0.41493]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.97604, -17.26595,0.6576]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}]
print(self.motion_task_counter)
self.do_screw_driving(motion_plan)
ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
print("EE_Pose",ee_pose)
if np.mean(np.abs(ee_pose.p - motion_plan[6]["goal_position"]))<0.058:
self.isDone[current_observations["task_event"]]=True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
print("done", self.motion_task_counter)
# remove engine and add engine
elif current_observations["task_event"] == 2:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
# elif current_observations["task_event"] == 3:
# self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[-0.5, 0.5, -0.5, 0.5],0]))
# self.motion_task_counter=0
# elif current_observations["task_event"] == 4:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
# if not self.isDone[current_observations["task_event"]]:
# motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(np.array([0.7558, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.42428, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":1, "position": self.transform_for_screw_ur10(np.array([0.92167, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.59014, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":2, "position": self.transform_for_screw_ur10(np.array([0.7743, 0.13044, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.44277, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":3, "position": self.transform_for_screw_ur10(np.array([0.92789, 0.13045, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.59636, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":4, "position": np.array([-0.03152, -0.69498, 0.14425]), "orientation": np.array([0.69771, -0.07322, 0.09792, -0.70587]), "goal_position":np.array([-4.04212, 4.63272, 0.38666]), "goal_orientation":np.array([0.99219, -0.12149, 0.01374, 0.02475])}]
# self.do_screw_driving(motion_plan)
# ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# print("EE_Pose",ee_pose)
# if self.motion_task_counter>1 and np.mean(np.abs(ee_pose.p - motion_plan[4]["goal_position"]))<0.058:
# self.isDone[current_observations["task_event"]]=True
# print("done", self.motion_task_counter)
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 30,709 | Python | 58.515504 | 441 | 0.610766 |
swadaskar/Isaac_Sim_Folder/extension_examples/follow_target/follow_target.py | import carb
import asyncio
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.robots import Robot
import rospy
import rosgraph
# import actionlib
# # Isaac sim cannot find these two modules for some reason...
# from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
# from obstacle_map import GridMap
# # Using /move_base_simple/goal for now
from geometry_msgs.msg import PoseStamped
import numpy as np
class FollowTarget(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
# FIXME
add_reference_to_stage(usd_path='/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/real_microfactory_show.usd', prim_path="/World")
world.scene.add(Robot(prim_path="/World/damobile_platform", name="damobile_platform"))
return
async def setup_post_load(self):
self._world = self.get_world()
self._mp = self._world.scene.get_object("damobile_platform")
if not rosgraph.is_master_online():
print("Please run roscore before executing this script")
return
try:
rospy.init_node("set_goal_py")
except rospy.exceptions.ROSException as e:
print("Node has already been initialized, do nothing")
# FIXME
# self._initial_goal_publisher = rospy.Publisher("initialpose", PoseWithCovarianceStamped, queue_size=1)
# self.__send_initial_pose()
# await asyncio.sleep(1.0)
# self._action_client = actionlib.SimpleActionClient("move_base", MoveBaseAction)
self._goal_pub = rospy.Publisher("/move_base_simple/goal", PoseStamped, queue_size=1)
return
# def __send_initial_pose(self):
# mp_position, mp_orientation = self._mp.get_world_pose()
# current_pose = PoseWithCovarianceStamped()
# current_pose.header.frame_id = "map"
# current_pose.header.stamp = rospy.get_rostime()
# current_pose.pose.pose.position.x = mp_position[0]
# current_pose.pose.pose.position.y = mp_position[1]
# current_pose.pose.pose.position.z = mp_position[2]
# current_pose.pose.pose.orientation.x = mp_orientation[0]
# current_pose.pose.pose.orientation.y = mp_orientation[1]
# current_pose.pose.pose.orientation.z = mp_orientation[2]
# current_pose.pose.pose.orientation.w = mp_orientation[3]
# # rospy.sleep will stall Isaac sim simulation
# # rospy.sleep(1)
# self._initial_goal_publisher.publish(current_pose)
# def __goal_response_callback(self, current_state, result):
# if current_state not in [0, 1, 3]:
# print("Goal rejected :(")
# return
# print("Goal accepted :)")
# wait = self._action_client.wait_for_result()
# self.__get_result_callback(wait)
# def __get_result_callback(self, wait):
# print("Result: "+str(wait))
# def send_navigation_goal(self, x, y, a):
# FIXME
# map_yaml_path = "/home/shihanzh/ros_ws/src/mp_2dnav/map/mp_microfactory_navigation.yaml"
# grid_map = GridMap(map_yaml_path)
# # generate random goal
# if x is None:
# print("No goal received. Generating random goal...")
# range_ = grid_map.get_range()
# x = np.random.uniform(range_[0][0], range_[0][1])
# y = np.random.uniform(range_[1][0], range_[1][1])
# orient_x = 0 # not needed because robot is in x,y plane
# orient_y = 0 # not needed because robot is in x,y plane
# orient_z = np.random.uniform(0, 1)
# orient_w = np.random.uniform(0, 1)
# else:
# orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
# pose = [x, y, orient_x, orient_y, orient_z, orient_w]
# if grid_map.is_valid_pose([x, y], 0.2):
# self._action_client.wait_for_server()
# goal_msg = MoveBaseGoal()
# goal_msg.target_pose.header.frame_id = "map"
# goal_msg.target_pose.header.stamp = rospy.get_rostime()
# print("goal pose: "+str(pose))
# goal_msg.target_pose.pose.position.x = pose[0]
# goal_msg.target_pose.pose.position.y = pose[1]
# goal_msg.target_pose.pose.orientation.x = pose[2]
# goal_msg.target_pose.pose.orientation.y = pose[3]
# goal_msg.target_pose.pose.orientation.z = pose[4]
# goal_msg.target_pose.pose.orientation.w = pose[5]
# self._action_client.send_goal(goal_msg, done_cb=self.__goal_response_callback)
# else:
# print("Invalid goal "+str(pose))
# return
async def setup_pre_reset(self):
return
async def setup_post_reset(self):
return
def world_cleanup(self):
return
| 5,080 | Python | 39.325397 | 157 | 0.605906 |
swadaskar/Isaac_Sim_Folder/extension_examples/follow_target/follow_target_extension.py | import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.follow_target import FollowTarget
import omni.ext
import omni.ui as ui
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
import asyncio
import numpy as np
import rospy
from geometry_msgs.msg import PoseStamped
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from math import pi
class FollowTargetExtension(BaseSampleExtension):
# same as in mp_2dnav package base_local_planner_params.yaml
_xy_goal_tolerance = 0.25
_yaw_goal_tolerance = 0.05
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="Navigation",
title="My Awesome Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FollowTarget(),
)
return
def _build_ui(
self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open
):
self._window = omni.ui.Window(
name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
setup_ui_headers(self._ext_id, file_path, title, doc_link, overview)
self._controls_frame = ui.CollapsableFrame(
title="World Controls",
width=ui.Fraction(1),
height=0,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with ui.VStack(style=get_style(), spacing=5, height=0):
for i in range(number_of_extra_frames):
self._extra_frames.append(
ui.CollapsableFrame(
title="",
width=ui.Fraction(0.33),
height=0,
visible=False,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
)
with self._controls_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
dict = {
"label": "Load World",
"type": "button",
"text": "Load",
"tooltip": "Load World and Task",
"on_clicked_fn": self._on_load_world,
}
self._buttons["Load World"] = btn_builder(**dict)
self._buttons["Load World"].enabled = True
dict = {
"label": "Reset",
"type": "button",
"text": "Reset",
"tooltip": "Reset robot and environment",
"on_clicked_fn": self._on_reset,
}
self._buttons["Reset"] = btn_builder(**dict)
self._buttons["Reset"].enabled = False
dict = {
"label": "Send Goal",
"type": "button",
"text": "Goal",
"tooltip": "",
"on_clicked_fn": self._send_navigation_goal,
}
self._buttons["Send Goal"] = btn_builder(**dict)
self._buttons["Send Goal"].enabled = False
return
def post_load_button_event(self):
self._buttons["Send Goal"].enabled = True
def _check_goal_reached(self, goal_pose):
# Cannot get result from ROS because /move_base/result also uses move_base_msgs module
mp_position, mp_orientation = self._sample._mp.get_world_pose()
_, _, mp_yaw = euler_from_quaternion(mp_orientation)
_, _, goal_yaw = euler_from_quaternion(goal_pose[3:])
# FIXME: pi needed for yaw tolerance here because map rotated 180 degrees
if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \
and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance:
print("Goal "+str(goal_pose)+" reached!")
# This seems to crash Isaac sim...
# self.get_world().remove_physics_callback("mp_nav_check")
# Goal hardcoded for now
def _send_navigation_goal(self, x=None, y=None, a=None):
# x, y, a = -18, 14, 3.14
x,y,a = -1,7,3.14
orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w]
goal_msg = PoseStamped()
goal_msg.header.frame_id = "map"
goal_msg.header.stamp = rospy.get_rostime()
print("goal pose: "+str(pose))
goal_msg.pose.position.x = pose[0]
goal_msg.pose.position.y = pose[1]
goal_msg.pose.position.z = pose[2]
goal_msg.pose.orientation.x = pose[3]
goal_msg.pose.orientation.y = pose[4]
goal_msg.pose.orientation.z = pose[5]
goal_msg.pose.orientation.w = pose[6]
self._sample._goal_pub.publish(goal_msg)
# self._check_goal_reached(pose)
world = self.get_world()
if not world.physics_callback_exists("mp_nav_check"):
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
# Overwrite check with new goal
else:
world.remove_physics_callback("mp_nav_check")
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
| 6,559 | Python | 44.241379 | 135 | 0.523403 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_replay_follow_target.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
from omni.isaac.core.utils.extensions import get_extension_path_from_name
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.replay_follow_target import ReplayFollowTarget
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
import os
class TestReplayFollowTargetExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = ReplayFollowTarget()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
await update_stage_async()
await self._sample.reset_async()
await update_stage_async()
await update_stage_async()
pass
async def test_replay_trajectory(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample._on_replay_trajectory_event_async(
os.path.abspath(
os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json")
)
)
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
pass
async def test_replay_scene(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample._on_replay_scene_event_async(
os.path.abspath(
os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json")
)
)
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
pass
| 3,296 | Python | 37.337209 | 119 | 0.668386 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_nut_bolt.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
from math import isclose
class NutBoltExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = FrankaNutAndBolt()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
# Run all functions with simulation enabled
async def test_nut_bolt(self):
world = self._sample.get_world()
await update_stage_async()
# run for 4000 frames
for i in range(4000):
await update_stage_async()
nut_on_bolt = False
bolt = world.scene.get_object(f"bolt0_geom")
bolt_pos, _ = bolt.get_world_pose()
for j in range(self._sample._num_nuts):
nut = world.scene.get_object(f"nut{j}_geom")
nut_pos, _ = nut.get_world_pose()
if (
isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009)
and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009)
and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015)
):
nut_on_bolt = True
self.assertTrue(nut_on_bolt)
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
world = self._sample.get_world()
await update_stage_async()
for i in range(4000):
await update_stage_async()
nut_on_bolt = False
bolt = world.scene.get_object(f"bolt0_geom")
bolt_pos, _ = bolt.get_world_pose()
for j in range(self._sample._num_nuts):
nut = world.scene.get_object(f"nut{j}_geom")
nut_pos, _ = nut.get_world_pose()
if (
isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009)
and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009)
and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015)
):
nut_on_bolt = True
self.assertTrue(nut_on_bolt)
pass
| 3,659 | Python | 37.526315 | 119 | 0.626401 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/__init__.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .test_kaya_gamepad import *
from .test_bin_filling import *
from .test_follow_target import *
from .test_omnigraph_keyboard import *
from .test_robo_factory import *
from .test_robo_party import *
from .test_simple_stack import *
from .test_hello_world import *
from .test_replay_follow_target import *
from .test_path_planning import *
from .test_nut_bolt import *
| 805 | Python | 37.380951 | 76 | 0.785093 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_bin_filling.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.bin_filling import BinFilling
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
class TestBinFillingExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = BinFilling()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
# Run all functions with simulation enabled
async def test_bin_filling(self):
await self._sample.reset_async()
await update_stage_async()
world = self._sample.get_world()
ur10_task = world.get_task(name="bin_filling")
task_params = ur10_task.get_params()
my_ur10 = world.scene.get_object(task_params["robot_name"]["value"])
bin = world.scene.get_object(task_params["bin_name"]["value"])
await self._sample.on_fill_bin_event_async()
await update_stage_async()
# run for 2500 frames and print time
for i in range(2500):
await update_stage_async()
if self._sample._controller.get_current_event() in [4, 5]:
self.assertTrue(my_ur10.gripper.is_closed())
if self._sample._controller.get_current_event() == 5:
self.assertGreater(bin.get_world_pose()[0][-1], 0.15)
self.assertTrue(not my_ur10.gripper.is_closed())
self.assertLess(bin.get_world_pose()[0][-1], 0)
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample.on_fill_bin_event_async()
await update_stage_async()
for i in range(2500):
await update_stage_async()
await self._sample.reset_async()
await update_stage_async()
await self._sample.on_fill_bin_event_async()
await update_stage_async()
for i in range(2500):
await update_stage_async()
pass
| 3,460 | Python | 40.698795 | 119 | 0.661272 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_kaya_gamepad.py | # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit
import asyncio
import carb
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.kaya_gamepad import KayaGamepad
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
from omni.isaac.core.world.world import World
class TestKayaGamepadSample(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
self._physics_rate = 60
self._provider = carb.input.acquire_input_provider()
self._gamepad = self._provider.create_gamepad("test", "0")
carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate))
carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True)
carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate))
await create_new_stage_async()
await update_stage_async()
self._sample = KayaGamepad()
World.clear_instance()
self._sample.set_world_settings(physics_dt=1.0 / self._physics_rate, stage_units_in_meters=1.0)
await self._sample.load_world_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await omni.kit.app.get_app().next_update_async()
self._sample._world_cleanup()
self._sample = None
await update_stage_async()
self._provider.destroy_gamepad(self._gamepad)
await update_stage_async()
World.clear_instance()
pass
# # Run all functions with simulation enabled
# async def test_simulation(self):
# await update_stage_async()
# while is_stage_loading():
# await update_stage_async()
# self._provider.set_gamepad_connected(self._gamepad, True)
# self.assertLess(self._sample._kaya.get_world_pose()[0][1], 1)
# await update_stage_async()
# for i in range(100):
# self._provider.buffer_gamepad_event(self._gamepad, carb.input.GamepadInput.LEFT_STICK_UP, 1.0)
# await update_stage_async()
# self._provider.set_gamepad_connected(self._gamepad, False)
# await update_stage_async()
# self.assertGreater(self._sample._kaya.get_world_pose()[0][1], 64.0)
# pass
| 3,334 | Python | 44.684931 | 119 | 0.686863 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/util.py | import carb
import numpy as np
import math
from omni.isaac.core.utils import prims
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
from omni.isaac.motion_generation import WheelBasePoseController
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.core.controllers import BaseController
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from omni.isaac.core.prims import GeometryPrim, XFormPrim
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class Utils:
def __init__(self) -> None:
self.world = None
self.delay = 0
self.beta = 1
self.path_plan_counter = 0
self.motion_task_counter = 0
self.motion_task_counterl = 0
self.bool_done = [False]*1000
self.curr_way = False
self.id = None
# Engine cell set up ----------------------------------------------------------------------------
# bring in moving platforms
self.moving_platform = None
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.my_controller = None
self.screw_my_controller = None
self.articulation_controller = None
self.screw_articulation_controller = None
# Suspension cell set up ------------------------------------------------------------------------
self.my_controller_suspension = None
self.screw_my_controller_suspension = None
self.articulation_controller_suspension = None
self.screw_articulation_controller_suspension = None
# Fuel cell set up ---------------------------------------------------------------------------------
self.my_controller_fuel = None
self.screw_my_controller_fuel = None
self.articulation_controller_fuel = None
self.screw_articulation_controller_fuel = None
# battery cell set up ---------------------------------------------------------------------------------
self.my_controller_battery = None
self.screw_my_controller_battery = None
self.articulation_controller_battery = None
self.screw_articulation_controller_battery = None
# trunk cell set up ---------------------------------------------------------------------------------
self.my_controller_trunk = None
self.screw_my_controller_trunk = None
self.articulation_controller_trunk = None
self.screw_articulation_controller_trunk = None
# wheel cell set up ---------------------------------------------------------------------------------
self.my_controller_wheel = None
self.screw_my_controller_wheel = None
self.articulation_controller_wheel = None
self.screw_articulation_controller_wheel = None
self.my_controller_wheel_01 = None
self.screw_my_controller_wheel_01 = None
self.articulation_controller_wheel_01 = None
self.screw_articulation_controller_wheel_01 = None
# lower_cover cell set up ---------------------------------------------------------------------------------
self.my_controller_lower_cover = None
self.screw_my_controller_lower_cover = None
self.articulation_controller_lower_cover = None
self.screw_articulation_controller_lower_cover = None
self.my_controller_lower_cover_01 = None
self.screw_my_controller_lower_cover_01 = None
self.articulation_controller_lower_cover_01 = None
self.screw_articulation_controller_lower_cover_01 = None
self.my_controller_main_cover = None
self.articulation_controller_main_cover = None
# handle cell set up ---------------------------------------------------------------------------------
self.my_controller_handle = None
self.screw_my_controller_handle = None
self.articulation_controller_handle = None
self.screw_articulation_controller_handle = None
# light cell set up --------------------------------------------------------------------------------
self.my_controller_light = None
self.screw_my_controller_light = None
self.articulation_controller_light = None
self.screw_articulation_controller_light = None
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations, task_name=""):
print("Motion task counter", self.motion_task_counter)
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
controller_name = getattr(self,"my_controller"+task_name)
actions, success = controller_name.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
articulation_controller_name = getattr(self,"articulation_controller"+task_name)
articulation_controller_name.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location(f"/World/UR10{task_name}/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
diff = np.mean(np.abs(curr_location.p - target_location["goal_position"]))
if diff<0.02:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def move_ur10_extra(self, locations, task_name=""):
print("Motion task counter", self.motion_task_counterl)
target_location = locations[self.motion_task_counterl]
print("Doing "+str(target_location["index"])+"th motion plan")
controller_name = getattr(self,"my_controller"+task_name)
actions, success = controller_name.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
articulation_controller_name = getattr(self,"articulation_controller"+task_name)
articulation_controller_name.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location(f"/World/UR10{task_name}/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
diff = np.mean(np.abs(curr_location.p - target_location["goal_position"]))
if diff<0.02:
self.motion_task_counterl+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counterl)
def do_screw_driving(self, locations, task_name=""):
print(self.motion_task_counter)
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
controller_name = getattr(self,"screw_my_controller"+task_name)
actions, success = controller_name.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
articulation_controller_name = getattr(self,"screw_articulation_controller"+task_name)
# print(articulation_controller_name, task_name, "screw_articulation_controller"+task_name, self.screw_articulation_controller_wheel)
# print(self.articulation_controller_wheel_01)
# print(self.screw_articulation_controller_wheel_01)
articulation_controller_name.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving_extra(self, locations, task_name=""):
print(self.motion_task_counterl)
target_location = locations[self.motion_task_counterl]
print("Doing "+str(target_location["index"])+"th motion plan")
controller_name = getattr(self,"screw_my_controller"+task_name)
actions, success = controller_name.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
articulation_controller_name = getattr(self,"screw_articulation_controller"+task_name)
articulation_controller_name.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
self.motion_task_counterl+=1
print("Completed one motion plan: ", self.motion_task_counterl)
def transform_for_screw_ur10(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0
return position
def transform_for_ur10(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0.00419
return position
def transform_for_screw_ur10_suspension(self, position):
position[0]-=0
position[1]+=0
position[2]+=-0
return position
def transform_for_screw_ur10_fuel(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0.00419
return position
def move_mp_wbpc(self, path_plan_last):
print("Using wheel base pose controller")
_, _, goal_position = path_plan_last
position, orientation = self.moving_platform.get_world_pose()
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position["position"]) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
print("Current", position)
print("Goal", goal_position["position"])
print(np.mean(np.abs(position-goal_position["position"])))
if np.mean(np.abs(position-goal_position["position"])) <0.033:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
def move_mp(self, path_plan):
if not path_plan:
return
# if len(path_plan)-1 == self.path_plan_counter and path_plan[self.path_plan_counter][0]!="rotate" and path_plan[self.path_plan_counter][0]!="wait":
# self.move_mp_wbpc(path_plan[self.path_plan_counter])
# return
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
move_type, goal = path_plan[self.path_plan_counter][0], path_plan[self.path_plan_counter][1]
if move_type == "translate":
goal_pos, axis, _ = goal
print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos))
# getting current z angle of mp in degrees
curr_euler_orientation = euler_from_quaternion(current_mp_orientation)[0]
print(curr_euler_orientation)
if curr_euler_orientation<0:
curr_euler_orientation = math.pi*2 + curr_euler_orientation
curr_euler_degree_orientation = curr_euler_orientation*(180/math.pi)
print(curr_euler_degree_orientation)
# logic for determining to reverse or not
if axis == 0:
# if :
# if goal_pos<current_mp_position[axis]:
# reverse = False
# else:
# reverse = True
# elif (curr_euler_degree_orientation-360)<0.1 or (curr_euler_degree_orientation)<0.1:
if abs(curr_euler_degree_orientation-180)<30:
if goal_pos>current_mp_position[axis]:
reverse = False
else:
reverse = True
else:
if goal_pos<current_mp_position[axis]:
reverse = False
else:
reverse = True
else:
if abs(curr_euler_degree_orientation-270)<30:
if goal_pos<current_mp_position[axis]:
reverse = False
else:
reverse = True
else:
if goal_pos>current_mp_position[axis]:
reverse = False
else:
reverse = True
# check if reverse swap happened
if not self.bool_done[0]:
print("iniitial\n\n")
self.bool_done[0]=True
self.curr_way = reverse
self.speed = 0.5
if self.curr_way != reverse:
self.speed/=1.0001
print(self.speed)
if reverse:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[-self.speed,0])) # 0.5
else:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[self.speed,0]))
if abs(current_mp_position[axis]-goal_pos)<0.001: # 0.002
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
self.speed = 0.5
elif move_type == "rotate":
goal_ori, error_threshold, rotate_right = goal
curr_euler_orientation = euler_from_quaternion(current_mp_orientation)[0]
goal_euler_orientation = euler_from_quaternion(goal_ori)[0]
print(current_mp_orientation, goal_ori)
print(curr_euler_orientation, goal_euler_orientation)
if curr_euler_orientation<0:
curr_euler_orientation = math.pi*2 + curr_euler_orientation
if goal_euler_orientation<0:
goal_euler_orientation = math.pi*2 + goal_euler_orientation
print(curr_euler_orientation, goal_euler_orientation)
if goal_euler_orientation > curr_euler_orientation:
if curr_euler_orientation+math.pi < goal_euler_orientation:
rotate_right = False
else:
rotate_right = True
else:
if goal_euler_orientation+math.pi > curr_euler_orientation:
rotate_right = False
else:
rotate_right = True
print("Rotate right:","True" if rotate_right else "False")
if rotate_right:
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/4])) # 2
else:
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/4]))
curr_error = abs(curr_euler_orientation-goal_euler_orientation)
print(curr_error)
if curr_error <=0.001: # 0.002
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
else:
self.beta*=1.00001
elif move_type == "wait":
print("Waiting ...")
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if self.delay>60:
print("Done waiting")
self.delay=0
self.path_plan_counter+=1
self.delay+=1
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot_{self.id}/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= self.world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}" if parent_prim_name else f"/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def check_prim_exists(self, prim_path):
curr_prim = self.world.stage.GetPrimAtPath("/"+prim_path)
if curr_prim.IsValid():
return True
return False
def move_mp_battery(self, path_plan):
if not path_plan:
return
current_mp_position, current_mp_orientation = self.battery_bringer.get_world_pose()
move_type, goal = path_plan[self.path_plan_counter]
if move_type == "translate":
goal_pos, axis, reverse = goal
print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos))
if reverse:
self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0]))
else:
self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if abs(current_mp_position[axis]-goal_pos)<0.01:
self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "rotate":
goal_ori, error_threshold, rotate_right = goal
if rotate_right:
self.battery_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
else:
self.battery_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2]))
curr_error = np.mean(np.abs(current_mp_orientation-goal_ori))
print(current_mp_orientation, goal_ori, curr_error)
if curr_error< error_threshold:
self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "wait":
print("Waiting ...")
self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
if self.delay>60:
print("Done waiting")
self.delay=0
self.path_plan_counter+=1
self.delay+=1
def move_mp_fuel(self, path_plan):
if not path_plan:
return
current_mp_position, current_mp_orientation = self.fuel_bringer.get_world_pose()
move_type, goal = path_plan[self.path_plan_counter]
if move_type == "translate":
goal_pos, axis, reverse = goal
print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos))
if reverse:
self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0]))
else:
self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if abs(current_mp_position[axis]-goal_pos)<0.01:
self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "rotate":
goal_ori, error_threshold, rotate_right = goal
if rotate_right:
self.fuel_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
else:
self.fuel_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2]))
curr_error = np.mean(np.abs(current_mp_orientation-goal_ori))
print(current_mp_orientation, goal_ori, curr_error)
if curr_error< error_threshold:
self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "wait":
print("Waiting ...")
self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
if self.delay>60:
print("Done waiting")
self.delay=0
self.path_plan_counter+=1
self.delay+=1
def move_mp_suspension(self, path_plan):
if not path_plan:
return
current_mp_position, current_mp_orientation = self.suspension_bringer.get_world_pose()
move_type, goal = path_plan[self.path_plan_counter]
if move_type == "translate":
goal_pos, axis, reverse = goal
print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos))
if reverse:
self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0]))
else:
self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if abs(current_mp_position[axis]-goal_pos)<0.01:
self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "rotate":
goal_ori, error_threshold, rotate_right = goal
if rotate_right:
self.suspension_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
else:
self.suspension_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2]))
curr_error = np.mean(np.abs(current_mp_orientation-goal_ori))
print(current_mp_orientation, goal_ori, curr_error)
if curr_error< error_threshold:
self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "wait":
print("Waiting ...")
self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
if self.delay>60:
print("Done waiting")
self.delay=0
self.path_plan_counter+=1
self.delay+=1
def move_mp_engine(self, path_plan):
if not path_plan:
return
current_mp_position, current_mp_orientation = self.engine_bringer.get_world_pose()
move_type, goal = path_plan[self.path_plan_counter]
if move_type == "translate":
goal_pos, axis, reverse = goal
print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos))
if reverse:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0]))
else:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if abs(current_mp_position[axis]-goal_pos)<0.01:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "rotate":
goal_ori, error_threshold, rotate_right = goal
if rotate_right:
self.engine_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
else:
self.engine_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2]))
curr_error = np.mean(np.abs(current_mp_orientation-goal_ori))
print(current_mp_orientation, goal_ori, curr_error)
if curr_error< error_threshold:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
self.path_plan_counter+=1
elif move_type == "wait":
print("Waiting ...")
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
if self.delay>60:
print("Done waiting")
self.delay=0
self.path_plan_counter+=1
self.delay+=1 | 29,871 | Python | 47.651466 | 353 | 0.597637 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/suspension_task.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class SuspensionTask(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_suspension_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
self.delay=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10_suspension for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_suspension")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_suspension/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_suspension/ee_link", translate=0.1611, direction="x")
self.ur10_suspension = scene.add(
SingleManipulator(prim_path="/World/UR10_suspension", name="my_ur10_suspension", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_suspension for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_suspension")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_suspension/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_suspension/ee_link", translate=0, direction="x")
self.screw_ur10_suspension = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_suspension", name="my_screw_ur10_suspension", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# # add moving platform
# self.moving_platform = scene.add(
# WheeledRobot(
# prim_path="/mock_robot",
# name="moving_platform",
# wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
# create_robot=True,
# usd_path=large_robot_asset_path,
# position=np.array([-5.26025, 1.25718, 0.03551]),
# orientation=np.array([0.5, 0.5, -0.5, -0.5]),
# )
# )
self.suspension_bringer = scene.add(
WheeledRobot(
prim_path="/suspension_bringer",
name="suspension_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.60277, -5.70312, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
# current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.suspension_bringer.get_world_pose()
current_joint_positions_ur10_suspension = self.ur10_suspension.get_joint_positions()
observations= {
# "task_event": self._task_event,
"suspension_task_event": self._task_event,
# self.moving_platform.name: {
# "position": current_mp_position,
# "orientation": current_mp_orientation,
# "goal_position": self.mp_goal_position
# },
self.suspension_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10_suspension.name: {
"joint_positions": current_joint_positions_ur10_suspension,
},
self.screw_ur10_suspension.name: {
"joint_positions": current_joint_positions_ur10_suspension,
}
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10_suspension.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10_suspension.name, "modifiable": False}
# params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.suspension_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
# current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.suspension_bringer.get_world_pose()
ee_pose = self.give_location("/World/UR10_suspension/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10_suspension/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event = 101
self.task_done[self._task_event] = True
elif self._task_event == 101:
# if self.task_done[self._task_event] and current_mp_position[1]<-5.3:
self._task_event = 151
self._bool_event+=1
# self.task_done[self._task_event] = True
elif self._task_event == 151:
if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02:
self._task_event = 171
self._bool_event+=1
elif self._task_event == 171:
if np.mean(np.abs(screw_ee_pose.p - np.array([-3.70349, -4.41856, 0.56125])))<0.058:
self._task_event=102
elif self._task_event == 102:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 103:
pass
return
def post_reset(self):
self._task_event = 0
return | 10,957 | Python | 52.194175 | 441 | 0.612668 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/fuel_task.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class FuelTask(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_fuel_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10_fuel/ur10_fuel.usd"
# adding UR10_fuel for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_fuel")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_fuel/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_fuel/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_fuel/ee_link", translate=0.1611, direction="x")
self.ur10_fuel = scene.add(
SingleManipulator(prim_path="/World/UR10_fuel", name="my_ur10_fuel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.5124, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_fuel for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_fuel")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_fuel/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_fuel/ee_link", translate=0, direction="x")
self.screw_ur10_fuel = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_fuel", name="my_screw_ur10_fuel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.02094, -16.52902, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, -9.96157, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.47898, -16.15971, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10_fuel = self.ur10_fuel.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10_fuel.name: {
"joint_positions": current_joint_positions_ur10_fuel,
},
self.screw_ur10_fuel.name: {
"joint_positions": current_joint_positions_ur10_fuel,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name_fuel"] = {"value": self.ur10_fuel.name, "modifiable": False}
params_representation["screw_arm_fuel"] = {"value": self.screw_ur10_fuel.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name_fuel"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
ee_pose = self.give_location("/World/UR10_fuel/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10_fuel/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-16.69:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.005, -16.7606, 0.76714])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(ee_pose.p - np.array([-4.18372, 7.03628, 0.44567])))<0.058:
self._task_event=2
pass
elif self._task_event == 2:
pass
return
def post_reset(self):
self._task_event = 0
return | 10,469 | Python | 51.089552 | 441 | 0.611233 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/hello_world.py | import carb
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
from collections import deque, defaultdict
from geometry_msgs.msg import PoseStamped
import rosgraph
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from math import pi
from omni.isaac.examples.hello_world.assembly_task import AssemblyTask
from omni.isaac.examples.hello_world.ATV_task import ATVTask
import time
import asyncio
import rospy
from omni.isaac.examples.hello_world.executor_functions import ExecutorFunctions
from omni.isaac.examples.hello_world.pf_functions import PartFeederFunctions
from omni.isaac.core import SimulationContext
import omni.graph.core as og
# def func():
# try:
# rospy.init_node("hello", anonymous=True, disable_signals=True, log_level=rospy.ERROR)
# except rospy.exceptions.ROSException as e:
# print("Node has already been initialized, do nothing")
# async def my_task():
# from std_msgs.msg import String
# pub = rospy.Publisher("/hello_topic", String, queue_size=10)
# for frame in range(20):
# pub.publish("hello world " + str(frame))
# await asyncio.sleep(1.0)
# pub.unregister()
# pub = None
# asyncio.ensure_future(my_task())
class HelloWorld(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
self.isThere = [False]*1000
return
def setup_scene(self):
world = self.get_world()
# step_size=1
# world.set_physics_step_size(step_size)
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(AssemblyTask(name="assembly_task"))
self.isDone = [False]*1000
self.bool_done = [False]*1000
self.motion_task_counter=0
self.motion_task_counterl=0
self.motion_task_counterr=0
self.path_plan_counter=0
self.delay=0
# ATV declarations -------------------------------------------------------------------------
self.num_of_ATVs = 8
for i in range(self.num_of_ATVs):
world.add_task(ATVTask(name=f"ATV_{i}",offset=np.array([0, i*2, 0])))
# part feeder declarations -------------------------------------------------------------------------
self.num_of_PFs = 5
self.name_of_PFs = [{"name":"engine","prim_name":"engine_small","position":np.array([0.07038, 0.03535, 0.42908]),"orientation":np.array([0, 0.12268, 0, 0.99245]),"mp_pos":np.array([8.61707, 17.63327, 0.03551]),"mp_ori":np.array([0,0,0,1])},
{"name":"trunk","prim_name":"trunk_02","position":np.array([-0.1389, -0.2191, 0.28512]),"orientation":np.array([0.5, 0.5, 0.5, 0.5]),"mp_pos":np.array([-42.76706, 5.21645, 0.03551]),"mp_ori":np.array([1,0,0,0])},
{"name":"wheels","prim_name":"wheel_02","position":np.array([0.45216, -0.32084, 0.28512]),"orientation":np.array([0, 0, 0.70711, 0.70711]),"mp_pos":np.array([-42.71662, 17.56147, 0.03551]),"mp_ori":np.array([1,0,0,0])},
{"name":"main_cover","prim_name":"main_cover","position":np.array([0.74446, -0.26918, -0.03119]),"orientation":np.array([0, 0, -0.70711, -0.70711]),"mp_pos":np.array([-28.65, -31.19876, 0.03551]),"mp_ori":np.array([0.70711, 0, 0, 0.70711])},
{"name":"handle","prim_name":"handle","position":np.array([-0.4248, 0.46934, 0.94076]),"orientation":np.array([0, 1, 0, 0]),"mp_pos":np.array([-42.77298, -7.93, 0.03551]),"mp_ori":np.array([0,0,0,1])}]
for i in range(self.num_of_PFs):
world.add_task(ATVTask(name=f"PF_{i}", offset=np.array([0, i*2, 0]), mp_name=f"pf_{self.name_of_PFs[i]['name']}_{i}",mp_pos=self.name_of_PFs[i]['mp_pos'],mp_ori=self.name_of_PFs[i]['mp_ori']))
print("inside setup_scene", self.motion_task_counter)
# self.schedules = [deque(['790']) for _ in range(self.num_of_ATVs)]
# "1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402",
self.schedules = [deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) for _ in range(self.num_of_ATVs)]
for i in range(3, len(self.schedules)):
self.schedules[i]=deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"])
# self.schedules = [deque(["701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) for _ in range(self.num_of_ATVs)]
# # for i in range(len(self.schedules)):
# # self.schedules[i]=deque([])
# self.schedules[1]=deque(["71","2","72","4","151","171","181","351","371","381","251","271","281","451","471","481","590","591","592","593","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"])
# self.schedules[0] = deque(["1","6","6","6","6","6","6","6","6","6","6","6","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"])
self.wait_queue = [deque([0,1,2,3,4]) for _ in range(self.num_of_ATVs)]
self.pf_schedules = [deque([]) for _ in range(self.num_of_PFs)]
self.right_side = self.left_side = False
# navigation declarations -----------------------------------------------
if not rosgraph.is_master_online():
print("Please run roscore before executing this script")
return
try:
rospy.init_node("set_goal_py",anonymous=True, disable_signals=True, log_level=rospy.ERROR)
except rospy.exceptions.ROSException as e:
print("Node has already been initialized, do nothing")
# FIXME
# self._initial_goal_publisher = rospy.Publisher("initialpose", PoseWithCovarianceStamped, queue_size=1)
# self.__send_initial_pose()
# await asyncio.sleep(1.0)
# self._action_client = actionlib.SimpleActionClient("move_base", MoveBaseAction)
return
async def setup_post_load(self):
self._world = self.get_world()
# part feeders set up ----------------------------------------------------------------------------
self.PF_tasks = []
self.part_feeders = []
self.PF_executions = []
for i in range(self.num_of_PFs):
self.PF_tasks.append(self._world.get_task(f"PF_{i}"))
task_params = self.PF_tasks[i].get_params()
self.part_feeders.append(self._world.scene.get_object(task_params["mp_name"]["value"]))
if self.name_of_PFs[i]['name'] == "engine":
self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","engine_no_rigid", "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
elif self.name_of_PFs[i]['name'] != "wheels":
if self.name_of_PFs[i]['name'] == "main_cover":
self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","main_cover_orange", "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
else:
self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform",self.name_of_PFs[i]["name"], "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
else:
# self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_1_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
# self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_2_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
# self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_3_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
# self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_4_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"])
self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_1_{0}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5]))
self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_2_{0}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5]))
self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_3_{0}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5]))
self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_4_{0}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5]))
pf = PartFeederFunctions()
self.PF_executions.append(pf)
# mobile platform set up -------------------------------------------------------------------------
self.ATV_tasks = []
self.moving_platforms = []
self.ATV_executions = []
for i in range(self.num_of_ATVs):
self.ATV_tasks.append(self._world.get_task(f"ATV_{i}"))
task_params = self.ATV_tasks[i].get_params()
self.moving_platforms.append(self._world.scene.get_object(task_params["mp_name"]["value"]))
self.add_part_custom(f"mock_robot_{i}/platform","FFrame", f"frame_{i}", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
atv = ExecutorFunctions()
self.ATV_executions.append(atv)
# og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/TwistSub" + "/node_namespace.inputs:value"), f"mp{i+1}")
# og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/LidarPub" + "/node_namespace.inputs:value"), f"mp{i+1}")
# og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/TfAndOdomPub" + "/node_namespace.inputs:value"), f"mp{i+1}")
# Engine cell set up ----------------------------------------------------------------------------
task_params = self._world.get_task("assembly_task").get_params()
# bring in moving platforms
# self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
# self._my_custom_controller = CustomDifferentialController()
# self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
# self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","engine_no_rigid", "engine_small_0", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0]))
# Suspension cell set up ------------------------------------------------------------------------
# bring in moving platforms
self.suspension_bringer = self._world.scene.get_object(task_params["eb_name_suspension"]["value"])
# static suspensions on the table
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_00", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.83704, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
# self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01_0", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.54469, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.3843, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.22546, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-6.10203, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_06", np.array([0.001,0.001,0.001]), np.array([-5.96018, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_07", np.array([0.001,0.001,0.001]), np.array([-5.7941, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_08", np.array([0.001,0.001,0.001]), np.array([-5.63427, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_09", np.array([0.001,0.001,0.001]), np.array([-5.47625, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
# self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self.ur10_suspension = self._world.scene.get_object(task_params["arm_name_suspension"]["value"])
self.screw_ur10_suspension = self._world.scene.get_object(task_params["screw_arm_suspension"]["value"])
self.my_controller_suspension = KinematicsSolver(self.ur10_suspension, attach_gripper=True)
self.screw_my_controller_suspension = KinematicsSolver(self.screw_ur10_suspension, attach_gripper=True)
self.articulation_controller_suspension = self.ur10_suspension.get_articulation_controller()
self.screw_articulation_controller_suspension = self.screw_ur10_suspension.get_articulation_controller()
# Fuel cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.fuel_bringer = self._world.scene.get_object(task_params["eb_name_fuel"]["value"])
# self.add_part_custom("fuel_bringer/platform","fuel", "fuel", np.array([0.001,0.001,0.001]), np.array([-0.1769, 0.13468, 0.24931]), np.array([0.5,0.5,-0.5,-0.5]))
# self.add_part_custom("World/Environment","fuel", "fuel_01_0", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.offset = -0.35894
self.add_part_custom("World/Environment","fuel", "fuel_00", np.array([0.001,0.001,0.001]), np.array([-6.96448, -16.13794+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel_yellow", "fuel_01", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.83793+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel", "fuel_02", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.53714+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel_yellow", "fuel_03", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.23127+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel", "fuel_04", np.array([0.001,0.001,0.001]), np.array([-7.22495, -16.13794+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel_yellow", "fuel_05", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.83793+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel", "fuel_06", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.53714+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","fuel_yellow", "fuel_07", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.23127+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
# self.add_part_custom("World/Environment","fuel", "fuel_3", np.array([0.001,0.001,0.001]), np.array([-6.54859, -15.46717, 0.41958]), np.array([0, 0, -0.70711, -0.70711]))
# self.add_part_custom("World/Environment","fuel", "fuel_4", np.array([0.001,0.001,0.001]), np.array([-6.14395, -15.47402, 0.41958]), np.array([0, 0, -0.70711, -0.70711]))
# self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.90761, 0.03096, 0.69056]), np.array([0.48732, -0.51946, 0.50085, -0.49176]))
# self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
# self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711]))
# Initialize our controller after load and the first reset
self.ur10_fuel = self._world.scene.get_object(task_params["arm_name_fuel"]["value"])
self.screw_ur10_fuel = self._world.scene.get_object(task_params["screw_arm_fuel"]["value"])
self.my_controller_fuel = KinematicsSolver(self.ur10_fuel, attach_gripper=True)
self.screw_my_controller_fuel = KinematicsSolver(self.screw_ur10_fuel, attach_gripper=True)
self.articulation_controller_fuel = self.ur10_fuel.get_articulation_controller()
self.screw_articulation_controller_fuel = self.screw_ur10_fuel.get_articulation_controller()
# battery cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.battery_bringer = self._world.scene.get_object(task_params["eb_name_battery"]["value"])
# self.add_part_custom("World/Environment","battery", "battery_01_0", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_00", np.array([0.001,0.001,0.001]), np.array([-16.66421, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_01", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_02", np.array([0.001,0.001,0.001]), np.array([-16.29557, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_03", np.array([0.001,0.001,0.001]), np.array([-16.11273, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_04", np.array([0.001,0.001,0.001]), np.array([-16.66421, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_05", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_06", np.array([0.001,0.001,0.001]), np.array([-16.29557, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
self.add_part_custom("World/Environment","battery", "battery_07", np.array([0.001,0.001,0.001]), np.array([-16.11273, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
# part feeding battery --------------------------------------
# self.add_part_custom("battery_bringer/platform","battery", "battery_01", np.array([0.001,0.001,0.001]), np.array([-0.23374, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("battery_bringer/platform","battery", "battery_02", np.array([0.001,0.001,0.001]), np.array([-0.23374, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("battery_bringer/platform","battery", "battery_03", np.array([0.001,0.001,0.001]), np.array([0.04161, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("battery_bringer/platform","battery", "battery_04", np.array([0.001,0.001,0.001]), np.array([0.30769, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("battery_bringer/platform","battery", "battery_05", np.array([0.001,0.001,0.001]), np.array([0.03519, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("battery_bringer/platform","battery", "battery_06", np.array([0.001,0.001,0.001]), np.array([0.30894, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711]))
# Initialize our controller after load and the first reset
self.ur10_battery = self._world.scene.get_object(task_params["arm_name_battery"]["value"])
self.screw_ur10_battery = self._world.scene.get_object(task_params["screw_arm_battery"]["value"])
self.my_controller_battery = KinematicsSolver(self.ur10_battery, attach_gripper=True)
self.screw_my_controller_battery = KinematicsSolver(self.screw_ur10_battery, attach_gripper=True)
self.articulation_controller_battery = self.ur10_battery.get_articulation_controller()
self.screw_articulation_controller_battery = self.screw_ur10_battery.get_articulation_controller()
# trunk cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.trunk_bringer = self._world.scene.get_object(task_params["eb_name_trunk"]["value"])
self.add_part_custom("World/Environment","trunk", "trunk_01", np.array([0.001,0.001,0.001]), np.array([-27.84904, 3.75405, 0.41467]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","trunk", "trunk_02_0", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711]))
# Initialize our controller after load and the first reset
self.ur10_trunk = self._world.scene.get_object(task_params["arm_name_trunk"]["value"])
self.screw_ur10_trunk = self._world.scene.get_object(task_params["screw_arm_trunk"]["value"])
self.my_controller_trunk = KinematicsSolver(self.ur10_trunk, attach_gripper=True)
self.screw_my_controller_trunk = KinematicsSolver(self.screw_ur10_trunk, attach_gripper=True)
self.articulation_controller_trunk = self.ur10_trunk.get_articulation_controller()
self.screw_articulation_controller_trunk = self.screw_ur10_trunk.get_articulation_controller()
# wheel cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.wheel_bringer = self._world.scene.get_object(task_params["eb_name_wheel"]["value"])
self.add_part_custom("World/Environment","FWheel", "wheel_01_0", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","FWheel", "wheel_02_0", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","FWheel", "wheel_03_0", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.add_part_custom("World/Environment","FWheel", "wheel_04_0", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
# Initialize our controller after load and the first reset
self.ur10_wheel = self._world.scene.get_object(task_params["arm_name_wheel"]["value"])
self.screw_ur10_wheel = self._world.scene.get_object(task_params["screw_arm_wheel"]["value"])
self.my_controller_wheel = KinematicsSolver(self.ur10_wheel, attach_gripper=True)
self.screw_my_controller_wheel = KinematicsSolver(self.screw_ur10_wheel, attach_gripper=True)
self.articulation_controller_wheel = self.ur10_wheel.get_articulation_controller()
self.screw_articulation_controller_wheel = self.screw_ur10_wheel.get_articulation_controller()
self.ur10_wheel_01 = self._world.scene.get_object(task_params["arm_name_wheel_01"]["value"])
self.screw_ur10_wheel_01 = self._world.scene.get_object(task_params["screw_arm_wheel_01"]["value"])
self.my_controller_wheel_01 = KinematicsSolver(self.ur10_wheel_01, attach_gripper=True)
self.screw_my_controller_wheel_01 = KinematicsSolver(self.screw_ur10_wheel_01, attach_gripper=True)
self.articulation_controller_wheel_01 = self.ur10_wheel_01.get_articulation_controller()
self.screw_articulation_controller_wheel_01 = self.screw_ur10_wheel_01.get_articulation_controller()
# lower_cover cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
# self.lower_cover_bringer = self._world.scene.get_object(task_params["eb_name_lower_cover"]["value"])
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_01_0", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_02", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.30883, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_03", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.30883, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_04_0", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_05", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.3805, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
# self.add_part_custom("World/Environment","lower_cover", "lower_cover_06", np.array([0.001,0.001,0.001]), np.array([-25.88587, -19.3805, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
# right lower covers
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_3", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_2", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.44595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_1", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.48595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_0", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.52595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_7", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_6", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.44595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_5", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.48595]), np.array([0, 0, 0.70711, 0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverr_4", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.52595]), np.array([0, 0, 0.70711, 0.70711]))
# left lower covers
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_3", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_2", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.44595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_1", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.48595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_0", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.52595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_7", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_6", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.44595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_5", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.48595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","lower_cover", "lower_coverl_4", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.52595]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("World/Environment","main_cover", "main_cover_0", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
# Initialize our controller after load and the first reset
self.ur10_lower_cover = self._world.scene.get_object(task_params["arm_name_lower_cover"]["value"])
self.screw_ur10_lower_cover = self._world.scene.get_object(task_params["screw_arm_lower_cover"]["value"])
self.my_controller_lower_cover = KinematicsSolver(self.ur10_lower_cover, attach_gripper=True)
self.screw_my_controller_lower_cover = KinematicsSolver(self.screw_ur10_lower_cover, attach_gripper=True)
self.articulation_controller_lower_cover = self.ur10_lower_cover.get_articulation_controller()
self.screw_articulation_controller_lower_cover = self.screw_ur10_lower_cover.get_articulation_controller()
self.ur10_lower_cover_01 = self._world.scene.get_object(task_params["arm_name_lower_cover_01"]["value"])
self.screw_ur10_lower_cover_01 = self._world.scene.get_object(task_params["screw_arm_lower_cover_01"]["value"])
self.my_controller_lower_cover_01 = KinematicsSolver(self.ur10_lower_cover_01, attach_gripper=True)
self.screw_my_controller_lower_cover_01 = KinematicsSolver(self.screw_ur10_lower_cover_01, attach_gripper=True)
self.articulation_controller_lower_cover_01 = self.ur10_lower_cover_01.get_articulation_controller()
self.screw_articulation_controller_lower_cover_01 = self.screw_ur10_lower_cover_01.get_articulation_controller()
self.ur10_main_cover = self._world.scene.get_object(task_params["arm_name_main_cover"]["value"])
self.my_controller_main_cover = KinematicsSolver(self.ur10_main_cover, attach_gripper=True)
self.articulation_controller_main_cover = self.ur10_main_cover.get_articulation_controller()
# handle cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.handle_bringer = self._world.scene.get_object(task_params["eb_name_handle"]["value"])
self.add_part_custom("World/Environment","handle", "handle_0", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0]))
# Initialize our controller after load and the first reset
self.ur10_handle = self._world.scene.get_object(task_params["arm_name_handle"]["value"])
self.screw_ur10_handle = self._world.scene.get_object(task_params["screw_arm_handle"]["value"])
self.my_controller_handle = KinematicsSolver(self.ur10_handle, attach_gripper=True)
self.screw_my_controller_handle = KinematicsSolver(self.screw_ur10_handle, attach_gripper=True)
self.articulation_controller_handle = self.ur10_handle.get_articulation_controller()
self.screw_articulation_controller_handle = self.screw_ur10_handle.get_articulation_controller()
# self.add_part_custom("World/UR10_main_cover/ee_link","main_cover", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5]))
# light cell set up ---------------------------------------------------------------------------------
# bring in moving platforms
self.light_bringer = self._world.scene.get_object(task_params["eb_name_light"]["value"])
self.light_offset = 0.19384
# self.add_part_custom("World/Environment","FFrontLightAssembly", "light_00", np.array([0.001,0.001,0.001]), np.array([-18.07685, -6.94324 + self.light_offset, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_00", np.array([0.001,0.001,0.001]), np.array([-18.07685, -6.94324, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_01", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.14276, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_02", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
# self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.56251, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
# self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.21921, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.02266, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_04", np.array([0.001,0.001,0.001]), np.array([-17.82314, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_05", np.array([0.001,0.001,0.001]), np.array([-17.60725, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_06", np.array([0.001,0.001,0.001]), np.array([-17.40341, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
self.add_part_custom("World/Environment","FFrontLightAssembly", "light_07", np.array([0.001,0.001,0.001]), np.array([-17.40341+self.light_offset, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595]))
# self.add_part_custom("mock_robot/platform","handle", "xhandle", np.array([0.001,0.001,0.001]), np.array([0.82439, 0.44736, 1.16068]), np.array([0.20721, 0.68156, -0.67309, -0.19874]))
# self.add_part_custom("mock_robot/platform","main_cover", "xmain_cover", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0]))
# Initialize our controller after load and the first reset
self.ur10_light = self._world.scene.get_object(task_params["arm_name_light"]["value"])
self.screw_ur10_light = self._world.scene.get_object(task_params["screw_arm_light"]["value"])
self.my_controller_light = KinematicsSolver(self.ur10_light, attach_gripper=True)
self.screw_my_controller_light = KinematicsSolver(self.screw_ur10_light, attach_gripper=True)
self.articulation_controller_light = self.ur10_light.get_articulation_controller()
self.screw_articulation_controller_light = self.screw_ur10_light.get_articulation_controller()
# temporary additions -------------------------------------------------
# self.add_part_custom("mock_robot/platform","FWheel", "xwheel_02", np.array([0.001,0.001,0.001]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.add_part_custom("mock_robot/platform","FWheel", "xwheel_04", np.array([0.001,0.001,0.001]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.add_part_custom("mock_robot/platform","FWheel", "xwheel_01", np.array([0.001,0.001,0.001]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.add_part_custom("mock_robot/platform","FWheel", "xwheel_03", np.array([0.001,0.001,0.001]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.add_part_custom("mock_robot/platform","trunk", "xtrunk", np.array([0.001,0.001,0.001]), np.array([-0.79319, -0.21112, 0.70114]), np.array([0.5, 0.5, 0.5, 0.5]))
# self.add_part_custom("mock_robot/platform","battery", "xbattery", np.array([0.001,0.001,0.001]), np.array([-0.20126, 0.06146, 0.58443]), np.array([0.4099, 0.55722, -0.58171, -0.42791]))
# self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711]))
# self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262]))
# self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
# # part feeder stuff ----------------------------
# self.add_part_custom("fuel_bringer/platform","fuel", "fuel_05", np.array([0.001,0.001,0.001]), np.array([-0.17458, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5]))
# self.add_part_custom("fuel_bringer/platform","fuel", "fuel_06", np.array([0.001,0.001,0.001]), np.array([0.10727, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5]))
# self.add_part_custom("fuel_bringer/platform","fuel", "fuel_07", np.array([0.001,0.001,0.001]), np.array([0.375, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5]))
# self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_10", np.array([0.001,0.001,0.001]), np.array([0.16356, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_11", np.array([0.001,0.001,0.001]), np.array([0.31896, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_12", np.array([0.001,0.001,0.001]), np.array([0.47319, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_13", np.array([0.001,0.001,0.001]), np.array([0.6372, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_14", np.array([0.001,0.001,0.001]), np.array([0.80216, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0]))
# self.add_part_custom("engine_bringer/platform","engine_no_rigid", "engine_11", np.array([0.001,0.001,0.001]), np.array([0, 0, 0.43148]), np.array([0.99457, 0, -0.10407, 0]))
# ATV executor class declaration -------------------------------------------------
self.suspension = [[{"index":0, "position": np.array([0.72034, 0.08607, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, 0.08607, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, 0.08607, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}],
[{"index":0, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.05477, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}],
[{"index":0, "position": np.array([0.72034, -0.20689, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.20689, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.20689, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}],
[{"index":0, "position": np.array([0.72034, -0.36659, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.36659, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.36659, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}],
[{"index":0, "position": np.array([0.72034, -0.52521, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.52521, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.52521, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}],
[{"index":0, "position": np.array([0.44319, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.44319, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.44319, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([0.30166, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.30166, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.30166, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([0.1356, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.1356, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.1356, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
]
self.battery = [[{"index":0, "position": np.array([0.05713, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.05713, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.05713, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.12728, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.12728, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.12728, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.31243, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.31243, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.31243, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.49671, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.49671, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.49671, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([0.05713, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.05713, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.05713, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.12728, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.12728, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.12728, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.31243, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.31243, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.31243, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([-0.49671, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.49671, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.49671, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
]
self.fuel = [[{"index":0, "position": np.array([0.71705+0.16, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16, 0.06232-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -16.22609+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16, -0.2367-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.92707+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16, -0.53766-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.62611+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16, -0.8428-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.32097+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}
# {"index":2, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}
],
[{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16+0.26557, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16+0.26557, -0.2367-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.92707+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16+0.26557, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16+0.26557, -0.53766-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.62611+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}],
[{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}
# {"index":2, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}
],
]
self.lower_coverr = [
[{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.56397]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.52368]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.48417]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.56397]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.52368]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.48417]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
[{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}],
]
self.lower_coverl = [
[{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.56518]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.52494]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.48451]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.56518]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.52494]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.48451]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
[{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}],
]
self.light = [
# [{"index":0, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":1, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":2, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([0.5517, 0.26622, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.5517, 0.26622, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.5517, 0.26622, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([0.5517, 0.46812, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.5517, 0.46812, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.5517, 0.46812, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
[{"index":0, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.5517, 0.68287, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
# [
# {"index":0, "position": np.array([0.50855, 0.76133, -0.16+0.58629]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# # {"index":0, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":1, "position": np.array([0.5517, 0.88627, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":2, "position": np.array([0.5517, 0.88627, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}],
# [{"index":0, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":1, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":2, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([0.31451, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.31451, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.31451, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.11405, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([-0.10054, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.10054, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.10054, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([-0.30438, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.30438, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.30438, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
[{"index":0, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}],
]
for i,ATV in enumerate(self.ATV_executions):
# id ----------------
ATV.id = i
# no part feeding parts
ATV.suspension = self.suspension[i]
ATV.battery = self.battery[i]
ATV.fuel = self.fuel[i]
ATV.light = self.light[i]
ATV.lower_cover = [self.lower_coverr[i], self.lower_coverl[i]]
# ATV declarations ----------------------------------------------------------
ATV.moving_platform = self.moving_platforms[i]
# Engine cell setup -------------------------
ATV.my_controller = self.my_controller
ATV.screw_my_controller = self.screw_my_controller
ATV.articulation_controller = self.articulation_controller
ATV.screw_articulation_controller = self.screw_articulation_controller
# Suspension cell set up ------------------------------------------------------------------------
ATV.my_controller_suspension = self.my_controller_suspension
ATV.screw_my_controller_suspension = self.screw_my_controller_suspension
ATV.articulation_controller_suspension = self.articulation_controller_suspension
ATV.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension
# Fuel cell set up ---------------------------------------------------------------------------------
ATV.my_controller_fuel = self.my_controller_fuel
ATV.screw_my_controller_fuel = self.screw_my_controller_fuel
ATV.articulation_controller_fuel = self.articulation_controller_fuel
ATV.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel
# battery cell set up ---------------------------------------------------------------------------------
ATV.my_controller_battery = self.my_controller_battery
ATV.screw_my_controller_battery = self.screw_my_controller_battery
ATV.articulation_controller_battery = self.articulation_controller_battery
ATV.screw_articulation_controller_battery = self.screw_articulation_controller_battery
# trunk cell set up ---------------------------------------------------------------------------------
ATV.my_controller_trunk = self.my_controller_trunk
ATV.screw_my_controller_trunk = self.screw_my_controller_trunk
ATV.articulation_controller_trunk = self.articulation_controller_trunk
ATV.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk
# wheel cell set up ---------------------------------------------------------------------------------
ATV.my_controller_wheel = self.my_controller_wheel
ATV.screw_my_controller_wheel = self.screw_my_controller_wheel
ATV.articulation_controller_wheel = self.articulation_controller_wheel
ATV.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel
ATV.my_controller_wheel_01 = self.my_controller_wheel_01
ATV.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01
ATV.articulation_controller_wheel_01 = self.articulation_controller_wheel_01
ATV.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01
# lower_cover cell set up ---------------------------------------------------------------------------------
ATV.my_controller_lower_cover = self.my_controller_lower_cover
ATV.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover
ATV.articulation_controller_lower_cover = self.articulation_controller_lower_cover
ATV.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover
ATV.my_controller_lower_cover_01 = self.my_controller_lower_cover_01
ATV.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01
ATV.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01
ATV.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01
ATV.my_controller_main_cover = self.my_controller_main_cover
ATV.articulation_controller_main_cover = self.articulation_controller_main_cover
# handle cell set up ---------------------------------------------------------------------------------
ATV.my_controller_handle = self.my_controller_handle
ATV.screw_my_controller_handle = self.screw_my_controller_handle
ATV.articulation_controller_handle = self.articulation_controller_handle
ATV.screw_articulation_controller_handle = self.screw_articulation_controller_handle
# light cell set up --------------------------------------------------------------------------------
ATV.my_controller_light = self.my_controller_light
ATV.screw_my_controller_light = self.screw_my_controller_light
ATV.articulation_controller_light = self.articulation_controller_light
ATV.screw_articulation_controller_light = self.screw_articulation_controller_light
ATV.world = self._world
ATV.declare_utils()
# PF executor class declaration -------------------------------------------------
for i,PF in enumerate(self.PF_executions):
# id ----------------
PF.id = 0
# PF declarations ----------------------------------------------------------
PF.moving_platform = self.part_feeders[i]
# Engine cell setup -------------------------
PF.my_controller = self.my_controller
PF.screw_my_controller = self.screw_my_controller
PF.articulation_controller = self.articulation_controller
PF.screw_articulation_controller = self.screw_articulation_controller
# Suspension cell set up ------------------------------------------------------------------------
PF.my_controller_suspension = self.my_controller_suspension
PF.screw_my_controller_suspension = self.screw_my_controller_suspension
PF.articulation_controller_suspension = self.articulation_controller_suspension
PF.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension
# Fuel cell set up ---------------------------------------------------------------------------------
PF.my_controller_fuel = self.my_controller_fuel
PF.screw_my_controller_fuel = self.screw_my_controller_fuel
PF.articulation_controller_fuel = self.articulation_controller_fuel
PF.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel
# battery cell set up ---------------------------------------------------------------------------------
PF.my_controller_battery = self.my_controller_battery
PF.screw_my_controller_battery = self.screw_my_controller_battery
PF.articulation_controller_battery = self.articulation_controller_battery
PF.screw_articulation_controller_battery = self.screw_articulation_controller_battery
# trunk cell set up ---------------------------------------------------------------------------------
PF.my_controller_trunk = self.my_controller_trunk
PF.screw_my_controller_trunk = self.screw_my_controller_trunk
PF.articulation_controller_trunk = self.articulation_controller_trunk
PF.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk
# wheel cell set up ---------------------------------------------------------------------------------
PF.my_controller_wheel = self.my_controller_wheel
PF.screw_my_controller_wheel = self.screw_my_controller_wheel
PF.articulation_controller_wheel = self.articulation_controller_wheel
PF.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel
PF.my_controller_wheel_01 = self.my_controller_wheel_01
PF.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01
PF.articulation_controller_wheel_01 = self.articulation_controller_wheel_01
PF.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01
# lower_cover cell set up ---------------------------------------------------------------------------------
PF.my_controller_lower_cover = self.my_controller_lower_cover
PF.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover
PF.articulation_controller_lower_cover = self.articulation_controller_lower_cover
PF.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover
PF.my_controller_lower_cover_01 = self.my_controller_lower_cover_01
PF.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01
PF.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01
PF.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01
PF.my_controller_main_cover = self.my_controller_main_cover
PF.articulation_controller_main_cover = self.articulation_controller_main_cover
# handle cell set up ---------------------------------------------------------------------------------
PF.my_controller_handle = self.my_controller_handle
PF.screw_my_controller_handle = self.screw_my_controller_handle
PF.articulation_controller_handle = self.articulation_controller_handle
PF.screw_articulation_controller_handle = self.screw_articulation_controller_handle
# light cell set up --------------------------------------------------------------------------------
PF.my_controller_light = self.my_controller_light
PF.screw_my_controller_light = self.screw_my_controller_light
PF.articulation_controller_light = self.articulation_controller_light
PF.screw_articulation_controller_light = self.screw_articulation_controller_light
PF.world = self._world
PF.declare_utils()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def _check_goal_reached(self, goal_pose):
# Cannot get result from ROS because /move_base/result also uses move_base_msgs module
mp_position, mp_orientation = self.moving_platforms[0].get_world_pose()
_, _, mp_yaw = euler_from_quaternion(mp_orientation)
_, _, goal_yaw = euler_from_quaternion(goal_pose[3:])
# FIXME: pi needed for yaw tolerance here because map rotated 180 degrees
if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \
and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance:
print("Goal "+str(goal_pose)+" reached!")
# This seems to crash Isaac sim...
# self.get_world().remove_physics_callback("mp_nav_check")
# Goal hardcoded for now
def _send_navigation_goal(self, x=None, y=None, a=None):
# x, y, a = -18, 14, 3.14
# x,y,a = -4.65, 5.65,3.14
orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w]
goal_msg = PoseStamped()
goal_msg.header.frame_id = "map"
goal_msg.header.stamp = rospy.get_rostime()
print("goal pose: "+str(pose))
goal_msg.pose.position.x = pose[0]
goal_msg.pose.position.y = pose[1]
goal_msg.pose.position.z = pose[2]
goal_msg.pose.orientation.x = pose[3]
goal_msg.pose.orientation.y = pose[4]
goal_msg.pose.orientation.z = pose[5]
goal_msg.pose.orientation.w = pose[6]
world = self.get_world()
self._goal_pub.publish(goal_msg)
# self._check_goal_reached(pose)
world = self.get_world()
if not world.physics_callback_exists("mp_nav_check"):
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
# Overwrite check with new goal
else:
world.remove_physics_callback("mp_nav_check")
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
def move_to_engine_cell(self):
# # print("sending nav goal")
if not self.bool_done[123]:
self._send_navigation_goal(-4.65, 5.65, 3.14)
self.bool_done[123] = True
return False
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
# print("\n\n\n\nCurrent observations:",current_observations)
# naming convention
# {product number}_{station name}_{operation}_{part}_{task number}
# p1_stationB_install_chain_engine_31
task_to_func_map = {
"0":"move_to_engine_cell_nav",
"1": "move_to_engine_cell",
"71":"arm_place_engine",
"2":"screw_engine",
"72":"arm_remove_engine",
"3":"turn_mobile_platform",
"4":"screw_engine_two",
"6":"wait",
"101":"move_to_suspension_cell",
"151":"arm_place_suspension",
"171":"screw_suspension",
"181":"arm_remove_suspension",
"102":"wait",
"301":"move_to_battery_cell",
"351":"arm_place_battery",
"371":"screw_battery",
"381":"arm_remove_battery",
"302":"wait",
"305":"move_mp_to_battery_cell",
"306":"battery_part_feeding",
"307":"moving_part_feeders",
"201":"move_to_fuel_cell",
"251":"arm_place_fuel",
"271":"screw_fuel",
"281":"arm_remove_fuel",
"202":"wait",
"401":"move_to_trunk_cell",
"451":"arm_place_trunk",
"471":"screw_trunk",
"481":"arm_remove_trunk",
"402":"wait",
"501":"move_to_wheel_cell",
"590":"arm_place_fwheel_together",
"591":"screw_fwheel_together",
"505":"move_ahead_in_wheel_cell",
"592":"arm_place_bwheel_together",
"593":"screw_bwheel_together",
"502":"wait",
"701":"move_to_lower_cover_cell",
"790":"arm_place_lower_cover_together",
"791":"screw_lower_cover_together",
"702":"wait",
"721":"move_to_main_cover_cell",
"731":"arm_place_main_cover",
"703":"wait",
"801":"move_to_handle_cell",
"851":"arm_place_handle",
"871":"screw_handle",
"802":"wait",
"901":"move_to_light_cell",
"951":"arm_place_light",
"971":"screw_light",
"902":"wait",
"1000":"go_to_end_goal",
"1100":"move_to_contingency_cell",
"1101":"disassemble",
"1102":"carry_on"
}
# schedule = deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","881","802","901","951","971","902"])
# schedule = deque(["1","71","2","72","3","4","6","101","102","301","302","201","202","401","402","501","505","502","701","721","703","801","851","871","881","802","901","902"])
# schedule = deque(["1","71"])
sc = SimulationContext()
print("Time:", sc.current_time)
time_threshold = 180
for i in range(len(self.schedules)):
# # wait for part feeder check
# if i>0:
# # print("ATV "+str(i)+":", self.schedules[i][0], self.schedules[i-1][0], self.schedules[i][0] == self.schedules[i-1][0])
# isWait = self.wait_for_parts(i)
# if isWait and self.schedules[i][0]=="401":
# print("ATV "+str(i)+": ", self.schedules[i])
# print("Wait status:",isWait)
# self.ATV_executions[i].wait_infinitely()
# continue
# if self.schedules[i-1] and self.schedules[i] and (self.schedules[i][0] == self.schedules[i-1][0] and self.schedules[i-1][0]!="401"):
# isWait=True
# if isWait and sc.current_time>i*time_threshold:
# print("ATV "+str(i)+": ", self.schedules[i])
# print("Waiting for next mp to move...")
# else:
# if isWait and sc.current_time>i*time_threshold:
# print("ATV "+str(i)+": ", self.schedules[i])
# print("Waiting for part...")
# else:
# isWait = False
if self.schedules[i] and sc.current_time>i*time_threshold:
# if self.schedules[i] and sc.current_time>i*50:
print("ATV "+str(i)+": ", self.schedules[i])
curr_schedule = self.schedules[i][0]
curr_schedule_function = getattr(self.ATV_executions[i], task_to_func_map[curr_schedule])
function_done = curr_schedule_function()
if function_done:
print("Done with", task_to_func_map[curr_schedule])
self.schedules[i].popleft()
# updating visited status for each ATV
if self.schedules[i]:
new_schedule = self.schedules[i][0]
if not self.ATV_executions[i].visited["engine"] and any(int(new_schedule) >= x for x in [0,1,2,3,4,6,71,72]):
self.ATV_executions[i].visited["engine"]=True
# if i==0:
if not self.ATV_executions[i].visited["trunk"] and any(int(new_schedule) >= x for x in [401,451,471,481,402]):
self.ATV_executions[i].visited["trunk"]=True
if not self.ATV_executions[i].visited["wheels"] and any(int(new_schedule) >= x for x in [501,590,591,505,592,593,502]):
self.ATV_executions[i].visited["wheels"]=True
# if not self.ATV_executions[i].visited["cover"] and any(int(new_schedule) >= x for x in [701,790,791,702,721,731,703]):
# self.ATV_executions[i].visited["cover"]=True
# if not self.ATV_executions[i].visited["handle"] and any(int(new_schedule) >= x for x in [801,851,871,802]):
# self.ATV_executions[i].visited["handle"]=True
pf_to_function = {"6":"wait",
"81":"move_pf_engine",
"82":"place_engine",
"83":"move_pf_engine_back",
"181":"move_pf_trunk",
"182":"place_trunk",
"183":"move_pf_trunk_back",
"281":"move_pf_wheels",
"282":"place_wheels",
"283":"place_wheels_01",
"284":"move_pf_wheels_back",
"381":"move_pf_main_cover",
"382":"place_main_cover",
"383":"move_pf_main_cover_back",
"481":"move_pf_handle",
"482":"place_handle",
"483":"move_pf_handle_back"}
for i in range(len(self.pf_schedules)):
# for i in range(5):
if not self.check_prim_exists_extra("World/Environment/"+self.name_of_PFs[i]["prim_name"]) and not self.pf_schedules[i]:
if self.name_of_PFs[i]["name"]=="engine":
self.pf_schedules[i] = deque(["81","82","83"])
elif self.name_of_PFs[i]["name"]=="trunk":
self.pf_schedules[i] = deque(["181","182","183"])
elif self.name_of_PFs[i]["name"]=="wheels":
self.pf_schedules[i] = deque(["281","282","283","284"])
elif self.name_of_PFs[i]["name"]=="main_cover":
self.pf_schedules[i] = deque(["381","382","383"])
elif self.name_of_PFs[i]["name"]=="handle":
self.pf_schedules[i] = deque(["481","482","483"])
print("PF "+self.name_of_PFs[i]["name"]+": ", self.pf_schedules[i])
if self.pf_schedules[i]:
# print("PF "+str(i)+": ", self.pf_schedules[i])
curr_schedule = self.pf_schedules[i][0]
curr_schedule_function = getattr(self.PF_executions[i], pf_to_function[curr_schedule])
function_done = curr_schedule_function()
if function_done:
print("Done with", pf_to_function[curr_schedule])
self.pf_schedules[i].popleft()
# for i in range(1,self.num_of_ATVs):
# if self.schedules[i-1] and self.schedules[i]:
# # print("Task "+str(i), int(self.schedules[i-1][0])//100, int(self.schedules[i][0])//100)
# if int(self.schedules[i-1][0])//100 > int(self.schedules[i][0])//100:
# self.ATV_executions[i].spawn_new_parts()
# else:
# # print("Task "+str(i), "F", int(self.schedules[i][0])//100)
# self.ATV_executions[i].spawn_new_parts()
return
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= self._world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def wait(self):
print("Waiting ...")
if self.delay>100:
print("Done waiting")
self.delay=0
return True
self.delay+=1
return False
def check_prim_exists_extra(self, prim_path):
for i in range(self.num_of_ATVs+3):
curr_prim = self._world.stage.GetPrimAtPath("/"+prim_path+f"_{i}")
if curr_prim.IsValid():
return True
return False
def check_prim_exists(self, prim_path):
curr_prim = self._world.stage.GetPrimAtPath("/"+prim_path)
if curr_prim.IsValid():
return True
return False
def wait_for_parts(self, id):
curr_pf = self.wait_queue[id][0]
name = self.name_of_PFs[curr_pf]['name']
prim_name = self.name_of_PFs[curr_pf]['prim_name']
print(id)
print(curr_pf,name,prim_name)
isWait = False
if name=='main_cover':
isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited["cover"] and self.ATV_executions[id-1].visited["cover"]
if name!='trunk':
isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited[f"{name}"] and self.ATV_executions[id-1].visited[f"{name}"]
# elif name=='wheels':
# isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited[f"{name}"] and self.ATV_executions[id-1].visited[f"{name}"] and self.check_prim_exists(f"World/Environment/{prim_name}_{id-1}")
if self.check_prim_exists(f"World/Environment/{prim_name}_{id}"):
if name =='trunk' and self.check_prim_exists(f"mock_robot_{id}/platform/xtrunk_{id}"):
self.wait_queue[id].popleft()
else:
self.wait_queue[id].popleft()
# isWait |= not self.check_prim_exists(f"World/Environment/trunk_02_{id}") and not self.ATV_executions[id].visited["trunk"] and self.ATV_executions[id-1].visited["trunk"]
print(isWait)
# isWait |= not self.check_prim_exists(f"World/Environment/wheel_02_{id}") and not self.ATV_executions[id].visited["wheels"] and self.ATV_executions[id-1].visited["wheels"]
# isWait |= not self.check_prim_exists(f"World/Environment/main_cover_{id}") and not self.ATV_executions[id].visited["cover"] and self.ATV_executions[id-1].visited["cover"]
# isWait |= not self.check_prim_exists(f"World/Environment/handle_{id}") and not self.ATV_executions[id].visited["handle"] and self.ATV_executions[id-1].visited["handle"]
return isWait | 112,601 | Python | 88.22504 | 357 | 0.577242 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/assembly_task.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class AssemblyTask(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*1000
self.motion_event = 0
self.motion_done = [False]*1000
self._bool_event = 0
self.count=0
# self.num_of_ATVs = 2
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_show_without_robots_l.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/version3_j_hook/version3_j_hook.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-4.98573, 6.97238, 0.24168]), orientation=np.array([0.70711, 0, 0, 0.70711]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.73889, 4.66511, 0.24168]), orientation=np.array([0.70711, 0, 0, 0.70711]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# Floorplan = 0, -4.26389, 0
# Station_ = 1.50338, -4.95641, 0
# large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform/mobile_platform1.usd"
# small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform/mobile_platform1.usd"
large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd"
small_robot_asset_path= "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd"
# large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# # add moving platform
# self.moving_platform = scene.add(
# WheeledRobot(
# prim_path=f"/mock_robot",
# name=f"moving_platform",
# wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
# create_robot=True,
# usd_path=large_robot_asset_path,
# # position=np.array([2.5, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position
# position=np.array([-0.378, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position
# # position=np.array([-4.78521, -10.1757,0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before fuel cell
# # position=np.array([-9.60803, -17.35671, 0.03551]), orientation=np.array([0, 0, 0, 1]),# initial before battery cell
# # position=np.array([-32.5, 3.516, 0.03551]), orientation=np.array([0.70711, 0, 0, 0.70711]),# initial before trunk cell
# # position=np.array([-19.86208, 9.65617, 0.03551]), orientation=np.array([1, 0, 0, 0]),# initial before wheel cell
# # position=np.array([-20.84299, 6.46358, 0.03551]), orientation=np.array([-0.70711, 0, 0, -0.70711]),# initial before wheel cell
# # position=np.array([-21.13755, -15.54504, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before cover cell
# # position=np.array([-27.52625, -7.11835, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before light cell
# )
# )
# # Second view from contingency
# self.moving_platform = scene.add(
# WheeledRobot(
# prim_path="/mock_robot",
# name="moving_platform",
# wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
# create_robot=True,
# usd_path=large_robot_asset_path,
# position=np.array([-3.28741, 10.79225, 0.03551]),
# orientation=np.array([0.5, 0.5,-0.5, -0.5]),
# )
# )
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
# position=np.array([-6.919, 7.764, 0.03551]), orientation=np.array([0.70711,0, 0,-0.70711]),
position=np.array([-9.76, 10.697, 0.03551]), orientation=np.array([0, 0,0 ,-1]),
)
)
# Suspension task assembly ---------------------------------------------
# adding UR10_suspension for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_suspension")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_suspension/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_suspension/ee_link", translate=0.1611, direction="x")
self.ur10_suspension = scene.add(
SingleManipulator(prim_path="/World/UR10_suspension", name="my_ur10_suspension", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_suspension for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_suspension")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_suspension/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_suspension/ee_link", translate=0, direction="x")
self.screw_ur10_suspension = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_suspension", name="my_screw_ur10_suspension", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.suspension_bringer = scene.add(
WheeledRobot(
prim_path="/suspension_bringer",
name="suspension_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-0.927, -1.334, 0.035]), orientation=np.array([0, 0, 0, -1]), # initial position
# position=np.array([3.19, -6.04631, 0.035]), orientation=np.array([0, 0, 0, -1]), # for part feeding
)
)
# Fuel task assembly --------------------------------------------------
# adding UR10_fuel for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_fuel")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_fuel/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_fuel/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_fuel/ee_link", translate=0.1611, direction="x")
self.ur10_fuel = scene.add(
SingleManipulator(prim_path="/World/UR10_fuel", name="my_ur10_fuel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.16324, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_fuel for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_fuel")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_fuel/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_fuel/ee_link", translate=0, direction="x")
self.screw_ur10_fuel = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_fuel", name="my_screw_ur10_fuel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.24592, -15.9399, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.fuel_bringer = scene.add(
WheeledRobot(
prim_path="/fuel_bringer",
name="fuel_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-0.8, -12.874, 0.035]), orientation=np.array([0, 0, 0, 1]), # initial position
# position=np.array([3.19, -17.511, 0.035]), orientation=np.array([0, 0, 0, 1]), # for part feeding
)
)
# battery task assembly --------------------------------------------------
# adding UR10_battery for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_battery")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_battery/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_battery/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_battery/ee_link", translate=0.1611, direction="x")
self.ur10_battery = scene.add(
SingleManipulator(prim_path="/World/UR10_battery", name="my_ur10_battery", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-16.55392, -16.32998, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_battery.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_battery for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_battery")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_battery/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_battery/ee_link", translate=0, direction="x")
self.screw_ur10_battery = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_battery", name="my_screw_ur10_battery", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-16.35174, -18.16947, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_battery.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.battery_bringer = scene.add(
WheeledRobot(
prim_path="/battery_bringer",
name="battery_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-18.36667, -15.53466, 0.035]), orientation=np.array([0.70711,0, 0,-0.70711]),
# position=np.array([-17.409, -25.38847, 0.035]), orientation=np.array([0.70711,0, 0,-0.70711]),
)
)
# trunk task assembly --------------------------------------------------
# adding UR10_trunk for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_trunk")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_trunk/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_trunk/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_trunk/ee_link", translate=0.1611, direction="x")
self.ur10_trunk = scene.add(
SingleManipulator(prim_path="/World/UR10_trunk", name="my_ur10_trunk", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-27.1031, 4.48605, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_trunk.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_trunk for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_trunk")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_trunk/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_trunk/ee_link", translate=0, direction="x")
self.screw_ur10_trunk = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_trunk", name="my_screw_ur10_trunk", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.29981, 6.46287+0.08474, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_trunk.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.trunk_bringer = scene.add(
WheeledRobot(
prim_path="/trunk_bringer",
name="trunk_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-30.518, 3.516, 0.035]),
orientation=np.array([1,0,0,0]),
)
)
# wheel task assembly --------------------------------------------------
# adding UR10_wheel for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_wheel")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_wheel/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_wheel/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_wheel/ee_link", translate=0, direction="x")
self.ur10_wheel = scene.add(
SingleManipulator(prim_path="/World/UR10_wheel", name="my_ur10_wheel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-15.8658, 4.89369, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_wheel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_wheel for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_wheel")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_wheel/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_wheel/ee_link", translate=0, direction="x")
self.screw_ur10_wheel = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_wheel", name="my_screw_ur10_wheel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.86269, 6.30393, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_wheel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_wheel_01 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_wheel_01")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_wheel_01/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_wheel_01/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_wheel_01/ee_link", translate=0, direction="x")
self.ur10_wheel_01 = scene.add(
SingleManipulator(prim_path="/World/UR10_wheel_01", name="my_ur10_wheel_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.92841, 4.88203, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_wheel_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_wheel_01 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_wheel_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_wheel_01/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_wheel_01/ee_link", translate=0, direction="x")
self.screw_ur10_wheel_01 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_wheel_01", name="my_screw_ur10_wheel_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-17.93068, 6.29611, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_wheel_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.wheel_bringer = scene.add(
WheeledRobot(
prim_path="/wheel_bringer",
name="wheel_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-19.211, 3.516, 0.035]),
orientation=np.array([1,0,0,0]),
)
)
# main and lower cover task assembly --------------------------------------------------
# adding UR10_main_cover for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_main_cover")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/Cover_Gripper/Cover_Gripper.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_main_cover/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_main_cover/ee_link", translate=0.1611, direction="x")
self.ur10_main_cover = scene.add(
SingleManipulator(prim_path="/World/UR10_main_cover", name="my_ur10_main_cover", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.73638-11.83808,-17.06779, 0.81965]), orientation=np.array([0.70711, 0, 0, -0.70711]), scale=np.array([1,1,1]))
)
self.ur10_main_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_lower_cover for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_lower_cover")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_lower_cover/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_lower_cover/ee_link", translate=0, direction="x")
self.ur10_lower_cover = scene.add(
SingleManipulator(prim_path="/World/UR10_lower_cover", name="my_ur10_lower_cover", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-26.05908, -16.25914, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.ur10_lower_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_lower_cover_01 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_lower_cover_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_lower_cover_01/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_lower_cover_01/ee_link", translate=0, direction="x")
self.ur10_lower_cover_01 = scene.add(
SingleManipulator(prim_path="/World/UR10_lower_cover_01", name="my_ur10_lower_cover_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-26.05908, -18.31912, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_lower_cover_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_lower_cover for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_lower_cover")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_lower_cover/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_lower_cover/ee_link", translate=0, direction="x")
self.screw_ur10_lower_cover = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_lower_cover", name="my_screw_ur10_lower_cover", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.48836, -16.25905, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.screw_ur10_lower_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_lower_cover_01 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_lower_cover_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_lower_cover_01/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_lower_cover_01/ee_link", translate=0, direction="x")
self.screw_ur10_lower_cover_01 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_lower_cover_01", name="my_screw_ur10_lower_cover_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.47893, -18.31682, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.screw_ur10_lower_cover_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# handle task assembly --------------------------------------------------
# adding UR10_handle for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_handle")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_handle/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_handle/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_handle/ee_link", translate=0, direction="x")
self.ur10_handle = scene.add(
SingleManipulator(prim_path="/World/UR10_handle", name="my_ur10_handle", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-28.50252, -7.19638, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_handle.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_handle for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_handle")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_handle/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_handle/ee_link", translate=0, direction="x")
self.screw_ur10_handle = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_handle", name="my_screw_ur10_handle", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-26.69603, -6.99305, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10_handle.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.handle_bringer = scene.add(
WheeledRobot(
prim_path="/handle_bringer",
name="handle_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-30.61162, -6.93058, 0.035]),
orientation=np.array([0.70711, 0, 0, -0.70711]),
)
)
# light task assembly --------------------------------------------------
# adding UR10_light for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_light")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10_light/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_light/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_light/ee_link", translate=0, direction="x")
self.ur10_light = scene.add(
SingleManipulator(prim_path="/World/UR10_light", name="my_ur10_light", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.83209, -6.55292, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_light.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_light for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_light")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_light/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_light/ee_link", translate=0, direction="x")
self.screw_ur10_light = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_light", name="my_screw_ur10_light", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-18.03193, -5.1195, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.screw_ur10_light.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
self.light_bringer = scene.add(
WheeledRobot(
prim_path="/light_bringer",
name="light_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-18.20414, -2.99376, 0.035]),
orientation=np.array([1,0,0,0]),
)
)
return
def get_observations(self):
# current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
current_eb_position_suspension, current_eb_orientation_suspension = self.suspension_bringer.get_world_pose()
current_joint_positions_ur10_suspension = self.ur10_suspension.get_joint_positions()
current_eb_position_fuel, current_eb_orientation_fuel = self.fuel_bringer.get_world_pose()
current_joint_positions_ur10_fuel = self.ur10_fuel.get_joint_positions()
current_eb_position_battery, current_eb_orientation_battery = self.battery_bringer.get_world_pose()
current_joint_positions_ur10_battery = self.ur10_battery.get_joint_positions()
current_eb_position_trunk, current_eb_orientation_trunk = self.trunk_bringer.get_world_pose()
current_joint_positions_ur10_trunk = self.ur10_trunk.get_joint_positions()
current_eb_position_wheel, current_eb_orientation_wheel = self.wheel_bringer.get_world_pose()
current_joint_positions_ur10_wheel = self.ur10_wheel.get_joint_positions()
current_joint_positions_ur10_wheel_01 = self.ur10_wheel_01.get_joint_positions()
# current_eb_position_lower_cover, current_eb_orientation_lower_cover = self.lower_cover_bringer.get_world_pose()
current_joint_positions_ur10_lower_cover = self.ur10_lower_cover.get_joint_positions()
current_joint_positions_ur10_main_cover = self.ur10_main_cover.get_joint_positions()
current_joint_positions_ur10_lower_cover_01 = self.ur10_lower_cover_01.get_joint_positions()
current_eb_position_handle, current_eb_orientation_handle = self.handle_bringer.get_world_pose()
current_joint_positions_ur10_handle = self.ur10_handle.get_joint_positions()
current_eb_position_light, current_eb_orientation_light = self.light_bringer.get_world_pose()
current_joint_positions_ur10_light = self.ur10_light.get_joint_positions()
observations= {
"task_event": self._task_event,
# self.moving_platform.name: {
# "position": current_mp_position,
# "orientation": current_mp_orientation,
# "goal_position": self.mp_goal_position
# },
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event,
self.suspension_bringer.name: {
"position": current_eb_position_suspension,
"orientation": current_eb_orientation_suspension,
"goal_position": self.eb_goal_position
},
self.ur10_suspension.name: {
"joint_positions": current_joint_positions_ur10_suspension,
},
self.screw_ur10_suspension.name: {
"joint_positions": current_joint_positions_ur10_suspension,
},
self.ur10_fuel.name: {
"joint_positions": current_joint_positions_ur10_fuel,
},
self.screw_ur10_fuel.name: {
"joint_positions": current_joint_positions_ur10_fuel,
},
self.ur10_battery.name: {
"joint_positions": current_joint_positions_ur10_battery,
},
self.screw_ur10_battery.name: {
"joint_positions": current_joint_positions_ur10_battery,
},
self.ur10_trunk.name: {
"joint_positions": current_joint_positions_ur10_trunk,
},
self.screw_ur10_trunk.name: {
"joint_positions": current_joint_positions_ur10_trunk,
},
self.ur10_wheel.name: {
"joint_positions": current_joint_positions_ur10_wheel,
},
self.screw_ur10_wheel.name: {
"joint_positions": current_joint_positions_ur10_wheel,
},
self.ur10_wheel_01.name: {
"joint_positions": current_joint_positions_ur10_wheel_01,
},
self.screw_ur10_wheel_01.name: {
"joint_positions": current_joint_positions_ur10_wheel_01,
},
self.ur10_lower_cover.name: {
"joint_positions": current_joint_positions_ur10_lower_cover,
},
self.screw_ur10_lower_cover.name: {
"joint_positions": current_joint_positions_ur10_lower_cover,
},
self.ur10_lower_cover_01.name: {
"joint_positions": current_joint_positions_ur10_lower_cover_01,
},
self.screw_ur10_lower_cover_01.name: {
"joint_positions": current_joint_positions_ur10_lower_cover_01,
},
self.ur10_main_cover.name: {
"joint_positions": current_joint_positions_ur10_main_cover,
},
self.ur10_handle.name: {
"joint_positions": current_joint_positions_ur10_handle,
},
self.screw_ur10_handle.name: {
"joint_positions": current_joint_positions_ur10_handle,
},
self.ur10_light.name: {
"joint_positions": current_joint_positions_ur10_light,
},
self.screw_ur10_light.name: {
"joint_positions": current_joint_positions_ur10_light,
}
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
# params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
# suspension task
params_representation["arm_name_suspension"] = {"value": self.ur10_suspension.name, "modifiable": False}
params_representation["screw_arm_suspension"] = {"value": self.screw_ur10_suspension.name, "modifiable": False}
params_representation["eb_name_suspension"] = {"value": self.suspension_bringer.name, "modifiable": False}
# fuel task
params_representation["arm_name_fuel"] = {"value": self.ur10_fuel.name, "modifiable": False}
params_representation["screw_arm_fuel"] = {"value": self.screw_ur10_fuel.name, "modifiable": False}
params_representation["eb_name_fuel"] = {"value": self.fuel_bringer.name, "modifiable": False}
# battery task
params_representation["arm_name_battery"] = {"value": self.ur10_battery.name, "modifiable": False}
params_representation["screw_arm_battery"] = {"value": self.screw_ur10_battery.name, "modifiable": False}
params_representation["eb_name_battery"] = {"value": self.battery_bringer.name, "modifiable": False}
# trunk task
params_representation["arm_name_trunk"] = {"value": self.ur10_trunk.name, "modifiable": False}
params_representation["screw_arm_trunk"] = {"value": self.screw_ur10_trunk.name, "modifiable": False}
params_representation["eb_name_trunk"] = {"value": self.trunk_bringer.name, "modifiable": False}
# wheel task
params_representation["arm_name_wheel"] = {"value": self.ur10_wheel.name, "modifiable": False}
params_representation["screw_arm_wheel"] = {"value": self.screw_ur10_wheel.name, "modifiable": False}
params_representation["arm_name_wheel_01"] = {"value": self.ur10_wheel_01.name, "modifiable": False}
params_representation["screw_arm_wheel_01"] = {"value": self.screw_ur10_wheel_01.name, "modifiable": False}
params_representation["eb_name_wheel"] = {"value": self.wheel_bringer.name, "modifiable": False}
# lower_cover task
params_representation["arm_name_main_cover"] = {"value": self.ur10_main_cover.name, "modifiable": False}
params_representation["arm_name_lower_cover"] = {"value": self.ur10_lower_cover.name, "modifiable": False}
params_representation["screw_arm_lower_cover"] = {"value": self.screw_ur10_lower_cover.name, "modifiable": False}
params_representation["arm_name_lower_cover_01"] = {"value": self.ur10_lower_cover_01.name, "modifiable": False}
params_representation["screw_arm_lower_cover_01"] = {"value": self.screw_ur10_lower_cover_01.name, "modifiable": False}
# params_representation["eb_name_lower_cover"] = {"value": self.lower_cover_bringer.name, "modifiable": False}
# handle task
params_representation["arm_name_handle"] = {"value": self.ur10_handle.name, "modifiable": False}
params_representation["screw_arm_handle"] = {"value": self.screw_ur10_handle.name, "modifiable": False}
params_representation["eb_name_handle"] = {"value": self.handle_bringer.name, "modifiable": False}
# front light task
params_representation["arm_name_light"] = {"value": self.ur10_light.name, "modifiable": False}
params_representation["screw_arm_light"] = {"value": self.screw_ur10_light.name, "modifiable": False}
params_representation["eb_name_light"] = {"value": self.light_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
# current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
return
def post_reset(self):
self._task_event = 0
return | 45,638 | Python | 67.941088 | 441 | 0.63079 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/ATV_task.py | from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class ATVTask(BaseTask):
def __init__(self, name, offset=None, mp_name=None, mp_pos=None, mp_ori=None):
super().__init__(name=name, offset=offset)
self.mp_name = mp_name
self.mp_pos = mp_pos
self.mp_ori = mp_ori
self._task_event = 0
self.task_done = [False]*1000
self._bool_event = 0
self.delay=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd"
# large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd"
# large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_multiple_mp/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd"
# add floor
# add moving platform
if not self.mp_name:
_,num = self.name.split("_")
self.moving_platform = scene.add(
WheeledRobot(
prim_path=f"/mock_robot_{num}",
name=f"moving_platform_{num}",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
# position=np.array([2.5, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position
position=np.array([1.622+int(num)*2, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position
# position=np.array([-4.78521, -10.1757+int(num)*2,0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before fuel cell
# position=np.array([-9.60803, -17.35671+int(num)*2, 0.03551]), orientation=np.array([0, 0, 0, 1]),# initial before battery cell
# position=np.array([-32.5-int(num)*2, 3.516, 0.03551]), orientation=np.array([0.70711, 0, 0, 0.70711]),# initial before trunk cell
# position=np.array([-19.86208-int(num)*2, 9.65617, 0.03551]), orientation=np.array([1, 0, 0, 0]),# initial before wheel cell
# position=np.array([-20.84299, 6.46358, 0.03551]), orientation=np.array([-0.70711, 0, 0, -0.70711]),# initial before wheel cell
# position=np.array([-21.13755, -15.54504+int(num)*2, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before cover cell
# position=np.array([-27.52625-int(num)*2, -7.11835, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before light cell
)
)
else:
pf_name,num = self.mp_name.rsplit("_", 1)
self.moving_platform = scene.add(
WheeledRobot(
prim_path=f"/{pf_name}",
name=f"part_feeder_{num}",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=self.mp_pos, orientation=self.mp_ori, # start position
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
observations= {
self.name+"_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation
}
}
return observations
def get_params(self):
params_representation = {}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
return params_representation
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
return
def post_reset(self):
self._task_event = 0
return | 5,932 | Python | 49.279661 | 266 | 0.645819 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/pf_functions.py | import numpy as np
from omni.isaac.examples.hello_world.util import Utils
import asyncio
import rospy
from geometry_msgs.msg import PoseStamped
import rosgraph
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from math import pi
class PartFeederFunctions:
def __init__(self) -> None:
self.util = Utils()
self.isDone = [False]*1000
self.bool_done = [False]*1000
self.delay=0
self.right_side = self.left_side = False
self.world = None
self.id = None
# visited array
# meaning of its values:
# False - not visited
# True - visiting or visited
self.visited = {"engine":False, "trunk":False, "wheels":False, "cover":False, "handle":False}
# Engine cell set up ----------------------------------------------------------------------------
# bring in moving platforms
self.moving_platform = None
self.my_controller = None
self.screw_my_controller = None
self.articulation_controller = None
self.screw_articulation_controller = None
# Suspension cell set up ------------------------------------------------------------------------
self.my_controller_suspension = None
self.screw_my_controller_suspension = None
self.articulation_controller_suspension = None
self.screw_articulation_controller_suspension = None
# Fuel cell set up ---------------------------------------------------------------------------------
self.my_controller_fuel = None
self.screw_my_controller_fuel = None
self.articulation_controller_fuel = None
self.screw_articulation_controller_fuel = None
# battery cell set up ---------------------------------------------------------------------------------
self.my_controller_battery = None
self.screw_my_controller_battery = None
self.articulation_controller_battery = None
self.screw_articulation_controller_battery = None
# trunk cell set up ---------------------------------------------------------------------------------
self.my_controller_trunk = None
self.screw_my_controller_trunk = None
self.articulation_controller_trunk = None
self.screw_articulation_controller_trunk = None
# wheel cell set up ---------------------------------------------------------------------------------
self.my_controller_wheel = None
self.screw_my_controller_wheel = None
self.articulation_controller_wheel = None
self.screw_articulation_controller_wheel = None
self.my_controller_wheel_01 = None
self.screw_my_controller_wheel_01 = None
self.articulation_controller_wheel_01 = None
self.screw_articulation_controller_wheel_01 = None
# lower_cover cell set up ---------------------------------------------------------------------------------
self.my_controller_lower_cover = None
self.screw_my_controller_lower_cover = None
self.articulation_controller_lower_cover = None
self.screw_articulation_controller_lower_cover = None
self.my_controller_lower_cover_01 = None
self.screw_my_controller_lower_cover_01 = None
self.articulation_controller_lower_cover_01 = None
self.screw_articulation_controller_lower_cover_01 = None
self.my_controller_main_cover = None
self.articulation_controller_main_cover = None
# handle cell set up ---------------------------------------------------------------------------------
self.my_controller_handle = None
self.screw_my_controller_handle = None
self.articulation_controller_handle = None
self.screw_articulation_controller_handle = None
# light cell set up --------------------------------------------------------------------------------
self.my_controller_light = None
self.screw_my_controller_light = None
self.articulation_controller_light = None
self.screw_articulation_controller_light = None
# Util declarations ----------------------------------------------------------------------------------
def declare_utils(self):
self.util.world = self.world
self.util.id = self.id
# Engine cell set up ----------------------------------------------------------------------------
# bring in moving platforms
self.util.moving_platform = self.moving_platform
self.util.my_controller = self.my_controller
self.util.screw_my_controller = self.screw_my_controller
self.util.articulation_controller = self.articulation_controller
self.util.screw_articulation_controller = self.screw_articulation_controller
# Suspension cell set up ------------------------------------------------------------------------
self.util.my_controller_suspension = self.my_controller_suspension
self.util.screw_my_controller_suspension = self.screw_my_controller_suspension
self.util.articulation_controller_suspension = self.articulation_controller_suspension
self.util.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension
# Fuel cell set up ---------------------------------------------------------------------------------
self.util.my_controller_fuel = self.my_controller_fuel
self.util.screw_my_controller_fuel = self.screw_my_controller_fuel
self.util.articulation_controller_fuel = self.articulation_controller_fuel
self.util.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel
# battery cell set up ---------------------------------------------------------------------------------
self.util.my_controller_battery = self.my_controller_battery
self.util.screw_my_controller_battery = self.screw_my_controller_battery
self.util.articulation_controller_battery = self.articulation_controller_battery
self.util.screw_articulation_controller_battery = self.screw_articulation_controller_battery
# trunk cell set up ---------------------------------------------------------------------------------
self.util.my_controller_trunk = self.my_controller_trunk
self.util.screw_my_controller_trunk = self.screw_my_controller_trunk
self.util.articulation_controller_trunk = self.articulation_controller_trunk
self.util.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk
# wheel cell set up ---------------------------------------------------------------------------------
self.util.my_controller_wheel = self.my_controller_wheel
self.util.screw_my_controller_wheel = self.screw_my_controller_wheel
self.util.articulation_controller_wheel = self.articulation_controller_wheel
self.util.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel
self.util.my_controller_wheel_01 = self.my_controller_wheel_01
self.util.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01
self.util.articulation_controller_wheel_01 = self.articulation_controller_wheel_01
self.util.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01
# lower_cover cell set up ---------------------------------------------------------------------------------
self.util.my_controller_lower_cover = self.my_controller_lower_cover
self.util.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover
self.util.articulation_controller_lower_cover = self.articulation_controller_lower_cover
self.util.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover
self.util.my_controller_lower_cover_01 = self.my_controller_lower_cover_01
self.util.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01
self.util.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01
self.util.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01
self.util.my_controller_main_cover = self.my_controller_main_cover
self.util.articulation_controller_main_cover = self.articulation_controller_main_cover
# handle cell set up ---------------------------------------------------------------------------------
self.util.my_controller_handle = self.my_controller_handle
self.util.screw_my_controller_handle = self.screw_my_controller_handle
self.util.articulation_controller_handle = self.articulation_controller_handle
self.util.screw_articulation_controller_handle = self.screw_articulation_controller_handle
# light cell set up --------------------------------------------------------------------------------
self.util.my_controller_light = self.my_controller_light
self.util.screw_my_controller_light = self.screw_my_controller_light
self.util.articulation_controller_light = self.articulation_controller_light
self.util.screw_articulation_controller_light = self.screw_articulation_controller_light
# if self.id%2!=0:
# self.color_path = ["main_cover","main_cover_orange"]
# else:
# self.color_path = ["main_cover_orange","main_cover"]
def update_color(self):
if self.id%2!=0:
self.color_path = ["main_cover","main_cover_orange"]
else:
self.color_path = ["main_cover_orange","main_cover"]
def spawn_new_parts(self):
if self.id ==2:
# print(not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"))
pass
if self.id!=0:
# Engine cell set up ----------------------------------------------------------------------------
# if not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/engine_{self.id}"):
if not self.isDone[0] and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"):
self.isDone[0] = True
self.util.add_part_custom("World/Environment","engine_no_rigid", f"engine_small_{self.id}", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0]))
# print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned engine "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n")
# Suspension cell set up ------------------------------------------------------------------------
# if not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/xFSuspensionBack_{self.id}"):
if not self.isDone[1] and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xFSuspensionBack_{self.id-1}"):
self.isDone[1] = True
self.util.add_part_custom("World/Environment","FSuspensionBack", f"FSuspensionBack_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
# print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned suspension "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n")
# Fuel cell set up ---------------------------------------------------------------------------------
if not self.isDone[2] and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xfuel_{self.id-1}"):
self.isDone[2] = True
if self.id%2==0:
self.util.add_part_custom("World/Environment","fuel", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
else:
self.util.add_part_custom("World/Environment","fuel_yellow", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
# battery cell set up ---------------------------------------------------------------------------------
if not self.isDone[3] and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xbattery_{self.id-1}"):
self.isDone[3] = True
self.util.add_part_custom("World/Environment","battery", f"battery_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
# trunk cell set up ---------------------------------------------------------------------------------
if not self.isDone[4] and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xtrunk_{self.id-1}"):
self.isDone[4] = True
self.util.add_part_custom("World/Environment","trunk", f"trunk_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711]))
# wheel cell set up ---------------------------------------------------------------------------------
if not self.isDone[5] and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xwheel_02_{self.id-1}"):
self.isDone[5] = True
self.util.add_part_custom("World/Environment","FWheel", f"wheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
# lower_cover cell set up ---------------------------------------------------------------------------------
if not self.isDone[6] and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id}") and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xmain_cover_{self.id-1}"):
self.isDone[6] = True
self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
if self.id%2==0:
self.util.add_part_custom("World/Environment","main_cover", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
else:
self.util.add_part_custom("World/Environment","main_cover_orange", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
# handle cell set up ---------------------------------------------------------------------------------
if not self.isDone[7] and not self.util.check_prim_exists(f"World/Environment/handle_{self.id}") and not self.util.check_prim_exists(f"World/Environment/handle_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xhandle_{self.id-1}"):
self.isDone[7] = True
self.util.add_part_custom("World/Environment","handle", f"handle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0]))
# light cell set up ---------------------------------------------------------------------------------
if not self.isDone[8] and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id}") and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xlight_{self.id-1}"):
self.isDone[8] = True
self.util.add_part_custom("World/Environment","FFrontLightAssembly", f"light_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
# ---------------------------------------------------- part feeder functions ------------------------------------------------------------
# -----------------------------engine---------------------------------
def move_pf_engine(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-0.8, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait",[]],
["translate", [13.65, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]],
["wait",[]],
["translate", [-4.947, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711,0,0,-0.70711]), 0.0042, False]],
["wait",[]],
["translate", [10.042, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
["wait",[]],
["translate", [-6.28358, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711,0,0,-0.70711]), 0.0042, False]],
["wait",[]],
["translate", [7.1069, 1, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def place_engine(self):
print("doing motion plan")
motion_plan = [{"index":0, "position": np.array([0.16871, 0.73405+0.16, 0.08489]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-5.71975, 7.14096, 0.32698]), "goal_orientation":np.array([0,0,0,-1])},
{"index":1, "position": np.array([0.16871, 1.09027+0.16, 0.08489]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.07597, 7.14096, 0.32698]), "goal_orientation":np.array([0,0,0,-1])},
{"index":2, "position": np.array([0.16871, 1.09027+0.16, 0.35359]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.07597, 7.14096, 0.59568]), "goal_orientation":np.array([0,0,0,-1])},
{"index":3, "position": np.array([0.71113, 0.57884, 0.65168]), "orientation": np.array([0.94313, 0, 0, 0.33242]), "goal_position":np.array([-5.46465, 7.557, 0.89377]), "goal_orientation":np.array([0.43184, 0, 0, 0.90195])},# -5.56465, 7.68341, 0.89377
{"index":4, "position": np.array([0.97986+0.16, -0.22219, 0.54922]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.95221, 0.79131]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":5, "position": np.array([0.97986+0.16, -0.22219, 0.23754]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.95221, 0.47963]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":6, "position": np.array([0.60234+0.16, -0.22219, 0.23754]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.57469, 0.47963]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":7, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.67382, 7.1364, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan)
if self.util.motion_task_counter==2 and not self.bool_done[self.id*10]:
self.bool_done[self.id*10] = True
self.util.remove_part("pf_engine/platform", f"pf_engine_{self.id}")
self.util.add_part_custom("World/UR10/ee_link","engine_no_rigid", f"pf_qengine_small_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.19536, 0.10279, 0.11708]), np.array([0.70177, -0.08674, -0.08674, -0.70177]))
if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+1]:
self.bool_done[self.id*10+1] = True
self.util.remove_part("World/UR10/ee_link", f"pf_qengine_small_{self.id}")
self.util.add_part_custom(f"World/Environment","engine_no_rigid", f"engine_small_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
print("Done placing engine")
return True
return False
def move_pf_engine_back(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [9.65, 1, False]],
["wait", []],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
["wait", []],
["translate", [-4.947, 0, False]],
["wait", []],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait", []],
["translate", [12.8358, 1, False]],
["wait", []],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
["wait", []],
["translate", [-1.22, 0, False]],
["wait", []],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait", []],
["translate", [17.63327, 1, False]],
["wait", []],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
["wait", []],
["translate", [8.61707, 0, False]],
["wait", []]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.util.add_part_custom("pf_engine/platform","engine_no_rigid", "pf_engine"+f"_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.07038, 0.03535, 0.42908]), np.array([0, 0.12268, 0, 0.99245]))
self.id+=1
return True
return False
# -----------------------------trunk---------------------------------
def move_pf_trunk(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-27.271, 0, False]],
["wait",[]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def place_trunk(self):
motion_plan = [{"index":0, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.854, -0.22549, 0.56746-0.16]), "orientation": np.array([0.26914, 0.65388, 0.26914, -0.65388]), "goal_position":np.array([-27.95709, 4.7115, 0.80948]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([0.28794, -0.72111, 0.34571+0.2-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": np.array([0.28794, -0.72111, 0.34571-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":4, "position": np.array([0.28794, -0.72111, 0.34571+0.2-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":5, "position": np.array([0.854, -0.22549, 0.56746-0.16]), "orientation": np.array([0.26914, 0.65388, 0.26914, -0.65388]), "goal_position":np.array([-27.95709, 4.7115, 0.80948]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":6, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":7, "position": np.array([0.95548, 0.21169, 0.45316-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":8, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.2673, 3.79761, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan, "_trunk")
if self.util.motion_task_counter==4 and not self.bool_done[self.id*10]:
self.bool_done[self.id*10] = True
self.util.remove_part("pf_trunk/platform", f"pf_trunk_{self.id}")
self.util.add_part_custom("World/UR10_trunk/ee_link","trunk", f"pf_qtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28167, -0.21084, -0.00861]), np.array([0.70711, 0, 0, 0.70711]))
if self.util.motion_task_counter==8 and not self.bool_done[self.id*10+1]:
self.bool_done[self.id*10+1] = True
self.util.remove_part("World/UR10_trunk/ee_link", f"pf_qtrunk_{self.id}")
self.util.add_part_custom(f"World/Environment","trunk", f"trunk_02_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711]))
if self.util.motion_task_counter==10:
self.util.motion_task_counter=0
print("Done placing trunk")
return True
return False
def move_pf_trunk_back(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-42.76, 0, False]],
["wait", []]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.util.add_part_custom("pf_trunk/platform","trunk", f"pf_trunk_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.1389, -0.2191, 0.28512]), np.array([0.5, 0.5, 0.5, 0.5]))
self.id+=1
return True
return False
# -----------------------------wheels---------------------------------
def move_pf_wheels(self):
# return True
print(self.util.path_plan_counter)
path_plan = [["translate", [-16.85, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait", []],
["translate", [5.00712, 1, False]],
["wait", []],
["rotate", [np.array([1,0,0,0]), 0.0042, False]],]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def place_wheels_1eft(self):
tire_offset = 0.1462+0.2
motion_plan = [
{"index":0, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([0.69558, -0.10273, 0.42205+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.69558, -0.10273, 0.42205-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.69558, -0.10273, 0.42205+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":5, "position": np.array([-0.87307, -0.01687, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([-0.87307, -0.01687, 0.436-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":7, "position": np.array([-0.87307, -0.01687, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
]
self.util.move_ur10_extra(motion_plan, "_wheel")
if self.util.motion_task_counterl==3 and not self.bool_done[self.id*10]:
self.bool_done[self.id*10] = True
self.util.remove_part("pf_wheels/platform", f"pf_wheels_1_{self.id}")
self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"pf_qwheels_1_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counterl==7 and not self.bool_done[self.id*10+1]:
self.bool_done[self.id*10+1] = True
self.util.remove_part("World/UR10_wheel/ee_link", f"pf_qwheels_1_{self.id}")
self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_01_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
if self.util.motion_task_counterl==8:
self.util.motion_task_counterl=0
print("Done placing wheel")
return True
return False
def place_wheels_1eft_01(self):
tire_offset = 0.52214
motion_plan = [
{"index":0, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":1, "position": np.array([0.69558, -0.10273, 0.30352+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.69558, -0.10273, 0.30352-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.69558, -0.10273, 0.30352+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":5, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":7, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
]
self.util.move_ur10_extra(motion_plan, "_wheel")
if self.util.motion_task_counterl==3 and not self.bool_done[self.id*10+2]:
self.bool_done[self.id*10+2] = True
self.util.remove_part("pf_wheels/platform", f"pf_wheels_3_{self.id}")
self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"pf_qwheels_2_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counterl==7 and not self.bool_done[self.id*10+3]:
self.bool_done[self.id*10+3] = True
self.util.remove_part("World/UR10_wheel/ee_link", f"pf_qwheels_2_{self.id}")
self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_02_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
if self.util.motion_task_counterl==9:
self.util.motion_task_counterl=0
print("Done placing wheel")
return True
return False
def place_wheels_right(self):
tire_offset = 0.1462+0.2
motion_plan = [
{"index":0, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([-0.89369, -0.11909, 0.44644+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":2, "position": np.array([-0.89369, -0.11909, 0.44644-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":3, "position": np.array([-0.89369, -0.11909, 0.44644+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":5, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":6, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":7, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
]
self.util.move_ur10(motion_plan, "_wheel_01")
if self.util.motion_task_counter==3 and not self.bool_done[self.id*10+4]:
self.bool_done[self.id*10+4] = True
self.util.remove_part("pf_wheels/platform", f"pf_wheels_2_{self.id}")
self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"pf_qwheels_3_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counter==7 and not self.bool_done[self.id*10+5]:
self.bool_done[self.id*10+5] = True
self.util.remove_part("World/UR10_wheel_01/ee_link", f"pf_qwheels_3_{self.id}")
self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_03_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
print("Done placing wheel")
return True
return False
def place_wheels_right_01(self):
tire_offset = 0.1462+0.2
motion_plan = [
{"index":0, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":1, "position": np.array([-0.89369, -0.11909, 0.30402+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":2, "position": np.array([-0.89369, -0.11909, 0.30402-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":3, "position": np.array([-0.89369, -0.11909, 0.30402+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":4, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":4, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":5, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":6, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":7, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}
]
self.util.move_ur10(motion_plan, "_wheel_01")
if self.util.motion_task_counter==3 and not self.bool_done[self.id*10+6]:
self.bool_done[self.id*10+6] = True
self.util.remove_part("pf_wheels/platform", f"pf_wheels_4_{self.id}")
self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"pf_qwheels_4_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+7]:
self.bool_done[self.id*10+7] = True
self.util.remove_part("World/UR10_wheel_01/ee_link", f"pf_qwheels_4_{self.id}")
self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_04_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
print("Done placing wheel")
return True
return False
def place_wheels(self):
if not self.right_side:
self.right_side = self.place_wheels_right()
if not self.left_side:
self.left_side = self.place_wheels_1eft()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def place_wheels_01(self):
if not self.right_side:
self.right_side = self.place_wheels_right_01()
if not self.left_side:
self.left_side = self.place_wheels_1eft_01()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def move_pf_wheels_back(self):
print(self.util.path_plan_counter)
path_plan = [
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait", []],
["translate", [17.56147, 1, False]],
["wait", []],
["rotate", [np.array([1,0,0,0]), 0.0042, False]],
["wait", []],
["translate", [-42.71662, 0, False]],
["wait", []]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_1_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5]))
self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_2_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5]))
self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_3_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5]))
self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_4_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5]))
self.id+=1
return True
return False
# -----------------------------cover---------------------------------
def move_pf_main_cover(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-17.18, 1, False]],
["wait",[]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.update_color()
return True
return False
def place_main_cover(self):
motion_plan = [
{"index":0, "position": np.array([0.11095-0.11, 0.94, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.11095-0.11, 0.94, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.11095-0.11, 0.94, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":3, "position": np.array([0.11095-0.11, 0.94, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":4, "position": np.array([0.11095-0.11, 0.94, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":5, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":6, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.09]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.09]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":7, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.05]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.05]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":8, "position": np.array([0.06726, 0.93507, -0.1155-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":9, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.05]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.05]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":10, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.09]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.09]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":11, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":12, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":13, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":14, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{'index': 15, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])},
{'index': 16, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])},
{'index': 17, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])},
{'index': 18, 'position': np.array([-1.09352, -0.27789, 0.03772]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.01392]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])},
{'index': 19, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])},
{'index': 20, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])},
{'index': 21, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])},
{"index": 22, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index": 23, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}]
# {'index': 23, 'position': np.array([0.16394, 0.68799, 0.44663]), 'orientation': np.array([ 0.70711, 0, 0.70711, 0]), 'goal_position': np.array([-28.88652, -17.23535, 1.42725]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}]
self.util.move_ur10(motion_plan, "_main_cover")
if self.util.motion_task_counter==9 and not self.bool_done[self.id*10]:
self.bool_done[self.id*10] = True
self.util.remove_part("pf_main_cover/platform", f"pf_main_cover_{self.id}")
self.util.add_part_custom("World/UR10_main_cover/ee_link",self.color_path[0], f"pf_qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5]))
if self.util.motion_task_counter==19 and not self.bool_done[self.id*10+1]:
self.bool_done[self.id*10+1] = True
self.util.remove_part("World/UR10_main_cover/ee_link", f"pf_qmain_cover_{self.id}")
self.util.add_part_custom("World/Environment",self.color_path[0], f"main_cover_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
if self.util.motion_task_counter==24:
self.util.motion_task_counter=0
print("Done placing main_cover")
return True
return False
def move_pf_main_cover_back(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-31.2, 1, False]],
["wait", []]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.util.add_part_custom("pf_main_cover/platform",self.color_path[1], f"pf_main_cover_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.74446, -0.26918, -0.03119]), np.array([0, 0, -0.70711, -0.70711]))
self.id+=1
return True
return False
# -----------------------------handle---------------------------------
def move_pf_handle(self):
print(self.util.path_plan_counter)
path_plan = [
# ["translate", [-32.52, 0, False]],
# ["wait",[]],
# ["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]],
# ["wait", []],
# ["translate", [-7.93, 1, False]],
# ["wait", []],
# ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
# ["wait", []],
["translate", [-28.661, 0, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def place_handle(self):
motion_plan = [{"index":0, "position": np.array([0.15669, 0.84626, 0.19321-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.15669, 0.84626, 0.19321-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.15669, 0.84626, 0.19321-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.63197, 0.53467, 0.5295-0.16]), "orientation": np.array([0.67393, -0.21407, 0.67393, 0.21407]), "goal_position":np.array([-29.13451, -7.73107, 0.76958]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":4, "position": np.array([0.83727, -0.35853, 0.3259-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":5, "position": np.array([0.83727, -0.35853, 0.3259-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":6, "position": np.array([0.83727, -0.35853, 0.3259-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.util.move_ur10(motion_plan, "_handle")
if self.util.motion_task_counter==2 and not self.bool_done[self.id*10]:
self.bool_done[self.id*10] = True
self.util.remove_part("pf_handle/platform", f"pf_handle_{self.id}")
self.util.add_part_custom("World/UR10_handle/ee_link","handle", f"pf_qhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.5218, 0.42317, 0.36311]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+1]:
self.bool_done[self.id*10+1] = True
self.util.remove_part("World/UR10_handle/ee_link", f"pf_qhandle_{self.id}")
self.util.add_part_custom(f"World/Environment","handle", f"handle_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
print("Done placing handle")
return True
return False
def move_pf_handle_back(self):
print(self.util.path_plan_counter)
path_plan = [
# ["translate", [-32.52, 0, False]],
# ["wait",[]],
# ["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]],
# ["wait", []],
# ["translate", [-5.63293, 1, False]],
# ["wait", []],
# ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
# ["wait", []],
["translate", [-42.77298, 0, False]],
["wait", []]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.util.add_part_custom("pf_handle/platform","handle", f"pf_handle_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.4248, 0.46934, 0.94076]), np.array([0, 1, 0, 0]))
self.id+=1
return True
return False | 60,249 | Python | 74.218477 | 307 | 0.546349 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/executor_functions.py | import numpy as np
from omni.isaac.examples.hello_world.util import Utils
import asyncio
import rospy
from geometry_msgs.msg import PoseStamped
import rosgraph
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from math import pi
class ExecutorFunctions:
def __init__(self) -> None:
self.util = Utils()
self.isDone = [False]*1000
self.bool_done = [False]*1000
self.delay=0
self.right_side = self.left_side = False
# disassembly counter
self.disassembly_event=0
self.world = None
self.id = None
# non part feeder parts
self.suspension = None
self.battery = None
self.fuel = None
self.light = None
self.lower_cover = None
# visited array
# meaning of its values:
# False - not visited
# True - visiting or visited
self.visited = {"engine":False, "trunk":False, "wheels":False, "cover":False, "handle":False}
# Engine cell set up ----------------------------------------------------------------------------
# bring in moving platforms
self.moving_platform = None
self.my_controller = None
self.screw_my_controller = None
self.articulation_controller = None
self.screw_articulation_controller = None
# Suspension cell set up ------------------------------------------------------------------------
self.my_controller_suspension = None
self.screw_my_controller_suspension = None
self.articulation_controller_suspension = None
self.screw_articulation_controller_suspension = None
# Fuel cell set up ---------------------------------------------------------------------------------
self.my_controller_fuel = None
self.screw_my_controller_fuel = None
self.articulation_controller_fuel = None
self.screw_articulation_controller_fuel = None
# battery cell set up ---------------------------------------------------------------------------------
self.my_controller_battery = None
self.screw_my_controller_battery = None
self.articulation_controller_battery = None
self.screw_articulation_controller_battery = None
# trunk cell set up ---------------------------------------------------------------------------------
self.my_controller_trunk = None
self.screw_my_controller_trunk = None
self.articulation_controller_trunk = None
self.screw_articulation_controller_trunk = None
# wheel cell set up ---------------------------------------------------------------------------------
self.my_controller_wheel = None
self.screw_my_controller_wheel = None
self.articulation_controller_wheel = None
self.screw_articulation_controller_wheel = None
self.my_controller_wheel_01 = None
self.screw_my_controller_wheel_01 = None
self.articulation_controller_wheel_01 = None
self.screw_articulation_controller_wheel_01 = None
# lower_cover cell set up ---------------------------------------------------------------------------------
self.my_controller_lower_cover = None
self.screw_my_controller_lower_cover = None
self.articulation_controller_lower_cover = None
self.screw_articulation_controller_lower_cover = None
self.my_controller_lower_cover_01 = None
self.screw_my_controller_lower_cover_01 = None
self.articulation_controller_lower_cover_01 = None
self.screw_articulation_controller_lower_cover_01 = None
self.my_controller_main_cover = None
self.articulation_controller_main_cover = None
# handle cell set up ---------------------------------------------------------------------------------
self.my_controller_handle = None
self.screw_my_controller_handle = None
self.articulation_controller_handle = None
self.screw_articulation_controller_handle = None
# light cell set up --------------------------------------------------------------------------------
self.my_controller_light = None
self.screw_my_controller_light = None
self.articulation_controller_light = None
self.screw_articulation_controller_light = None
# self._goal_pub = rospy.Publisher(f"/mp{self.id+1}/move_base_simple/goal", PoseStamped, queue_size=1)
# self._xy_goal_tolerance = 0.25
# self._yaw_goal_tolerance = 0.05
# Util declarations ----------------------------------------------------------------------------------
def declare_utils(self):
self.util.world = self.world
self.util.id = self.id
# Engine cell set up ----------------------------------------------------------------------------
# bring in moving platforms
self.util.moving_platform = self.moving_platform
self.util.my_controller = self.my_controller
self.util.screw_my_controller = self.screw_my_controller
self.util.articulation_controller = self.articulation_controller
self.util.screw_articulation_controller = self.screw_articulation_controller
# Suspension cell set up ------------------------------------------------------------------------
self.util.my_controller_suspension = self.my_controller_suspension
self.util.screw_my_controller_suspension = self.screw_my_controller_suspension
self.util.articulation_controller_suspension = self.articulation_controller_suspension
self.util.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension
# Fuel cell set up ---------------------------------------------------------------------------------
self.util.my_controller_fuel = self.my_controller_fuel
self.util.screw_my_controller_fuel = self.screw_my_controller_fuel
self.util.articulation_controller_fuel = self.articulation_controller_fuel
self.util.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel
# battery cell set up ---------------------------------------------------------------------------------
self.util.my_controller_battery = self.my_controller_battery
self.util.screw_my_controller_battery = self.screw_my_controller_battery
self.util.articulation_controller_battery = self.articulation_controller_battery
self.util.screw_articulation_controller_battery = self.screw_articulation_controller_battery
# trunk cell set up ---------------------------------------------------------------------------------
self.util.my_controller_trunk = self.my_controller_trunk
self.util.screw_my_controller_trunk = self.screw_my_controller_trunk
self.util.articulation_controller_trunk = self.articulation_controller_trunk
self.util.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk
# wheel cell set up ---------------------------------------------------------------------------------
self.util.my_controller_wheel = self.my_controller_wheel
self.util.screw_my_controller_wheel = self.screw_my_controller_wheel
self.util.articulation_controller_wheel = self.articulation_controller_wheel
self.util.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel
self.util.my_controller_wheel_01 = self.my_controller_wheel_01
self.util.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01
self.util.articulation_controller_wheel_01 = self.articulation_controller_wheel_01
self.util.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01
# lower_cover cell set up ---------------------------------------------------------------------------------
self.util.my_controller_lower_cover = self.my_controller_lower_cover
self.util.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover
self.util.articulation_controller_lower_cover = self.articulation_controller_lower_cover
self.util.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover
self.util.my_controller_lower_cover_01 = self.my_controller_lower_cover_01
self.util.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01
self.util.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01
self.util.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01
self.util.my_controller_main_cover = self.my_controller_main_cover
self.util.articulation_controller_main_cover = self.articulation_controller_main_cover
# handle cell set up ---------------------------------------------------------------------------------
self.util.my_controller_handle = self.my_controller_handle
self.util.screw_my_controller_handle = self.screw_my_controller_handle
self.util.articulation_controller_handle = self.articulation_controller_handle
self.util.screw_articulation_controller_handle = self.screw_articulation_controller_handle
# light cell set up --------------------------------------------------------------------------------
self.util.my_controller_light = self.my_controller_light
self.util.screw_my_controller_light = self.screw_my_controller_light
self.util.articulation_controller_light = self.articulation_controller_light
self.util.screw_articulation_controller_light = self.screw_articulation_controller_light
def spawn_new_parts(self):
if self.id ==2:
# print(not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"))
pass
if self.id!=0:
# Engine cell set up ----------------------------------------------------------------------------
# if not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/engine_{self.id}"):
if not self.isDone[0] and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"):
self.isDone[0] = True
self.util.add_part_custom("World/Environment","engine_no_rigid", f"engine_small_{self.id}", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0]))
# print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned engine "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n")
# Suspension cell set up ------------------------------------------------------------------------
# if not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/xFSuspensionBack_{self.id}"):
if not self.isDone[1] and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xFSuspensionBack_{self.id-1}"):
self.isDone[1] = True
self.util.add_part_custom("World/Environment","FSuspensionBack", f"FSuspensionBack_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
# print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned suspension "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n")
# Fuel cell set up ---------------------------------------------------------------------------------
if not self.isDone[2] and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xfuel_{self.id-1}"):
self.isDone[2] = True
if self.id%2==0:
self.util.add_part_custom("World/Environment","fuel", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
else:
self.util.add_part_custom("World/Environment","fuel_yellow", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5]))
# battery cell set up ---------------------------------------------------------------------------------
if not self.isDone[3] and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xbattery_{self.id-1}"):
self.isDone[3] = True
self.util.add_part_custom("World/Environment","battery", f"battery_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0]))
# trunk cell set up ---------------------------------------------------------------------------------
if not self.isDone[4] and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xtrunk_{self.id-1}"):
self.isDone[4] = True
self.util.add_part_custom("World/Environment","trunk", f"trunk_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711]))
# wheel cell set up ---------------------------------------------------------------------------------
if not self.isDone[5] and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xwheel_02_{self.id-1}"):
self.isDone[5] = True
self.util.add_part_custom("World/Environment","FWheel", f"wheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
self.util.add_part_custom("World/Environment","FWheel", f"wheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5]))
# lower_cover cell set up ---------------------------------------------------------------------------------
if not self.isDone[6] and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id}") and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xmain_cover_{self.id-1}"):
self.isDone[6] = True
self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711]))
self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711]))
if self.id%2==0:
self.util.add_part_custom("World/Environment","main_cover", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
else:
self.util.add_part_custom("World/Environment","main_cover_orange", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
# handle cell set up ---------------------------------------------------------------------------------
if not self.isDone[7] and not self.util.check_prim_exists(f"World/Environment/handle_{self.id}") and not self.util.check_prim_exists(f"World/Environment/handle_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xhandle_{self.id-1}"):
self.isDone[7] = True
self.util.add_part_custom("World/Environment","handle", f"handle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0]))
# light cell set up ---------------------------------------------------------------------------------
if not self.isDone[8] and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id}") and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xlight_{self.id-1}"):
self.isDone[8] = True
self.util.add_part_custom("World/Environment","FFrontLightAssembly", f"light_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708]))
def _check_goal_reached(self, goal_pose):
# Cannot get result from ROS because /move_base/result also uses move_base_msgs module
mp_position, mp_orientation = self.moving_platform.get_world_pose()
_, _, mp_yaw = euler_from_quaternion(mp_orientation)
_, _, goal_yaw = euler_from_quaternion(goal_pose[3:])
# FIXME: pi needed for yaw tolerance here because map rotated 180 degrees
if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \
and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance:
print(f"Goal for mp_{self.id} "+str(goal_pose)+" reached!")
# This seems to crash Isaac sim...
# self.get_world().remove_physics_callback("mp_nav_check")
# Goal hardcoded for now
def _send_navigation_goal(self, x=None, y=None, a=None):
# x, y, a = -18, 14, 3.14
# x,y,a = -4.65, 5.65,3.14
orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w]
goal_msg = PoseStamped()
goal_msg.header.frame_id = "map"
goal_msg.header.stamp = rospy.get_rostime()
print("goal pose: "+str(pose))
goal_msg.pose.position.x = pose[0]
goal_msg.pose.position.y = pose[1]
goal_msg.pose.position.z = pose[2]
goal_msg.pose.orientation.x = pose[3]
goal_msg.pose.orientation.y = pose[4]
goal_msg.pose.orientation.z = pose[5]
goal_msg.pose.orientation.w = pose[6]
world = self.get_world()
self._goal_pub.publish(goal_msg)
# self._check_goal_reached(pose)
world = self.get_world()
if not world.physics_callback_exists(f"mp_nav_check_{self.id}"):
world.add_physics_callback(f"mp_nav_check_{self.id}", lambda step_size: self._check_goal_reached(pose))
# Overwrite check with new goal
else:
world.remove_physics_callback(f"mp_nav_check_{self.id}")
world.add_physics_callback(f"mp_nav_check_{self.id}", lambda step_size: self._check_goal_reached(pose))
def move_to_engine_cell_nav(self):
# # print("sending nav goal")
if not self.bool_done[123]:
self._send_navigation_goal(-4.65, 5.65, 3.14)
self.bool_done[123] = True
return False
def move_to_engine_cell(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-4.98951, 0, False], {"position": np.array([-4.98951, 5.65, 0.03551]), "orientation": np.array([0, 0, 0, 1])}]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_engine(self):
print("doing motion plan")
motion_plan = [{"index":0, "position": np.array([0.97858+0.14-0.3, -0.12572, 0.21991]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.95174-0.3, 0.46095]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":1, "position": np.array([0.97858+0.14, -0.12572, 0.21991]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.95174, 0.46095]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":2, "position": np.array([0.93302+0.14, -0.12572, 0.54475]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.90617, 0.78578]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
# {"index":3, "position": np.array([1.00103, -0.12198, 0.24084]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86409, 7.96971, 0.48132]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])},
{"index":3, "position": np.array([0.80658+0.15, 0.24732, 0.54475]), "orientation": np.array([0.99217, 0, 0, 0.12489]), "goal_position":np.array([-5.23375, 7.77959, 0.78578]), "goal_orientation":np.array([0.61326, 0, 0, 0.78988])},
{"index":4, "position": np.array([0.65068+0.15, 0.39893, 0.54475]), "orientation": np.array([0.97001, 0, 0, 0.24305]), "goal_position":np.array([-5.38549+0.08, 7.6235, 0.78578]), "goal_orientation":np.array([0.51404, 0, 0, 0.85777])},
{"index":5, "position": np.array([0.53837+0.15, 0.63504, 0.54475]), "orientation": np.array([0.92149, 0, 0, 0.38841]), "goal_position":np.array([-5.62169+0.12, 7.51092, 0.78578]), "goal_orientation":np.array([0.37695, 0, 0, 0.92624])},
{"index":6, "position": np.array([0.33707, 0.82498, 0.54475]), "orientation": np.array([0.77061, 0, 0, 0.6373]), "goal_position":np.array([-5.81157+0.16, 7.30908, 0.78578]), "goal_orientation":np.array([0.09427, 0, 0, 0.99555])},
{"index":7, "position": np.array([0.04974, 0.90202, 0.54475]), "orientation": np.array([0.65945, 0, 0, 0.75175]), "goal_position":np.array([-5.88845+0.16, 7.0215, 0.78578]), "goal_orientation":np.array([0.06527, 0, 0, -0.99787])},
{"index":8, "position": np.array([-0.25724, 0.83912, 0.54475]), "orientation": np.array([0.41054, 0, 0, 0.91184]), "goal_position":np.array([-5.82509+0.12, 6.71424+0.11, 0.78578]), "goal_orientation":np.array([0.35448, 0, 0, -0.93506])},
{"index":9, "position": np.array([-0.54443, 0.27481, 0.37107]), "orientation": np.array([0.14679, 0, 0, 0.98917]), "goal_position":np.array([-5.26026+0.05, 6.42705+0.16, 0.61211]), "goal_orientation":np.array([0.59565, 0, 0, -0.80324])},
{"index":10, "position": np.array([-0.60965, -0.03841, 0.37107]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.36196+0.16, 0.61211]), "goal_orientation":np.array([0.70711,0,0,-0.70711])},
{"index":11, "position": np.array([-0.67167, -0.03841, 0.16822]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.29994+0.16, 0.40925]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])},
{"index":12, "position": np.array([-1.05735, -0.06372, 0.1323]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.92148, 5.91425+0.16, 0.37333]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])},
{"index":13, "position": np.array([-1.10475-0.16+0.06, -0.11984, 0.13512]), "orientation": np.array([0,0,0.08495,-0.99639]), "goal_position":np.array([-4.86552, 5.86784+0.06, 0.37552]), "goal_orientation":np.array([0.70455, -0.06007, 0.6007, -0.70455])}]
self.util.move_ur10(motion_plan)
if self.util.motion_task_counter==2 and not self.bool_done[1]:
self.bool_done[1] = True
self.util.remove_part("World/Environment", f"engine_small_{self.id}")
self.util.add_part_custom("World/UR10/ee_link","engine_no_rigid", f"qengine_small_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.17441, 0.00314, 0.11018]), np.array([0.70365, -0.06987, -0.06987, -0.70365]))
if self.util.motion_task_counter==14:
self.util.motion_task_counter=0
print("Done placing engine")
self.util.remove_part("World/UR10/ee_link", f"qengine_small_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","engine_no_rigid", f"engine_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
return True
return False
def screw_engine(self):
# motion_plan = [{"index":0, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":1, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":2, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.74286, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.60205, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792-0.14,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":5, "position": self.util.transform_for_screw_ur10(np.array([0.74286, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":6, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":8, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":9, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
# {"index":10, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
# {"index":11, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
# {"index":12, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
motion_plan = [{"index":0, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":1, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":2, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":5, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
]
self.util.do_screw_driving(motion_plan)
if self.util.motion_task_counter==6:
print("Done screwing engine")
self.util.motion_task_counter=0
return True
return False
def arm_remove_engine(self):
motion_plan = [{"index":0, "position": np.array([-0.60965-0.16, -0.03841, 0.37107]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.36196, 0.61211]), "goal_orientation":np.array([0.70711,0,0,-0.70711])},
{"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.67382, 7.1364, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan)
if self.util.motion_task_counter==2:
print("Done arm removal")
self.util.motion_task_counter=0
return True
return False
def turn_mobile_platform(self):
print(self.util.path_plan_counter)
path_plan = [["rotate", [np.array([1, 0, 0, 0]), 0.0042, True]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def screw_engine_two(self):
# motion_plan = [{"index":0, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":1, "position": np.array([-0.68984, 0.06874, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":2, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.7558-0.2, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.42428-0.2, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.92167-0.2, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.59014-0.2, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":5, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":6, "position": np.array([-0.68984, 0.06874, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":8, "position": self.util.transform_for_screw_ur10(np.array([0.7743-0.2, 0.13044, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.44277-0.2, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":9, "position": self.util.transform_for_screw_ur10(np.array([0.92789-0.2, 0.13045, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.59636-0.2, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":10, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.048836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
motion_plan = [{"index":0 , "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":1, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":2, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":3, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":7, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":8, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])},
{"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.do_screw_driving(motion_plan)
if self.util.motion_task_counter==10:
self.util.motion_task_counter=0
print("Done screwing engine 2nd time")
return True
return False
def wait(self):
print("Waiting ...")
if self.delay>100:
print("Done waiting")
self.delay=0
return True
self.delay+=1
return False
def wait_infinitely(self):
print("Waiting ...")
self.moving_platform.apply_action(self.util._my_custom_controller.forward(command=[0,0]))
return False
# if self.delay>100:
# print("Done waiting")
# self.delay=0
# return True
# self.delay+=1
# return False
def move_to_suspension_cell(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-1, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait",[]],
["translate", [2.29, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], # 503
["wait",[]],
# ["translate", [-4.22, 0, False]],
["translate", [-4.7, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-5.3, 1, False], {"position": np.array([-5.3, -4.876, 0.03551]), "orientation": np.array([0, 0, 0, 1])}]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_suspension(self):
motion_plan = [*self.suspension,
{"index":3, "position": np.array([-0.96615-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.13459, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":4, "position": np.array([-1.10845-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-4.99229, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":5, "position": np.array([-1.10842-0.16, -0.39583, 0.29724]), "orientation": np.array([-0.00055, 0.0008, -0.82242, -0.56888]), "goal_position":np.array([-5.00127, -4.80822, 0.53949]), "goal_orientation":np.array([0.56437, 0.82479, 0.02914, 0.01902])}]
self.util.move_ur10(motion_plan, "_suspension")
if self.util.motion_task_counter==2 and not self.bool_done[2]:
self.bool_done[2] = True
self.util.remove_part("World/Environment", f"FSuspensionBack_0{self.id}")
self.util.add_part_custom("World/UR10_suspension/ee_link","FSuspensionBack", f"qFSuspensionBack_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
if self.util.motion_task_counter==6:
print("Done placing fuel")
self.util.motion_task_counter=0
self.util.remove_part("World/UR10_suspension/ee_link", f"qFSuspensionBack_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FSuspensionBack", f"xFSuspensionBack_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262]))
return True
return False
def screw_suspension(self):
motion_plan = [{"index":0, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":4, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.87215+0.16, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.66069, -4.84629,0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":5, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":6, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":8, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":9, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":10, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.91167+0.16, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.69933, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":11, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":12, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.08295-0.16, -0.58914, 0.32041-0.15])), "orientation": np.array([0,0.70711, 0, -0.70711]), "goal_position":np.array([-3.544, -4.41856, 0.56125]), "goal_orientation":np.array([0.70711,0,0.70711,0])}]
self.util.do_screw_driving(motion_plan, "_suspension")
if self.util.motion_task_counter==13:
print("Done screwing suspension")
self.util.motion_task_counter=0
return True
return False
def arm_remove_suspension(self):
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.03492, 0.9236, 0.80354]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.13579,-5.95519, 1.04451]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])}]
self.util.move_ur10(motion_plan, "_suspension")
if self.util.motion_task_counter==2:
print("Done arm removal")
self.util.motion_task_counter=0
return True
return False
def move_to_fuel_cell(self):
print(self.util.path_plan_counter)
# path_plan = [["translate", [-5.15, 0, True]],
# ["wait",[]],
# ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
# ["wait",[]],
# ["translate", [-15.945, 1, True]]]
path_plan = [["translate", [-9.69, 0, True]],
["wait",[]],
["rotate", [np.array([0.06883, 0, 0, 0.99763]), 0.0042, False]],
["wait",[]],
["translate", [-8.53, 0, True]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]],
["wait",[]],
["translate", [-5.15, 0, True]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-15.945, 1, True]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_fuel(self):
motion_plan = [
# {"index":0, "position": np.array([0.71705+0.16, -0.17496, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.98881, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
# {"index":1, "position": np.array([0.87135+0.16, -0.17496, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.98881, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
# {"index":2, "position": np.array([0.87135+0.16, -0.17496, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.98881, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
*self.fuel,
{"index":3, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.65442]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.89604]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":4, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.53588]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.77749]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}]
self.util.move_ur10(motion_plan, "_fuel")
if self.util.motion_task_counter==2 and not self.bool_done[4]:
self.bool_done[4] = True
self.util.remove_part("World/Environment", f"fuel_0{self.id}")
if self.id%2==0:
self.util.add_part_custom("World/UR10_fuel/ee_link","fuel", f"qfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.05467, -0.16886, 0.08908]), np.array([0.70711,0,0.70711,0]))
else:
self.util.add_part_custom("World/UR10_fuel/ee_link","fuel_yellow", f"qfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.05467, -0.16886, 0.08908]), np.array([0.70711,0,0.70711,0]))
if self.util.motion_task_counter==5:
print("Done placing fuel")
self.util.motion_task_counter=0
self.util.remove_part("World/UR10_fuel/ee_link", f"qfuel_{self.id}")
if self.id%2==0:
self.util.add_part_custom(f"mock_robot_{self.id}/platform","fuel", f"xfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711]))
else:
self.util.add_part_custom(f"mock_robot_{self.id}/platform","fuel_yellow", f"xfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711]))
return True
return False
def screw_fuel(self):
def transform(points):
points[0]-=0
points[2]-=0.16
return points
motion_plan = [{"index":0, "position": transform(np.array([-0.6864, 0.07591, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":1, "position": transform(np.array([-0.6864, 0.07591, 0.42514])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":2, "position": transform(np.array([-0.6864, 0.07591, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":3, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":4, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":5, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":6, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":7, "position": transform(np.array([-0.68202, -0.09908, 0.42514])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":8, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":9, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":10, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":11, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":12, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.3])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.3]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}]
# motion_plan = [{"index":0, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":1, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":2, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":3, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":4, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":5, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
# {"index":6, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([-0.04511, 0.7374, 0.41493]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.97604, -17.26595,0.6576]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}]
self.util.do_screw_driving(motion_plan,"_fuel")
if self.util.motion_task_counter==13:
print("Done screwing fuel")
self.util.motion_task_counter=0
return True
return False
def arm_remove_fuel(self):
motion_plan = [{"index":0, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.65442]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.89604]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.2616, -16.8517, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan,"_fuel")
if self.util.motion_task_counter==2:
print("Done arm removal")
self.util.motion_task_counter=0
return True
return False
def move_to_battery_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait",[]],
["translate", [-12.5, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.503, True]],
["wait",[]],
["translate", [-9.54, 0, False]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-17.17, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]],
["wait",[]],
["translate", [-16.7, 0, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_battery(self):
motion_plan = [
# {"index":0, "position": np.array([-0.12728, -0.61362, 0.4+0.1-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.1]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":1, "position": np.array([-0.12728, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":2, "position": np.array([-0.12728, -0.61362, 0.4+0.1-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.1]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
*self.battery,
# {"index":3, "position": np.array([0.87593, -0.08943, 0.60328-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.42989, -16.24038, 0.8463]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477+0.1-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657+0.1]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])},
{"index":4, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}]
self.util.move_ur10(motion_plan, "_battery")
if self.util.motion_task_counter==2 and not self.bool_done[3]:
self.bool_done[3] = True
self.util.remove_part("World/Environment", f"battery_0{self.id}")
self.util.add_part_custom("World/UR10_battery/ee_link","battery", f"qbattery_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0.00253, -0.7071, 0.7071, 0.00253]))
if self.util.motion_task_counter==5:
print("Done placing battery")
self.util.motion_task_counter=0
self.util.remove_part("World/UR10_battery/ee_link", f"qbattery_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","battery", f"xbattery_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.20126, 0.06146, 0.58443]), np.array([0.4099, 0.55722, -0.58171, -0.42791]))
return True
return False
def screw_battery(self):
def transform(points):
points[0]-=0
points[2]-=0.16
return points
motion_plan = [{"index":0, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":2, "position": transform(np.array([-0.03593, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":1, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":3, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":4, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":5, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":6, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":7, "position": transform(np.array([-0.21277, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":8, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
{"index":9, "position": transform(np.array([0.28749, -0.92175+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.24789-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":10, "position": transform(np.array([0.255, -0.92175+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.24789-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":11, "position": transform(np.array([0.28749, -0.92175+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.24789-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
{"index":12, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.515, -18.858, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
# motion_plan = [{"index":0, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":1, "position": transform(np.array([-0.03593, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":2, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":3, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":4, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":5, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":6, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":7, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":8, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":9, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":10, "position": transform(np.array([-0.21277, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":11, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])},
# {"index":12, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":13, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":14, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])},
# {"index":15, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}]
self.util.do_screw_driving(motion_plan,"_battery")
if self.util.motion_task_counter==13:
print("Done screwing battery")
self.util.motion_task_counter=0
return True
return False
def arm_remove_battery(self):
motion_plan = [ {"index":0, "position": np.array([-0.15683+0.05, 0.95185, 0.57477+0.1-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895-0.09326, 0.81657+0.1]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])},
{"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.7179, -17.0181, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan, "_battery")
if self.util.motion_task_counter==2:
print("Done arm removal")
self.util.motion_task_counter=0
return True
return False
def move_mp_to_battery_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [-16.41, 1, False]]]
self.util.move_mp_battery(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def moving_part_feeders(self):
print(self.util.path_plan_counter)
if not self.bool_done[0]:
path_plan = [
["translate", [-16.41, 1, True]]]
self.util.move_mp_battery(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.bool_done[0]=True
if not self.bool_done[1]:
path_plan = [
["translate", [-6.84552, 0, False]]]
self.util.move_mp_fuel(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.bool_done[1]=True
if not self.bool_done[2]:
path_plan = [
["translate", [-6.491, 0, False]]]
self.util.move_mp_suspension(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.bool_done[2]=True
if not self.bool_done[3]:
path_plan = [
["translate", [-5.07, 0, False]]]
self.util.move_mp_engine(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.bool_done[3]=True
if self.bool_done[0] and self.bool_done[1] and self.bool_done[2] and self.bool_done[3]:
return True
return False
def battery_part_feeding(self):
motion_plan = [{"index":0, "position": np.array([0.73384, 0.33739, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.73384, 0.33739, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.73384, 0.33739, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([-0.07017, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([-0.07017, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":5, "position": np.array([-0.07017, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":6, "position": np.array([0.73384, 0.06664, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":7, "position": np.array([0.73384, 0.06664, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":8, "position": np.array([0.73384, 0.06664, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":9, "position": np.array([-0.36564, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":10, "position": np.array([-0.36564, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":11, "position": np.array([-0.36564, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":12, "position": np.array([0.73384, -0.20396, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":13, "position": np.array([0.73384, -0.20396, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":14, "position": np.array([0.73384, -0.20396, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":15, "position": np.array([-0.66681, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":16, "position": np.array([-0.66681, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":17, "position": np.array([-0.66681, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":18, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}]
self.util.move_ur10(motion_plan, "_battery")
if self.util.motion_task_counter==2 and not self.bool_done[3]:
self.bool_done[3] = True
self.util.remove_part("battery_bringer/platform", "battery_06")
self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_06", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0]))
if self.util.motion_task_counter==8 and not self.bool_done[4]:
self.bool_done[4] = True
self.util.remove_part("battery_bringer/platform", "battery_05")
self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_05", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0]))
if self.util.motion_task_counter==14 and not self.bool_done[5]:
self.bool_done[5] = True
self.util.remove_part("battery_bringer/platform", "battery_01")
self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_01", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0]))
if self.util.motion_task_counter==5 and not self.bool_done[6]:
self.bool_done[6] = True
print("Done placing battery 1")
self.util.remove_part("World/UR10_battery/ee_link", "qbattery_06")
self.util.add_part_custom("World/Environment","battery", "xbattery_06", np.array([0.001,0.001,0.001]), np.array([-16.53656, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0]))
if self.util.motion_task_counter==11 and not self.bool_done[7]:
self.bool_done[7] = True
print("Done placing battery 2")
self.util.remove_part("World/UR10_battery/ee_link", "qbattery_05")
self.util.add_part_custom("World/Environment","battery", "xbattery_05", np.array([0.001,0.001,0.001]), np.array([-16.23873, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0]))
if self.util.motion_task_counter==17 and not self.bool_done[8]:
self.bool_done[8] = True
print("Done placing battery 3")
self.util.remove_part("World/UR10_battery/ee_link", "qbattery_01")
self.util.add_part_custom("World/Environment","battery", "xbattery_01", np.array([0.001,0.001,0.001]), np.array([-15.942, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0]))
if self.util.motion_task_counter == 18:
print("Done placing 3 batterys")
self.util.motion_task_counter=0
return True
return False
def move_to_trunk_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [-23.49, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]],
["wait",[]],
["translate", [-35.47, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait",[]],
["translate", [5.35, 1, False]],
["wait",[]],
["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]],
["wait",[]],
["translate", [-26.75, 0, False]]]
if self.id==1:
path_plan = [
["translate", [-23.49, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]],
["wait",[]],
["translate", [-35.47, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait",[]],
["translate", [5.45, 1, False]],
["wait",[]],
["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]],
["wait",[]],
["translate", [-26.75, 0, False]]]
if self.id==2:
path_plan = [
["translate", [-23.49, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]],
["wait",[]],
["translate", [-35.47, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]],
["wait",[]],
["translate", [5.45, 1, False]],
["wait",[]],
["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]],
["wait",[]],
["translate", [-26.75, 0, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_trunk(self):
motion_plan = [{"index":0, "position": np.array([0.9596, 0.21244, -0.16+0.4547+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.9596, 0.21244, -0.16+0.4547]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.9596, 0.21244, -0.16+0.4547+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.74919, -0.50484, -0.16+0.64833]), "orientation": np.array([-0.20088, -0.67797, -0.20088, 0.67797]), "goal_position":np.array([-27.85221, 4.99054, 0.89005]), "goal_orientation":np.array([0.67797, -0.20088, 0.67797, 0.20088])},
# {"index":4, "position": np.array([0.41663, -0.77637, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.519, 5.262, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":4, "position": np.array([0.55084, -0.81339+0.02396+0, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.65404, 5.26-0.02396-0, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":5, "position": np.array([0.42543, -0.81339+0.02396+0, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.52862, 5.26-0.02396-0, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}]
self.util.move_ur10(motion_plan, "_trunk")
if self.util.motion_task_counter==2 and not self.bool_done[5]:
self.bool_done[5] = True
self.util.remove_part("World/Environment", f"trunk_02_{self.id}")
self.util.add_part_custom("World/UR10_trunk/ee_link","trunk", f"qtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28167, -0.21084, -0.00861]), np.array([0.70711, 0, 0, 0.70711]))
if self.util.motion_task_counter==6:
print("Done placing trunk")
self.util.motion_task_counter=0
self.util.remove_part("World/UR10_trunk/ee_link", f"qtrunk_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","trunk", f"xtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.79319, -0.21112, 0.70114]), np.array([0.5, 0.5, 0.5, 0.5]))
return True
return False
def screw_trunk(self):
def transform(points):
points[0]-=0
points[2]-=0
return points
motion_plan = [{"index":0, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876+0.2]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":1, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":2, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876+0.2]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":3, "position": transform(np.array([-0.12592, 1.126+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.66311-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])},
{"index":4, "position": transform(np.array([-0.12592, 1.33575+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.45335-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])},
{"index":5, "position": transform(np.array([-0.12592, 1.126+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.66311-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])},
{"index":6, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.4637, 5.85911, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.do_screw_driving(motion_plan,"_trunk")
if self.util.motion_task_counter==7:
print("Done screwing trunk")
self.util.motion_task_counter=0
return True
return False
def arm_remove_trunk(self):
motion_plan = [{"index":0, "position": np.array([0.42543, -0.81339+0.02396+0, -0.16+0.75942+0.1]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.52862, 5.26-0.02396-0, 1.00113+0.1]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.2673, 3.79761, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10(motion_plan, "_trunk")
if self.util.motion_task_counter==2:
print("Done arm removal")
self.util.motion_task_counter=0
return True
return False
def move_to_wheel_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [-21.3, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, False]],
["wait",[]],
["translate", [9.3, 1, False]],
["wait",[]],
["rotate", [np.array([-1, 0, 0, 0]), 0.0042, True]],
["wait",[]],
["translate", [-16.965, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, True]],
["wait",[]],
# ["translate", [5.39, 1, False]],
["translate", [6, 1, False]]
]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_wheel_01(self):
motion_plan = [{"index":0, "position": np.array([0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.86671, -0.02468, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":8, "position": np.array([-0.3-0.16, -0.75, 0.2]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.62, 5.63, 0.44]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([-0.33031-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":5, "position": np.array([-0.49798-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.42945, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":6, "position": np.array([-0.33031-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":7, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":8, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":9, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}]
self.util.move_ur10(motion_plan, "_wheel_01")
if self.util.motion_task_counter==2 and not self.bool_done[45]:
self.bool_done[45] = True
self.util.remove_part("World/Environment", f"wheel_03_{self.id}")
self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"qwheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counter==5 and not self.bool_done[6]:
self.bool_done[6] = True
print("Done placing wheel")
self.util.remove_part("World/UR10_wheel_01/ee_link", f"qwheel_03_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counter==10:
self.util.motion_task_counter=0
return True
return False
def screw_wheel_01(self):
motion_plan = [{"index":0, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":4, "position": np.array([-0.49561-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":5, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":6, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([0.67966, 0.09013, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":8, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":9, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":10, "position": np.array([-0.49561-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":11, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":12, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":13, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":14, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":15, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":16, "position": np.array([-0.49561-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":17, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":18, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}]
self.util.do_screw_driving(motion_plan,"_wheel_01")
if self.util.motion_task_counter==19:
print("Done screwing wheel")
self.util.motion_task_counter=0
return True
return False
def arm_place_wheel(self):
print("here")
motion_plan = [{"index":0, "position": np.array([-0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.86671, -0.02468, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.5+0.16, -0.112, 0.410]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.364, 5, 0.651]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([0.46203+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.3945]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":6, "position": np.array([0.65863+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.52493, 5.65751, 0.3945]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":7, "position": np.array([0.46203+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.3945]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":8, "position": np.array([0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-16.221, 5.05282, 0.725]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.0297, 4.20519, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}]
self.util.move_ur10_extra(motion_plan, "_wheel")
if self.util.motion_task_counterl==2 and not self.bool_done[7]:
self.bool_done[7] = True
self.util.remove_part("World/Environment", f"wheel_01_{self.id}")
self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"qwheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counterl==7 and not self.bool_done[8]:
self.bool_done[8] = True
print("Done placing wheel")
self.util.remove_part("World/UR10_wheel/ee_link", f"qwheel_01_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counterl==10:
self.util.motion_task_counterl=0
return True
return False
def screw_wheel(self):
motion_plan = [{"index":0, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":4, "position": np.array([0.67955+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":5, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":6, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([-0.67572, 0.09613, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":8, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":9, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":10, "position": np.array([0.67955+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":11, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":12, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":13, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":14, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":15, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":16, "position": np.array([0.67955+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":17, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":18, "position": np.array([-0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}]
self.util.do_screw_driving_extra(motion_plan,"_wheel")
if self.util.motion_task_counterl==19:
print("Done screwing wheel")
self.util.motion_task_counterl=0
return True
return False
def move_ahead_in_wheel_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [5.04, 1, False]]
]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_wheel_03(self):
motion_plan = [{"index":0, "position": np.array([0.86671, -0.54558, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([0.86671, -0.54558, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([0.86671, -0.54558, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":4, "position": np.array([-0.31937-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":5, "position": np.array([-0.47413-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.42945, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":6, "position": np.array([-0.31937-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":7, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":8, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":9, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}]
self.util.move_ur10(motion_plan, "_wheel_01")
if self.util.motion_task_counter==2 and not self.bool_done[9]:
self.bool_done[9] = True
self.util.remove_part("World/Environment", f"wheel_04_{self.id}")
self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"qwheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counter==5 and not self.bool_done[10]:
self.bool_done[10] = True
print("Done placing wheel")
self.util.remove_part("World/UR10_wheel_01/ee_link", f"qwheel_04_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counter==10:
self.util.motion_task_counter=0
return True
return False
def screw_wheel_03(self):
motion_plan = [{"index":0, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":4, "position": np.array([-0.49561-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":5, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":6, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([0.67966, 0.09013, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":8, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":9, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":10, "position": np.array([-0.49561-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":11, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":12, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":13, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":14, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":15, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":16, "position": np.array([-0.49561-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":17, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])},
{"index":18, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}]
self.util.do_screw_driving(motion_plan,"_wheel_01")
if self.util.motion_task_counter==19:
print("Done screwing wheel")
self.util.motion_task_counter=0
return True
return False
def arm_place_wheel_02(self):
tire_offset = 0.52214
motion_plan = [{"index":0, "position": np.array([-0.86671, -0.53748, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":1, "position": np.array([-0.86671, -0.53748, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":2, "position": np.array([-0.86671, -0.53748, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":3, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.5+0.16, -0.112, 0.410]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.364, 5, 0.651]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([0.46203+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":6, "position": np.array([0.65863+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.52493, 5.65751, 0.274]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":7, "position": np.array([0.46203+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])},
{"index":8, "position": np.array([0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-16.221, 5.05282, 0.725]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":9, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":10, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":11, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}
]
self.util.move_ur10_extra(motion_plan, "_wheel")
if self.util.motion_task_counterl==2 and not self.bool_done[11]:
self.bool_done[11] = True
self.util.remove_part("World/Environment", f"wheel_02_{self.id}")
self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"qwheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711]))
if self.util.motion_task_counterl==7 and not self.bool_done[12]:
self.bool_done[12] = True
print("Done placing wheel")
self.util.remove_part("World/UR10_wheel/ee_link", f"qwheel_02_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counterl==11:
self.util.motion_task_counterl=0
return True
return False
def screw_wheel_02(self):
motion_plan = [{"index":0, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":4, "position": np.array([0.67955+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":5, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":6, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([-0.67572, 0.09613, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":8, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":9, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":10, "position": np.array([0.67955+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":11, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":12, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":13, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":14, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":15, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":16, "position": np.array([0.67955+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":17, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])},
{"index":18, "position": np.array([-0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}]
self.util.do_screw_driving_extra(motion_plan,"_wheel")
if self.util.motion_task_counterl==19:
print("Done screwing wheel")
self.util.motion_task_counterl=0
return True
return False
def arm_place_fwheel_together(self):
if not self.right_side:
self.right_side = self.arm_place_wheel_01()
if not self.left_side:
self.left_side = self.arm_place_wheel()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def screw_fwheel_together(self):
if not self.right_side:
self.right_side = self.screw_wheel_01()
if not self.left_side:
self.left_side = self.screw_wheel()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def arm_place_bwheel_together(self):
if not self.right_side:
self.right_side = self.arm_place_wheel_03()
if not self.left_side:
self.left_side = self.arm_place_wheel_02()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def screw_bwheel_together(self):
if not self.right_side:
self.right_side = self.screw_wheel_03()
if not self.left_side:
self.left_side = self.screw_wheel_02()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def move_to_lower_cover_cell(self):
print(self.util.path_plan_counter)
# path_plan = [
# ["rotate", [np.array([0.73548, 0, 0, -0.67755]), 0.0042, False]],
# ["translate", [-0.64, 1, False]],
# ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]],
# ["translate", [-12.037, 1, False]],
# ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]],
# ["translate", [-20.15, 0, False]],
# ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]],
# ["translate", [-17, 1, False]],
# ["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]],
# ["translate", [-26.9114, 0, False]]]
path_plan = [
["rotate", [np.array([-0.73548, 0, 0, 0.67755]), 0.0042, False]],
["wait",[]],
["translate", [-0.64, 1, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, True]],
["wait",[]],
["translate", [-12.1, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]],
["wait",[]],
["translate", [-21.13755, 0, False]], # 20.2 earlier
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-17.1, 1, False]],
["translate", [-17.34, 1, False]],
["wait",[]],
["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]],
["wait",[]],
["translate", [-26.9114, 0, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_lower_cover(self):
motion_plan = [
# {"index":0, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":1, "position": np.array([-0.49105, 0.76464, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":2, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
*self.lower_cover[0],
{"index":3, "position": np.array([-0.70739, -0.00943, -0.16+0.52441]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-26.76661, -16.26838, 0.76611]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([-0.59828, -0.85859, -0.16+0.36403+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":5, "position": np.array([-0.59828, -0.85859, -0.16+0.36403]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":6, "position": np.array([-0.59828, -0.85859, -0.16+0.36403+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":7, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-25.8962, -15.5737, 0.879938]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}
{"index":8, "position": np.array([0.54581, 0.04547, 0.73769-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-25.5133, -16.2136, 0.9801]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}
]
self.util.move_ur10(motion_plan, "_lower_cover")
if self.util.motion_task_counter==2 and not self.bool_done[20]:
self.bool_done[20] = True
self.util.remove_part("World/Environment", f"lower_coverr_{self.id}")
self.util.add_part_custom("World/UR10_lower_cover/ee_link","lower_cover", f"qlower_coverr_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.27893, -0.08083, 0.29584]), np.array([0.5, -0.5, 0.5, 0.5]))
if self.util.motion_task_counter==6 and not self.bool_done[21]:
self.bool_done[21] = True
print("Done placing right lower cover")
self.util.remove_part("World/UR10_lower_cover/ee_link", f"qlower_coverr_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","lower_cover", f"xlower_coverr_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.03325, -0.29278, 0.31255]), np.array([0, 0, 0.70711, 0.70711]))
# np.array([435.65021, 418.57531,21.83379]), np.array([0.50942, 0.50942,0.4904, 0.4904])
if self.util.motion_task_counter==9:
self.util.motion_task_counter=0
return True
return False
def screw_lower_cover(self):
motion_plan = [{"index":0, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([0.00434, 0.77877, -0.16+0.43196]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": np.array([0.71996, -0.73759, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.71996, -0.73759, -0.16+0.26658]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([0.71996, -0.73759, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([-0.17139, 0.78152, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": np.array([-0.17139, 0.78152, -0.16+0.43196]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":8, "position": np.array([-0.17139, 0.78152, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":9, "position": np.array([0.71996, -0.80562, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":10, "position": np.array([0.71996, -0.80562, -0.16+0.26658]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":11, "position": np.array([0.71996, -0.80562, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":12, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}]
self.util.do_screw_driving(motion_plan,"_lower_cover")
if self.util.motion_task_counter==13:
print("Done screwing right lower cover")
self.util.motion_task_counter=0
return True
return False
def arm_place_lower_cover_01(self):
motion_plan = [
# {"index":0, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":1, "position": np.array([0.49458, 0.74269, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":2, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
*self.lower_cover[1],
{"index":3, "position": np.array([0.79817, 0.02534, -0.16+0.58377]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.85719, -18.34429, 0.82514]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([0.59724, -0.78253, -0.16+0.36033+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":5, "position": np.array([0.59724, -0.78253, -0.16+0.36033]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":6, "position": np.array([0.59724, -0.78253, -0.16+0.36033+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
# {"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.222, -19.0046, 0.879939]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}
{"index":8, "position": np.array([-0.54581, 0.04547, 0.73769-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-25.513, -18.3647, 0.98016]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}
]
self.util.move_ur10_extra(motion_plan, "_lower_cover_01")
if self.util.motion_task_counterl==2 and not self.bool_done[22]:
self.bool_done[22] = True
self.util.remove_part("World/Environment", f"lower_coverl_{self.id}")
self.util.add_part_custom("World/UR10_lower_cover_01/ee_link","lower_cover", f"qlower_coverl_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28058, 0.07474, -0.29292]), np.array([0.5, 0.5, -0.5, 0.5]))
if self.util.motion_task_counterl==6 and not self.bool_done[23]:
self.bool_done[23] = True
print("Done placing right lower cover")
self.util.remove_part("World/UR10_lower_cover_01/ee_link", f"qlower_coverl_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","lower_cover", f"xlower_coverl_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.03589, 0.13349, 0.30227]), np.array([0, 0, -0.70711, -0.70711]))
if self.util.motion_task_counterl==9:
self.util.motion_task_counterl=0
return True
return False
def screw_lower_cover_01(self):
motion_plan = [{"index":0, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([-0.00975, 0.77293, -0.16+0.42757]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([-0.71345, -0.63679, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([-0.18665, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([-0.18665, 0.77293, -0.16+0.42757]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":8, "position": np.array([-0.18665, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":9, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":10, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":11, "position": np.array([-0.71345, -0.68679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":12, "position": np.array([-0.71345, -0.68679, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":13, "position": np.array([-0.71345, -0.68679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":9, "position": np.array([-0.71345, -0.70416, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":10, "position": np.array([-0.71345, -0.70416, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":11, "position": np.array([-0.71345, -0.70416, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":14, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}]
self.util.do_screw_driving_extra(motion_plan,"_lower_cover_01")
if self.util.motion_task_counterl==15:
print("Done screwing right lower cover")
self.util.motion_task_counterl=0
return True
return False
def arm_place_lower_cover_together(self):
if not self.right_side:
self.right_side = self.arm_place_lower_cover()
if not self.left_side:
self.left_side = self.arm_place_lower_cover_01()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def screw_lower_cover_together(self):
if not self.right_side:
self.right_side = self.screw_lower_cover()
if not self.left_side:
self.left_side = self.screw_lower_cover_01()
if self.left_side and self.right_side:
self.left_side = self.right_side = False
return True
return False
def move_to_main_cover_cell(self):
print(self.util.path_plan_counter)
# path_plan = [
# ["translate", [-27.9, 0, False]],
# ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
# ["translate", [-17.18, 1, True]]]
path_plan = [
["translate", [-28.6, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-17.18, 1, True]]]
if self.id == 0:
path_plan = [
["translate", [-28.7, 0, False]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-17.18, 1, True]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_main_cover(self):
motion_plan = [
# {'index': 15, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])},
# {'index': 16, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])},
# {'index': 17, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])},
{"index":0, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-1.09352, -0.27789, 0.19772-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.01392]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105-11.83808, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
{"index":4, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707-11.83808, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
{"index":5, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index":6, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":7, "position": np.array([0.11095-0.11, 0.94, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":8, "position": np.array([0.11095-0.11, 0.94, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":9, "position": np.array([0.11095-0.11, 0.94, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":10, "position": np.array([0.11095-0.11, 0.94, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":11, "position": np.array([0.11095-0.11, 0.94, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":12, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":13, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":14, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":15, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
# {"index":16, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707-11.83808, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
# {"index":17, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105-11.83808, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
# {"index":18, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {'index': 19, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])},
# {'index': 20, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])},
# {"index": 21, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index": 16, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}]
# {'index': 22, 'position': np.array([0.16394, 0.68799, 0.44663]), 'orientation': np.array([ 0.70711, 0, 0.70711, 0]), 'goal_position': np.array([-28.88652, -17.23535, 1.42725]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}]
self.util.move_ur10(motion_plan, "_main_cover")
# remove world main cover and add ee main cover
if self.util.motion_task_counter==2 and not self.bool_done[24]:
self.bool_done[24] = True
self.util.remove_part("World/Environment", f"main_cover_{self.id}")
if self.id%2==0:
self.util.add_part_custom("World/UR10_main_cover/ee_link","main_cover", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5]))
else:
self.util.add_part_custom("World/UR10_main_cover/ee_link","main_cover_orange", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5]))
# remove ee main cover and add mobile platform main cover
if self.util.motion_task_counter==13 and not self.bool_done[25]:
self.bool_done[25] = True
self.util.remove_part("World/UR10_main_cover/ee_link", f"qmain_cover_{self.id}")
if self.id%2==0:
self.util.add_part_custom(f"mock_robot_{self.id}/platform","main_cover", f"xmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0]))
else:
self.util.add_part_custom(f"mock_robot_{self.id}/platform","main_cover_orange", f"xmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0]))
if self.util.motion_task_counter==17:
print("Done placing main cover")
self.util.motion_task_counter=0
return True
return False
def move_to_handle_cell(self):
print(self.util.path_plan_counter)
# path_plan = [
# ["translate", [-13.2, 1, True]],
# ["rotate", [np.array([-0.56641, 0, 0, 0.82413]), 0.0042, True]],
# ["translate", [-10.46, 1, True]],
# ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
# ["translate", [-6.69, 1, True]]]
path_plan = [
["translate", [-13.2, 1, True]],
["wait",[]],
["rotate", [np.array([-0.56641, 0, 0, 0.82413]), 0.0042, True]],
["wait",[]],
# ["translate", [-10.46, 1, True]],
# ["translate", [-10.3, 1, True]],
["translate", [-10.43, 1, True]],
["wait",[]],
["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]],
["wait",[]],
["translate", [-6.69, 1, True]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_handle(self):
motion_plan = [{"index":0, "position": np.array([0.83713, -0.36166, -0.16+0.31902+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":1, "position": np.array([0.83713, -0.36166, -0.16+0.31902]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":2, "position": np.array([0.83713, -0.36166, -0.16+0.31902+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":3, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([-1.01604+0.07, -0.16743-0.09, -0.13+0.76104]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -7.02902, 1.00275]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])},
{"index":5, "position": np.array([-1.01604+0.07, -0.26045-0.09, -0.13+0.7032]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -6.93599, 0.94492]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])},
{"index":6, "position": np.array([-1.01604+0.07, -0.16743-0.09, -0.13+0.76104]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -7.02902, 1.00275]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])},
{"index":7, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.util.move_ur10(motion_plan, "_handle")
if self.util.motion_task_counter==2 and not self.bool_done[26]:
self.bool_done[26] = True
self.util.remove_part("World/Environment", f"handle_{self.id}")
self.util.add_part_custom("World/UR10_handle/ee_link","handle", f"qhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.5218, 0.42317, 0.36311]), np.array([0.5, -0.5, 0.5, -0.5]))
if self.util.motion_task_counter==6 and not self.bool_done[27]:
self.bool_done[27] = True
print("Done placing handle")
self.util.remove_part("World/UR10_handle/ee_link", f"qhandle_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","handle", f"xhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.82439, 0.44736, 1.16068]), np.array([0.20721, 0.68156, -0.67309, -0.19874]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
return True
return False
def screw_handle(self):
motion_plan = [{"index":0, "position": np.array([-0.78213, -0.03592, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":1, "position": np.array([-0.78213, -0.03592, -0.16+0.4263]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":2, "position": np.array([-0.78213, -0.03592, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":3, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":4, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":5, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":6, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":7, "position": np.array([-0.77943, -0.21316, -0.16+0.4263]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":8, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":9, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":10, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":11, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
{"index":12, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.util.do_screw_driving(motion_plan,"_handle")
if self.util.motion_task_counter==13:
print("Done screwing handle")
self.util.motion_task_counter=0
return True
return False
def move_to_light_cell(self):
print(self.util.path_plan_counter)
# path_plan = [["translate", [-6.41, 1, True]],
# ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]],
# ["translate", [-18.56, 0, False]]]
path_plan = [["translate", [-5.8, 1, True]],
["wait",[]],
# ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]],
["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]],
["wait",[]],
["translate", [-18.56, 0, False]]]
if self.id==1 or self.id==2:
path_plan = [["translate", [-5.77, 1, True]],
["wait",[]],
# ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]],
["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]],
["wait",[]],
["translate", [-18.56, 0, False]]]
if self.id==6:
path_plan = [["translate", [-5.85, 1, True]],
["wait",[]],
# ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]],
["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]],
["wait",[]],
["translate", [-18.56, 0, False]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def arm_place_light(self):
if not self.bool_done[30]:
self.bool_done[30] = True
motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.util.do_screw_driving(motion_plan, "_light")
self.util.motion_task_counter=0
light_offset=0.1098
motion_plan = [
# {"index":0, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":1, "position": np.array([0.5517, 0.68287, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
# {"index":2, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])},
*self.light,
{"index":3, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":4, "position": np.array([0.32558+0.12, -0.65596+0.04105-light_offset, -0.16+0.65947]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.15724, -5.8969-0.04105, 0.90133]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":5, "position": np.array([0.36852+0.12, -0.65596+0.04105-light_offset, -0.16+0.61986]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.2, -5.8969-0.04105, 0.86172]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":6, "position": np.array([0.32558+0.12, -0.65596+0.04105-light_offset, -0.16+0.65947]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.15724, -5.8969-0.04105, 0.90133]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.29868+0.12, -0.76576+0, -0.16+0.68019]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.13043, -5.78712-0, 0.922310]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([0.3648+0.12, -0.76576+0, -0.16+0.61948]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.19655, -5.78712-0, 0.8616]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([0.29868+0.12, -0.76576+0, -0.16+0.68019]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.13043, -5.78712-0, 0.922310]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}
# {"index":7, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":7, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}
]
self.util.move_ur10(motion_plan, "_light")
if self.util.motion_task_counter==2 and not self.bool_done[28]:
self.bool_done[28] = True
self.util.remove_part("World/Environment", f"light_0{self.id}")
self.util.add_part_custom("World/UR10_light/ee_link","FFrontLightAssembly", f"qlight_{self.id}", np.array([0.001,0.001,0.001]), np.array([1.30826, -0.30485, -0.12023]), np.array([0.36036, -0.00194, 0.00463, 0.9328]))
if self.util.motion_task_counter==6 and not self.bool_done[29]:
self.bool_done[29] = True
print("Done placing light")
self.util.remove_part("World/UR10_light/ee_link", f"qlight_{self.id}")
self.util.add_part_custom(f"mock_robot_{self.id}/platform","FFrontLightAssembly", f"xlight_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.8669, -0.10851, 1.76492]), np.array([0.47905, -0.49076, 0.50734, 0.52179]))
if self.util.motion_task_counter==8:
self.util.motion_task_counter=0
return True
return False
def screw_light(self):
light_offset=0.12284
# motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":1, "position": np.array([0.03769, -0.74077, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":2, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":3, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":4, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":5, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":6, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":7, "position": np.array([0.21628, -0.7386, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":8, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
# {"index":9, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":10, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":11, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
# {"index":12, "position": np.array([0.03932, -0.71305, -0.16+0.42576+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.0712, -4.4, 0.66799+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":1, "position": np.array([0.03769, -0.74077, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":2, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":3, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":4, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":5, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":6, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":7, "position": np.array([0.21628, -0.7386, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":8, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":9, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])},
{"index":10, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":11, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])},
{"index":12, "position": np.array([0.03932, -0.71305, -0.16+0.42576+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.0712, -4.4, 0.66799+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.util.do_screw_driving(motion_plan,"_light")
if self.util.motion_task_counter==13:
print("Done screwing light")
self.util.motion_task_counter=0
return True
return False
def go_to_end_goal(self):
print(self.util.path_plan_counter)
path_plan = [["translate", [-9.95, 0, True]],
["wait",[]],
["rotate", [np.array([0.99341, 0, 0, -0.11458]), 0.0042, True]],
["wait",[]],
["translate", [-9.16, 0, True]],
["wait",[]],
["rotate", [np.array([1,0,0,0]), 0.0042, False]],
["wait",[]],
["translate", [8, 0, True]],
]
if self.id==2 or self.id==4:
path_plan = [["translate", [-9.95, 0, True]],
["wait",[]],
["rotate", [np.array([0.99341, 0, 0, -0.11458]), 0.0042, True]],
["wait",[]],
["translate", [-9.16, 0, True]],
["wait",[]],
["rotate", [np.array([1,0,0,0]), 0.0042, False]],
["wait",[]],
["wait",[]],
["wait",[]],
["wait",[]],
["wait",[]],
["wait",[]],
["translate", [8, 0, True]],
]
self.util.move_mp(path_plan)
# current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
self.moving_platform.apply_action(self.util._my_custom_controller.forward(command=[0.5,0]))
self.util.remove_part(f"mock_robot_{self.id}","platform")
self.util.remove_part(f"mock_robot_{self.id}","wheel_top_right")
self.util.remove_part(f"mock_robot_{self.id}","wheel_top_left")
self.util.remove_part(f"mock_robot_{self.id}","wheel_bottom_right")
self.util.remove_part(f"mock_robot_{self.id}","wheel_bottom_left")
# self.util.remove_part(None,f"mock_robot_{self.id}")
# self.util.remove_part(None,f"mock_robot_{self.id}")
# self.util.remove_part(None,f"mock_robot_{self.id}")
# self.util.remove_part(None,f"mock_robot_{self.id}")
# self.util.remove_part(None,f"mock_robot_{self.id}")
# self.util.remove_part(None,f"mock_robot_{self.id}")
return True
return False
def move_to_contingency_cell(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [-23.937, 1, True]],
["wait",[]],
["rotate", [np.array([0,0,0,1]), 0.0042, True]],
["wait",[]],
["translate", [-35.63314, 0, True]],
["wait",[]],
["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]],
["wait",[]],
["translate", [17.6, 1, True]],
["wait",[]],
["rotate", [np.array([1,0,0,0]), 0.0042, True]],
["wait",[]],
["translate", [-20.876, 0, True]]]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False
def disassemble(self):
print(self.disassembly_event)
def delay_for(amount):
if self.delay == amount:
self.delay=0
self.disassembly_event+=1
return True
else:
self.delay+=1
return False
# remove and add part
if self.disassembly_event == 0:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xmain_cover_{self.id}")
self.util.add_part_custom("World/Environment","main_cover", "qmain_cover", np.array([0.001, 0.001, 0.001]), np.array([-24.35262, 19.39603, -0.02519]), np.array([0.70711, 0.70711, 0, 0]))
self.isDone[self.disassembly_event-1]=True
# remove and add part
elif self.disassembly_event == 1:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xlower_coverr_{self.id}")
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xlower_coverl_{self.id}")
self.util.add_part_custom("World/Environment","lower_cover", "qlower_coverr", np.array([0.001, 0.001, 0.001]), np.array([-20.65511, 19.03402, 0.25662]), np.array([0,0,0.70711,0.70711]))
self.util.add_part_custom("World/Environment","lower_cover", "qlower_coverl", np.array([0.001, 0.001, 0.001]), np.array([-20.29928, 19.04322, 0.25662]), np.array([0,0,-0.70711,-0.70711]))
self.isDone[self.disassembly_event-1]=True
# remove and add part
elif self.disassembly_event == 2:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_01_{self.id}")
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_02_{self.id}")
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_03_{self.id}")
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_04_{self.id}")
self.util.add_part_custom("World/Environment","FWheel", "qwheel_01", np.array([0.001, 0.001, 0.001]), np.array([-18.86967, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0]))
self.util.add_part_custom("World/Environment","FWheel", "qwheel_02", np.array([0.001, 0.001, 0.001]), np.array([-18.34981, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0]))
self.util.add_part_custom("World/Environment","FWheel", "qwheel_03", np.array([0.001, 0.001, 0.001]), np.array([-17.85765, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0]))
self.util.add_part_custom("World/Environment","FWheel", "qwheel_04", np.array([0.001, 0.001, 0.001]), np.array([-17.33776, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0]))
self.isDone[self.disassembly_event-1]=True
# remove and add part
elif self.disassembly_event == 3:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xfuel_{self.id}")
self.util.add_part_custom("World/Environment","fuel", "qfuel", np.array([0.001, 0.001, 0.001]), np.array([-23.63045, 16.54196, 0.26478]), np.array([0.5,0.5,-0.5,-0.5]))
self.isDone[self.disassembly_event-1]=True
# remove and add part
elif self.disassembly_event == 4:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xbattery_{self.id}")
self.util.add_part_custom("World/Environment","battery", "qbattery", np.array([0.001, 0.001, 0.001]), np.array([-21.87392, 16.38365, 0.25864]), np.array([0.70711, 0.70711, 0, 0]))
self.isDone[self.disassembly_event-1]=True
# remove and add part
elif self.disassembly_event == 5:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"xFSuspensionBack_{self.id}")
self.util.add_part_custom("World/Environment","FSuspensionBack", "qsuspension_back", np.array([0.001, 0.001, 0.001]), np.array([-20.82231, 16.78007, 0.24643]), np.array([0.5, 0.5, -0.5, 0.5]))
self.isDone[self.disassembly_event-1]=True
elif self.disassembly_event == 6:
if not self.isDone[self.disassembly_event] and delay_for(100):
self.util.remove_part(f"mock_robot_{self.id}/platform",f"engine_{self.id}")
self.util.add_part_custom("World/Environment","engine_no_rigid", "qengine", np.array([0.001, 0.001, 0.001]), np.array([-19.07782, 16.35288, 0.43253]), np.array([0.99457,0,-0.10407,0]))
self.isDone[self.disassembly_event-1]=True
elif self.disassembly_event == 7:
return True
return False
def carry_on(self):
print(self.util.path_plan_counter)
path_plan = [
["translate", [-10.0529, 0, True]]
]
self.util.move_mp(path_plan)
if len(path_plan) == self.util.path_plan_counter:
self.util.path_plan_counter=0
return True
return False | 191,906 | Python | 93.909496 | 322 | 0.554746 |
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/README.md | # Microfactory
| 17 | Markdown | 4.999998 | 14 | 0.705882 |
swadaskar/Isaac_Sim_Folder/extension_examples/simple_stack/simple_stack.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka.tasks import Stacking
from omni.isaac.franka.controllers import StackingController
class SimpleStack(BaseSample):
def __init__(self) -> None:
super().__init__()
self._controller = None
self._articulation_controller = None
def setup_scene(self):
world = self.get_world()
world.add_task(Stacking(name="stacking_task"))
return
async def setup_post_load(self):
self._franka_task = self._world.get_task(name="stacking_task")
self._task_params = self._franka_task.get_params()
my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._controller = StackingController(
name="stacking_controller",
gripper=my_franka.gripper,
robot_articulation=my_franka,
picking_order_cube_names=self._franka_task.get_cube_names(),
robot_observation_name=my_franka.name,
)
self._articulation_controller = my_franka.get_articulation_controller()
return
def _on_stacking_physics_step(self, step_size):
observations = self._world.get_observations()
actions = self._controller.forward(observations=observations)
self._articulation_controller.apply_action(actions)
if self._controller.is_done():
self._world.pause()
return
async def _on_stacking_event_async(self):
world = self.get_world()
world.add_physics_callback("sim_step", self._on_stacking_physics_step)
await world.play_async()
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
return
def world_cleanup(self):
self._controller = None
return
| 2,380 | Python | 36.203124 | 90 | 0.667227 |
swadaskar/Isaac_Sim_Folder/extension_examples/kaya_gamepad/kaya_gamepad_extension.py | # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.kaya_gamepad import KayaGamepad
class KayaGamepadExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
overview = "This Example shows how to drive a NVIDIA Kaya robot using a Gamepad in Isaac Sim."
overview += "\n\nConnect a gamepad to the robot, and the press PLAY to begin simulating."
overview += "\n\nPress the 'Open in IDE' button to view the source code."
super().start_extension(
menu_name="Input Devices",
submenu_name="",
name="Kaya Gamepad",
title="NVIDIA Kaya Gamepad Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_input_devices.html",
overview=overview,
file_path=os.path.abspath(__file__),
sample=KayaGamepad(),
)
return
| 1,415 | Python | 43.249999 | 120 | 0.698233 |
swadaskar/Isaac_Sim_Folder/extension_examples/kaya_gamepad/kaya_gamepad.py | # Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
import omni.usd
import carb
import omni.graph.core as og
class KayaGamepad(BaseSample):
def __init__(self) -> None:
super().__init__()
def setup_scene(self):
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
return
kaya_usd = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd"
kaya_ogn_usd = assets_root_path + "/Isaac/Robots/Kaya/kaya_ogn_gamepad.usd"
stage = omni.usd.get_context().get_stage()
graph_prim = stage.DefinePrim("/World", "Xform")
graph_prim.GetReferences().AddReference(kaya_ogn_usd)
def world_cleanup(self):
pass
| 1,268 | Python | 36.323528 | 83 | 0.705836 |
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/extension.py | import omni.ext
import omni.ui as ui
from paho.mqtt import client as mqtt_client
from pxr import UsdGeom, Gf
from .models import Cube
import carb.events
# Event is unique integer id. Create it from string by hashing, using helper function.
NEW_MESSAGE = carb.events.type_from_string("cell.dt.NEW_MESSAGE_EVENT")
BUS = omni.kit.app.get_app().get_message_bus_event_stream()
class SyncTwinMqttSampleExtension(omni.ext.IExt):
def load_usd_model(self):
print("loading model...")
self.context = omni.usd.get_context()
self_cube = Cube()
def on_startup(self, ext_id):
print("Digital Twin startup")
# init data
self.mqtt_connected = False
self.target_prim = "/World/Cube"
self.current_coord = ui.SimpleFloatModel(0)
# init ui
self.context = omni.usd.get_context()
self._window = ui.Window("Digital Twin", width=300, height=350)
with self._window.frame:
with ui.VStack():
ui.Button("load model",clicked_fn=self.load_usd_model)
ui.Label("Current Z coord")
ui.StringField(self.current_coord)
self.status_label = ui.Label("- not connected -")
ui.Button("connect MQTT", clicked_fn=self.connect_mqtt)
ui.Button("disconnect MQTT", clicked_fn=self.disconnect)
# we want to know when model changes
self._sub_stage_event = self.context.get_stage_event_stream().create_subscription_to_pop(
self._on_stage_event)
# find our xf prim if model already present
self.find_xf_prim()
# and we need a callback on each frame to update our xf prim
self._app_update_sub = BUS.create_subscription_to_pop_by_type(NEW_MESSAGE,
self._on_app_update_event, name="synctwin.mqtt_sample._on_app_update_event")
# # called on every frame, be careful what to put there
def _on_app_update_event(self, evt):
# if we have found the transform lets update the translation
if self.xf:
translation_matrix = Gf.Matrix4d().SetTranslate(Gf.Vec3d(0, 0, evt.payload["Z"]))
self.xf.MakeMatrixXform().Set(translation_matrix)
# called on load
def _on_stage_event(self, event):
if event.type == int(omni.usd.StageEventType.OPENED):
print("opened new model")
self.find_xf_prim()
# find the prim to be transformed
def find_xf_prim(self):
# get prim from input
stage = self.context.get_stage()
prim = stage.GetPrimAtPath(self.target_prim)
self.xf = UsdGeom.Xformable(prim)
if self.xf:
msg = "found xf."
else:
msg = "## xf not found."
self.status_label.text = msg
print(msg)
# connect to mqtt broker
def connect_mqtt(self):
# this is called when a message arrives
def on_message(client, userdata, msg):
msg_content = msg.payload.decode()
print(f"Received `{msg_content}` from `{msg.topic}` topic")
# userdata is self
userdata.current_coord.set_value(float(msg_content))
BUS.push(NEW_MESSAGE, payload={'Z':float(msg_content)})
# called when connection to mqtt broker has been established
def on_connect(client, userdata, flags, rc):
print(f">> connected {client} {rc}")
if rc == 0:
userdata.status_label.text = "Connected to MQTT Broker!"
topic = "ncsu/digital_twin/Cube"
print(f"subscribing topic {topic}")
client.subscribe(topic)
else:
userdata.status_label.text = f"Failed to connect, return code {rc}"
# let us know when we've subscribed
def on_subscribe(client, userdata, mid, granted_qos):
print(f"subscribed {mid} {granted_qos}")
# now connect broker
if self.mqtt_connected:
print("Already connected to MQTT Broker!")
self.status_label.text = "Already connected to MQTT Broker!"
return
# Set Connecting Client ID
self.client = mqtt_client.Client(mqtt_client.CallbackAPIVersion.VERSION1, 'Omni Cube Client')
self.client.user_data_set(self)
self.client.on_connect = on_connect
self.client.on_message = on_message
self.client.on_subscribe = on_subscribe
self.client.connect("192.168.10.4")
self.client.loop_start()
self.mqtt_connected = True
return
def disconnect(self):
print("disconnecting")
self.client.disconnect()
self.client.loop_stop()
self.mqtt_connected = False
self.status_label.text = "Disonnected from MQTT Broker!"
def on_shutdown(self):
print("Digital Twin shutdown")
self.client = None
self._app_update_sub = None | 5,081 | Python | 36.367647 | 111 | 0.588073 |
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/models.py | import omni.kit.commands as commands
# from pxr import Usd
# import omni.isaac.core.utils.prims as prim_utils
class Cube():
def __init__(self):
commands.execute('CreateMeshPrimWithDefaultXform',prim_type='Cube')
class Light():
def __init__(self):
commands.execute('CreatePrim',
prim_type='DistantLight',
attributes={'angle': 1.0, 'intensity': 3000})
# stage: Usd.Stage = Usd.Stage.CreateInMemory()
| 453 | Python | 24.222221 | 75 | 0.651214 |
zoctipus/cse542Project/tools/install_deps.py | # Copyright (c) 2022-2024, The ORBIT Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""
A script with various methods of installing dependencies
defined in an extension.toml
"""
import argparse
import os
import shutil
import sys
import toml
from subprocess import SubprocessError, run
# add argparse arguments
parser = argparse.ArgumentParser(description="Utility to install dependencies based on an extension.toml")
parser.add_argument("type", type=str, choices=["all", "apt", "rosdep"], help="The type of packages to install")
parser.add_argument("path", type=str, help="The path to the extension which will have its deps installed")
def install_apt_packages(path):
"""
A function which attempts to install apt packages for Orbit extensions.
It looks in {extension_root}/config/extension.toml for [orbit_settings][apt_deps]
and then attempts to install them. Exits on failure to stop the build process
from continuing despite missing dependencies.
Args:
path: A path to the extension root
"""
try:
if shutil.which("apt"):
with open(f"{path}/config/extension.toml") as fd:
ext_toml = toml.load(fd)
if "orbit_settings" in ext_toml and "apt_deps" in ext_toml["orbit_settings"]:
deps = ext_toml["orbit_settings"]["apt_deps"]
print(f"[INFO] Installing the following apt packages: {deps}")
run_and_print(["apt-get", "update"])
run_and_print(["apt-get", "install", "-y"] + deps)
else:
print("[INFO] No apt packages to install")
else:
raise RuntimeError("Exiting because 'apt' is not a known command")
except SubprocessError as e:
print(f"[ERROR]: {str(e.stderr, encoding='utf-8')}")
sys.exit(1)
except Exception as e:
print(f"[ERROR]: {e}")
sys.exit(1)
def install_rosdep_packages(path):
"""
A function which attempts to install rosdep packages for Orbit extensions.
It looks in {extension_root}/config/extension.toml for [orbit_settings][ros_ws]
and then attempts to install all rosdeps under that workspace.
Exits on failure to stop the build process from continuing despite missing dependencies.
Args:
path: A path to the extension root
"""
try:
if shutil.which("rosdep"):
with open(f"{path}/config/extension.toml") as fd:
ext_toml = toml.load(fd)
if "orbit_settings" in ext_toml and "ros_ws" in ext_toml["orbit_settings"]:
ws_path = ext_toml["orbit_settings"]["ros_ws"]
if not os.path.exists("/etc/ros/rosdep/sources.list.d/20-default.list"):
run_and_print(["rosdep", "init"])
run_and_print(["rosdep", "update", "--rosdistro=humble"])
run_and_print([
"rosdep",
"install",
"--from-paths",
f"{path}/{ws_path}/src",
"--ignore-src",
"-y",
"--rosdistro=humble",
])
else:
print("[INFO] No rosdep packages to install")
else:
raise RuntimeError("Exiting because 'rosdep' is not a known command")
except SubprocessError as e:
print(f"[ERROR]: {str(e.stderr, encoding='utf-8')}")
sys.exit(1)
except Exception as e:
print(f"[ERROR]: {e}")
sys.exit(1)
def run_and_print(args):
"""
Runs a subprocess.run(args=args, capture_output=True, check=True),
and prints the output
"""
completed_process = run(args=args, capture_output=True, check=True)
print(f"{str(completed_process.stdout, encoding='utf-8')}")
def main():
args = parser.parse_args()
if args.type == "all":
install_apt_packages(args.path)
install_rosdep_packages(args.path)
elif args.type == "apt":
install_apt_packages(args.path)
elif args.type == "rosdep":
install_rosdep_packages(args.path)
else:
print(f"[ERROR] '{args.type}' type dependencies not installable")
sys.exit(1)
if __name__ == "__main__":
main()
| 4,357 | Python | 35.316666 | 111 | 0.586413 |
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/rewards.py | # Copyright (c) 2022-2024, The ORBIT Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Functions specific to the in-hand dexterous manipulation environments."""
import torch
from typing import TYPE_CHECKING
import omni.isaac.orbit.utils.math as math_utils
from omni.isaac.orbit.assets import RigidObject
from omni.isaac.orbit.envs import RLTaskEnv
from omni.isaac.orbit.managers import SceneEntityCfg
if TYPE_CHECKING:
from .commands import InHandReOrientationCommand
def success_bonus(
env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object")
) -> torch.Tensor:
"""Bonus reward for successfully reaching the goal.
The object is considered to have reached the goal when the object orientation is within the threshold.
The reward is 1.0 if the object has reached the goal, otherwise 0.0.
Args:
env: The environment object.
command_name: The command term to be used for extracting the goal.
object_cfg: The configuration for the scene entity. Default is "object".
"""
# extract useful elements
asset: RigidObject = env.scene[object_cfg.name]
command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name)
# obtain the goal orientation
goal_quat_w = command_term.command[:, 3:7]
# obtain the threshold for the orientation error
threshold = command_term.cfg.orientation_success_threshold
# calculate the orientation error
dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w)
return dtheta <= threshold
def track_pos_l2(
env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object")
) -> torch.Tensor:
"""Reward for tracking the object position using the L2 norm.
The reward is the distance between the object position and the goal position.
Args:
env: The environment object.
command_term: The command term to be used for extracting the goal.
object_cfg: The configuration for the scene entity. Default is "object".
"""
# extract useful elements
asset: RigidObject = env.scene[object_cfg.name]
command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name)
# obtain the goal position
goal_pos_e = command_term.command[:, 0:3]
# obtain the object position in the environment frame
object_pos_e = asset.data.root_pos_w - env.scene.env_origins
return torch.norm(goal_pos_e - object_pos_e, p=2, dim=-1)
def track_orientation_inv_l2(
env: RLTaskEnv,
command_name: str,
object_cfg: SceneEntityCfg = SceneEntityCfg("object"),
rot_eps: float = 1e-3,
) -> torch.Tensor:
"""Reward for tracking the object orientation using the inverse of the orientation error.
The reward is the inverse of the orientation error between the object orientation and the goal orientation.
Args:
env: The environment object.
command_name: The command term to be used for extracting the goal.
object_cfg: The configuration for the scene entity. Default is "object".
rot_eps: The threshold for the orientation error. Default is 1e-3.
"""
# extract useful elements
asset: RigidObject = env.scene[object_cfg.name]
command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name)
# obtain the goal orientation
goal_quat_w = command_term.command[:, 3:7]
# calculate the orientation error
dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w)
return 1.0 / (dtheta + rot_eps)
| 3,632 | Python | 36.453608 | 111 | 0.719989 |
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_assets/test/test_valid_configs.py | # Copyright (c) 2022-2024, The ORBIT Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
# ignore private usage of variables warning
# pyright: reportPrivateUsage=none
"""Launch Isaac Sim Simulator first."""
from omni.isaac.orbit.app import AppLauncher, run_tests
# launch the simulator
app_launcher = AppLauncher(headless=True)
simulation_app = app_launcher.app
"""Rest everything follows."""
import unittest
import omni.isaac.orbit_assets as orbit_assets # noqa: F401
from omni.isaac.orbit.assets import AssetBase, AssetBaseCfg
from omni.isaac.orbit.sensors import SensorBase, SensorBaseCfg
from omni.isaac.orbit.sim import build_simulation_context
class TestValidEntitiesConfigs(unittest.TestCase):
"""Test cases for all registered entities configurations."""
@classmethod
def setUpClass(cls):
# load all registered entities configurations from the module
cls.registered_entities: dict[str, AssetBaseCfg | SensorBaseCfg] = {}
# inspect all classes from the module
for obj_name in dir(orbit_assets):
obj = getattr(orbit_assets, obj_name)
# store all registered entities configurations
if isinstance(obj, (AssetBaseCfg, SensorBaseCfg)):
cls.registered_entities[obj_name] = obj
# print all existing entities names
print(">>> All registered entities:", list(cls.registered_entities.keys()))
"""
Test fixtures.
"""
def test_asset_configs(self):
"""Check all registered asset configurations."""
# iterate over all registered assets
for asset_name, entity_cfg in self.registered_entities.items():
for device in ("cuda:0", "cpu"):
with self.subTest(asset_name=asset_name, device=device):
with build_simulation_context(device=device, auto_add_lighting=True) as sim:
# print the asset name
print(">>> Testing entities:", asset_name)
# name the prim path
entity_cfg.prim_path = "/World/asset"
# create the asset / sensors
entity: AssetBase | SensorBase = entity_cfg.class_type(entity_cfg) # type: ignore
# play the sim
sim.reset()
# check asset is initialized successfully
self.assertTrue(entity._is_initialized)
if __name__ == "__main__":
run_tests()
| 2,541 | Python | 34.305555 | 106 | 0.630067 |
zoctipus/cse542Project/docker/x11.yaml | services:
orbit-base:
environment:
- DISPLAY
- TERM
- QT_X11_NO_MITSHM=1
- XAUTHORITY=${__ORBIT_TMP_XAUTH}
volumes:
- type: bind
source: ${__ORBIT_TMP_XAUTH}
target: ${__ORBIT_TMP_XAUTH}
- type: bind
source: /tmp/.X11-unix
target: /tmp/.X11-unix
- type: bind
source: /etc/localtime
target: /etc/localtime
read_only: true
orbit-ros2:
environment:
- DISPLAY
- TERM
- QT_X11_NO_MITSHM=1
- XAUTHORITY=${__ORBIT_TMP_XAUTH}
volumes:
- type: bind
source: ${__ORBIT_TMP_XAUTH}
target: ${__ORBIT_TMP_XAUTH}
- type: bind
source: /tmp/.X11-unix
target: /tmp/.X11-unix
- type: bind
source: /etc/localtime
target: /etc/localtime
read_only: true
| 809 | YAML | 20.891891 | 39 | 0.546354 |
Generlate/model_generator/CODE_OF_CONDUCT.md | # Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
[email protected].
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
| 5,228 | Markdown | 39.534883 | 80 | 0.811974 |
Generlate/model_generator/contributing.md | # Contributing to Generlate
Hey! :wave:
So - you want to contribute huh?...
Well, THANK YOU. Generlate is making architectural design easier and any help is greatly appreciated!
## Code of Conduct
This project and everyone participating in it is governed by the Generlate [Code of Conduct](https://github.com/Generlate/Generlate/blob/main/CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code. Please report unacceptable behavior to [email protected].
## What should I know before getting started?
### Generlate Structure
To get a sense for the files that are included with Generlate, you can go to Generlate Core's default branch on the GitHub page and take a look around.
## How Can I Contribute?
When suggesting changes, please include as many details as possible.
Generlate Core's default branch is intentionally a stable release, so that anyone downloading the code and compiling it gets a stable release. Active development occurs on branches named after the version they are targeting, for example the 1.0.0 branch is named `1.0.0-dev.` When raising PRs, please raise against the relevant development branch and __not__ against the `master` branch
The codebase is maintained using the "contributor workflow" where everyone without exception contributes patch proposals using "pull requests". This facilitates social contribution, easy testing and peer review.
To contribute a patch, the workflow is as follows:
* Fork the repository in GitHub, and clone it your development machine.
* Create a topic branch from the relevant development branch.
* Commit changes to the branch.
* Test your changes, which must include the unit and RPC tests passing.
* Push topic branch to your copy of the repository.
* Raise a Pull Request via GitHub.
Commit messages should be verbose by default consisting of a short subject line (50 chars max), a blank line and detailed explanatory text as separate paragraph(s); unless the title alone is self-explanatory (like "Corrected typo in init.cpp") then a single title line is sufficient. Commit messages should be helpful to people reading your code in the future, so explain the reasoning for your decisions.
Please refer to the [Git manual](https://git-scm.com/doc) for more information about Git.
The body of the pull request should contain enough description about what the patch does together with any justification/reasoning. You should include references to any discussions (for example other tickets or mailing list discussions). At this stage one should expect comments and review from other contributors. You can add more commits to your pull request by committing them locally and pushing to your fork until you have satisfied feedback.
If your pull request is accepted for merging, you may be asked by a maintainer to squash and or rebase your commits before it will be merged.
Please refrain from creating several pull requests for the same change. Use the pull request that is already open (or was created earlier) to amend changes. This preserves the discussion and review that happened earlier for the respective change set.
The length of time required for peer review is unpredictable and will vary between pull requests.
## Pull Request Philosophy
Pull Requests should always be focused. For example, a pull request could add a feature, fix a bug, or refactor code; but not a mixture. Please avoid submitting pull requests that attempt to do too much, are overly large, or overly complex as this makes review difficult.
### Features
When adding a new feature, thought must be given to the long term technical debt and maintenance that feature may require after inclusion. Before proposing a new feature that will require maintenance, please consider if you are willing to maintain it (including bug fixing). If features get orphaned with no maintainer in the future, they may be removed.
## "Decision Making" Process
Whether a pull request is merged into Generlate Core rests with the repository maintainers.
Maintainers will take into consideration if a patch is in line with the general principles of Generlate; meets the minimum standards for inclusion; and will take into account the consensus among frequent contributors.
In general, all pull requests must:
* have a clear use case, fix a demonstrable bug or serve the greater good of Generlate;
* be peer reviewed;
* have functional tests;
* follow code style guidelines;
### Peer Review
Anyone may participate in peer review which is expressed by comments in the pull request. Typically reviewers will review the code for obvious errors, as well as test out the patch set and opine on the technical merits of the patch. Repository maintainers take into account the peer review when determining if there is consensus to merge a pull request.
Maintainers reserve the right to weigh the opinions of peer reviewers using common sense judgement and also may weight based on meritocracy: Those that have demonstrated a deeper commitment and understanding towards Generlate (over time) or have clear domain expertise may naturally have more weight, as one would expect in all walks of life.
# Copyright
By contributing to this repository, you agree to license your work under the [Apach-2.0 license](https://github.com/Generlate/Generlate/blob/main/License), unless specified otherwise. Any work contributed where you are not the original author must contain its license header with the original author(s) and source.
## Styleguides
### Git Commit Messages
### JavaScript StyleGuide
### CoffeeScript Styleguide
### Specs Styleguide
### Documentation Styleguide
## Additional Notes
### Issues and Pull Request Labels
| 5,716 | Markdown | 55.049019 | 447 | 0.795136 |
Generlate/model_generator/README.md | <p align="center">
<img width="300" src="https://github.com/Generlate/model_generator/assets/85384584/93659fd6-ed44-44f0-b9bb-8124e0fe1966">
</p>
The idea for this program came from interest in generative machine learning models. Human beating results have been generated by computers in chess, images and text. Naturally, I wonder if these results can be produced in another mode, 3d models. Not only will generative 3d models allow greater creative expression but also save massive amounts of time. So, I made this project as a first step.

I prioritized simplicity. This lead to the choices of python, a feed forward neural network and .off boxes. The program is composed of the datasets, a data loader, a data formatter, a neural network and the main file. Data is often a limiting factor for machine learning models. I didn't want the dataset to be another variable. So, I made a super simple dataset of randomly generated boxes. This was synthetically made from an algorithm.

Example boxes are loaded from a directory, formatted into coordinate values, used to train the neural network and a .off box is exported. Given machine learning models' superior results, it's important to create generative systems for virtually everything that humans produce. This is the path to automating the economy. My focus is architecture. So, I'd like to develop these projects until they can generate entire cities.
## Directions
#### For the Model Generator
- Create a virtual environment with the dependencies installed
- Download the repository (unzip if you downloaded the zipped file)
- navigate to model_generator/machine_learning_model/machine_learning_model.py
- open in zsh/bash and run ```python3 main.py```
- this should generate a box in /model_generator/generated_boxes/ titled "generated_box.off"
- this box can be viewed on websites like https://3dviewer.net/

- in model_generator/Datasets/AustensBoxes/ you can find the training and testing datasets. These are filled with boxes, generated from a simpler, box generating algorithm.
#### For the Omniverse Plugin
- Sign up to Nvidia's Omniverse programs https://www.nvidia.com/en-us/omniverse/download/
- install Omniverse Code through the Omniverse Launcher

- (In Omniverse Code) click on the extensions tab

- Click on the THIRD PARTY tab

- Find MAKE A RANDOM CUBE by me (Austen Cabret) and toggle the grey switch that activates the plugin.
- a moveable window should pop up that has two buttons.
- click the add button to add random cubes and the delete button the remove them.

## Dependencies
- Python3
- Pytorch
- Numpy
- Omniverse
## Features To Come
* More supported file types (.obj, .usd, .fbx)
* Faster generation speeds
* Plugin to Omniverse UI
* Generate more than just boxes
* Text as input
* Neural network improvements
* Easier execution
| 3,773 | Markdown | 51.416666 | 439 | 0.781606 |
Generlate/model_generator/omniverse-random-cubes/exts/austen.random.cube/austen/random/cube/extension.py | import omni.ext
import omni.ui as ui
import omni.kit.commands
import random
# Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)`
def some_public_function(x: int):
print("[austen.random.cube] some_public_function was called with x: ", x)
return x**x
# Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be
# instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled
# on_shutdown() is called.
class AustenRandomCubeExtension(omni.ext.IExt):
# ext_id is current extension id. It can be used with extension manager to query additional information, like where
# this extension is located on filesystem.
def on_startup(self):
print("[austen.random.cube] austen random cube startup")
self._window = ui.Window("Make Random Cube", width=300, height=300)
with self._window.frame:
with ui.VStack():
def generate_random_algorithm_cube():
omni.kit.commands.execute(
"CreateMeshPrimWithDefaultXform", prim_type="Cube"
)
omni.kit.commands.execute(
"TransformMultiPrimsSRTCpp",
count=1,
paths=["/World/Cube"],
new_translations=[0.0, 0.0, 0.0],
new_rotation_eulers=[0.0, 0.0, 0.0],
new_rotation_orders=[0, 1, 2],
new_scales=[
(random.uniform(0.05, 3)),
(random.uniform(0.05, 3)),
(random.uniform(0.05, 3)),
],
old_translations=[0.0, 0.0, 0.0],
old_rotation_eulers=[0.0, 0.0, 0.0],
old_rotation_orders=[0, 1, 2],
old_scales=[1.0, 1.0, 1.0],
usd_context_name="",
time_code=0.0,
)
def delete():
omni.kit.commands.execute(
"DeletePrims",
paths=[
"/World/Cube",
"/World/Cube_01",
"/World/Cube_02",
"/World/Cube_03",
"/World/Cube_04",
"/World/Cube_05",
"/World/Cube_06",
"/World/Cube_07",
"/World/Cube_08",
"/World/Cube_09",
"/World/Cube_10",
],
destructive=False,
)
with ui.HStack():
with ui.VStack():
ui.Button(
"Add a random algorithm cube",
clicked_fn=generate_random_algorithm_cube,
)
ui.Button("Delete", clicked_fn=delete, width=110)
def on_shutdown(self):
print("[austen.random.cube] austen random cube shutdown")
| 3,326 | Python | 40.074074 | 119 | 0.454901 |
Generlate/model_generator/model_generator/main.py | #!/usr/bin/env python3
""" Runs a formatted dataset through a neural network, formats the output to be viewed as a 3d object and file name."""
import os
import numpy
import torch.nn as nn
import torch.optim as optim
import utils.data_formatter
from utils.neural_network import NeuralNetwork
if __name__ == "__main__":
# Create an instance of the neural network.
model = NeuralNetwork()
# Define the loss function and optimizer.
CRITERION = nn.MSELoss()
OPTIMIZER = optim.SGD(model.parameters(), lr=0.01)
# Load the datasets.
TRAINING_INPUT = utils.data_formatter.TRAINING_COMBINED_TENSOR
TESTING_INPUT = utils.data_formatter.TESTING_COMBINED_TENSOR
# Set number of epochs. I found three to give the lowest loss score.
NUMBER_OF_EPOCHS = 3
TESTING_DATA_ITERATOR = iter(TESTING_INPUT)
# The training loop.
for EPOCH in range(NUMBER_OF_EPOCHS):
# Get the next testing data tensor.
TESTING_DATA_TENSOR = next(TESTING_DATA_ITERATOR)
# Generate box coordinates.
OUTPUT = model(TRAINING_INPUT)
# Compare the generated coordinates against the test coordinates.
LOSS = CRITERION(OUTPUT, TESTING_DATA_TENSOR)
# Print the loss every epoch.
# print(f"Epoch: {epoch+1}, Loss: {loss.item()}")
# List the generated coordinates.
ARRAY = OUTPUT.detach().numpy().flatten()
# Format to .off.
FORMATTED_ARRAY = "OFF\n8 6 0\n"
for i, VALUE in enumerate(ARRAY):
FORMATTED_ARRAY += str(VALUE * 22) + " "
if (i + 1) % 3 == 0:
FORMATTED_ARRAY += "\n"
ADDITIONAL_STRING = """4 0 1 2 3
4 1 5 6 2
4 5 4 7 6
4 4 0 3 7
4 3 2 6 7
4 4 5 1 0"""
FORMATTED_ARRAY += ADDITIONAL_STRING
file_path = "./generated_boxes/generated_box.off"
# Check if the file already exists.
FILE_EXISTS = os.path.exists(file_path)
if FILE_EXISTS:
# Find the next available file name by incrementing a counter.
FILE_COUNTER = 1
while FILE_EXISTS:
FILE_NAME, FILE_EXTENSION = os.path.splitext(file_path)
INCREMENTED_FILE_PATH = (
f"{FILE_NAME}_{FILE_COUNTER}{FILE_EXTENSION}"
)
FILE_EXISTS = os.path.exists(INCREMENTED_FILE_PATH)
FILE_COUNTER += 1
file_path = INCREMENTED_FILE_PATH
# Save the .off file.
with open(file_path, "w") as FILE:
FILE.write(FORMATTED_ARRAY)
print("File generated successfully. Saved as:", file_path)
| 2,523 | Python | 29.409638 | 119 | 0.633373 |
Generlate/model_generator/model_generator/datasets/austens_boxes/algorithmic_box_generator.py | import random
VERTICES = [
[-1, -1, -1], # Vertex 0
[1, -1, -1], # Vertex 1
[1, 1, -1], # Vertex 2
[-1, 1, -1], # Vertex 3
[-1, -1, 1], # Vertex 4
[1, -1, 1], # Vertex 5
[1, 1, 1], # Vertex 6
[-1, 1, 1] # Vertex 7
]
FACES = [
[0, 1, 2, 3], # Face 0
[1, 5, 6, 2], # Face 1
[5, 4, 7, 6], # Face 2
[4, 0, 3, 7], # Face 3
[3, 2, 6, 7], # Face 4
[4, 5, 1, 0] # Face 5
]
def generate_box(width, height, depth, filename):
with open(filename, 'w') as f:
f.write('OFF\n')
f.write(f'{len(VERTICES)} {len(FACES)} 0\n')
for vertex in VERTICES:
f.write(f'{vertex[0]:.2f} {vertex[1]:.2f} {vertex[2]:.2f}\n')
for face in FACES:
f.write(f'{len(face)} {" ".join(map(str, face))}\n')
def generate_multiple_boxes(num_boxes):
for i in range(num_boxes):
width, height, depth = [random.randint(1, 10) for _ in range(3)]
filename = f'box{i}.off'
generate_box(width, height, depth, filename)
print(f'Box {i} with dimensions '
f'{width:.2f}x{height:.2f}x{depth:.2f} '
f'exported to {filename}.')
generate_multiple_boxes(100)
| 1,219 | Python | 24.416666 | 73 | 0.483183 |
Generlate/model_generator/model_generator/utils/data_formatter.py | """ Formats the dataset to the proper format for the neural network to process. """
import torch
from utils.data_loader import TrainingDataLoader, TestingDataLoader
# Specify where the training and testing boxes are stored and how many to load.
training_data_directory = "./datasets/austens_boxes/training/"
testing_data_directory = "./datasets/austens_boxes/testing/"
training_number_of_files = 60
testing_number_of_files = 10
# Apply the class that loads and formats the box data.
TRAINING_DATASET = TrainingDataLoader(
training_data_directory, training_number_of_files
)
TESTING_DATASET = TestingDataLoader(
testing_data_directory, testing_number_of_files
)
# Get numbers from the files and convert to tensor.
TRAINING_NUMBER_LISTS = [
torch.tensor(
[
LIST[INDEX]
for LIST in TRAINING_DATASET.file_contents
if len(LIST) > INDEX
]
)
for INDEX in range(24)
]
TRAINING_NUMBER_LISTS_FLOAT32 = [
TENSOR.to(torch.float32) for TENSOR in TRAINING_NUMBER_LISTS
]
# Get testing tensors for each file.
TESTING_TENSORS = [
TESTING_DATASET[INDEX] for INDEX in range(len(TESTING_DATASET))
]
# Combine tensors into a single tensor.
TRAINING_COMBINED_TENSOR = torch.stack(TRAINING_NUMBER_LISTS_FLOAT32, dim=0)
TESTING_COMBINED_TENSOR = torch.stack(TESTING_TENSORS, dim=0)
| 1,349 | Python | 27.723404 | 83 | 0.727947 |
Generlate/model_generator/model_generator/utils/data_loader.py | """ Module to get data from a directory and convert it to a python dataset."""
import os
import torch
from torch.utils.data import Dataset
class TrainingDataLoader(Dataset):
"""Allows a training dataset to be created from a directory of files."""
def __init__(self, training_data_directory, training_number_of_files):
"""Initializes a Dataset by loading files from a directory."""
# The sorted file paths limited to the number specified.
file_paths = [
os.path.join(training_data_directory, file_name)
for file_name in sorted(os.listdir(training_data_directory))
][:training_number_of_files]
self.file_contents = self.load_file_contents(file_paths)
def __len__(self):
"""Returns the dataset's length."""
return len(self.file_contents)
def __getitem__(self, index):
"""Return as a tensor."""
return torch.tensor(self.file_contents[index])
def load_file_contents(self, file_paths):
"""Loads file contents."""
file_contents = []
for file_path in file_paths:
with open(file_path, "r") as file:
lines = file.readlines()[2:10]
content = "".join(lines)
organized_content = self.organize_content(content)
file_contents.append(organized_content)
return file_contents
def organize_content(self, content):
"""Organize the dataset."""
lines = content.split("\n")
organized_lines = [
list(map(round, map(float, line.split())))
for line in lines
if line.strip()
]
return [val for sublist in organized_lines for val in sublist]
class TestingDataLoader(Dataset):
"""Allows a testing dataset to be created from a directory of files."""
def __init__(self, testing_data_directory, testing_number_of_files):
"""To fill."""
# The sorted file paths limited to the number specified.
file_names = sorted(os.listdir(testing_data_directory))[
:testing_number_of_files
]
self.file_paths = [
os.path.join(testing_data_directory, file_name)
for file_name in file_names
]
def __len__(self):
"""Return the dataset's length."""
return len(self.file_paths)
def __getitem__(self, index):
"""Return file contents as a tensor."""
file_path = self.file_paths[index]
file_contents = self.load_file_contents(file_path)
return torch.tensor(file_contents, dtype=torch.float32)
def load_file_contents(self, file_path):
"""Loads file contents."""
with open(file_path, "r") as file:
lines = file.readlines()[2:10]
content = "".join(lines)
formatted_content = self.organize_content(content)
return formatted_content
def organize_content(self, content):
"""Organize the dataset."""
lines = content.split("\n")
organized_lines = [
list(map(round, map(float, line.split())))
for line in lines
if line.strip()
]
flattened_list = [
val for sublist in organized_lines for val in sublist
]
reshaped_array = torch.tensor(flattened_list).reshape(-1, 1)
return reshaped_array
| 3,368 | Python | 34.463158 | 78 | 0.59709 |
Generlate/model_generator/model_generator/utils/neural_network.py | """ Takes in tensors and returns new tensors."""
import torch
import torch.nn as nn
# Define the neural network structure. More hidden layers had negligent effect on loss.
class NeuralNetwork(nn.Module):
"""Calls Pytorch functions to process a tensor through a neural network."""
def __init__(self):
"""Initializes a Neural network with three hidden layers."""
super(NeuralNetwork, self).__init__()
self.hidden1 = nn.Linear(60, 80)
self.hidden2 = nn.Linear(80, 80)
self.hidden3 = nn.Linear(80, 80)
self.output = nn.Linear(80, 1)
def forward(self, x):
"""Applies a relu activation function."""
x = torch.relu(self.hidden1(x))
x = torch.relu(self.hidden2(x))
x = torch.relu(self.hidden3(x))
x = self.output(x)
return x
| 830 | Python | 30.961537 | 87 | 0.626506 |
tudelft/autoGDMplus/main.py | import os
import re
import json
import glob
import numpy as np
import pandas as pd
from pathlib import Path
from datetime import datetime
from colorama import Fore, Back, Style
from layout_gen import generate_recipes
from utils import GDMConfig, flow_field, is_float, read_gas_data, read_wind_data, read_occ_csv
HOME_DIR = Path.home()
main_path = os.path.abspath(__file__)
AutoGDM2_dir = os.path.dirname(main_path)
class AutoGDM2:
def __init__(self, settings:dict):
self.settings = settings
self.isaac_dir = self.settings["isaac_dir"]
self.wh_gen_dir = self.settings["wh_gen_dir"]
self.blender_dir = self.settings["blender_dir"]
self.env_lst = self.settings["env_list"]
self.env_lst_failed = []
# different color and formatting to display the terminal
def printGDMStyle(self, string):
print(Fore.GREEN + Style.BRIGHT + string)
print(Style.RESET_ALL)
# get list of environment names
def get_envs(self) -> None:
return os.listdir(self.settings["geometry_dir"])
def remove_envs(self, indexes:list) -> None:
for index in sorted(indexes, reverse=True):
self.env_lst_failed.append(self.env_lst[index])
del self.env_lst[index]
# cleanup func the AutoGDM2 directories
def cleanup(self) -> None:
self.printGDMStyle("[AutoGDM2] Performing cleanup...")
# remove everything in ./environments/recipes
if os.listdir(self.settings["recipe_dir"]):
os.system(f"cd {self.settings['recipe_dir']} && rm -v *")
else:
self.printGDMStyle("[AutoGDM2] No recipies to clean.")
# remove everything in ./environments/geometry
if os.listdir(self.settings["geometry_dir"]):
os.system(f"cd {self.settings['geometry_dir']} && rm -rv *")
else:
self.printGDMStyle("[AutoGDM2] No mockup scenes to clean.")
# remove everything in ./environments/isaac_sim
if os.listdir(self.settings["usd_scene_dir"]):
os.system(f"cd {self.settings['usd_scene_dir']} && rm -v *")
else:
self.printGDMStyle("[AutoGDM2] No usd scenes to clean.")
# remove everything in ./environments/cfd EXCEPT the 'default_cfd_case' directory
rm_string = ' '.join([str(item) for item in [x for x in os.listdir(self.settings["cfd_dir"]) if 'default' not in x]])
if rm_string:
os.system(f"cd {self.settings['cfd_dir']} && rm -rv {rm_string}")
else:
self.printGDMStyle("[AutoGDM2] No CFD cases to clean.")
# remove all directories in gaden_env_dir (NOT CMakelLists.txt and package.xml)
if os.listdir(self.settings["gaden_env_dir"]):
os.system(f"cd {self.settings['gaden_env_dir']} && rm -rv */")
else:
self.printGDMStyle("[AutoGDM2] No usd scenes to clean.")
# remove everything in ./environments/gas_data
if os.listdir(self.settings["gas_data_dir"]):
os.system(f"cd {self.settings['gas_data_dir']} && rm -rv *")
else:
self.printGDMStyle("[AutoGDM2] No gas data to clean.")
# remove everything in ./environments/wind_data
if os.listdir(self.settings["wind_data_dir"]):
os.system(f"cd {self.settings['wind_data_dir']} && rm -rv *")
else:
self.printGDMStyle("[AutoGDM2] No wind data to clean.")
# remove everything in ./environments/occupancy
if os.listdir(self.settings["occ_data_dir"]):
os.system(f"cd {self.settings['occ_data_dir']} && rm -rv *")
else:
self.printGDMStyle("[AutoGDM2] No occupancy data to clean.")
self.printGDMStyle("[AutoGDM2] Cleanup completed.")
# layout generator, results in recipes.txt
def layout_gen(self):
self.printGDMStyle(f"[AutoGDM2] Generating {self.settings['env_amount']} recipes for type {self.settings['env_type']}...")
generate_recipes(self.settings)
self.printGDMStyle("[AutoGDM2] Completed environment recipe generation. ")
# blender .stl generator, results in stls in environments/mockup_scenes
def blender_asset_placer(self):
self.printGDMStyle("[AutoGDM2] Creating .stl files...")
blender_exe = os.path.join(self.blender_dir, 'blender')
command = f"{blender_exe} --background --python blender_asset_placer.py -- {self.settings['recipe_dir']} {self.settings['geometry_dir']}" # run blender in the background
os.system(command)
self.printGDMStyle("[AutoGDM2] Completed .stl file creation.")
# isaac usd scene generator, results in usd scenes in environments/isaac_sim
def isaac_asset_placer(self):
self.printGDMStyle("[AutoGDM2] Creating .usd scenes...")
isaac_exe = os.path.join(self.isaac_dir, 'python.sh')
wh_gen_exe= os.path.join(self.wh_gen_dir, 'isaac_asset_placer.py')
command = f"{isaac_exe} {wh_gen_exe} -- {self.settings['recipe_dir']} {self.settings['usd_scene_dir']}"
os.system(command)
self.printGDMStyle("[AutoGDM2] Completed .usd scene creation.")
# run cfMesh for created .stl files
def cfd_mesh(self):
self.printGDMStyle("[AutoGDM2] Creating CFD meshes...")
for scenedir in self.env_lst:
currentdir = f"{self.settings['geometry_dir']}{scenedir}/mesh/"
self.printGDMStyle(f"[AutoGDM2] Meshing environment {scenedir}...")
# remove comined.stl if it already exists
if os.path.isfile(f"{currentdir}combined.stl"): os.remove(f"{currentdir}combined.stl")
stls = glob.glob(f"{currentdir}*.stl") # gather all stls
stls_str = ' '.join([str(item) for item in stls]) # put them in one string separated by spaces
# edit the solid name at the start and end of each .stl file
# (bad method for large files but it works for now)
for stl_path in stls:
with open(f"{stl_path}", "r") as f:
stl_name = stl_path.rsplit('/', 1)[-1][:-4]
data = f.readlines()
data[0] = f"solid {stl_name}\n" # don't forget to add a newline!
data[-1] = f"endsolid {stl_name}\n"
with open(f"{stl_path}", "w") as f:
f.writelines(data)
f.close()
# combine .stls with cat command and change to a .fms file
catcommand = f"cat {stls_str} >> combined.stl"
fmscommand = "surfaceFeatureEdges combined.stl combined.fms"
os.system(f"cd {currentdir} && {catcommand} && {fmscommand}")
# change boundary conditions at the start of combined.fms
with open(f"{currentdir}combined.fms", "r") as f:
data = f.readlines()
for i,line in enumerate(data[0:20]): # check only the first 20 lines
if "outlet" in line: data[i] = "outlet patch\n"
elif "interior" in line: data[i] = "interior wall\n"
elif "inlet" in line: data[i] = "inlet patch\n"
elif "sides" in line: data[i] = "sides wall\n"
with open(f"{currentdir}combined.fms", "w") as f:
f.writelines(data)
f.close()
# create cfd case directory if it does not exist already from defualt_cfd_case
cfd_case_dir = f"{self.settings['cfd_dir']}{scenedir}/"
if not os.path.isdir(cfd_case_dir):
os.system(f"cp -r {self.settings['cfd_dir']}default_cfd_case {cfd_case_dir}")
# move .fms to separate cfd dir in environments/cfd
os.system(f"cp {currentdir}combined.fms {cfd_case_dir}")
# set mesh settings
with open(f"{cfd_case_dir}system/meshDict", "r") as f:
data = f.readlines()
data[20] = f"minCellSize {self.settings['cfd_mesh_settings']['minCellSize']};\n"
data[22] = f"maxCellSize {self.settings['cfd_mesh_settings']['maxCellSize']};\n"
data[24] = f"boundaryCellSize {self.settings['cfd_mesh_settings']['boundaryCellSize']};\n"
if self.settings['cfd_mesh_settings']["localRefinement"] != 0:
data[26] = "localRefinement\n" # uncomment localRefinement setting
data[30] = f" cellSize {self.settings['cfd_mesh_settings']['localRefinement']};\n"
data[32] = "}\n"
with open(f"{cfd_case_dir}/system/meshDict", "w") as f:
f.writelines(data)
f.close()
# run the meshing process
os.system(f"cd {cfd_case_dir} && cartesianMesh")
self.printGDMStyle("[AutoGDM2] Completed CFD mesh creation.")
def cfd_set_params(self):
self.printGDMStyle("[AutoGDM2] Setting CFD parameters...")
for cfd_case in self.env_lst:
cfd_case_dir = f"{self.settings['cfd_dir']}{cfd_case}/"
#### 0 folder ####
# set U
with open(f"{cfd_case_dir}0/U", "r") as f:
data = f.readlines()
data[25] = f" value uniform ({self.settings['inlet_vel'][0]} {self.settings['inlet_vel'][1]} {self.settings['inlet_vel'][2]});\n"
with open(f"{cfd_case_dir}0/U", "w") as f:
f.writelines(data)
f.close()
# set k (turbelent kinetic energy)
with open(f"{cfd_case_dir}0/k", "r") as f:
data = f.readlines()
data[21] = f"internalField uniform {self.settings['cfd_settings']['k']};\n"
for i in [28, 39, 45]:
data[i] = f" value uniform {self.settings['cfd_settings']['k']};\n"
with open(f"{cfd_case_dir}0/k", "w") as f:
f.writelines(data)
f.close()
# set epsilon (dissipation rate)
with open(f"{cfd_case_dir}0/epsilon", "r") as f:
data = f.readlines()
data[21] = f"internalField uniform {self.settings['cfd_settings']['epsilon']};\n"
for i in [28, 39, 45]:
data[i] = f" value uniform {self.settings['cfd_settings']['epsilon']};\n"
with open(f"{cfd_case_dir}0/epsilon", "w") as f:
f.writelines(data)
f.close
#### sytem folder ####
# decomposeParDict (set the division of the mesh to the amount of threads)
with open(f"{cfd_case_dir}system/decomposeParDict", "r") as f:
data = f.readlines()
data[17] = f"numberOfSubdomains {self.settings['cfd_settings']['threads']};\n"
with open(f"{cfd_case_dir}system/decomposeParDict", "w") as f:
f.writelines(data)
f.close()
# controlDict
with open(f"{cfd_case_dir}system/controlDict", "r") as f:
data = f.readlines()
data[24] = f"endTime {self.settings['cfd_settings']['endTime']};\n"
data[30] = f"writeInterval {self.settings['cfd_settings']['writeInterval']};\n"
data[48] = f"maxCo {self.settings['cfd_settings']['maxCo']};\n"
if self.settings['cfd_settings']['maxDeltaT'] != 0.0:
data[50] = f"maxDeltaT {self.settings['cfd_settings']['maxDeltaT']};\n"
with open(f"{cfd_case_dir}system/controlDict", "w") as f:
f.writelines(data)
f.close()
# fvSolution
with open(f"{cfd_case_dir}system/fvSolution", "r") as f:
data = f.readlines()
data[51] = f" nOuterCorrectors {self.settings['cfd_settings']['nOuterCorrectors']};\n"
with open(f"{cfd_case_dir}system/fvSolution", "w") as f:
f.writelines(data)
f.close()
self.printGDMStyle("[AutoGDM2] CFD parameters set.")
def cfd_run(self):
self.printGDMStyle("[AutoGDM2] Running CFD...")
for cfd_case in self.env_lst:
cfd_case_dir = f"{self.settings['cfd_dir']}{cfd_case}/"
self.printGDMStyle(f"[AutoGDM2] Running CFD for case {cfd_case}...")
runcmd = f"mpirun --use-hwthread-cpus -np {self.settings['cfd_settings']['threads']} pimpleFoam -parallel"
if self.settings['cfd_settings']['latestTime']:
processcmd = f"postProcess -func 'components(U)' -latestTime && postProcess -func 'writeCellCentres' -latestTime"
else:
processcmd = f"postProcess -func 'components(U)' -time {self.settings['cfd_settings']['timeRange']} && postProcess -func 'writeCellCentres' -time {self.settings['cfd_settings']['timeRange']}"
# decompose -> run CFD -> reconstruct -> postprocess
os.system(f"cd {cfd_case_dir} && decomposePar && {runcmd} && reconstructPar && {processcmd}")
self.printGDMStyle("[AutoGDM2] Completed CFD.")
return
def make_ros_folder(self): # adapted from AUTOGDM TODO: improve
self.printGDMStyle(f"[AutoGDM2] Creating ROS directories in {self.settings['gaden_env_dir']}...")
for env in self.env_lst:
self.ros_loc = f"{self.settings['gaden_env_dir']}{env}"
if os.path.exists(self.ros_loc):
os.system(f"rm -rf {self.ros_loc}") # TODO move to cleanup?
os.system(f"mkdir -p {self.ros_loc}") # create env dir in gaden_env_dir
os.system(f"cp -r {self.settings['empty_ros_dir']}* {self.ros_loc}") # copy the empty ROS dir to it
self.printGDMStyle(f"[AutoGDM2] Created ROS directories in {self.settings['gaden_env_dir']}.")
# prepare ROS directory with environment-specific configurations (adapted from AutoGDM)
def prep_ros(self):
self.printGDMStyle(f"[AutoGDM2] Preparing ROS...")
sim_arg = f"{int(sum(self.settings['inlet_vel']))}ms" # simulation argument (required in GADEN.launch, gives possibility to use multiple wind simulations)
invalid_idx = []
for env_idx,env in enumerate(self.env_lst):
self.cfd_folder = f"{self.settings['cfd_dir']}{env}"
self.ros_loc = f"{self.settings['gaden_env_dir']}{env}"
os.system(f"mkdir -p {self.ros_loc}/wind_simulations/{sim_arg}/") # create dir for specific wind simulation
time_dirs = [i for i in os.listdir(self.cfd_folder) if is_float(i)]
time_dirs_float = [float(i) for i in time_dirs] # necessary for np.argmax
if self.settings['cfd_settings']['latestTime']:
steps = [time_dirs[np.argmax(time_dirs_float)]]
else:
# get start and stop value from settings
start_stop = [float(i) for i in re.findall(r"[-+]?\d*\.?\d+",self.settings['cfd_settings']['timeRange'])]
# get all timesteps that are within the range
steps = np.sort([i for i in time_dirs_float if i >= start_stop[0] and i <= start_stop[1]])
steps = [str(i) for i in steps]
# change float values to integer if possible
for i,step in enumerate(steps):
if float(steps[i]).is_integer():
steps[i] = str(int(float(step))) # ugly but it works!
for step_idx,step in enumerate(steps):
try:
f = open(f"{self.cfd_folder}/{step}/C")
except FileNotFoundError:
print(f"CFD failed for this environment, skipping...")
invalid_idx.append(env_idx) # save invalid env idx to remove later
continue
print(f"Preparing windfield {step_idx + 1}/{len(steps)}")
self.points_file = f.readlines()
self.points_x = []
self.points_y = []
self.points_z = []
for i,line in enumerate(self.points_file):
if i >=23:
if line.find(")") == 0:
break
line = line.replace("("," ").replace(")"," ").split()
self.points_x.append(float(line[0]))
self.points_y.append(float(line[1]))
self.points_z.append(float(line[2]))
timestep = flow_field(step)
f = open(self.cfd_folder+"/"+str(step)+'/U')
flow_data = f.readlines()
Ux = []
Uy = []
Uz = []
for i,line in enumerate(flow_data):
if i >=23:
if line.find(")") == 0:
break
line = line.replace("("," ").replace(")"," ").split()
Ux.append(float(line[0]))
Uy.append(float(line[1]))
Uz.append(float(line[2]))
timestep.Ux, timestep.Uy, timestep.Uz = Ux, Uy, Uz
data = {'U:0': timestep.Ux, 'U:1':timestep.Uy,'U:2': timestep.Uz,'Points:0':self.points_x,'Points:1':self.points_y,'Points:2':self.points_z}
df = pd.DataFrame(data, columns= ['U:0','U:1','U:2','Points:0','Points:1','Points:2'])
df.to_csv(f"{self.ros_loc}/wind_simulations/{sim_arg}/wind_at_cell_centers_{step_idx}.csv",index=False,header=True)
# gather .stls in ./environments/geometry and copy them to the gaden/envs/envname folder
self.ros_cad_loc = f"{self.ros_loc}/cad_models/"
stls = glob.glob(f"{self.settings['geometry_dir']}{env}/gaden/*.stl") # gather all stls
stls_str = ' '.join([str(item) for item in stls]) # put them in one string separated by spaces
os.system(f"cp {stls_str} {self.ros_cad_loc}")
# get new empty point for source
# self.place_source() # TODO move out
# edit launch files
self.ros_launch_folder = self.ros_loc + '/launch/'
# GADEN_preprocessing.launch
# TODO make specification for outlet CAD models flexible by inserting more lines (multiple outlets possible)
with open(f"{self.ros_launch_folder}GADEN_preprocessing.launch", "r") as f:
data = f.readlines()
data[5] = f' <arg name="scenario" default="{env}"/>\n'
data[10] =f' <param name="cell_size" value="{self.settings["cfd_mesh_settings"]["minCellSize"]}"/>\n' # set gas sim cell size to the cfd mesh size
data[33] =f' <param name="empty_point_x" value="{round(self.settings["src_placement"][0],2)}"/> ### (m)\n'
data[34] =f' <param name="empty_point_y" value="{round(self.settings["src_placement"][1],2)}"/> ### (m)\n'
data[35] =f' <param name="empty_point_z" value="{round(self.settings["src_placement"][2],2)}"/> ### (m)\n'
data[40] =f' <param name="wind_files" value="$(find envs)/$(arg scenario)/wind_simulations/{sim_arg}/wind_at_cell_centers"/>\n'
if self.settings["env_type"] == 'wh_empty': # delete interior cad model from launchfile
data[13] = ' <param name="number_of_models" value="1"/>'
data[15] = ''
with open(f"{self.ros_launch_folder}GADEN_preprocessing.launch", "w") as f:
f.writelines(data)
f.close()
# GADEN.launch # TODO add filament simulator settings and looping options
with open(f"{self.ros_launch_folder}GADEN.launch", "r") as f:
data = f.readlines()
data[5] = f' <arg name="scenario" default="{env}"/>\n'
data[6] = f' <arg name="simulation" default="{sim_arg}" />\n'
data[7] = f' <arg name="source_location_x" value="{"%.2f" % self.settings["src_placement"][0]}"/> ### (m)\n'
data[8] = f' <arg name="source_location_y" value="{"%.2f" % self.settings["src_placement"][1]}"/> ### (m)\n'
data[9] = f' <arg name="source_location_z" value="{"%.2f" % self.settings["src_placement"][2]}"/> ### (m)\n'
data[50] = f' <param name="sim_time" value="{self.settings["sim_time"]}" /> ### [sec] Total time of the gas dispersion simulation\n'
data[51] = f' <param name="time_step" value="{self.settings["time_step"]}" /> ### [sec] Time increment between snapshots. Set aprox = cell_size/max_wind_speed.\n'
data[58] = f' <param name="gas_type" value="{self.settings["gas_type"]}" /> ### 0=Ethanol, 1=Methane, 2=Hydrogen, 6=Acetone\n'
data[68] = f' <param name="wind_time_step" value="{self.settings["cfd_settings"]["writeInterval"]}" /> ### (sec) time increment between Wind snapshots\n'
data[70] = f' <param name="/allow_looping" value="{self.settings["wind_looping"]}" />\n'
data[71] = f' <param name="/loop_from_step" value="{self.settings["wind_start_step"]}" />\n'
data[72] = f' <param name="/loop_to_step" value="{self.settings["wind_stop_step"]}" />\n'
with open(f"{self.ros_launch_folder}GADEN.launch", "w") as f:
f.writelines(data)
f.close()
# GADEN_player.launch # TODO check for relevant CAD models and add/delete automatically
with open(f"{self.ros_launch_folder}GADEN_player.launch", "r") as f:
data = f.readlines()
data[4] = f' <arg name="scenario" default="{env}"/>\n'
data[5] = f' <arg name="simulation" default="{sim_arg}" />\n'
data[6] = f' <arg name="source_location_x" value="{"%.2f" % self.settings["src_placement"][0]}"/> ### (m)\n'
data[7] = f' <arg name="source_location_y" value="{"%.2f" % self.settings["src_placement"][1]}"/> ### (m)\n'
data[8] = f' <arg name="source_location_z" value="{"%.2f" % self.settings["src_placement"][2]}"/> ### (m)\n'
with open(f"{self.ros_launch_folder}GADEN_player.launch", "w") as f:
f.writelines(data)
f.close()
self.remove_envs(invalid_idx) # remove the failed environments from the environment list
self.printGDMStyle(f"[AutoGDM2] Prepared ROS.")
# roslaunch GADEN preprocessing (adapted from AutoGDM)
def run_preprocessing(self):
self.printGDMStyle(f"[AutoGDM2] Preprocessing with GADEN...")
for env in self.env_lst:
self.printGDMStyle(f"[AutoGDM2] Preprocessing {env} with GADEN...")
self.ros_loc = f"{self.settings['gaden_env_dir']}{env}"
self.ros_launch_folder = self.ros_loc + '/launch/'
os.system(f"cd {self.ros_launch_folder} && roslaunch GADEN_preprocessing.launch")
self.printGDMStyle(f"[AutoGDM2] GADEN Preprocessing finished.")
# roslaunch GADEN gas_simulator (adapted from AutoGDM)
def run_ros(self):
self.printGDMStyle(f"[AutoGDM2] Simulating gas dispersal with GADEN...")
for env in self.env_lst:
self.printGDMStyle(f"[AutoGDM2] Simulating gas dispersal for {env} with GADEN...")
self.ros_loc = f"{self.settings['gaden_env_dir']}{env}"
self.ros_launch_folder = self.ros_loc + '/launch/'
os.system(f"cd {self.ros_launch_folder} && roslaunch GADEN.launch")
self.printGDMStyle(f"[AutoGDM2] Finished gas dispersal simulation with GADEN...")
# TODO - generate one array containing all gas iterations
# compressed binary to numpy files for easy python use
def gasdata_binary2npy(self, savetxt=False):
for env_dir in self.env_lst:
# create folder for the gas data output
output_dir = f"{self.settings['gas_data_dir']}{env_dir}"
if os.path.exists(output_dir): # if directory does already exist, delete
os.system(f"rm -rf {output_dir}") # move to cleanup?
os.mkdir(output_dir)
gas_sim_dir = f"{self.settings['gaden_env_dir']}{env_dir}/gas_simulations/"
current_dir = glob.glob(f"{gas_sim_dir}*/*/") # ! assuming there is only one sim case and one scenario
files = os.listdir(current_dir[0])
iterations = [str(item) for item in [x for x in files if 'wind' not in x]] # exclude 'wind' directory
for iteration in iterations:
filename = f"{current_dir[0]}{iteration}"
header, filaments = read_gas_data(filename)
output_file = f"{output_dir}/{iteration}"
np.save(f"{output_file}_head.npy", header)
np.save(f"{output_file}_fil.npy", filaments)
if savetxt:
np.savetxt(f"{output_file}_head.txt", header, delimiter='\n')
np.savetxt(f"{output_file}_fil.txt", filaments)
self.printGDMStyle(f"[AutoGDM2] Converdted gas dispersal data to numpy...")
def windfields_binary2npy(self):
for env_dir in self.env_lst:
wind_sim_dir = f"{self.settings['gaden_env_dir']}{env_dir}/gas_simulations/"
files = glob.glob(f"{wind_sim_dir}*/*/wind/*") # ! assuming there is only one sim case and one scenario
windfields = read_wind_data(files)
output_file = f"{self.settings['wind_data_dir']}/{env_dir}.npy"
np.save(output_file, windfields)
self.printGDMStyle(f"[AutoGDM2] Converted wind data data to numpy...")
def occupancy_csv2npy(self):
for env_dir in self.env_lst:
file = f"{self.settings['gaden_env_dir']}{env_dir}/OccupancyGrid3D.csv"
header, occ_grid = read_occ_csv(file)
output_file = f"{self.settings['occ_data_dir']}/{env_dir}_grid.npy"
np.save(output_file, occ_grid)
with open(f"{self.settings['occ_data_dir']}/{env_dir}_head.txt", 'w') as convert_file:
convert_file.write(json.dumps(header))
self.printGDMStyle(f"[AutoGDM2] Converting occupancy data data to numpy...")
if __name__ == "__main__":
start_time = datetime.now()
conf = GDMConfig()
settings = conf.current_gdm_settings()
gdm = AutoGDM2(conf.current_gdm_settings())
gdm.printGDMStyle(f"[AutoGDM2] --- CONFIG --- \n {conf.pretty(settings)}")
gdm.cleanup() # clean AutoGDM directories and files
gdm.layout_gen() # create recipes for the desired environments
gdm.blender_asset_placer() # create .stl files of the mockup scenes used for cfd and GADEN
gdm.isaac_asset_placer() # create .usd scenes for use in Isaac Sim
gdm.cfd_mesh() # mesh the generated .stl files
gdm.cfd_set_params() # set the necessary cfd parameters
gdm.cfd_run() # run the cfd simulation
gdm.make_ros_folder() # make ROS directories to run GADEN
gdm.prep_ros() # prepare ROS directory with environment-specific configurations
gdm.run_preprocessing() # roslaunch GADEN preprocessing
gdm.run_ros() # roslaunch GADEN gas simulator
gdm.gasdata_binary2npy() # convert the generated gasdata to .npy and save in ./environemnts/gas_data/
gdm.windfields_binary2npy() # convert the generated windata to .npy and save in ./environments/wind_data/
gdm.occupancy_csv2npy() # convert the generated occupancy grid .csv to .npy and a header, save in ./environments/occupancy/
gdm.printGDMStyle(f"[AutoGDM2] FINISEHD: Generated {settings['env_amount']} {settings['env_type']} environments in: \n {datetime.now() - start_time}")
if gdm.env_lst_failed:
gdm.printGDMStyle(f"[AUtoGDM2] Some environments failed and were not completed: \n {gdm.env_lst_failed}") | 28,382 | Python | 49.683928 | 219 | 0.559968 |
tudelft/autoGDMplus/blender_asset_placer.py | ### blender_asset_placer.py
### imports recipe dict and exports scene
### H. Erwich
### 23-05-2023
import sys # get recipe and mockup scene dir
argv = sys.argv
argv = argv[argv.index("--") + 1:] # get all the args after " -- "
recipe_dir = argv[0] # recipe folder
geometry_dir = argv[1] # blender export folder
import bpy
import os
import glob
import json
import random
import numpy as np
class Utils:
# Useful utilities and shortcuts
def __init__(self):
self.blend_file_path = bpy.data.filepath
self.directory = os.path.dirname(self.blend_file_path)
def get_asset_name(self, path_str):
asset_name = path_str.rsplit('/', 1)[-1][:-4] #returns object name, [:-4] to remove .usd/.obj
return asset_name
def usd_import(self, filepath, scale=0.01):
bpy.ops.wm.usd_import(filepath=filepath, scale=scale) #import .usd file, scale set for correct import
def set_active_ob(self, asset_str):
ob = bpy.context.scene.objects[asset_str] # Get the object
bpy.ops.object.select_all(action='DESELECT') # Deselect all objects
bpy.context.view_layer.objects.active = ob # Make the object the active object
ob.select_set(True) # Select the object
def delete_all(self):
bpy.ops.object.select_all(action='SELECT')
bpy.ops.object.delete(use_global=False)
def get_ob_dimensions(self):
return bpy.context.object.dimensions
def obj_import(self, filepath):
bpy.ops.wm.obj_import(filepath=filepath)
def obj_export(self, filename):
target_file = os.path.join(self.directory, str(filename))
bpy.ops.export_scene.obj(filepath=target_file,
check_existing=False,
axis_forward='Y', axis_up='Z') # orientation set to match the axis system in paraview
def stl_export(self, filename, selection=False, text=True):
target_file = os.path.join(self.directory, str(filename))
bpy.ops.export_mesh.stl(filepath=target_file,
check_existing=False,
use_selection=selection,
ascii=text, # required to combine them with the cat command
axis_forward='Y', axis_up='Z')
def place_boundary_cube(self, scale):
bpy.ops.mesh.primitive_cube_add(enter_editmode=False, align='WORLD',
location=(0.5*scale[0], 0.5*scale[1], 0.5*scale[2]),
scale=(0.5*scale[0], 0.5*scale[1], 0.5*scale[2]))
def translate(self, position):
bpy.ops.transform.translate(value=(position[0], position[1], position[2]),
orient_axis_ortho='X',
orient_type='GLOBAL',
orient_matrix=((1, 0, 0), (0, 1, 0), (0, 0, 1)),
orient_matrix_type='GLOBAL',
constraint_axis=(True, True, False),
mirror=False, use_proportional_edit=False,
proportional_edit_falloff='SMOOTH',
proportional_size=1,
use_proportional_connected=False,
use_proportional_projected=False,
snap=False,
snap_elements={'INCREMENT'},
use_snap_project=False,
snap_target='CLOSEST',
use_snap_self=True,
use_snap_edit=True,
use_snap_nonedit=True,
use_snap_selectable=False,
release_confirm=True)
def rotate(self, degrees):
bpy.context.active_object.rotation_euler[0] = np.radians(degrees[0])
bpy.context.active_object.rotation_euler[1] = np.radians(degrees[1])
bpy.context.active_object.rotation_euler[2] = np.radians(degrees[2])
def rotate2(self, degrees):
bpy.ops.transform.rotate(value=np.radians(degrees[0]), orient_axis='X') # TODO: check if other axis also need sign change
bpy.ops.transform.rotate(value=np.radians(degrees[1]), orient_axis='Y')
bpy.ops.transform.rotate(value=np.radians(-degrees[2]), orient_axis='Z') # minus to match transform function function in isaac sim
def scale(self, scale):
bpy.context.active_object.scale[0] = 0.5*scale[0]
bpy.context.active_object.scale[1] = 0.5*scale[1]
bpy.context.active_object.scale[2] = 0.5*scale[2]
# def apply_modifiers(obj):
# ctx = bpy.context.copy()
# ctx['object'] = obj
# for _, m in enumerate(obj.modifiers):
# try:
# ctx['modifier'] = m
# bpy.ops.object.modifier_apply(ctx, modifier=m.name)
# except RuntimeError:
# print(f"Error applying {m.name} to {obj.name}, removing it instead.")
# obj.modifiers.remove(m)
# for m in obj.modifiers:
# obj.modifiers.remove(m)
##################################################################
############################# MAIN ###############################
##################################################################
u = Utils()
u.delete_all() # deletes default objects in the scene
recipes = glob.glob(f"{recipe_dir}*.txt") # gather all recipes
# build each recipe
for rec_loc in recipes:
u.delete_all()
# reading the recipe from the file
with open(rec_loc) as f:
data = f.read()
recipe = json.loads(data) # reconstructing the data as a dictionary
# create mesh geometry and gaden geometry directory if it does not exist already
mesh_dir = f"{geometry_dir}{recipe['env_type']}_{recipe['env_id']}/mesh/"
gaden_dir = f"{geometry_dir}{recipe['env_type']}_{recipe['env_id']}/gaden/"
os.makedirs(mesh_dir, exist_ok=True)
os.makedirs(gaden_dir, exist_ok=True)
# place boundaries and export
for plane in recipe["sides"]:
bpy.ops.mesh.primitive_plane_add(enter_editmode=False, align='WORLD', location=(0, 0, 0), scale=(1, 1, 1))
for obj in bpy.context.selected_objects: # rename object with asset id
obj.name = plane["asset_id"]
u.scale(plane["dimensions"])
u.rotate(plane["orientation"])
u.translate(plane["location"])
u.stl_export(f"{mesh_dir}/sides.stl")
# place inlet and export
u.delete_all()
for plane in recipe["inlets"]:
bpy.ops.mesh.primitive_plane_add(enter_editmode=False, align='WORLD', location=(0, 0, 0), scale=(1, 1, 1))
for obj in bpy.context.selected_objects: # rename object with asset id
obj.name = plane["asset_id"]
u.scale(plane["dimensions"])
u.rotate(plane["orientation"])
u.translate(plane["location"])
u.stl_export(f"{mesh_dir}/inlet.stl")
# place outlet and export
u.delete_all()
for plane in recipe["outlets"]:
bpy.ops.mesh.primitive_plane_add(enter_editmode=False, align='WORLD', location=(0, 0, 0), scale=(1, 1, 1))
for obj in bpy.context.selected_objects: # rename object with asset id
obj.name = plane["asset_id"]
u.scale(plane["dimensions"])
u.rotate(plane["orientation"])
u.translate(plane["location"])
u.stl_export(f"{mesh_dir}/outlet.stl")
# place interior and export
u.delete_all()
for asset in recipe["interior"]:
u.obj_import(asset["mockup_file"])
for obj in bpy.context.selected_objects: # rename object with asset id
obj.name = asset["asset_id"]
u.rotate2(asset["orientation"])
u.translate(asset["location"]) # translate object to specified location#
u.stl_export(f"{mesh_dir}/interior.stl")
u.stl_export(f"{gaden_dir}/interior_ascii.stl")
u.stl_export(f"{gaden_dir}/interior_binary.stl",text=False)
# gaden only geometry
u.delete_all()
for cube in recipe["gaden_geom"]:
bpy.ops.mesh.primitive_cube_add(enter_editmode=False, align='WORLD', location=(0, 0, 0), scale=(1, 1, 1))
for obj in bpy.context.selected_objects: # rename object with asset id
obj.name = cube["asset_id"]
u.scale(cube["dimensions"])
u.rotate(cube["orientation"])
u.translate(cube["location"])
if 'wall' not in cube["asset_id"]:
u.stl_export(f"{gaden_dir}/{cube['asset_id']}_ascii.stl",selection=True)
u.stl_export(f"{gaden_dir}/{cube['asset_id']}_binary.stl",selection=True, text=False)
elif 'inside' not in cube["asset_id"]: #TODO inside is still being exported?
u.stl_export(f"{gaden_dir}/{cube['asset_id']}_ascii.stl",selection=True)
u.stl_export(f"{gaden_dir}/{cube['asset_id']}_binary.stl",selection=True, text=False)
# gaden boolean operations
objects = bpy.data.objects
for i,booldict in enumerate(recipe["gaden_bools"]):
#bool_op = objects['walls'].modifiers.new(type="BOOLEAN", name=f"bool_{i}")
bool_op = objects[booldict[0]["asset_id"]].modifiers.new(type="BOOLEAN", name=f"bool_{i}")
bool_op.object = objects[str(booldict[1]["asset_id"])]
bool_op.operation = booldict[2]
u.set_active_ob('walls')
u.stl_export(f"{gaden_dir}/walls_ascii.stl",selection=True)
u.stl_export(f"{gaden_dir}/walls_binary.stl",selection=True, text=False)
u.delete_all()
| 9,840 | Python | 44.35023 | 138 | 0.560264 |
tudelft/autoGDMplus/utils.py | import yaml
import json
import os
import math
import csv
import zlib
from typing import Tuple
import numpy as np
from datetime import datetime
from pathlib import Path
HOME_DIR = Path.home()
main_path = os.path.abspath(__file__)
AutoGDM2_dir = os.path.dirname(main_path)
class GDMConfig:
def __init__(self):
self.HOME_DIR = Path.home()
self.main_path = os.path.abspath(__file__)
self.AutoGDM2_dir = os.path.dirname(main_path)
self.config_dir = f'{self.AutoGDM2_dir}/config/'
self.gdm_settings = {} # dict with all the AutoGDM settings
self.sim_settings = {} # dict with all the Isaac Sim/Pegasus settings
def get_current_yaml(self):
with open(f'{self.config_dir}current.yaml', 'r') as file:
return yaml.safe_load(file)
def get_default_yaml(self):
with open(f'{self.config_dir}default.yaml', 'r') as file:
return yaml.safe_load(file)
def set_directory_params(self, yamldict:dict) -> None:
# directory names
self.gdm_settings["asset_dir"] = yamldict["directories"]["asset_dir"].format(HOME_DIR=self.HOME_DIR)
self.gdm_settings["config_dir"] = yamldict["directories"]["config_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["asset_mockup_dir"] = yamldict["directories"]["asset_mockup_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["asset_custom_dir"] = yamldict["directories"]["asset_custom_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["recipe_dir"] = yamldict["directories"]["recipe_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["usd_scene_dir"] = yamldict["directories"]["usd_scene_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["geometry_dir"] = yamldict["directories"]["geometry_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["cfd_dir"] = yamldict["directories"]["cfd_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["gas_data_dir"] = yamldict["directories"]["gas_data_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["wind_data_dir"] = yamldict["directories"]["wind_data_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["occ_data_dir"] = yamldict["directories"]["occ_data_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["empty_ros_dir"] = yamldict["directories"]["empty_ros_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
self.gdm_settings["gaden_env_dir"] = yamldict["directories"]["gaden_env_dir"].format(AutoGDM2_dir=self.AutoGDM2_dir)
def set_application_params(self, yamldict:dict) -> None:
# applications
self.gdm_settings["ISAAC_VERSION"] = yamldict["software"]["isaac_sim"]["version"]
self.gdm_settings["isaac_dir"] = yamldict["software"]["isaac_sim"]["isaac_dir"].format(HOME_DIR=self.HOME_DIR, ISAAC_VERSION=self.gdm_settings["ISAAC_VERSION"])
self.gdm_settings["wh_gen_dir"] = yamldict["software"]["isaac_sim"]["wh_gen_dir"].format(isaac_dir=self.gdm_settings["isaac_dir"])
self.gdm_settings["BLENDER_VERSION"] = yamldict["software"]["blender"]["version"]
self.gdm_settings["blender_dir"] = yamldict["software"]["blender"]["blender_dir"].format(HOME_DIR=self.HOME_DIR, BLENDER_VERSION=self.gdm_settings["BLENDER_VERSION"])
self.gdm_settings["OPENFOAM_VERSION"] = yamldict["software"]["openfoam"]["version"]
self.gdm_settings["openfoam_dir"] = yamldict["software"]["openfoam"]["openfoam_dir"].format(HOME_DIR=self.HOME_DIR, OPENFOAM_VERSION=self.gdm_settings["OPENFOAM_VERSION"])
def set_environment_params(self, yamldict:dict) -> None:
# environment(s)
self.gdm_settings["env_types"] = yamldict["environment"]["env_types"]
self.gdm_settings["env_type"] = self.gdm_settings["env_types"][yamldict["environment"]["env_type"]]
self.gdm_settings["env_amount"] = yamldict["environment"]["env_amount"]
self.gdm_settings["env_size"] = yamldict["environment"]["env_size"]
self.gdm_settings["env_list"] = [f"{self.gdm_settings['env_type']}_{str(i).zfill(4)}" for i in range(self.gdm_settings['env_amount'])]
# if self.gdm_settings["env_type"] == 'wh_empty' or self.gdm_settings["env_type"] == 'wh_simple':
self.gdm_settings["inlet_size"] = yamldict["env_wh"]["inlet_size"]
self.gdm_settings["inlet_vel"] = yamldict["env_wh"]["inlet_vel"]
self.gdm_settings["outlet_size"] = yamldict["env_wh"]["outlet_size"]
self.gdm_settings["emptyfullrackdiv"] = yamldict["env_wh"]["emptyfullrackdiv"]
self.gdm_settings["white_walls"] = yamldict["env_wh"]["white_walls"]
def set_cfd_params(self,yamldict:dict) -> None:
# cfd mesh settings
self.gdm_settings["cfd_mesh_settings"] = {
"minCellSize": yamldict["cfd"]["mesh"]["minCellSize"],
"maxCellSize": yamldict["cfd"]["mesh"]["maxCellSize"],
"boundaryCellSize": yamldict["cfd"]["mesh"]["boundaryCellSize"],
"localRefinement": yamldict["cfd"]["mesh"]["localRefinement"],
}
# threads used for solving
if yamldict["cfd"]["solving"]["threads"] == 0:
threads = len(os.sched_getaffinity(0)) - 2
else:
threads = yamldict["cfd"]["solving"]["threads"]
# relevant cfd solver settings
cfd_k = round(1.5 * (0.05 * math.hypot(self.gdm_settings["inlet_vel"][0],self.gdm_settings["inlet_vel"][1],self.gdm_settings["inlet_vel"][2]))**2,6) # turbulent kinetic energy
cfd_epsilon = round((0.09**0.75 * cfd_k**1.5)/(0.1*self.gdm_settings["inlet_size"][0]),6) # dissipation rate
self.gdm_settings["cfd_settings"] = {
"threads": threads,
"endTime": yamldict["cfd"]["solving"]["endTime"],
"writeInterval": yamldict["cfd"]["solving"]["writeInterval"],
"maxCo": yamldict["cfd"]["solving"]["maxCo"],
"maxDeltaT": yamldict["cfd"]["solving"]["maxDeltaT"],
"nOuterCorrectors": yamldict["cfd"]["solving"]["nOuterCorrectors"],
"k": cfd_k,
"epsilon": cfd_epsilon,
"latestTime": yamldict["cfd"]["solving"]["latestTime"],
"timeRange": yamldict["cfd"]["solving"]["timeRange"]
}
def set_gas_dispersal_params(self, yamldict:dict) -> None:
# gas dispersal settings
self.gdm_settings["src_placement_types"] = yamldict["gas_dispersal"]["src_placement_types"]
self.gdm_settings["src_placement_type"] = self.gdm_settings["src_placement_types"][yamldict["gas_dispersal"]["src_placement_type"]]
self.gdm_settings["src_placement"] = yamldict["gas_dispersal"]["src_placement"] # TODO: add if statement for random settings
self.gdm_settings["gas_type"] = yamldict["gas_dispersal"]["gas_type"]
self.gdm_settings["sim_time"] = yamldict["gas_dispersal"]["sim_time"]
self.gdm_settings["time_step"] = yamldict["gas_dispersal"]["time_step"]
self.gdm_settings["wind_looping"] = yamldict["gas_dispersal"]["wind_looping"]
self.gdm_settings["wind_start_step"] = yamldict["gas_dispersal"]["wind_start_step"]
self.gdm_settings["wind_stop_step"] = yamldict["gas_dispersal"]["wind_stop_step"]
def set_asset_params(self, yamldict: dict) -> None:
# assets
assets = yamldict["assets"]
# 'repair' the 'f-strings'
assets["empty_racks"] = assets["empty_racks"].format(asset_dir=self.gdm_settings["asset_dir"])
assets["filled_racks"] = assets["filled_racks"].format(asset_dir=self.gdm_settings["asset_dir"])
assets["piles"] = assets["piles"].format(asset_dir=self.gdm_settings["asset_dir"])
assets["railings"] = assets["railings"].format(asset_dir=self.gdm_settings["asset_dir"])
assets["isaac_wh_props"] = assets["isaac_wh_props"].format(HOME_DIR=self.HOME_DIR)
assets["isaac_custom"] = assets["isaac_custom"].format(asset_custom_dir=self.gdm_settings["asset_custom_dir"])
assets["forklift"] = assets["forklift_asset"].format(HOME_DIR=self.HOME_DIR)
assets["empty_racks_mockup"] = assets["empty_racks_mockup"].format(asset_mockup_dir=self.gdm_settings["asset_mockup_dir"])
assets["filled_racks_mockup"] = assets["filled_racks_mockup"].format(asset_mockup_dir=self.gdm_settings["asset_mockup_dir"])
assets["forklift_mockup"] = assets["forklift_mockup"].format(asset_mockup_dir=self.gdm_settings["asset_mockup_dir"])
assets["piles_mockup"] = assets["piles_mockup"].format(asset_mockup_dir=self.gdm_settings["asset_mockup_dir"])
self.gdm_settings["assets"] = assets
# pairs of filelocations of assets and their corresponding mockups
self.gdm_settings["file_loc_paired"] = {
"filled_racks": [[assets["filled_racks"] + assets["filled_racks_long_asset"][0], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][1], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][2], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][3], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][4], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][5], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]],
[assets["filled_racks"] + assets["filled_racks_long_asset"][6], assets["filled_racks_mockup"] + assets["filled_racks_long_asset_mockup"]]],
"empty_racks": [[assets["empty_racks"] + assets["empty_racks_long_asset"][0], assets["empty_racks_mockup"] + assets["empty_racks_long_asset_mockup"][0]],
[assets["empty_racks"] + assets["empty_racks_long_asset"][1], assets["empty_racks_mockup"] + assets["empty_racks_long_asset_mockup"][1]]],
"piles": [[assets["piles"] + assets["piles_asset"][3], assets["piles_mockup"] + assets["piles_asset_mockup"][0]], # WarehousePile_A4
[assets["piles"] + assets["piles_asset"][4], assets["piles_mockup"] + assets["piles_asset_mockup"][1]], # WarehousePile_A5
[assets["piles"] + assets["piles_asset"][6], assets["piles_mockup"] + assets["piles_asset_mockup"][2]]], # WarehousePile_A7
"floors": [[assets["isaac_wh_props"] + assets["floor"], None]],
"walls": [[assets["isaac_wh_props"] + assets["walls"][0], None],
[assets["isaac_wh_props"] + assets["walls"][1], None],
[assets["isaac_wh_props"] + assets["walls"][2], None],
[assets["isaac_wh_props"] + assets["walls"][3], None],],
"lights": [[assets["isaac_wh_props"] + assets["lights"][0], None],
[assets["isaac_custom"] + assets["lights"][1], None]],
"forklift": [[assets["forklift"], assets["forklift_mockup"] + assets["forklift_asset_mockup"]]],
}
def pretty(self, conf:dict) -> str:
return json.dumps(conf, indent=2)
def save_gdm_settings(self, comment:str='') -> None:
if comment:
filename = f'{datetime.now().strftime("%Y-%m-%d")}_{datetime.now().strftime("%H:%M:%S")}_{comment}'
else:
filename = f'{datetime.now().strftime("%Y-%m-%d")}_{datetime.now().strftime("%H:%M:%S")}'
with open(f'{self.config_dir}{filename}.yaml', 'w') as file:
yaml.dump(self.gdm_settings, file)
file.close()
def set_gdm_params(self, yamldict:dict) -> None:
self.set_directory_params(yamldict)
self.set_application_params(yamldict)
self.set_environment_params(yamldict)
self.set_cfd_params(yamldict)
self.set_gas_dispersal_params(yamldict)
self.set_asset_params(yamldict)
def current_gdm_settings(self) -> dict:
yamldict = self.get_current_yaml()
self.set_gdm_params(yamldict)
self.save_gdm_settings(yamldict["comment"])
return self.gdm_settings
def default_gdm_settings(self) -> dict:
yamldict = self.get_default_yaml()
self.set_gdm_params(yamldict)
self.save_gdm_settings(yamldict["comment"])
return self.gdm_settings
# TODO improve this implementation
# simple ( probably unnecessary ) class to store a timestep ()
class flow_field:
def __init__(self,id):
self.id = id
def is_float(element:any) -> bool:
#If you expect None to be passed:
if element is None:
return False
try:
float(element)
return True
except ValueError:
return False
# reads compressed gas data
def read_gas_data(file_path) -> Tuple[np.ndarray,np.ndarray]:
with open(file_path, 'rb') as file:
compressed_data = file.read()
# first decompress the file
decompressed_data = zlib.decompress(compressed_data)
# header datatype
header_dtype = np.dtype([('h', np.uint32),
('env_min_x', np.float64),
('env_min_y', np.float64),
('env_min_z', np.float64),
('env_max_x', np.float64),
('env_max_y', np.float64),
('env_max_z', np.float64),
('env_cells_x', np.uint32),
('env_cells_y', np.uint32),
('env_cells_z', np.uint32),
('cell_size_x', np.float64),
('cell_size_y', np.float64),
('cell_size_z', np.float64),
('gas_source_pos_x', np.float64),
('gas_source_pos_y', np.float64),
('gas_source_pos_z', np.float64),
('gas_type', np.uint32),
('filament_num_moles_of_gas', np.float64),
('num_moles_all_gases_in_cm3', np.float64),
('binary_bool', np.uint32)])
# filament datatype
filament_dtype = np.dtype([('id', np.uint32),
('pose_x', np.float64),
('pose_y', np.float64),
('pose_z', np.float64),
('sigma', np.float64)])
# TODO - combine all gas iterations into one array for a potential speed increase
# read data from buffer
filament_header = np.frombuffer(decompressed_data, dtype=header_dtype, count=1)
filament_data = np.frombuffer(decompressed_data, dtype=filament_dtype,
offset=header_dtype.itemsize)
# return the extracted data
return filament_header, filament_data
def read_wind_data(file_paths) -> np.ndarray:
windfields_lst = []
# read files and put into list
for file_path in file_paths:
with open(file_path, 'rb') as file:
data = file.read()
UVW = np.split(np.frombuffer(data, dtype=np.float64), 3)
wind_vectors = np.zeros((np.shape(UVW)[1],3))
wind_vectors[:,0] = UVW[0]
wind_vectors[:,1] = UVW[1]
wind_vectors[:,2] = UVW[2]
windfields_lst.append(wind_vectors)
windfields_arr = np.zeros((len(file_paths), np.shape(windfields_lst[0])[0], 3))
# puts lists into one array
for i, windfield in enumerate(windfields_lst):
windfields_arr[i] = windfield
# return the extracted data
return windfields_arr
def read_occ_csv(filepath) -> Tuple[dict,np.ndarray]:
header = {}
with open(filepath, 'r') as csv_file:
csv_lst = list(csv.reader(csv_file))
# extract header info
header['env_min'] = [float(j) for j in csv_lst[0][0].split(" ")[1:]]
header['env_max'] = [float(j) for j in csv_lst[1][0].split(" ")[1:]]
header['num_cells'] = [int(j) for j in csv_lst[2][0].split(" ")[1:]]
header['cell_size'] = float(csv_lst[3][0].split(" ")[1:][0])
occ_arr = np.zeros((header['num_cells'][2],
header['num_cells'][0],
header['num_cells'][1]), dtype=int)
for z_it in range(header['num_cells'][2]):
x_it = 0
while True:
row = csv_lst[(4 + z_it*(header['num_cells'][0]+1)) + x_it][0]
if row == ';':
break
occ_arr[z_it,x_it,:] = [int(j) for j in row.split(" ")[:-1]]
x_it += 1
return header, occ_arr
| 17,448 | Python | 51.875757 | 185 | 0.579207 |
tudelft/autoGDMplus/layout_gen.py | # Top level layout generator following the Isaac Sim Warehouse generator format
import json
import random
import numpy as np
from typing import Tuple
# TODO: remove member functions such as dx(), dy(), etc. and change them to attributes
class Asset:
def __init__(self,
assetname:str = "Asset",
fname:list = [None, None], # [isaac_sim_asset, mockup_file]
dims:np.ndarray = np.zeros(3),
loc:np.ndarray = np.zeros(3),
ori:np.ndarray = np.zeros(3),
scale:np.ndarray = np.ones(3)
) -> None:
self.id = assetname
self.fname = fname # [isaac_sim_asset, mockup_file]
self.dims = dims
self.ctr = 0.5*dims
self.loc = loc
self.ori = ori
self.scale = scale
def assetname(self) -> str:
return self.id
def set_assetname(self, assetname:str) -> None:
self.id = assetname
return
def set_fname(self, fname:list) -> None:
self.fname = fname
return
def dimensions(self) -> np.ndarray:
return self.dims
def set_dimensions(self, dims:np.ndarray=np.zeros(3)) -> None:
self.dims = dims
return
def dx(self) -> float:
return self.dims[0]
def dy(self) -> float:
return self.dims[1]
def dz(self) -> float:
return self.dims[2]
def center(self) -> np.ndarray:
return self.ctr
def cx(self) -> float:
return self.ctr[0]
def cy(self) -> float:
return self.ctr[1]
def cz(self) -> float:
return self.ctr[2]
def location(self) -> np.ndarray:
return self.loc
def lx(self) -> float:
return self.loc[0]
def ly(self) -> float:
return self.loc[1]
def lz(self) -> float:
return self.loc[2]
def set_location(self, loc:np.ndarray) -> None:
self.loc = loc
return
def translate(self, axis:str, amount:float) -> None:
if axis == 'X':
self.loc[0] = amount
if axis == 'Y':
self.loc[1] = amount
if axis == 'Z':
self.loc[2] = amount
def set_orientation(self, ori:np.ndarray) -> None:
self.ori = ori
return
def set_scale(self, scale:np.ndarray) -> None:
self.scale = scale
return
def get_dict(self) -> dict:
assetdict = {
"asset_id": self.id,
"filename": self.fname[0],
"mockup_file": self.fname[1],
"dimensions": self.dims.tolist(),
"location": self.loc.tolist(),
"orientation": self.ori.tolist(),
"scale": self.scale.tolist()
}
return assetdict
class Warehouse:
def __init__(self,
settings:dict,
wh_dims:np.ndarray = np.array([10.0, 15.0, 9.0]),
inlet_dims:np.ndarray = np.array([0.0,4.0,4.0]),
outlet_dims:np.ndarray = np.array([0.0,4.0,4.0])):
self.settings = settings
self.warehouse = Asset("warehouse_shell", dims=wh_dims)
self.floor = Asset("floor", fname=self.settings['file_loc_paired']["floors"][0], dims=np.array([6.0, 6.0, 0.0]))
self.cornerwall = Asset("cornerwall", dims=np.array([3.0,3.0,3.0]))
self.wall = Asset("wall", dims=np.array([0.0,6.0,3.0]))
self.prop_light = Asset("prop_light", dims=np.array([2.0, 0.3, 3.0]))
self.rect_light = Asset("rect_light", dims=np.array([self.warehouse.dx(), self.warehouse.dy(), 0.0]))
self.rack = Asset("rack", dims=np.array([1.0, 4.0, 3.0])) # default size of rack models
self.rack_aisle = Asset("rack_aisle", dims=np.array([3.0, 0.0, 0.0]))
self.end_aisle = Asset("end_aisle", dims=np.array([0.0, (max(inlet_dims[1], outlet_dims[1]) + 2), 0.0]))
self.forklift = Asset("forklift", fname=self.settings['file_loc_paired']['forklift'][0], dims=np.array([0.8,1.0,2.0]))
self.pile = Asset("pile")
self.inlet = Asset("inlet", dims=inlet_dims)
self.outlet = Asset("outlet", dims=outlet_dims)
# returns arrays of rack positions (centered for each rack)
def rack_positions(self) -> np.ndarray:
rack_orig = np.array([self.rack.cx(), self.rack.cy() + self.end_aisle.dy(), 0.0]) # origin of rack array
rack_rows = int(1 + (self.warehouse.dx()-self.rack.dx()) // (self.rack.dx() + self.rack_aisle.dx()))
rack_segs = int((self.warehouse.dy() - (2 * self.end_aisle.dy())) // self.rack.dy())
rack_stack= int((self.warehouse.dz()) // self.rack.dz()) # height
nx, ny, nz = rack_rows, rack_segs, rack_stack
x = np.linspace(rack_orig[0], self.warehouse.dx() - 0.5 * self.rack.dx(), nx)
y = np.linspace(rack_orig[1], rack_orig[1] + (self.rack.dy() * (ny-1)), ny)
z = np.arange(rack_orig[2], self.rack.dz() * nz, self.rack.dz())
xv, yv, zv = np.meshgrid(x,y,z) # generate grid and reshape array for ease of use
stack = np.stack([xv, yv, zv], -1)
positions = stack.reshape(np.prod(stack.shape[0:-1]),3)
return positions
# divides positions, affects empty/filled rack ratio
def position_division(self, divisor:float ,positions:np.ndarray=np.zeros(3)) -> np.ndarray:
totalSample = positions.shape[0]
minSample = int((totalSample//(divisor**-1)))
sampleSize = np.random.randint(minSample,totalSample)
idx = random.sample(range(totalSample),sampleSize)
filledRackPos, emptyRackPos = positions[idx,:], np.delete(positions, idx, 0)
return filledRackPos, emptyRackPos
# TODO - hardcoded for now, make scalable
def complex_positions(self) -> np.ndarray:
edge_dist = 2.0
x = np.linspace(edge_dist, (15-edge_dist), 4)
y = np.linspace(1.5, (15-1.5), 4)
positions = np.array([[x[0], y[0], 0.0],
[x[0], y[1], 0.0],
[x[0], y[2], 0.0],
[x[0], y[3], 0.0],
[x[1], y[3], 0.0],
[x[2], y[3], 0.0],
[x[3], y[3], 0.0],
[x[3], y[2], 0.0],
[x[3], y[1], 0.0],
[x[3], y[0], 0.0],
[x[2], y[0], 0.0],
[x[1], y[0], 0.0]])
return positions
# interior dict generation
def interior_gen(self, filled:np.ndarray, empty:np.ndarray, comp_loc:np.ndarray=None) -> list:
interior_dicts = []
scale_factor = np.array([0.01, 0.01, 0.01]) # custom scaling factor
# filled racks
for i,loc in enumerate(filled):
self.rack.set_assetname(f"filled_rack_{str(i).zfill(3)}")
self.rack.set_fname(random.choice(self.settings['file_loc_paired']["filled_racks"])) # choose random type of rack and corresponding mockup
self.rack.set_orientation(np.zeros(3,))
self.rack.set_location(loc)
self.rack.set_scale(scale_factor)
if comp_loc is not None and loc[0] > 1.0 and loc[0] < 14.0: # TODO : remove hardcoded orientation
self.rack.set_orientation(np.array([0,0,90]))
interior_dicts.append(self.rack.get_dict())
# empty racks
for i,loc in enumerate(empty):
self.rack.set_assetname(f"empty_rack_{str(i).zfill(3)}")
self.rack.set_fname(random.choice(self.settings['file_loc_paired']["empty_racks"])) # choose random type of rack and corresponding mockup
self.rack.set_orientation(np.zeros(3,))
self.rack.set_location(loc)
self.rack.set_scale(scale_factor)
if comp_loc is not None and loc[0] > 1.0 and loc[0] < 14.0: # TODO : remove hardcoded orientation
self.rack.set_orientation(np.array([0,0,90]))
interior_dicts.append(self.rack.get_dict())
if comp_loc is not None:
# get 4 random indices
idx = np.random.choice(11, 6, replace=False)
forklift_idx = idx[0]
piles_idx = idx[1:]
# add forklift to dict
self.forklift.set_location(comp_loc[forklift_idx])
self.forklift.set_orientation(np.array([0.0,0.0,np.random.randint(0,359)]))
self.forklift.set_scale(scale_factor)
interior_dicts.append(self.forklift.get_dict())
# add piles to dict
for i,loc in enumerate(comp_loc[piles_idx]):
self.pile.set_assetname(f"pile_{str(i).zfill(3)}")
self.pile.set_fname(random.choice(self.settings['file_loc_paired']["piles"])) # choose random type of pile and corresponding mockup
self.pile.set_location(loc)
self.pile.set_orientation(np.array([0.0,0.0,np.random.randint(0,359)]))
self.pile.set_scale(scale_factor)
interior_dicts.append(self.pile.get_dict())
return interior_dicts
################
### CFD MESH ###
################
# The CFD mesh is generated using assets that blender can place and save to .stl
# sides dict generation, these are all planes
def sides_blender(self) -> list:
side_dicts = []
# bottom
bottom = Asset("bottom",dims=np.array([self.warehouse.dx(), self.warehouse.dy(), 0.0]),
loc=0.5*np.array([self.warehouse.dx(), self.warehouse.dy(), 0]))
side_dicts.append(bottom.get_dict())
# top
top = Asset("top",dims=np.array([self.warehouse.dx(), self.warehouse.dy(), 0.0]),
loc=np.array([0.5*self.warehouse.dx(),0.5*self.warehouse.dy(), self.warehouse.dz()]),
ori=np.array([180,0,0])) # important for the face normals to point inside
side_dicts.append(top.get_dict())
# front
front = Asset("front",dims=np.array([self.warehouse.dx(), self.warehouse.dz(), 0.0]),
loc=np.array([0.5*self.warehouse.dx(),0,0.5*self.warehouse.dz()]),
ori=np.array([-90,0,0]))
side_dicts.append(front.get_dict())
# back
back = Asset("back",dims=np.array([self.warehouse.dx(), self.warehouse.dz(), 0.0]),
loc=np.array([0.5*self.warehouse.dx(),self.warehouse.dy(),0.5*self.warehouse.dz()]),
ori=np.array([90,0,0]))
side_dicts.append(back.get_dict())
# inlet side
side1 = Asset("side_001",dims=np.array([self.warehouse.dz(), self.warehouse.dy()-self.inlet.dy(), 0.0]),
loc=np.array([0.0, 0.5*(self.warehouse.dy()+self.inlet.dy()), 0.5*self.warehouse.dz()]),
ori=np.array([0,90,0]))
side_dicts.append(side1.get_dict())
side2 = Asset("side_002",dims=np.array([self.warehouse.dz()-self.inlet.dz(), self.inlet.dy(), 0.0]),
loc=np.array([0.0, 0.5*self.inlet.dy(), 0.5*(self.warehouse.dz()+self.inlet.dz())]),
ori=np.array([0,90,0]))
side_dicts.append(side2.get_dict())
# oulet side
side3 = Asset("side_003",dims=np.array([self.warehouse.dz(), self.warehouse.dy()-self.outlet.dy(), 0.0]),
loc=np.array([self.warehouse.dx(), 0.5*(self.warehouse.dy()-self.outlet.dy()), 0.5*self.warehouse.dz()]),
ori=np.array([0,-90,0]))
side_dicts.append(side3.get_dict())
side4 = Asset("side_004",dims=np.array([self.warehouse.dz()-self.outlet.dz(), self.outlet.dy(), 0.0]),
loc=np.array([self.warehouse.dx(), self.warehouse.dy()-0.5*self.outlet.dy(), 0.5*(self.warehouse.dz()+self.outlet.dz())]),
ori=np.array([0,-90,0]))
side_dicts.append(side4.get_dict())
return side_dicts
def inlets_blender(self) -> list:
inlet_dicts = []
inlet = Asset("inlet001",dims=np.array([self.inlet.dz(), self.inlet.dy(), 0.0]),
loc=np.array([0.0, 0.5*self.inlet.dy(), 0.5*self.inlet.dz()]),
ori=np.array([0,90,0]))
inlet_dicts.append(inlet.get_dict())
return inlet_dicts
def outlets_blender(self) -> list:
outlet_dicts = []
outlet = Asset("outlet001",dims=np.array([self.outlet.dz(), self.outlet.dy(), 0.0]),
loc=np.array([self.warehouse.dx(), self.warehouse.dy()-0.5*self.outlet.dy(), 0.5*self.outlet.dz()]),
ori=np.array([0,-90,0]))
outlet_dicts.append(outlet.get_dict())
return outlet_dicts
################
### GADEN ###
################
# gaden requires additional geometry with thickness such as the walls, inlet and outlets
# for this, blender will need to perform boolean operations
# first all geometry is given. lastly, a separate dict entry is used for the boolean operations
def gaden_geom(self) -> Tuple[list,list]:
gaden_geom_dicts = []
gaden_bools = []
wallthickness = 0.2
walls = Asset("walls", dims=np.array([self.warehouse.dx()+2*wallthickness, self.warehouse.dy()+2*wallthickness, self.warehouse.dz()]),
loc=self.warehouse.center())
gaden_geom_dicts.append(walls.get_dict())
inside = Asset("inside", dims=np.array([self.warehouse.dx(),self.warehouse.dy(),self.warehouse.dz()+1.0]),
loc=self.warehouse.center())
gaden_geom_dicts.append(inside.get_dict())
inlet = Asset("inlet", dims=np.array([wallthickness+0.2, self.inlet.dy(), self.inlet.dz()]),
loc=np.array([-0.5*wallthickness, 0.5*self.inlet.dy(), 0.5*self.inlet.dz()]))
gaden_geom_dicts.append(inlet.get_dict())
outlet = Asset("outlet", dims=np.array([wallthickness+0.2, self.outlet.dy(), self.outlet.dz()]),
loc=np.array([self.warehouse.dx()+ 0.5*wallthickness, self.warehouse.dy()-0.5*self.outlet.dy(), 0.5*self.outlet.dz()]))
gaden_geom_dicts.append(outlet.get_dict())
for asset in [inside, inlet, outlet]:
gaden_bools.append([walls.get_dict(), asset.get_dict(), 'DIFFERENCE'])
return gaden_geom_dicts, gaden_bools
################
### ISAAC ###
################
def isaac_floor_dicts(self) -> list:
floor_orig = np.array([self.floor.cx(), self.floor.cy(), 0.0]) # origin of floor array
floor_rows = int(np.ceil(self.warehouse.dx()/self.floor.dx())) # floor tile rows (round up)
floor_cols = int(np.ceil(self.warehouse.dy()/self.floor.dy())) # floor tile columns (round up)
nx, ny = floor_rows, floor_cols
x = np.linspace(floor_orig[0], floor_orig[0] + self.floor.dx()*(nx-1), nx)
y = np.linspace(floor_orig[1], floor_orig[1] + self.floor.dy()*(ny-1), ny)
xv, yv = np.meshgrid(x,y) # generate grid and reshape array for ease of use
zv = np.zeros_like(xv)
stack = np.stack([xv, yv, zv], -1)
positions = stack.reshape(np.prod(stack.shape[0:-1]),3)
floor_tile_dicts = []
for i,loc in enumerate(positions):
self.floor.set_assetname(f"floor_tile_{str(i).zfill(3)}")
self.floor.set_location(loc)
floor_tile_dicts.append(self.floor.get_dict())
return floor_tile_dicts
def isaac_walls_dicts(self) -> list:
walls_dicts = []
# walls are made higher than env size to accomodate the lighting
ceiling_height = self.warehouse.dz() + self.prop_light.dz()
# corners
nz = int(np.ceil(ceiling_height/self.cornerwall.dz()))
z = np.linspace(0.0, self.wall.dz() * (nz-1), nz)
z[-1] = ceiling_height - self.cornerwall.dz()
if self.settings["white_walls"]:
walltypes = np.zeros(nz, dtype=int) # white walls only
else:
walltypes = np.ones(nz, dtype=int) # default white and yellow walls
walltypes[0] = 0
x = np.linspace(0.0, self.warehouse.dx(), 2)
y = np.linspace(0.0, self.warehouse.dy(), 2)
ori = np.array([[90., 180., 0., 270.]])
xv, yv = np.meshgrid(x,y)
stack = np.stack([xv, yv], -1)
positions = stack.reshape((4,2))
transforms = np.hstack((positions, ori.T)) # [X Y Z-rotation]
for i, (z_pos, walltype) in enumerate(zip(z, walltypes)):
for j,transform in enumerate(transforms):
self.cornerwall.set_assetname(f"wall_corner_{i}_{j}")
self.cornerwall.set_fname(self.settings['file_loc_paired']["walls"][walltype])
self.cornerwall.set_location(np.array([transform[0], transform[1], z_pos]))
self.cornerwall.set_orientation(np.array([0.0,0.0,transform[2]]))
walls_dicts.append(self.cornerwall.get_dict())
# flat walls
nz = int(np.ceil(ceiling_height/self.wall.dz()))
z = np.linspace(0.0, self.wall.dz() * (nz-1), nz)
z[-1] = ceiling_height - self.wall.dz()
if self.settings["white_walls"]:
walltypes = np.zeros(nz, dtype=int) # white walls only
else:
walltypes = np.ones(nz, dtype=int) # default white and yellow walls
walltypes[0] = 0
# check if additional walls are needed for x direction
if self.warehouse.dx() > (2 * self.cornerwall.dx()):
# walls in x-dir
nx = int(np.ceil((self.warehouse.dx()-(2*self.cornerwall.dx()))/self.wall.dy()))
x = np.linspace(self.cornerwall.dx() + self.wall.cy(), self.warehouse.dx() - (self.cornerwall.dx() + self.wall.cy()), nx)
y = np.linspace(0.0, self.warehouse.dy(), 2)
ori = np.linspace(90.0, -90.0, 2)
for i, (z_pos, walltype) in enumerate(zip(z, walltypes)):
for j, (y_pos, orientation) in enumerate(zip(y, ori)):
for k, x_pos in enumerate(x):
self.wall.set_assetname(f"wallX_{i}_{k}_{j}")
self.wall.set_fname(self.settings['file_loc_paired']["walls"][2+walltype])
self.wall.set_location(np.array([x_pos, y_pos, z_pos]))
self.wall.set_orientation(np.array([0.0, 0.0, orientation]))
walls_dicts.append(self.wall.get_dict())
# check if additional walls are needed for y direction
if self.warehouse.dy() > (2 * self.cornerwall.dy()):
# walls in y-dir
ny = int(np.ceil((self.warehouse.dy()-(2*self.cornerwall.dy()))/self.wall.dy()))
y = np.linspace(self.cornerwall.dy() + self.wall.cy(), self.warehouse.dy() - (self.cornerwall.dy() + self.wall.cy()), ny)
x = np.linspace(0.0, self.warehouse.dx(), 2)
ori = np.linspace(0.0, 180, 2)
for i, (z_pos, walltype) in enumerate(zip(z, walltypes)):
for j, (x_pos, orientation) in enumerate(zip(x, ori)):
for k, y_pos in enumerate(y):
self.wall.set_assetname(f"wallY_{i}_{k}_{j}")
self.wall.set_fname(self.settings['file_loc_paired']["walls"][2+walltype])
self.wall.set_location(np.array([x_pos, y_pos, z_pos]))
self.wall.set_orientation(np.array([0.0, 0.0, orientation]))
walls_dicts.append(self.wall.get_dict())
return walls_dicts
def isaac_lights_dicts(self) -> list:
prop_lights_dicts = []
# rect_lights_dicts = []
z_rect_light = self.warehouse.dz()
z_lights = z_rect_light + self.prop_light.dz()
spacing_xy = [2.5, 4.0]
# decorative (prop) lights
nx = int(np.ceil(((self.warehouse.dx()-(2*spacing_xy[0]))/spacing_xy[0])))
ny = int(np.ceil(((self.warehouse.dy()-(2*spacing_xy[1]))/spacing_xy[1])))
x = np.linspace(spacing_xy[0], self.warehouse.dx()-spacing_xy[0], nx)
y = np.linspace(spacing_xy[1], self.warehouse.dy()-spacing_xy[1], ny)
xv, yv = np.meshgrid(x,y) # generate grid and reshape array for ease of use
zv = z_lights * np.ones_like(xv)
stack = np.stack([xv, yv, zv], -1)
positions = stack.reshape(np.prod(stack.shape[0:-1]),3)
for i, pos in enumerate(positions):
self.prop_light.set_assetname(f"light_{str(i).zfill(3)}")
self.prop_light.set_fname(self.settings['file_loc_paired']["lights"][1])
self.prop_light.set_location(np.array([pos[0], pos[1], pos[2]]))
self.prop_light.set_orientation(np.array([0.0,0.0,90.0]))
prop_lights_dicts.append(self.prop_light.get_dict())
# rectangular light over the whole scene TODO: Add temperature and intensity?
# self.rect_light.set_location(np.array([self.warehouse.cx(), self.warehouse.cy(), z_rect_light]))
# self.rect_light.set_scale(self.rect_light.dimensions())
# rect_lights_dicts.append(self.rect_light.get_dict())
return prop_lights_dicts #, rect_lights_dicts
def generate_recipes(settings:dict) -> None:
recipe_dict = {}
if 'wh' in settings["env_type"]:
recipe_dict["env_type"] = settings["env_type"]
recipe_dict["env_size"] = settings["env_size"]
recipe_dict["inlet_size"] = settings["inlet_size"]
recipe_dict["oulet_size"] = settings["outlet_size"]
for i in range(settings["env_amount"]):
env_id = str(i).zfill(4)
recipe_dict["env_id"] = env_id
wh = Warehouse(settings,
wh_dims=np.array([recipe_dict["env_size"][0], recipe_dict["env_size"][1], recipe_dict["env_size"][2]]),
inlet_dims=np.array([0.0,recipe_dict["inlet_size"][0],recipe_dict["inlet_size"][1]]),
outlet_dims=np.array([0.0,recipe_dict["inlet_size"][0],recipe_dict["inlet_size"][1]]))
# CFD mesh geometry
recipe_dict["sides"] = wh.sides_blender()
recipe_dict["inlets"] = wh.inlets_blender()
recipe_dict["outlets"] = wh.outlets_blender()
# CFD mesh and Isaac Sim interior geometry
if 'empty' in settings["env_type"]:
recipe_dict["interior"] = {}
else:
positions = wh.rack_positions()
filled_locs, empty_locs = wh.position_division(settings["emptyfullrackdiv"],positions)
if 'complex' in settings["env_type"]:
complex_pos = wh.complex_positions()
else:
complex_pos = None
recipe_dict["interior"] = wh.interior_gen(filled_locs, empty_locs, comp_loc=complex_pos)
# GADEN geometry
recipe_dict["gaden_geom"], recipe_dict["gaden_bools"] = wh.gaden_geom()
# Isaac Sim geometry
recipe_dict["isaac_floor"] = wh.isaac_floor_dicts()
recipe_dict["isaac_walls"] = wh.isaac_walls_dicts()
recipe_dict["isaac_lights"] = wh.isaac_lights_dicts()
# write dictionary
with open(f'{settings["recipe_dir"]}{settings["env_type"]}_{env_id}.txt', 'w') as convert_file:
convert_file.write(json.dumps(recipe_dict))
# TODO: create more environments
| 23,600 | Python | 43.530189 | 150 | 0.54822 |
tudelft/autoGDMplus/settings.py | import os
from pathlib import Path
import math
HOME_DIR = Path.home()
settings_path = os.path.abspath(__file__)
AutoGDM2_dir = os.path.dirname(settings_path)
# directory locations
asset_dir = f"{HOME_DIR}/Omniverse_content/ov-industrial3dpack-01-100.1.1/" # omniverse content folder
asset_mockup_dir = f"{AutoGDM2_dir}/assets/mockup/" # mockup folder with simple versions of assets
recipe_dir = f"{AutoGDM2_dir}/environments/recipes/" # recipe folder
usd_scene_dir = f"{AutoGDM2_dir}/environments/isaac_sim/" # isaac sim scenes location
geometry_dir = f"{AutoGDM2_dir}/environments/geometry/"# geometry folder
cfd_dir = f"{AutoGDM2_dir}/environments/cfd/" # cfd folder
gas_data_dir = f"{AutoGDM2_dir}/environments/gas_data/"# gas data folder
empty_ros_dir = f"{AutoGDM2_dir}/environments/ROS/empty_project/"
gaden_env_dir = f"{AutoGDM2_dir}/gaden_ws/src/gaden/envs/" # ROS GADEN workspace
# software locations
# omniverse assets and Isaac Sim
ISAAC_VERSION = '2022.2.0'
isaac_dir = f"{HOME_DIR}/.local/share/ov/pkg/isaac_sim-{ISAAC_VERSION}"
wh_gen_dir = f"{isaac_dir}/exts/omni.isaac.examples/omni/isaac/examples/warehouse_gen"
# blender
BLENDER_VERSION = '3.5.0'
blender_dir = f"{HOME_DIR}/Downloads/blender-{BLENDER_VERSION}-linux-x64"
# openfoam
OPENFOAM_VERSION = 'v2212'
openfoam_dir = f"{HOME_DIR}/OpenFOAM/OpenFOAM-{OPENFOAM_VERSION}"
# environment related settings
env_types = ['wh_simple', 'wh_complex']
env_type = env_types[0]
env_amount = 2
env_size = [10.0, 16.0, 8.0] # [X Y Z]
if env_type == 'wh_simple':
inlet_size = [1.2,2.4] # [Y,Z], [m]
inlet_vel = [1.0, 0.0, 0.0] # [X, Y,Z], [m/s]
outlet_size = [1.5,2.4] # [Y,Z], [m]
emptyfullrackdiv = 0.5 # least percentage of filled racks
# relevant CDF meshing settings
cfd_mesh_settings = {
"minCellSize": 0.10, # it is recommended to keep these values uniform
"maxCellSize": 0.10, # for easy of meshing, cfd calculation and mesh quality
"boundaryCellSize": 0.10,
"localRefinement": 0.0, # set to 0.0 to leave inactive
}
# relevant CFD settings
cfd_k = round(1.5 * (0.05 * math.hypot(inlet_vel[0],inlet_vel[1],inlet_vel[2]))**2,6) # turbulent kinetic energy
cfd_epsilon = round((0.09**0.75 * cfd_k**1.5)/(0.1*inlet_size[0]),6) # dissipation rate
cfd_settings = {
"threads": len(os.sched_getaffinity(0)) - 2, # available threads for CFD is total-2 for best performance
"endTime": 1.0,
"writeInterval": 1.0,
"maxCo": 2.0,
"maxDeltaT": 0.0, # set to 0.0 to leave inactive
"k": cfd_k,
"epsilon": cfd_epsilon,
}
# gas dispersal settings
src_placement_types = ['random', 'specific'] # TODO implement types
src_placement = src_placement_types[0]
src_height = 2.0 # [m]
# TODO improve this implementation
# simple ( probably unnecessary ) class to store a timestep ()
class flow_field:
def __init__(self,id):
self.id = id
# max_num_tries = 3
# z_min = 0
#z_max = env_size_x
# asset file-locations
filenames = {
############################# OMNIVERSE ASSETS #############################
# Then, we point to asset paths, to pick one at random and spawn at specific positions
"empty_racks": f"{asset_dir}Shelves/",
"filled_racks": f"{asset_dir}Racks/",
"piles": f"{asset_dir}Piles/",
"railings": f"{asset_dir}Railing/",
# warehouse shell-specific assets (floor, walls, ceiling etc.)
"isaac_wh_props":f"{HOME_DIR}/Omniverse_content/isaac-simple-warehouse/Props/",
"floor": "SM_floor02.usd",
"walls": [
"SM_WallA_InnerCorner.usd",
"SM_WallB_InnerCorner.usd",
"SM_WallA_6M.usd",
"SM_WallB_6M.usd",
],
"lights":[
"SM_LampCeilingA_04.usd", # off
"SM_LampCeilingA_05.usd", # on
],
# we can also have stand-alone assets, that are directly spawned in specific positions
"forklift_asset": ["Forklift_A01_PR_V_NVD_01.usd"],
"robot_asset": ["transporter.usd"],
# We are also adding other assets from the paths above to choose from
"empty_racks_large_asset": ["RackLargeEmpty_A1.usd", "RackLargeEmpty_A2.usd"],
"empty_racks_long_asset": ["RackLongEmpty_A1.usd", "RackLongEmpty_A2.usd"],
"filled_racks_large_asset": [
"RackLarge_A1.usd",
"RackLarge_A2.usd",
"RackLarge_A3.usd",
"RackLarge_A4.usd",
"RackLarge_A5.usd",
"RackLarge_A6.usd",
"RackLarge_A7.usd",
"RackLarge_A8.usd",
"RackLarge_A9.usd",
],
"filled_racks_small_asset": [
"RackSmall_A1.usd",
"RackSmall_A2.usd",
"RackSmall_A3.usd",
"RackSmall_A4.usd",
"RackSmall_A5.usd",
"RackSmall_A6.usd",
"RackSmall_A7.usd",
"RackSmall_A8.usd",
"RackSmall_A9.usd",
],
"filled_racks_long_asset": [
"RackLong_A1.usd",
"RackLong_A2.usd",
"RackLong_A3.usd",
"RackLong_A4.usd",
"RackLong_A5.usd",
"RackLong_A6.usd",
"RackLong_A7.usd",
],
"filled_racks_long_high_asset": ["RackLong_A8.usd", "RackLong_A9.usd"],
"piles_asset": [
"WarehousePile_A1.usd",
"WarehousePile_A2.usd",
"WarehousePile_A3.usd",
"WarehousePile_A4.usd",
"WarehousePile_A5.usd",
"WarehousePile_A6.usd",
"WarehousePile_A7.usd",
],
"railings_asset": ["MetalFencing_A1.usd", "MetalFencing_A2.usd", "MetalFencing_A3.usd"],
############################# MOCKUP ASSETS #############################
"empty_racks_mockup": f"{asset_mockup_dir}Shelves/",
"filled_racks_mockup": f"{asset_mockup_dir}Racks/",
"empty_racks_long_asset_mockup": ["RackLongEmpty_A1.obj", "RackLongEmpty_A2.obj"],
"filled_racks_long_asset_mockup": "RackLong.obj",
}
# pairs of filelocations of assets and their corresponding mockups
file_loc_paired = {
"filled_racks": [[filenames["filled_racks"] + filenames["filled_racks_long_asset"][0], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][1], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][2], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][3], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][4], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][5], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]],
[filenames["filled_racks"] + filenames["filled_racks_long_asset"][6], filenames["filled_racks_mockup"] + filenames["filled_racks_long_asset_mockup"]]],
"empty_racks": [[filenames["empty_racks"] + filenames["empty_racks_long_asset"][0], filenames["empty_racks_mockup"] + filenames["empty_racks_long_asset_mockup"][0]],
[filenames["empty_racks"] + filenames["empty_racks_long_asset"][1], filenames["empty_racks_mockup"] + filenames["empty_racks_long_asset_mockup"][1]]],
"floors": [[filenames["isaac_wh_props"] + filenames["floor"], None]],
"walls": [[filenames["isaac_wh_props"] + filenames["walls"][0], None],
[filenames["isaac_wh_props"] + filenames["walls"][1], None],
[filenames["isaac_wh_props"] + filenames["walls"][2], None],
[filenames["isaac_wh_props"] + filenames["walls"][3], None],],
"lights": [[filenames["isaac_wh_props"] + filenames["lights"][0], None],
[filenames["isaac_wh_props"] + filenames["lights"][1], None]],
} | 7,939 | Python | 43.606741 | 172 | 0.625772 |
tudelft/autoGDMplus/README.md | # AutoGDM+
### Automated Pipeline for 3D Gas Dispersal Modelling and Environment Generation
This repository contains the code of AutoGDM+ based on the same concepts as [AutoGDM](https://github.com/tudelft/AutoGDM/). Please fully read this before proceeding.
## Required
- Tested on `Ubuntu 20.04 LTS`
- [`Isaac Sim`](https://developer.nvidia.com/isaac-sim) (Install with the Omniverse Launcher)
- [`Blender`](https://www.blender.org/)
- [`OpenFOAM`]()
- [`ROS`](http://wiki.ros.org/noetic/Installation/Ubuntu) (noetic)
## Installation
### Omniverse Launcher & Isaac Sim
Follow [these instructions:](https://docs.omniverse.nvidia.com/install-guide/latest/standard-install.html)
1) Download, install and run the [`Omniverse Launcher`](https://www.nvidia.com/en-us/omniverse/). It is strongly recommended you install with the cache enabled. In case of problems see the troubleshooting section.
2) Create a local Nucleus server by going to the 'Nucleus' tab and enabling it. You will have to create an associated local Nucleus account (this is not associated with any other account).
3) Install Isaac Sim version `2022.2.0`. Go to the 'exchange' tab and select Isaac Sim. Note, the default install location of Isaac Sim is `~/.local/share/ov/pkg/isaac_sim-<version>`
4) Download the necessery content:
- From the the exchange tab in the launcher, download both the 'Industrial 3D Models Pack' and the 'USD Physics Sample Pack' by clicking 'Save as...' (right part of the green download button).
- From the Nucleus tab in the launcher, go to `localhost/NVIDIA/Assets/Isaac/<version>/Isaac/Environments/Simple_Warehouse` and download these contents by clicking the download button in the details pane on the right.
- Extract these folders to `~/Omniverse_content` so that AutoGDM+ can find them. Another location can be specified with in the settings of AutoGDM+ if placed somewhere else.
### Blender
- Download and extract the blender.zip to a location of your preference, in this case `~/Downloads/blender-<version>-linux-x64`
### Paraview (optional)
- For visualizing and verify the meshing and CFD results
```
sudo apt-get update && sudo apt-get install paraview
```
### OpenFOAM
1) Check the [system requirements](https://develop.openfoam.com/Development/openfoam/blob/develop/doc/Requirements.md)
2) Download the [OpenFoam](https://develop.openfoam.com/Development/openfoam) v2212 and its [Thirdparty software](https://develop.openfoam.com/Development/ThirdParty-common/) and extract in `~/OpenFOAM` such that the directories are called `OpenFOAM-<version>` and `Thirdparty-<version>`
3) Download and extract the source code of [scotch (v6.1.0)](https://gitlab.inria.fr/scotch/scotch/-/releases/v6.1.0) into the Thirdparty dicectory
4) Open a commandline in the home directory and check the system
```
source OpenFOAM/Openfoam-v2212/etc/bashrc && foamSystemCheck
```
5) `cd` into `~/OpenFOAM/OpenFOAM-v2212` and build:
```
./Allwmake -j -s -q -l
```
6) Add the following lines to your `.bashrc` to add an alias to source your OpenFOAM installation:
```
# >>> OpenFOAM >>>
alias of2212='source $HOME/OpenFOAM/OpenFOAM-v2212/etc/bashrc'
# <<< OpenFOAM <<<
```
### ROS & Catkin Tools
1) Install [ROS noetic](http://wiki.ros.org/noetic/Installation/Ubuntu)
2) Install [catkin tools](https://catkin-tools.readthedocs.io/en/latest/installing.html)
### AutoGDM+
- Clone this repository, preferably in your home directory.
- Install the isaac_asset_placer: Copy and paste the `warehouse_gen` folder into the Isaac Sim examples folder located at `~/.local/share/ov/pkg/isaac_sim-<version>/exts/omni.isaac.examples/omni/isaac/examples/`
- Build the GADEN workspace:
```
source /opt/ros/noetic/setup.bash
cd autoGDMplus/gaden_ws
catkin init
catkin build
```
## Before Running AutoGDM+
1) Check the asset file locations and software versions in `~/autoGDMplus/config/current.yaml`, especially:
- `asset_dir` (line 8)
- `isaac_wh_props` (line 80)
- `forlift_asset` (line 93)
2) Define desired settings in `~/autoGDMplus/config/current.yaml`
3) Source your openfoam installation (with the previously created alias)
```
of2212
```
4) source the GADEN workspace
```
cd autoGDMplus/gaden_ws
source devel/setup.bash
```
## Run AutoGDM+
```
cd autoGDMplus
python3 main.py
```
## Troubleshooting
### Running AutoGDM+
- `could not find .../combined.fms`
- Solution: source your OpenFOAM installation before running
### Omniverse launcher
- [Stuck at login](https://forums.developer.nvidia.com/t/failed-to-login-stuck-after-logging-in-web-browser/260298/6)
- Solution: Search for the `nvidia-omniverse-launcher.desktop` file and copy it to `.config/autostart`
## Contact
Please reach out to us if you encounter any problems or suggestions. AutoGDM+ is a work in progress, we are excited to see it beeing used! Reach out to Hajo for all technical questions.
### Contributors
Hajo Erwich - Student & Maintainer - [email protected] <br />
Bart Duisterhof - Supervisor & PhD Student <br />
Prof. Dr. Guido de Croon | 5,041 | Markdown | 46.566037 | 287 | 0.748661 |
tudelft/autoGDMplus/warehouse_gen/isaac_asset_placer.py | """ isaac_asset_placer.py
Just like blender_asset_placer.py this script takes in the available recipies and
generates .usd files accordingly.
"""
import sys # get recipe and mockup scene dir
argv = sys.argv
argv = argv[argv.index("--") + 1:] # get all the args after " -- "
recipe_dir = argv[0] # recipe folder
usd_dir = argv[1] # isaac sim export folder
# Launch Isaac Sim before any other imports
# Default first two lines in any standalone application
from omni.isaac.kit import SimulationApp
simulation_app = SimulationApp({"headless": True})
import os, platform
import glob
import json
import random
import numpy as np
import carb
import omni.ext
import omni.ui as ui
from omni.ui.workspace_utils import RIGHT
from pxr import Usd, UsdGeom, UsdLux, Gf
# from wh_recipes import warehouse_recipe_custom as wh_rec
# from wh_recipes import warehouse_recipe_simple as wh_simp
class wh_helpers():
def __init__(self):
# NUCLEUS_SERVER_CUSTOM = "~/Omniverse_content/ov-industrial3dpack-01-100.1.1/"
# SIMPLE_WAREHOUSE = "~/Omniverse_content/isaac-simple-warehouse/"
self._system = platform.system()
self.usd_save_dir = usd_dir
def config_environment(self):
for prim in self._stage.Traverse():
if '/Environment/' in str(prim):
prim.SetActive(False)
# self.create_rectangular_light(translate, scale)
def create_distant_light(self):
environmentPath = '/Environment'
lightPath = environmentPath + '/distantLight'
prim = self._stage.DefinePrim(environmentPath, 'Xform')
distLight = UsdLux.DistantLight.Define(self._stage, lightPath)
distLight.AddRotateXYZOp().Set(Gf.Vec3f(315,0,0))
distLight.CreateColorTemperatureAttr(6500.0)
if self._system == "Linux":
distLight.CreateIntensityAttr(6500.0)
else:
distLight.CreateIntensityAttr(3000.0)
distLight.CreateAngleAttr(1.0)
lightApi = UsdLux.ShapingAPI.Apply(distLight.GetPrim())
lightApi.CreateShapingConeAngleAttr(180)
# TODO: optional, implement this func correctly
def create_rectangular_light(self, translate, scale):
environmentPath = '/Environment'
lightPath = environmentPath + '/rectLight'
prim = self._stage.DefinePrim(environmentPath, 'Xform')
rectLight = UsdLux.RectLight.Define(self._stage, lightPath)
# rectLight = UsdLux.RectLight.Define(prim, lightPath)
# rectLight.AddScaleOp().Set(Gf.Vec3f(scale[0],scale[1],scale[2]))
# rectLight.translateOp().Set(Gf.Vec3f(translate[0],translate[1],translate[2]))
# distLight.AddRotateXYZOp().Set(Gf.Vec3f(315,0,0))
# UsdGeom.XformCommonAPI(rectLight).SetTranslate(translate)
# UsdGeom.XformCommonAPI(rectLight).SetScale(scale)
print("rectlight!!!")
rectLight.CreateColorTemperatureAttr(6500.0)
if self._system == "Linux":
rectLight.CreateIntensityAttr(6500.0)
else:
rectLight.CreateIntensityAttr(3000.0)
#distLight.CreateAngleAttr(1.0)
lightApi = UsdLux.ShapingAPI.Apply(rectLight.GetPrim())
#lightApi.CreateShapingConeAngleAttr(180)
# spawn_prim function takes in a path, XYZ position, orientation, a name and spawns the USD asset in path with
# the input name in the given position and orientation inside the world prim as an XForm
def spawn_prim(self, path, translate, rotate, name, scale=Gf.Vec3f(1.0, 1.0, 1.0)):
world = self._stage.GetDefaultPrim()
# Creating an XForm as a child to the world prim
asset = UsdGeom.Xform.Define(self._stage, f"{str(world.GetPath())}/{name}")
# Checking if asset already has a reference and clearing it
asset.GetPrim().GetReferences().ClearReferences()
# Adding USD in the path as reference to this XForm
asset.GetPrim().GetReferences().AddReference(f"{path}")
# Setting the Translate and Rotate
UsdGeom.XformCommonAPI(asset).SetTranslate(translate)
UsdGeom.XformCommonAPI(asset).SetRotate(rotate)
UsdGeom.XformCommonAPI(asset).SetScale(scale)
# Returning the Xform if needed
return asset
# Clear stage function
def clear_stage_old(self):
#Removing all children of world except distant light
self.get_root()
world = self._stage.GetDefaultPrim()
doesLightExist = self._stage.GetPrimAtPath('/Environment/distantLight').IsValid()
# config environment
if doesLightExist == False:
self.config_environment()
# clear scene
for i in world.GetChildren():
if i.GetPath() == '/Environment/distantLight' or i.GetPath() == '/World':
continue
else:
self._stage.RemovePrim(i.GetPath())
def clear_stage(self):
self.get_root()
# Removing all children of world
world = self._stage.GetDefaultPrim()
for i in world.GetChildren():
if i.GetPath() == '/World':
continue
else:
self._stage.RemovePrim(i.GetPath())
# gets stage
def get_root(self):
self._stage = omni.usd.get_context().get_stage()
#UsdGeom.Tokens.upAxis(self._stage, UsdGeom.Tokens.y) # Set stage upAxis to Y
world_prim = self._stage.DefinePrim('/World', 'Xform') # Create top-level World Xform primitive
self._stage.SetDefaultPrim(world_prim) # Set as default primitive
# save stage to .usd
def save_stage(self, fname):
save_loc = f"{self.usd_save_dir}{fname}.usd"
omni.usd.get_context().save_as_stage(save_loc, None)
if os.path.isfile(save_loc):
print(f"[omni.warehouse] saved .usd file to: {self.usd_save_dir}{fname}.usd")
else:
print(f"[omni.warehouse] .usd export FAILED: {self.usd_save_dir}{fname}.usd")
##################################################################
############################# MAIN ###############################
##################################################################
if __name__ == "__main__":
_wh_helpers = wh_helpers()
recipes = glob.glob(f"{recipe_dir}*.txt") # gather all recipes
for rec_loc in recipes:
with open(rec_loc) as f: # reading the recipe from the file
data = f.read()
recipe = json.loads(data) # reconstructing the data as a dictionary
_wh_helpers.clear_stage()
# place lighting
# for light in recipe["isaac_rect_lights"]:
# _wh_helpers.create_rectangular_light(light["location"], light["scale"])
# place interior props
for recipe_dict in [recipe["isaac_floor"],
recipe["isaac_walls"],
recipe["interior"],
recipe["isaac_lights"]]:
for asset in recipe_dict:
_wh_helpers.spawn_prim(asset["filename"],
asset["location"],
asset["orientation"],
asset["asset_id"],
scale=asset["scale"])
_wh_helpers.save_stage(f"{recipe['env_type']}_{recipe['env_id']}")
simulation_app.close() # close Isaac Sim
| 7,415 | Python | 42.116279 | 114 | 0.604855 |
tudelft/autoGDMplus/warehouse_gen/wh_gen.py | #launch Isaac Sim before any other imports
#default first two lines in any standalone application
from omni.isaac.kit import SimulationApp
simulation_app = SimulationApp({"headless": True}) # we can also run as headless.
import numpy as np
import os, platform
import random
import carb
import omni.ext
import omni.ui as ui
from omni.ui.workspace_utils import RIGHT
from pxr import Usd, UsdGeom, UsdLux, Gf
from wh_recipes import warehouse_recipe_custom as wh_rec
from wh_recipes import warehouse_recipe_simple as wh_simp
class wh_helpers():
def __init__(self):
USD_SAVE_DIR = "~/AutoGDM2/USD_scenes/"
#USD_SAVE_DIR = "~/Omniverse_content/isaac-simple-warehouse/"
NUCLEUS_SERVER_CUSTOM = "~/Omniverse_content/ov-industrial3dpack-01-100.1.1/"
SIMPLE_WAREHOUSE = "~/Omniverse_content/isaac-simple-warehouse/"
isTest = False
self._system = platform.system()
self.mode = "procedural"
self.objects = ["empty_racks", "filled_racks", "piles", "railings", "forklift", "robot"]
self.objectDict = self.initAssetPositions()
self.objDictList = list(self.objectDict)
self.isaacSimScale = Gf.Vec3f(100,100,100)
self.usd_save_dir = USD_SAVE_DIR
# Shell info is hard-coded for now
# self.shell_path = f"{NUCLEUS_SERVER}Buildings/Warehouse/Warehouse01.usd"
self.shell_path = f"{NUCLEUS_SERVER_CUSTOM}Buildings/Warehouse/Warehouse01.usd"
self.shell_translate = (0, 0, 55.60183)
self.shell_rotate = (-90.0, 0.0, 0.0)
self.shell_name = "WarehouseShell"
self.shell_simple_path = f"{SIMPLE_WAREHOUSE}warehouse.usd"
self.shell_simple_translate = (0, 0, 0)
self.shell_simple_rotate = (0.0, 0.0, 0.0)
self.shell_simple_name = "WarehouseShell"
def config_environment(self):
for prim in self._stage.Traverse():
if '/Environment/' in str(prim):
prim.SetActive(False)
self.create_distant_light()
def create_distant_light(self):
environmentPath = '/Environment'
lightPath = environmentPath + '/distantLight'
prim = self._stage.DefinePrim(environmentPath, 'Xform')
distLight = UsdLux.DistantLight.Define(self._stage, lightPath)
distLight.AddRotateXYZOp().Set(Gf.Vec3f(315,0,0))
distLight.CreateColorTemperatureAttr(6500.0)
if self._system == "Linux":
distLight.CreateIntensityAttr(6500.0)
else:
distLight.CreateIntensityAttr(3000.0)
distLight.CreateAngleAttr(1.0)
lightApi = UsdLux.ShapingAPI.Apply(distLight.GetPrim())
lightApi.CreateShapingConeAngleAttr(180)
def genShell(self):
self.clear_stage()
self.mode = "procedural"
self.spawn_prim(self.shell_path, self.shell_translate, self.shell_rotate, self.shell_name)
print(str("[omni.warehouse] generating shell from: " + self.shell_path))
def gen_shell_simple(self):
self.clear_stage()
self.mode = "procedural"
self.spawn_prim(self.shell_simple_path, self.shell_simple_translate, self.shell_simple_rotate, self.shell_simple_name)
print(str("[omni.warehouse] generating shell from: " + self.shell_simple_path))
# Generate Warehouse w/ user-selected assets
def gen_custom(self, isProcedural, mode, objectButtons):
self.mode = mode
# Clear stage
self.clear_stage()
# Create shell
self.spawn_prim(self.shell_path, self.shell_translate, self.shell_rotate, self.shell_name)
selected_obj = []
# Spawn all objects (procedural) or user-selected objects
if isProcedural:
selected_obj = self.objects
else:
for i in range(len(objectButtons)):
if objectButtons[i].checked == True:
identifier = {
0: "empty_racks",
1: "filled_racks",
2: "piles",
3: "railings",
4: "forklift",
5: "robot",
}
selected_obj.append(identifier.get(i))
objectUsdPathDict = {"empty_racks": [],
"filled_racks":[],
"piles":[],
"railings":[],
"forklift":[],
"robot":[]
}
# Reserved spots are dependent on self.mode (i.e. layout)
numForkLifts = len(wh_rec[self.objects[4] + "_" + self.mode])
spots2RsrvFL = numForkLifts - 1
numRobots = len(wh_rec[self.objects[5] + "_" + self.mode])
spots2RsrvRob = numRobots - 1
self.objParams = {"empty_racks": [(-90,-180,0), (1,1,1), 5],
"filled_racks":[(-90,-180,0), (1,1,1), 5],
"piles":[(-90,-90,0), (1,1,1), 5],
"railings":[(-90,0,0), (1,1,1), 5],
"forklift":[(-90, random.uniform(0, 90), 0), Gf.Vec3f(1,1,1), spots2RsrvFL],
"robot":[(-90, random.uniform(0, 90), 0), self.isaacSimScale, spots2RsrvRob]
}
# Reserve spots for Smart Import feature
for h in range(0,len(selected_obj)):
for i in range(0, len(self.objDictList)):
if selected_obj[h] == self.objDictList[i]:
for j in wh_rec[selected_obj[h] + "_asset"]:
objectUsdPathDict[self.objDictList[i]].append(wh_rec[selected_obj[h]] + j)
rotation = self.objParams[self.objDictList[i]][0]
scale = self.objParams[self.objDictList[i]][1]
spots2Rsrv = self.objParams[self.objDictList[i]][2]
self.objectDict[self.objDictList[i]] = self.reservePositions(objectUsdPathDict[self.objDictList[i]], selected_obj[h], rotation, scale, spots2Rsrv)
# Function to reserve spots/positions for Smart Import feature (after initial generation of assets)
def reservePositions(self, assets, asset_prefix, rotation = (0,0,0), scale = (1,1,1), spots2reserve = 5):
if len(assets) > 0:
rotate = rotation
scale = scale
all_translates = wh_rec[asset_prefix + "_" + self.mode]
#Select all but 5 positions from available positions (reserved for Smart Import functionality)
if spots2reserve >= len(all_translates) and len(all_translates) > 0:
spots2reserve = len(all_translates) - 1
elif len(all_translates) == 0:
spots2reserve = 0
reserved_positions = random.sample(all_translates, spots2reserve)
translates = [t for t in all_translates if t not in reserved_positions]
positions = reserved_positions
for i in range(len(translates)):
name = asset_prefix + str(i)
path = random.choice(assets)
translate = translates[i]
self.spawn_prim(path, translate, rotate, name, scale)
return positions
# spawn_prim function takes in a path, XYZ position, orientation, a name and spawns the USD asset in path with
# the input name in the given position and orientation inside the world prim as an XForm
def spawn_prim(self, path, translate, rotate, name, scale=Gf.Vec3f(1.0, 1.0, 1.0)):
world = self._stage.GetDefaultPrim()
# Creating an XForm as a child to the world prim
asset = UsdGeom.Xform.Define(self._stage, f"{str(world.GetPath())}/{name}")
# Checking if asset already has a reference and clearing it
asset.GetPrim().GetReferences().ClearReferences()
# Adding USD in the path as reference to this XForm
asset.GetPrim().GetReferences().AddReference(f"{path}")
# Setting the Translate and Rotate
UsdGeom.XformCommonAPI(asset).SetTranslate(translate)
UsdGeom.XformCommonAPI(asset).SetRotate(rotate)
UsdGeom.XformCommonAPI(asset).SetScale(scale)
# Returning the Xform if needed
return asset
def initAssetPositions(self):
dictAssetPositions = {
"empty_racks": wh_rec["empty_racks" + "_" + self.mode],
"filled_racks": wh_rec["filled_racks" + "_" + self.mode],
"piles": wh_rec["piles" + "_" + self.mode],
"railings": wh_rec["railings" + "_" + self.mode],
"forklift": wh_rec["forklift" + "_" + self.mode],
"robot": wh_rec["robot" + "_" + self.mode]
}
return dictAssetPositions
# Clear stage function
def clear_stage(self):
#Removing all children of world except distant light
self.get_root()
world = self._stage.GetDefaultPrim()
doesLightExist = self._stage.GetPrimAtPath('/Environment/distantLight').IsValid()
# config environment
if doesLightExist == False:
self.config_environment()
# clear scene
for i in world.GetChildren():
if i.GetPath() == '/Environment/distantLight' or i.GetPath() == '/World':
continue
else:
self._stage.RemovePrim(i.GetPath())
# gets stage
def get_root(self):
self._stage = omni.usd.get_context().get_stage()
#UsdGeom.Tokens.upAxis(self._stage, UsdGeom.Tokens.y) # Set stage upAxis to Y
world_prim = self._stage.DefinePrim('/World', 'Xform') # Create top-level World Xform primitive
self._stage.SetDefaultPrim(world_prim) # Set as default primitive
# save stage to .usd
def save_stage(self, fname):
save_loc = f"{self.usd_save_dir}{fname}.usd"
omni.usd.get_context().save_as_stage(save_loc, None)
if os.path.isfile(save_loc):
print(f"[omni.warehouse] saved .usd file to: {self.usd_save_dir}{fname}.usd")
else:
print(f"[omni.warehouse] .usd export FAILED: {self.usd_save_dir}{fname}.usd")
### M A I N ###
_wh_helper = wh_helpers()
# Arguments for gen_custom
isProcedural = True
genCustomMode = "procedural"
genCustomButtons = ["empty_racks", "filled_racks", "piles", "railings", "forklift", "robot"]
_wh_helper.gen_shell_simple()
# _wh_helper.gen_custom(isProcedural, genCustomMode, genCustomButtons)
_wh_helper.save_stage("test002")
simulation_app.close() # close Isaac Sim
| 10,448 | Python | 44.628821 | 166 | 0.595521 |
tudelft/autoGDMplus/environments/ROS/empty_project/launch/ros/simbot_costmap_global_params.yaml | ########################################################################
# Global parameters for the COSTMAP_2D pkg (navigation stack)
########################################################################
global_costmap:
plugins:
- {name: static_map, type: "costmap_2d::StaticLayer" }
- {name: obstacles, type: "costmap_2d::VoxelLayer"}
- {name: inflation, type: "costmap_2d::InflationLayer" }
#- {name: proxemic, type: "social_navigation_layers::ProxemicLayer" }
global_frame: map
robot_base_frame: base_link
update_frequency: 1.0
publish_frequency: 0.5
static_map: true
rolling_window: false
always_send_full_costmap: true
visualize_potential: true
obstacles:
track_unknown_space: true
inflation:
inflation_radius: 0.75
cost_scaling_factor: 5.0
# proxemic:
# amplitude: 150.0
# covariance: 0.1
# cutoff: 20
# factor: 1.0
| 901 | YAML | 27.187499 | 75 | 0.562708 |
tudelft/autoGDMplus/environments/ROS/empty_project/launch/ros/simbot_costmap_local_params.yaml | ########################################################################
# Local parameters for the COSTMAP_2D pkg (navigation stack)
########################################################################
local_costmap:
plugins:
# - {name: static_map, type: "costmap_2d::StaticLayer" }
- {name: obstacles, type: "costmap_2d::VoxelLayer"}
- {name: inflation, type: "costmap_2d::InflationLayer" }
# - {name: proxemic, type: "social_navigation_layers::ProxemicLayer" }
global_frame: odom
robot_base_frame: base_link
update_frequency: 5.0
publish_frequency: 5.0
static_map: false
rolling_window: true
width: 6.0
height: 6.0
resolution: 0.05
min_obstacle_height: -10
always_send_full_costmap: true
obstacles:
track_unknown_space: true
inflation:
inflation_radius: 0.75
cost_scaling_factor: 5.0
# proxemic:
# amplitude: 150.0
# covariance: 0.1
# cutoff: 20.0
# factor: 1.0
| 940 | YAML | 25.885714 | 72 | 0.565957 |
tudelft/autoGDMplus/environments/ROS/empty_project/launch/ros/simbot_global_planner_params.yaml | NavfnROS:
allow_unknown: false
default_tolerance: 0.0
visualize_potential: true
use_dijkstra: true
use_quadratic: true
use_grid_path: true
old_navfn_behavior: false
# Defaults:
# allow_unknown: true
# default_tolerance: 0.0
# visualize_potential: false
# use_dijkstra: true
# use_quadratic: true
# use_grid_path: false
# old_navfn_behavior: false
| 372 | YAML | 18.631578 | 30 | 0.712366 |
tudelft/autoGDMplus/environments/ROS/empty_project/launch/ros/simbot_local_planner_params.yaml | ###############################################################################################
# Base_local_planner parameters - Trajectory generator based on costmaps
#
# The base_local_planner package provides a controller that drives a mobile base in the plane.
###############################################################################################
# IF use DWA Planner
#-----------------------------------
DWAPlannerROS:
max_trans_vel: 0.8
min_trans_vel: 0.06
max_vel_x: 0.8
min_vel_x: 0.0
max_vel_y: 0.0
min_vel_y: 0.0
max_rot_vel: 1.5 #rad 0.8rad = 45deg (aprox)
min_rot_vel: 0.2
acc_lim_x: 5.0
acc_lim_y: 0.0
acc_lim_theta: 5.0
acc_lim_trans: 0.45
prune_plan: true
xy_goal_tolerance: 0.2 #m
yaw_goal_tolerance: 0.4 #rad
trans_stopped_vel: 0.0
rot_stopped_vel: 0.8
sim_time: 1.0
sim_granularity: 0.05
angular_sim_granularity: 0.05
path_distance_bias: 32
goal_distance_bias: 20
occdist_scale: 0.02
stop_time_buffer: 0.5
oscillation_reset_dist: 0.10
oscillation_reset_angle: 0.1
forward_point_distanvce: 0.325
scalling_speed: 0.1
max_scaling_factor: 0.2
vx_samples: 10
vy_samples: 10
vth_samples: 15
use_dwa: true
# IF use Trajectory Rollout Planner
#-----------------------------------
TrajectoryPlannerROS:
max_vel_x: 0.6 #0.4
min_vel_x: 0.1 #0.0
max_vel_theta: 0.6 #rad 0.8rad = 45deg (aprox)
min_vel_theta: -0.6
min_in_place_vel_theta: 0.1
acc_lim_x: 5.0 #must be high
acc_lim_y: 0.0
acc_lim_theta: 5.0
acc_limit_trans: 0.4
holonomic_robot: false
#Goal Tolerance Parameters
yaw_goal_tolerance: 0.4 #rad
xy_goal_tolerance: 0.3 #m
#Forward Simulation Parameters
sim_time: 5.0
# sim_granularity: 0.05
# angular_sim_granularity: 0.05
# vx_samples: 3
# vtheta_samples: 20
# controller_frequency: 20
#Trajectory Scoring Parameters
# pdist_scale: 0.6 #The weighting for how much the controller should stay close to the path it was given (default 0.6)
# gdist_scale: 0.8 #The weighting for how much the controller should attempt to reach its local goal, also controls speed (default 0.8#)
| 2,209 | YAML | 25.626506 | 150 | 0.578542 |
tudelft/autoGDMplus/environments/ROS/empty_project/launch/ros/simbot_costmap_common_params.yaml | ########################################################################
# Common parameters for the COSTMAP_2D pkg (navigation stack)
########################################################################
obstacle_range: 2.5 #Update costmap with information about obstacles that are within 2.5 meters of the base
raytrace_range: 3.0 #Clear out space (remove obstacles) up to 3.0 meters away given a sensor reading
# FOOTPRINT
#-----------
#footprint: [[0.35,0.25],[0.35,-0.25],[-0.35,-0.25],[-0.35,0.25]]
#A circular footprint of 0.45 diameter
#footprint: [[ 0.225,0.000 ], [ 0.208, 0.086 ],[ 0.159, 0.159 ],[ 0.086, 0.208 ], [ 0.000, 0.225 ], [ -0.086, 0.208 ], [ -0.159, 0.159 ], [ -0.208, 0.086 ], [ -0.225, 0.000 ],[ -0.208, -0.086 ], [ -0.159, -0.159 ], [ -0.086, -0.208 ], [ -0.000, -0.225 ], [ 0.086, -0.208 ], [ 0.159, -0.159 ], [ 0.208, -0.086 ]]
robot_radius: 0.26 #[m] radius of the robot shape for Giraff Robots (instead of the footprint)
#inflation_radius: 0.6
# List of sensors that are going to be passing information to the costmap
observation_sources: laser_scan laser2_scan laser_stage
#sensor_id: {sensor_frame: [], data_type: [LaserScan/PointCloud], topic: [], marking: true, clearing: true}
laser_scan: {sensor_frame: laser_link, data_type: LaserScan, topic: /laser_scan, marking: true, clearing: true}
laser2_scan: {sensor_frame: laser2_link, data_type: LaserScan, topic: /laser2_scan, marking: true, clearing: true}
laser_stage: {sensor_frame: laser_stage, data_type: LaserScan, topic: /laser_scan, marking: true, clearing: true}
#Planners
#---------
base_global_planner: navfn/NavfnROS
base_local_planner: dwa_local_planner/DWAPlannerROS
#base_local_planner: base_local_planner/TrajectoryPlannerROS
planner_frequency: 1.0
controller_frequency: 20.0
planner_patience: 5.0
controller_patience: 5.0
| 1,845 | YAML | 50.277776 | 315 | 0.627642 |
tudelft/autoGDMplus/gaden_ws/src/gaden/simulated_anemometer/package.xml | <package>
<name>simulated_anemometer</name>
<version>1.0.0</version>
<description> This package simulates the response of a digital anemometer deployed within the gas_dispersion_simulation pkg.</description>
<maintainer email="[email protected]">Javier Monroy</maintainer>
<license>GPLv3</license>
<author>Javier Monroy</author>
<!-- Dependencies which this package needs to build itself. -->
<buildtool_depend>catkin</buildtool_depend>
<!-- Dependencies needed to compile this package. -->
<build_depend>roscpp</build_depend>
<build_depend>visualization_msgs</build_depend>
<build_depend>std_msgs</build_depend>
<build_depend>nav_msgs</build_depend>
<build_depend>olfaction_msgs</build_depend>
<build_depend>tf</build_depend>
<build_depend>gaden_player</build_depend>
<!-- Dependencies needed after this package is compiled. -->
<run_depend>roscpp</run_depend>
<run_depend>visualization_msgs</run_depend>
<run_depend>std_msgs</run_depend>
<run_depend>nav_msgs</run_depend>
<run_depend>olfaction_msgs</run_depend>
<run_depend>tf</run_depend>
<run_depend>gaden_player</run_depend>
</package>
| 1,142 | XML | 34.718749 | 140 | 0.732925 |
tudelft/autoGDMplus/gaden_ws/src/gaden/simulated_anemometer/src/fake_anemometer.h | #include <ros/ros.h>
//#include <nav_msgs/Odometry.h>
//#include <geometry_msgs/PoseWithCovarianceStamped.h>
#include <tf/transform_listener.h>
//#include <std_msgs/Float32.h>
//#include <std_msgs/Float32MultiArray.h>
#include <visualization_msgs/Marker.h>
#include <olfaction_msgs/anemometer.h>
#include <gaden_player/WindPosition.h>
#include <angles/angles.h>
#include <cstdlib>
#include <math.h>
#include <vector>
#include <fstream>
#include <iostream>
// Sensor Parameters
std::string input_sensor_frame;
std::string input_fixed_frame;
double noise_std;
bool use_map_ref_system;
// Vars
bool first_reading = true;
bool notified = false;
//functions:
void loadNodeParameters(ros::NodeHandle private_nh);
| 739 | C | 20.764705 | 54 | 0.725304 |
tudelft/autoGDMplus/gaden_ws/src/gaden/simulated_anemometer/src/fake_anemometer.cpp |
#include "fake_anemometer.h"
#include <stdlib.h> /* srand, rand */
#include <time.h>
#include <boost/random.hpp>
#include <boost/random/normal_distribution.hpp>
typedef boost::normal_distribution<double> NormalDistribution;
typedef boost::mt19937 RandomGenerator;
typedef boost::variate_generator<RandomGenerator&, \
NormalDistribution> GaussianGenerator;
int main( int argc, char** argv )
{
ros::init(argc, argv, "simulated_anemometer");
ros::NodeHandle n;
ros::NodeHandle pn("~");
srand (time(NULL));
//Read parameters
loadNodeParameters(pn);
//Publishers
//ros::Publisher sensor_read_pub = n.advertise<std_msgs::Float32MultiArray>("WindSensor_reading", 500);
ros::Publisher sensor_read_pub = n.advertise<olfaction_msgs::anemometer>("WindSensor_reading", 500);
ros::Publisher marker_pub = n.advertise<visualization_msgs::Marker>("WindSensor_display", 100);
//Service to request wind values to simulator
ros::ServiceClient client = n.serviceClient<gaden_player::WindPosition>("/wind_value");
tf::TransformListener tf_;
// Init Visualization data (marker)
//----------------------------------------------------------------
// sensor = sphere
// conector = stick from the floor to the sensor
visualization_msgs::Marker sensor;
visualization_msgs::Marker connector;
visualization_msgs::Marker connector_inv;
visualization_msgs::Marker wind_point;
visualization_msgs::Marker wind_point_inv;
sensor.header.frame_id = input_fixed_frame.c_str();
sensor.ns = "sensor_visualization";
sensor.action = visualization_msgs::Marker::ADD;
sensor.type = visualization_msgs::Marker::SPHERE;
sensor.id = 0;
sensor.scale.x = 0.1;
sensor.scale.y = 0.1;
sensor.scale.z = 0.1;
sensor.color.r = 0.0f;
sensor.color.g = 0.0f;
sensor.color.b = 1.0f;
sensor.color.a = 1.0;
connector.header.frame_id = input_fixed_frame.c_str();
connector.ns = "sensor_visualization";
connector.action = visualization_msgs::Marker::ADD;
connector.type = visualization_msgs::Marker::CYLINDER;
connector.id = 1;
connector.scale.x = 0.1;
connector.scale.y = 0.1;
connector.color.a = 1.0;
connector.color.r = 1.0f;
connector.color.b = 1.0f;
connector.color.g = 1.0f;
// Init Marker: arrow to display the wind direction measured.
wind_point.header.frame_id = input_sensor_frame.c_str();
wind_point.action = visualization_msgs::Marker::ADD;
wind_point.ns = "measured_wind";
wind_point.type = visualization_msgs::Marker::ARROW;
// Init Marker: arrow to display the inverted wind direction measured.
wind_point_inv.header.frame_id = input_sensor_frame.c_str();
wind_point_inv.action = visualization_msgs::Marker::ADD;
wind_point_inv.ns = "measured_wind_inverted";
wind_point_inv.type = visualization_msgs::Marker::ARROW;
// LOOP
//----------------------------------------------------------------
tf::TransformListener listener;
ros::Rate r(2);
while (ros::ok())
{
//Vars
tf::StampedTransform transform;
bool know_sensor_pose = true;
//Get pose of the sensor in the /map reference
try
{
listener.lookupTransform(input_fixed_frame.c_str(), input_sensor_frame.c_str(),
ros::Time(0), transform);
}
catch (tf::TransformException ex)
{
ROS_ERROR("%s",ex.what());
know_sensor_pose = false;
ros::Duration(1.0).sleep();
}
if (know_sensor_pose)
{
//Current sensor pose
float x_pos = transform.getOrigin().x();
float y_pos = transform.getOrigin().y();
float z_pos = transform.getOrigin().z();
//ROS_INFO("[fake anemometer]: loc x y z: %f, %f, %f", x_pos, y_pos, z_pos);
// Get Wind vectors (u,v,w) at current position
// Service request to the simulator
gaden_player::WindPosition srv;
srv.request.x.push_back(x_pos);
srv.request.y.push_back(y_pos);
srv.request.z.push_back(z_pos);
float u,v,w;
olfaction_msgs::anemometer anemo_msg;
if (client.call(srv))
{
double wind_speed;
double wind_direction;
//GT Wind vector Value (u,v,w)[m/s]
//From OpenFoam this is the DownWind direction in the map
u = (float)srv.response.u[0];
v = (float)srv.response.v[0];
w = (float)srv.response.w[0];
wind_speed = sqrt(pow(u,2)+pow(v,2));
//ROS_INFO("[fake anemometer]: U V W: [%f, %f, %f]", u, v, w);
float downWind_direction_map;
if (u !=0 || v!=0)
downWind_direction_map = atan2(v,u);
else
downWind_direction_map = 0.0;
if (!use_map_ref_system)
{
// (IMPORTANT) Follow standards on wind measurement (real anemometers):
//return the upwind direction in the anemometer reference system
//range [-pi,pi]
//positive to the right, negative to the left (opposed to ROS poses :s)
float upWind_direction_map = angles::normalize_angle(downWind_direction_map + 3.14159);
//Transform from map ref_system to the anemometer ref_system using TF
geometry_msgs::PoseStamped anemometer_upWind_pose, map_upWind_pose;
try
{
map_upWind_pose.header.frame_id = input_fixed_frame.c_str();
map_upWind_pose.pose.position.x = 0.0;
map_upWind_pose.pose.position.y = 0.0;
map_upWind_pose.pose.position.z = 0.0;
map_upWind_pose.pose.orientation = tf::createQuaternionMsgFromYaw(upWind_direction_map);
tf_.transformPose(input_sensor_frame.c_str(), map_upWind_pose, anemometer_upWind_pose);
}
catch(tf::TransformException &ex)
{
ROS_ERROR("FakeAnemometer - %s - Error: %s", __FUNCTION__, ex.what());
}
double upwind_direction_anemo = tf::getYaw(anemometer_upWind_pose.pose.orientation);
wind_direction = upwind_direction_anemo;
}
else
{
// for simulations
wind_direction = angles::normalize_angle(downWind_direction_map);
}
// Adding Noise
static RandomGenerator rng(static_cast<unsigned> (time(0)));
NormalDistribution gaussian_dist(0.0,noise_std);
GaussianGenerator generator(rng, gaussian_dist);
wind_direction = wind_direction + generator();
wind_speed = wind_speed + generator();
//Publish 2D Anemometer readings
//------------------------------
anemo_msg.header.stamp = ros::Time::now();
if (use_map_ref_system)
anemo_msg.header.frame_id = input_fixed_frame.c_str();
else
anemo_msg.header.frame_id = input_sensor_frame.c_str();
anemo_msg.sensor_label = "Fake_Anemo";
anemo_msg.wind_direction = wind_direction; //rad
anemo_msg.wind_speed = wind_speed; //m/s
//Publish fake_anemometer reading (m/s)
sensor_read_pub.publish(anemo_msg);
//Add wind marker ARROW for Rviz (2D) --> Upwind
/*
wind_point.header.stamp = ros::Time::now();
wind_point.points.clear();
wind_point.id = 1; //unique identifier for each arrow
wind_point.pose.position.x = 0.0;
wind_point.pose.position.y = 0.0;
wind_point.pose.position.z = 0.0;
wind_point.pose.orientation = tf::createQuaternionMsgFromYaw(wind_direction_with_noise);
wind_point.scale.x = 2*sqrt(pow(u,2)+pow(v,2)); //arrow lenght
wind_point.scale.y = 0.1; //arrow width
wind_point.scale.z = 0.1; //arrow height
wind_point.color.r = 0.0;
wind_point.color.g = 1.0;
wind_point.color.b = 0.0;
wind_point.color.a = 1.0;
marker_pub.publish(wind_point);
*/
//Add inverted wind marker --> DownWind
wind_point_inv.header.stamp = ros::Time::now();
wind_point_inv.header.frame_id=anemo_msg.header.frame_id;
wind_point_inv.points.clear();
wind_point_inv.id = 1; //unique identifier for each arrow
if(use_map_ref_system){
wind_point_inv.pose.position.x = x_pos;
wind_point_inv.pose.position.y = y_pos;
wind_point_inv.pose.position.z = z_pos;
}else{
wind_point_inv.pose.position.x = 0.0;
wind_point_inv.pose.position.y = 0.0;
wind_point_inv.pose.position.z = 0.0;
}
wind_point_inv.pose.orientation = tf::createQuaternionMsgFromYaw(wind_direction+3.1416);
// ROS_INFO("[fake anemometer]: wind readings u v: %f, %f", u, v);
wind_point_inv.scale.x = 2*sqrt(pow(u,2)+pow(v,2)); //arrow lenght
wind_point_inv.scale.y = 0.1; //arrow width
wind_point_inv.scale.z = 0.1; //arrow height
wind_point_inv.color.r = 0.0;
wind_point_inv.color.g = 1.0;
wind_point_inv.color.b = 0.0;
wind_point_inv.color.a = 1.0;
marker_pub.publish(wind_point_inv);
notified = false;
}
else
{
if (!notified)
{
ROS_WARN("[fake_anemometer] Cannot read Wind Vector from simulated data.");
notified = true;
}
}
//Publish RVIZ sensor pose (a sphere)
/*
sensor.header.stamp = ros::Time::now();
sensor.pose.position.x = x_pos;
sensor.pose.position.y = y_pos;
sensor.pose.position.z = z_pos;
marker_pub.publish(sensor);
*/
// PUBLISH ANEMOMETER Stick
/*
connector.header.stamp = ros::Time::now();
connector.scale.z = z_pos;
connector.pose.position.x = x_pos;
connector.pose.position.y = y_pos;
connector.pose.position.z = float(z_pos)/2;
marker_pub.publish(connector);
*/
}
ros::spinOnce();
r.sleep();
}
}
//Load Sensor parameters
void loadNodeParameters(ros::NodeHandle private_nh)
{
//sensor_frame
private_nh.param<std::string>("sensor_frame", input_sensor_frame, "anemometer_link");
//fixed frame
private_nh.param<std::string>("fixed_frame", input_fixed_frame, "map");
//Noise
private_nh.param<double>("noise_std", noise_std, 0.1);
//What ref system to use for publishing measurements
private_nh.param<bool>("use_map_ref_system", use_map_ref_system, false);
ROS_INFO("[fake anemometer]: wind noise: %f", noise_std);
}
| 10,648 | C++ | 32.487421 | 112 | 0.590627 |
tudelft/autoGDMplus/gaden_ws/src/gaden/gaden_environment/package.xml | <package>
<name>gaden_environment</name>
<version>1.0.0</version>
<description>Package for visualizing on RVIZ the simulation environment (walls, obstacles and gas source).</description>
<maintainer email="[email protected]">Javier Monroy</maintainer>
<license>GPLv3</license>
<!-- Dependencies which this package needs to build itself. -->
<buildtool_depend>catkin</buildtool_depend>
<!-- Dependencies needed to compile this package. -->
<build_depend>visualization_msgs</build_depend>
<build_depend>tf</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>std_msgs</build_depend>
<build_depend>geometry_msgs</build_depend>
<!-- Dependencies needed after this package is compiled. -->
<run_depend>visualization_msgs</run_depend>
<run_depend>tf</run_depend>
<run_depend>roscpp</run_depend>
<run_depend>std_msgs</run_depend>
<run_depend>geometry_msgs</run_depend>
</package>
| 928 | XML | 33.407406 | 122 | 0.727371 |
tudelft/autoGDMplus/gaden_ws/src/gaden/gaden_environment/src/environment.cpp | /*
* The only goal of this Node is to display the simulation environment and gas source location in RVIZ.
*
* 1. Loads the simulation environment (usually from CFD in the file format .env), and displays it as RVIZ markers.
* 2. Displays the Gas-Source Location as two cylinders.
*/
#include "environment/environment.h"
// ===============================//
// MAIN //
// ===============================//
int main( int argc, char** argv )
{
//Init
ros::init(argc, argv, "environment");
Environment environment;
//Load Parameters
environment.run();
}
void Environment::run()
{
ros::NodeHandle n;
ros::NodeHandle pnh("~");
loadNodeParameters(pnh);
// Publishers
ros::Publisher gas_source_pub = n.advertise<visualization_msgs::MarkerArray>("source_visualization", 10);
ros::Publisher environmnet_pub = n.advertise<visualization_msgs::MarkerArray>("environment_visualization", 100);
ros::Publisher environmnet_cad_pub = n.advertise<visualization_msgs::MarkerArray>("environment_cad_visualization", 100);
ros::ServiceServer occupancyMapService = n.advertiseService("gaden_environment/occupancyMap3D", &Environment::occupancyMapServiceCB, this);
// Subscribers
preprocessing_done =false;
ros::Subscriber sub = n.subscribe("preprocessing_done", 1, &Environment::PreprocessingCB, this);
// 1. ENVIRONMNET AS CAD MODELS
//-------------------------------
visualization_msgs::MarkerArray CAD_model_markers;
for (int i=0;i<number_of_CAD;i++)
{
// CAD model in Collada (.dae) format
visualization_msgs::Marker cad;
cad.header.frame_id = fixed_frame;
cad.header.stamp = ros::Time::now();
cad.ns = "part_" + std::to_string(i);
cad.id = i;
cad.type = visualization_msgs::Marker::MESH_RESOURCE;
cad.action = visualization_msgs::Marker::ADD;
cad.mesh_resource = CAD_models[i];
cad.scale.x = 1.0;
cad.scale.y = 1.0;
cad.scale.z = 1.0;
cad.pose.position.x = 0.0; //CAD models have the object pose within the file!
cad.pose.position.y = 0.0;
cad.pose.position.z = 0.0;
cad.pose.orientation.x = 0.0;
cad.pose.orientation.y = 0.0;
cad.pose.orientation.z = 0.0;
cad.pose.orientation.w = 1.0;
//Color (Collada has no color)
cad.color.r = CAD_color[i][0];
cad.color.g = CAD_color[i][1];
cad.color.b = CAD_color[i][2];
cad.color.a = 1.0;
//Add Marker to array
CAD_model_markers.markers.push_back(cad);
}
// 2. ENVIRONMNET AS Occupancy3D file
//------------------------------------
//Display Environment as an array of Cube markers (Rviz)
visualization_msgs::MarkerArray environment;
if (occupancy3D_data != "")
loadEnvironment(environment);
if (verbose) ROS_INFO("[env]loadEnvironment completed, line 85");
// 3. GAS SOURCES
//----------------
//Generate Gas Source Markers
//The shape are cylinders from the floor to the given z_size.
visualization_msgs::MarkerArray gas_source_markers;
for (int i=0;i<number_of_sources;i++)
{
visualization_msgs::Marker source;
source.header.frame_id = fixed_frame;
source.header.stamp = ros::Time::now();
source.id = i;
source.ns = "gas_source_visualization";
source.action = visualization_msgs::Marker::ADD;
//source.type = visualization_msgs::Marker::CYLINDER;
source.type = visualization_msgs::Marker::CUBE;
source.scale.x = gas_source_scale[i];
source.scale.y = gas_source_scale[i];
source.scale.z = gas_source_pos_z[i];
source.color.r = gas_source_color[i][0];
source.color.g = gas_source_color[i][1];
source.color.b = gas_source_color[i][2];
source.color.a = 1.0;
source.pose.position.x = gas_source_pos_x[i];
source.pose.position.y = gas_source_pos_y[i];
source.pose.position.z = gas_source_pos_z[i]/2;
source.pose.orientation.x = 0.0;
source.pose.orientation.y = 0.0;
source.pose.orientation.z = 1.0;
source.pose.orientation.w = 1.0;
//Add Marker to array
gas_source_markers.markers.push_back(source);
}
// Small sleep to allow RVIZ to startup
ros::Duration(1.0).sleep();
//---------------
// LOOP
//---------------
ros::Rate r(0.3); //Just to refresh from time to time
while (ros::ok())
{
//Publish CAD Markers
environmnet_cad_pub.publish(CAD_model_markers);
// Publish 3D Occupancy
if (occupancy3D_data != "")
environmnet_pub.publish(environment);
//Publish Gas Sources
gas_source_pub.publish(gas_source_markers);
ros::spinOnce();
r.sleep();
}
}
// ===============================//
// Load Node parameters //
// ===============================//
void Environment::loadNodeParameters(ros::NodeHandle private_nh)
{
private_nh.param<bool>("verbose", verbose, false);
if (verbose) ROS_INFO("[env] The data provided in the roslaunch file is:");
private_nh.param<bool>("wait_preprocessing", wait_preprocessing, false);
if (verbose) ROS_INFO("[env] wait_preprocessing: %u",wait_preprocessing);
private_nh.param<std::string>("fixed_frame", fixed_frame, "map");
if (verbose) ROS_INFO("[env] Fixed Frame: %s",fixed_frame.c_str());
private_nh.param<int>("number_of_sources", number_of_sources, 0);
if (verbose) ROS_INFO("[env] number_of_sources: %i",number_of_sources);
gas_source_pos_x.resize(number_of_sources);
gas_source_pos_y.resize(number_of_sources);
gas_source_pos_z.resize(number_of_sources);
gas_source_scale.resize(number_of_sources);
gas_source_color.resize(number_of_sources);
for(int i=0;i<number_of_sources;i++)
{
//Get location of soruce for instance (i)
std::string paramNameX = boost::str( boost::format("source_%i_position_x") % i);
std::string paramNameY = boost::str( boost::format("source_%i_position_y") % i);
std::string paramNameZ = boost::str( boost::format("source_%i_position_z") % i);
std::string scale = boost::str( boost::format("source_%i_scale") % i);
std::string color = boost::str( boost::format("source_%i_color") % i);
private_nh.param<double>(paramNameX.c_str(), gas_source_pos_x[i], 0.0);
private_nh.param<double>(paramNameY.c_str(), gas_source_pos_y[i], 0.0);
private_nh.param<double>(paramNameZ.c_str(), gas_source_pos_z[i], 0.0);
private_nh.param<double>(scale.c_str(), gas_source_scale[i], 0.1);
gas_source_color[i].resize(3);
private_nh.getParam(color.c_str(),gas_source_color[i]);
if (verbose) ROS_INFO("[env] Gas_source(%i): pos=[%0.2f %0.2f %0.2f] scale=%.2f color=[%0.2f %0.2f %0.2f]",
i, gas_source_pos_x[i], gas_source_pos_y[i], gas_source_pos_z[i],
gas_source_scale[i],
gas_source_color[i][0],gas_source_color[i][1],gas_source_color[i][2]);
}
// CAD MODELS
//-------------
//CAD model files
private_nh.param<int>("number_of_CAD", number_of_CAD, 0);
if (verbose) ROS_INFO("[env] number_of_CAD: %i",number_of_CAD);
CAD_models.resize(number_of_CAD);
CAD_color.resize(number_of_CAD);
for(int i=0;i<number_of_CAD;i++)
{
//Get location of CAD file for instance (i)
std::string paramName = boost::str( boost::format("CAD_%i") % i);
std::string paramColor = boost::str( boost::format("CAD_%i_color") % i);
private_nh.param<std::string>(paramName.c_str(), CAD_models[i], "");
CAD_color[i].resize(3);
private_nh.getParam(paramColor.c_str(),CAD_color[i]);
if (verbose) ROS_INFO("[env] CAD_models(%i): %s",i, CAD_models[i].c_str());
}
//Occupancy 3D gridmap
//---------------------
private_nh.param<std::string>("occupancy3D_data", occupancy3D_data, "");
if (verbose) ROS_INFO("[env] Occupancy3D file location: %s",occupancy3D_data.c_str());
}
//=========================//
// PreProcessing CallBack //
//=========================//
void Environment::PreprocessingCB(const std_msgs::Bool& b)
{
preprocessing_done = true;
}
void Environment::readEnvFile()
{
if(occupancy3D_data==""){
ROS_ERROR(" [GADEN_PLAYER] No occupancy file specified. Use the parameter \"occupancyFile\" to input the path to the OccupancyGrid3D.csv file.\n");
return;
}
//open file
std::ifstream infile(occupancy3D_data.c_str());
std::string line;
//read the header
{
//Line 1 (min values of environment)
std::getline(infile, line);
size_t pos = line.find(" ");
line.erase(0, pos+1);
pos = line.find(" ");
env_min_x = atof(line.substr(0, pos).c_str());
line.erase(0, pos+1);
pos = line.find(" ");
env_min_y = atof(line.substr(0, pos).c_str());
env_min_z = atof(line.substr(pos+1).c_str());
//Line 2 (max values of environment)
std::getline(infile, line);
pos = line.find(" ");
line.erase(0, pos+1);
pos = line.find(" ");
env_max_x = atof(line.substr(0, pos).c_str());
line.erase(0, pos+1);
pos = line.find(" ");
env_max_y = atof(line.substr(0, pos).c_str());
env_max_z = atof(line.substr(pos+1).c_str());
//Line 3 (Num cells on eahc dimension)
std::getline(infile, line);
pos = line.find(" ");
line.erase(0, pos+1);
pos = line.find(" ");
env_cells_x = atoi(line.substr(0, pos).c_str());
line.erase(0, pos+1);
pos = line.find(" ");
env_cells_y = atof(line.substr(0, pos).c_str());
env_cells_z = atof(line.substr(pos+1).c_str());
//Line 4 cell_size (m)
std::getline(infile, line);
pos = line.find(" ");
cell_size = atof(line.substr(pos+1).c_str());
if (verbose) ROS_INFO("[env]Env dimensions (%.2f,%.2f,%.2f)-(%.2f,%.2f,%.2f)",env_min_x, env_min_y, env_min_z, env_max_x, env_max_y, env_max_z );
if (verbose) ROS_INFO("[env]Env size in cells (%d,%d,%d) - with cell size %f [m]",env_cells_x,env_cells_y,env_cells_z, cell_size);
}
Env.resize(env_cells_x * env_cells_y * env_cells_z);
if (verbose) ROS_INFO("[env]Env.resize command, line 283");
int x_idx = 0;
int y_idx = 0;
int z_idx = 0;
while ( std::getline(infile, line) )
{
std::stringstream ss(line);
if (z_idx >=env_cells_z)
{
ROS_ERROR("Trying to read:[%s]",line.c_str());
}
if (line == ";")
{
if (verbose) ROS_INFO("[env] z_idx: %d", z_idx);
//New Z-layer
z_idx++;
x_idx = 0;
y_idx = 0;
}
else
{ //New line with constant x_idx and all the y_idx values
while (ss)
{
int f;
ss >> std::skipws >> f;
Env[indexFrom3D(x_idx,y_idx,z_idx)] = f;
y_idx++;
}
//Line has ended
x_idx++;
if (verbose) ROS_INFO("[env] x_idx: %d", x_idx);
y_idx = 0;
}
}
if (verbose) ROS_INFO("[env]before infile.close line 327");
infile.close();
if (verbose) ROS_INFO("[env]after infile.close line 329");
}
/* Load environment from 3DOccupancy.csv GridMap
* Loads the environment file containing a description of the simulated environment in the CFD (for the estimation of the wind flows), and displays it.
* As a general rule, environment files set a value of "0" for a free cell, "1" for a ocuppiedd cell and "2" for outlet.
* This function creates a cube marker for every occupied cell, with the corresponding dimensions
*/
void Environment::loadEnvironment(visualization_msgs::MarkerArray &env_marker)
{
// Wait for the GADEN_preprocessin node to finish?
if( wait_preprocessing )
{
while(ros::ok() && !preprocessing_done)
{
ros::Duration(0.5).sleep();
ros::spinOnce();
if (verbose) ROS_INFO("[environment] Waiting for node GADEN_preprocessing to end.");
}
}
readEnvFile();
if (verbose) ROS_INFO("[env]readEnvFile completed, line 342");
for ( int i = 0; i<env_cells_x; i++)
{
for ( int j = 0; j<env_cells_y; j++)
{
for ( int k = 0; k<env_cells_z; k++)
{
//Color
if (!Env[indexFrom3D(i,j,k)])
{
//Add a new cube marker for this occupied cell
visualization_msgs::Marker new_marker;
new_marker.header.frame_id = fixed_frame;
new_marker.header.stamp = ros::Time::now();
new_marker.ns = "environment_visualization";
new_marker.id = indexFrom3D(i,j,k); //unique identifier
new_marker.type = visualization_msgs::Marker::CUBE;
new_marker.action = visualization_msgs::Marker::ADD;
//Center of the cell
new_marker.pose.position.x = env_min_x + ( (i + 0.5) * cell_size);
new_marker.pose.position.y = env_min_y + ( (j + 0.5) * cell_size);
new_marker.pose.position.z = env_min_z + ( (k + 0.5) * cell_size);
new_marker.pose.orientation.x = 0.0;
new_marker.pose.orientation.y = 0.0;
new_marker.pose.orientation.z = 0.0;
new_marker.pose.orientation.w = 1.0;
//Size of the cell
new_marker.scale.x = cell_size;
new_marker.scale.y = cell_size;
new_marker.scale.z = cell_size;
new_marker.color.r = 0.9f;
new_marker.color.g = 0.1f;
new_marker.color.b = 0.1f;
new_marker.color.a = 1.0;
env_marker.markers.push_back(new_marker);
}
}
}
}
}
bool Environment::occupancyMapServiceCB(gaden_environment::OccupancyRequest& request, gaden_environment::OccupancyResponse& response)
{
response.origin.x = env_min_x;
response.origin.y = env_min_y;
response.origin.z = env_min_z;
response.numCellsX = env_cells_x;
response.numCellsY = env_cells_y;
response.numCellsZ = env_cells_z;
response.resolution = cell_size;
response.occupancy = Env;
return true;
}
int Environment::indexFrom3D(int x, int y, int z){
return x + y*env_cells_x + z*env_cells_x*env_cells_y;
}
| 14,700 | C++ | 34.509662 | 155 | 0.566599 |
tudelft/autoGDMplus/gaden_ws/src/gaden/gaden_environment/include/environment/environment.h | #pragma once
#include <ros/ros.h>
#include <std_msgs/Bool.h>
#include <visualization_msgs/Marker.h>
#include <visualization_msgs/MarkerArray.h>
#include <resource_retriever/retriever.h>
#include <cmath>
#include <vector>
#include <fstream>
#include <boost/format.hpp>
#include <gaden_environment/Occupancy.h>
class Environment
{
public:
void run();
private:
//Gas Sources
int number_of_sources;
std::vector<double> gas_source_pos_x;
std::vector<double> gas_source_pos_y;
std::vector<double> gas_source_pos_z;
std::vector<double> gas_source_scale;
std::vector< std::vector<double> > gas_source_color;
//CAD models
int number_of_CAD;
std::vector<std::string> CAD_models;
std::vector< std::vector<double> > CAD_color;
//Environment 3D
std::vector<uint8_t> Env;
std::string occupancy3D_data; //Location of the 3D Occupancy GridMap of the environment
std::string fixed_frame; //Frame where to publish the markers
int env_cells_x; //cells
int env_cells_y; //cells
int env_cells_z; //cells
double env_min_x; //[m]
double env_max_x; //[m]
double env_min_y; //[m]
double env_max_y; //[m]
double env_min_z; //[m]
double env_max_z; //[m]
double cell_size; //[m]
bool verbose;
bool wait_preprocessing;
bool preprocessing_done;
//Methods
void loadNodeParameters(ros::NodeHandle);
void loadEnvironment(visualization_msgs::MarkerArray &env_marker);
void readEnvFile();
bool occupancyMapServiceCB(gaden_environment::OccupancyRequest& request, gaden_environment::OccupancyResponse& response);
int indexFrom3D(int x, int y, int z);
void PreprocessingCB(const std_msgs::Bool& b);
};
| 2,074 | C | 31.936507 | 125 | 0.562681 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/CHANGELOG.rst | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Changelog for package map_server
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1.17.3 (2023-01-10)
-------------------
* [ROS-O] various patches (`#1225 <https://github.com/ros-planning/navigation/issues/1225>`_)
* do not specify obsolete c++11 standard
this breaks with current versions of log4cxx.
* update pluginlib include paths
the non-hpp headers have been deprecated since kinetic
* use lambdas in favor of boost::bind
Using boost's _1 as a global system is deprecated since C++11.
The ROS packages in Debian removed the implicit support for the global symbols,
so this code fails to compile there without the patch.
* Contributors: Michael Görner
1.17.2 (2022-06-20)
-------------------
* Change_map service to map_server [Rebase/Noetic] (`#1029 <https://github.com/ros-planning/navigation/issues/1029>`_)
* Refactored map loading from constructor to three methods
* Added change_map service using LoadMap.srv
* map_server: Initialise a NodeHandle in main. (`#1122 <https://github.com/ros-planning/navigation/issues/1122>`_)
* Add debug output regarding waiting for time (`#1078 <https://github.com/ros-planning/navigation/issues/1078>`_)
Added debug messages suggested in https://github.com/ros-planning/navigation/issues/1074#issuecomment-751557177. Makes it easier to discover if use_sim_time is true but no clock server is running
* crop_map: Fix extra pixel origin shift up every cropping (`#1064 <https://github.com/ros-planning/navigation/issues/1064>`_) (`#1067 <https://github.com/ros-planning/navigation/issues/1067>`_)
Co-authored-by: Pavlo Kolomiiets <[email protected]>
* (map_server) add rtest dependency to tests (`#1061 <https://github.com/ros-planning/navigation/issues/1061>`_)
* [noetic] MapServer variable cleanup: Precursor for `#1029 <https://github.com/ros-planning/navigation/issues/1029>`_ (`#1043 <https://github.com/ros-planning/navigation/issues/1043>`_)
* Contributors: Christian Fritz, David V. Lu!!, Matthijs van der Burgh, Nikos Koukis, Pavlo Kolomiiets
1.17.1 (2020-08-27)
-------------------
* Initial map_server map_mode tests (`#1006 <https://github.com/ros-planning/navigation/issues/1006>`_)
* [noetic] Adding CMake way to find yaml-cpp (`#998 <https://github.com/ros-planning/navigation/issues/998>`_)
* Contributors: David V. Lu!!, Sean Yen
1.17.0 (2020-04-02)
-------------------
* Merge pull request `#982 <https://github.com/ros-planning/navigation/issues/982>`_ from ros-planning/noetic_prep
Noetic Migration
* increase required cmake version
* Contributors: Michael Ferguson
1.16.6 (2020-03-18)
-------------------
1.16.5 (2020-03-15)
-------------------
* [melodic] updated install for better portability. (`#973 <https://github.com/ros-planning/navigation/issues/973>`_)
* Contributors: Sean Yen
1.16.4 (2020-03-04)
-------------------
1.16.3 (2019-11-15)
-------------------
* Merge branch 'melodic-devel' into layer_clear_area-melodic
* Merge pull request `#850 <https://github.com/ros-planning/navigation/issues/850>`_ from seanyen/map_server_windows_fix
[Windows][melodic] map_server Windows build bring up
* map_server Windows build bring up
* Fix install location for Windows build. (On Windows build, shared library uses RUNTIME location, but not LIBRARY)
* Use boost::filesystem::path to handle path logic and remove the libgen.h dependency for better cross platform.
* Fix gtest hard-coded and add YAML library dir in CMakeList.txt.
* Contributors: Michael Ferguson, Sean Yen, Steven Macenski
1.16.2 (2018-07-31)
-------------------
1.16.1 (2018-07-28)
-------------------
1.16.0 (2018-07-25)
-------------------
* Merge pull request `#735 <https://github.com/ros-planning/navigation/issues/735>`_ from ros-planning/melodic_708
Allow specification of free/occupied thresholds for map_saver (`#708 <https://github.com/ros-planning/navigation/issues/708>`_)
* Allow specification of free/occupied thresholds for map_saver (`#708 <https://github.com/ros-planning/navigation/issues/708>`_)
* add occupied threshold command line parameter to map_saver (--occ)
* add free threshold command line parameter to map_saver (--free)
* Merge pull request `#704 <https://github.com/ros-planning/navigation/issues/704>`_ from DLu/fix573_lunar
Map server wait for a valid time fix [lunar]
* Map server wait for a valid time, fix `#573 <https://github.com/ros-planning/navigation/issues/573>`_ (`#700 <https://github.com/ros-planning/navigation/issues/700>`_)
When launching the map_server with Gazebo, the current time is picked
before the simulation is started and then has a value of 0.
Later when querying the stamp of the map, a value of has a special
signification on tf transform for example.
* Contributors: Michael Ferguson, Romain Reignier, ipa-fez
1.15.2 (2018-03-22)
-------------------
* Merge pull request `#673 <https://github.com/ros-planning/navigation/issues/673>`_ from ros-planning/email_update_lunar
update maintainer email (lunar)
* Merge pull request `#649 <https://github.com/ros-planning/navigation/issues/649>`_ from aaronhoy/lunar_add_ahoy
Add myself as a maintainer.
* Rebase PRs from Indigo/Kinetic (`#637 <https://github.com/ros-planning/navigation/issues/637>`_)
* Respect planner_frequency intended behavior (`#622 <https://github.com/ros-planning/navigation/issues/622>`_)
* Only do a getRobotPose when no start pose is given (`#628 <https://github.com/ros-planning/navigation/issues/628>`_)
Omit the unnecessary call to getRobotPose when the start pose was
already given, so that move_base can also generate a path in
situations where getRobotPose would fail.
This is actually to work around an issue of getRobotPose randomly
failing.
* Update gradient_path.cpp (`#576 <https://github.com/ros-planning/navigation/issues/576>`_)
* Update gradient_path.cpp
* Update navfn.cpp
* update to use non deprecated pluginlib macro (`#630 <https://github.com/ros-planning/navigation/issues/630>`_)
* update to use non deprecated pluginlib macro
* multiline version as well
* Print SDL error on IMG_Load failure in server_map (`#631 <https://github.com/ros-planning/navigation/issues/631>`_)
* Use occupancy values when saving a map (`#613 <https://github.com/ros-planning/navigation/issues/613>`_)
* Closes `#625 <https://github.com/ros-planning/navigation/issues/625>`_ (`#627 <https://github.com/ros-planning/navigation/issues/627>`_)
* Contributors: Aaron Hoy, David V. Lu!!, Hunter Allen, Michael Ferguson
1.15.1 (2017-08-14)
-------------------
* remove offending library export (fixes `#612 <https://github.com/ros-planning/navigation/issues/612>`_)
* Contributors: Michael Ferguson
1.15.0 (2017-08-07)
-------------------
* Fix compiler warning for GCC 8.
* convert packages to format2
* Merge pull request `#596 <https://github.com/ros-planning/navigation/issues/596>`_ from ros-planning/lunar_548
* refactor to not use tf version 1 (`#561 <https://github.com/ros-planning/navigation/issues/561>`_)
* Fix CMakeLists + package.xmls (`#548 <https://github.com/ros-planning/navigation/issues/548>`_)
* Merge pull request `#560 <https://github.com/ros-planning/navigation/issues/560>`_ from wjwwood/map_server_fixup_cmake
* update to support Python 2 and 3 (`#559 <https://github.com/ros-planning/navigation/issues/559>`_)
* remove duplicate and unreferenced file (`#558 <https://github.com/ros-planning/navigation/issues/558>`_)
* remove trailing whitespace from map_server package (`#557 <https://github.com/ros-planning/navigation/issues/557>`_)
* fix cmake use of yaml-cpp and sdl / sdl-image
* Fix CMake warnings
* Contributors: Hunter L. Allen, Martin Günther, Michael Ferguson, Mikael Arguedas, Vincent Rabaud, William Woodall
1.14.0 (2016-05-20)
-------------------
* Corrections to alpha channel detection and usage.
Changing to actually detect whether the image has an alpha channel instead of
inferring based on the number of channels.
Also reverting to legacy behavior of trinary mode overriding alpha removal.
This will cause the alpha channel to be averaged in with the others in trinary
mode, which is the current behavior before this PR.
* Removing some trailing whitespace.
* Use enum to control map interpretation
* Contributors: Aaron Hoy, David Lu
1.13.1 (2015-10-29)
-------------------
1.13.0 (2015-03-17)
-------------------
* rename image_loader library, fixes `#208 <https://github.com/ros-planning/navigation/issues/208>`_
* Contributors: Michael Ferguson
1.12.0 (2015-02-04)
-------------------
* update maintainer email
* Contributors: Michael Ferguson
1.11.15 (2015-02-03)
--------------------
1.11.14 (2014-12-05)
--------------------
* prevent inf loop
* Contributors: Jeremie Deray
1.11.13 (2014-10-02)
--------------------
1.11.12 (2014-10-01)
--------------------
* map_server: [style] alphabetize dependencies
* map_server: remove vestigial export line
the removed line does not do anything in catkin
* Contributors: William Woodall
1.11.11 (2014-07-23)
--------------------
1.11.10 (2014-06-25)
--------------------
1.11.9 (2014-06-10)
-------------------
1.11.8 (2014-05-21)
-------------------
* fix build, was broken by `#175 <https://github.com/ros-planning/navigation/issues/175>`_
* Contributors: Michael Ferguson
1.11.7 (2014-05-21)
-------------------
* make rostest in CMakeLists optional
* Contributors: Lukas Bulwahn
1.11.5 (2014-01-30)
-------------------
* install crop map
* removing .py from executable script
* Map Server can serve maps with non-lethal values
* Added support for YAML-CPP 0.5+.
The new yaml-cpp API removes the "node >> outputvar;" operator, and
it has a new way of loading documents. There's no version hint in the
library's headers, so I'm getting the version number from pkg-config.
* check for CATKIN_ENABLE_TESTING
* Change maintainer from Hersh to Lu
1.11.4 (2013-09-27)
-------------------
* prefix utest target to not collide with other targets
* Package URL Updates
* unique target names to avoid conflicts (e.g. with map-store)
| 10,034 | reStructuredText | 46.112676 | 197 | 0.70012 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/rtest.cpp | /*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Brian Gerkey */
#include <gtest/gtest.h>
#include <ros/service.h>
#include <ros/ros.h>
#include <ros/package.h>
#include <nav_msgs/GetMap.h>
#include <nav_msgs/OccupancyGrid.h>
#include <nav_msgs/MapMetaData.h>
#include <nav_msgs/LoadMap.h>
#include "test_constants.h"
int g_argc;
char** g_argv;
class MapClientTest : public testing::Test
{
public:
// A node is needed to make a service call
ros::NodeHandle* n_;
MapClientTest()
{
ros::init(g_argc, g_argv, "map_client_test");
n_ = new ros::NodeHandle();
got_map_ = false;
got_map_metadata_ = false;
}
~MapClientTest()
{
delete n_;
}
bool got_map_;
boost::shared_ptr<nav_msgs::OccupancyGrid const> map_;
void mapCallback(const boost::shared_ptr<nav_msgs::OccupancyGrid const>& map)
{
map_ = map;
got_map_ = true;
}
bool got_map_metadata_;
boost::shared_ptr<nav_msgs::MapMetaData const> map_metadata_;
void mapMetaDataCallback(const boost::shared_ptr<nav_msgs::MapMetaData const>& map_metadata)
{
map_metadata_ = map_metadata;
got_map_metadata_ = true;
}
};
/* Try to retrieve the map via service, and compare to ground truth */
TEST_F(MapClientTest, call_service)
{
nav_msgs::GetMap::Request req;
nav_msgs::GetMap::Response resp;
ASSERT_TRUE(ros::service::waitForService("static_map", 5000));
ASSERT_TRUE(ros::service::call("static_map", req, resp));
ASSERT_FLOAT_EQ(resp.map.info.resolution, g_valid_image_res);
ASSERT_EQ(resp.map.info.width, g_valid_image_width);
ASSERT_EQ(resp.map.info.height, g_valid_image_height);
ASSERT_STREQ(resp.map.header.frame_id.c_str(), "map");
for(unsigned int i=0; i < resp.map.info.width * resp.map.info.height; i++)
ASSERT_EQ(g_valid_image_content[i], resp.map.data[i]);
}
/* Try to retrieve the map via topic, and compare to ground truth */
TEST_F(MapClientTest, subscribe_topic)
{
ros::Subscriber sub = n_->subscribe<nav_msgs::OccupancyGrid>("map", 1, [this](auto& map){ mapCallback(map); });
// Try a few times, because the server may not be up yet.
int i=20;
while(!got_map_ && i > 0)
{
ros::spinOnce();
ros::Duration d = ros::Duration().fromSec(0.25);
d.sleep();
i--;
}
ASSERT_TRUE(got_map_);
ASSERT_FLOAT_EQ(map_->info.resolution, g_valid_image_res);
ASSERT_EQ(map_->info.width, g_valid_image_width);
ASSERT_EQ(map_->info.height, g_valid_image_height);
ASSERT_STREQ(map_->header.frame_id.c_str(), "map");
for(unsigned int i=0; i < map_->info.width * map_->info.height; i++)
ASSERT_EQ(g_valid_image_content[i], map_->data[i]);
}
/* Try to retrieve the metadata via topic, and compare to ground truth */
TEST_F(MapClientTest, subscribe_topic_metadata)
{
ros::Subscriber sub = n_->subscribe<nav_msgs::MapMetaData>("map_metadata", 1, [this](auto& map_metadata){ mapMetaDataCallback(map_metadata); });
// Try a few times, because the server may not be up yet.
int i=20;
while(!got_map_metadata_ && i > 0)
{
ros::spinOnce();
ros::Duration d = ros::Duration().fromSec(0.25);
d.sleep();
i--;
}
ASSERT_TRUE(got_map_metadata_);
ASSERT_FLOAT_EQ(map_metadata_->resolution, g_valid_image_res);
ASSERT_EQ(map_metadata_->width, g_valid_image_width);
ASSERT_EQ(map_metadata_->height, g_valid_image_height);
}
/* Change the map, retrieve the map via topic, and compare to ground truth */
TEST_F(MapClientTest, change_map)
{
ros::Subscriber sub = n_->subscribe<nav_msgs::OccupancyGrid>("map", 1, [this](auto& map){ mapCallback(map); });
// Try a few times, because the server may not be up yet.
for (int i = 20; i > 0 && !got_map_; i--)
{
ros::spinOnce();
ros::Duration d = ros::Duration().fromSec(0.25);
d.sleep();
}
ASSERT_TRUE(got_map_);
// Now change the map
got_map_ = false;
nav_msgs::LoadMap::Request req;
nav_msgs::LoadMap::Response resp;
req.map_url = ros::package::getPath("map_server") + "/test/testmap2.yaml";
ASSERT_TRUE(ros::service::waitForService("change_map", 5000));
ASSERT_TRUE(ros::service::call("change_map", req, resp));
ASSERT_EQ(0u, resp.result);
for (int i = 20; i > 0 && !got_map_; i--)
{
ros::spinOnce();
ros::Duration d = ros::Duration().fromSec(0.25);
d.sleep();
}
ASSERT_FLOAT_EQ(tmap2::g_valid_image_res, map_->info.resolution);
ASSERT_EQ(tmap2::g_valid_image_width, map_->info.width);
ASSERT_EQ(tmap2::g_valid_image_height, map_->info.height);
ASSERT_STREQ("map", map_->header.frame_id.c_str());
for(unsigned int i=0; i < map_->info.width * map_->info.height; i++)
ASSERT_EQ(tmap2::g_valid_image_content[i], map_->data[i]) << "idx:" << i;
//Put the old map back so the next test isn't broken
got_map_ = false;
req.map_url = ros::package::getPath("map_server") + "/test/testmap.yaml";
ASSERT_TRUE(ros::service::call("change_map", req, resp));
ASSERT_EQ(0u, resp.result);
for (int i = 20; i > 0 && !got_map_; i--)
{
ros::spinOnce();
ros::Duration d = ros::Duration().fromSec(0.25);
d.sleep();
}
ASSERT_TRUE(got_map_);
}
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
g_argc = argc;
g_argv = argv;
return RUN_ALL_TESTS();
}
| 6,837 | C++ | 33.361809 | 146 | 0.668568 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/testmap2.yaml | image: testmap2.png
resolution: 0.1
origin: [-2.0, -3.0, -1.0]
negate: 1
occupied_thresh: 0.5
free_thresh: 0.2
| 111 | YAML | 14.999998 | 26 | 0.675676 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/testmap.yaml | image: testmap.png
resolution: 0.1
origin: [2.0, 3.0, 1.0]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196
| 110 | YAML | 14.857141 | 23 | 0.7 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/utest.cpp | /*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Brian Gerkey */
#include <stdexcept> // for std::runtime_error
#include <gtest/gtest.h>
#include "map_server/image_loader.h"
#include "test_constants.h"
/* Try to load a valid PNG file. Succeeds if no exception is thrown, and if
* the loaded image matches the known dimensions and content of the file.
*
* This test can fail on OS X, due to an apparent limitation of the
* underlying SDL_Image library. */
TEST(MapServer, loadValidPNG)
{
try
{
nav_msgs::GetMap::Response map_resp;
double origin[3] = { 0.0, 0.0, 0.0 };
map_server::loadMapFromFile(&map_resp, g_valid_png_file, g_valid_image_res, false, 0.65, 0.1, origin);
EXPECT_FLOAT_EQ(map_resp.map.info.resolution, g_valid_image_res);
EXPECT_EQ(map_resp.map.info.width, g_valid_image_width);
EXPECT_EQ(map_resp.map.info.height, g_valid_image_height);
for(unsigned int i=0; i < map_resp.map.info.width * map_resp.map.info.height; i++)
EXPECT_EQ(g_valid_image_content[i], map_resp.map.data[i]);
}
catch(...)
{
ADD_FAILURE() << "Uncaught exception : " << "This is OK on OS X";
}
}
/* Try to load a valid BMP file. Succeeds if no exception is thrown, and if
* the loaded image matches the known dimensions and content of the file. */
TEST(MapServer, loadValidBMP)
{
try
{
nav_msgs::GetMap::Response map_resp;
double origin[3] = { 0.0, 0.0, 0.0 };
map_server::loadMapFromFile(&map_resp, g_valid_bmp_file, g_valid_image_res, false, 0.65, 0.1, origin);
EXPECT_FLOAT_EQ(map_resp.map.info.resolution, g_valid_image_res);
EXPECT_EQ(map_resp.map.info.width, g_valid_image_width);
EXPECT_EQ(map_resp.map.info.height, g_valid_image_height);
for(unsigned int i=0; i < map_resp.map.info.width * map_resp.map.info.height; i++)
EXPECT_EQ(g_valid_image_content[i], map_resp.map.data[i]);
}
catch(...)
{
ADD_FAILURE() << "Uncaught exception";
}
}
/* Try to load an invalid file. Succeeds if a std::runtime_error exception
* is thrown. */
TEST(MapServer, loadInvalidFile)
{
try
{
nav_msgs::GetMap::Response map_resp;
double origin[3] = { 0.0, 0.0, 0.0 };
map_server::loadMapFromFile(&map_resp, "foo", 0.1, false, 0.65, 0.1, origin);
}
catch(std::runtime_error &e)
{
SUCCEED();
return;
}
catch(...)
{
FAIL() << "Uncaught exception";
}
ADD_FAILURE() << "Didn't throw exception as expected";
}
std::vector<unsigned int> countValues(const nav_msgs::GetMap::Response& map_resp)
{
std::vector<unsigned int> counts(256, 0);
for (unsigned int i = 0; i < map_resp.map.data.size(); i++)
{
unsigned char value = static_cast<unsigned char>(map_resp.map.data[i]);
counts[value]++;
}
return counts;
}
TEST(MapServer, testMapMode)
{
nav_msgs::GetMap::Response map_resp;
double origin[3] = { 0.0, 0.0, 0.0 };
map_server::loadMapFromFile(&map_resp, g_spectrum_png_file, 0.1, false, 0.65, 0.1, origin, TRINARY);
std::vector<unsigned int> trinary_counts = countValues(map_resp);
EXPECT_EQ(90u, trinary_counts[100]);
EXPECT_EQ(26u, trinary_counts[0]);
EXPECT_EQ(140u, trinary_counts[255]);
map_server::loadMapFromFile(&map_resp, g_spectrum_png_file, 0.1, false, 0.65, 0.1, origin, SCALE);
std::vector<unsigned int> scale_counts = countValues(map_resp);
EXPECT_EQ(90u, scale_counts[100]);
EXPECT_EQ(26u, scale_counts[0]);
unsigned int scaled_values = 0;
for (unsigned int i = 1; i < 100; i++)
{
scaled_values += scale_counts[i];
}
EXPECT_EQ(140u, scaled_values);
map_server::loadMapFromFile(&map_resp, g_spectrum_png_file, 0.1, false, 0.65, 0.1, origin, RAW);
std::vector<unsigned int> raw_counts = countValues(map_resp);
for (unsigned int i = 0; i < raw_counts.size(); i++)
{
EXPECT_EQ(1u, raw_counts[i]) << i;
}
}
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
| 5,484 | C++ | 35.566666 | 106 | 0.684537 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/test_constants.cpp | /*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* Author: Brian Gerkey */
/* This file contains global constants shared among tests */
/* Note that these must be changed if the test image changes */
#include "test_constants.h"
const unsigned int g_valid_image_width = 10;
const unsigned int g_valid_image_height = 10;
// Note that the image content is given in row-major order, with the
// lower-left pixel first. This is different from a graphics coordinate
// system, which starts with the upper-left pixel. The loadMapFromFile
// call converts from the latter to the former when it loads the image, and
// we want to compare against the result of that conversion.
const char g_valid_image_content[] = {
0,0,0,0,0,0,0,0,0,0,
100,100,100,100,0,0,100,100,100,0,
100,100,100,100,0,0,100,100,100,0,
100,0,0,0,0,0,0,0,0,0,
100,0,0,0,0,0,0,0,0,0,
100,0,0,0,0,0,100,100,0,0,
100,0,0,0,0,0,100,100,0,0,
100,0,0,0,0,0,100,100,0,0,
100,0,0,0,0,0,100,100,0,0,
100,0,0,0,0,0,0,0,0,0,
};
const char* g_valid_png_file = "test/testmap.png";
const char* g_valid_bmp_file = "test/testmap.bmp";
const char* g_spectrum_png_file = "test/spectrum.png";
const float g_valid_image_res = 0.1;
// Constants for testmap2
namespace tmap2
{
const char g_valid_image_content[] = {
100,100,100,100,100,100,100,100,100,100,100,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,100,100,100,100,100,100,100,100,0,100,
100,0,100,0,0,0,0,0,0,100,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,0,100,0,0,0,0,0,0,100,0,100,
100,0,0,0,0,0,0,0,0,0,0,100,
100,100,100,100,100,100,100,100,100,100,100,100,
};
const float g_valid_image_res = 0.1;
const unsigned int g_valid_image_width = 12;
const unsigned int g_valid_image_height = 12;
}
| 3,407 | C++ | 39.094117 | 78 | 0.709715 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/rtest.xml | <launch>
<node name="map_server" pkg="map_server" type="map_server" args="$(find map_server)/test/testmap.yaml"/>
<test test-name="map_server_test" pkg="map_server" type="rtest"/>
</launch>
| 197 | XML | 23.749997 | 106 | 0.670051 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/test_constants.h | /*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MAP_SERVER_TEST_CONSTANTS_H
#define MAP_SERVER_TEST_CONSTANTS_H
/* Author: Brian Gerkey */
/* This file externs global constants shared among tests */
extern const unsigned int g_valid_image_width;
extern const unsigned int g_valid_image_height;
extern const char g_valid_image_content[];
extern const char* g_valid_png_file;
extern const char* g_valid_bmp_file;
extern const float g_valid_image_res;
extern const char* g_spectrum_png_file;
namespace tmap2 {
extern const char g_valid_image_content[];
extern const float g_valid_image_res;
extern const unsigned int g_valid_image_width;
extern const unsigned int g_valid_image_height;
}
#endif
| 2,276 | C | 42.788461 | 78 | 0.755272 |
tudelft/autoGDMplus/gaden_ws/src/gaden/map_server/test/consumer.py | #!/usr/bin/env python
# Software License Agreement (BSD License)
#
# Copyright (c) 2008, Willow Garage, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of the Willow Garage nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
from __future__ import print_function
PKG = 'static_map_server'
NAME = 'consumer'
import sys
import unittest
import time
import rospy
import rostest
from nav_msgs.srv import GetMap
class TestConsumer(unittest.TestCase):
def __init__(self, *args):
super(TestConsumer, self).__init__(*args)
self.success = False
def callback(self, data):
print(rospy.get_caller_id(), "I heard %s" % data.data)
self.success = data.data and data.data.startswith('hello world')
rospy.signal_shutdown('test done')
def test_consumer(self):
rospy.wait_for_service('static_map')
mapsrv = rospy.ServiceProxy('static_map', GetMap)
resp = mapsrv()
self.success = True
print(resp)
while not rospy.is_shutdown() and not self.success: # and time.time() < timeout_t: <== timeout_t doesn't exists??
time.sleep(0.1)
self.assert_(self.success)
rospy.signal_shutdown('test done')
if __name__ == '__main__':
rostest.rosrun(PKG, NAME, TestConsumer, sys.argv)
| 2,688 | Python | 36.347222 | 122 | 0.718378 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.