file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/deployment.py
class DeploymentInfo: def __init__(self, version=None, has_deployment=False): self.version = version self.has_deployment = has_deployment
158
Python
30.799994
59
0.677215
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/classifier.py
import asyncio import subprocess import uuid from enum import Enum, auto import os import tempfile import shutil import numpy as np import glob from omni.kit.widget.viewport.capture import ByteCapture import omni.isaac.core.utils.viewports as vp import ctypes from PIL import Image, ImageDraw, ImageFont from concurrent.futures import ThreadPoolExecutor import yaml from .utils import get_models_directory, is_node_installed class ClassifierError(Enum): SUCCESS = auto() NODEJS_NOT_INSTALLED = auto() FAILED_TO_RETRIEVE_PROJECT_ID = auto() MODEL_DEPLOYMENT_NOT_AVAILABLE = auto() FAILED_TO_DOWNLOAD_MODEL = auto() FAILED_TO_PROCESS_VIEWPORT = auto() FAILED_TO_PROCESS_CLASSIFY_RESULT = auto() class Classifier: def __init__( self, rest_client, project_id, impulse_image_height, impulse_image_width, log_fn ): self.rest_client = rest_client self.project_id = project_id self.model_ready = False self.model_path = os.path.expanduser(f"{get_models_directory()}/model.zip") self.featuresTmpFile = None self.log_fn = log_fn self.impulse_image_height = impulse_image_height self.impulse_image_width = impulse_image_width self.image = None self.original_width = None self.original_height = None self.new_width = None self.new_height = None self.output_image_path = None async def __check_and_update_model(self): if not is_node_installed(): self.log_fn("Error: NodeJS not installed") return ClassifierError.NODEJS_NOT_INSTALLED deployment_info = await self.rest_client.get_deployment_info(self.project_id) if not deployment_info: self.log_fn("Error: Failed to get deployment info") return ClassifierError.MODEL_DEPLOYMENT_NOT_AVAILABLE current_version = deployment_info.version model_dir_name = f"ei-model-{self.project_id}-{current_version}" model_dir = os.path.join(os.path.dirname(self.model_path), model_dir_name) # Check if the model directory exists and its version if os.path.exists(model_dir): self.log_fn("Latest model version already downloaded.") self.model_ready = True return ClassifierError.SUCCESS # If the model directory for the current version does not exist, delete old versions and download the new one self.__delete_old_models(os.path.dirname(self.model_path), model_dir_name) self.log_fn("Downloading model...") model_content = await self.rest_client.download_model(self.project_id) if model_content is not None: self.__save_model(model_content, model_dir) self.model_ready = True self.log_fn("Model is ready for classification.") return ClassifierError.SUCCESS else: self.log_fn("Error: Failed to download the model") return ClassifierError.FAILED_TO_DOWNLOAD_MODEL def __delete_old_models(self, parent_dir, exclude_dir_name): for dirname in os.listdir(parent_dir): if dirname.startswith("ei-model-") and dirname != exclude_dir_name: dirpath = os.path.join(parent_dir, dirname) shutil.rmtree(dirpath) self.log_fn(f"Deleted old model directory: {dirpath}") def __save_model(self, model_content, model_dir): if not os.path.exists(model_dir): os.makedirs(model_dir) self.log_fn(f"'{model_dir}' directory created") model_zip_path = os.path.join(model_dir, "model.zip") with open(model_zip_path, "wb") as model_file: model_file.write(model_content) self.log_fn(f"Model zip saved to {model_zip_path}") # Extract the zip file shutil.unpack_archive(model_zip_path, model_dir) os.remove(model_zip_path) self.log_fn(f"Model extracted to {model_dir}") def __resize_image_and_extract_features( self, image, target_width, target_height, channel_count ): # Resize the image self.image = image.resize( (target_width, target_height), Image.Resampling.LANCZOS ) # Convert the image to the required color space if channel_count == 3: # RGB self.image = self.image.convert("RGB") img_array = np.array(self.image) # Extract RGB features as hexadecimal values features = [ "0x{:02x}{:02x}{:02x}".format(*pixel) for pixel in img_array.reshape(-1, 3) ] elif channel_count == 1: # Grayscale self.image = self.image.convert("L") img_array = np.array(self.image) # Repeat the grayscale values to mimic the RGB structure features = [ "0x{:02x}{:02x}{:02x}".format(pixel, pixel, pixel) for pixel in img_array.flatten() ] return { "features": features, "originalWidth": image.width, "originalHeight": image.height, "newWidth": target_width, "newHeight": target_height, } async def __capture_and_process_image(self): def on_capture_completed(buffer, buffer_size, width, height, format): try: image_size = width * height * 4 ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.POINTER( ctypes.c_byte * image_size ) ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ ctypes.py_object, ctypes.c_char_p, ] content = ctypes.pythonapi.PyCapsule_GetPointer(buffer, None) pointer = ctypes.cast( content, ctypes.POINTER(ctypes.c_byte * image_size) ) np_arr = np.ctypeslib.as_array(pointer.contents) image = Image.frombytes("RGBA", (width, height), np_arr.tobytes()) self.image = image # Directly use the image for resizing and feature extraction target_width = self.impulse_image_width target_height = self.impulse_image_height channel_count = 3 # 3 for RGB, 1 for grayscale resized_info = self.__resize_image_and_extract_features( image, target_width, target_height, channel_count ) features = resized_info["features"] features_str = ",".join(features) self.original_width = resized_info["originalWidth"] self.original_height = resized_info["originalHeight"] self.new_width = resized_info["newWidth"] self.new_height = resized_info["newHeight"] try: with tempfile.NamedTemporaryFile( delete=False, suffix=".txt", mode="w+t" ) as tmp_file: tmp_file.write(features_str) self.featuresTmpFile = tmp_file.name self.log_fn(f"Features saved to {tmp_file.name}") except Exception as e: self.log_fn(f"Error: Failed to save features to file: {e}") except Exception as e: self.log_fn(f"Error: Failed to process and save image: {e}") viewport_window_id = vp.get_id_from_index(0) viewport_window = vp.get_window_from_id(viewport_window_id) viewport_api = viewport_window.viewport_api capture_delegate = ByteCapture(on_capture_completed) capture = viewport_api.schedule_capture(capture_delegate) await capture.wait_for_result() async def __run_subprocess(self, command, cwd): """Run the given subprocess command in a thread pool and capture its output.""" loop = asyncio.get_running_loop() def subprocess_run(): # Execute the command and capture output return subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, cwd=cwd, ) with ThreadPoolExecutor() as pool: # Run the blocking operation in the executor result = await loop.run_in_executor(pool, subprocess_run) return result # TODO The logic to normalize bouding boxes is not right, so we simply display # the boxes on the resized image directly def __normalize_bounding_boxes(self, bounding_boxes): orig_factor = self.original_width / self.original_height new_factor = self.new_width / self.new_height if orig_factor > new_factor: # Boxed in with bands top/bottom factor = self.new_width / self.original_width offset_x = 0 offset_y = (self.new_height - (self.original_height * factor)) / 2 elif orig_factor < new_factor: # Boxed in with bands left/right factor = self.new_height / self.original_height offset_x = (self.new_width - (self.original_width * factor)) / 2 offset_y = 0 else: # Image was already at the right aspect ratio factor = self.new_width / self.original_width offset_x = 0 offset_y = 0 # Adjust bounding boxes for bb in bounding_boxes: bb["x"] = round((bb["x"] - offset_x) / factor) bb["width"] = round(bb["width"] / factor) bb["y"] = round((bb["y"] - offset_y) / factor) bb["height"] = round(bb["height"] / factor) return bounding_boxes def __draw_bounding_boxes_and_save(self, bounding_boxes): draw = ImageDraw.Draw(self.image) try: font = ImageFont.truetype("arial.ttf", 10) except IOError: font = ImageFont.load_default() print("Custom font not found. Using default font.") # Loop through the bounding boxes and draw them along with labels and confidence values for box in bounding_boxes: x, y, width, height = box["x"], box["y"], box["width"], box["height"] label = box["label"] confidence = box["value"] # Draw the bounding box rectangle draw.rectangle(((x, y), (x + width, y + height)), outline="red", width=2) # Prepare the label text with confidence label_text = f"{label} ({confidence:.2f})" # Calculate the text position to appear above the bounding box text_width, text_height = draw.textsize(label_text, font=font) text_x = x + 5 # A small offset from the left edge of the bounding box text_y = y - text_height # Above the bounding box with a small offset # Ensure the text is not drawn outside the image if text_y < 0: text_y = ( y + height + 5 ) # Below the bounding box if there is no space above # Draw the text background draw.rectangle( ((text_x - 2, text_y), (text_x + text_width + 2, text_y + text_height)), fill="red", ) # Draw the label text with confidence draw.text((text_x, text_y), label_text, fill="white", font=font) # Save the image random_file_name = f"captured_with_bboxes_{uuid.uuid4()}.png" self.output_image_path = os.path.join(tempfile.gettempdir(), random_file_name) self.image.save(self.output_image_path) self.log_fn( f"Image with bounding boxes and labels saved at {self.output_image_path}" ) async def classify(self): self.log_fn("Checking and updating model...") result = await self.__check_and_update_model() if result != ClassifierError.SUCCESS: self.log_fn(f"Failed to update model: {result.name}") return result, None # Return None or an empty list for the bounding boxes self.log_fn("Capturing and processing image...") await self.__capture_and_process_image() try: model_dirs = glob.glob( os.path.join(os.path.dirname(self.model_path), "ei-model-*") ) if model_dirs: latest_model_dir = max(model_dirs, key=os.path.getctime) self.log_fn(f"Using latest model directory: {latest_model_dir}") if self.featuresTmpFile: script_dir = os.path.join(latest_model_dir, "node") self.log_fn(f"Running inference on {self.featuresTmpFile}") command = ["node", "run-impulse.js", self.featuresTmpFile] # Run subprocess and capture its output process_result = await self.__run_subprocess(command, script_dir) if process_result.returncode == 0: self.log_fn(f"{process_result.stdout}") # Attempt to find the start of the JSON content try: json_start_index = process_result.stdout.find("{") if json_start_index == -1: self.log_fn( "Error: No JSON content found in subprocess output." ) return ( ClassifierError.FAILED_TO_PROCESS_CLASSIFY_RESULT, None, ) json_content = process_result.stdout[json_start_index:] # Use YAML loader to parse the JSON content. We cannot use json directly # because the result of running run-impulse.js is not a well formed JSON # (i.e. missing double quotes in names) output_dict = yaml.load( json_content, Loader=yaml.SafeLoader ) if "results" in output_dict: output_dict["bounding_boxes"] = output_dict.pop( "results" ) self.__draw_bounding_boxes_and_save( output_dict["bounding_boxes"] ) return ( ClassifierError.SUCCESS, self.output_image_path, ) else: self.log_fn( "Error: classifier output does not contain 'results' key." ) return ( ClassifierError.FAILED_TO_PROCESS_CLASSIFY_RESULT, None, ) except yaml.YAMLError as e: self.log_fn( f"Error parsing classification results with YAML: {e}" ) return ( ClassifierError.FAILED_TO_PROCESS_CLASSIFY_RESULT, None, ) else: self.log_fn(f"Classification failed: {process_result.stderr}") return ClassifierError.FAILED_TO_PROCESS_CLASSIFY_RESULT, None else: self.log_fn("No model directory found.") return ClassifierError.FAILED_TO_DOWNLOAD_MODEL, None except subprocess.CalledProcessError as e: self.log_fn(f"Error executing model classification: {e.stderr}") return ClassifierError.FAILED_TO_DOWNLOAD_MODEL, None
16,201
Python
41.862434
117
0.542868
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/extension.py
# SPDX-License-Identifier: Apache-2.0 import omni.ext import omni.ui as ui from omni.kit.window.file_importer import get_file_importer import asyncio from .config import Config from .uploader import upload_data from .classifier import Classifier from .state import State from .client import EdgeImpulseRestClient class EdgeImpulseExtension(omni.ext.IExt): config = Config() classifier = None def on_startup(self, ext_id): print("[edgeimpulse.dataingestion] Edge Impulse Extension startup") self.config.print_config_info() # Load the last known state from the config saved_state_name = self.config.get_state() try: self.state = State[saved_state_name] except KeyError: self.state = State.NO_PROJECT_CONNECTED self.reset_to_initial_state() self._window = ui.Window("Edge Impulse", width=300, height=300) with self._window.frame: with ui.VStack(): self.no_project_content_area = ui.VStack( spacing=15, height=0, visible=False ) self.project_connected_content_area = ui.VStack( spacing=15, height=0, visible=False ) self.setup_ui_project_connected() self.setup_ui_no_project_connected() self.transition_to_state(self.state) def reset_to_initial_state(self): self.project_id = None self.api_key = None self.project_name = None self.impulse = None self.upload_logs_text = "" self.uploading = False self.classify_logs_text = "" self.classifying = False self.training_samples = 0 self.testing_samples = 0 self.anomaly_samples = 0 self.impulse_info = None self.deployment_info = None def transition_to_state(self, new_state): """ Transition the extension to a new state. :param new_state: The new state to transition to. """ # Store the new state in memory self.state = new_state # Save the new state in the configuration self.config.set_state(self.state) # Call the corresponding UI setup method based on the new state if self.state == State.PROJECT_CONNECTED: self.project_id = self.config.get("project_id") self.project_name = self.config.get("project_name") self.api_key = self.config.get("project_api_key") self.rest_client = EdgeImpulseRestClient(self.api_key) self.project_info_label.text = ( f"Connected to project {self.project_id} ({self.project_name})" ) self.update_ui_visibility() def update_ui_visibility(self): """Update UI visibility based on the current state.""" if hasattr(self, "no_project_content_area") and hasattr( self, "project_connected_content_area" ): self.no_project_content_area.visible = ( self.state == State.NO_PROJECT_CONNECTED ) self.project_connected_content_area.visible = ( self.state == State.PROJECT_CONNECTED ) def setup_ui_no_project_connected(self): with self.no_project_content_area: # Title and welcome message ui.Label( "Welcome to Edge Impulse for NVIDIA Omniverse", height=20, word_wrap=True, ) ui.Label( "1. Create a free Edge Impulse account: https://studio.edgeimpulse.com/", height=20, word_wrap=True, ) # API Key input section with ui.VStack(height=20, spacing=10): ui.Label( "2. Connect to your Edge Impulse project by setting your API Key", width=300, ) with ui.HStack(): ui.Spacer(width=3) ei_api_key = ui.StringField(name="ei_api_key", height=20) ui.Spacer(width=3) ui.Spacer(width=30) with ui.HStack(height=20): ui.Spacer(width=30) # Connect button connect_button = ui.Button("Connect") connect_button.set_clicked_fn( lambda: asyncio.ensure_future( self.validate_and_connect_project( ei_api_key.model.get_value_as_string() ) ) ) ui.Spacer(width=30) self.error_message_label = ui.Label( "", height=20, word_wrap=True, visible=False ) def setup_ui_project_connected(self): with self.project_connected_content_area: # Project information self.project_info_label = ui.Label( f"Connected to project {self.project_id} ({self.project_name})", height=20, word_wrap=True, ) # Disconnect button with ui.HStack(height=20): ui.Spacer(width=30) disconnect_button = ui.Button("Disconnect") disconnect_button.set_clicked_fn(lambda: self.disconnect()) ui.Spacer(width=30) # Data Upload Section self.setup_data_upload_ui() # Classification Section self.setup_classification_ui() def hide_error_message(self): if self.error_message_label: self.error_message_label.text = "" self.error_message_label.visible = False def display_error_message(self, message): if self.error_message_label: self.error_message_label.text = message self.error_message_label.visible = True async def validate_and_connect_project(self, api_key): self.hide_error_message() self.rest_client = EdgeImpulseRestClient(api_key) project_info = await self.rest_client.get_project_info() if project_info: print(f"Connected to project: {project_info}") self.config.set("project_id", project_info["id"]) self.config.set("project_name", project_info["name"]) self.config.set("project_api_key", api_key) self.transition_to_state(State.PROJECT_CONNECTED) else: # Display an error message in the current UI self.display_error_message( "Failed to connect to the project. Please check your API key." ) def disconnect(self): print("Disconnecting") self.reset_to_initial_state() self.config.set("project_id", None) self.config.set("project_name", None) self.config.set("project_api_key", None) self.classify_button.visible = False self.ready_for_classification.visible = False self.data_collapsable_frame.collapsed = True self.classification_collapsable_frame.collapsed = True self.transition_to_state(State.NO_PROJECT_CONNECTED) ### Data ingestion def setup_data_upload_ui(self): self.data_collapsable_frame = ui.CollapsableFrame( "Data Upload", collapsed=True, height=0 ) self.data_collapsable_frame.set_collapsed_changed_fn( lambda c: asyncio.ensure_future(self.on_data_upload_collapsed_changed(c)) ) with self.data_collapsable_frame: with ui.VStack(spacing=10, height=0): with ui.VStack(height=0, spacing=5): self.training_samples_label = ui.Label( f"Training samples: {self.training_samples}" ) self.testing_samples_label = ui.Label( f"Test samples: {self.testing_samples}" ) self.anomaly_samples_label = ui.Label( f"Anomaly samples: {self.anomaly_samples}" ) with ui.HStack(height=20): ui.Spacer(width=3) ui.Label("Data Path", width=70) ui.Spacer(width=8) data_path = self.config.get("data_path", "No folder selected") self.data_path_display = ui.Label(data_path, width=250) ui.Spacer(width=10) ui.Button("Select Folder", clicked_fn=self.select_folder, width=150) ui.Spacer(width=3) with ui.HStack(height=20): ui.Spacer(width=3) ui.Label("Dataset", width=70) ui.Spacer(width=8) dataset_types = ["training", "testing", "anomaly"] self.dataset_type_dropdown = ui.ComboBox(0, *dataset_types) self.dataset_type_subscription = ( self.dataset_type_dropdown.model.subscribe_item_changed_fn( self.on_dataset_type_changed ) ) initial_dataset_type = self.config.get("dataset_type", "training") if initial_dataset_type in dataset_types: for i, dtype in enumerate(dataset_types): if dtype == initial_dataset_type: self.dataset_type_dropdown.model.get_item_value_model().as_int = ( i ) break ui.Spacer(width=3) with ui.HStack(height=20): self.upload_button = ui.Button( "Upload to Edge Impulse", clicked_fn=lambda: self.start_upload() ) # Scrolling frame for upload logs self.upload_logs_frame = ui.ScrollingFrame(height=100, visible=False) with self.upload_logs_frame: self.upload_logs_label = ui.Label("", word_wrap=True) with ui.HStack(height=20): self.clear_upload_logs_button = ui.Button( "Clear Logs", clicked_fn=self.clear_upload_logs, visible=False ) async def on_data_upload_collapsed_changed(self, collapsed): if not collapsed: await self.get_samples_count() def select_folder(self): def import_handler(filename: str, dirname: str, selections: list = []): if dirname: self.data_path_display.text = dirname EdgeImpulseExtension.config.set("data_path", dirname) else: print("No folder selected") file_importer = get_file_importer() file_importer.show_window( title="Select Data Folder", show_only_folders=True, import_handler=import_handler, import_button_label="Select", ) def on_dataset_type_changed( self, item_model: ui.AbstractItemModel, item: ui.AbstractItem ): value_model = item_model.get_item_value_model(item) current_index = value_model.as_int dataset_type = ["training", "testing", "anomaly"][current_index] self.config.set("dataset_type", dataset_type) def get_dataset_type(self): selected_index = self.dataset_type_dropdown.model.get_value_as_int() dataset_types = ["training", "testing", "anomaly"] return dataset_types[selected_index] def add_upload_logs_entry(self, message): self.upload_logs_text += message + "\n" self.upload_logs_label.text = self.upload_logs_text self.update_clear_upload_logs_button_visibility() def clear_upload_logs(self): self.upload_logs_text = "" self.upload_logs_label.text = self.upload_logs_text self.update_clear_upload_logs_button_visibility() def update_clear_upload_logs_button_visibility(self): self.clear_upload_logs_button.visible = bool(self.upload_logs_text) self.upload_logs_frame.visible = self.uploading def start_upload(self): if not self.uploading: # Prevent multiple uploads at the same time self.uploading = True self.upload_button.text = "Uploading..." self.upload_logs_frame.visible = True async def upload(): await upload_data( self.config.get("project_api_key"), self.config.get("data_path"), self.config.get("dataset_type"), self.add_upload_logs_entry, lambda: asyncio.ensure_future(self.get_samples_count()), self.on_upload_complete, ) asyncio.ensure_future(upload()) def on_upload_complete(self): self.uploading = False self.upload_button.text = "Upload to Edge Impulse" async def get_samples_count(self): self.training_samples = await self.rest_client.get_samples_count( self.project_id, "training" ) self.testing_samples = await self.rest_client.get_samples_count( self.project_id, "testing" ) self.anomaly_samples = await self.rest_client.get_samples_count( self.project_id, "anomaly" ) print( f"Samples count: Training ({self.training_samples}) - Testing ({self.testing_samples}) - Anomaly ({self.anomaly_samples})" ) self.training_samples_label.text = f"Training samples: {self.training_samples}" self.testing_samples_label.text = f"Test samples: {self.testing_samples}" self.anomaly_samples_label.text = f"Anomaly samples: {self.anomaly_samples}" ### Classification def setup_classification_ui(self): self.classification_collapsable_frame = ui.CollapsableFrame( "Classification", collapsed=True, height=0 ) self.classification_collapsable_frame.set_collapsed_changed_fn( lambda c: asyncio.ensure_future(self.on_classification_collapsed_changed(c)) ) with self.classification_collapsable_frame: with ui.VStack(spacing=10, height=0): self.impulse_status_label = ui.Label( "Fetching your Impulse design...", height=20, visible=False ) self.deployment_status_label = ui.Label( "Fetching latest model deployment...", height=20, visible=False ) self.ready_for_classification = ui.Label( "Your model is ready! You can now run inference on the current scene", height=20, visible=False, ) ui.Spacer(height=20) with ui.HStack(height=20): self.classify_button = ui.Button( "Classify current scene frame", clicked_fn=lambda: asyncio.ensure_future(self.start_classify()), visible=False, ) # Scrolling frame for classify logs self.classify_logs_frame = ui.ScrollingFrame(height=100, visible=False) with self.classify_logs_frame: self.classify_logs_label = ui.Label("", word_wrap=True) with ui.HStack(height=20): self.clear_classify_logs_button = ui.Button( "Clear Logs", clicked_fn=self.clear_classify_logs, visible=False ) self.classification_output_section = ui.CollapsableFrame( "Ouput", collapsed=True, visible=False, height=0 ) with self.classification_output_section: self.image_display = ui.Image( "", width=400, height=300, ) self.image_display.visible = False async def on_classification_collapsed_changed(self, collapsed): if not collapsed: if not self.impulse_info: self.impulse_status_label.visible = True self.impulse_status_label.text = "Fetching your Impulse design..." self.impulse_info = await self.rest_client.get_impulse(self.project_id) if not self.impulse_info: self.impulse_status_label.text = f"""Your Impulse is not ready yet.\n Go to https://studio.edgeimpulse.com/studio/{self.project_id}/create-impulse to configure and train your model""" return if self.impulse_info.input_type != "image": self.impulse_info = None self.impulse_status_label.text = "Invalid Impulse input block type. Only 'image' type is supported" return self.impulse_status_label.text = "Impulse is ready" self.impulse_status_label.visible = False if not self.deployment_info or not self.deployment_info.has_deployment: self.deployment_status_label.visible = True self.deployment_status_label.text = ( "Fetching your latest model deployment..." ) self.deployment_info = await self.rest_client.get_deployment_info( self.project_id ) if not self.deployment_info.has_deployment: self.deployment_status_label.text = f"""Your model WebAssembly deployment is not ready yet.\n Go to https://studio.edgeimpulse.com/studio/{self.project_id}/deployment to build a WebAssembly deployment""" return self.deployment_status_label.text = "Model deployment ready" self.deployment_status_label.visible = False if self.impulse_info and self.deployment_info: self.classify_button.visible = True self.ready_for_classification.visible = True else: self.classify_button.visible = False self.ready_for_classification.visible = False def add_classify_logs_entry(self, message): self.classify_logs_text += message + "\n" self.classify_logs_label.text = self.classify_logs_text self.update_clear_classify_logs_button_visibility() def clear_classify_logs(self): self.classify_logs_text = "" self.classify_logs_label.text = self.classify_logs_text self.update_clear_classify_logs_button_visibility() def update_clear_classify_logs_button_visibility(self): self.clear_classify_logs_button.visible = bool(self.classify_logs_text) self.classify_logs_frame.visible = self.classifying async def get_impulse(self): self.impulse = await self.rest_client.get_impulse(self.project_id) async def start_classify(self): if not self.classifier: if not self.impulse: await self.get_impulse() if not self.impulse: self.add_classify_logs_entry("Error: impulse is not ready yet") return self.classifier = Classifier( self.rest_client, self.project_id, self.impulse.image_height, self.impulse.image_width, self.add_classify_logs_entry, ) async def classify(): try: self.classifying = True self.classify_button.text = "Classifying..." self.clear_classify_logs() self.classification_output_section.visible = False image_path = await self.classifier.classify() corrected_path = image_path[1].replace("\\", "/") self.image_display.source_url = corrected_path self.image_display.width = ui.Length(self.impulse_info.image_width) self.image_display.height = ui.Length(self.impulse_info.image_height) self.image_display.visible = True self.classification_output_section.visible = True self.classification_output_section.collapsed = False finally: self.classifying = False self.classify_button.text = "Classify" asyncio.ensure_future(classify()) def on_shutdown(self): print("[edgeimpulse.dataingestion] Edge Impulse Extension shutdown")
20,673
Python
38.988395
134
0.559716
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/utils.py
import omni.kit.app import carb.settings import carb.tokens import os import subprocess def get_extension_name() -> str: """ Return the name of the Extension where the module is defined. Args: None Returns: str: The name of the Extension where the module is defined. """ extension_manager = omni.kit.app.get_app().get_extension_manager() extension_id = extension_manager.get_extension_id_by_module(__name__) extension_name = extension_id.split("-")[0] return extension_name def get_models_directory() -> str: extension_name = get_extension_name() models_directory_name = carb.settings.get_settings().get_as_string( f"exts/{extension_name}/models_directory" ) temp_kit_directory = carb.tokens.get_tokens_interface().resolve("${omni_data}") models_directory = os.path.join(temp_kit_directory, models_directory_name) return models_directory def is_node_installed(): try: subprocess.run( ["node", "--version"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return True except (subprocess.CalledProcessError, FileNotFoundError): return False
1,231
Python
27.651162
83
0.654752
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/uploader.py
# uploader.py import asyncio import requests import os async def upload_data( api_key, data_folder, dataset, log_callback, on_sample_upload_success, on_upload_complete, ): dataset_types = ["training", "testing", "anomaly"] if dataset not in dataset_types: log_callback( "Error: Dataset type invalid (must be training, testing, or anomaly)." ) return url = "https://ingestion.edgeimpulse.com/api/" + dataset + "/files" try: for file in os.listdir(data_folder): file_path = os.path.join(data_folder, file) label = os.path.basename(file_path).split(".")[0] if os.path.isfile(file_path): await asyncio.sleep(1) try: with open(file_path, "rb") as file_data: res = requests.post( url=url, headers={ "x-label": label, "x-api-key": api_key, "x-disallow-duplicates": "1", }, files={ "data": ( os.path.basename(file_path), file_data, "image/png", ) }, ) if res.status_code == 200: log_callback(f"Success: {file_path} uploaded successfully.") on_sample_upload_success() else: log_callback( f"Error: {file_path} failed to upload. Status Code {res.status_code}: {res.text}" ) except Exception as e: log_callback( f"Error: Failed to process {file_path}. Exception: {str(e)}" ) except FileNotFoundError: log_callback("Error: Data Path invalid.") log_callback("Done") on_upload_complete()
2,196
Python
35.016393
113
0.414845
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/impulse.py
class Impulse: def __init__(self, input_type, image_width=None, image_height=None): self.input_type = input_type self.image_width = image_width self.image_height = image_height
205
Python
33.333328
72
0.64878
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/edgeimpulse/dataingestion/client.py
import httpx from .impulse import Impulse from .deployment import DeploymentInfo class EdgeImpulseRestClient: def __init__(self, project_api_key): self.base_url = "https://studio.edgeimpulse.com/v1/api/" self.headers = {"x-api-key": project_api_key} async def get_project_info(self): """Asynchronously retrieves the project info.""" async with httpx.AsyncClient() as client: response = await client.get( f"{self.base_url}projects", headers=self.headers ) if response.status_code == 200 and response.json()["success"]: project = response.json()["projects"][0] return {"id": project["id"], "name": project["name"]} else: return None async def get_deployment_info(self, project_id): """Asynchronously retrieves deployment information, including version.""" async with httpx.AsyncClient() as client: response = await client.get( f"{self.base_url}{project_id}/deployment?type=wasm&engine=tflite", headers=self.headers, ) if response.status_code == 200 and response.json().get("success"): # Returns the deployment info if available version = response.json().get("version") has_deployment = response.json().get("hasDeployment") return DeploymentInfo( version=version, has_deployment=has_deployment, ) else: # Returns None if the request failed or no deployment info was found return None async def download_model(self, project_id): """Asynchronously downloads the model.""" async with httpx.AsyncClient() as client: response = await client.get( f"{self.base_url}{project_id}/deployment/download?type=wasm&engine=tflite", headers=self.headers, ) if response.status_code == 200: return response.content else: return None async def get_impulse(self, project_id): """Asynchronously fetches the impulse details and returns an Impulse object or None""" async with httpx.AsyncClient() as client: response = await client.get( f"{self.base_url}{project_id}/impulse", headers=self.headers, ) if response.status_code == 200: data = response.json() if "impulse" in data and data["impulse"].get("inputBlocks"): first_input_block = data["impulse"]["inputBlocks"][0] return Impulse( input_type=first_input_block.get("type"), image_width=first_input_block.get("imageWidth"), image_height=first_input_block.get("imageHeight"), ) else: return None else: return None async def get_samples_count(self, project_id, category="training"): """Asynchronously fetches the number of samples ingested for a specific category""" async with httpx.AsyncClient() as client: response = await client.get( f"{self.base_url}{project_id}/raw-data/count?category={category}", headers=self.headers, ) if response.status_code == 200: data = response.json() if "count" in data: return data["count"] else: return 0 else: return 0
3,746
Python
40.175824
94
0.540844
edgeimpulse/edge-impulse-omniverse-ext/exts/edgeimpulse.dataingestion/docs/README.md
# Edge Impulse Data Ingestion NVIDIA Omniverse extension to upload data directly into your Edge Impulse project.
114
Markdown
27.749993
82
0.824561
md84419/coderage-ext-spacemouse/README.md
# CodeRage's coderage.io.spacemouse extension for Omniverse # Getting Started ## Install Omniverse and some Apps 1. Install *Omniverse Launcher*: [download](https://www.nvidia.com/en-us/omniverse/download) 2. Install and launch one of *Omniverse* apps in the Launcher. For instance: *Code*. ## Option 1: Clone this repo and add this extension to your *Omniverse App* 0. Clone the repo - `git https://github.com/md84419/coderage-ext-spacemouse.git` -- or - - `git clone [email protected]:md84419/coderage-ext-spacemouse.git` 1. In the *Omniverse App* open extension manager: *Window* &rarr; *Extensions*. 2. In the *Extension Manager Window* open a settings page, with a small gear button in the top left bar. 3. In the settings page there is a list of *Extension Search Paths*. Add the `exts` subfolder for this extension there as another search path, e.g.: `C:\projects\coderage-ext-spacemouse\exts` ![Extension Manager Window](/images/add-ext-search-path.png) 4. Now you can find `coderage.io.spacemouse` extension in the top left search bar. Select and enable it. ### A few tips * Now that `exts` folder was added to the search you can add new extensions to this folder and they will be automatically found by the *App*. * Look at the *Console* window for warnings and errors. It also has a small button to open the current log file. * All the same commands work on Linux. Replace `.bat` with `.sh` and `\` with `/`. * `Extension name` is a folder name in the `exts` folder, in this example: `coderage.io.spacemouse`. * The most important feature an extension has is a config file: `extension.toml`, take a peek. ## Option 2: Add this extension to your *Omniverse App* without cloning the github repo Alternatively, a direct link to a git repository can be added to *Omniverse Kit* extension search paths. Instead of the 'C:\' path above, use this path in the Extension manager (```Extension Manager -> Gear Icon -> Extension Search Path```): `git://github.com/md84419/coderage-ext-spacemouse.git?branch=main&dir=exts` Notice that `exts` is the repo subfolder containing the extension(s). More information can be found in ["Git URL as Extension Search Paths"](https://docs.omniverse.nvidia.com/kit/docs/kit-manual/latest/guide/extensions_advanced.html#git-url-paths) section of the [Omniverse developers manual](https://docs.omniverse.nvidia.com/kit/docs/kit-manual/latest/index.html). ## Option 3: Linking with an *Omniverse* app For a better experience when developing this extension, it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. A convenience script to use is included. 1. Remove the search path added in the previous section. 2. Open this cloned repo using Visual Studio Code: `code C:\projects\coderage-ext-spacemouse`. It will suggest installing a few extensions to improve the Python experience. 3. In the terminal (CTRL + \`), run: ```bash > link_app.bat ``` If successful you should see the `app` folder link in the root of this repo. If multiple Omniverse apps are installed, the script will select the recommended one. Or you can explicitly pass an app: ```bash > link_app.bat --app create ``` You can also just pass a path to use when creating the link: ```bash > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` 4. Run this app with `exts` folder added as an extensions search path and new extension enabled: ```bash > app\omni.code.bat --ext-folder exts --enable coderage.io.spacemouse ``` - `--ext-folder [path]` - adds a new folder to the search path - `--enable [extension]` - enables an extension on startup. Use `-h` for help: ```bash > app\omni.code.bat -h ``` 5. After the *App* has started you should see: * the extension search paths in *Extensions* window as in the previous section. * the extension is enabled in the list of extensions. 6. If you look inside `omni.code.bat` or any other *Omniverse App*, they all run *Omniverse Kit* (`kit.exe`). *Omniverse Kit* is the Omniverse Application runtime that powers *Apps* build out of extensions. Think of it as analagous to `python.exe`. It is a small runtime, that enables all the basics, like settings, Python, logging and searches for extensions. **Everything else is an extension.** You can run only this new extension without running any big *App* like *Code*: ```bash > app\kit\kit.exe --ext-folder exts --enable coderage.io.spacemouse ``` It starts much faster and will only have extensions enabled that are required for this new extension (look at the `[dependencies]` section of `extension.toml`). You can enable more extensions: try adding `--enable omni.kit.window.extensions` to have the extensions window enabled (yes, extension window is an extension too!): ```bash > app\kit\kit.exe --ext-folder exts --enable coderage.io.spacemouse --enable omni.kit.window.extensions ``` You should see a menu in the top left. From here you can enable more extensions from the UI. ### A few tips * In the *Extensions* window, press the *Burger* menu button near the search bar and select *Show Extension Graph*. It will show how the current *App* comes to be: all extensions and dependencies. * Learn more: [Extensions system documentation](http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/extensions.html) # Running Tests To run tests we run a new process where only the tested extension (and it's dependencies) is enabled. Like in example above + testing system (`omni.kit.test` extension). There are two ways to run extension tests: 1. Run: `app\kit\test_ext.bat coderage.io.spacemouse --ext-folder exts` That will run a test process with all tests and then exit. For development mode, pass `--dev`: that will open the test selection window. As everywhere, hot-reload also works in this mode, give it a try by changing some code! 2. Alternatively, in *Extension Manager* (*Window &rarr; Extensions*) find your extension, click on the *TESTS* tab, click *Run Test* For more information about testing refer to: [testing doc](http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/ext_testing.html). # Sharing This Extension to Github To make the extension available to other users, use [Github Releases](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository). 1. Make sure the repo has [omniverse-kit-extension](https://github.com/topics/omniverse-kit-extension) topic set for auto discovery. 2. For each new release increment extension version (in `extension.toml`) and update the changelog (in `docs/CHANGELOG.md`). [Semantic versionning](https://semver.org/) must be used to express the severity of API changes. - See time index 4:17 in [this video from Mati](https://www.youtube.com/watch?v=lEQ2VmzXMgQ) for more information. # Known limitations 1. Integration is achieved by simulating (injecting) keyboard and mouse events into the application. This is a significant limitation as it means that the usual use case of operating the spacemouse with the non-dominant hand and the regular mouse with the dominant hand, doesn't work - one can only use one input device at a time. Hopefully in a future release a better API for injecting Spacemouse commands will become available. 2. spacenavigator dependency is currently Windows-only. Therefore this extension only works on Windows currently. There is a fork at https://github.com/JakubAndrysek/PySpaceMouse which we should investigate. To reduce dependency friction, we may wish to stick with spacenavigator for Windows and only use pyspacemouse on Linux and Mac OS X # Contributing The source code for this repository is provided as-is. We only accept outside contributions from individuals who have signed an Individual Contributor License Agreement.
7,860
Markdown
52.114865
366
0.759542
md84419/coderage-ext-spacemouse/exts/coderage.io.spacemouse/coderage/io/spacemouse/extension.py
from datetime import datetime, timedelta import math import platform import carb import omni.ext import omni.kit.viewport.window import omni.kit.app import omni.kit.viewport import omni.ui.scene import omni.ui as ui import omni.usd # import omni.kit.viewport.utility as vp_util from omni.kit.viewport.utility import get_active_viewport from omni.kit.viewport.utility.camera_state import ViewportCameraState as VpCamera from pxr import Usd, UsdGeom, Gf, Sdf if platform.system() == 'Windows': omni.kit.pipapi.install("pywinusb") # import pywinusb import spacenavigator UPDATE_TIME_MILLIS = 10 DEFAULT_STEP = 50 # Ideally we'd get this from Camera Speed @TODO DEFAULT_ROTATION = 1 DEBUG = True # Spacemouse supports six degrees of freedom. By default, these are mapped to the ViewPort camera as so: # * x: tracking (trucking) left and right # * y: dollying forwards and backwards (move the *camera's* Omniverse-z axis) # * z: pedestal lift/lower # * roll: rolling the camera body on its z axis (the line-of-sight axis) # * pitch: tilting the camera up and down (rotating camera body on its horizontal axis) # * yaw: panning left/right (rotating camera body on its vertical axis) class CoderageIoSpacemouseExtension(omni.ext.IExt): def on_startup(self, ext_id): self._count = 0 self.__previous_time = None self.__previous_state = None viewport = get_active_viewport() self.__camera_path = str(viewport.camera_path) self._MovementValue = 1.0 self._RotationValue = 1.0 self._MovementScalar = DEFAULT_STEP self._RotationScalar = DEFAULT_ROTATION print("[coderage.io.spacemouse] coderage io spacemouse startup") # Angles def RollLeft_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": self._RotationValue, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def PanRight_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": self._RotationValue, "buttons": [0,0]} ) self.update_state(state) def TiltDown_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": self._RotationValue, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def RollRight_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": -self._RotationValue, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def PanLeft_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": -self._RotationValue, "buttons": [0,0]} ) self.update_state(state) def TiltUp_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": -self._RotationValue, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) # Movements def Up_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": self._MovementValue, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def Forward_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": self._MovementValue, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def Down_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": -self._MovementValue, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def Left_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": -self._MovementValue, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def Back_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": -self._MovementValue, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def Right_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": self._MovementValue, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def XAxisUp_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": self._MovementValue, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) def YAxisUp_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": self._MovementValue, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) def ZAxisUp_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": self._MovementValue, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) def XAxisDown_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": -self._MovementValue, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) def YAxisDown_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": -self._MovementValue, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) def ZAxisDown_Click(): state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 0.0, "y": 0.0, "z": -self._MovementValue, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state, True) self._window = ui.Window("Spacemouse debug", width=300, height=300) with self._window.frame: with ui.VStack(): # add an IntSlider for translate Strength ui.Label("Camera Rotation Amount") self._rotationSlider = ui.IntSlider(min = 1, max = 90, step=5) self._rotationSlider.model.set_value(self._RotationScalar) # self._rotationValue = 5 self._rotationSlider.model.add_value_changed_fn(self._onrotation_value_changed) with ui.HStack(): rollLeftButton = ui.Button("Roll L", clicked_fn=RollLeft_Click) panLeftButton = ui.Button("Pan L", clicked_fn=PanLeft_Click) tiltDownButton = ui.Button("Tilt -", clicked_fn=TiltDown_Click) with ui.HStack(): rollRightButton = ui.Button("Roll R", clicked_fn=RollRight_Click) panRightButton = ui.Button("Pan R", clicked_fn=PanRight_Click) tiltUpButton = ui.Button("Tilt +", clicked_fn=TiltUp_Click) # add an IntSlider for translate Strength ui.Label("Camera Movement Amount") self._movementSlider = ui.IntSlider(min = 10, max = 1000, step=10) self._movementSlider.model.set_value(self._MovementScalar) # self._MovementValue = 100 self._movementSlider.model.add_value_changed_fn(self._on_movement_changed) with ui.HStack(): upButton = ui.Button("Up", clicked_fn=Up_Click) forwardButton = ui.Button("Forward", clicked_fn=Forward_Click) downButton = ui.Button("Down", clicked_fn=Down_Click) with ui.HStack(): leftButton = ui.Button("Left", clicked_fn=Left_Click) backButton = ui.Button("Back", clicked_fn=Back_Click) rightButton = ui.Button("Right", clicked_fn=Right_Click) with ui.HStack(): xAxisButtonUp = ui.Button("X +", clicked_fn=XAxisUp_Click) yAxisButtonUp = ui.Button("Y +", clicked_fn=YAxisUp_Click) zAxisButtonUp = ui.Button("Z +", clicked_fn=ZAxisUp_Click) with ui.HStack(): xAxisButtonDown = ui.Button("X -", clicked_fn=XAxisDown_Click) yAxisButtonDown = ui.Button("Y -", clicked_fn=YAxisDown_Click) zAxisButtonDown = ui.Button("Z -", clicked_fn=ZAxisDown_Click) # with ui.VStack(): self._label_status_line_1 = ui.Label("") self._label_status_line_2 = ui.Label("") self._label_buttons = ui.Label("") self._label_connected = ui.Label("") self._label_debug = ui.Label("") # with ui.HStack(): # ui.Button("Move", clicked_fn=self.on_click) # Note1: It is possible to have multiple 3D mice connected. # See: https://github.com/johnhw/pyspacenavigator/blob/master/spacenavigator.py self._nav1 = spacenavigator.open(callback=self.on_spacemouse,button_callback=self.on_spacemouse_buttons, DeviceNumber=0) self._nav2 = spacenavigator.open(callback=self.on_spacemouse,button_callback=self.on_spacemouse_buttons, DeviceNumber=1) if self._nav1 or self._nav2: if self._nav1.connected or self._nav2.connected: self._label_connected.text = "Connected" else: self._label_connected.text = "Not Connected" else: self._label_connected.text = "No spacemouse detected" def on_click(self): current_time = datetime.now() if self.__previous_time: if current_time - self.__previous_time < timedelta(milliseconds=UPDATE_TIME_MILLIS): return self.__previous_time = current_time state: spacenavigator.SpaceNavigator = spacenavigator.SpaceNavigator( **{"t": 255.0, "x": 30.0, "y": 30.0, "z": 30.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "buttons": [0,0]} ) self.update_state(state) def on_spacemouse(self, state: spacenavigator.SpaceNavigator): if self.__previous_state == state: return self.__previous_state = state current_time = datetime.now() if self.__previous_time: if current_time - self.__previous_time < timedelta(milliseconds=UPDATE_TIME_MILLIS): return self.__previous_time = current_time self.update_state(state) def on_spacemouse_buttons(self, state: spacenavigator.SpaceNavigator, buttons: spacenavigator.ButtonState): current_time = datetime.now() if self.__previous_time: if current_time - self.__previous_time < timedelta(milliseconds=UPDATE_TIME_MILLIS): return self.__previous_time = current_time self.update_state(state) def get_projection_matrix(self, fov, aspect_ratio, z_near, z_far) -> omni.ui.scene.Matrix44: """ Calculate the camera projection matrix. Args: fov (float): Field of View (in radians) aspect_ratio (float): Image aspect ratio (Width / Height) z_near (float): distance to near clipping plane z_far (float): distance to far clipping plane Returns: (UsdGeom.Matrix4d): Flattened `(4, 4)` view projection matrix """ a = -1.0 / math.tan(fov / 2) b = -a * aspect_ratio c = z_far / (z_far - z_near) d = z_near * z_far / (z_far - z_near) return omni.ui.scene.Matrix44( a, 0.0, 0.0, 0.0, 0.0, b, 0.0, 0.0, 0.0, 0.0, c, 1.0, 0.0, 0.0, d, 0.0 ) def gfmatrix_to_matrix44(self, matrix: Gf.Matrix4d) -> omni.ui.scene.Matrix44: """ A helper method to convert Gf.Matrix4d to omni.ui.scene.Matrix44 Args: matrix (Gf.Matrix): Input matrix Returns: UsdGeom.Matrix4d: Output matrix """ # convert the matrix by hand # USING LIST COMPREHENSION IS VERY SLOW (e.g. return [item for sublist # in matrix for item in sublist]), which takes around 10ms. matrix44 = omni.ui.scene.Matrix44( matrix[0][0], matrix[0][1], matrix[0][2], matrix[0][3], matrix[1][0], matrix[1][1], matrix[1][2], matrix[1][3], matrix[2][0], matrix[2][1], matrix[2][2], matrix[2][3], matrix[3][0], matrix[3][1], matrix[3][2], matrix[3][3] ) return matrix44 def gfmatrix_to_array(self, matrix: Gf.Matrix4d) -> list: """ A helper method to convert Gf.Matrix4d to omni.ui.scene.Matrix44 Args: matrix (Gf.Matrix): Input matrix Returns: UsdGeom.Matrix4d: Output matrix """ # flatten the matrix by hand # USING LIST COMPREHENSION IS VERY SLOW (e.g. return [item for sublist # in matrix for item in sublist]), which takes around 10ms. return ( matrix[0][0], matrix[0][1], matrix[0][2], matrix[0][3], matrix[1][0], matrix[1][1], matrix[1][2], matrix[1][3], matrix[2][0], matrix[2][1], matrix[2][2], matrix[2][3], matrix[3][0], matrix[3][1], matrix[3][2], matrix[3][3] ) def decompose_matrix(self, mat: Gf.Matrix4d): reversed_ident_matrix = reversed(Gf.Matrix3d()) translate: Gf.Vec3d = mat.ExtractTranslation() scale: Gf.Vec3d = Gf.Vec3d(*(v.GetLength() for v in mat.ExtractRotationMatrix())) mat.Orthonormalize() rotate: Gf.Vec3d = Gf.Vec3d(*reversed(mat.ExtractRotation().Decompose(*reversed_ident_matrix))) return translate, rotate, scale def update_translate(self, state, cam_state, update_world_position=False): ## On spacemouse, by default x is left(-)/right(+), y is forward(+)/backwards(-), z is up(+)/down(-) ## In Omniverse, -z is always camera forwards cam_state = VpCamera() # Get the current position and target cam_pos = cam_state.position_world cam_target = cam_state.target_world # Create the vector transform - set to state * d transform = Gf.Vec3d( round(state.x * self._MovementScalar, 1), round(state.z * self._MovementScalar, 1), round(-state.y * self._MovementScalar, 1) ) if not update_world_position: # compute world transform from local world_translation = cam_state.usd_camera.ComputeLocalToWorldTransform(Usd.TimeCode.Default()).Transform(transform) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(self.__camera_path+'.xformOp:translate'), value=world_translation, prev=cam_pos) else: world_translation = transform cam_pos = cam_pos + world_translation cam_target = cam_target + world_translation # Update the world cam_state.set_position_world(cam_pos, False) cam_state.set_target_world(cam_target, False) return transform def update_rotate(self, state, cam_state, world=False): # Get the local transformation - I think we should be using ComputeLocalToWorldTransform rather than GetLocalTransformation & decompose_matrix yawsign = 1 local_transformation: Gf.Matrix4d = cam_state.usd_camera.GetLocalTransformation() # translation: Gf.Vec3d = local_transformation.ExtractTranslation() # rotation: Gf.Rotation = local_transformation.ExtractRotation() decomposed_transform = self.decompose_matrix(local_transformation) rotationX = round(decomposed_transform[1][0], 1) rotationY = round(decomposed_transform[1][1], 1) rotationZ = round(decomposed_transform[1][2], 1) # Attempt to hack around issue with going beyond yaw (pan) -90 or +90 # if( yawsign == 1 and rotationX == -180.0 ): # yawsign = -1 # elif( yawsign == 1 and rotationX == 180.0 ): # yawsign = -1 prev_rotation = Gf.Vec3f(rotationX, rotationY, rotationZ) new_rotationX = round(rotationX - state.pitch * self._RotationScalar, 1) new_rotationY = round(rotationY - state.yaw * self._RotationScalar * yawsign, 1) new_rotationZ = round(rotationZ + state.roll * self._RotationScalar, 1) alt_local_rotation = Gf.Vec3d(new_rotationX, new_rotationY, new_rotationZ) if DEBUG: new_rotation = Gf.Rotation(Gf.Vec3d(1, 0, 0), new_rotationX) * \ Gf.Rotation(Gf.Vec3d(0, 1, 0), new_rotationY) * \ Gf.Rotation(Gf.Vec3d(0, 0, -1), new_rotationZ) rotation_transform = Gf.Matrix4d().SetRotate(new_rotation) reversed_ident_mtx = reversed(Gf.Matrix3d()) rotation_transform.Orthonormalize() local_rotation = Gf.Vec3d(*reversed(rotation_transform.ExtractRotation().Decompose(*reversed_ident_mtx))) self._label_debug.text = f"{new_rotationX:.03f} | {new_rotationY:.03f} | {new_rotationZ:.03f} | {yawsign}" self._label_debug.text = self._label_debug.text + '\n' + f"{local_rotation[0]:.03f} | {local_rotation[1]:.03f} | {local_rotation[2]:.03f}" world_rotation = alt_local_rotation # Update the world omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(self.__camera_path+'.xformOp:rotateXYZ'), value=world_rotation, prev=prev_rotation) def update_state(self, state: spacenavigator.SpaceNavigator, world=False): status_line_1 = f"{state.x:.03f}, {state.y:.03f}, {state.z:.03f}" status_line_2 = f"roll: {state.roll:.03f}, tilt: {state.pitch:.03f}, pan: {state.yaw:.03f}" # Note1: The number of buttons varies with the type of 3DConnexion product we have # Note2: The mappings of buttons is user-configurable so not guaranteed order - we have to account for this buttons = f"buttons: {state.buttons}" self._label_status_line_1.text = status_line_1 self._label_status_line_2.text = status_line_2 self._label_buttons.text = buttons self._label_connected.text = f"{state.t}" if ( state.x != 0 or state.y != 0 or state.z != 0 or state.roll != 0 or state.pitch !=0 or state.yaw != 0 ): ## On spacemouse, by default x is left(-)/right(+), y is forward(+)/backwards(-), z is up(+)/down(-) ## In Omniverse, -z is always camera forwards cam_state = VpCamera() # Update position self.update_translate(state, cam_state, world) # Now calculate the rotation self.update_rotate(state, cam_state, world) def _on_movement_changed(self, model: ui.SimpleIntModel): self._MovementScalar = model.get_value_as_int() self._label_debug.text = "Camera movement value = " + str(self._MovementScalar) def _onrotation_value_changed(self, model: ui.SimpleIntModel): self._RotationValue = model.get_value_as_int() self._label_debug.text = "Camera rotation value = " + str(self._RotationValue) def on_shutdown(self): if self._nav1 is not None: self._nav1.close() self._nav1.callback = None self._nav1.button_callback = None if self._nav2 is not None: self._nav2.close() self._nav2.callback = None self._nav2.button_callback = None self._nav1 = None self._nav2 = None self.__previous_time = None if self._label_status_line_1 is not None: self._label_status_line_1.text = "" if self._label_status_line_2 is not None: self._label_status_line_2.text = "" if self._label_buttons is not None: self._label_buttons.text = "" if self._label_connected is not None: self._label_connected.text = "Not connected" self._window = None self._active_viewport_window = None self._ext_id = None print("[coderage.io.spacemouse] coderage io spacemouse shutdown")
22,034
Python
44.526859
154
0.564083
md84419/coderage-ext-spacemouse/exts/coderage.io.spacemouse/config/extension.toml
[package] version = "0.0.1" authors = ["CodeRage"] title = "Spacemouse Driver" description="Integration of 3DConnexion's spacemouse with Omniverse." category = "other" keywords = ["kit", "io", "spacemouse", "3dconnexion", "spacenavigator"] readme = "docs/README.md" repository = "https://github.com/md84419/coderage-ext-spacemouse.git" icon = "data/icon.png" preview_image = "data/preview.png" changelog="docs/CHANGELOG.md" feature=true # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} "omni.kit.pipapi" = {} #"omni.kit.window.viewport" = {} "omni.kit.viewport.window" = {} [python.pipapi] requirements = [ # "pywinusb", # Required by spacenavigator when on Windows. See extension.py. # The next line is equivilent to .\app\kit\python\python.exe -m pip install "spacenavigator@git+https://github.com/md84419/pyspacenavigator#egg=spacenavigator.py-0.2.3" "spacenavigator@git+https://github.com/md84419/pyspacenavigator#egg=spacenavigator.py-0.2.3==0.2.3" ] modules = [ "spacenavigator" ] use_online_index = true # Main python module this extension provides, it will be publicly available as "import coderage.io.spacemouse". [[python.module]] name = "coderage.io.spacemouse" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,349
TOML
30.395348
172
0.722016
md84419/coderage-ext-spacemouse/exts/coderage.io.spacemouse/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [0.0.1] - 2023-05-13 - Initial commit ## [0.0.2] - 2023-12-19 - Jen's version ## [0.0.3] - 2024-04-07 - x, y, z partially working. Better debug panel
251
Markdown
16.999999
80
0.63745
md84419/coderage-ext-spacemouse/exts/coderage.io.spacemouse/docs/README.md
# CodeRage's coderage.io.spacemouse extension for Omniverse Integration of 3DConnexion's spacemouse with Omniverse The SpaceMouse provides 6 degrees of freedom navigation in virtual space. Some user choose to navigate the spacemouse with the left hand and the normal mouse the their right hand. Alternatively, you can simply switch between the two input devices with your right hand. - [Video](https://youtu.be/1xoEKTCjVE8) - [Link to 3D connexion website](https://3dconnexion.com/uk/spacemouse)
500
Markdown
40.749997
158
0.804
md84419/kit-app-title-menu-logo-experiment/README.md
# Omniverse kit-app-title-menu-logo-experiment [robotica.example.app.logo] A scratch space for exploring and experimenting with an app logo that spans the title and menu bars. ![](./source/extensions/robotica.example.app.logo/data/preview.png) # Getting Started ## Requirements - NVIDIA Omniverse Launcher - An Omniverse App (Create, Code, etc) - Kit 104.1 or later - Tested with Create 2022.3.3 ``` > .\link_app.bat > .\runbuild.bat ``` # Background ## User Story As a marketing exec, I want to brand our company apps so that they are visually distinctive and easily identifiable, delivering 5 key benefits: - Brand recognition - establish and reinforce brand identify, as a visual representation of our company and its values - Professionalism and credibility, emphasising that we pay attention to detail and instilling confidence in users, allowing them to trust and engage with the app - Differentiation and memorability, building a connection with our target audience ## The solution Omniverse currently provides limited ability to control the [chrome](https://www.nngroup.com/articles/browser-and-gui-chrome/) for applications. This experiment provides a way to work around those limitations to create a more distinctive app design. This should be considered a temporary workaround until Omniverse provides a better solution: we're taking advantage of undocumented features about the way that Omniverse currently works, which results in fragile code which is likely to break in future Omniverse releases. This experiment is designed for and only works when running on Microsoft Windows. This is example code. It is not ready for production use and has not been optimised. It is unlikely to scale well. # Feature tracking Two feature requests have been logged related to this ticket. - [OVC-2561 - Positioning of title in main window](https://nvidia-omniverse.atlassian.net/servicedesk/customer/portal/4/OVC-2561) - [Forum discussion 254770 - UI Apps - Finer-grained control of main window chrome](https://forums.developer.nvidia.com/t/ui-apps-finer-grained-control-of-main-window-chrome/254770) # Contributing The source code for this repository is provided as-is. We only accept outside contributions from individuals who have signed an Individual Contributor License Agreement.
2,313
Markdown
44.372548
181
0.792045
md84419/kit-app-title-menu-logo-experiment/source/extensions/robotica.example.app.logo/robotica/example/app/logo/logo_menu.py
# Copyright (c), ROBOTICA MACHINE LEARNING LIMITED, 2022. # License: Apache 2.0 from pathlib import Path import omni.client from omni.kit.menu.utils import MenuItemDescription, MenuAlignment import omni.ext import omni.kit.app import omni.ui as ui import omni.kit.menu.utils from typing import Union import omni.kit.window.modifier.titlebar DATA_PATH = Path(__file__).parent.parent.parent.parent.parent class RoboticaLogoDelegate(ui.MenuDelegate): def destroy(self): pass def build_item(self, item: ui.MenuHelper): with ui.HStack(width=0): ui.Spacer(width=0) with ui.HStack(content_clipping=1, width=0): with ui.Placer(offset_x=-36, offset_y=-1): with ui.Frame(width=80, horizontal_clipping=True): ui.Image( f"{DATA_PATH}/data/icon.png", width=90, height=32, alignment=ui.Alignment.BOTTOM, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_CROP ) ui.Spacer(width=6) def get_menu_alignment(self): return MenuAlignment.DEFAULT def update_menu_item(self, menu_item: Union[ui.Menu, ui.MenuItem], menu_refresh: bool): if isinstance(menu_item, ui.MenuItem): menu_item.visible = False class LogoMenu: """ Place the bottom half of the Robotica logo as the first item in the menu, so it lines up with the top half of the Robotica logo from the title bar. """ def __init__(self): self._live_menu_name = "Robotica logo Widget" self._menu_list = [MenuItemDescription(name="placeholder", show_fn=lambda: False)] def register_menu_widgets(self): self._cache_state_delegate = RoboticaLogoDelegate() omni.kit.menu.utils.add_menu_items(self._menu_list, name=self._live_menu_name, menu_index=-98, delegate=self._cache_state_delegate) self._cache_state_delegate.build_item(self._live_menu_name) def unregister_menu_widgets(self): omni.kit.menu.utils.remove_menu_items(self._menu_list, self._live_menu_name) if self._cache_state_delegate: self._cache_state_delegate.destroy() self._cache_state_delegate = None self._menu_list = None
2,350
Python
34.621212
139
0.624255
md84419/kit-app-title-menu-logo-experiment/source/extensions/robotica.example.app.logo/robotica/example/app/logo/setup.py
# Copyright (c), ROBOTICA MACHINE LEARNING LIMITED, 2022. # License: Apache 2.0 import asyncio from pathlib import Path import carb.imgui as _imgui import carb.settings import carb.tokens import omni.ext import omni.kit.ui as ui import omni.kit.menu.utils from omni.kit.menu.utils import MenuLayout from omni.kit.quicklayout import QuickLayout from omni.kit.window.title import get_main_window_title from .logo_menu import LogoMenu async def _load_layout(layout_file: str): """this private methods just help loading layout, you can use it in the Layout Menu""" await omni.kit.app.get_app().next_update_async() QuickLayout.load_file(layout_file) # This extension is mostly loading the Layout updating menu class SetupExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): # get the settings self._settings = carb.settings.get_settings() self._await_layout = asyncio.ensure_future(self._delayed_layout()) # setup the menu and their layout self._setup_menu() # setup the Application Title window_title = get_main_window_title() window_title.set_app_version(self._settings.get("/app/titleVersion")) # setup some imgui Style overide imgui = _imgui.acquire_imgui() imgui.push_style_color(_imgui.StyleColor.ScrollbarGrab, carb.Float4(0.4, 0.4, 0.4, 1)) imgui.push_style_color(_imgui.StyleColor.ScrollbarGrabHovered, carb.Float4(0.6, 0.6, 0.6, 1)) imgui.push_style_color(_imgui.StyleColor.ScrollbarGrabActive, carb.Float4(0.8, 0.8, 0.8, 1)) imgui.push_style_var_float(_imgui.StyleVar.DockSplitterSize, 1) self._is_darker_mode = False self._toggle_darker_mode() self._logo_menu = LogoMenu() self._logo_menu.register_menu_widgets() def _toggle_darker_mode(self): """Update Imgui to be on its darker Mode state vs the default Create/View mode""" self._is_darker_mode = not self._is_darker_mode if self._is_darker_mode: black = carb.Float4(0.0, 0.0, 0.0, 1) dark0 = carb.Float4(0.058, 0.058, 0.058, 1) # title bar colour dark1 = carb.Float4(0.09, 0.094, 0.102, 1) # dark2 = carb.Float4(0.122, 0.129, 0.149, 1) # carb.Float4(0.129, 0.129, 0.149, 1) # mid1 = carb.Float4(0.157, 0.157, 0.157, 1) # carb.Float4(0.157, 0.157, 0.18, 1) mid2 = carb.Float4(0.22, 0.22, 0.22, 1) # colour of the bottom info bar blue = carb.Float4(0.058, 0.058, 1, 1) menu_bar = dark0 title_bar = dark0 background = dark0 popup_bg = black tab = dark0 tab_unfocussed = dark0 frame = dark1 window_bg = mid2 else: menu_bar = carb.Float4(0.27, 0.27, 0.27, 1) title_bar = carb.Float4(0.12, 0.12, 0.12, 1) popup_bg = carb.Float4(0.22, 0.22, 0.22, 1) tab = carb.Float4(0.192, 0.192, 0.192, 1) background = menu_bar tab_unfocussed = carb.Float4(0.27 / 1.5, 0.27 / 1.5, 0.27 / 1.5, 1) frame = title_bar imgui = _imgui.acquire_imgui() imgui.push_style_color(_imgui.StyleColor.MenuBarBg, menu_bar) imgui.push_style_color(_imgui.StyleColor.TitleBg, title_bar) imgui.push_style_color(_imgui.StyleColor.TitleBgActive, title_bar) imgui.push_style_color(_imgui.StyleColor.PopupBg, popup_bg) imgui.push_style_color(_imgui.StyleColor.FrameBg, frame) imgui.push_style_color(_imgui.StyleColor.NavHighlight, blue) imgui.push_style_color(_imgui.StyleColor.NavWindowingDimBg, blue) imgui.push_style_color(_imgui.StyleColor.WindowBg, window_bg) imgui.push_style_color(_imgui.StyleColor.Border, window_bg) imgui.push_style_color(_imgui.StyleColor.ChildBg, background) imgui.push_style_color(_imgui.StyleColor.Tab, tab) imgui.push_style_color(_imgui.StyleColor.TabActive, tab) imgui.push_style_color(_imgui.StyleColor.TabUnfocusedActive, tab_unfocussed) imgui.push_style_color(_imgui.StyleColor.TabUnfocused, tab_unfocussed) imgui.push_style_color(_imgui.StyleColor.TabHovered, tab) async def _delayed_layout(self): # few frame delay to allow automatic Layout of window that want their own positions for i in range(4): await omni.kit.app.get_app().next_update_async() settings = carb.settings.get_settings() # setup the Layout for your app layouts_path = carb.tokens.get_tokens_interface().resolve("${robotica.example.app.logo}/layouts") layout_file = Path(layouts_path).joinpath(f"{settings.get('/app/layout/name')}.json") asyncio.ensure_future(_load_layout(f"{layout_file}")) # using imgui directly to adjust some color and Variable imgui = _imgui.acquire_imgui() # DockSplitterSize is the variable that drive the size of the Dock Split connection imgui.push_style_var_float(_imgui.StyleVar.DockSplitterSize, 2) editor_menu = ui.get_editor_menu() editor_menu.set_priority("File", -96) def _setup_menu(self): editor_menu = ui.get_editor_menu() # you can have some file Menu self._file_open = editor_menu.add_item("File/Open", self._open_file) # some Menu Item self._help_menu = editor_menu.add_item("Help/Show", self._show_help) # from omni.kit.menu.utils import MenuLayout # self._menu_layout = [ # MenuLayout.Menu("Window", [ # MenuLayout.Item("MyWindow"), # ]), # ] # omni.kit.menu.utils.add_layout(self._menu_layout) def _show_help(self, menu, toggled): print("Help is Coming") def _open_file(self, menu, toggled): print("Open the File you want") def on_shutdown(self): editor_menu = ui.get_editor_menu() self._file_open = editor_menu.remove_item("File/Open") self._help_menu = editor_menu.remove_item("Help/Show") self._file_open = None self._help_menu = None self._logo_menu.unregister_menu_widgets() self._logo_menu = None self._settings = None self._await_layout = None
6,454
Python
39.597484
119
0.63387
md84419/kit-app-title-menu-logo-experiment/source/extensions/robotica.example.app.logo/config/extension.toml
[package] version = "1.0.0" authors = ["Robotica"] title = "robotica example app logo" description="A simple python extension example to use as a starting point for your extensions." category = "Example" keywords = ["kit", "example"] readme = "docs/README.md" repository = "" changelog="docs/CHANGELOG.md" preview_image = "data/preview.png" # icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.quicklayout" = {} # Main python module this extension provides, it will be publicly available as "import omni.hello.world". [[python.module]] name = "robotica.example.app.logo"
604
TOML
27.809522
105
0.726821
md84419/usd-experiements/README.md
# usd-experiements A scratch space for USD experments and testcases
69
Markdown
16.499996
48
0.811594
md84419/usd-experiements/exts/robotica.usd.experiments/robotica/usd/experiments/extension.py
import os from pathlib import Path import omni.ext import omni.ui as ui from pxr import UsdShade, Tf, Sdf, Usd CURRENT_PATH = Path(__file__).parent PROJECT_ROOT = CURRENT_PATH.parent.parent.parent DATA_DIR = os.path.join(PROJECT_ROOT, 'data') TEST_USDA = os.path.join(DATA_DIR, 'usd-experiements.usda') # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[robotica.usd.experiments] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class RoboticaUsdExperimentsExtension(omni.ext.IExt): def __init__(self): self._prim_path = None # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[robotica.usd.experiments] robotica usd experiments startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" method1() method2() def method1(): # The following is based on code by Michal S in NVIDIA Omniverse Discord: # https://discord.com/channels/827959428476174346/989589513909203014/1108002804695572480 reference_path = TEST_USDA name = os.path.splitext(os.path.basename(reference_path))[0] stage = omni.usd.get_context().get_stage() if self._prim_path is None: if stage.HasDefaultPrim(): self._prim_path = omni.usd.get_stage_next_free_path( stage, stage.GetDefaultPrim().GetPath().pathString + "/" + Tf.MakeValidIdentifier(name), False ) else: self._prim_path = omni.usd.get_stage_next_free_path(stage, "/" + Tf.MakeValidIdentifier(name), False) omni.kit.commands.execute("CreateReference", usd_context=omni.usd.get_context(), path_to=self._prim_path, asset_path=reference_path, instanceable=False) scale = 2.5 #some of my attempts if scale is not None and scale != 1: scale = float(scale) UsdShade.Material(stage.GetPrimAtPath(self._prim_path)).CreateInput("texture_scale", Sdf.ValueTypeNames.Float2).Set((scale, scale)) for prim in Usd.PrimRange(stage.GetPrimAtPath(self._prim_path)): if prim.IsA(UsdShade.Shader): prim = UsdShade.Shader(prim) inp = prim.GetInput("scale") if inp: inp.Set(tuple(scale * value for value in inp.Get())) else: prim.CreateInput("scale", Sdf.ValueTypeNames.Float2).Set((scale, scale)) return self._prim_path def method2(): ''' Read from the 'global' section of the usda: ``` #usda 1.0 ( customLayerData = { ... } endTimeCode = 100 metersPerUnit = 0.01 startTimeCode = 0 timeCodesPerSecond = 24 upAxis = "Y" ) ``` ''' return self._prim_path def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Experiment", clicked_fn=on_click) def on_shutdown(self): print("[robotica.usd.experiments] robotica usd experiments shutdown") self._window = None
4,659
Python
40.238938
176
0.509551
DigitalBotLab/App/README.md
# App Main App for Digital Bot Lab, Public # Start ```bash .\_build\windows-x86_64\release\dbl.app.bat cd _build\windows-x86_64\release kit\kit.exe apps/dbl.app.kit --ext-folder D:\\dbl\\App\\kit-app\\source\\extensions --enable omni.simready.explorer ```
259
Markdown
20.666665
115
0.718147
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.26" # Lists people or organizations that are considered the "authors" of the package. authors = ["Jeffrey Qiu <[email protected]>", "John Kosnik <[email protected]>", "Attila Szabo <[email protected]"] # The title and description fields are primarly for displaying extension info in UI title = "Browser for SimReady Assets" description="A browser for SimReady Assets" # URL of the extension source repository. repository="https://gitlab-master.nvidia.com/omniverse/kit-extensions/kit-browsers" # Keywords for the extension keywords = ['browser', 'asset', 'simready', "explorer"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" category = "Rendering" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.svg" feature = true [dependencies] "omni.kit.browser.folder.core" = {} "omni.kit.commands" = {} "omni.kit.menu.utils" = {} "omni.usd" = {} "omni.kit.viewport.utility" = {} "omni.kit.window.property" = {} "omni.kit.viewport.window" = {} # Main python module this extension provides, it will be publicly available as "import omni.simready.explorer". [[python.module]] name = "omni.simready.explorer" [settings.exts."omni.simready.explorer"] # The list of asset root folders to be browsed. folders = ["https://omniverse-content-staging.s3.us-west-2.amazonaws.com/Assets/simready_content"] default_physics = "RigidBody" [[trigger]] menu.name = "Window/Browsers/SimReady Explorer" menu.window = "SimReady Explorer" [[test]] dependencies = [ "omni.kit.renderer.core", "omni.kit.renderer.capture", ] args = [ "--no-window", "--/app/window/dpiScaleOverride=1.0", "--/app/window/scaleToMonitor=false", "--/app/menu/legacy_mode=false", ] [documentation] pages = [ "docs/Overview.md", "docs/CHANGELOG.md", ]
1,993
TOML
28.323529
115
0.717511
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/config/extension.gen.toml
[package] archivePath = "http://d4i3qtqj3r0z5.cloudfront.net/omni.simready.explorer-1.0.26.zip" [package.publish] kitVersion = "105.0.0+release.109326.bd6b456a.tc" date = 1687298400 buildNumber = "101.1.0+2023.1.1527.751de03b.tc" repoName = "kit-browsers"
298
TOML
28.899997
89
0.654362
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/empty_property_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import List, Optional import omni.ui as ui from .browser_model import AssetDetailItem from .browser_property_delegate import BrowserPropertyDelegate class EmptyPropertyDelegate(BrowserPropertyDelegate): """ A delegate to show when no asset selected. """ def accepted(self, asset: Optional[AssetDetailItem]) -> bool: """BrowserPropertyDelegate method override""" return asset is None def show(self, asset: Optional[AssetDetailItem], frame: ui.Frame) -> None: """BrowserPropertyDelegate method override""" if hasattr(self, "_container"): self._container.visible = True else: with frame: self._container = ui.VStack() with self._container: ui.Label("Please Select a SimReady Asset!", alignment=ui.Alignment.CENTER) def accepted_multiple(self, detail_items: List[AssetDetailItem]) -> bool: """BrowserPropertyDelegate method override""" return False def show_multiple(self, detail_items: List[AssetDetailItem], frame: ui.Frame) -> None: """BrowserPropertyDelegate method override""" pass
1,606
Python
36.372092
94
0.701121
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/prop_property_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import asyncio from typing import List, Optional import omni.kit.app import omni.ui as ui from omni.kit.browser.core import TreeBrowserWidget from .asset import AssetType from .browser_model import AssetDetailItem from .browser_property_delegate import BrowserPropertyDelegate from .property_widgets import * class PropAssetPropertyDelegate(BrowserPropertyDelegate): """ A delegate to show properties of assets of type Prop. """ def accepted(self, item: Optional[AssetDetailItem]) -> bool: """BrowserPropertyDelegate method override""" return item and item.asset.asset_type == AssetType.PROP def show(self, item: Optional[AssetDetailItem], frame: ui.Frame) -> None: """BrowserPropertyDelegate method override""" if item is None: return asset = item.asset self._item = item if hasattr(self, "_container"): self._container.visible = True self._name_label.text = asset.name self._qcode_value.text = asset.qcode self._dimensions_value.text = asset.extent_as_str if hasattr(self, "h_buttons"): self._h_hstack.clear() with self._h_hstack: self._build_hierarchy_links() self._thumbnail_img.source_url = asset.thumbnail self._physx_combobox.model = item.physics_model self._tags_field.tags = asset.tags async def __delay_show_physics(): # Delay to show badge to make display correct if item.physics_model: await omni.kit.app.get_app().next_update_async() self._badge_container.visible = item.physics_model.current_index.as_int != 0 self._sub_physics = None self._sub_physics = item.physics_model.current_index.subscribe_value_changed_fn( self.__on_item_physics_changed ) asyncio.ensure_future(__delay_show_physics()) else: with frame: self._container = ui.VStack(height=0, spacing=5) with self._container: self._build_thumbnail(item) with ui.HStack(): ui.Spacer() self._name_label = ui.Label(asset.name, height=0, style_type_name_override="Asset.Title") ui.Spacer() with ui.CollapsableFrame("Behaviors"): self._physx_combobox = self._build_combobox("PhysicsVariant", item.physics_model) with ui.CollapsableFrame("Asset info"): self.collapse_info = self._build_info_widget() with ui.CollapsableFrame("Tags", height=ui.Percent(100)): self._tags_field = self._build_tags() ui.Spacer() def accepted_multiple(self, detail_items: List[AssetDetailItem]) -> bool: """BrowserPropertyDelegate method override""" return False def show_multiple(self, detail_items: List[AssetDetailItem], frame: ui.Frame) -> None: """BrowserPropertyDelegate method override""" pass def _build_info_widget(self): """Build the Asset information section""" with ui.VStack(spacing=10): with ui.HStack(): self._qcode_label = ui.Label("QCode:", style_type_name_override="Asset.Label", width=100) self._qcode_value = ui.Label( self._item.asset.qcode, alignment=ui.Alignment.LEFT_BOTTOM, style_type_name_override="Asset.Value" ) with ui.HStack(): self._dimensions_label = ui.Label("Dimensions:(m)", style_type_name_override="Asset.Label", width=100) self._dimensions_value = ui.Label( self._item.asset.extent_as_str, alignment=ui.Alignment.LEFT_BOTTOM, style_type_name_override="Asset.Value", ) self._h_hstack = ui.HStack(alignment=ui.Alignment.LEFT_BOTTOM) with self._h_hstack: self._hierachy_label = ui.Label("Hierarchy:", style_type_name_override="Asset.Label", width=100) self._build_hierarchy_links() ui.Spacer() def _build_tags(self): """Add the tag link section. must pass explorer instance""" from .extension import get_instance browser_widget: Optional[TreeBrowserWidget] = get_instance().browser_widget tag_widget = PropAssetTagsWidget(self._item.asset.tags, browser_widget) return tag_widget def _build_thumbnail(self, item: AssetDetailItem): """Builds thumbnail frame and resizes""" self._thumbnail_frame = ui.Frame(height=0) self._thumbnail_frame.set_computed_content_size_changed_fn(self._on_thumbnail_frame_size_changed) with self._thumbnail_frame: with ui.HStack(): ui.Spacer(width=ui.Percent(25)) self._thumbnail_container = ui.ZStack(height=ui.Fraction(1)) with self._thumbnail_container: self._thumbnail_img = ui.Image( item.asset.thumbnail, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, alignment=ui.Alignment.CENTER_TOP, ) # Badge to indicate item physics ON, need to change visibility if physics status changed self._badge_container = ui.HStack( alignment=ui.Alignment.LEFT_BOTTOM, visible=item.physics != "None" ) with self._badge_container: ui.Spacer(width=ui.Percent(80)) with ui.VStack(): ui.Spacer(height=2) ui.ImageWithProvider( fill_policy=ui.IwpFillPolicy.IWP_PRESERVE_ASPECT_FIT, alignment=ui.Alignment.LEFT, style_type_name_override="GridView.Item.Badge.Image", ) if item.physics_model: self._sub_physics = item.physics_model.current_index.subscribe_value_changed_fn( self.__on_item_physics_changed ) ui.Spacer(width=ui.Percent(25)) def __on_item_physics_changed(self, model: ui.SimpleIntModel) -> None: self._badge_container.visible = model.as_int != 0 def _build_hierarchy_links(self): """build h links""" from .extension import get_instance browser_widget = get_instance().browser_widget def on_click(value): """set the browse search field with this tag Args: value (List): tag search value """ search_field = browser_widget.search_field search_field.search_words = value self.h_buttons = [] for i, h in enumerate(self._item.asset.hierarchy): text_v = "{}".format(h) new_button = ui.Button( text_v, alignment=ui.Alignment.LEFT_BOTTOM, click_fn=on_click, spacing=0, width=0, style_type_name_override="Asset.ButtonLinks", ) h_list = self._item.asset.hierarchy[0 : (i + 1)] new_button.set_clicked_fn(lambda value=h_list: on_click(value)) if i < (len(self._item.asset.hierarchy) - 1): new_label = ui.Label(" > ", width=0) def clear_buttons(self, buttons): for b in buttons: b.visible = False self.h_buttons = [] def _on_thumbnail_frame_size_changed(self): # Dynamic change thumbnail size to be half of frame width async def __change_thumbnail_size_async(): await omni.kit.app.get_app().next_update_async() image_size = self._thumbnail_frame.computed_width / 2 self._thumbnail_img.height = ui.Pixel(image_size) asyncio.ensure_future(__change_thumbnail_size_async())
8,681
Python
41.145631
118
0.570211
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/property_widgets.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.client import omni.ui as ui class PropAssetTagsWidget: """Class for building and maintaining tags chips""" def __init__(self, tags, browser_widget): """tag chips Args: tags (list): list of tags browser_widget(get_instance().browser_widget): instance of base browser widget """ self.browser_widget = browser_widget self._tags = tags self._tag_chips = [] self._tag_buttons = {} self.tag_stack = ui.Frame(spacing=5) self._frame_size = 50 def setFrame(): self._frame_size = int(self.tag_stack.computed_width / 8) self.clear_tags() with self.tag_stack: self.build_tag_chips() self.tag_stack.set_computed_content_size_changed_fn(setFrame) with self.tag_stack: self.build_tag_chips() @property def tags(self): """Property gor tag values Returns: List: tag values """ return self._tags @tags.setter def tags(self, tags): """Property Setter for adding tag also rebuilds tags buttons Args: tags (List): List tag values """ # Remove existing tags in frame self.clear_tags() # Set Tags Property self._tags = tags # Rebuild new tags with self.tag_stack: self.build_tag_chips() def clear_tags(self): """clears all tag button in the frame""" self.tag_stack.clear() def append_tag(self, tag): """Add a tag value to the existing tag list. Check for doubles""" if tag not in self.tags: add_tag = self.tag.append(tag) self._tag = add_tag def remove_chip(self, chip): """Remove this chip from the ui""" for c in chip: c.visible = False def build_tag_chips(self): """Build the tag chip ui and added link function to Browser Search Bar""" def on_click(value): """set the browse search field with this tag Args: value (str): tag search value """ search_field = self.browser_widget.search_field search_field.search_words = [value] row_list = [] row_count = 0 char_count = 0 list_of_rows = [] # each index is a list of tags that will fit in the row based on the size of the frame. for t in self.tags: new_chars = char_count + len(t) if new_chars < self._frame_size: row_list.append(t) char_count = new_chars else: list_of_rows.append(row_list) row_list = [] row_list.append(t) char_count = len(t) list_of_rows.append(row_list) # build the buttons with ui.VGrid(padding=5, row_height=30): for row in list_of_rows: with ui.HStack(spacing=5): for r in row: new_button = ui.Button(r, clicked_fn=on_click, height=0, width=0) new_button.set_clicked_fn(lambda value=r: on_click(value))
3,654
Python
29.974576
95
0.564039
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/combobox_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import weakref from typing import Any, List, Optional import omni.ui as ui class ComboBoxItem(ui.AbstractItem): def __init__(self, text: str, value: Any) -> None: super().__init__() self.model = ui.SimpleStringModel(text) self.value = value class ComboBoxModel(ui.AbstractItemModel): """ The model used for combobox Args: texts (List[str]): Texts displayed in combobox kwargs: values (Optional[List[Any]]): Values for combobox list. Default None to use text as value current_value (Any): Current value displayed in combobox. Default None to use first one. """ def __init__(self, texts: List[str], values: Optional[List[Any]] = None, current_value: Any = None): super().__init__() # List items self._items = [] for index, text in enumerate(texts): value = values[index] if values else text self._items.append(ComboBoxItem(text, value)) # Current value current = self._get_current_index_by_value(current_value) self.current_index = ui.SimpleIntModel(current) self._sub = self.current_index.subscribe_value_changed_fn( lambda _, this=weakref.proxy(self): this.on_current_changed() ) def destroy(self): self._sub = None self.current_index = None self._items = [] @property def current_value(self) -> str: items = self.get_item_children(None) return items[self.current_index.as_int].value @current_value.setter def current_value(self, value: str) -> None: index = self._get_current_index_by_value(value) self.current_index.set_value(index) def get_item_children(self, item) -> List[ComboBoxItem]: return self._items def get_item_value_model(self, item, column_id): if item is None: return self.current_index if isinstance(item, ComboBoxItem): return item.model else: return ui.SimpleStringModel("Unknown") def on_current_changed(self): current_index = self.current_index.as_int items = self.get_item_children(None) self._on_current_item_changed(items[current_index]) self._item_changed(None) def _get_current_index_by_value(self, value: Any, default: int = 0) -> int: if value is None: current = default else: items = self.get_item_children(None) if isinstance(value, float): current = next((i for i, item in enumerate(items) if abs(item.value - value) < 0.0001), default) else: if isinstance(value, list): value = tuple(value) def compare_values(a, b): if isinstance(a, list): a = tuple(a) return a == b current = next((i for i, item in enumerate(items) if item.value == value), default) return current # noqa: R504 def _on_current_item_changed(self, item: ComboBoxItem) -> None: pass
3,537
Python
33.349514
112
0.615776
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/style.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from pathlib import Path from omni.ui import color as cl CURRENT_PATH = Path(__file__).parent ICON_PATH = CURRENT_PATH.parent.parent.parent.joinpath("data/icons") SIMREADY_DRAG_PREFIX = "SimReady::" # Use same context menu style with content browser cl.context_menu_background = cl.shade(cl("#343432")) cl.context_menu_separator = cl.shade(0x449E9E9E) cl.context_menu_text = cl.shade(cl("#9E9E9E")) cl.simready_background = cl.shade(cl("#23211F")) CONTEXT_MENU_STYLE = { "Menu": {"background_color": cl.context_menu_background_color, "color": cl.context_menu_text, "border_radius": 2}, "Menu.Item": {"background_color": 0x0, "margin": 0}, "Separator": {"background_color": 0x0, "color": cl.context_menu_separator}, } UI_STYLES = { "ToolBar.Button": {"background_color": 0x0, "padding": 3, "margin": 0}, "ToolBar.Button:selected": {"background_color": cl.simready_background}, "Splitter": {"background_color": 0x0, "margin_width": 0}, "Splitter:hovered": {"background_color": 0xFFB0703B}, "Splitter:pressed": {"background_color": 0xFFB0703B}, "Property.Path": {"background_color": cl.simready_background}, "Property.Path::mixed": {"color": 0xFFCC9E61}, "Property.Frame": {"padding": 0}, "GridView.Item.Badge.Image": { "image_url": f"{ICON_PATH}/physx.png", }, "GridView.Item.Badge.Background": {"background_color": 0xFFC2C2C2}, } PROPERTY_STYLES = { "Asset.Title": {"font_size": 18, "color": 0xFF9E9E9E, "font-weight": 900}, "Asset.Label": {"font_size": 14, "font_weight": 1200, "text-align": "left"}, "Asset.Value": {"font_size": 14, "font_weight": 1, "text-align": "right"}, "Asset.ButtonLinks": {"background_color": "transparent", "padding": 0}, "Asset.ButtonLinks:hovered": {"background_color": 0xFF9E9E9E, "border_color": cl("#0078D7")}, "Asset.ButtonLinks:pressed": { "background_color": cl("#CCE4F7"), "border_color": cl("#005499"), "border_width": 1.0, }, }
2,414
Python
42.124999
118
0.680613
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_api.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Dict, List, Optional, Tuple import carb import omni.ext import omni.kit.app import omni.kit.commands import omni.kit.undo import omni.usd from pxr import Gf, Sdf, Usd, UsdGeom from .actions import _add_asset_to_stage_helper, configure_prim from .asset import SimreadyAsset from .browser_model import AssetDetailItem from .extension import SimReadyBrowserExtension, get_instance def get_selected_xformable_prim_paths(usd_context: omni.usd.UsdContext, stage: Usd.Stage) -> List[Sdf.Path]: """Get the list of selected Xformable prim paths in the stage. Args: usd_context (omni.usd.UsdContext): The USD context to get the selection from. stage (Usd.Stage): The stage to get the selection from. Returns: The list of prim paths of the selected Xformable prims in the stage, or an empty list if there's nothing selected. """ if usd_context is None or stage is None: return [] selection = usd_context.get_selection() return [ path for path in selection.get_selected_prim_paths() if stage.GetPrimAtPath(path) and stage.GetPrimAtPath(path).IsA(UsdGeom.Xformable) ] def get_average_position_of_prims(prims: List[Usd.Prim]) -> Gf.Vec3d: """Get the average position of a list of prims. Args: prims (List[Usd.Prim]): The list of prims to get the average position of. Returns: The average 3D position of the prims, or the origin if no prims provided. """ position = Gf.Vec3d(0) for prim in prims: if prim.IsA(UsdGeom.Xformable): position += omni.usd.get_world_transform_matrix(prim).ExtractTranslation() if len(prims) > 0: position /= len(prims) return position async def find_assets(search_words: Optional[List[str]] = None) -> List[SimreadyAsset]: """Search assets in the current asset library Filter the current asset library by a list of search words. Search words are not case sensitive, and are matched partially against asset names as tags. If no search words are provided, all assets are returned. Example: Analyzing the results of searching with ["residential", "chair", "wood"] will reveal that the found assets have "residential" and "chair" in their tags, and "wood" in their names. Args: search_words (Optional[List[str]]): List of search words to filter assets on. Returns: List[SimreadyAsset]: List of SimReady assets that match the search words. """ ext: SimReadyBrowserExtension = get_instance() collections = ext.browser_model.get_item_children(None) # Tree mode, only has a default collection # First get categories to force traverse assets categories = ext.browser_model.get_item_children(collections[0]) while True: for root_folder in ext.browser_model._root_folders: # Make sure all assets from all folders are loaded if not root_folder.prepared: await omni.kit.app.get_app().next_update_async() break else: # Reload categories after traverse done categories = ext.browser_model.get_item_children(collections[0]) # First category "ALL" has all assets all_asset_items: List[AssetDetailItem] = ext.browser_model.get_item_children(categories[0]) if search_words: filtered_assets: List[SimreadyAsset] = [] for asset_item in all_asset_items: if asset_item.filter(search_words): filtered_assets.append(asset_item.asset) return filtered_assets else: all_assets: List[SimreadyAsset] = [item.asset for item in all_asset_items] return all_assets def add_asset_to_stage( url: str, parent_path: Sdf.Path = Sdf.Path.emptyPath, position: Gf.Vec3d = Gf.Vec3d(0, 0, 0), variants: Optional[Dict[str, str]] = None, payload: bool = False, instanceable: bool = False, ) -> Tuple[bool, Sdf.Path]: """Adds an asset to the current stage. Args: url (str): Url of asset to add. parent_path (Sdf.Path): Path of parent prim to add asset to. If empty path, add to default prim or pseudo root. position (Gf.Vec3d): Position to add asset at. payload (bool): If True, add asset as payload, otherwise as reference. variants (Optional[Dict[str, str]]): Variants to set on added asset. Dictionary of variant set name and value. Returns: Tuple[bool, Sd.Path]: Tuple of success, and path to added prim. .. note:: The actions of this function are undoable. If you want to add an asset without undo, use the following: .. code-block:: python with omni.kit.undo.disabled(): add_asset_to_stage(...) """ if not url: carb.log_error("Failed to add asset since url not defined!") return False, "" usd_context: omni.usd.UsdContext = omni.usd.get_context() stage: Usd.Stage = usd_context.get_stage() if usd_context else None if stage is None: carb.log_error(f"No valid stage found; cannot add {url}.") return False, "" # Creation and translation of the prim is done in a single undo group with omni.kit.undo.group(): # Add the asset to the stage (added_prim_path, _, _) = _add_asset_to_stage_helper( usd_context, stage, url, prim_path=parent_path, payload=payload, instanceable=instanceable ) # Translate the added prim to the specified position omni.kit.commands.execute("TransformPrimSRTCommand", path=added_prim_path, new_translation=position) # Set the variants on the added prim if added_prim_path and variants: configure_prim(stage, added_prim_path, variants) return True, Sdf.Path(added_prim_path) def add_asset_to_stage_using_prims( usd_context: omni.usd.UsdContext, stage: Usd.Stage, url: str, variants: Optional[Dict[str, str]] = None, replace_prims: bool = False, prim_paths: List[Sdf.Path] = [], ) -> Tuple[bool, Sdf.Path]: """Add an asset to a stage using a list of prims. The asset will be added to the average position of the provided prims, or the origin if no prims supplied. The asset will be added as a reference or payload based on whether the first provided prim has authored references or payloads. If no prims specified, the setting at "/persistent/app/stage/dragDropImport" is used. If the new asset is to replace the prims, the asset's parent will be the common ancestor of all prims. If no prims specified, the default prim or pseudo root will be used as the parent prim of the added asset. Args: usd_context (omni.usd.UsdContext): UsdContext to add asset to. stage (Usd.Stage): Stage to add asset to. url (str): Url of asset to add. variants (Optional[Dict[str, str]]): Variants to set on the added prim. replace_prims (bool): If True, replace the selection with the new asset. prim_paths (List[Sdf.Path]): List of prims to use for adding the asset. Returns: Tuple of success and added prim path. .. note:: The actions of this function are undoable. If you want to add an asset without undo, use the following: .. code-block:: python with omni.kit.undo.disabled(): add_asset_to_stage_using_prims(...) """ if not url: carb.log_error("Failed to add asset since url not defined!") return False, "" if usd_context is None or stage is None: carb.log_error(f"No valid stage found; cannot add {url}.") return False, "" prims = [ stage.GetPrimAtPath(path) for path in prim_paths if stage.GetPrimAtPath(path) and stage.GetPrimAtPath(path).IsA(UsdGeom.Xformable) ] # If replacing prims, all prims must be deletable\replaceable if replace_prims: for prim in prims: if not prim.IsValid() or ( prim.GetMetadata("no_delete") is not None and prim.GetMetadata("no_delete") is True ): carb.log_error("Failed to add asset since cannot replace specified prims!") return False, "" # Get average position of prims position: Gf.Vec3d = get_average_position_of_prims(prims) # If prims specified, use the first prim's payload/reference status create_option = "" if prims and len(prims) > 0: for prim in prims: if prim.HasAuthoredReferences(): create_option = "reference" break if prim.HasAuthoredPayloads(): create_option = "payload" break # Determine parent path for new prim if replace_prims and prims and len(prims) > 0: parent_path: Sdf.Path = Sdf.Path.emptyPath for prim in prims: if parent_path == Sdf.Path.emptyPath: parent_path: Sdf.Path = prim.GetParent().GetPath() else: parent_path: Sdf.Path = parent_path.GetCommonPrefix(prim.GetParent().GetPath()) elif stage.HasDefaultPrim(): parent_path: Sdf.Path = stage.GetDefaultPrim().GetPath() else: parent_path: Sdf.Path = Sdf.Path.absoluteRootPath # Deletion, creation and translation of prims is done in a single undo group with omni.kit.undo.group(): # If replacing prims, delete them before adding new ones to prevent potential name collision if replace_prims and prim_paths and len(prim_paths) > 0: omni.kit.commands.execute("DeletePrimsCommand", paths=prim_paths) # Add asset to stage (added_prim_path, _, _) = _add_asset_to_stage_helper( usd_context, stage, url, prim_path=parent_path, payload=create_option, instanceable="" ) # Translate the added prim to the specified position omni.kit.commands.execute("TransformPrimSRTCommand", path=added_prim_path, new_translation=position) # Set the variants on the added prim if added_prim_path and variants: configure_prim(stage, added_prim_path, variants) return True, added_prim_path
10,652
Python
39.2
131
0.659501
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_toolbar.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Dict, List, Optional, Union from omni import ui from .style import ICON_PATH class BrowserToolBarButtonDesc: """ Represent a button in browser toolbar Args: image_url (Optional[str]): Image url of button. None means spacer. clicked_fn (callable): Function called when button clicked. Default None. Function signure: void clicked_fn() tooltips (Optinal[str]): Button tooltips. Default None. """ def __init__(self, image_url: Optional[str], clicked_fn: callable = None, tooltips: Optional[str] = None): self.image_url = image_url self.clicked_fn = clicked_fn self.tooltips = tooltips class BrowserToolBarBase: """ Represent a base tool bar for browser. Args: descs (List[BrowserToolBarButtonDesc]): Default buttons to show on tool bar. """ def __init__(self, descs: List[BrowserToolBarButtonDesc]): self._buttons: Dict[BrowserToolBarButtonDesc, ui.Button] = {} self._button_descs: List[BrowserToolBarButtonDesc] = [] self._button_descs.extend(descs) self.widget = ui.HStack(height=0, spacing=4) self._spacer_visible = True self._spacers: List[ui.Spacer] = [] self._build_buttons() @property def visible(self) -> bool: """ Toolbar visibility. """ return self.widget.visible @visible.setter def visible(self, value) -> None: self.widget.visible = value @property def computed_height(self): return self.widget.computed_height @property def spacer_visible(self) -> bool: """Visibility of spacers in toolbar""" return self._spacer_visible @spacer_visible.setter def spacer_visible(self, visible) -> None: if visible != self._spacer_visible: self._spacer_visible = visible for spacer in self._spacers: spacer.visible = visible @property def width(self): return self.widget.computed_width if self.widget else 0 @property def position_x(self): return self.widget.screen_position_x if self.widget else 0 def destroy(self) -> None: for desc in self._buttons: self._buttons[desc] = None self.widget = None def append_buttons(self, button_descs: Union[BrowserToolBarButtonDesc, List[BrowserToolBarButtonDesc]]) -> None: """ Append buttons to toolbar. Args: button_descs (Union[BrowserToolBarButtonDesc, \ List[BrowserToolBarButtonDesc]]): Desc of buttons to be appended. """ if isinstance(button_descs, list): self._button_descs.extend(button_descs) else: self._button_descs.append(button_descs) self._build_buttons() def get_button(self, desc: BrowserToolBarButtonDesc) -> Optional[ui.Button]: """ Get toolbar button by desc. Return None if not found. Args: desc (BrowserToolBarButtonDesc): Button description. """ return self._buttons[desc] if desc in self._buttons else None def _build_buttons(self): self.widget.clear() self._buttons.clear() self._spacers.clear() with self.widget: for desc in self._button_descs: if desc.image_url: with ui.VStack(width=26): ui.Spacer() self._buttons[desc] = ui.Button( image_url=desc.image_url, image_width=20, image_height=20, width=26, height=26, clicked_fn=desc.clicked_fn, style_type_name_override="ToolBar.Button", tooltip=desc.tooltips if desc.tooltips else "", ) ui.Spacer() else: spacer = ui.Spacer() self._spacers.append(spacer) class BrowserPropertyToolBar(BrowserToolBarBase): """ Represent a tool bar with a button to display a Property widget (window). Args: on_toggle_property_fn (callable): Function called when show/hide property button clicked. Function signure: void on_toggle_property_fn() """ def __init__(self, on_toggle_property_fn: callable): self._on_toggle_property_fn = on_toggle_property_fn self._property_button_desc = BrowserToolBarButtonDesc( f"{ICON_PATH}/property_dark.svg", clicked_fn=self._on_toggle_property_fn, tooltips="Show/Hide property widget", ) super().__init__([BrowserToolBarButtonDesc(""), self._property_button_desc]) def destroy(self): super().destroy() @property def btn_property(self) -> ui.Button: return self.get_button(self._property_button_desc)
5,439
Python
33.43038
116
0.600294
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/extension.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import List, Optional import carb.settings import omni.ext import omni.kit.menu.utils import omni.ui as ui from omni.kit.browser.core import TreeBrowserWidget from .actions import deregister_actions, register_actions from .browser_model import SimReadyBrowserModel from .empty_property_delegate import EmptyPropertyDelegate from .multi_property_delegate import MultiPropertyDelegate from .prop_property_delegate import PropAssetPropertyDelegate from .window import SIMREADY_EXPLORER_NAME, SimReadyBrowserWindow BROWSER_MENU_ROOT = "Window" SETTINGS_ROOT = "/exts/omni.simready.explorer/" SETTIGNS_VISIBLE = SETTINGS_ROOT + "visible_after_startup" _extension_instance = None class SimReadyBrowserExtension(omni.ext.IExt): @property def window(self) -> Optional[SimReadyBrowserWindow]: return self._window @property def browser_widget(self) -> Optional[TreeBrowserWidget]: return self._window._widget @property def browser_model(self) -> Optional[SimReadyBrowserModel]: return self._window._browser_model def on_startup(self, ext_id): try: self.__ext_id = omni.ext.get_extension_name(ext_id) except AttributeError: def get_extension_name(ext_id: str) -> str: """Convert 'omni.foo-tag-1.2.3' to 'omni.foo-tag'""" a, b, *_ = ext_id.split("-") + [""] if b and not b[0:1].isdigit(): return f"{a}-{b}" return a self.__ext_id = get_extension_name(ext_id) register_actions(self.__ext_id, self) self._window = None ui.Workspace.set_show_window_fn( SIMREADY_EXPLORER_NAME, self._show_window, # pylint: disable=unnecessary-lambda ) self._register_menuitem() visible = carb.settings.get_settings().get_as_bool(SETTIGNS_VISIBLE) if visible: self._show_window(True) # Instantiate the property delegates so they get registered with class BrowserPropertyDelegate self.__empty_property_delegate = EmptyPropertyDelegate() self.__propasset_property_delegate = PropAssetPropertyDelegate() self.__multi_property_delegate = MultiPropertyDelegate() global _extension_instance _extension_instance = self def on_shutdown(self): omni.kit.menu.utils.remove_menu_items(self._menu_entry, name=BROWSER_MENU_ROOT) if self._window is not None: self._window.destroy() self._window = None self.__empty_property_delegate = None self.__propasset_property_delegate = None deregister_actions(self.__ext_id) global _extension_instance _extension_instance = None def _show_window(self, visible) -> None: if visible: if self._window is None: self._window = SimReadyBrowserWindow(visible=True) self._window.set_visibility_changed_fn(self._on_visibility_changed) else: self._window.visible = True else: self._window.visible = False def _toggle_window(self): self._show_window(not self._is_visible()) def _register_menuitem(self): self._menu_entry = [ omni.kit.menu.utils.MenuItemDescription( name="Browsers", sub_menu=[ omni.kit.menu.utils.MenuItemDescription( name=SIMREADY_EXPLORER_NAME, ticked=True, ticked_fn=self._is_visible, onclick_action=(self.__ext_id, "toggle_window"), ) ], ) ] omni.kit.menu.utils.add_menu_items(self._menu_entry, BROWSER_MENU_ROOT) def _is_visible(self): return self._window.visible if self._window else False def _on_visibility_changed(self, visible): omni.kit.menu.utils.refresh_menu_items(BROWSER_MENU_ROOT) def get_instance() -> Optional[SimReadyBrowserExtension]: return _extension_instance
4,537
Python
34.453125
102
0.63985
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """SimReady Explorer API This module contains the API for the SimReady Explorer extension. """ __all__ = [ "AssetType", "AssetFactory", "SimreadyAsset", "PropAsset", "find_assets", "add_asset_to_stage", "add_asset_to_stage_using_prims", "get_average_position_of_prims", "get_selected_xformable_prim_paths", ] from .asset import AssetFactory, AssetType, PropAsset, SimreadyAsset # noqa: F401, symbol is reexported from .browser_api import ( # noqa: F401, F403, symbol is reexported add_asset_to_stage, add_asset_to_stage_using_prims, find_assets, get_average_position_of_prims, get_selected_xformable_prim_paths, ) from .browser_model import SimReadyBrowserModel # noqa: F401, symbol is reexported from .extension import SimReadyBrowserExtension, get_instance # noqa: F401, symbol is reexported
1,284
Python
34.694443
104
0.744548
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_folder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import json from typing import Dict, List, Optional import carb import carb.tokens import omni.client from omni.kit.browser.folder.core import FileSystemFolder from .asset import AssetFactory, SimreadyAsset ASSET_LIST_FILE = "asset_info.json" class AssetFolder(FileSystemFolder): """ Represent folder to traverse to find SimReady assets. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._asset_by_tags: Optional[Dict[str, List[SimreadyAsset]]] = None self._asset_by_labels: Optional[Dict[str, List[SimreadyAsset]]] = None @property def asset_by_tags(self) -> Dict[str, List[SimreadyAsset]]: """ All assets grouped by tag in this folder, comes from all SimReady assets """ if self._asset_by_tags is None: self._asset_by_tags = {} for asset in self.files: for tag in asset.tags: if tag not in self._asset_by_tags: self._asset_by_tags[tag] = [] self._asset_by_tags[tag].append(asset) for sub_folder in self.sub_folders: asset_by_tags = sub_folder.asset_by_tags for tag in asset_by_tags: if tag not in self._asset_by_tags: self._asset_by_tags[tag] = [] for asset in asset_by_tags[tag]: if asset not in self._asset_by_tags[tag]: self._asset_by_tags[tag].append(asset) return self._asset_by_tags @property def asset_by_labels(self) -> Dict[str, List[SimreadyAsset]]: """ All assets grouped by label in this folder, comes from all SimReady assets """ if self._asset_by_labels is None: self._asset_by_labels = {} for asset in self.files: for label in asset.labels: if label not in self._asset_by_labels: self._asset_by_labels[label] = [] self._asset_by_labels[label].append(asset) return self._asset_by_labels async def _traverse_folder_async(self, url: str, recurse: bool = True): # There will be a json file to list all assets in the folder # Here just read the json file to get assets instead of traverse folder self._asset_by_tags = None asset_json = await self._load_json() if asset_json: for asset_data in asset_json: asset_data["Root Path"] = self.url asset: SimreadyAsset = AssetFactory.create_asset(asset_data) if asset: self.files.append(asset) else: carb.log_warn(f"Couldn't create asset for url {url}.") self._on_traverse_async_done() async def _load_json(self) -> Optional[List[Dict]]: # Load json file to get assets list json_file = self.url + "/" + ASSET_LIST_FILE result, _ = await omni.client.stat_async(json_file) if result != omni.client.Result.OK: carb.log_error(f"Cannot find {json_file}, error: {result}") return None try: result, _, content = await omni.client.read_file_async(json_file) if result != omni.client.Result.OK: carb.log_error(f"Cannot read {json_file}, error: {result}") return None return json.loads(memoryview(content).tobytes().decode("utf-8")) except FileNotFoundError: carb.log_info(f"Failed to open {json_file}!") except PermissionError: carb.log_error(f"Cannot read {json_file}: permission denied!") except Exception as exc: carb.log_error(f"Unknown failure to read {json_file}: {exc}") return None
4,284
Python
38.311926
82
0.59127
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/asset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import abc import functools import os from enum import Enum from typing import Any, Callable, Dict, List, Optional, Type import carb from omni.kit.browser.folder.core import BrowserFile class AssetType(Enum): """SimReady asset types. An asset type derived from SimreadyAsset is expected to be of one of these types. The AssetType values are used when registering a new asset type with the AssetFactory, using the AssetFactory.register() decorator. The asset class should also set its _type attribute to the same AssetType value it registered itself with. Example: .. code-block:: python @AssetFactory.register(AssetType.CHARACTER) class CharacterAsset(SimreadyAsset): def __init__(self): self._type = AssetType.CHARACTER .. note:: The SimReady Explorer API does not fully support yet asset classes created by 3rd party developers. """ PROP = 1 """A non-deformable static object.""" VEHICLE = 2 """A vehicle with wheels and doors.""" CHARACTER = 3 """A skinned bipedal character with a rig and animations.""" SCENE = 4 """A scene with a number of static objects and a ground plane""" SIGN = 5 """Road sign""" ROADMARK = 6 """Marks on the road used to direct traffic""" GENERIC = 7 """Generic asset type""" UNKNOWN = 8 """Non-categorized asset""" class SimreadyAsset(BrowserFile, abc.ABC): """Base class for SimReady assets. SimreadyAsset is an abstract type that implements the common behavior of all SimReady assets. Derived classes can further refine and customize the semantics of a Simready asset. A SimReady asset is a collection of sublayers and other data files usually grouped in a folder. The SimReady Specification <todo: add link> defines the structure of a SimReady asset in detail. At a high level, a SimReady asset is comprised of: * Main file : {asset_name}.usd * Sublayers : {asset_name}_{description}.usd * Materials: all mdl or usd material data * Textures: all image data pertaining to materials * Thumbnails: thumbnail images of the asset SimReady assets expose a number of behaviors such as physics, appearance, etc. Assets can also have behaviors that are specific to their type. For example, vehicles may have the number of wheels and doors as part of their behavior. SimReady assets can be tagged. Tags are space delimited groups of words used in filtering assets in an asset library. SimReady assets can be labeled. Hierarchical labels can come from the Wiki Data database (https://www.wikidata.org) and are backed by a QCode. The SimReady Explorer displays the labels in the `Category Tree Window`. Labels, just like tags can be multi-word, and can be used to search for assets. .. note:: The SimReady Explorer API does not fully support yet asset classes created by 3rd party developers. """ def __init__(self, raw_asset_data: Dict): """Initialize a SimReady asset. SimReadyAsset instances are created by the AssetFactory. Developers don't need to instantiate this and derived classes directly. Args: raw_asset_data (Dict): Dictionary with data used to initialize the SimreadyAsset instance. """ self._type = AssetType.UNKNOWN self._name = raw_asset_data.get("Simple Name", "") rel_url = raw_asset_data.get("Relative Path") root_url = raw_asset_data.get("Root Path") if rel_url.startswith("/") or root_url.endswith("/"): url = root_url + rel_url else: url = root_url + "/" + rel_url path = os.path.dirname(url) thumbnail_path = raw_asset_data.get("Thumbnail Path", None) thumbnail = f"{path}/{thumbnail_path}" if thumbnail_path else None label_dict: Dict[str, Any] = raw_asset_data.get("Labels", {}) self._labels: List[str] = [label_dict.get("Hierarchy", "").strip()] self._hierarchy: List[str] = label_dict.get("Hierarchy", "").split("/") self._tags: List[str] = [tag.strip() for tag in raw_asset_data.get("Tags", [])] self._extent: List[float] = raw_asset_data.get("Extent", []) self._qcode: str = label_dict.get("QCode", "").strip() self._behaviors: List[Dict] = raw_asset_data.get("Behaviors", []) for behavior in self._behaviors: if "Value" in behavior: behavior["Value"] = behavior["Value"].strip() super().__init__(url, thumbnail=thumbnail) @classmethod @abc.abstractmethod def is_asset_data(cls, raw_asset_data: Dict) -> bool: """Returns true if the provided raw asset data is determined to represent this asset type. To be implemented by derived classes. """ return False @property def name(self) -> str: """The user readable name of this asset.""" return self._name @property def asset_type(self) -> AssetType: """The type of this asset. Must be one of the values in the AssetType enum. """ return self._type @property def main_url(self) -> str: """The full path to the main file representing the asset. This file represents the top-level USD composition arc for a SimReady asset. It may take other USD layers and combine them together into one USD file. The path is set by the AssetFactory when creating the asset based on the provided raw asset data. """ return self.url @property def thumbnail_url(self) -> Optional[str]: """The full path to the asset's thumbnail image file. The thumbnail path is set by the AssetFactory when creating the asset based on the provided raw asset data. """ return self.thumbnail @property def tags(self) -> List[str]: """The list of tags of this asset. Each tag can be a multi-word space delimited string. Examples: "car", "three wheeled car", etc """ return self._tags @property def labels(self) -> List[str]: """The labels of this asset as a list. Labels are hierarchical and can be used to group assets in a tree structure. The label hierarchy is determined by a Wiki Data QCode (see https://www.wikidata.org) Examples: ['furniture/seat/chair/armchair'], QCode: Q11285759 """ return self._labels @property def labels_as_str(self) -> List[str]: """The labels of this asset as a comma delimited string. Example: "furniture/seat/chair/armchair" """ return ",".join(self._labels) @property def tags_as_str(self) -> str: """List of comma delimited tag words. Note that tags, labels and the QCode are all part of the list of tags in order to make searching more effective. Example: "residential,furniture,seat,chair,armchair,Q11285759" """ return ",".join(self.tags) @property def extent_as_str(self) -> str: """The extent of this asset in 3D space. Example: "20x10.5x0.25" """ return "x".join([str(x) for x in self._extent]) @property def qcode(self) -> str: """The Wiki Data QCode of this asset. Every asset is identified by a QCode. The QCode is used to retrieve the labels from Wiki Data, which in effect, act as a classification of the asset. Example: "Q11285759" """ return self._qcode @property def hierarchy(self) -> str: """The Wiki Data label hierarchy of this asset. This is the same as the "labels" property. Examples: ['furniture', 'seat', 'chair', 'armchair'] """ return self._hierarchy @property def hierarchy_as_str(self): """The Wiki Data label hierarchy of this asset formatted as a '>' delimited string Example: "furniture > seat > chair > armchair" """ reform = " > ".join(self.hierarchy) return reform @property def physics_variant(self) -> Optional[Dict]: """The physics variant set for this asset. This dictionary has the following structure: {'Prim Path': <prim_path>, 'Values': ['None', 'RigidBody']} where <prim_path> is a string representing the path to the prim that contains the physics variant set. The name of the Physics variant set is always "PhysicsVariant". """ for behavior in self._behaviors: if "PhysicsVariant" in behavior: return behavior["PhysicsVariant"] return None @property def behaviors(self) -> Dict[str, List[str]]: """The behaviors of this asset. The behaviors of this asset is represented as a dictionary of variant set names as keys and lists of variant names as values. Example: {'PhysicsVariant': ['None', 'RigidBody']} """ behaviors: Dict[str, List[str]] = {} for behavior in self._behaviors: for variant_set, variant_data in behavior.items(): if variant_set not in behaviors: behaviors[variant_set] = variant_data["Values"] return behaviors def __repr__(self) -> str: return f"[SimReady Asset]{self.url}" class AssetFactory: """A factory of SimReady asset objects. Allows to register asset classes and create instances of them. .. note:: Currently only one asset class can be registered per asset type. The last registered asset class of a given type will be used. Asset classes created and registered by 3rd party developers are not fully supported yet. """ registry: Dict[AssetType, SimreadyAsset] = {} """The registry of asset types. Maps asset types to asset classes.""" @classmethod def register(cls, asset_type: AssetType) -> Callable: """Decorator. Registers a new asset class as asset_type with the AssetFactory. Example: Register MyAsset as AssetTypePROP with the AssetFactory .. code-block:: python @AssetFactory.register(AssetType.PROP) class MyMyAsset(BaseAsset): pass """ @functools.wraps(cls) def inner_wrapper(wrapped_asset_class: Type[SimreadyAsset]) -> Type[SimreadyAsset]: """ Register the wrapped asset class with the asset factory. Return the asset class unaltered. """ if asset_type in cls.registry: carb.log_warn("f{asset_type} already registered; will be replaced by {wrapped_asset_class}") cls.registry[asset_type] = wrapped_asset_class return wrapped_asset_class return inner_wrapper @classmethod def create_asset(cls, raw_asset_data: Dict) -> Optional[SimreadyAsset]: """Creates an asset based on a dictionary of data with content specific to the asset type.""" for asset_class in cls.registry.values(): if asset_class.is_asset_data(raw_asset_data): return asset_class(raw_asset_data) return None @classmethod def num_asset_types(cls) -> int: """Returns the number of registered asset types""" return len(cls.registry) @classmethod def dump_asset_types(cls): """Prints the list of registered asset types""" for asset_type, asset_class in cls.registry.items(): print(f"asset_type: {asset_type}, asset_class: {asset_class}") @AssetFactory.register(AssetType.PROP) class PropAsset(SimreadyAsset): """A SimReady prop asset. Props are physically based static objects that do not deform and don't have kinematic behavior. Examples include chairs, tools, equipment, containers, etc. """ def __init__(self, raw_asset_data: Dict): super().__init__(raw_asset_data) self._type = AssetType.PROP @classmethod def is_asset_data(cls, raw_asset_data: Dict) -> bool: """Returns true if the raw asset data is determined to represent a PROP type asset.""" asset_type: str = raw_asset_data.get("Asset Type", AssetType.UNKNOWN.name) return asset_type.upper() == AssetType.PROP.name
12,798
Python
35.155367
119
0.64346
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/context_menu.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import asyncio from typing import List, Set import carb import omni.kit.ui as kitui import omni.ui as ui import omni.usd from carb import settings from pxr import Sdf, Usd from .browser_model import AssetDetailItem from .combobox_model import ComboBoxItem from .style import CONTEXT_MENU_STYLE class ContextMenu(ui.Menu): """ Context menu for simready asset browser. """ def __init__(self): super().__init__("SimReady Asset browser context menu", style=CONTEXT_MENU_STYLE) self._settings = settings.get_settings() def show_item(self, item: AssetDetailItem) -> None: self.clear() from .extension import get_instance selection: List[AssetDetailItem] = get_instance().browser_widget.selection if not selection and not item: return assets: List[AssetDetailItem] = selection if selection else [item] # Gather all physics variant values from all the selected assets possible_physics_values = set() for asset in assets: physics_items = asset.physics_model.get_item_children(None) if asset.physics_model else [] possible_physics_values.update(item.value for item in physics_items) # Compute common physics variant value all selected assets share common_physics_value = assets[0].physics for asset in assets: if asset.physics != common_physics_value: common_physics_value = None break with self: # Behavior menu (only physics for now) # Always create new menu items to match asset variant settings if len(possible_physics_values) > 1: with ui.MenuItemCollection(f"{kitui.get_custom_glyph_code('${glyphs}/none.svg')} Physics"): for physics_value in possible_physics_values: value = physics_value ui.MenuItem( value or "None", checked=(value == common_physics_value), checkable=True, triggered_fn=(lambda assets=assets, v=value: self.__set_item_physics(assets, v)), ) # Some right-click commands only make sense when only one asset is selected if len(assets) == 1: ui.Separator() has_collect = False try: # pylint: disable=redefined-outer-name import omni.kit.tool.collect # noqa: F401 has_collect = True ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/upload.svg')} Collect", triggered_fn=(lambda asset=assets[0]: self.__collect(asset)), ) except ImportError: carb.log_warn("Please enable omni.kit.tool.collect first to collect.") if has_collect: ui.Separator() ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/show.svg')} Open", triggered_fn=(lambda asset=assets[0]: self.__open_stage(asset, load_all=True)), ) ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/show.svg')} Open with Payloads Disabled", triggered_fn=(lambda asset=assets[0]: self.__open_stage(asset, load_all=False)), ) ui.Separator() ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/plus.svg')} Add at Current Selection", triggered_fn=(lambda assets=assets: self.__add_using_selection(assets, False)), ) if len(assets) == 1: # If enabled for multi-selection, only the first asset would be placed at the position # where the selected prims were located, as these prims need to be deleted before any # new prims are added. Therefore, disabling this command for multi-selection. ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/plus.svg')} Replace Current Selection", triggered_fn=(lambda assets=assets: self.__add_using_selection(assets, True)), ) ui.Separator() ui.MenuItem( f"{kitui.get_custom_glyph_code('${glyphs}/share.svg')} Copy URL Link", triggered_fn=(lambda assets=assets: self.__copy_url_link(assets)), ) self.show() def __set_item_physics(self, assets: List[AssetDetailItem], physics: str) -> None: for asset in assets: asset.physics = physics def __copy_url_link(self, assets: List[AssetDetailItem]) -> None: try: import omni.kit.clipboard omni.kit.clipboard.copy("\n".join(asset.url for asset in assets)) except ImportError: carb.log_warn("Warning: Could not import 'omni.kit.clipboard'.") async def __open_stage_async(self, url: str, load_all: bool): try: import omni.kit.window.file if load_all: loadset = omni.usd.UsdContextInitialLoadSet.LOAD_ALL else: loadset = omni.usd.UsdContextInitialLoadSet.LOAD_NONE omni.kit.window.file.open_stage(url, open_loadset=loadset) except ImportError: carb.log_warn("Warning: Could not import 'omni.kit.window.file'.") except Exception as e: carb.log_error(str(e)) else: carb.log_info(f"Opened '{url}'.\n") def __open_stage(self, item: AssetDetailItem, load_all: bool = True) -> None: """ Open a stage in the current context. Args: item (AssetDetailItem): The asset to open. load_all (bool): Whether to load all payloads. """ asyncio.ensure_future(self.__open_stage_async(item.url, load_all)) def __add_using_selection(self, assets: List[AssetDetailItem], replace_selection: bool) -> None: from .browser_api import add_asset_to_stage_using_prims, get_selected_xformable_prim_paths usd_context: omni.usd.UsdContext = omni.usd.get_context() stage: Usd.Stage = usd_context.get_stage() if usd_context else None prim_paths: List[Sdf.Path] = get_selected_xformable_prim_paths(usd_context, stage) for asset in assets: add_asset_to_stage_using_prims( usd_context, stage, asset.url, variants={ "PhysicsVariant": asset.physics if asset.physics != "None" else "" }, # Hardcoded to physics variant for now replace_prims=replace_selection, prim_paths=prim_paths, ) def __collect(self, asset: AssetDetailItem) -> None: try: # pylint: disable=redefined-outer-name import omni.kit.tool.collect collect_instance = omni.kit.tool.collect.get_instance() collect_instance.collect(asset.url) collect_instance = None except ImportError: carb.log_warn("Failed to import collect module (omni.kit.tool.collect). Please enable it first.") except AttributeError: carb.log_warn("Require omni.kit.tool.collect v2.0.5 or later!")
7,892
Python
42.368132
109
0.58515
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_with_property_widget.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import asyncio import math from typing import List, Optional import carb import omni.kit.app import omni.ui as ui from omni.kit.browser.folder.core import FileDetailItem, TreeFolderBrowserWidget from .browser_property_view import BrowserPropertyView from .browser_toolbar import BrowserPropertyToolBar from .style import UI_STYLES # Layout are dynmiac changed when window size changed: small to V mode otherwise to H mode class Layout: # V mode, max window width. If window width is bigger, switch to H mode V_MAX_WINDOW_WIDTH = 400 # V mode, min view height, at least show one row V_MIN_VIEW_HEIGHT = 156 # V model, min property view height V_MIN_PROPERTY_HEIGHT = 20 # V mode, default toolkits height V_DEFAULT_TOOLKITS_HEIGHT = 280 # Vmode, search bar width V_SEARCH_BAR_WIDTH = ui.Pixel(400) # H mode, default toolkits width H_DEFAULT_TOOLKITS_WIDTH = 450 # H mode, min view width, at least show one column H_MIN_VIEW_WIDTH = 200 # H mode, min property view width H_MIN_PROPERTY_WIDTH = 75 class BrowserWithPropertyWidget(TreeFolderBrowserWidget): """ The Browser View (V in the MDV achitecture). Responsible for creating the frames for Category view, Search bar, Browser area, Property view. Takes care of updating the layout when user resizes windows. """ def __init__(self, *args, **kwargs): self._frame_width: Optional[float] = None self._frame_height: Optional[float] = None # Default horizontal layout sice docked bottom along with Content self._layout_vertical = False self._last_toolkits_width = 0 self._last_toolkits_height = 0 super().__init__(*args, **kwargs) self._switch_layout(self._layout_vertical) def build_widgets(self) -> None: """ Build widgets with property view. """ self._frame = ui.Frame() with self._frame: with ui.VStack(spacing=4, style=UI_STYLES): self._build_search_toolbar() self._build_browser_widgets() # Need change layout and children size if widget size changed self._frame.set_computed_content_size_changed_fn(self._on_size_changed) def _build_search_toolbar(self): with ui.ZStack(height=0): self._build_search_bar() self._h_toolbar_container = ui.HStack(height=0) with self._h_toolbar_container: ui.Spacer() self._toolbar = BrowserPropertyToolBar(self._toggle_property_view) def _build_browser_widgets(self): self._browser_container = ui.Stack(ui.Direction.TOP_TO_BOTTOM, spacing=4) with self._browser_container: self._browser_view_container = ui.ZStack(height=0) with self._browser_view_container: self._build_browser_widget() # Draggable splitter for H/V layout mode self._v_splitter = ui.Placer(offset_y=0, draggable=True, drag_axis=ui.Axis.Y) with self._v_splitter: ui.Rectangle(height=4, style_type_name_override="Splitter") self._h_splitter = ui.Placer(offset_x=0, draggable=True, drag_axis=ui.Axis.X) with self._h_splitter: ui.Rectangle(width=4, style_type_name_override="Splitter") # Toolkits self._toolkits_container = ui.VStack(spacing=4) with self._toolkits_container: # Toolbar with property button self._v_toolbar_frame = ui.Frame(height=0) self._v_toolbar_frame.add_child(self._toolbar.widget) # Property View self._property_view = BrowserPropertyView() self._v_splitter.set_offset_y_changed_fn(self._splitter_offset_y_changed) self._h_splitter.set_offset_x_changed_fn(self._splitter_offset_x_changed) self._toolbar.btn_property.selected = self._property_view.visible self._browser_widget._detail_view.set_selection_changed_fn(self._on_detail_selection_changed) # Default show property view async def __show_property_view_async(): await omni.kit.app.get_app().next_update_async() self._toggle_property_view() asyncio.ensure_future(__show_property_view_async()) def _splitter_offset_y_changed(self, offset_y: ui.Length) -> None: if self._property_view.visible: if offset_y.value < Layout.V_MIN_VIEW_HEIGHT: self._v_splitter.offset_y = Layout.V_MIN_VIEW_HEIGHT return available_property_height = ( self._browser_container.computed_height - offset_y - self._toolbar.computed_height - 12 ) if available_property_height < Layout.V_MIN_PROPERTY_HEIGHT: self._last_toolkits_height = 0 self._toggle_property_view() if self._property_view.visible: self._last_toolkits_height = self._browser_container.computed_height - offset_y def _splitter_offset_x_changed(self, offset_x: ui.Length) -> None: if self._property_view.visible: if offset_x.value < Layout.H_MIN_VIEW_WIDTH: self._h_splitter.offset_x = Layout.H_MIN_VIEW_WIDTH return available_property_width = self._browser_container.computed_width - offset_x - 8 if available_property_width < Layout.H_MIN_PROPERTY_WIDTH: self._toggle_property_view() self._last_toolkits_width = 0 if self._property_view.visible: self._last_toolkits_width = self._browser_container.computed_width - offset_x def _switch_layout(self, vertical: bool) -> None: # toolbar visibility self._toolbar.spacer_visible = vertical self._toolbar.widget.width = ui.Fraction(1) if vertical else ui.Pixel(0) self._v_toolbar_frame.visible = vertical self._h_toolbar_container.visible = not vertical # searchbar self.__update_search_bar_width(vertical) # browser view and splitters self._browser_container.direction = ui.Direction.TOP_TO_BOTTOM if vertical else ui.Direction.LEFT_TO_RIGHT self._v_splitter.visible = vertical self._h_splitter.visible = not vertical if vertical: self._browser_view_container.width = ui.Fraction(1) self._toolkits_container.width = ui.Fraction(1) else: self._browser_view_container.height = ui.Fraction(1) self._toolkits_container.height = ui.Fraction(1) self._layout_vertical = vertical # Hide property if not enough space if self._property_view.visible and not self._has_space_for_property(): self._property_view.visible = False self._toolbar.btn_property.selected = False # Update widgets position asyncio.ensure_future(self._update_layout_async()) def _on_size_changed(self) -> None: # Widget size changed callback if self._frame_width is None or self._frame_height is None: self._frame_width = self._frame.computed_content_width self._frame_height = self._frame.computed_content_height else: if not math.isclose(self._frame_width, self._frame.computed_content_width): async def __delay_update_width(): await omni.kit.app.get_app().next_update_async() self._on_width_changed(self._frame.computed_content_width) asyncio.ensure_future(__delay_update_width()) self._frame_width = self._frame.computed_content_width if not math.isclose(self._frame_height, self._frame.computed_content_height): async def __delay_update_height(): await omni.kit.app.get_app().next_update_async() self._on_height_changed(self._frame.computed_content_height) asyncio.ensure_future(__delay_update_height()) self._frame_height = self._frame.computed_content_height def _on_width_changed(self, width) -> None: # Window width changed, adjust widgets layout vertical_layout = width < Layout.V_MAX_WINDOW_WIDTH if vertical_layout != self._layout_vertical: self._switch_layout(vertical_layout) if not self._layout_vertical and self._property_view.visible and self._last_toolkits_width != 0: self._h_splitter.offset_x = self._browser_container.computed_width - self._last_toolkits_width self.__update_search_bar_width(self._layout_vertical) def _on_height_changed(self, height) -> None: if self._layout_vertical and self._property_view.visible and self._last_toolkits_height != 0: self._v_splitter.offset_y = self._browser_container.computed_height - self._last_toolkits_height def _toggle_property_view(self) -> None: if not self._property_view.visible and not self._has_space_for_property(): carb.log_warn("Not enough space to show property!") return self._property_view.visible = not self._property_view.visible self._toolbar.btn_property.selected = self._property_view.visible asyncio.ensure_future(self._update_layout_async()) def __update_search_bar_width(self, vertical: bool): # Update width of search bar if vertical: self._search_bar.width = ui.Fraction(1) else: def __set_search_bar_width(): # Adjust search bar width to match the model panel bar self._search_bar.width = ui.Pixel( self._toolbar.position_x - self._search_bar._frame.screen_position_x - 10 ) if self._toolbar.width > 0: __set_search_bar_width() else: self._search_bar.width = Layout.V_SEARCH_BAR_WIDTH async def __delay_update(): while self._toolbar.width == 0: await omni.kit.app.get_app().next_update_async() await omni.kit.app.get_app().next_update_async() __set_search_bar_width() asyncio.ensure_future(__delay_update()) def _has_space_for_property(self) -> bool: if self._layout_vertical: if self._browser_container.computed_height > 0: available_property_height = ( self._browser_container.computed_height - Layout.V_MIN_VIEW_HEIGHT - self._toolbar.computed_height - 12 ) if available_property_height < Layout.V_MIN_PROPERTY_HEIGHT: carb.log_warn("Not enough space to show property!") return False else: available_property_width = self._browser_container.computed_width - Layout.H_MIN_VIEW_WIDTH - 12 if available_property_width < Layout.H_MIN_PROPERTY_WIDTH: return False return True async def _update_layout_async(self) -> None: if not self._property_view.visible: # property hidden if self._layout_vertical: # toolkits height fix, browser view height max await omni.kit.app.get_app().next_update_async() self._v_splitter.visible = False self._browser_view_container.height = ui.Fraction(1) self._toolkits_container.height = ui.Pixel(0) else: # toolkits width fix, browser view width max await omni.kit.app.get_app().next_update_async() self._h_splitter.visible = False self._browser_view_container.width = ui.Fraction(1) self._toolkits_container.width = ui.Pixel(0) else: # show property view if self._layout_vertical: # details view height changed by splitter, toolkits max self._toolkits_container.height = ui.Fraction(1) self._browser_view_container.height = ui.Pixel(0) self._v_splitter.visible = True await omni.kit.app.get_app().next_update_async() if self._last_toolkits_height == 0: offset_y = max( self._browser_container.computed_height - Layout.V_DEFAULT_TOOLKITS_HEIGHT, Layout.V_MIN_VIEW_HEIGHT, ) self._last_toolkits_height = self._browser_container.computed_height - offset_y self._v_splitter.offset_y = offset_y else: self._v_splitter.offset_y = self._browser_container.computed_height - self._last_toolkits_height else: # details view height changed by splitter, toolkits max self._toolkits_container.width = ui.Fraction(1) self._browser_view_container.width = ui.Pixel(0) self._h_splitter.visible = True await omni.kit.app.get_app().next_update_async() if self._last_toolkits_width == 0: offset_x = max( self._browser_container.computed_width - Layout.H_DEFAULT_TOOLKITS_WIDTH, Layout.H_MIN_VIEW_WIDTH, ) self._last_toolkits_width = self._browser_container.computed_width - offset_x self._h_splitter.offset_x = offset_x else: self._h_splitter.offset_x = self._browser_container.computed_width - self._last_toolkits_width def _on_detail_selection_changed(self, selections: List[FileDetailItem]) -> None: self.selection = selections if len(selections) > 1: self._property_view.show_detail_multi_item(selections) else: self._property_view.show_detail_item(selections[0] if selections else None)
14,533
Python
43.042424
116
0.606207
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/asset_property_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import abc from typing import Optional import omni.ui as ui from .asset import SimreadyAsset from .browser_model import AssetDetailItem from .browser_property_delegate import BrowserPropertyDelegate class AssetPropertyDelegate(BrowserPropertyDelegate): """Base class for all asset property delegates.""" @abc.abstractmethod def asset_accepted(self, asset: Optional[SimreadyAsset]) -> bool: return False @abc.abstractmethod def show_asset(self, asset: Optional[SimreadyAsset], frame: ui.Frame) -> None: pass def accepted(self, detail_item: Optional[AssetDetailItem]) -> bool: """ Check if detail item could be shown by this delegate. Args: detail_item (AssetDetailItem): Detail item to be shown. """ return self.asset_accepted(detail_item.asset if detail_item else None) def show(self, detail_item: Optional[AssetDetailItem], frame: ui.Frame) -> None: """ Show detail item with this delegate. Args: detail_item (AssetDetailItem): Detail item to be shown. frame (ui.Frame): Parent frame to put widgets. """ self.show_asset(detail_item.asset if detail_item else None, frame)
1,667
Python
35.260869
84
0.711458
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_property_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. __all__ = ["BrowserPropertyDelegate"] import abc import weakref from typing import List, Optional import omni.ui as ui from omni.kit.window.property.templates import HORIZONTAL_SPACING, LABEL_HEIGHT, LABEL_WIDTH from .browser_model import AssetDetailItem class BrowserPropertyDelegate(abc.ABC): """Base class for item property delegates and registry of these same delegate instances. Whenever an instance of this class is created, it is automatically registered. The BrowserPropertyView will show the Property widget, and will display into it all the registered delegates that accept the current item. This class is not meant to be instantiated directly, but rather to be subclassed. """ # Use a list to track drag-drop order so that it's deterministic in the event of clashes or cancelation. __g_registered = [] @classmethod def get_instances(cls) -> List["BrowserPropertyDelegate"]: remove = [] for wref in BrowserPropertyDelegate.__g_registered: obj = wref() if obj: yield obj else: remove.append(wref) for wref in remove: BrowserPropertyDelegate.__g_registered.remove(wref) def __init__(self): self.__g_registered.append(weakref.ref(self, lambda r: BrowserPropertyDelegate.__g_registered.remove(r))) def __del__(self): self.destroy() def destroy(self): for wref in BrowserPropertyDelegate.__g_registered: if wref() == self: BrowserPropertyDelegate.__g_registered.remove(wref) break @abc.abstractmethod def accepted(self, detail_item: Optional[AssetDetailItem]) -> bool: """ Check if detail item could be shown by this delegate. Args: detail_item (AssetDetailItem): Detail item to be shown. """ return False @abc.abstractmethod def show(self, detail_item: Optional[AssetDetailItem], frame: ui.Frame) -> None: """ Show detail item with this delegate. Args: detail_item (AssetDetailItem): Detail item to be shown. frame (ui.Frame): Parent frame to put widgets. """ pass @abc.abstractmethod def accepted_multiple(self, detail_items: List[AssetDetailItem]) -> bool: """ Check if details of multiple items could be shown by this delegate. Args: detail_items (List[AssetDetailItem]): Detail items to be shown. """ return False @abc.abstractmethod def show_multiple(self, detail_items: List[AssetDetailItem], frame: ui.Frame) -> None: """ Show details of multiple items with this delegate. The delegate may choose to show common properties of all items. Args: detail_items (List[AssetDetailItem]): Detail items to be shown. frame (ui.Frame): Parent frame to put widgets. """ pass def _build_label( self, text: str, width: Optional[ui.Length] = LABEL_WIDTH, alignment=ui.Alignment.LEFT_CENTER ) -> ui.Label: return ui.Label( text, name="label", word_wrap=True, width=width if width is not None else LABEL_WIDTH, height=LABEL_HEIGHT, alignment=alignment, ) def _build_combobox(self, text: str, *args, **kwargs) -> ui.ComboBox: with ui.HStack(spacing=HORIZONTAL_SPACING, padding=10): ui.Label(text, style_type_name_override="Asset.Label", width=100) return ui.ComboBox(*args, name="choices", **kwargs) def _build_checkbox(self, model: Optional[ui.AbstractValueModel] = None) -> ui.CheckBox: # Copy from UsdPropertiesWidgetBuilder._bool_builder with ui.VStack(width=10): ui.Spacer() widget_kwargs = {"width": 10, "height": 0, "name": "greenCheck", "model": model} with ui.ZStack(): with ui.Placer(offset_x=0, offset_y=-2): checkbox = ui.CheckBox(**widget_kwargs) with ui.Placer(offset_x=1, offset_y=-1): ui.Rectangle(height=8, width=8, name="mixed_overlay", alignment=ui.Alignment.CENTER, visible=False) ui.Spacer() return checkbox # noqa: R504 def _build_string_field(self, model: Optional[ui.SimpleStringModel] = None, text: str = "") -> ui.StringField: if text: with ui.HStack(spacing=HORIZONTAL_SPACING): self._build_label(text) field = ui.StringField(model, name="models") return field else: return ui.StringField(model, name="models") def _build_float_field(self, model: Optional[ui.SimpleFloatModel] = None) -> ui.FloatField: return ui.FloatField(model, name="models") def _build_float_drag(self, model: Optional[ui.AbstractValueModel] = None, name="models") -> ui.FloatDrag: drag = ui.FloatDrag(model, name=name, min=model.min, max=model.max) drag.step = max(0.1, (model.max - model.min) / 1000.0) return drag def _build_int_drag(self, model: Optional[ui.AbstractValueModel] = None, name="models") -> ui.IntDrag: kwargs = {} if model.min is not None: kwargs["min"] = model.min if model.max is not None: kwargs["max"] = model.max drag = ui.IntDrag(model, name="models", **kwargs) if model.min is not None and model.max is not None: drag.step = max(0.1, (model.max - model.min) / 1000.0) return drag def _build_float_slider(self, model: Optional[ui.AbstractValueModel] = None, name="models") -> ui.FloatSlider: slider = ui.FloatSlider(model, name=name, min=model.min, max=model.max) slider.step = max(0.1, (model.max - model.min) / 1000.0) return slider
6,332
Python
38.830188
119
0.630449
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/actions.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import json import os from typing import Dict, List, Optional, Tuple import carb import carb.settings import omni.client import omni.kit.commands import omni.usd from pxr import Gf, Sdf, Tf, Usd, UsdGeom from .style import SIMREADY_DRAG_PREFIX def normalize_sdf_path(sdf_layer_path: str): return sdf_layer_path.replace("\\", "/") def make_relative_to_layer(stage: Usd.Stage, url: str) -> str: # XXX: PyBind omni::usd::UsdUtils::makePathRelativeToLayer stage_layer = stage.GetEditTarget().GetLayer() if not stage_layer.anonymous and not Sdf.Layer.IsAnonymousLayerIdentifier(url): stage_layer_path = stage_layer.realPath if normalize_sdf_path(stage_layer_path) == url: carb.log_warn(f"Cannot reference {url} onto itself") return url relative_url = omni.client.make_relative_url(stage_layer_path, url) if relative_url: # omniverse path can have '\' return relative_url.replace("\\", "/") return url def make_prim_path(stage: Usd.Stage, url: str, prim_path: Sdf.Path = None, prim_name: str = None): """Make a new/unique prim path for the given url""" if prim_path is None or prim_path.isEmpty: if stage.HasDefaultPrim(): prim_path = stage.GetDefaultPrim().GetPath() else: prim_path = Sdf.Path.absoluteRootPath if prim_name is None: prim_name = Tf.MakeValidIdentifier(os.path.basename(os.path.splitext(url)[0])) return Sdf.Path(omni.usd.get_stage_next_free_path(stage, prim_path.AppendChild(prim_name).pathString, False)) def _add_asset_to_stage_helper( usd_context: omni.usd.UsdContext, stage: Usd.Stage, url: str, prim_path: Sdf.Path = None, payload: str = "", instanceable: str = "", ) -> Tuple[Sdf.Path, Usd.EditContext, str]: """Add a Usd.Prim to an exiting Usd.Stage, pointing to the url Args: usd_context (omni.usd.UsdContext): Usd context to add asset to. stage (Usd.Stage): Usd stage to add asset to. url (str): Url to asset to add. Kwargs: prim_path (Sdf.Path): Parent prim path to add asset to. payload (str): "payload" or "reference". If empty, use the setting at "/persistent/app/stage/dragDropImport". instanceable (str): "instanceable" or "noninstanceable". If empty (default), use the setting at "/persistent/app/stage/instanceableOnCreatingReference". selected_prims (List[Usd.Prim]): List of selected prims. If not empty (default), use the first prim's payload/reference status. """ # Get a realtive URL if possible relative_url = make_relative_to_layer(stage, url) # When in auto authoring mode, don't create it in the current edit target # as it will be cleared each time to be moved to default edit layer. edit_context = None layers = usd_context.get_layers() if layers and layers.get_layer_edit_mode() == omni.usd.LayerEditMode.AUTO_AUTHORING: default_identifier = layers.get_default_edit_layer_identifier() edit_layer = Sdf.Layer.Find(default_identifier) if edit_layer is None: edit_layer = stage.GetRootLayer() edit_context = Usd.EditContext(stage, edit_layer) new_prim_path = make_prim_path(stage, url, prim_path=prim_path) if not instanceable: as_instanceable = carb.settings.get_settings().get("/persistent/app/stage/instanceableOnCreatingReference") else: as_instanceable = instanceable == "instanceable" # Determine if we should create a payload or reference if not payload: create_as_payload = carb.settings.get_settings().get("/persistent/app/stage/dragDropImport") == "payload" else: create_as_payload = payload == "payload" # Add asset to stage cmd_name = "CreatePayloadCommand" if create_as_payload else "CreateReferenceCommand" omni.kit.commands.execute( cmd_name, usd_context=usd_context, path_to=new_prim_path, asset_path=url, instanceable=as_instanceable ) return (new_prim_path, edit_context, relative_url) def set_prim_variants(stage: Usd.Stage, prim_path: Sdf.Path, variants: Dict[str, str]): """ Set the variants on the provided prim. """ prim = stage.GetPrimAtPath(prim_path) if prim: vsets = prim.GetVariantSets() for name, value in variants.items(): carb.log_info(f"Try to set variant for {prim_path}: {name} -> {value}") vset = vsets.GetVariantSet(name) if vset: vset.SetVariantSelection(value) def find_inst_prim(start_prim: Usd.Prim) -> Optional[Usd.Prim]: """Find the prim from the given prim path wose name ends in '_inst'.""" if not start_prim: return None if start_prim.GetName().endswith("_inst"): return start_prim for child in start_prim.GetChildren(): inst_prim = find_inst_prim(child) if inst_prim: return inst_prim return None def is_physics_variant_enabled(variants: Dict[str, str]) -> bool: """Check if the physics variant is found and enabled (not 'None'). Args: variants (Dict[str, str]): Dictionary of variant name and value. """ if variants and "PhysicsVariant" in variants and variants["PhysicsVariant"] != "": return True return False def configure_prim(stage: Usd.Stage, prim_path: Sdf.Path, variants: Dict[str, str]) -> None: """Configure the variants of the given prim.""" if not stage or not prim_path or prim_path.emptyPath or not variants: return # Set the variants on the prim at prim_path set_prim_variants(stage, prim_path, variants) def _add_asset_with_variant_to_stage( raw_data: dict, context: str = "", prim_path: Optional[Sdf.Path] = None ) -> Tuple[bool, str]: """ Add simready asset to stage from raw data. Args: raw_data (dict): Json data decribe asset to add. See more in SimReadyBrowserModel.get_drag_mime_data() Kwargs: context (str): Name of usd content. Default "" prim_path (Optional[Sdf.Path]): Parent prim path to add asset. Default None means default prim. Returns: Tuple of success and added prim path. """ usd_context = omni.usd.get_context(context) if not usd_context: carb.log_error("Failed to drop asset since usd context not found!") return False, "" stage = usd_context.get_stage() if not stage: carb.log_error("Failed to drop asset since usd stage not found!") return False, "" url = raw_data.get("url", "") if not url: carb.log_error("Failed to drop asset since url not defined!") return False, "" payload = raw_data.get("payload", "") instanceable = raw_data.get("instanceable", "") # Add the asset to stage (dropped_path, _, _) = _add_asset_to_stage_helper( usd_context, stage, url, prim_path=prim_path, payload=payload, instanceable=instanceable ) # Set variants on the added asset if dropped_path: variants = raw_data.get("variants", {}) configure_prim(stage, dropped_path, variants) return True, dropped_path def add_single_asset_from_drag(drag_mime_data: str, context: str = "", prim_path: Optional[Sdf.Path] = None) -> bool: """ Add simready asset to stage from drag mime data. Args: drag_mime_data (str): Mime data decribe asset to add. See more in SimReadyBrowserModel.get_drag_mime_data() Kwargs: context (str): Name of usd content. Default "" prim_path (Optional[Sdf.Path]): Parent prim path to add asset. Default None means default prim. """ if drag_mime_data.startswith(SIMREADY_DRAG_PREFIX): drag_mime_data = drag_mime_data[len(SIMREADY_DRAG_PREFIX) :] raw_data = json.loads(drag_mime_data) res, _ = _add_asset_with_variant_to_stage(raw_data, context=context, prim_path=prim_path) return res def add_asset_from_drag(drag_mime_data: str, context: str = "", prim_path: Optional[Sdf.Path] = None) -> bool: mime_datas = drag_mime_data.split("\n") for data in mime_datas: add_single_asset_from_drag(data, context=context, prim_path=prim_path) def register_actions(extension_id: str, extension_instance): """ Register actions. Args: extension_id (str): Extension ID whcih actions belongs to """ try: import omni.kit.actions.core action_registry = omni.kit.actions.core.get_action_registry() actions_tag = "SimReady" action_registry.register_action( extension_id, "toggle_window", lambda: extension_instance._toggle_window(), display_name="SimReady Explorer show/hide window", description="SimReady Explorer show/hide window", tag=actions_tag, ) action_registry.register_action( extension_id, "add_asset", lambda raw_data, context="", path_to=None: _add_asset_with_variant_to_stage(raw_data, context, path_to), display_name="SimReady->Add Asset", description="Add SimReady asset to stage", tag=actions_tag, ) action_registry.register_action( extension_id, "add_asset_from_drag", lambda drag_mime_data, context="", path_to=None: add_asset_from_drag(drag_mime_data, context, path_to), display_name="SimReady->Add Asset From Drag", description="Add SimReady asset to stage from dragging mime data", tag=actions_tag, ) except ImportError: pass def deregister_actions(extension_id: str): """ Deregister actions. Args: extension_id (str): Extension ID whcih actions belongs to """ try: import omni.kit.actions.core action_registry = omni.kit.actions.core.get_action_registry() action_registry.deregister_all_actions_for_extension(extension_id) except ImportError: pass
10,429
Python
37.205128
160
0.655959
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Optional import omni.ui as ui from omni.kit.browser.folder.core import FolderDetailDelegate from .browser_model import AssetDetailItem, SimReadyBrowserModel from .context_menu import ContextMenu from .style import ICON_PATH from .viewport_drop_delegate import SimReadyDragDropObject class SimReadyDetailDelegate(FolderDetailDelegate): """ Delegate to show SimReady asset item in detail view (where the list of thumbnails is shown) Args: model (SimReadyBrowserModel): Asset browser model """ def __init__(self, model: SimReadyBrowserModel): super().__init__(model=model) # Context menu for detail item self._context_menu: Optional[ContextMenu] = None # Drop helper to handle dropping in viewport (only works for VP2) self._drop_helper = SimReadyDragDropObject() def destroy(self): self._drop_helper = None if self._context_menu: self._context_menu.destroy() self._context_menu = None super().destroy() def get_thumbnail(self, item: AssetDetailItem) -> str: """Set default thumbnail if thumbnail is None""" return item.thumbnail or f"{ICON_PATH}/usd_stage_256.png" def get_tooltip(self, item: AssetDetailItem) -> Optional[str]: """No tooltip for detail item as it interferes with the right-click menu""" return None def on_drag(self, item: AssetDetailItem) -> str: """Could be dragged to viewport window""" thumbnail = self.get_thumbnail(item) icon_size = 128 with ui.VStack(width=icon_size): if thumbnail: ui.Spacer(height=2) with ui.HStack(): ui.Spacer() ui.ImageWithProvider(thumbnail, width=icon_size, height=icon_size) ui.Spacer() ui.Label( item.name, word_wrap=False, elided_text=True, skip_draw_when_clipped=True, alignment=ui.Alignment.TOP, style_type_name_override="GridView.Item", ) return self._model.get_drag_mime_data(item) def on_multiple_drag(self, item: AssetDetailItem) -> str: """Could be dragged to viewport window""" thumbnail = self.get_thumbnail(item) icon_size = 32 with ui.HStack(height=icon_size): if thumbnail: ui.ImageWithProvider(thumbnail, width=icon_size, height=icon_size) ui.Spacer(width=8) ui.Label(item.name, style_type_name_override="GridView.Item") return self._model.get_drag_mime_data(item) def on_right_click(self, item: AssetDetailItem) -> None: """Show context menu""" if self._context_menu is None: self._context_menu = ContextMenu() self._context_menu.show_item(item) def build_widget( self, model: ui.AbstractItemModel, item: AssetDetailItem, index: int = 0, level: int = 0, expand: bool = False ): super().build_widget(model, item, index=index, level=level, expand=expand) tooltip = self.get_tooltip(item) if tooltip is not None: self._cached_thumbnail_widgets[item].set_tooltip(tooltip) def build_thumbnail(self, item: AssetDetailItem) -> Optional[ui.Image]: """ Display thumbnail per detail item Args: item (DetailItem): detail item to display """ with ui.ZStack(): thumbnail_image = ui.Image( self.get_thumbnail(item), fill_policy=ui.FillPolicy.STRETCH, style_type_name_override="GridView.Image" ) # Badge to indicate item physics ON, need to change visibility if physics status changed badge_container = ui.HStack(alignment=ui.Alignment.LEFT_BOTTOM, visible=item.physics != "None") with badge_container: ui.Spacer(width=ui.Percent(80)) with ui.VStack(): ui.Spacer(height=2) ui.ImageWithProvider( fill_policy=ui.IwpFillPolicy.IWP_PRESERVE_ASPECT_FIT, alignment=ui.Alignment.LEFT, style_type_name_override="GridView.Item.Badge.Image", ) badge_container.visible = item.physics != "None" if item.physics_model: item.physics_model.current_index.add_value_changed_fn( lambda m, w=badge_container: self.__on_item_physics_changed(m, w) ) return thumbnail_image # noqa: R504 def __on_item_physics_changed(self, model: ui.SimpleIntModel, badge_widget: ui.Widget) -> None: badge_widget.visible = model.as_int != 0
5,234
Python
38.360902
118
0.618647
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import json from itertools import chain from typing import Dict, List, Optional import carb.settings from omni.kit.browser.core import CategoryItem, DetailItem from omni.kit.browser.folder.core import ( FileDetailItem, FileSystemFolder, FolderCategoryItem, FolderCollectionItem, TreeFolderBrowserModel, ) from .actions import add_asset_from_drag from .asset import SimreadyAsset from .browser_folder import AssetFolder from .combobox_model import ComboBoxModel from .style import SIMREADY_DRAG_PREFIX SETTINGS_DEFAULT_PHYSICS = "/exts/omni.simready.explorer/default_physics" class AssetDetailItem(DetailItem): """ Represents a single asset detail item. Args: name (str): asset name. url (str): asset url. asset (SimreadyAsset): asset object linked to this item. thumbnail (Optional[str]): thumbnail url of file. Default is None. """ @classmethod def get_default_physics_value(cls) -> str: """Default physics variant value for all assets. This is used to initialize the physics model.""" return str(carb.settings.get_settings().get_as_string(SETTINGS_DEFAULT_PHYSICS) or "RigidBody") def __init__(self, asset: SimreadyAsset): super().__init__(asset.name, asset.url, asset.thumbnail) self.asset = asset # Physics model physics_values: List[str] = [] if self.asset.physics_variant: physics_values = self.asset.physics_variant.get("Values", []) default_value = AssetDetailItem.get_default_physics_value() if physics_values: # "None" is not in the physics variantset of the asset, so we need to add it "manually" physics_values.insert(0, "None") if AssetDetailItem.get_default_physics_value() not in physics_values: default_value = physics_values[0] self.physics_model = ComboBoxModel(physics_values, current_value=default_value) else: self.physics_model = None @property def physics(self) -> str: return self.physics_model.current_value if self.physics_model else "None" @physics.setter def physics(self, value: str) -> None: if self.physics_model: self.physics_model.current_value = value def filter(self, filter_words: Optional[List[str]]) -> bool: # noqa: A003 # Filter asset by not only name but also tag if filter_words is None: return True else: for word in filter_words: # Each search word should be in name or tag if word.lower() not in self.name.lower(): # No partial match in asset name, check tags for tag in self.asset.tags: if word.lower() in tag.lower(): break # Found a partial match in asset tag else: return False # No partial match in any of the tags, reject asset else: return True class SimReadyBrowserModel(TreeFolderBrowserModel): """ Represent browser model for SimReady assets. It show files(assets) by tags instead of folders. """ def __init__(self, *args, **kwargs): super().__init__( show_summary_folder=True, *args, **kwargs, ) # Folder for labels, used to show as category item self.__label_folders: Dict[str, FileSystemFolder] = {} def create_folder_object(self, *args, **kwargs): return AssetFolder(*args, **kwargs) def get_category_items(self, item: FolderCollectionItem) -> List[FolderCategoryItem]: # Traverse root folder if necessary for root_folder in self._root_folders: # Not in cache if not root_folder.prepared: # No traversed self.start_traverse(root_folder) # Create category item from labels category_items: List[FolderCategoryItem] = [] root_folders = [folder for folder in self.__label_folders.values() if folder.name.find("/") < 0] summary_count = 0 for folder in root_folders: if folder not in self._folder_cache: self._folder_cache[folder] = self._create_folder_category_item(folder) category_items.append(self._folder_cache[folder]) summary_count += self._folder_cache[folder].count self.sort_items(category_items) if self._show_summary_folder: category_items.insert(0, CategoryItem(self.SUMMARY_FOLDER_NAME, summary_count)) return category_items def get_detail_items(self, item: CategoryItem) -> List[FileDetailItem]: """Override to get list of detail items""" if item.name == self.SUMMARY_FOLDER_NAME: return self._get_summary_detail_items() else: # List files in item folder detail_items = self._get_folder_detail_items(item.folder) for child in item.children: detail_items += self.get_detail_items(child) self.sort_items(detail_items) return detail_items def get_drag_mime_data(self, item: AssetDetailItem = None) -> str: if item: drag_data = {"url": item.url, "variants": {}} if item.physics: drag_data["variants"]["PhysicsVariant"] = item.physics if item.physics != "None" else "" return SIMREADY_DRAG_PREFIX + json.dumps(drag_data) return super().get_drag_mime_data(item) def execute(self, item: DetailItem) -> None: drag_mime_data = self.get_drag_mime_data(item) add_asset_from_drag(drag_mime_data) def _on_folder_traversed(self, folder: AssetFolder, loading_completed=True, updated: bool = True) -> None: """ Folder traversed, - Update tags and view - Save data to cache """ carb.log_info(f"Traverse completed: {folder.url}, {loading_completed}") if updated and folder in self._root_folders: # Update tags self._update_labels(folder) # Refresh view self.folder_changed(None) def _update_labels(self, folder: AssetFolder) -> None: for label, assets in folder.asset_by_labels.items(): if not label: continue new_folder = False if label not in self.__label_folders: self.__label_folders[label] = AssetFolder(label, label) new_folder = True self.__label_folders[label].files.extend(assets) # Clean cache to re-generate category items self._folder_cache[self.__label_folders[label]] = None if new_folder: # Create parent label folders while True: pos = label.rfind("/") if pos > 0: parent_label = label[:pos] if parent_label not in self.__label_folders: self.__label_folders[parent_label] = AssetFolder(parent_label, parent_label) folder = self.__label_folders[label] if folder not in self.__label_folders[parent_label].sub_folders: self.__label_folders[parent_label].sub_folders.append(folder) self.sort_items(self.__label_folders[parent_label].sub_folders) label = parent_label else: break def _get_summary_detail_items(self) -> List[FileDetailItem]: # List all assets from label folder root_folders = [folder for folder in self.__label_folders.values() if folder.name.find("/") < 0] return list(chain.from_iterable([self.get_detail_items(self._folder_cache[f]) for f in root_folders])) def create_detail_item(self, asset: SimreadyAsset) -> FileDetailItem: """ Create detail item(s) from a file. A file may include multi detail items. Args: file (BrowserFile): File object to create detail item(s) """ return AssetDetailItem(asset)
8,686
Python
38.666666
110
0.605918
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_widget.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import asyncio from typing import List, Optional import omni.kit.app from omni.kit.browser.core import BrowserSearchBar from omni.kit.browser.folder.core import FolderCategoryItem from omni.kit.widget.searchfield import SearchField from .browser_with_property_widget import BrowserWithPropertyWidget class SimReadyBrowserWidget(BrowserWithPropertyWidget): def __init__(self, *args, **kwargs): self.__keep_search_words = False super().__init__(*args, multiple_drag=True, **kwargs) @property def search_field(self) -> SearchField: return self._search_bar._search_field @property def category_all(self) -> FolderCategoryItem: return self._browser_model.get_item_children(self._browser_model._root_collection_item)[0] def _build_search_bar(self): # Hide gear button in search bar self._search_bar = BrowserSearchBar(options_menu=None, style=self._extra_ui_style) def _build_browser_widget(self): super()._build_browser_widget() # Here hack the filter function to remove category labels before filter self._browser_widget.filter_details = self._filter_details def _on_category_selection_changed(self, category_item: FolderCategoryItem) -> None: # Set search words with labels from selected category if category_item is None: return if self.__keep_search_words: # Here selected category is changed along with search word self.__keep_search_words = False async def __delay_refresh_details_async(): await omni.kit.app.get_app().next_update_async() self.__refresh_detail_view(self.search_field.search_words) asyncio.ensure_future(__delay_refresh_details_async()) else: # Here user click category treeview and select a category self.search_field.search_words = self._get_search_words_from_category(category_item) self.search_field.suggestions = self._get_tags_from_category(category_item) def _filter_details(self, filter_words: Optional[List[str]]): """ Filter detail items. Args: filter_words: A string list to filter detail items. None means filtering nothing. """ async def __select_category_all_async() -> None: await omni.kit.app.get_app().next_update_async() self.__keep_search_words = True self.category_selection = [self.category_all] if filter_words: # Check if all labels of current selected category in search words # If yes, keep searching in selected category # If no, change selected category to ALL then search search_labels = set([w.lower() for w in filter_words]) selected_category = self.category_selection[0] if self.category_selection else None if selected_category and selected_category != self.category_all: selected_labels = set(l.lower() for l in self._get_search_words_from_category(selected_category)) if not selected_labels or not selected_labels.issubset(search_labels): asyncio.ensure_future(__select_category_all_async()) return for category_item in self.category_selection: words = self._get_search_words_from_category(category_item) filter_words = [w for w in filter_words if w not in words] else: # No search words, always select ALL selected_category = self.category_selection[0] if self.category_selection else None if selected_category != self.category_all: asyncio.ensure_future(__select_category_all_async()) return self.__refresh_detail_view(filter_words) def __refresh_detail_view(self, filter_words: Optional[List[str]]): if self._browser_widget._detail_view is not None: detail_view = self._browser_widget._detail_view detail_view.filter(filter_words) # Refresh suggestion words in search bar from results async def __refresh_suggestions_async(): await omni.kit.app.get_app().next_update_async() tags = [] count = 0 for item in detail_view._delegates: if detail_view._delegates[item].visible: tags.extend(list(item.asset.tags)) count += 1 tags = list(set(tags)) tags.sort() if True: self.search_field.suggestions = tags # TODO: Workaround for issue in omni.kit.widget.searchfield updated. if self.search_field._suggest_window: self.search_field._suggest_window.suggestions = tags asyncio.ensure_future(__refresh_suggestions_async()) def _get_search_words_from_category(self, category_item: FolderCategoryItem) -> List[str]: # Get preset search words from category if category_item.name == self._browser_model.SUMMARY_FOLDER_NAME: return [] else: # Use folder name (label) as preset search words return category_item.folder.name.split("/") def _get_tags_from_category(self, category_item: FolderCategoryItem) -> List[str]: if category_item.name == self._browser_model.SUMMARY_FOLDER_NAME: tags = [] for item in self._browser_model.get_category_items(self._browser_model._root_collection_item): if item.name != self._browser_model.SUMMARY_FOLDER_NAME: tags.extend(list(item.folder.asset_by_tags.keys())) tags = list(set(tags)) else: tags = list(category_item.folder.asset_by_tags.keys()) tags.sort() return tags
6,350
Python
43.725352
113
0.632598
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/viewport_drop_delegate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import json from typing import Tuple import omni.kit.commands import omni.usd from omni.kit.viewport.window.dragdrop.usd_file_drop_delegate import UsdFileDropDelegate from pxr import Usd from .actions import configure_prim from .style import SIMREADY_DRAG_PREFIX class SimReadyDragDropObject(UsdFileDropDelegate): """ SimReady drop delegate based on UsdFileDropDelegate in omni.kit.viewport.window with variants setting. """ def __init__(self): self._usd_prim_droped = None super().__init__() def drop_should_disable_preview(self): return True def get_raw_data(self, drop_data: dict) -> dict: return json.loads(drop_data.get("mime_data")[len(SIMREADY_DRAG_PREFIX) :]) def get_url(self, drop_data: dict): return self.get_raw_data(drop_data)["url"] def add_reference_to_stage(self, usd_context, stage: Usd.Stage, url: str) -> Tuple[str, Usd.EditContext, str]: (self._usd_prim_droped, edit_context, relative_url) = super().add_reference_to_stage(usd_context, stage, url) return (self._usd_prim_droped, edit_context, relative_url) def accepted(self, drop_data: dict): mime_data = drop_data["mime_data"] self._usd_prim_droped = None return mime_data.startswith(SIMREADY_DRAG_PREFIX) def dropped(self, drop_data: dict): super().dropped(drop_data) # Additionaly, set variants if required usd_prim_droped = drop_data.get("usd_prim_droped") or self._usd_prim_droped if usd_prim_droped is not None: raw_drop_data = self.get_raw_data(drop_data) variants = raw_drop_data.get("variants", {}) if variants: context_name = drop_data.get("usd_context_name", "") stage = omni.usd.get_context(context_name).get_stage() if stage: configure_prim(stage, usd_prim_droped, variants) return
2,369
Python
37.225806
117
0.678345
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/window.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.ui as ui from .browser_delegate import SimReadyDetailDelegate from .browser_model import SimReadyBrowserModel from .browser_widget import SimReadyBrowserWidget SETTING_COLLECTION_ROOTS = "/exts/omni.simready.explorer/folders" SIMREADY_EXPLORER_NAME = "SimReady Explorer" class SimReadyBrowserWindow(ui.Window): """ Represent a window to show SimReady Assets """ def __init__(self, visible=True): super().__init__(SIMREADY_EXPLORER_NAME, visible=visible) self.frame.set_build_fn(self._build_ui) self._browser_model = SimReadyBrowserModel(setting_folders=SETTING_COLLECTION_ROOTS) self._delegate = None self._widget = None # Dock it to the same space where Content is docked. self.deferred_dock_in("Content") def destroy(self): if self._widget: self._widget.destroy() if self._delegate: self._delegate.destroy() super().destroy() def _build_ui(self): self._delegate = SimReadyDetailDelegate(self._browser_model) with self.frame: with ui.VStack(spacing=15): self._widget = SimReadyBrowserWidget( self._browser_model, detail_delegate=self._delegate, )
1,726
Python
32.211538
92
0.680765
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/browser_property_view.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Dict, List, Optional from omni import ui from omni.kit.browser.folder.core import FileDetailItem from omni.kit.window.property.style import get_style from .browser_property_delegate import BrowserPropertyDelegate from .style import PROPERTY_STYLES class BrowserPropertyView: """ View to show properties of an item from the browser. This view represents a container (frame) into which the delegates registered with class BrowserPropertyDelegate will be added. """ def __init__(self): self.__delegate_frames: Dict[BrowserPropertyDelegate, ui.Frame] = {} self._build_ui() def destroy(self): pass def _build_ui(self): self._property_container = ui.VStack(style=get_style()) with self._property_container: with ui.ScrollingFrame( vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF, ): self.__delegate_container = ui.ZStack() @property def visible(self) -> bool: return self._property_container.visible @visible.setter def visible(self, value) -> None: self._property_container.visible = value def show_detail_item(self, detail_item: Optional[FileDetailItem]): """Various aspects of an item's properties can be shown by different delegates. The delegates that are registered with class BrowserPropertyDelegate will be asked to show the properties of the item. The delegates that accept the item will be shown, and the others will be hidden.""" delegates = BrowserPropertyDelegate.get_instances() for delegate in delegates: if delegate.accepted(detail_item): # Show delegate if delegate not in self.__delegate_frames: with self.__delegate_container: self.__delegate_frames[delegate] = ui.Frame(style=PROPERTY_STYLES) self.__delegate_frames[delegate].visible = True delegate.show(detail_item, self.__delegate_frames[delegate]) elif delegate in self.__delegate_frames: # Hide delegate self.__delegate_frames[delegate].visible = False def show_detail_multi_item(self, detail_item_list: List[FileDetailItem]): """Properties of a list of items can be shown in various ways. The delegates that are registered with class BrowserPropertyDelegate will be asked to show the properties of the items. The delegates that accept the items will be shown, and the others will be hidden.""" delegates = BrowserPropertyDelegate.get_instances() for delegate in delegates: if delegate.accepted_multiple(detail_item_list): # Show delegate if delegate not in self.__delegate_frames: with self.__delegate_container: self.__delegate_frames[delegate] = ui.Frame(style=PROPERTY_STYLES) self.__delegate_frames[delegate].visible = True delegate.show_multiple(detail_item_list, self.__delegate_frames[delegate]) elif delegate in self.__delegate_frames: # Hide delegate self.__delegate_frames[delegate].visible = False
3,832
Python
43.057471
90
0.666232
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/omni/simready/explorer/tests/browser_api_tests.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import pathlib from typing import Dict, List, Optional import carb.settings import omni.kit.test import omni.kit.undo import omni.ui as ui import omni.usd from omni.simready.explorer import ( AssetFactory, AssetType, PropAsset, SimreadyAsset, SimReadyBrowserExtension, SimReadyBrowserModel, add_asset_to_stage, add_asset_to_stage_using_prims, find_assets, get_average_position_of_prims, get_instance, ) from omni.simready.explorer.actions import find_inst_prim, is_physics_variant_enabled from pxr import Gf, Sdf, Usd TEST_DATA_DIR = pathlib.Path(__file__).parent.joinpath("data") TEST_ASSETS_FILE = TEST_DATA_DIR.joinpath("asset_info.json") # Declare and register new asset types @AssetFactory.register(AssetType.GENERIC) class GenericTestAsset(SimreadyAsset): def __init__(self, raw_asset_data: Dict): super().__init__(raw_asset_data) self._type = AssetType.GENERIC @classmethod def is_asset_data(cls, raw_asset_data: Dict) -> bool: asset_type: str = raw_asset_data.get("Asset Type", AssetType.UNKNOWN.name) return asset_type.upper() == AssetType.GENERIC.name @AssetFactory.register(AssetType.VEHICLE) class VehicleTestAsset(SimreadyAsset): def __init__(self, raw_asset_data: Dict): super().__init__(raw_asset_data) self._type = AssetType.VEHICLE @classmethod def is_asset_data(cls, raw_asset_data: Dict) -> bool: asset_type: str = raw_asset_data.get("Asset Type", AssetType.UNKNOWN.name) return asset_type.upper() == AssetType.VEHICLE.name class BrowserApiTest(omni.kit.test.AsyncTestCase): async def setUp(self) -> None: super().setUp() # Create a browser model with the test data directory as the only folder # class FolderBrowserModel insists on prefixing the setting_folders with "persistent" settings_asset_folder_roots = "/persistent/exts/omni.simready.explorer.tests/folders" carb.settings.get_settings().set(settings_asset_folder_roots, [str(TEST_DATA_DIR)]) ui.Workspace.show_window("SimReady Explorer") await omni.kit.app.get_app().next_update_async() self._browser_model: SimReadyBrowserModel = SimReadyBrowserModel(setting_folders=settings_asset_folder_roots) self._browser_model.folder_changed(None) self._explorer: Optional[SimReadyBrowserExtension] = get_instance() if self._explorer: # Set the browser model on the SimReadyBrowserExtension instance # so the SimReadyBrowserExtension.find_assets() API uses it. self._original_browser_model = self._explorer.browser_model self._explorer.window._browser_model = self._browser_model else: self._original_browser_model = None def tearDown(self) -> None: super().tearDown() if self._original_browser_model and self._explorer: # Restore original browser model self._explorer.window._browser_model = self._original_browser_model self._explorer = None self._browser_model.destroy() ################################ # Tests for the find_assets() API ################################ async def test_filter_all_assets(self): """Test getting all assets through the SimReadyBrowserExtension.find_assets() API""" self.assertIsNotNone(self._explorer) assets = await find_assets() self.assertEqual(len(assets), 6) simready_assets = await find_assets(search_words=["SimReady"]) self.assertEqual(len(assets), len(simready_assets)) generic_asset_count = 0 vehicle_asset_count = 0 prop_asset_count = 0 # Verify the type and number of assets created for a in assets: self.assertIsNotNone(a) if isinstance(a, GenericTestAsset): generic_asset_count += 1 elif isinstance(a, VehicleTestAsset): vehicle_asset_count += 1 elif isinstance(a, PropAsset): # PropAsset is a type defined in the SimReady Explorer extension; # the test data contains PropAssets, so we can verify that they work prop_asset_count += 1 else: self.fail("Unknown asset type") self.assertEqual(prop_asset_count, 3) self.assertEqual(vehicle_asset_count, 2) self.assertEqual(generic_asset_count, 1) async def test_filter_tool_assets(self): """Test looking for tools""" assets = await find_assets(search_words=["tool"]) self.assertEqual(len(assets), 2) async def test_filter_vehicles_assets(self): """Test looking for vehicles""" assets = await find_assets(search_words=["truck"]) self.assertEqual(len(assets), 2) for a in assets: self.assertIsInstance(a, VehicleTestAsset) # Test looking for vehicles differently assets = await find_assets(search_words=["truck", "vehicle"]) self.assertEqual(len(assets), 2) for a in assets: self.assertIsInstance(a, VehicleTestAsset) async def test_filter_partial_asset_tag_match(self): """Tests that search words are matched on partial asset tags""" assets = await find_assets(search_words=["ti-tool"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], GenericTestAsset) # Test looking for vehicles differently assets = await find_assets(search_words=["motor", "vehicle"]) self.assertEqual(len(assets), 2) for a in assets: self.assertIsInstance(a, VehicleTestAsset) async def test_filter_partial_asset_name_match(self): """Test that search words are matched on partial asset names""" assets = await find_assets(search_words=["tool1"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], GenericTestAsset) async def test_filter_case_insensitive_match(self): """Test that search words are case insensitive""" assets = await find_assets(search_words=["ToOl1"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], GenericTestAsset) assets = await find_assets(search_words=["PORT Unit"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], PropAsset) async def test_filter_no_assets(self): """Test search that should return no assets""" assets = await find_assets(search_words=["equipment", "vehicle"]) self.assertEqual(len(assets), 0) # Test a filter that contains tags not in the database assets = await find_assets(search_words=["this_tag_is_not_used", "neither_is_this_one"]) self.assertEqual(len(assets), 0) ################################################# # Tests for accessing behavior list of assets API ################################################# async def test_asset_behavior(self): """Test getting the behaviors of an asset""" assets = await find_assets(search_words=["multi-tool"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], GenericTestAsset) # omni.kit.debug.python.wait_for_client() self.assertEqual(len(assets[0].behaviors), 2) self.assertTrue("Features" in assets[0].behaviors) self.assertEqual(assets[0].behaviors["Features"], ["Five", "Seven", "Nine"]) self.assertTrue("Colors" in assets[0].behaviors) self.assertEqual(assets[0].behaviors["Colors"], ["Black", "Red", "Blue"]) ########################################### # Tests for the def add_asset_to_stage() API ########################################### def check_variant(self, prim: Usd.Prim, variantset_name: str, variant_name: str) -> None: """Helper function to check the variant value of a prim""" self.assertIsNotNone(prim) vsets: Usd.VariantSet = prim.GetVariantSets() vset: Usd.VariantSet = vsets.GetVariantSet(variantset_name) self.assertIsNotNone(vset) self.assertEqual(vset.GetVariantSelection(), variant_name) def check_instanceable(self, prim: Usd.Prim, variants: Dict[str, str]) -> None: """Helper function to check the instanceable value of the 'inst' prim""" self.assertIsNotNone(prim) inst_prim: Usd.Prim = find_inst_prim(prim) self.assertIsNotNone(inst_prim) self.assertTrue(inst_prim.IsInstanceable()) def check_added_asset(self, stage: Usd.Stage, asset_prim_path: str, parent_prim: Usd.Prim): """Helper function to check that an asset was added to a stage""" self.assertIsNotNone(stage) self.assertIsNotNone(parent_prim) self.assertTrue(asset_prim_path) prim: Usd.Prim = stage.GetPrimAtPath(asset_prim_path) self.assertIsNotNone(prim) self.assertEqual(prim.GetParent(), parent_prim) async def test_add_asset_to_stage(self): """Test adding an asset to a stage and setting its variant value""" assets = await find_assets(search_words=["box_a01"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], PropAsset) # No undo needed in a unit test omni.kit.undo.begin_disabled() # Create a test stage with a default prim called "World" usd_context: omni.usd.UsdContext = omni.usd.get_context() usd_context.new_stage() stage: Usd.Stage = usd_context.get_stage() self.assertIsNotNone(stage) omni.kit.commands.execute("CreatePrim", prim_type="XFom", prim_path="/World", create_default_xform=True) world: Usd.Prim = stage.GetPrimAtPath("/World") stage.SetDefaultPrim(world) res, cube = omni.kit.commands.execute("CreatePrim", prim_type="Cube", prim_path="/World/Cube") cube: Usd.Prim = stage.GetPrimAtPath("/World/Cube") self.assertIsNotNone(cube) # Create the variant to set on the asset when adding it to the stage variantset_name = "PhysicsVariant" self.assertTrue(variantset_name in assets[0].behaviors) variants: Dict[str, str] = {variantset_name: assets[0].behaviors[variantset_name][0]} # Add the asset to the stage, under a specific prim res, asset_prim_path = add_asset_to_stage(assets[0].url, parent_path=Sdf.Path("/World/Cube"), variants=variants) self.assertTrue(res) # Verify that the asset was added to the stage as expected self.check_added_asset(stage, asset_prim_path, cube) # Check that the asset has the correct variant set self.check_variant( stage.GetPrimAtPath(asset_prim_path), variantset_name, assets[0].behaviors[variantset_name][0] ) # Check that the asset has the correct instanceable attribute set self.check_instanceable(stage.GetPrimAtPath(asset_prim_path), variants) usd_context.close_stage() omni.kit.undo.end_disabled() async def test_add_asset_to_stage_using_prims(self): """Test adding an asset to a stage using some existent prims, and setting its variant value""" assets = await find_assets(search_words=["box_a01"]) self.assertEqual(len(assets), 1) self.assertIsInstance(assets[0], PropAsset) # No undo needed in a unit test omni.kit.undo.begin_disabled() # Create a test stage with a default prim called "World" and some cubes usd_context: omni.usd.UsdContext = omni.usd.get_context() usd_context.new_stage() stage: Usd.Stage = usd_context.get_stage() self.assertIsNotNone(stage) omni.kit.commands.execute("CreatePrim", prim_type="XFom", prim_path="/World", create_default_xform=True) world: Usd.Prim = stage.GetPrimAtPath("/World") stage.SetDefaultPrim(world) prim_paths: List[Sdf.Path] = [] for i in range(3): prim_path: str = f"/World/Cube{i}" prim_paths.append(Sdf.Path(prim_path)) omni.kit.commands.execute("CreatePrim", prim_type="Cube", prim_path=prim_path) omni.kit.commands.execute("TransformPrimSRTCommand", path=prim_path, new_translation=Gf.Vec3d(0, 0, i * 20)) # Create the variant to set on the asset when adding it to the stage variantset_name = "PhysicsVariant" self.assertTrue(variantset_name in assets[0].behaviors) variants: Dict[str, str] = {variantset_name: assets[0].behaviors[variantset_name][0]} # Add the asset to the stage, using the prims created above, without replacing them res, asset_prim_path = add_asset_to_stage_using_prims( usd_context, stage, assets[0].url, variants=variants, replace_prims=False, prim_paths=prim_paths ) self.assertTrue(res) # Verify that the asset was added to the stage as expected self.check_added_asset(stage, asset_prim_path, world) # Check that the asset has the correct variant set self.check_variant( stage.GetPrimAtPath(asset_prim_path), variantset_name, assets[0].behaviors[variantset_name][0] ) # Check that the asset has the correct instanceable attribute set self.check_instanceable(stage.GetPrimAtPath(asset_prim_path), variants) # Verify that the cubes were not replaced for i in range(3): prim_path: str = f"/World/Cube{i}" prim: Usd.Prim = stage.GetPrimAtPath(prim_path) self.assertIsNotNone(prim) self.assertTrue(prim.IsValid()) self.assertEqual(prim.GetTypeName(), "Cube") self.assertEqual(prim.GetParent(), world) self.assertEqual(prim.GetAttribute("xformOp:translate").Get(), Gf.Vec3d(0, 0, i * 20)) # Verify that the newly added asset is at the correct position position: Gf.Vec3d = get_average_position_of_prims([stage.GetPrimAtPath(path) for path in prim_paths]) self.assertEqual(stage.GetPrimAtPath(asset_prim_path).GetAttribute("xformOp:translate").Get(), position) # Add the asset to the stage, using the prims created above, replacing them res, asset_prim_path = add_asset_to_stage_using_prims( usd_context, stage, assets[0].url, variants=variants, replace_prims=True, prim_paths=prim_paths ) # Verify that the asset was added to the stage as expected self.assertTrue(res) self.check_added_asset(stage, asset_prim_path, world) # Check that the asset has the correct variant set self.check_variant( stage.GetPrimAtPath(asset_prim_path), variantset_name, assets[0].behaviors[variantset_name][0] ) # Check that the asset has the correct instanceable attribute set self.check_instanceable(stage.GetPrimAtPath(asset_prim_path), variants) # Verify that the newly added asset's position is the average of the replaced cubes self.assertEqual(stage.GetPrimAtPath(asset_prim_path).GetAttribute("xformOp:translate").Get(), position) # Verify that the cubes are not in the stage for i in range(3): self.assertFalse(stage.GetPrimAtPath(f"/World/Cube{i}").IsValid()) usd_context.close_stage() omni.kit.undo.end_disabled()
15,779
Python
44.872093
120
0.651879
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/samples/simready_explorer_api_sample.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The following line is used to mark the start of the code that is to be pulled into the documentation # example-begin simready_explorer_api_sample import asyncio from typing import List, Tuple import omni.kit.app import omni.simready.explorer as sre import omni.usd from pxr import Gf, Sdf, Usd async def main(): # 1. Find all residential wooden chair assets. # We use multiple search terms, some will be matched in the tags, others in the asset names assets = await sre.find_assets(search_words=["residential", "chair", "wood"]) print(f"Found {len(assets)} chairs") # 2. Prepare to configure the assets # All SimReady Assets have a Physics behavior, which is implemented as a # variantset named PhysicsVariant. To enable rigid body physics on an asset, # this variantset needs to be set to "RigidBody". variants = {"PhysicsVariant": "RigidBody"} # 3. Add all assets found in step (1) to the current stage as a payload added_prim_paths: List[Sdf.Path] = [] for i, asset in enumerate(assets): pos = -200 + 200 * i res, prim_path = sre.add_asset_to_stage( asset.main_url, position=Gf.Vec3d(pos, 0, -pos), variants=variants, payload=True ) if res: print(f"Added '{prim_path}' from '{asset.main_url}'") # 4. Find an ottoman assets = await sre.find_assets(search_words=["ottoman"]) print(f"Found {len(assets)} ottomans") # 5. Replace the first chair with an ottoman if assets and added_prim_paths: usd_context: omni.usd.UsdContext = omni.usd.get_context() stage: Usd.Stage = usd_context.get_stage() if usd_context else None await omni.kit.app.get_app().next_update_async() res, prim_path = sre.add_asset_to_stage_using_prims( usd_context, stage, assets[0].main_url, variants=variants, replace_prims=True, prim_paths=[added_prim_paths[0]], ) if res: print(f"Replaced assets '{added_prim_paths[0]}' with '{prim_path}' from '{assets[0].main_url}'") asyncio.ensure_future(main()) # example-end simready_explorer_api_sample
2,607
Python
39.123076
108
0.678174
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/docs/CHANGELOG.md
Changelog ========= This document records all notable changes to ``omni.simready.explorer`` extension. This project adheres to `Semantic Versioning <https://semver.org/>`_. ## [1.0.26] - 2023-06-20 - OM-95538: Don't turn off the instanceable attribute on assets with PhysicsVariant set to RigidBody when drag-and-dropping them into the stage ## [1.0.25] - 2023-06-02 - OM-96886: Update screenshot used in extension registry ## [1.0.24] - 2023-06-01 - OM-96886: Update badge on SimReady asset thumbnails ## [1.0.23] - 2023-05-30 - OM-95406: Set default physics behavior of all assets to "RigidBody" ## [1.0.22] - 2023-05-17 - OM-94398: Removed superfluous print statement from class PropAsset constructor - OM-94290: Normalized asset paths to use single backslahs ('/') as directory separators ## [1.0.21] - 2023-04-25 - OM-90516: Exposed Collect command in asset right-click menu ## [1.0.20] - 2023-04-24 - OM-83563: Created developer docs and tweaked APIs ## [1.0.19] - 2023-04-20 - Get dropped prim path when preview disabled ## [1.0.18] - 2023-04-14 - OM-90136: Disable preview when drag and drop into viewport ## [1.0.17] - 2023-04-13 - OM-90440: Update UI style of property widget to be same as other property widgets ## [1.0.16] - 2023-03-24 OM-87776: Assets are browsed on AWS S3 staging - List of tags in asset details window resizes to fit the window ## [1.0.15] - 2023-03-24 OM-87028: "Replace Current Selection" doesn't apply to multiple asset selection - Fix leak of SimReadyDetailDelegate instance ## [1.0.14] - 2023-03-22 OM-87028: Right-click doesn't select assets, and right-click menu works with multiple assets selected ## [1.0.13] - 2023-03-21 - OM-87026: Simple message displayed in property window when multiple assets selected - OM-87032: Disabled tooltips since they were interfering with the right click menu ## [1.0.12] - 2023-03-18 - OM-85649: support of lazy load workflow in Create ## [1.0.11] - 2023-03-17 - OM-86101: Multiple drag items into viewport or stage window ## [1.0.10] - 2023-03-15 - OM-86315: Turn off instanceable attribute on _inst prim when adding an asset with Physics on, otherwise turn instanceable attribute on. - Fixed issue with physics badge update on thumbnails, where the badge would be visible in the assets detail view even if physics would be off (None) ## [1.0.9] - 2023-03-13 - OM-86077: Added Open, Open with Payloads Disabled, Add at Selection, Copy URL Link right-click menu commands - OM-85906: Renamed menu and tab to "SimReady Explorer" - OM-86315: Set PhysicsVariant to None by default ## [1.0.8] - 2023-03-08 - OM-84838: Added API for listing an asset's behaviors, and adding an asset to the current stage ## [1.0.7] - 2023-03-07 - OM-83352: Updated asset property panel ## [1.0.6] - 2023-03-02 - OM-84829: Fixed searching against tags with spaces (multi-word tags) ## [1.0.5] - 2023-02-28 - OM-84243: Always search all assets - OM-84245: Update tag list in search bar on search results ## [1.0.4] - 2023-02-16 - OM-66968: API for filtering assets - Updated asset database; now includes 539 assets ## [1.0.3] - 2023-02-15 - OM-52823: The explorer looks for the asset database (asset_info.json) on omniverse://simready.ov.nvidia.com/Projects/ - Updated asset database; now includes 487 assets ## [1.0.2] - 2023-02-13 - Assets can be dropped onto the stage from the asset browser (requires omni.kit.widget.stage v2.7.24 which has not been released yet) - Physics is enabled by default - New Physx thumbnail badge is displayed when physics is enabled - Updated asset database; now includes 317 assets (304 are simready) - OM-81970: Open property panel by default - OM-81973: Center widgets in property panel - OM-81977: SimReady Explorer is docked when it starts This required to not show the window after startup. Show from menu "Window/Browsers/Sim Ready". - OM-81962: Remove gear button from search bar omni.simready.explorer-1.0.2 requires the following extensions: - omni.kit.widget.stage-2.7.24 (not available as of 2023-02-13) - omni.kit.browser.core-2.2.2 - omni.kit.browser.folder.core-1.7.5 - omni.kit.widget.searchfield-1.1.0 ## [1.0.1] - 2023-02-09 - Assets can be pre-configured with right-click menu options, or in the properties view. - Drag-and-drop of pre-configured asset into the viewport - Asset properties panel shows the following properties name, QCode, thumbnail, tags, physics behavior - Asset properties panel updates when selected asset changes - Supporting 158 assets on omniverse://simready.ov.nvidia.com/Projects/simready_content/common_assets/props/ ## [1.0.0] - 2023-02-08 - Hierarchical Asset Categories are displayed - Asset thumbnails are displayed, with tooltip showing asset name, dimensions and tags - Asset property panel is displayed when user enables it through the top-right icon - Search bar is populated with categories as tags when user clicks on a category in the Asset Category panel, and the assets are filtered
4,952
Markdown
40.621848
149
0.743336
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/docs/README.md
# Simready Explorer Extension [omni.simready.explorer] A browser for SimReady Assets.
86
Markdown
27.999991
54
0.813953
DigitalBotLab/App/kit-app/source/extensions/omni.simready.explorer/docs/Overview.md
# SimReady Explorer Developer Guide ## Overview **SimReady Assets** are the building blocks of industrial virtual worlds. They are built on top of the Universal Scene Description (USD) platform and have accurate physical properties, behaviors, and connected data streams. They are comprised on multiple files such as USD layers, material description files (.mdl), textures, thumbnails, etc. The **SimReady Explorer extension** allows for working with libraries of SimReady Assets, by enabling users to: - Find assets by words matched against tags and asset names - Configure asset behavior, appearance, etc in the browser, before they are assembled into a scene - Assemble assets into virtual worlds through Omniverse applications such as USD Composer, DriveSim, Isaac Sim, etc. Through the [**SimReady Explorer API**](./API.rst), developers can: - Search for assets by matching search words against tags and asset names - Configure various aspects of assets, as defined by the asset class - Add the configured assets to a stage ## Finding assets SimReady Assets have a name, tags, and labels. The labels are derived from the [Wiki Data](https://www.wikidata.org) database, and as such are backed by QCodes. Note that the labels and the QCode of an asset are also part of its list of tags. Both tags and labels can consist of multiple, space separated words. Finding SimReady Assets is like querying a database. A list of search terms is each matched against the asset's name and tags. Partial matches of the search term in names, tags, and labels are also returned. For example, the search term "wood" would match names such as "recycledwoodpallete" and "crestwood_sofa". ```{eval-rst} See the :doc:`find_assets() <omni.simready.explorer/omni.simready.explorer.find_assets>` API for details on how to programmatically search for assets. ``` ## Configuring assets and adding them to a stage The `find_assets()` API returns a list of `SimreadyAsset` objects, which can be added to the current stage with the desired behaviors enabled. The behaviors supported currently are the USD variant sets exposed by the asset. When adding assets to a stage, they can be inserted at a given location, can be parented to another prim, or can be added at or even replace a list of prims. ```{eval-rst} See the :doc:`add_asset_to_stage() <omni.simready.explorer/omni.simready.explorer.add_asset_to_stage>`, and the :doc:`add_asset_to_stage_using_prims() <omni.simready.explorer/omni.simready.explorer.add_asset_to_stage_using_prims>` APIs for details on how to programmatically add assets to the current stage. ``` # SimReady Explorer API Tutorial The following code illustrates how to find assets, add them to the current scene, and even replace some of them with other assets. The code below can be executed from the Script Editor of any Omniverse application. ```{eval-rst} .. literalinclude:: ../../../../source/extensions/omni.simready.explorer/samples/simready_explorer_api_sample.py :language: python :start-after: example-begin simready_explorer_api_sample :end-before: example-end simready_explorer_api_sample :dedent: ``` ## Future enhancements The SimReady Explorer API will be extended in the near future to allow defining custom asset classes with specific behaviors.
3,289
Markdown
68.999999
342
0.779264
DigitalBotLab/App/kit-app/source/extensions/omni.usd_explorer.setup/omni/usd_explorer/setup/tests/__init__.py
# run startup tests first from .test_app_startup import * from .test import * from .test_state_manager import *
112
Python
21.599996
33
0.75
DigitalBotLab/AssetProvider/README.md
# <img src="Images/logo.png" alt="Logo" width="50" height="50"> Digital Bot Lab: AssetProvider ![Build Version](https://img.shields.io/badge/Build-v0.2-orange) ![Release Version](https://img.shields.io/badge/Release-v0.1-blue) # Experience thousands of robots using Nvidia Omniverse ![preview](Images/preview.png) The Digital Bot Lab's Asset Provider Extension is a cutting-edge solution designed to seamlessly connect our extensive digital robot collection from `ROS` with the powerful `NVIDIA Omniverse platform`. With our connector, users can effortlessly import digital robots in `.usd` format, enabling them to leverage the full potential of Omniverse applications. ## 1. Get Started Experience the future of robotics with the Digital Bot Lab's Insiderobo Connector, where the connection between digital robots and Omniverse becomes effortless and transformative. ![store](Images/connector_store.png) ### 1.1 Install Omniverse USD Composer This project is currently targeted for `Omniverse USD Composer`. Please follow the instructions to install it first: [USD Composer Overview](https://docs.omniverse.nvidia.com/composer/latest/index.html#:~:text=NVIDIA%20Omniverse%E2%84%A2%20USD%20Composer,is%20based%20on%20Pixar's%20USD.) ### 1.2 Import the extension To install the extension to Omniverse USD Composer: First, clone the respository ```bash git clone https://github.com/DigitalBotLab/AssetProvider ``` And now Open the `Omniverse USD Composer`, go to `Menu Bar` -> `Window` -> `Extensions` -> `Options` -> `Settings` Add your `<path_to_this_repository>/AssetProvider/dbl-exts-asset/exts` to the settings ![Extension](Images/extension_import.png) ### 1.3 Enable the extension ![Enable](Images/extension_enable.jpg) At the `Third Party` filter, enable our extension. Now, after opening the `Window` -> `Asset Store (Beta)` Tab, you can see this extension by filter the asset provider into `DIGITAL BOT LAB`. ## 2. Format: USD Our digital robots are meticulously crafted and well-configured in .usd format, complete with physics, rigid bodies, and joints. This ensures a realistic and immersive experience when interacting with the robots within Omniverse. ## 3. ROS <img src="https://upload.wikimedia.org/wikipedia/commons/b/bb/Ros_logo.svg" alt="Ros" width="70" height="70"> The Insiderobo Connector is built upon the foundation of the Robot Operating System (ROS), an open-source framework that empowers researchers and developers to easily build and reuse code across various robotics applications. This integration allows for enhanced collaboration, accelerated development, and seamless integration of digital robots into the Omniverse ecosystem. ## 4. License Our project adheres to the Robot Operating System (ROS) framework, which enables us to develop and integrate robotic systems efficiently. We are proud to announce that our project is released under the BSD 3.0 license. This license ensures that our software is open-source, allowing users to freely use, modify, and distribute it while maintaining the necessary attribution and disclaimer requirements. By embracing ROS and the BSD 3.0 license, we aim to foster collaboration and innovation within the robotics community.
3,228
Markdown
50.253967
521
0.784077
DigitalBotLab/AssetProvider/dbl-exts-asset/exts/omni.assetprovider.digitalbotlab/config/extension.toml
[package] authors = ["Digital Bot Lab"] category = "services" changelog = "docs/CHANGELOG.md" version = "1.0.0" title = "Digital Bot Lab Asset Provider" description="Asset provider for Evermotion" readme = "docs/README.md" keywords = ["asset", "provider", "robot", "search", "digitalbotlab"] icon = "data/logo.png" preview_image = "data/preview.png" repository = "" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import omni.hello.world". [[python.module]] name = "omni.assetprovider.digitalbotlab"
605
TOML
27.857142
105
0.722314
DigitalBotLab/AssetProvider/dbl-exts-asset/exts/omni.assetprovider.digitalbotlab/config/extension.gen.toml
[package] exchange = true partner = true
40
TOML
12.666662
15
0.75
DigitalBotLab/AssetProvider/dbl-exts-asset/exts/omni.assetprovider.digitalbotlab/omni/assetprovider/digitalbotlab/constants.py
IN_RELEASE = True SETTING_ROOT = "/exts/omni.assetprovider.template/" SETTING_STORE_ENABLE = SETTING_ROOT + "enable" STORE_URL = "http://api.digitalbotlab.com/api/omniverse/assets" if IN_RELEASE else "http://localhost:8000/api/omniverse/assets" THUMBNAIL_URL = "http://api.digitalbotlab.com/image/" if IN_RELEASE else "http://localhost:8000/image/" DBL_ASSETPROVIDER_INTRO = "\n The Digital Bot Lab's Insiderobo Connector is \n a cutting-edge solution designed to seamlessly \n connect our extensive digital robot collection \n with the powerful NVIDIA Omniverse platform. \n\n Learn more about us: https://digitalbotlab.com/ \n Learn more about Omniverse: https://www.nvidia.com/en-us/omniverse/ \n Learn more about Insiderobo Connector: https://digitalbotlab.com/omniverse/asset-provider \n \n Contact us: [email protected]"
836
Python
75.090902
482
0.773923
DigitalBotLab/AssetProvider/dbl-exts-asset/exts/omni.assetprovider.digitalbotlab/omni/assetprovider/digitalbotlab/extension.py
import importlib import carb import carb.settings import carb.tokens import omni.ui as ui import omni.ext from omni.services.browser.asset import get_instance as get_asset_services from .model import DBLAssetProvider from .constants import SETTING_STORE_ENABLE, IN_RELEASE, DBL_ASSETPROVIDER_INTRO import aiohttp import asyncio import pathlib EXTENSION_FOLDER_PATH = pathlib.Path( omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__) ) # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OmniAssetproviderDigitalbotlabExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.assetprovider.digitalbotlab] omni assetprovider digitalbotlab startup") self._asset_provider = DBLAssetProvider() self._asset_service = get_asset_services() self._asset_service.register_store(self._asset_provider) carb.settings.get_settings().set(SETTING_STORE_ENABLE, True) print("what", carb.settings.get_settings().get(SETTING_STORE_ENABLE)) self._window = ui.Window("Digital Bot Lab: AssetProvider", width=300, height=300) with self._window.frame: with ui.VStack(): ui.ImageWithProvider( f"{EXTENSION_FOLDER_PATH}/data/logo.png", width=30, height=30, ) ui.Label("Introduction:", height = 20) #intro_field = ui.StringField(multiline = True, readonly = True) model = ui.SimpleStringModel(DBL_ASSETPROVIDER_INTRO) field = ui.StringField(model, multiline=True, readonly=True, height=200) # intro_field.model.set_value() with ui.VStack(visible= not IN_RELEASE): ui.Button("debug_authenticate", height = 20, clicked_fn = self.debug_authenticate) ui.Button("debug_token", height = 20, clicked_fn = self.debug_token) ui.Button("Debug", height = 20, clicked_fn = self.debug) def on_shutdown(self): print("[omni.assetprovider.digitalbotlab] omni assetprovider digitalbotlab shutdown") self._asset_service.unregister_store(self._asset_provider) carb.settings.get_settings().set(SETTING_STORE_ENABLE, False) self._asset_provider = None self._asset_service = None def debug_authenticate(self): async def authenticate(): params = {"email": "[email protected]", "password": "97654321abc"} async with aiohttp.ClientSession() as session: async with session.post("http://localhost:8000/api/auth/signin", json=params) as response: self._auth_params = await response.json() print("auth_params", self._auth_params) self.token = self._auth_params["token"] asyncio.ensure_future(authenticate()) def debug_token(self): async def verify_token(): params = {"token": self.token, "asset": "test"} async with aiohttp.ClientSession() as session: async with session.post("http://localhost:8000/api/omniverse/download", json=params) as response: response = await response.json() print("response", response) asyncio.ensure_future(verify_token()) def debug(self): print("debug") STORE_URL = "http://localhost:8000/api/omniverse/assets" params = {} params["page"] = 1 async def search(): # Uncomment once valid Store URL has been provided async with aiohttp.ClientSession() as session: async with session.get(f"{STORE_URL}", params=params) as resp: result = await resp.read() result = await resp.json() items = result print("items", items) asyncio.ensure_future(search())
4,414
Python
40.650943
119
0.614182
DigitalBotLab/Robots/README.md
# Robots Repostory for all robots
34
Markdown
10.666663
24
0.794118
DigitalBotLab/Robots/robot-exts-control/exts/control/control/extension.py
import omni.ext import omni.ui as ui import omni.timeline import omni.kit.app import carb from typing import Optional, List import numpy as np from pxr import Gf from omni.isaac.core.robots.robot import Robot from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper from .kinova.kinova import Kinova from .kinova.coffee_controller import CoffeeMakerController from .kinova.numpy_utils import euler_angles_to_quat, quat_mul # UI from .ui.style import julia_modeler_style from .ui.custom_multifield_widget import CustomMultifieldWidget from .ui.custom_bool_widget import CustomBoolWidget class ControlExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[control] control startup") self.ext_id = ext_id # set up fps limit carb.settings.get_settings().set_float("/app/runLoops/main/rateLimitFrequency", 30) carb.settings.get_settings().set_float("/app/runLoops/present/rateLimitFrequency", 30) carb.settings.get_settings().set_bool("/rtx/ecoMode/enabled", True) # ui self._window = ui.Window("Robot control", width=300, height=300) self._window.frame.style = julia_modeler_style with self._window.frame: with ui.VStack(): # ui.Button("Set Robot", height = 20, clicked_fn=self.set_robot) ui.Line(height = 2) ui.Button("Register Physics Event", height = 50, clicked_fn=self.register_physics_event) with ui.HStack(height = 20): ui.Label("Robot Prim Path:", width = 200) self.robot_path_widget = ui.StringField(width = 300) self.robot_path_widget.model.set_value("/World/kinova_gen3_7_hand/kinova") with ui.HStack(height = 20): self.server_widget = CustomBoolWidget(label="Connect to Server", default_value=False) ui.Spacer(height = 9) ui.Label("End Effector", height = 20) with ui.HStack(height = 20): self.ee_pos_widget = CustomMultifieldWidget( label="Transform", default_vals=[0, 0, 0], height = 20, ) ui.Spacer(height = 9) with ui.HStack(height = 20): self.ee_ori_widget = CustomMultifieldWidget( label="Orient (Euler)", default_vals=[90, 0.0, 90], height = 20, ) ui.Spacer(height = 9) ui.Button("Update EE Target", height = 20, clicked_fn=self.update_ee_target) ui.Button("Open/Close Gripper", height = 20, clicked_fn=self.toggle_gripper) ui.Spacer(height = 9) ui.Line(height = 2) with ui.HStack(height = 20): self.joint_read_widget = CustomMultifieldWidget( label="Joint Angle (read only):", sublabels=["j1", "j2", "j3", "j4", "j5", "j6", "j7"], default_vals=[0.0] * 7, read_only= True ) with ui.HStack(height = 20): self.ee_pos_read_widget = CustomMultifieldWidget( label="EE Position(read only):", sublabels=["x", "y", "z"], default_vals=[0, 0, 0], read_only= True ) with ui.HStack(height = 20): self.ee_ori_quat_read_widget = CustomMultifieldWidget( label="EE Quaternion(read only):", sublabels=[ "w", "x", "y", "z"], default_vals=[1, 0, 0, 0], read_only= True ) # with ui.HStack(height = 20): # self.ee_ori_euler_read_widget = CustomMultifieldWidget( # label="EE Euler Rot(read only):", # sublabels=["x", "y", "z"], # default_vals=[0, 0, 0], # read_only= True # ) # vision part ui.Spacer(height = 9) ui.Line(height = 2) ui.Button("Test vision", height = 20, clicked_fn = self.test_vision) ui.Button("Draw vision", height = 20, clicked_fn = self.draw_vision) ui.Button("Draw vision 2", height = 20, clicked_fn = self.draw_vision2) ui.Spacer(height = 9) ui.Line(height = 2) ui.Button("Debug", height = 20, clicked_fn = self.debug) ui.Button("Debug2", height = 20, clicked_fn = self.debug2) ui.Button("yh Debug", height = 20, clicked_fn = self.yuanhong_debug) ui.Spacer(height = 9) ui.Line(height = 2) # robot self.robot = None self.controller = None self.event_t = 0.0 # stream self._is_stopped = True self._tensor_started = False def on_shutdown(self): print("[control] control shutdown") ########################## events ####################################################### def register_physics_event(self): print("register_physics_event") # timeline stream = omni.timeline.get_timeline_interface().get_timeline_event_stream() self._timeline_sub = stream.create_subscription_to_pop(self._on_timeline_event) def _on_timeline_event(self, event): if event.type == int(omni.timeline.TimelineEventType.PLAY): self._physics_update_sub = omni.physx.get_physx_interface().subscribe_physics_step_events(self._on_physics_step) self._is_stopped = False elif event.type == int(omni.timeline.TimelineEventType.STOP): self._physics_update_sub = None self._timeline_sub = None self._is_stopped = True self._tensor_started = False self.robot = None self.controller = None def _can_callback_physics_step(self) -> bool: if self._is_stopped: return False if self._tensor_started: return True self._tensor_started = True self.set_robot() return True def _on_physics_step(self, dt): self.event_t += dt # update time if not self._can_callback_physics_step(): return if self.controller: # print("_on_physics_step") self.controller.forward() if self.event_t >= 1.0: # update joint info self.update_robot_ui() self.event_t = 0.0 ############################################# Robot ####################################### def update_ee_target(self): print("update_ee_target") if self.controller: self.controller.update_event("move") current_pos, current_rot = self.robot.end_effector.get_world_pose() pos = [self.ee_pos_widget.multifields[i].model.as_float for i in range(3)] rot = [self.ee_ori_widget.multifields[i].model.as_float for i in range(3)] pos = np.array(current_pos) + np.array(pos) rot = euler_angles_to_quat(rot, degrees=True) # current_rot = np.array([current_rot[1], current_rot[2], current_rot[3], current_rot[0]]) # rot = quat_mul(current_rot, rot) rot = np.array([rot[3], rot[0], rot[1], rot[2]]) print("updating controller ee target:", pos, rot) self.controller.update_ee_target(pos, rot) def set_robot(self): print("set_robot") # set robot prim_path = self.robot_path_widget.model.as_string self.robot = Kinova(prim_path = prim_path, name = "kinova_robot") self.robot.initialize() print("kinova_info", self.robot.num_dof) print("kinova_gripper", self.robot.gripper._gripper_joint_num) # set controller self.controller = CoffeeMakerController("task_controller", self.robot, connect_server=self.server_widget.value) def toggle_gripper(self): print("Toggle Gripper") if self.controller: event = "open" if self.controller.event == "close" else "close" self.controller.update_event(event) ######################### ui ############################################################# def update_robot_ui(self): """ read robot joint angles and update ui """ assert self.robot, "robot is not initialized" joint_angles = self.robot.get_joint_positions() joint_angles = [np.rad2deg(joint_angles[i]) for i in range(7)] self.joint_read_widget.update(joint_angles) self.ee_pos_read_widget.update(self.robot.end_effector.get_world_pose()[0]) rot_quat = self.robot.end_effector.get_world_pose()[1] self.ee_ori_quat_read_widget.update(rot_quat) # rot_euler = quat_to_euler_angles(rot_quat, degrees=True) # print("rot_euler:", rot_euler) # self.ee_ori_euler_read_widget.update(rot_euler[0]) def debug(self): print("debug") # if self.robot: # self.controller.apply_high_level_action("pick_up_capsule") # self.controller.apply_high_level_action("move_capsule_to_coffee_machine") if self.robot: self.controller.apply_high_level_action("pick_up_box") def debug2(self): print("debug2") if self.robot: # self.controller.apply_high_level_action("pick_up_capsule") # self.controller.apply_high_level_action("move_capsule_to_coffee_machine") # self.controller.apply_high_level_action("pick_up_papercup") # self.controller.apply_high_level_action("open_coffee_machine_handle") self.controller.apply_high_level_action("close_coffee_machine_handle") self.controller.apply_high_level_action("press_coffee_machine_button") # from omni.isaac.core.prims import XFormPrim # from .kinova.utils import get_transform_mat_from_pos_rot # stage = omni.usd.get_context().get_stage() # base_prim = XFormPrim("/World/capsule") # base_world_pos, base_world_rot = base_prim.get_world_pose() # base_mat = get_transform_mat_from_pos_rot(base_world_pos, base_world_rot) def yuanhong_debug(self): # target_mat = get_transform_mat_from_pos_rot([-0.083, 0.43895, 0], [0.5] * 4) # rel_mat = target_mat * base_mat.GetInverse() # print("base_mat:", base_mat) # print("target_mat:", target_mat) # print("rel_mat:", rel_mat.ExtractTranslation(), rel_mat.ExtractRotationQuat()) print("yuanhong_debug") if self.robot: self.controller.apply_high_level_action("pick_up_papercup") self.controller.apply_high_level_action("move_papercup_to_coffee_machine") #obtain_robot_state = self.controller.obtain_robot_state() # print("obtain_robot_state:", obtain_robot_state) # from pxr import UsdGeom, Usd # stage = omni.usd.get_context().get_stage() # cup_prim = stage.GetPrimAtPath("/World/Simple_Paper_Cup") # xformable = UsdGeom.Xformable(cup_prim) # mat0 = xformable.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) # pos = mat0.ExtractTranslation() # print("cup pos:", pos) pass ########################## vision ######################################################## def test_vision(self): print("test_vision") from .vision.vision_helper import VisionHelper self.vision_helper = VisionHelper(vision_url=None, vision_folder="I:\\Temp") # self.vision_helper.get_image_from_webcam() self.vision_helper.obtain_camera_transform(camara_path="/World/Camera") t = self.vision_helper.camera_mat.ExtractTranslation() print("camera offset", t) foc = 1000 world_d = self.vision_helper.get_world_direction_from_camera_point(0, 0, foc, foc) world_d= world_d.GetNormalized() print("world_d:", world_d) self.vision_helper.draw_debug_line(t, world_d) self.vision_helper.get_hit_position(t, world_d, target_prim_path="/World/Desk") # from omni.physx import get_physx_scene_query_interface # t = carb.Float3(t[0], t[1], t[2]) # d = carb.Float3(world_d[0], world_d[1], world_d[2]) # get_physx_scene_query_interface().raycast_all(t, d, 100.0, self.report_all_hits) # def report_all_hits(self, hit): # stage = omni.usd.get_context().get_stage() # from pxr import UsdGeom # usdGeom = UsdGeom.Mesh.Get(stage, hit.rigid_body) # print("hit:", hit.rigid_body, usdGeom.GetPrim().GetPath(), hit.position, hit.normal, hit.distance, hit.face_index) # return True def draw_vision(self): # print("draw_vision") # from omni.ui import scene as sc # from omni.ui import color as cl # from omni.kit.viewport.utility import get_active_viewport_window # self._viewport_window = get_active_viewport_window() # if hasattr(self, "scene_view"): # self.scene_view.scene.clear() # if self._viewport_window: # self._viewport_window.viewport_api.remove_scene_view(self.scene_view) # self.scene_view = None # with self._viewport_window.get_frame(0): # self.scene_view = sc.SceneView() # self.scene_view.scene.clear() # points_b = [[12500.0, 0, 0.0], [0.0, 0, 12500.0], [-12500.0, 0, 0.0], [-0.0, 0, -12500.0], [12500.0, 0, -0.0]] # with self.scene_view.scene: # transform = sc.Transform() # # move_ges = MoveGesture(transform) # with transform: # for pt in points_b: # sc.Curve([pt, [0, 0, 0]], thicknesses=[1.0], colors=[cl.green], curve_type=sc.Curve.CurveType.LINEAR) # self._viewport_window.viewport_api.add_scene_view(self.scene_view) from .vision.vision_helper import VisionHelper self.vision_helper = VisionHelper(vision_url="http://127.0.0.1:7860/run/predict", vision_folder="I:\\Temp", camera_prim_path="/World/Camera", vision_model="fastsam") self.vision_helper.capture_image(folder_path="I:\\Temp\\VisionTest", image_name="test") return def draw_vision2(self): # print("draw_vision2") from .vision.vision_helper import VisionHelper self.vision_helper = VisionHelper(vision_url="http://127.0.0.1:7860/run/predict", vision_folder="I:\\Temp", camera_prim_path="/World/Camera", vision_model="fastsam") # self.vision_helper.capture_image(folder_path="I:\\Temp\\VisionTest", image_name="test") # return import cv2 import os import numpy as np from .vision.utils import find_bottom_point, find_left_point, get_projection, get_box_transform_from_point img_path = None print("os.listdir", os.listdir("I:\\Temp\\VisionTest")) for item in os.listdir("I:\\Temp\\VisionTest"): print("item:", item) if item.endswith(".png") and item.startswith("test"): img_path = os.path.join("I:\\Temp\\VisionTest", item) break assert img_path, "image not found" print("img_path:", img_path) image = cv2.imread(img_path) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) lower_blue = np.array([90, 50, 50]) upper_blue = np.array([130, 255, 255]) mask = cv2.inRange(hsv_image, lower_blue, upper_blue) kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contour = contours[0] arclen = cv2.arcLength(contour, True) # WARNING: 0.005 is a magic number contour = cv2.approxPolyDP(contour, arclen*0.005, True) cv2.drawContours(image, [contour], -1, (0, 255, 0), 2) # Green color, thickness 2 print("contour:", contour, len(contour)) # response_data = self.vision_helper.get_prediction_data("I:\\Temp\\0.jpg", "grey tea tower") # print(response_data) # response_data = {'data': ['[[[[736, 113]], [[608, 133]], [[591, 151]], [[590, 373]], [[620, 419]], [[646, 419]], [[741, 392]], [[790, 162]]]]'], 'is_generating': False, 'duration': 11.769976139068604, 'average_duration': 11.769976139068604} # import json # import numpy as np # countour = json.loads(response_data["data"][0]) print("countour", contour) points = np.array([p[0] for p in contour]) print("p0", points) bottom_point = find_bottom_point(points) left_point = find_left_point(points) print("bottom_point", bottom_point) image = cv2.circle(image, bottom_point, radius=10, color=(255, 0, 255), thickness=-1) image = cv2.circle(image, left_point, radius=10, color=(255, 255, 0), thickness=-1) cv2.imshow('Blue Contours', image) cv2.waitKey(0) cv2.destroyAllWindows() #REFERENCE: Camera Calibration and 3D Reconstruction from Single Images Using Parallelepipeds self.vision_helper.obtain_camera_transform(camara_path="/World/Camera") camera_pos = self.vision_helper.camera_mat.ExtractTranslation() print("camera offset", camera_pos) foc = 910 bottom_d = self.vision_helper.get_world_direction_from_camera_point(bottom_point[0], 1080 - bottom_point[1], foc, foc) bottom_d= bottom_d.GetNormalized() print("bottom_d:", bottom_d) left_d = self.vision_helper.get_world_direction_from_camera_point(left_point[0], 1080 - left_point[1], foc, foc) left_d= left_d.GetNormalized() print("left_d:", left_d) self.vision_helper.draw_debug_line(camera_pos, left_d, length=10) # self.vision_helper.get_hit_position(t, world_d, target_prim_path="/World/Desk") box_transform, box_rotation = get_box_transform_from_point(camera_pos, bottom_d, left_d, affordance_z = -0.02) print("box_transform:", box_transform) print("box_rotation:", box_rotation) stage = omni.usd.get_context().get_stage() stage.DefinePrim("/World/box", "Xform") mat = Gf.Matrix4d().SetScale(1) * \ Gf.Matrix4d().SetRotate(box_rotation) * \ Gf.Matrix4d().SetTranslate(Gf.Vec3d(box_transform[0], box_transform[1], box_transform[2])) omni.kit.commands.execute( "TransformPrimCommand", path="/World/box", new_transform_matrix=mat, )
19,930
Python
41.862366
251
0.559508
DigitalBotLab/Robots/robot-exts-control/exts/control/control/rtc/test.py
import omni import importlib import carb.settings class RTCTest(): def __init__(self): manager = omni.kit.app.get_app().get_extension_manager() self._webrtc_was_enabled = manager.is_extension_enabled("omni.services.streamclient.webrtc") if not self._webrtc_was_enabled: manager.set_extension_enabled_immediate("omni.services.streamclient.webrtc", True) # self._webrtc_api = importlib.import_module("omni.physics.tensors") def test_main(self): from omni.services.client import AsyncClient from omni.services.streamclient.webrtc.services.browser_frontend import example_page, redirect_url, router_prefix frontend_port = carb.settings.get_settings().get_as_int("exts/omni.services.transport.server.http/port") frontend_prefix = f"http://localhost:{frontend_port}{router_prefix}" self._redirect_page_path = f"{frontend_prefix}{example_page}" self._client_page_path = f"{frontend_prefix}{redirect_url}" print("frontend_port", frontend_port) print("frontend_prefix", frontend_prefix) print("self._redirect_page_path", self._redirect_page_path) print("self._client_page_path", self._client_page_path)
1,230
Python
46.346152
121
0.692683
DigitalBotLab/Robots/robot-exts-control/exts/control/control/vision/vision_helper.py
# send message to Kinova Server to control the real robot try: import cv2 except: # omni.kit.pipapi extension is required import omni.kit.pipapi # It wraps `pip install` calls and reroutes package installation into user specified environment folder. # That folder is added to sys.path. # Note: This call is blocking and slow. It is meant to be used for debugging, development. For final product packages # should be installed at build-time and packaged inside extensions. omni.kit.pipapi.install( package="opencv-python", ) import cv2 from PIL import Image import requests import base64 import os import omni.usd import carb from pxr import Gf, UsdGeom import omni.timeline import omni.graph.core as og from omni.physx import get_physx_scene_query_interface from omni.debugdraw import get_debug_draw_interface CX = 1920/2 # principal point x CY = 1080/2 # principal point y class VisionHelper(): def __init__(self, vision_url: str, vision_folder:str, camera_prim_path = "/OmniverseKit_Persp", vision_model = "dino") -> None: # vision self.vision_url = vision_url self.vision_folder = vision_folder self.vision_model = vision_model self.camera_prim_path = camera_prim_path # stage self.stage = omni.usd.get_context().get_stage() def get_prediction_data(self, image_file: str, object_name: str): """ Get bounding box data from the Gradio server """ # Set the request payload with open(image_file, "rb") as f: encoded_string = base64.b64encode(f.read()) data_url = "data:image/png;base64," + encoded_string.decode("utf-8") payload = { "data": [ data_url, object_name ] } # Send the request to the Gradio server response = requests.post(self.vision_url, json=payload) # Get the response data as a Python object response_data = response.json() # Print the response data # print(response_data) return response_data def get_image_from_webcam(self, image_name = "0.jpg"): """ Get image from webcam """ cap = cv2.VideoCapture(0) ret, frame = cap.read() frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame, 'RGB') image.save(self.vision_folder + f"/{image_name}") print("Image saved at path: " + self.vision_folder + f"/{image_name}") cap.release() def obtain_camera_transform(self, camara_path: str): """ Obtain camera transform """ camera_prim = omni.usd.get_context().get_stage().GetPrimAtPath(camara_path) xformable = UsdGeom.Xformable(camera_prim) self.camera_mat = xformable.ComputeLocalToWorldTransform(0) def get_world_direction_from_camera_point(self, x, y, fx, fy): """ Get world direction from camera point """ # camera_point = Gf.Vec3d(x, y, 1) # K = Gf.Matrix3d(fx, 0, 0, 0, fy, 0, CX, CY, 1) # K_inverse = K.GetInverse() Z = -1 R = self.camera_mat.ExtractRotationMatrix() R_inverse = R.GetInverse() # world_point = (camera_point * K_inverse - t) * R_inverse D = Gf.Vec3d((CX - x) * Z / fx, (CY - y) * Z / fy, Z) world_direction = R_inverse * D return world_direction def draw_debug_line(self, origin, direction, length = 1, node_path = "/World/PushGraph/make_array"): """ Draw debug line """ make_array_node = og.Controller.node(node_path) if make_array_node.is_valid(): # print("draw debug line") origin_attribute = make_array_node.get_attribute("inputs:input0") target_attribute = make_array_node.get_attribute("inputs:input1") size_attribute = make_array_node.get_attribute("inputs:arraySize") # attr_value = og.Controller.get(attribute) og.Controller.set(size_attribute, 2) og.Controller.set(origin_attribute, [origin[0], origin[1], origin[2]]) og.Controller.set(target_attribute, [direction[0] * length + origin[0], direction[1] * length + origin[1], direction[2] * length + origin[2]]) # print("attr:", attr_value) def get_hit_position(self, origin, direction, target_prim_path = "/World/Desk"): """ Get hit position note: should be call while timeline is playing """ timeline = omni.timeline.get_timeline_interface() assert timeline.is_playing(), "timeline is not playing" def report_all_hits(hit): usdGeom = UsdGeom.Mesh.Get(self.stage, hit.rigid_body) print("hit:", hit.rigid_body, usdGeom.GetPrim().GetPath(), hit.position, hit.normal, hit.distance, hit.face_index) if usdGeom.GetPrim().GetPath().pathString == target_prim_path: hit_position = hit.position hit_position = None t = carb.Float3(origin[0], origin[1], origin[2]) d = carb.Float3(direction[0], direction[1], direction[2]) # print("t:", t, "d:", d) get_physx_scene_query_interface().raycast_all(t, d, 100.0, report_all_hits) return hit_position ############################################# action ############################################# def capture_image(self, folder_path = "I:\\Temp\\VisionTest", image_name = "test"): from omni.kit.capture.viewport import CaptureOptions, CaptureExtension options = CaptureOptions() options.file_name = image_name options.file_type = ".png" options.output_folder = str(folder_path) options.camera = self.camera_prim_path if not os.path.exists(options.output_folder): pass images = os.listdir(options.output_folder) for item in images: if item.endswith(options.file_type) and item.startswith(options.file_name): os.remove(os.path.join(options.output_folder, item)) capture_instance = CaptureExtension().get_instance() capture_instance.options = options capture_instance.start()
6,362
Python
36.650887
154
0.595253
DigitalBotLab/Robots/robot-exts-control/exts/control/control/vision/utils.py
import numpy as np import cv2 from pxr import Gf BOX_SIZE = [0.071, 0.0965, 0.1198] # in cm def find_bottom_point(points): """ Find the bottom point from a list of points """ bottom_point = points[0] for point in points: if point[1] > bottom_point[1]: bottom_point = point return bottom_point def find_left_point(points): """ Find the left point from a list of points """ left_point = points[0] for point in points: if point[0] < left_point[0]: left_point = point return left_point def get_projection(point, direction, z): """ Get projection """ t = (z - point[2]) / direction[2] x = point[0] + direction[0] * t y = point[1] + direction[1] * t return np.array((x, y, z)) def get_box_transform_from_point(camera_position, bottom_direction, left_direction, affordance_z = 0): """ Get box points """ bottom_point = get_projection(camera_position, bottom_direction, affordance_z) left_point = get_projection(camera_position, left_direction, affordance_z) distance = np.linalg.norm(bottom_point - left_point) closest_value = min(BOX_SIZE,key=lambda x:abs(x-distance)) print("distance: ", distance, bottom_point, left_point, "\n close to: ", closest_value) direction = left_point - bottom_point direction = direction / np.linalg.norm(direction) direction = Gf.Vec3d(direction[0], direction[1], direction[2]) print("direction: ", direction) # determine the box rotation if closest_value == BOX_SIZE[0]: direction_r = np.array([direction[1], -direction[0], 0]) right_point = bottom_point + direction_r * BOX_SIZE[1] center_point = (left_point + right_point) / 2 rotation = Gf.Rotation(Gf.Vec3d(0, -1, 0), direction) elif closest_value == BOX_SIZE[1]: direction_r = np.array([direction[1], -direction[0], 0]) right_point = bottom_point + direction_r * BOX_SIZE[0] center_point = (left_point + right_point) / 2 rotation = Gf.Rotation(Gf.Vec3d(-1, 0, 0), direction) else: center_point = (left_point + bottom_point) / 2 from_direction = Gf.Vec3d([BOX_SIZE[1], -BOX_SIZE[1], 0]).GetNormalized() rotation = Gf.Rotation(from_direction, direction) return center_point, rotation.GetQuat()
2,375
Python
32
102
0.620632
DigitalBotLab/Robots/robot-exts-control/exts/control/control/vision/gpt/chatgpt_apiconnect.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import omni.usd import carb import os import aiohttp import asyncio from pxr import Sdf from .prompts import system_input, user_input, assistant_input from .deep_search import query_items from .item_generator import place_greyboxes, place_deepsearch_results async def chatGPT_call(prompt: str): # Load your API key from an environment variable or secret management service settings = carb.settings.get_settings() apikey = settings.get_as_string("/persistent/exts/omni.example.airoomgenerator/APIKey") my_prompt = prompt.replace("\n", " ") # Send a request API try: parameters = { "model": "gpt-3.5-turbo", "messages": [ {"role": "system", "content": system_input}, {"role": "user", "content": user_input}, {"role": "assistant", "content": assistant_input}, {"role": "user", "content": my_prompt} ] } chatgpt_url = "https://api.openai.com/v1/chat/completions" headers = {"Authorization": "Bearer %s" % apikey} # Create a completion using the chatGPT model async with aiohttp.ClientSession() as session: async with session.post(chatgpt_url, headers=headers, json=parameters) as r: response = await r.json() text = response["choices"][0]["message"]['content'] except Exception as e: carb.log_error("An error as occurred") return None, str(e) # Parse data that was given from API try: #convert string to object data = json.loads(text) except ValueError as e: carb.log_error(f"Exception occurred: {e}") return None, text else: # Get area_objects_list object_list = data['area_objects_list'] return object_list, text
2,548
Python
35.942028
98
0.648744
DigitalBotLab/Robots/robot-exts-control/exts/control/control/ui/style.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["julia_modeler_style"] from omni.ui import color as cl from omni.ui import constant as fl from omni.ui import url import omni.kit.app import omni.ui as ui import pathlib EXTENSION_FOLDER_PATH = pathlib.Path( omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__) ) ATTR_LABEL_WIDTH = 150 BLOCK_HEIGHT = 22 TAIL_WIDTH = 35 WIN_WIDTH = 400 WIN_HEIGHT = 930 # Pre-defined constants. It's possible to change them at runtime. cl_window_bg_color = cl(0.2, 0.2, 0.2, 1.0) cl_window_title_text = cl(.9, .9, .9, .9) cl_collapsible_header_text = cl(.8, .8, .8, .8) cl_collapsible_header_text_hover = cl(.95, .95, .95, 1.0) cl_main_attr_label_text = cl(.65, .65, .65, 1.0) cl_main_attr_label_text_hover = cl(.9, .9, .9, 1.0) cl_multifield_label_text = cl(.65, .65, .65, 1.0) cl_combobox_label_text = cl(.65, .65, .65, 1.0) cl_field_bg = cl(0.18, 0.18, 0.18, 1.0) cl_field_border = cl(1.0, 1.0, 1.0, 0.2) cl_btn_border = cl(1.0, 1.0, 1.0, 0.4) cl_slider_fill = cl(1.0, 1.0, 1.0, 0.3) cl_revert_arrow_enabled = cl(.25, .5, .75, 1.0) cl_revert_arrow_disabled = cl(.35, .35, .35, 1.0) cl_transparent = cl(0, 0, 0, 0) fl_main_label_attr_hspacing = 10 fl_attr_label_v_spacing = 3 fl_collapsable_group_spacing = 2 fl_outer_frame_padding = 15 fl_tail_icon_width = 15 fl_border_radius = 3 fl_border_width = 1 fl_window_title_font_size = 18 fl_field_text_font_size = 14 fl_main_label_font_size = 14 fl_multi_attr_label_font_size = 14 fl_radio_group_font_size = 14 fl_collapsable_header_font_size = 13 fl_range_text_size = 10 url_closed_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/closed.svg" url_open_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/opened.svg" url_revert_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/revert_arrow.svg" url_checkbox_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_on.svg" url_checkbox_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_off.svg" url_radio_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_on.svg" url_radio_btn_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_off.svg" url_diag_bg_lines_texture = f"{EXTENSION_FOLDER_PATH}/icons/diagonal_texture_screenshot.png" # D:\DBL\Robots\robot-exts-control\exts\control\icons\diagonal_texture_screenshot.png print("url_revert_arrow_icon: ", EXTENSION_FOLDER_PATH, "-", url_revert_arrow_icon) # The main style dict julia_modeler_style = { "Button::tool_button": { "background_color": cl_field_bg, "margin_height": 0, "margin_width": 6, "border_color": cl_btn_border, "border_width": fl_border_width, "font_size": fl_field_text_font_size, }, "CollapsableFrame::group": { "margin_height": fl_collapsable_group_spacing, "background_color": cl_transparent, }, # TODO: For some reason this ColorWidget style doesn't respond much, if at all (ie, border_radius, corner_flag) "ColorWidget": { "border_radius": fl_border_radius, "border_color": cl(0.0, 0.0, 0.0, 0.0), }, "Field": { "background_color": cl_field_bg, "border_radius": fl_border_radius, "border_color": cl_field_border, "border_width": fl_border_width, }, "Field::attr_field": { "corner_flag": ui.CornerFlag.RIGHT, "font_size": 2, # fl_field_text_font_size, # Hack to allow for a smaller field border until field padding works }, "Field::attribute_color": { "font_size": fl_field_text_font_size, }, "Field::multi_attr_field": { "padding": 4, # TODO: Hacky until we get padding fix "font_size": fl_field_text_font_size, }, "Field::path_field": { "corner_flag": ui.CornerFlag.RIGHT, "font_size": fl_field_text_font_size, }, "HeaderLine": {"color": cl(.5, .5, .5, .5)}, "Image::collapsable_opened": { "color": cl_collapsible_header_text, "image_url": url_open_arrow_icon, }, "Image::collapsable_opened:hovered": { "color": cl_collapsible_header_text_hover, "image_url": url_open_arrow_icon, }, "Image::collapsable_closed": { "color": cl_collapsible_header_text, "image_url": url_closed_arrow_icon, }, "Image::collapsable_closed:hovered": { "color": cl_collapsible_header_text_hover, "image_url": url_closed_arrow_icon, }, "Image::radio_on": {"image_url": url_radio_btn_on_icon}, "Image::radio_off": {"image_url": url_radio_btn_off_icon}, "Image::revert_arrow": { "image_url": url_revert_arrow_icon, "color": cl_revert_arrow_enabled, }, "Image::revert_arrow:disabled": {"color": cl_revert_arrow_disabled}, "Image::checked": {"image_url": url_checkbox_on_icon}, "Image::unchecked": {"image_url": url_checkbox_off_icon}, "Image::slider_bg_texture": { "image_url": url_diag_bg_lines_texture, "border_radius": fl_border_radius, "corner_flag": ui.CornerFlag.LEFT, }, "Label::attribute_name": { "alignment": ui.Alignment.RIGHT_TOP, "margin_height": fl_attr_label_v_spacing, "margin_width": fl_main_label_attr_hspacing, "color": cl_main_attr_label_text, "font_size": fl_main_label_font_size, }, "Label::attribute_name:hovered": {"color": cl_main_attr_label_text_hover}, "Label::collapsable_name": {"font_size": fl_collapsable_header_font_size}, "Label::multi_attr_label": { "color": cl_multifield_label_text, "font_size": fl_multi_attr_label_font_size, }, "Label::radio_group_name": { "font_size": fl_radio_group_font_size, "alignment": ui.Alignment.CENTER, "color": cl_main_attr_label_text, }, "Label::range_text": { "font_size": fl_range_text_size, }, "Label::window_title": { "font_size": fl_window_title_font_size, "color": cl_window_title_text, }, "ScrollingFrame::window_bg": { "background_color": cl_window_bg_color, "padding": fl_outer_frame_padding, "border_radius": 20 # Not obvious in a window, but more visible with only a frame }, "Slider::attr_slider": { "draw_mode": ui.SliderDrawMode.FILLED, "padding": 0, "color": cl_transparent, # Meant to be transparent, but completely transparent shows opaque black instead. "background_color": cl(0.28, 0.28, 0.28, 0.01), "secondary_color": cl_slider_fill, "border_radius": fl_border_radius, "corner_flag": ui.CornerFlag.LEFT, # TODO: Not actually working yet OM-53727 }, # Combobox workarounds "Rectangle::combobox": { # TODO: remove when ComboBox can have a border "background_color": cl_field_bg, "border_radius": fl_border_radius, "border_color": cl_btn_border, "border_width": fl_border_width, }, "ComboBox::dropdown_menu": { "color": cl_combobox_label_text, # label color "padding_height": 1.25, "margin": 2, "background_color": cl_field_bg, "border_radius": fl_border_radius, "font_size": fl_field_text_font_size, "secondary_color": cl_transparent, # button background color }, "Rectangle::combobox_icon_cover": {"background_color": cl_field_bg} }
7,702
Python
37.323383
121
0.636588
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/numpy_utils.py
import numpy as np import math def quat_to_euler_angles(q, degrees: bool = False): """Convert quaternion to Euler XYZ angles. Args: q (np.ndarray): quaternion (w, x, y, z). degrees (bool, optional): Whether output angles are in degrees. Defaults to False. Returns: np.ndarray: Euler XYZ angles. """ q = q.reshape(-1, 4) w, x, y, z = q[:, 0], q[:, 1], q[:, 2], q[:, 3] roll = np.arctan2(2 * (w * x + y * z), 1 - 2 * (x * x + y * y)) pitch = np.arcsin(2 * (w * y - z * x)) yaw = np.arctan2(2 * (w * z + x * y), 1 - 2 * (y * y + z * z)) if degrees: roll = np.degrees(roll) pitch = np.degrees(pitch) yaw = np.degrees(yaw) return np.stack([roll, pitch, yaw], axis=-1) def euler_angles_to_quat(euler_angles: np.ndarray, degrees: bool = False) -> np.ndarray: """Convert Euler XYZ angles to quaternion. Args: euler_angles (np.ndarray): Euler XYZ angles. degrees (bool, optional): Whether input angles are in degrees. Defaults to False. Returns: np.ndarray: quaternion (w, x, y, z). """ roll, pitch, yaw = euler_angles if degrees: roll = math.radians(roll) pitch = math.radians(pitch) yaw = math.radians(yaw) cr = np.cos(roll / 2.0) sr = np.sin(roll / 2.0) cy = np.cos(yaw / 2.0) sy = np.sin(yaw / 2.0) cp = np.cos(pitch / 2.0) sp = np.sin(pitch / 2.0) w = (cr * cp * cy) + (sr * sp * sy) x = (sr * cp * cy) - (cr * sp * sy) y = (cr * sp * cy) + (sr * cp * sy) z = (cr * cp * sy) - (sr * sp * cy) return np.array([w, x, y, z]) def orientation_error(desired, current): cc = quat_conjugate(current) q_r = quat_mul(desired, cc) return q_r[:, 0:3] * np.sign(q_r[:, 3])[:, None] def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = np.stack([x, y, z, w], axis=-1).reshape(shape) return quat def normalize(x, eps: float = 1e-9): return x / np.clip(np.linalg.norm(x, axis=-1), a_min=eps, a_max=None)[:, None] def quat_unit(a): return normalize(a) def quat_from_angle_axis(angle, axis): theta = (angle / 2)[:, None] xyz = normalize(axis) * np.sin(theta) w = np.cos(theta) return quat_unit(np.concatenate([xyz, w], axis=-1)) def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0)[:, None] b = np.cross(q_vec, v) * q_w[:, None] * 2.0 c = q_vec * np.sum(q_vec * v, axis=1).reshape(shape[0], -1) * 2.0 return a + b + c def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return np.concatenate((-a[:, :3], a[:, -1:]), axis=-1).reshape(shape) def quat_axis(q, axis=0): basis_vec = np.zeros((q.shape[0], 3)) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec)
3,329
Python
27.706896
90
0.50766
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/kinova_gripper.py
from typing import List, Callable import numpy as np from omni.isaac.manipulators.grippers.gripper import Gripper from omni.isaac.core.utils.types import ArticulationAction import omni.kit.app class KinovaGripper(Gripper): def __init__( self, end_effector_prim_path: str, joint_prim_names: List[str], joint_opened_positions: np.ndarray, joint_closed_positions: np.ndarray, action_deltas: np.ndarray = None, ) -> None: Gripper.__init__(self, end_effector_prim_path=end_effector_prim_path) self._joint_prim_names = joint_prim_names self._gripper_joint_num = 6 self._joint_dof_indicies = np.array([None] * self._gripper_joint_num) self._joint_opened_positions = joint_opened_positions self._joint_closed_positions = joint_closed_positions self._get_joint_positions_func = None self._set_joint_positions_func = None self._action_deltas = action_deltas self._articulation_num_dofs = None self._close_ratio = 1.0 return @property def joint_opened_positions(self) -> np.ndarray: """ Returns: np.ndarray: joint positions of the left finger joint and the right finger joint respectively when opened. """ return self._joint_opened_positions @property def joint_closed_positions(self) -> np.ndarray: """ Returns: np.ndarray: joint positions of the left finger joint and the right finger joint respectively when closed. """ return self._joint_closed_positions @property def joint_dof_indicies(self) -> np.ndarray: """ Returns: np.ndarray: joint dof indices in the articulation of the left finger joint and the right finger joint respectively. """ return self._joint_dof_indicies @property def joint_prim_names(self) -> List[str]: """ Returns: List[str]: the left finger joint prim name and the right finger joint prim name respectively. """ return self._joint_prim_names def initialize( self, articulation_apply_action_func: Callable, get_joint_positions_func: Callable, set_joint_positions_func: Callable, dof_names: List, physics_sim_view: omni.physics.tensors.SimulationView = None, ) -> None: """Create a physics simulation view if not passed and creates a rigid prim view using physX tensor api. This needs to be called after each hard reset (i.e stop + play on the timeline) before interacting with any of the functions of this class. Args: articulation_apply_action_func (Callable): apply_action function from the Articulation class. get_joint_positions_func (Callable): get_joint_positions function from the Articulation class. set_joint_positions_func (Callable): set_joint_positions function from the Articulation class. dof_names (List): dof names from the Articulation class. physics_sim_view (omni.physics.tensors.SimulationView, optional): current physics simulation view. Defaults to None Raises: Exception: _description_ """ Gripper.initialize(self, physics_sim_view=physics_sim_view) self._get_joint_positions_func = get_joint_positions_func self._articulation_num_dofs = len(dof_names) for index in range(len(dof_names)): if dof_names[index] in self._joint_prim_names: which_index = self._joint_prim_names.index(dof_names[index]) self._joint_dof_indicies[which_index] = index # make sure that all gripper dof names were resolved if None in self._joint_dof_indicies: raise Exception("Not all gripper dof names were resolved to dof handles and dof indices.") self._articulation_apply_action_func = articulation_apply_action_func current_joint_positions = get_joint_positions_func() if self._default_state is None: self._default_state = np.array( [0.0] * self._gripper_joint_num ) self._set_joint_positions_func = set_joint_positions_func return def open(self) -> None: """Applies actions to the articulation that opens the gripper (ex: to release an object held). """ self._articulation_apply_action_func(self.forward(action="open")) return def close(self) -> None: """Applies actions to the articulation that closes the gripper (ex: to hold an object). """ self._articulation_apply_action_func(self.forward(action="close")) return def set_action_deltas(self, value: np.ndarray) -> None: """ Args: value (np.ndarray): deltas to apply for finger joint positions when openning or closing the gripper. [left, right]. Defaults to None. """ self._action_deltas = value return def get_action_deltas(self) -> np.ndarray: """ Returns: np.ndarray: deltas that will be applied for finger joint positions when openning or closing the gripper. [left, right]. Defaults to None. """ return self._action_deltas def set_default_state(self, joint_positions: np.ndarray) -> None: """Sets the default state of the gripper Args: joint_positions (np.ndarray): joint positions of the left finger joint and the right finger joint respectively. """ self._default_state = joint_positions return def get_default_state(self) -> np.ndarray: """Gets the default state of the gripper Returns: np.ndarray: joint positions of the left finger joint and the right finger joint respectively. """ return self._default_state def post_reset(self): Gripper.post_reset(self) self._set_joint_positions_func( positions=self._default_state, joint_indices=list(self._joint_dof_indicies) ) return def set_joint_positions(self, positions: np.ndarray) -> None: """ Args: positions (np.ndarray): joint positions of the left finger joint and the right finger joint respectively. """ self._set_joint_positions_func( positions=positions, joint_indices=list(self._joint_dof_indicies) ) return def get_joint_positions(self) -> np.ndarray: """ Returns: np.ndarray: joint positions of the left finger joint and the right finger joint respectively. """ return self._get_joint_positions_func(joint_indices=list(self._joint_dof_indicies)) def forward(self, action: str) -> ArticulationAction: """calculates the ArticulationAction for all of the articulation joints that corresponds to "open" or "close" actions. Args: action (str): "open" or "close" as an abstract action. Raises: Exception: _description_ Returns: ArticulationAction: articulation action to be passed to the articulation itself (includes all joints of the articulation). """ if action == "open": target_joint_positions = [None] * self._articulation_num_dofs if self._action_deltas is None: for i in range(self._gripper_joint_num): target_joint_positions[self._joint_dof_indicies[i]] = self._joint_opened_positions[i] else: current_joint_positions = self._get_joint_positions_func() for i in range(self._gripper_joint_num): current_finger_position = current_joint_positions[self._joint_dof_indicies[i]] next_position = self.regulate_joint_position( current_finger_position + self._action_deltas[i], self._joint_opened_positions[i], self._joint_closed_positions[i] ) target_joint_positions[self._joint_dof_indicies[i]] = ( next_position ) elif action == "close": target_joint_positions = [None] * self._articulation_num_dofs if self._action_deltas is None: for i in range(self._gripper_joint_num): target_joint_positions[self._joint_dof_indicies[i]] = self._joint_closed_positions[i] * self._close_ratio else: current_joint_positions = self._get_joint_positions_func() for i in range(self._gripper_joint_num): current_finger_position = current_joint_positions[self._joint_dof_indicies[i]] next_position = self.regulate_joint_position( current_finger_position - self._action_deltas[i], self._joint_opened_positions[i], self._joint_closed_positions[i] ) target_joint_positions[self._joint_dof_indicies[i]] = ( next_position ) else: raise Exception("action {} is not defined for ParallelGripper".format(action)) # print("target_joint_positions", target_joint_positions) return ArticulationAction(joint_positions=target_joint_positions) def regulate_joint_position(self, joint_pos, open_pos, close_pos): """ Regulates the joint position to be within the range of the open and close positions. """ if open_pos > close_pos: open_pos, close_pos = close_pos, open_pos if joint_pos < open_pos: joint_pos = open_pos elif joint_pos > close_pos: joint_pos = close_pos return joint_pos def apply_action(self, control_actions: ArticulationAction) -> None: """Applies actions to all the joints of an articulation that corresponds to the ArticulationAction of the finger joints only. Args: control_actions (ArticulationAction): ArticulationAction for the left finger joint and the right finger joint respectively. """ joint_actions = ArticulationAction() if control_actions.joint_positions is not None: joint_actions.joint_positions = [None] * self._articulation_num_dofs for i in range(self._gripper_joint_num): joint_actions.joint_positions[self._joint_dof_indicies[i]] = control_actions.joint_positions[i] # if control_actions.joint_velocities is not None: # joint_actions.joint_velocities = [None] * self._articulation_num_dofs # joint_actions.joint_velocities[self._joint_dof_indicies[0]] = control_actions.joint_velocities[0] # joint_actions.joint_velocities[self._joint_dof_indicies[1]] = control_actions.joint_velocities[1] # if control_actions.joint_efforts is not None: # joint_actions.joint_efforts = [None] * self._articulation_num_dofs # joint_actions.joint_efforts[self._joint_dof_indicies[0]] = control_actions.joint_efforts[0] # joint_actions.joint_efforts[self._joint_dof_indicies[1]] = control_actions.joint_efforts[1] self._articulation_apply_action_func(control_actions=joint_actions) return def set_close_ratio(self, ratio): """ Sets the ratio of the closed position of the gripper. """ self._close_ratio = ratio
11,753
Python
42.372694
135
0.610568
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/kinova_socket.py
# send message to Kinova Server to control the real robot import socket class KinovaClient(): def __init__(self, HOST = "localhost", PORT = 9999) -> None: # SOCK_DGRAM is the socket type to use for UDP sockets self.host = HOST self.port = PORT self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # send a test message to the server message = "Hello: server!" self.sock.sendto(message.encode(), (self.host, self.port)) self.sock.settimeout(10) # wait for a response from the server data, addr = self.sock.recvfrom(1024) print("Socket Server and Client initialized") # # check if the response is correct # if data.decode() == "Hello, client!": # print("Connected to UDPServer") # else: # print("Failed to connect to UDPServer") def send_message(self, command: str, message: str): print("Sent: {}".format(message)) self.sock.sendto(bytes(command + ":" + message + "\n", "utf-8"), (self.host, self.port)) received = str(self.sock.recv(1024), "utf-8") print("received: {}".format(received)) return received
1,222
Python
36.060605
96
0.590835
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/utils.py
import os import json import numpy as np from pathlib import Path import omni.kit.app import omni.usd from pxr import UsdGeom, Gf, Usd, UsdPhysics EXTENSION_FOLDER_PATH = str(Path( omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__) ).resolve()) def fix_damping_and_stiffness(kinova_path = "/World/kinova_gen3_7_hand/kinova", stiffness = 1e3, damping = 1e6): print("fixing damping and stiffness") # stiffness_name = "drive:angular:physics:stiffness" # damping_name = "drive:angular:physics:damping" stage = omni.usd.get_context().get_stage() joint_prim_paths = [ "/base_link/Actuator1", "/shoulder_link/Actuator2", "/half_arm_1_link/Actuator3", "/half_arm_2_link/Actuator4", "/forearm_link/Actuator5", "/spherical_wrist_1_link/Actuator6", "/spherical_wrist_2_link/Actuator7", ] for joint_prim_path in joint_prim_paths: joint_prim = stage.GetPrimAtPath(kinova_path + joint_prim_path) joint_driver = UsdPhysics.DriveAPI.Get(joint_prim, "angular") joint_driver.GetStiffnessAttr().Set(stiffness) joint_driver.GetDampingAttr().Set(damping) def process_policy_config(mg_config_file): """ Process the policy config file to get the absolute path of the assets""" mp_config_dir = os.path.dirname(mg_config_file) with open(mg_config_file) as config_file: config = json.load(config_file) rel_assets = config.get("relative_asset_paths", {}) for k, v in rel_assets.items(): config[k] = os.path.join(mp_config_dir, v) del config["relative_asset_paths"] return config def regulate_degree(degree: float, min_value: float = 0, max_value: float = 360, indegree: bool = True): """ Regulate the degree to be in the range of [min_value, max_value]""" if not indegree: degree = np.rad2deg(degree) if degree < min_value: degree += 360 elif degree > max_value: degree -= 360 return degree def get_transform_mat_from_pos_rot(p, q): """ Get transform matrix from position and rotation """ trans = Gf.Transform() rotation = Gf.Rotation(Gf.Quatd(float(q[0]), float(q[1]), float(q[2]), float(q[3]))) trans.SetRotation(rotation) trans.SetTranslation(Gf.Vec3d(float(p[0]), float(p[1]), float(p[2]))) return trans.GetMatrix() def get_prim_pickup_transform(stage, prim_path: str, offset: Gf.Vec3d): """ Get the pickup transform of the prim with offset""" prim = stage.GetPrimAtPath(prim_path) xformable = UsdGeom.Xformable(prim) mat0 = xformable.ComputeLocalToWorldTransform(Usd.TimeCode.Default()) target_pos = mat0.ExtractTranslation() xaxis = -offset / offset.GetLength() yaxis = Gf.Cross(Gf.Vec3d(0, 0, 1), xaxis) m = Gf.Matrix4d() m.SetRow(0, Gf.Vec4d(xaxis[0], yaxis[0], 0, 0.0)) m.SetRow(1, Gf.Vec4d(xaxis[1], yaxis[1], 0, 0.0)) m.SetRow(2, Gf.Vec4d(xaxis[2], yaxis[2], 1, 0.0)) m.SetRow(3, Gf.Vec4d(0.0, 0.0, 0.0, 1.0)) eye_pos = target_pos + offset m = m * Gf.Matrix4d().SetTranslate(eye_pos) print("translation: ", eye_pos) print("rotation: ", m.ExtractRotationQuat()) return eye_pos, m.ExtractRotationQuat() def generate_slerp_action_sequence(ori_pos, ori_quat, rel_rot, sub_steps = 5, sub_duration = 50, slerp_last = True, slerp_offset = [0 ,0, 0]): """ Generate slerp action sequence from relative position and rotation """ slerp_action_sequence = [] ori_pos = Gf.Vec3d(ori_pos[0], ori_pos[1], ori_pos[2]) rel_quat = Gf.Quatd(float(rel_rot[0]), float(rel_rot[1]), float(rel_rot[2]), float(rel_rot[3])).GetNormalized() ori_quat = Gf.Quatd(float(ori_quat[0]), float(ori_quat[1]), float(ori_quat[2]), float(ori_quat[3])).GetNormalized() identity_quat = Gf.Quatd(1, 0, 0, 0) for i in range(1, sub_steps): t = (i + int(slerp_last)) / sub_steps quat_rel = Gf.Slerp(t, identity_quat, rel_quat) p = (quat_rel * Gf.Quatd(0, ori_pos + Gf.Vec3d(*slerp_offset) * i) * quat_rel.GetInverse()).GetImaginary() q = quat_rel * ori_quat slerp_action_sequence.append( { 'action_type': 'move', 'duration': sub_duration, 'position': [p[0], p[1], p[2]], 'orientation': [q.GetReal(), q.GetImaginary()[0], q.GetImaginary()[1], q.GetImaginary()[2]] }, ) return slerp_action_sequence
4,652
Python
36.224
119
0.60877
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/kinova.py
from typing import Optional, List import numpy as np from omni.isaac.core.robots.robot import Robot from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units import carb from pxr import UsdPhysics from .kinova_gripper import KinovaGripper class Kinova(Robot): def __init__( self, prim_path: str = "/World/kinova", name: str = "kinova_robot", usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, end_effector_prim_name: Optional[str] = None, gripper_dof_names: Optional[List[str]] = None, gripper_open_position: Optional[np.ndarray] = None, gripper_closed_position: Optional[np.ndarray] = None, deltas: Optional[np.ndarray] = None, ) -> None: # self.prim_path = prim_path prim = get_prim_at_path(prim_path) assert prim.IsValid(), "Please load Kinova into the environment first" self._end_effector = None self._gripper = None self._end_effector_prim_name = end_effector_prim_name super().__init__( prim_path=prim_path, name=name, position=position, orientation=orientation, articulation_controller=None ) self._end_effector_prim_path = prim_path + "/robotiq_85_base_link" gripper_dof_names = [ "finger_joint", "right_outer_knuckle_joint", "left_inner_knuckle_joint", "right_inner_knuckle_joint", #"left_outer_finger_joint", "right_outer_finger_joint", "left_inner_finger_joint", "right_inner_finger_joint", ] gripper_open_position = np.zeros(6) gripper_closed_position = np.array([0.8757, -0.8757, 0.8757, -0.8757, -0.8757, 0.8757]) deltas = None # -gripper_closed_position / 5.0 self._gripper = KinovaGripper( end_effector_prim_path=self._end_effector_prim_path, joint_prim_names=gripper_dof_names, joint_opened_positions=gripper_open_position, joint_closed_positions=gripper_closed_position, action_deltas=deltas, ) return @property def end_effector(self) -> RigidPrim: """[summary] Returns: RigidPrim: [description] """ return self._end_effector @property def gripper(self) -> KinovaGripper: """[summary] Returns: ParallelGripper: [description] """ return self._gripper def initialize(self, physics_sim_view=None) -> None: """[summary] """ super().initialize(physics_sim_view) self._end_effector = RigidPrim(prim_path=self._end_effector_prim_path, name=self.name + "_end_effector") self._end_effector.initialize(physics_sim_view) self._gripper.initialize( physics_sim_view=physics_sim_view, articulation_apply_action_func=self.apply_action, get_joint_positions_func=self.get_joint_positions, set_joint_positions_func=self.set_joint_positions, dof_names=self.dof_names, ) return def post_reset(self) -> None: """[summary] """ super().post_reset() self._gripper.post_reset() for i in range(self.gripper._gripper_joint_num): self._articulation_controller.switch_dof_control_mode( dof_index=self.gripper.joint_dof_indicies[i], mode="position" ) return def fix_damping_and_stiffness(prim_path = "/World/kinova_gen3_7_hand/kinova", stiffness = 1e3, damping = 1e6): print("fixing damping and stiffness") # stiffness_name = "drive:angular:physics:stiffness" # damping_name = "drive:angular:physics:damping" joint_prim_paths = [ "/base_link/Actuator1", "/shoulder_link/Actuator2", "/half_arm_1_link/Actuator3", "/half_arm_2_link/Actuator4", "/forearm_link/Actuator5", "/spherical_wrist_1_link/Actuator6", "/spherical_wrist_2_link/Actuator7", ] for joint_prim_path in joint_prim_paths: joint_prim = get_prim_at_path(prim_path + joint_prim_path) joint_driver = UsdPhysics.DriveAPI.Get(joint_prim, "angular") joint_driver.GetStiffnessAttr().Set(stiffness) joint_driver.GetDampingAttr().Set(damping)
4,842
Python
36.835937
116
0.584882
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/coffee_config.py
# task config for making coffee kinova_action_config = { "go_home": { 'base_prim': None, 'steps':[ { 'action_type': 'move', 'duration': 200, 'position': [0.45666, 0.0, 0.43371], 'orientation': [0.5, 0.5, 0.5, 0.5], # wxyz } ] }, "open_coffee_machine_handle": { 'base_prim': '/World/Keurig_1_5_add_hold/XformHandle', 'steps':[ { 'action_type': 'move', 'duration': 200, 'position': [0, -0.4, 0], 'orientation': [-0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.29, 0], 'orientation': [-0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'close', 'duration': 100, 'ratio': 0.8, }, # { # 'action_type': 'slerp', # 'duration': 300, # 'sub_steps': 10, # 'position': [0, -0.28, 0], # 'orientation': [-0.5, 0.5, 0.5, 0.5], # 'relative_rotation': [0.7372773, -0.6755902, 0, 0], # 'slerp_last': True, # 'slerp_offset': [0, -0.001, 0] # }, # { # 'action_type': 'close', #open # 'duration': 100, # 'ratio': 0.05, # }, { 'action_type': 'move', 'duration': 200, 'position': [0.3, -0.5, 0.3], 'orientation': [0, 0.7071, 0.7071, 0], }, ] }, "close_coffee_machine_handle": { 'base_prim': '/World/Keurig_1_5_add_hold/XformHandle', 'steps':[ { 'action_type': 'close', #open 'duration': 30, 'ratio': 0.95, }, { 'action_type': 'move', 'duration': 200, 'position': [0, 0, 0.27], 'orientation': [0, 0.7071, 0.7071, 0], }, { 'action_type': 'slerp', 'duration': 140, 'sub_steps': 7, 'position': [0, 0, 0.27], 'orientation': [0, 0.7071, 0.7071, 0], 'relative_rotation': [0.7372773, 0.675590, 0, 0], 'slerp_last': False, 'slerp_offset': [0, 0, 0] }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.3, 0.35], 'orientation': [-0.4545, 0.5416, 0.5416, 0.4545], }, ] }, "press_coffee_machine_button": { 'base_prim': '/World/Keurig_1_5_add_hold/XformHandle', 'steps':[ { 'action_type': 'close', #open 'duration': 30, 'ratio': 1.1, }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.09, 0.2], 'orientation': [0, 0.7071, 0.7071, 0], }, { 'action_type': 'move', 'duration': 30, 'position': [-0, -0.09, 0.18], 'orientation': [0, 0.7071, 0.7071, 0], }, { 'action_type': 'move', 'duration': 50, 'position': [-0, -0.09, 0.2], 'orientation': [0, 0.7071, 0.7071, 0], }, { 'action_type': 'move', 'duration': 30, 'position': [-0, -0.3, 0.2], 'orientation': [0, 0.7071, 0.7071, 0], }, ] }, "pick_up_capsule": { 'base_prim': '/World/k_cup', 'steps':[ { 'action_type': 'move', 'duration': 300, 'position': [-0.12, 0.0, 0.3], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 60, 'position': [-0.12, 0.0, 0.1], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 60, 'position': [-0.12, 0.0, 0.03], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'close', 'duration': 30, 'ratio': 0.6, }, { 'action_type': 'move', 'duration': 60, 'position': [-0.12, 0.0, 0.3], 'orientation': [0.5, 0.5, 0.5, 0.5], }, ] }, "pick_up_papercup": { 'base_prim': '/World/papercup', 'steps':[ { 'action_type': 'move', 'duration': 300, 'position': [-0.15, 0.0, 0.3], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 100, 'position': [-0.15, 0.0, 0.1], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 100, 'position': [-0.15, 0.0, 0.00], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'close', 'duration': 60, 'ratio': 0.4, }, { 'action_type': 'move', 'duration': 100, 'position': [-0.15, 0.0, 0.3], 'orientation': [0.5, 0.5, 0.5, 0.5], }, ] }, "move_capsule_to_coffee_machine": { 'base_prim': '/World/Keurig_1_5_add_hold/XformHandle', 'steps':[ { 'action_type': 'move', 'duration': 100, 'position': [0, -0.3, 0.02], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'move', 'duration': 60, 'position': [0, -0.218, 0.02], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'close', #open 'duration': 60, 'ratio': 0.05, }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.3, 0.025], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.2, 0.4], 'orientation': [0, 0, 0.7071, 0.7071], }, ] }, "move_papercup_to_coffee_machine": { 'base_prim': '/World/Keurig_1_5_add_hold/XformHandle', 'steps':[ { 'action_type': 'move', 'duration': 200, 'position': [0, -0.4, -0.2], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.25, -0.2], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'close', #open 'duration': 100, 'ratio': 0.05, }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.4, -0.2], 'orientation': [0, 0, 0.7071, 0.7071], }, { 'action_type': 'move', 'duration': 100, 'position': [0, -0.4, 0.4], 'orientation': [0, 0, 0.7071, 0.7071], }, ] }, ##################################### blendid ######################################### "pick_up_box": { 'base_prim': '/World/tea_tower', 'steps':[ { 'action_type': 'close', #open 'duration': 50, 'ratio': 0.0, }, { 'action_type': 'move', 'duration': 200, 'position': [-0.38, 0.0, 0.15], 'orientation': [0.5, 0.5, 0.5, 0.5], }, { 'action_type': 'move', 'duration': 100, 'position': [-0.28, 0.0, 0.15], 'orientation': [0.5, 0.5, 0.5, 0.5], }, # { # 'action_type': 'move', # 'duration': 100, # 'position': [-0.15, 0.0, 0.00], # 'orientation': [0.5, 0.5, 0.5, 0.5], # }, # { # 'action_type': 'close', # 'duration': 60, # 'ratio': 0.4, # }, # { # 'action_type': 'move', # 'duration': 100, # 'position': [-0.15, 0.0, 0.3], # 'orientation': [0.5, 0.5, 0.5, 0.5], # }, ] }, }
9,505
Python
29.565916
91
0.312151
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/coffee_controller.py
import omni.usd from omni.isaac.core.controllers import BaseController from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.core.prims import XFormPrim from .kinova import Kinova from .rmpflow_controller import RMPFlowController import numpy as np from .numpy_utils import * from .utils import regulate_degree, get_transform_mat_from_pos_rot, generate_slerp_action_sequence import asyncio from .kinova_socket import KinovaClient from .coffee_config import kinova_action_config class CoffeeMakerController(BaseController): def __init__(self, name: str, kinova: Kinova, connect_server = False) -> None: BaseController.__init__(self, name=name) # env self.stage = omni.usd.get_context().get_stage() # event self.event = "move" # action event self.total_event_count = 0 # event time self.event_elapsed = 0 # event elapsed time self.event_pool = [] # event pool self.robot = kinova self.gripper = self.robot.gripper self.cs_controller = RMPFlowController(name="cspace_controller", robot_articulation=self.robot) # TODO:find height self.ee_pos_target = np.array([0.0, 0.0, 1.0]) self.ee_ori_target = np.array([1.0, 0.0, 0.0, 0.0]) # connection self.connect_server = connect_server if connect_server: self.client = KinovaClient() self.sending_message = False # add go home default action # self.apply_high_level_action() # self.sending_message = False def add_event_to_pool(self, event: str, elapsed: int, ee_pos: np.ndarray, ee_ori: np.ndarray, gripper_ratio: float = 1.0): self.event_pool.append([event, elapsed, ee_pos, ee_ori, gripper_ratio]) def update_ee_target(self, pos, ori): """ Update End-Effector Target position and orientation """ self.ee_pos_target = pos self.ee_ori_target = ori def update_event(self, event: str): """ Update robot high-level event """ if event != self.event: self.event = event self.total_event_count = 0 ################################## sync robot ################################## def synchronize_robot(self): """ Send message to the Server to """ if not self.sending_message: # get joint positions and gripper degree all_positions = self.robot.get_joint_positions() gripper_degree = all_positions[7] / 0.8757 joint_positions = [regulate_degree(e, indegree=False) for e in all_positions[:7]] joint_positions = joint_positions + [gripper_degree] assert len(joint_positions) == 8, "Invalid number of joint positions" # send message message = " ".join([str(e) for e in joint_positions]) self.sending_message = True self.client.send_message("Control", message) self.sending_message = False def obtain_robot_state(self): """ Get robot state from the Server """ if not self.sending_message: self.sending_message = True answer_message = self.client.send_message("GetJoints", "NA") self.sending_message = False return [float(e) for e in answer_message.split(" ")] def apply_high_level_action(self, action_name: str = "go_home"): """ Apply high-level action to the robot """ action = kinova_action_config[action_name] if action['base_prim'] is None: base_world_pos, base_world_rot = self.robot.get_world_pose() else: base_prim = XFormPrim(action['base_prim']) base_world_pos, base_world_rot = base_prim.get_world_pose() base_mat = get_transform_mat_from_pos_rot(base_world_pos, base_world_rot) print("base_mat", base_mat) for action_step in action['steps']: step_type = action_step['action_type'] duration = action_step['duration'] if step_type == "move": offset_mat = get_transform_mat_from_pos_rot(action_step['position'], action_step['orientation']) print("offset_mat", offset_mat) target_mat = offset_mat * base_mat print("target_mat", target_mat.ExtractTranslation(), target_mat.ExtractRotationQuat()) target_pos = target_mat.ExtractTranslation() target_rot = target_mat.ExtractRotationQuat() pos_array = np.array([target_pos[0], target_pos[1], target_pos[2]]) rot_array = np.array([target_rot.GetReal(), target_rot.GetImaginary()[0], target_rot.GetImaginary()[1], target_rot.GetImaginary()[2]]) self.add_event_to_pool(step_type, duration, pos_array, rot_array) elif step_type in ["close", "open"]: gripper_ratio = action_step['ratio'] self.add_event_to_pool(step_type, duration, None, None, gripper_ratio) elif step_type == "slerp": slerp_action_sequence = generate_slerp_action_sequence( action_step['position'], action_step['orientation'], action_step['relative_rotation'], sub_steps=action_step['sub_steps'], sub_duration=action_step['duration'] // action_step['sub_steps'], slerp_last=action_step['slerp_last'], slerp_offset=action_step['slerp_offset'] ) print("action_sequence", slerp_action_sequence) for sub_action in slerp_action_sequence: offset_mat = get_transform_mat_from_pos_rot(sub_action['position'], sub_action['orientation']) target_mat = offset_mat * base_mat target_pos = target_mat.ExtractTranslation() target_rot = target_mat.ExtractRotationQuat() pos_array = np.array([target_pos[0], target_pos[1], target_pos[2]]) rot_array = np.array([target_rot.GetReal(), target_rot.GetImaginary()[0], target_rot.GetImaginary()[1], target_rot.GetImaginary()[2]]) self.add_event_to_pool(sub_action['action_type'], sub_action['duration'], pos_array, rot_array) def forward(self): """ Main function to update the robot """ # update event if len(self.event_pool) > 0: if self.event_elapsed <= 0: event, elapsed, ee_pos, ee_ori, gripper_ratio = self.event_pool.pop(0) print("event, elapsed, ee_pos, ee_ori ", event, elapsed, ee_pos, ee_ori, gripper_ratio) self.update_event(event) if self.event == "move": self.update_ee_target(ee_pos, ee_ori) elif self.event == "close": self.gripper.set_close_ratio(gripper_ratio) if self.connect_server: self.synchronize_robot() self.event_elapsed = elapsed else: if self.connect_server: if self.total_event_count > 200 and self.total_event_count % (60 * 3) == 0: self.synchronize_robot() # print("coffee control event", self.event, self.event_elapsed) if self.event == "move": actions = self.cs_controller.forward( target_end_effector_position=self.ee_pos_target, target_end_effector_orientation=self.ee_ori_target) elif self.event == "close": actions = self.gripper.forward(action="close") elif self.event == "open": actions = self.gripper.forward(action="open") self.robot.apply_action(actions) # from omni.isaac.core.utils.types import ArticulationAction # joint_actions = ArticulationAction() # joint_actions.joint_positions = [0, 15, 180, -130, 0, 55, 90] + [0.8] * 6 # for i in range(13): # joint_actions.joint_positions[i] = np.deg2rad(joint_actions.joint_positions[i]) # print("joint_actions", joint_actions) # self.robot.apply_action(joint_actions) self.total_event_count += 1 # update event time self.event_elapsed -= 1 # update event elapsed time # synchronize # if self.connect_server: # if self.total_event_count % 60 == 0: # self.synchronize_robot() # return actions
8,724
Python
39.393518
154
0.568317
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/validator.py
# validate real and simulated robot class Validator(): def __init__(self, robot, robot_client) -> None: """ Initialize the validator """ self.robot = robot self.robot_client = robot_client
246
Python
16.642856
52
0.552846
DigitalBotLab/Robots/robot-exts-control/exts/control/control/kinova/rmpflow/robot_descriptor.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF, except when otherwise specified below under # cspace_urdf_bridge cspace: - Actuator1 - Actuator2 - Actuator3 - Actuator4 - Actuator5 - Actuator6 root_link: Base_Link default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] acceleration_limits: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0] jerk_limits: [150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
1,026
YAML
31.093749
79
0.739766
DigitalBotLab/Robots/RobotServices/kinova_control.py
import sys import os import time import threading from kortex_api.autogen.client_stubs.BaseClientRpc import BaseClient from kortex_api.autogen.client_stubs.BaseCyclicClientRpc import BaseCyclicClient from kortex_api.autogen.messages import Base_pb2, BaseCyclic_pb2, Common_pb2 # Maximum allowed waiting time during actions (in seconds) TIMEOUT_DURATION = 20 # Create closure to set an event after an END or an ABORT def check_for_end_or_abort(e): """Return a closure checking for END or ABORT notifications Arguments: e -- event to signal when the action is completed (will be set when an END or ABORT occurs) """ def check(notification, e = e): print("EVENT : " + \ Base_pb2.ActionEvent.Name(notification.action_event)) if notification.action_event == Base_pb2.ACTION_END \ or notification.action_event == Base_pb2.ACTION_ABORT: e.set() return check def angular_action_movement(base, joint_angles): print("Starting angular action movement ...") action = Base_pb2.Action() action.name = "Example angular action movement" action.application_data = "" actuator_count = base.GetActuatorCount() # move to specified location for joint_id in range(actuator_count.count): joint_angle = action.reach_joint_angles.joint_angles.joint_angles.add() joint_angle.joint_identifier = joint_id joint_angle.value = joint_angles[joint_id] e = threading.Event() notification_handle = base.OnNotificationActionTopic( check_for_end_or_abort(e), Base_pb2.NotificationOptions() ) print("Executing action") base.ExecuteAction(action) print("Waiting for movement to finish ...") finished = e.wait(TIMEOUT_DURATION) base.Unsubscribe(notification_handle) for joint_id in range(actuator_count.count): joint_angle = action.reach_joint_angles.joint_angles.joint_angles # print("joint_angle: ", joint_angle) if finished: print("Angular movement completed") else: print("Timeout on action notification wait") return finished def cartesian_action_movement(base, base_cyclic): print("Starting Cartesian action movement ...") action = Base_pb2.Action() action.name = "Example Cartesian action movement" action.application_data = "" feedback = base_cyclic.RefreshFeedback() cartesian_pose = action.reach_pose.target_pose cartesian_pose.x = feedback.base.tool_pose_x # (meters) cartesian_pose.y = feedback.base.tool_pose_y - 0.1 # (meters) cartesian_pose.z = feedback.base.tool_pose_z - 0.2 # (meters) cartesian_pose.theta_x = feedback.base.tool_pose_theta_x # (degrees) cartesian_pose.theta_y = feedback.base.tool_pose_theta_y # (degrees) cartesian_pose.theta_z = feedback.base.tool_pose_theta_z # (degrees) e = threading.Event() notification_handle = base.OnNotificationActionTopic( check_for_end_or_abort(e), Base_pb2.NotificationOptions() ) print("Executing action") base.ExecuteAction(action) print("Waiting for movement to finish ...") finished = e.wait(TIMEOUT_DURATION) base.Unsubscribe(notification_handle) if finished: print("Cartesian movement completed") else: print("Timeout on action notification wait") return finished def GripperCommand(base, target_position): # Create the GripperCommand we will send gripper_command = Base_pb2.GripperCommand() finger = gripper_command.gripper.finger.add() # Close the gripper with position increments gripper_command.mode = Base_pb2.GRIPPER_POSITION finger.finger_identifier = 1 finger.value = target_position # print("Going to position {:0.2f}...".format(finger.value)) base.SendGripperCommand(gripper_command) return True class GripperCommandExample: def __init__(self, router, proportional_gain = 2.0): self.proportional_gain = proportional_gain self.router = router # Create base client using TCP router self.base = BaseClient(self.router) def ExampleSendGripperCommands(self, target_position): # Create the GripperCommand we will send gripper_command = Base_pb2.GripperCommand() finger = gripper_command.gripper.finger.add() # Close the gripper with position increments gripper_command.mode = Base_pb2.GRIPPER_POSITION finger.finger_identifier = 1 finger.value = target_position # print("Going to position {:0.2f}...".format(finger.value)) self.base.SendGripperCommand(gripper_command) return True # # Set speed to open gripper # print ("Opening gripper using speed command...") # gripper_command.mode = Base_pb2.GRIPPER_SPEED # finger.value = 0.1 # self.base.SendGripperCommand(gripper_command) # gripper_request = Base_pb2.GripperRequest() # # Wait for reported position to be opened # gripper_request.mode = Base_pb2.GRIPPER_POSITION # while True: # gripper_measure = self.base.GetMeasuredGripperMovement(gripper_request) # if len (gripper_measure.finger): # print("Current position is : {0}".format(gripper_measure.finger[0].value)) # if gripper_measure.finger[0].value < 0.01: # break # else: # Else, no finger present in answer, end loop # break # # Set speed to close gripper # print ("Closing gripper using speed command...") # gripper_command.mode = Base_pb2.GRIPPER_SPEED # finger.value = -0.1 # self.base.SendGripperCommand(gripper_command) # # Wait for reported speed to be 0 # gripper_request.mode = Base_pb2.GRIPPER_SPEED # while True: # gripper_measure = self.base.GetMeasuredGripperMovement(gripper_request) # if len (gripper_measure.finger): # print("Current speed is : {0}".format(gripper_measure.finger[0].value)) # if gripper_measure.finger[0].value == 0.0: # break # else: # Else, no finger present in answer, end loop # break class GripperFeedback: def __init__(self, base, base_cyclic, proportional_gain = 2.0, force_min = 10, force_max = 30): """ GripperFeedback class constructor. Inputs: kortex_api.RouterClient router: TCP router kortex_api.RouterClient router_real_time: Real-time UDP router float proportional_gain: Proportional gain used in control loop (default value is 2.0) Outputs: None Notes: - Actuators and gripper initial position are retrieved to set initial positions - Actuator and gripper cyclic command objects are created in constructor. Their references are used to update position and speed. """ self.proportional_gain = proportional_gain ########################################################################################### # UDP and TCP sessions are used in this example. # TCP is used to perform the change of servoing mode # UDP is used for cyclic commands. # # 2 sessions have to be created: 1 for TCP and 1 for UDP ########################################################################################### # Create base client using TCP router self.base = base # Create base cyclic client using UDP router. self.base_cyclic = base_cyclic # Create base cyclic command object. self.base_command = BaseCyclic_pb2.Command() self.base_command.frame_id = 0 self.base_command.interconnect.command_id.identifier = 0 self.base_command.interconnect.gripper_command.command_id.identifier = 0 # Add motor command to interconnect's cyclic self.motorcmd = self.base_command.interconnect.gripper_command.motor_cmd.add() # Set gripper's initial position velocity and force base_feedback = self.base_cyclic.RefreshFeedback() self.motorcmd.position = base_feedback.interconnect.gripper_feedback.motor[0].position self.motorcmd.velocity = 0 self.motorcmd.force = force_min self.force_min = force_min self.force_max = force_max for actuator in base_feedback.actuators: self.actuator_command = self.base_command.actuators.add() self.actuator_command.position = actuator.position self.actuator_command.velocity = 0.0 self.actuator_command.torque_joint = 0.0 self.actuator_command.command_id = 0 print("Position = ", actuator.position) # Save servoing mode before changing it self.previous_servoing_mode = self.base.GetServoingMode() # Set base in low level servoing mode servoing_mode_info = Base_pb2.ServoingModeInformation() servoing_mode_info.servoing_mode = Base_pb2.LOW_LEVEL_SERVOING self.base.SetServoingMode(servoing_mode_info) def Cleanup(self): """ Restore arm's servoing mode to the one that was effective before running the example. Inputs: None Outputs: None Notes: None """ # Restore servoing mode to the one that was in use before running the example self.base.SetServoingMode(self.previous_servoing_mode) def grip(self, target_position): if target_position > 100.0: target_position = 100.0 if target_position < 0.0: target_position = 0.0 current_force = self.force_min self.motorcmd.position = target_position # self.motorcmd.force = self.force_max return True def Goto(self, target_position): """ Position gripper to a requested target position using a simple proportional feedback loop which changes torque according to error between target position and current gripper position Inputs: float target_position: position (0% - 100%) to send gripper to. Outputs: Returns True if gripper was positionned successfully, returns False otherwise. Notes: - This function blocks until position is reached. - If target position exceeds 100.0, its value is changed to 100.0. - If target position is below 0.0, its value is set to 0.0. """ if target_position > 100.0: target_position = 100.0 if target_position < 0.0: target_position = 0.0 while True: try: base_feedback = self.base_cyclic.Refresh(self.base_command) # Calculate speed according to position error (target position VS current position) position_error = target_position - base_feedback.interconnect.gripper_feedback.motor[0].position print("target pos:", target_position) # If positional error is small, stop gripper if abs(position_error) < 1.5: position_error = 0 self.motorcmd.velocity = 0 self.base_cyclic.Refresh(self.base_command) return True else: self.motorcmd.velocity = self.proportional_gain * abs(position_error) if self.motorcmd.velocity > 100.0: self.motorcmd.velocity = 100.0 self.motorcmd.position = target_position except Exception as e: print(str(e)) return False time.sleep(0.001) return True
12,010
Python
36.652038
112
0.618068
DigitalBotLab/Robots/RobotServices/kinova_server.py
import socketserver import utilities import sys, os from numpy import interp from kortex_api.autogen.client_stubs.BaseClientRpc import BaseClient from kortex_api.autogen.client_stubs.BaseCyclicClientRpc import BaseCyclicClient from kortex_api.autogen.messages import Base_pb2 from kinova_control import angular_action_movement, GripperFeedback, GripperCommand # import files sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..")) # initialize connection argument class KinovaUDPHandler(socketserver.BaseRequestHandler): """ This class works similar to the TCP handler class, except that self.request consists of a pair of data and client socket, and since there is no connection the client address must be given explicitly when sending data back via sendto(). """ def setup(self): self.joint_target = 0.0 def handle(self): # obtain message from Isaac Sim data = self.request[0].strip() socket = self.request[1] print("recieving data from omniverse:", data) command, message = data.split(b':') if command.startswith(b'Hello'): response = "Connect with isaac sim" print("establish connection with isaac sim") elif command.startswith(b'Control'): joint_positions = self.process_data(message) success = "succeed" if self.control_robot(joint_positions) else "failed" response = f"The action {success}" elif command.startswith(b'GetJoints'): joint_angles = self.get_joint_status() response = " ".join([str(e) for e in joint_angles]) socket.sendto(response.encode('utf-8'), self.client_address) def process_data(self, data: str): """ Process data as Kinova command to control the real robot data is comprised of 7(body) + 1(gripper) dimensions """ joint_positions = [float(e) for e in data.split()] return joint_positions def control_robot(self, joint_positions): with utilities.DeviceConnection.createTcpConnection(args) as router: with utilities.DeviceConnection.createUdpConnection(args) as router_real_time: base = BaseClient(router) # base_cyclic = BaseCyclicClient(router_real_time) # gripper = GripperFeedback(base, base_cyclic) success = True success &= angular_action_movement(base, joint_positions[:7]) # gripper.Cleanup() print("go to position", joint_positions[7]) joint_target = min(max(0, joint_positions[7]), 1) # if joint_target != self.joint_target: # self.joint_target = joint_target success &= GripperCommand(base, joint_target) # gripper.Cleanup() # gripper_request = Base_pb2.GripperRequest() # gripper_request.mode = Base_pb2.GRIPPER_POSITION # gripper_measure = base.GetMeasuredGripperMovement(gripper_request) # print("gripper position is at", gripper_measure) return success def get_joint_status(self): # Create connection to the device and get the router with utilities.DeviceConnection.createTcpConnection(args) as router: with utilities.DeviceConnection.createUdpConnection(args) as router_real_time: # Create required services base = BaseClient(router) joint_angles = base.GetMeasuredJointAngles().joint_angles # print("Joint angles: ", len(joint_angles), joint_angles[0], joint_angles) joint_angles = [e.value for e in joint_angles] gripper_request = Base_pb2.GripperRequest() gripper_request.mode = Base_pb2.GRIPPER_POSITION gripper_measure = base.GetMeasuredGripperMovement(gripper_request) # print("gripper position is at", gripper_measure) print("joint_angles and gripper position", joint_angles, gripper_measure) return joint_angles + [gripper_measure] if __name__ == "__main__": HOST, PORT = "localhost", 9999 args = utilities.parseConnectionArguments() with socketserver.UDPServer((HOST, PORT), KinovaUDPHandler) as server: server.serve_forever()
4,417
Python
41.07619
91
0.63233
DigitalBotLab/Robots/RobotServices/utilities.py
import argparse from kortex_api.TCPTransport import TCPTransport from kortex_api.UDPTransport import UDPTransport from kortex_api.RouterClient import RouterClient, RouterClientSendOptions from kortex_api.SessionManager import SessionManager from kortex_api.autogen.messages import Session_pb2 def parseConnectionArguments(parser = argparse.ArgumentParser()): parser.add_argument("--ip", type=str, help="IP address of destination", default="192.168.1.10") parser.add_argument("-u", "--username", type=str, help="username to login", default="admin") parser.add_argument("-p", "--password", type=str, help="password to login", default="admin") return parser.parse_args() class DeviceConnection: TCP_PORT = 10000 UDP_PORT = 10001 @staticmethod def createTcpConnection(args): """ returns RouterClient required to create services and send requests to device or sub-devices, """ return DeviceConnection(args.ip, port=DeviceConnection.TCP_PORT, credentials=(args.username, args.password)) @staticmethod def createUdpConnection(args): """ returns RouterClient that allows to create services and send requests to a device or its sub-devices @ 1khz. """ return DeviceConnection(args.ip, port=DeviceConnection.UDP_PORT, credentials=(args.username, args.password)) def __init__(self, ipAddress, port=TCP_PORT, credentials = ("","")): self.ipAddress = ipAddress self.port = port self.credentials = credentials self.sessionManager = None # Setup API self.transport = TCPTransport() if port == DeviceConnection.TCP_PORT else UDPTransport() self.router = RouterClient(self.transport, RouterClient.basicErrorCallback) # Called when entering 'with' statement def __enter__(self): self.transport.connect(self.ipAddress, self.port) if (self.credentials[0] != ""): session_info = Session_pb2.CreateSessionInfo() session_info.username = self.credentials[0] session_info.password = self.credentials[1] session_info.session_inactivity_timeout = 10000 # (milliseconds) session_info.connection_inactivity_timeout = 2000 # (milliseconds) self.sessionManager = SessionManager(self.router) print("Logging as", self.credentials[0], "on device", self.ipAddress) self.sessionManager.CreateSession(session_info) return self.router # Called when exiting 'with' statement def __exit__(self, exc_type, exc_value, traceback): if self.sessionManager != None: router_options = RouterClientSendOptions() router_options.timeout_ms = 1000 self.sessionManager.CloseSession(router_options) self.transport.disconnect()
2,888
Python
36.51948
116
0.674169
DigitalBotLab/Robots/VisionServices/segment_anything/utils.py
import numpy as np import matplotlib.pyplot as plt def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
966
Python
42.954544
128
0.606625
DigitalBotLab/Robots/VisionServices/segment_anything/sam_app.py
import numpy as np import torch import matplotlib.pyplot as plt import cv2 import os import gradio as gr import json from segment_anything import sam_model_registry, SamPredictor SEGMENT_ANYTHING_FOLDER = "C:\\Users\\zhaoy\\Downloads"#"I:/Research/semgent-anything" MODEL_TYPE = "vit_b" #"vit_b" SAM_CHECKPOINT = os.path.join(SEGMENT_ANYTHING_FOLDER, "sam_vit_b_01ec64.pth") # sam_vit_h_4b8939 # sam_vit_b_01ec64 device = "cuda" sam = sam_model_registry[MODEL_TYPE](checkpoint=SAM_CHECKPOINT) sam.to(device=device) predictor = SamPredictor(sam) def segment_with_points( image, input_point_x, input_point_y, shape = "cuboid", input_label = np.array([1]), shape_contour_count = 6, debug_plot = True, ): predictor.set_image(image) input_points = np.array([[input_point_x, input_point_y]]) masks, scores, logits = predictor.predict( point_coords=input_points, point_labels=input_label, multimask_output=True, ) print("mask", masks.shape, "scores", scores.shape, "logits", logits.shape) # only return the first mask target_mask = masks[0].astype(np.uint8) target_contours, _ = cv2.findContours(target_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) target_contour_count = len(target_contours) for mask in masks: # get contours contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours) > 0 and len(contours[0]) < target_contour_count: target_mask = mask target_contours = contours target_contour_count = len(contours) if debug_plot: cv2.drawContours(image, target_contours, -1, (255, 255, 255), 2) cv2.imshow('target_contours', image) cv2.waitKey(0) cv2.destroyAllWindows() mask = target_mask contour = max(target_contours, key=cv2.contourArea) arclen = cv2.arcLength(contour, True) if shape == "cuboid": for ratio in [0.01, 0.02, 0.005, 0.01, 0.02, 0.05, 0.1]: epsilon = ratio * arclen approx = cv2.approxPolyDP(contour, epsilon, True) if len(approx) == shape_contour_count: break else: # bounding box x, y, w, h = cv2.boundingRect(contour) approx = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]]) print("approx", approx, approx.shape) if debug_plot: temp = cv2.drawContours(image, [approx], -1, (255, 0, 0), 1) temp = cv2.resize(temp, (960, 540)) cv2.imshow('Final Contours', temp) cv2.waitKey(0) cv2.destroyAllWindows() return json.dumps(approx.tolist()) cond_img_e = gr.Image(label="Input image", type='numpy', image_mode = "RGB") input_point_x = gr.Number(label="input h", value = 0) input_point_y = gr.Number(label="input w", value = 0) if __name__ == "__main__": demo = gr.Interface( segment_with_points, inputs=[cond_img_e, input_point_x, input_point_y, "text" ], outputs="text", title="Segment Anything", ) demo.launch(share = False)
3,184
Python
29.625
116
0.608668
DigitalBotLab/Robots/VisionServices/dino/dino_app.py
import argparse import numpy as np import gradio as gr import torch # Grounding DINO from GroundingDINO.groundingdino.models import build_model from GroundingDINO.groundingdino.util.slconfig import SLConfig from GroundingDINO.groundingdino.util.utils import clean_state_dict from GroundingDINO.groundingdino.util.inference import predict from GroundingDINO.groundingdino.datasets import transforms as T # segment anything # from segment_anything import build_sam, SamPredictor # import cv2 import numpy as np from huggingface_hub import hf_hub_download ckpt_repo_id = "ShilongLiu/GroundingDINO" ckpt_filenmae = "groundingdino_swinb_cogcoor.pth" ckpt_config_filename = "GroundingDINO_SwinB.cfg.py" def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'): cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename) args = SLConfig.fromfile(cache_config_file) model = build_model(args) args.device = device try: checkpoint = torch.load(cache_file, map_location='cpu') log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) except: cache_file = hf_hub_download(repo_id=repo_id, filename=filename) checkpoint = torch.load(cache_file, map_location='cpu') log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) # cache_file = hf_hub_download(repo_id=repo_id, filename=filename) # checkpoint = torch.load(cache_file, map_location='cpu') # log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) print("Model loaded from {} \n => {}".format(cache_file, log)) _ = model.eval() return model def transform_image(image_pil): transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image def run_gdino(image, text_prompt, box_threshold, text_threshold): w, h = image.size print(image.size) image_pil = image.convert("RGB") image = transform_image(image_pil) groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename) boxes, scores, labels = predict( model=groundingdino_model, image=image, caption=text_prompt, box_threshold=box_threshold, text_threshold=text_threshold ) def to_center(x): x *= np.array([w, h, w, h]) a = x[2] / 2 b = x[3] / 2 return np.array([x[0]-a, x[1]-b, x[2]+x[0], x[3]+x[1]]) if boxes.shape[0] == 0: return "" boxes = boxes.cpu().detach().numpy() pixel_coord = np.apply_along_axis(to_center, 1, boxes) scores = scores.cpu().detach().numpy() print(list(pixel_coord), list(scores)) record = [] for box, score, label in zip(list(np.around(pixel_coord).astype("int")), list(scores), labels): # print("box", box) # print("score", score) record.append(str(list(box)) + "_" + "{:.3f}".format(score) + "_" + str(label)) return str(record) if __name__ == "__main__": demo = gr.Interface( run_gdino, inputs=[gr.Image(source='upload', type="pil"), "text", gr.Slider(0, 1, value=0.3), gr.Slider(0, 1, value=0.25)], outputs="text", title="Grounded Dino", examples=[ ], ) demo.launch(share = True)
3,487
Python
28.811966
117
0.641812
DigitalBotLab/Robots/VisionServices/owl_vit/owl_app.py
import torch import cv2 import gradio as gr import numpy as np from transformers import OwlViTProcessor, OwlViTForObjectDetection # Use GPU if available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device) model.eval() processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") def query_image(img, text_queries, score_threshold): text_queries = text_queries text_queries = text_queries.split(",") target_sizes = torch.Tensor([img.shape[:2]]) inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) outputs.logits = outputs.logits.cpu() outputs.pred_boxes = outputs.pred_boxes.cpu() results = processor.post_process(outputs=outputs, target_sizes=target_sizes) boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] # font = cv2.FONT_HERSHEY_SIMPLEX # for box, score, label in zip(boxes, scores, labels): # box = [int(i) for i in box.tolist()] # if score >= score_threshold: # img = cv2.rectangle(img, pt1 = (box[0], box[1]), pt2 = (box[2], box[3]), color = (255,0,0), thickness = 5) # if box[3] + 25 > 768: # y = box[3] - 10 # else: # y = box[3] + 25 # img = cv2.putText( # img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA # ) records = [] for box, score, label in zip(boxes, scores, labels): # print(box, score, label) if score >= score_threshold: records.append(str(box.long().tolist()) + "_" + "{:.3f}".format(score.item()) + "_" + str(label.item())) return str(records) description = """ Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>, introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection with Vision Transformers</a>. \n\nYou can use OWL-ViT to query images with text descriptions of any object. To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You can also use the score threshold slider to set a threshold to filter out low probability predictions. \n\nOWL-ViT is trained on text templates, hence you can get better predictions by querying the image with text templates used in training the original model: *"photo of a star-spangled banner"*, *"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data. \n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a> """ demo = gr.Interface( query_image, inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)], outputs="text", title="Zero-Shot Object Detection with OWL-ViT", description=description, examples=[ ], ) demo.launch(share = True)
3,249
Python
38.634146
165
0.659588
DigitalBotLab/Robots/VisionServices/owl_vit/README.md
--- title: OWL-ViT Demo emoji: 🔥 colorFrom: yellow colorTo: yellow sdk: gradio sdk_version: 3.1.3 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
251
Markdown
16.999999
96
0.752988
DigitalBotLab/Robots/VisionServices/fastsam/fastsam_app.py
from ultralytics import YOLO import gradio as gr import torch from utils.my_tools import fast_process from utils.tools import format_results, box_prompt, point_prompt, text_prompt from PIL import ImageDraw import numpy as np import os import json FASTSAM_FOLDER = "I:/Research/FastSAM/" # Load the pre-trained model model = YOLO(os.path.join(FASTSAM_FOLDER,'weights/FastSAM.pt')) device = torch.device( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) def segment_everything( input, text="", input_size=1024, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, withContours=True, use_retina=True, mask_random_color=True, ): input_size = int(input_size) # 确保 imgsz 是整数 # Thanks for the suggestion by hysts in HuggingFace. w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size,) if len(text) > 0: results = format_results(results[0], 0) annotations, _ = text_prompt(results, text, input, device=device, clip_model_path=os.path.join(FASTSAM_FOLDER,'weights/CLIP_ViT_B_32.pt') ) annotations = np.array([annotations]) else: annotations = results[0].masks.data contour_str = fast_process(annotations=annotations, image=input, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, ) return json.dumps(contour_str.tolist()) cond_img_e = gr.Image(label="Input", type='pil') cond_img_p = gr.Image(label="Input with points", type='pil') cond_img_t = gr.Image(label="Input with text", type='pil', value = os.path.join(FASTSAM_FOLDER,"examples/0.jpg")) segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil') segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil') segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil') global_points = [] global_point_label = [] if __name__ == "__main__": demo = gr.Interface( segment_everything, inputs=[cond_img_t, gr.Textbox(label="text prompt", value="grey tea tower"), # 1024, # 0.7, # 0.25, # False, # True, # True, ], outputs="text", title="FastSAM", ) demo.launch(share = False)
3,071
Python
28.538461
107
0.554217
DigitalBotLab/Robots/VisionServices/fastsam/README.md
--- title: FastSAM emoji: 🐠 colorFrom: pink colorTo: indigo sdk: gradio sdk_version: 3.35.2 app_file: app_gradio.py pinned: false license: apache-2.0 --- # Fast Segment Anything Official PyTorch Implementation of the <a href="https://github.com/CASIA-IVA-Lab/FastSAM">. The **Fast Segment Anything Model(FastSAM)** is a CNN Segment Anything Model trained by only 2% of the SA-1B dataset published by SAM authors. The FastSAM achieve a comparable performance with the SAM method at **50× higher run-time speed**. ## License The model is licensed under the [Apache 2.0 license](LICENSE). ## Acknowledgement - [Segment Anything](https://segment-anything.com/) provides the SA-1B dataset and the base codes. - [YOLOv8](https://github.com/ultralytics/ultralytics) provides codes and pre-trained models. - [YOLACT](https://arxiv.org/abs/2112.10003) provides powerful instance segmentation method. - [Grounded-Segment-Anything](https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything) provides a useful web demo template. ## Citing FastSAM If you find this project useful for your research, please consider citing the following BibTeX entry. ``` @misc{zhao2023fast, title={Fast Segment Anything}, author={Xu Zhao and Wenchao Ding and Yongqi An and Yinglong Du and Tao Yu and Min Li and Ming Tang and Jinqiao Wang}, year={2023}, eprint={2306.12156}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
1,451
Markdown
30.565217
192
0.740868
DigitalBotLab/Robots/VisionServices/fastsam/utils/tools.py
import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 import torch import os import sys import clip def convert_box_xywh_to_xyxy(box): x1 = box[0] y1 = box[1] x2 = box[0] + box[2] y2 = box[1] + box[3] return [x1, y1, x2, y2] def segment_image(image, bbox): image_array = np.array(image) segmented_image_array = np.zeros_like(image_array) x1, y1, x2, y2 = bbox segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] segmented_image = Image.fromarray(segmented_image_array) black_image = Image.new("RGB", image.size, (255, 255, 255)) # transparency_mask = np.zeros_like((), dtype=np.uint8) transparency_mask = np.zeros( (image_array.shape[0], image_array.shape[1]), dtype=np.uint8 ) transparency_mask[y1:y2, x1:x2] = 255 transparency_mask_image = Image.fromarray(transparency_mask, mode="L") black_image.paste(segmented_image, mask=transparency_mask_image) return black_image def format_results(result, filter=0): annotations = [] n = len(result.masks.data) for i in range(n): annotation = {} mask = result.masks.data[i] == 1.0 if torch.sum(mask) < filter: continue annotation["id"] = i annotation["segmentation"] = mask.cpu().numpy() annotation["bbox"] = result.boxes.data[i] annotation["score"] = result.boxes.conf[i] annotation["area"] = annotation["segmentation"].sum() annotations.append(annotation) return annotations def filter_masks(annotations): # filter the overlap mask annotations.sort(key=lambda x: x["area"], reverse=True) to_remove = set() for i in range(0, len(annotations)): a = annotations[i] for j in range(i + 1, len(annotations)): b = annotations[j] if i != j and j not in to_remove: # check if if b["area"] < a["area"]: if (a["segmentation"] & b["segmentation"]).sum() / b[ "segmentation" ].sum() > 0.8: to_remove.add(j) return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove def get_bbox_from_mask(mask): mask = mask.astype(np.uint8) contours, hierarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) x1, y1, w, h = cv2.boundingRect(contours[0]) x2, y2 = x1 + w, y1 + h if len(contours) > 1: for b in contours: x_t, y_t, w_t, h_t = cv2.boundingRect(b) # 将多个bbox合并成一个 x1 = min(x1, x_t) y1 = min(y1, y_t) x2 = max(x2, x_t + w_t) y2 = max(y2, y_t + h_t) h = y2 - y1 w = x2 - x1 return [x1, y1, x2, y2] def fast_process( annotations, args, mask_random_color, bbox=None, points=None, edges=False ): if isinstance(annotations[0], dict): annotations = [annotation["segmentation"] for annotation in annotations] result_name = os.path.basename(args.img_path) image = cv2.imread(args.img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) original_h = image.shape[0] original_w = image.shape[1] if sys.platform == "darwin": plt.switch_backend("TkAgg") plt.figure(figsize=(original_w/100, original_h/100)) # Add subplot with no margin. plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(image) if args.better_quality == True: if isinstance(annotations[0], torch.Tensor): annotations = np.array(annotations.cpu()) for i, mask in enumerate(annotations): mask = cv2.morphologyEx( mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8) ) annotations[i] = cv2.morphologyEx( mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8) ) if args.device == "cpu": annotations = np.array(annotations) fast_show_mask( annotations, plt.gca(), random_color=mask_random_color, bbox=bbox, points=points, point_label=args.point_label, retinamask=args.retina, target_height=original_h, target_width=original_w, ) else: if isinstance(annotations[0], np.ndarray): annotations = torch.from_numpy(annotations) fast_show_mask_gpu( annotations, plt.gca(), random_color=args.randomcolor, bbox=bbox, points=points, point_label=args.point_label, retinamask=args.retina, target_height=original_h, target_width=original_w, ) if isinstance(annotations, torch.Tensor): annotations = annotations.cpu().numpy() if args.withContours == True: contour_all = [] temp = np.zeros((original_h, original_w, 1)) for i, mask in enumerate(annotations): if type(mask) == dict: mask = mask["segmentation"] annotation = mask.astype(np.uint8) if args.retina == False: annotation = cv2.resize( annotation, (original_w, original_h), interpolation=cv2.INTER_NEAREST, ) contours, hierarchy = cv2.findContours( annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) for contour in contours: contour_all.append(contour) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8]) contour_mask = temp / 255 * color.reshape(1, 1, -1) plt.imshow(contour_mask) save_path = args.output if not os.path.exists(save_path): os.makedirs(save_path) plt.axis("off") fig = plt.gcf() plt.draw() try: buf = fig.canvas.tostring_rgb() except AttributeError: fig.canvas.draw() buf = fig.canvas.tostring_rgb() cols, rows = fig.canvas.get_width_height() img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3) cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)) # CPU post process def fast_show_mask( annotation, ax, random_color=False, bbox=None, points=None, point_label=None, retinamask=True, target_height=960, target_width=960, ): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] # 将annotation 按照面积 排序 areas = np.sum(annotation, axis=(1, 2)) sorted_indices = np.argsort(areas) annotation = annotation[sorted_indices] index = (annotation != 0).argmax(axis=0) if random_color == True: color = np.random.random((msak_sum, 1, 1, 3)) else: color = np.ones((msak_sum, 1, 1, 3)) * np.array( [30 / 255, 144 / 255, 255 / 255] ) transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 visual = np.concatenate([color, transparency], axis=-1) mask_image = np.expand_dims(annotation, -1) * visual show = np.zeros((height, weight, 4)) h_indices, w_indices = np.meshgrid( np.arange(height), np.arange(weight), indexing="ij" ) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 show[h_indices, w_indices, :] = mask_image[indices] if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch( plt.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 ) ) # draw point if points is not None: plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 1], [point[1] for i, point in enumerate(points) if point_label[i] == 1], s=20, c="y", ) plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 0], [point[1] for i, point in enumerate(points) if point_label[i] == 0], s=20, c="m", ) if retinamask == False: show = cv2.resize( show, (target_width, target_height), interpolation=cv2.INTER_NEAREST ) ax.imshow(show) def fast_show_mask_gpu( annotation, ax, random_color=False, bbox=None, points=None, point_label=None, retinamask=True, target_height=960, target_width=960, ): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] areas = torch.sum(annotation, dim=(1, 2)) sorted_indices = torch.argsort(areas, descending=False) annotation = annotation[sorted_indices] # 找每个位置第一个非零值下标 index = (annotation != 0).to(torch.long).argmax(dim=0) if random_color == True: color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device) else: color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor( [30 / 255, 144 / 255, 255 / 255] ).to(annotation.device) transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6 visual = torch.cat([color, transparency], dim=-1) mask_image = torch.unsqueeze(annotation, -1) * visual # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 show = torch.zeros((height, weight, 4)).to(annotation.device) h_indices, w_indices = torch.meshgrid( torch.arange(height), torch.arange(weight), indexing="ij" ) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 show[h_indices, w_indices, :] = mask_image[indices] show_cpu = show.cpu().numpy() if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch( plt.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 ) ) # draw point if points is not None: plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 1], [point[1] for i, point in enumerate(points) if point_label[i] == 1], s=20, c="y", ) plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 0], [point[1] for i, point in enumerate(points) if point_label[i] == 0], s=20, c="m", ) if retinamask == False: show_cpu = cv2.resize( show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST ) ax.imshow(show_cpu) # clip @torch.no_grad() def retriev( model, preprocess, elements, search_text: str, device ) -> int: preprocessed_images = [preprocess(image).to(device) for image in elements] tokenized_text = clip.tokenize([search_text]).to(device) stacked_images = torch.stack(preprocessed_images) image_features = model.encode_image(stacked_images) text_features = model.encode_text(tokenized_text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) probs = 100.0 * image_features @ text_features.T return probs[:, 0].softmax(dim=0) def crop_image(annotations, image_like): if isinstance(image_like, str): image = Image.open(image_like) else: image = image_like ori_w, ori_h = image.size mask_h, mask_w = annotations[0]["segmentation"].shape if ori_w != mask_w or ori_h != mask_h: image = image.resize((mask_w, mask_h)) cropped_boxes = [] cropped_images = [] not_crop = [] filter_id = [] # annotations, _ = filter_masks(annotations) # filter_id = list(_) for _, mask in enumerate(annotations): if np.sum(mask["segmentation"]) <= 100: filter_id.append(_) continue bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片 # cropped_boxes.append(segment_image(image,mask["segmentation"])) cropped_images.append(bbox) # 保存裁剪的图片的bbox return cropped_boxes, cropped_images, not_crop, filter_id, annotations def box_prompt(masks, bbox, target_height, target_width): h = masks.shape[1] w = masks.shape[2] if h != target_height or w != target_width: bbox = [ int(bbox[0] * w / target_width), int(bbox[1] * h / target_height), int(bbox[2] * w / target_width), int(bbox[3] * h / target_height), ] bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0 bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0 bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h # IoUs = torch.zeros(len(masks), dtype=torch.float32) bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) orig_masks_area = torch.sum(masks, dim=(1, 2)) union = bbox_area + orig_masks_area - masks_area IoUs = masks_area / union max_iou_index = torch.argmax(IoUs) return masks[max_iou_index].cpu().numpy(), max_iou_index def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理 h = masks[0]["segmentation"].shape[0] w = masks[0]["segmentation"].shape[1] if h != target_height or w != target_width: points = [ [int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points ] onemask = np.zeros((h, w)) masks = sorted(masks, key=lambda x: x['area'], reverse=True) for i, annotation in enumerate(masks): if type(annotation) == dict: mask = annotation['segmentation'] else: mask = annotation for i, point in enumerate(points): if mask[point[1], point[0]] == 1 and point_label[i] == 1: onemask[mask] = 1 if mask[point[1], point[0]] == 1 and point_label[i] == 0: onemask[mask] = 0 onemask = onemask >= 1 return onemask, 0 def text_prompt(annotations, text, img_path, device, clip_model_path = "./weights/CLIP_ViT_B_32.pt"): cropped_boxes, cropped_images, not_crop, filter_id, annotations_ = crop_image( annotations, img_path ) clip_model, preprocess = clip.load(clip_model_path, device=device) scores = retriev( clip_model, preprocess, cropped_boxes, text, device=device ) max_idx = scores.argsort() max_idx = max_idx[-1] max_idx += sum(np.array(filter_id) <= int(max_idx)) return annotations_[max_idx]["segmentation"], max_idx
15,038
Python
33.974419
102
0.579864
DigitalBotLab/Robots/VisionServices/fastsam/utils/my_tools.py
import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 import torch def fast_process( annotations, image, device, scale, better_quality=False, mask_random_color=True, bbox=None, use_retina=True, # withContours=True, # must true ): if isinstance(annotations[0], dict): annotations = [annotation['segmentation'] for annotation in annotations] original_h = image.height original_w = image.width if better_quality: if isinstance(annotations[0], torch.Tensor): annotations = np.array(annotations.cpu()) for i, mask in enumerate(annotations): mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) if device == 'cpu': annotations = np.array(annotations) else: if isinstance(annotations[0], np.ndarray): annotations = torch.from_numpy(annotations) if isinstance(annotations, torch.Tensor): annotations = annotations.cpu().numpy() contour_all = [] temp = np.zeros((original_h, original_w, 1)) for i, mask in enumerate(annotations): if type(mask) == dict: mask = mask['segmentation'] annotation = mask.astype(np.uint8) if use_retina == False: annotation = cv2.resize( annotation, (original_w, original_h), interpolation=cv2.INTER_NEAREST, ) contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: arclen = cv2.arcLength(contour, True) # WARNING: 0.005 is a magic number approx = cv2.approxPolyDP(contour, arclen*0.005, True) print("approx!!", approx.shape) contour_all.append(approx) print("contour_all!!!", contour_all) return np.array(contour_all) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) contour_mask = temp / 255 * color.reshape(1, 1, -1) image = image.convert('RGBA') overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') image.paste(overlay_contour, (0, 0), overlay_contour) return image
2,438
Python
31.959459
111
0.608696
DigitalBotLab/Robots/VisionServices/fastsam/utils/tools_gradio.py
import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 import torch def fast_process( annotations, image, device, scale, better_quality=False, mask_random_color=True, bbox=None, use_retina=True, withContours=True, ): if isinstance(annotations[0], dict): annotations = [annotation['segmentation'] for annotation in annotations] original_h = image.height original_w = image.width if better_quality: if isinstance(annotations[0], torch.Tensor): annotations = np.array(annotations.cpu()) for i, mask in enumerate(annotations): mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) if device == 'cpu': annotations = np.array(annotations) inner_mask = fast_show_mask( annotations, plt.gca(), random_color=mask_random_color, bbox=bbox, retinamask=use_retina, target_height=original_h, target_width=original_w, ) else: if isinstance(annotations[0], np.ndarray): annotations = torch.from_numpy(annotations) inner_mask = fast_show_mask_gpu( annotations, plt.gca(), random_color=mask_random_color, bbox=bbox, retinamask=use_retina, target_height=original_h, target_width=original_w, ) if isinstance(annotations, torch.Tensor): annotations = annotations.cpu().numpy() if withContours: contour_all = [] temp = np.zeros((original_h, original_w, 1)) for i, mask in enumerate(annotations): if type(mask) == dict: mask = mask['segmentation'] annotation = mask.astype(np.uint8) if use_retina == False: annotation = cv2.resize( annotation, (original_w, original_h), interpolation=cv2.INTER_NEAREST, ) contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: arclen = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, arclen*0.005, True) contour_all.append(approx) print("contour_all", contour_all) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) contour_mask = temp / 255 * color.reshape(1, 1, -1) image = image.convert('RGBA') overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA') image.paste(overlay_inner, (0, 0), overlay_inner) if withContours: overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') image.paste(overlay_contour, (0, 0), overlay_contour) return image # CPU post process def fast_show_mask( annotation, ax, random_color=False, bbox=None, retinamask=True, target_height=960, target_width=960, ): mask_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] # 将annotation 按照面积 排序 areas = np.sum(annotation, axis=(1, 2)) sorted_indices = np.argsort(areas)[::1] annotation = annotation[sorted_indices] index = (annotation != 0).argmax(axis=0) if random_color == True: color = np.random.random((mask_sum, 1, 1, 3)) else: color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255]) transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6 visual = np.concatenate([color, transparency], axis=-1) mask_image = np.expand_dims(annotation, -1) * visual mask = np.zeros((height, weight, 4)) h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) mask[h_indices, w_indices, :] = mask_image[indices] if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) if retinamask == False: mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST) return mask def fast_show_mask_gpu( annotation, ax, random_color=False, bbox=None, retinamask=True, target_height=960, target_width=960, ): device = annotation.device mask_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] areas = torch.sum(annotation, dim=(1, 2)) sorted_indices = torch.argsort(areas, descending=False) annotation = annotation[sorted_indices] # 找每个位置第一个非零值下标 index = (annotation != 0).to(torch.long).argmax(dim=0) if random_color == True: color = torch.rand((mask_sum, 1, 1, 3)).to(device) else: color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor( [30 / 255, 144 / 255, 255 / 255] ).to(device) transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6 visual = torch.cat([color, transparency], dim=-1) mask_image = torch.unsqueeze(annotation, -1) * visual # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 mask = torch.zeros((height, weight, 4)).to(device) h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 mask[h_indices, w_indices, :] = mask_image[indices] mask_cpu = mask.cpu().numpy() if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch( plt.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 ) ) if retinamask == False: mask_cpu = cv2.resize( mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST ) return mask_cpu
6,221
Python
33.566666
111
0.596046
DigitalBotLab/InsideroboConnector/README.md
# <img src="Images/logo.png" alt="Logo" width="50" height="50"> Digital Bot Lab: InsideroboConnector ![Build Version](https://img.shields.io/badge/Build-v0.2-orange) ![Release Version](https://img.shields.io/badge/Release-v0.1-blue) # Overview: Bridging the Gap Between Digital Robots and Omniverse ![preview](Images/preview.png) The Digital Bot Lab's Insiderobo Connector is a cutting-edge solution designed to seamlessly connect our extensive digital robot collection with the powerful NVIDIA Omniverse platform. With our connector, users can effortlessly import digital robots in .usd format, enabling them to leverage the full potential of Omniverse applications. ## 1. Get Started Experience the future of robotics with the Digital Bot Lab's Insiderobo Connector, where the connection between digital robots and Omniverse becomes effortless and transformative. ![store](Images/connector_store.png) ### 1.1 Install Omniverse USD Composer This project is currently targeted for `Omniverse USD Composer`. Please follow the instructions to install it first: [USD Composer Overview](https://docs.omniverse.nvidia.com/composer/latest/index.html#:~:text=NVIDIA%20Omniverse%E2%84%A2%20USD%20Composer,is%20based%20on%20Pixar's%20USD.) ### 1.2 Import the extension To install the extension to Omniverse USD Composer: First, clone the respository ```bash git clone https://github.com/DigitalBotLab/InsideroboConnector ``` And now Open the `Omniverse USD Composer`, go to `Menu Bar` -> `Windows` -> `Extensions` -> `+` -> Add your `<path_to_this_repository>/AssetProvider/dbl-exts-asset/exts` ## 2. Format: USD Our digital robots are meticulously crafted and well-configured in .usd format, complete with physics, rigid bodies, and joints. This ensures a realistic and immersive experience when interacting with the robots within Omniverse. ## 3. ROS <img src="https://upload.wikimedia.org/wikipedia/commons/b/bb/Ros_logo.svg" alt="Ros" width="70" height="70"> The Insiderobo Connector is built upon the foundation of the Robot Operating System (ROS), an open-source framework that empowers researchers and developers to easily build and reuse code across various robotics applications. This integration allows for enhanced collaboration, accelerated development, and seamless integration of digital robots into the Omniverse ecosystem. ## 4. License Our project adheres to the Robot Operating System (ROS) framework, which enables us to develop and integrate robotic systems efficiently. We are proud to announce that our project is released under the BSD 3.0 license. This license ensures that our software is open-source, allowing users to freely use, modify, and distribute it while maintaining the necessary attribution and disclaimer requirements. By embracing ROS and the BSD 3.0 license, we aim to foster collaboration and innovation within the robotics community.
2,893
Markdown
52.592592
521
0.790529
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/config/extension.toml
[package] authors = ["NVIDIA"] category = "services" changelog = "docs/CHANGELOG.md" description = "Digital Bot Lab Asset Provider" icon = "data/digitalbotlab.png" keywords = ["asset", "provider", "sketchfab"] preview_image = "data/preview.png" readme = "docs/README.md" repository = "" title = "Asset Provider for Digital Bot Lab" version = "1.0.10" [dependencies] "omni.services.browser.asset" = {} [[python.module]] name = "omni.asset_provider.sketchfab" [settings] exts."omni.asset_provider.digitalbotlab".enable = true exts."omni.asset_provider.digitalbotlab".providerId = "Digital_Bot_Lab" exts."omni.asset_provider.digitalbotlab".keepOriginalPageSize = true exts."omni.asset_provider.digitalbotlab".maxCountPerPage = 24 exts."omni.asset_provider.digitalbotlab".minThumbnailSize = 256 exts."omni.asset_provider.digitalbotlab".searchUrl = "https://api.sketchfab.com/v3/search" exts."omni.asset_provider.digitalbotlab".modelsUrl = "https://api.sketchfab.com/v3/models" exts."omni.asset_provider.digitalbotlab".authorizeUrl = "https://sketchfab.com/oauth2/authorize/" exts."omni.asset_provider.digitalbotlab".accessTokenUrl = "https://sketchfab.com/oauth2/token/" exts."omni.asset_provider.digitalbotlab".clientId = "eQcrihd32CeYmF9evsYEGXZr8vynHA82DW7SzJw2" exts."omni.asset_provider.digitalbotlab".clientSecret = "" [[test]] dependencies = ["omni.services.client", "omni.client"]
1,389
TOML
38.714285
97
0.768179
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/config/extension.gen.toml
[package] archivePath = "http://d4i3qtqj3r0z5.cloudfront.net/omni.asset_provider.digitalbotlab-1.0.10.zip" repository = "https://gitlab-master.nvidia.com/omniverse/kit-extensions/kit-browsers" [package.publish] date = 1669118155 kitVersion = "104.0+release.95826.4b36ab32.tc" buildNumber = "101.1.0+master.1103.15b266ed.tc" repoName = "kit-browsers" [package.authors] 0 = "Yizhou Zhao <[email protected]>"
472
TOML
32.785712
100
0.677966
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/omni/asset_provider/sketchfab/constants.py
SETTING_ROOT = "/exts/omni.asset_provider.digitalbotlab/" SETTING_STORE_ENABLE = SETTING_ROOT + "enable"
105
Python
34.333322
57
0.761905
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/omni/asset_provider/sketchfab/extension.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.ext import carb.settings import omni.ui as ui from omni.services.browser.asset import get_instance as get_asset_services from .sketchfab import SketchFabAssetProvider from .constants import SETTING_STORE_ENABLE import asyncio import aiohttp class DigitalBotLabAssetProviderExtension(omni.ext.IExt): """ Sketchfab Asset Provider extension. """ def on_startup(self, ext_id): self._asset_provider = SketchFabAssetProvider() self._asset_service = get_asset_services() self._asset_service.register_store(self._asset_provider) carb.settings.get_settings().set(SETTING_STORE_ENABLE, True) self._window = ui.Window("DBL Debug", width=300, height=300) with self._window.frame: with ui.VStack(): #ui.Label("Prim Path:", width = 100) ui.Button("Debug", height = 20, clicked_fn = self.debug) ui.Button("Debug", height = 20, clicked_fn = self.debug_token) def on_shutdown(self): self._asset_service.unregister_store(self._asset_provider) carb.settings.get_settings().set(SETTING_STORE_ENABLE, False) self._asset_provider = None self._asset_service = None def debug(self): async def authenticate(): params = {"email": "[email protected]", "password": "97654321abc"} async with aiohttp.ClientSession() as session: async with session.post("http://localhost:8000/api/auth/signin", json=params) as response: self._auth_params = await response.json() print("auth_params", self._auth_params) self.token = self._auth_params["token"] asyncio.ensure_future(authenticate()) def debug_token(self): async def verify_token(): params = {"token": self.token, "asset": "test"} async with aiohttp.ClientSession() as session: async with session.post("http://localhost:8000/api/omniverse/download", json=params) as response: response = await response.json() print("response", response) asyncio.ensure_future(verify_token())
2,660
Python
41.238095
113
0.644737
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/omni/asset_provider/sketchfab/sketchfab.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """SketchFab asset store implementation.""" from typing import Dict, List, Optional, Union, Tuple, Callable import carb import carb.settings import os import asyncio import omni.client from omni.services.browser.asset import BaseAssetStore, AssetModel, SearchCriteria, ProviderModel from .constants import SETTING_ROOT, SETTING_STORE_ENABLE from pathlib import Path CURRENT_PATH = Path(__file__).parent DATA_PATH = CURRENT_PATH.parent.parent.parent.parent.parent.joinpath("data") class SketchFabAssetProvider(BaseAssetStore): """ SketchFab asset provider implementation. For documentation on the search API, see the online interactive API at: https://docs.sketchfab.com/data-api/v3/index.html#!/search/get_v3_search_type_models .. note: SketchFab does not return search results in no search query has been provided. In other words, navigating through the pre-defined categories will not display any results from SketchFab, as no search terms have been submitted in that context. """ def __init__(self) -> None: """ Constructor. Returns: None """ print("DigitalBotLabAssetProvider.__init__") settings = carb.settings.get_settings() self._provider_id = settings.get_as_string(SETTING_ROOT + "providerId") super().__init__(store_id=self._provider_id) self._keep_page_size = settings.get_as_bool(SETTING_ROOT + "keepOriginalPageSize") self._max_count_per_page = settings.get_as_int(SETTING_ROOT + "maxCountPerPage") self._min_thumbnail_size = settings.get_as_int(SETTING_ROOT + "minThumbnailSize") self._search_url = settings.get_as_string(SETTING_ROOT + "searchUrl") self._models_url = settings.get_as_string(SETTING_ROOT + "modelsUrl") self._authorize_url = settings.get_as_string(SETTING_ROOT + "authorizeUrl") self._access_token_url = settings.get_as_string(SETTING_ROOT + "accessTokenUrl") self._client_id = settings.get_as_string(SETTING_ROOT + "clientId") self._client_secret = settings.get_as_string(SETTING_ROOT + "clientSecret") self._auth_params = None def provider(self) -> ProviderModel: """Return provider info""" return ProviderModel( name=self._store_id, icon=f"{DATA_PATH}/logo.png", enable_setting=SETTING_STORE_ENABLE ) def authorized(self) -> bool: if self._auth_params: return self._auth_params.get("access_token", None) return False async def authenticate(self, username: str, password: str): params = {"grant_type": "password", "client_id": self._client_id, "username": username, "password": password} import aiohttp async with aiohttp.ClientSession() as session: async with session.post(self._access_token_url, params=params) as response: self._auth_params = await response.json() def get_access_token(self) -> str: if self._auth_params: return self._auth_params.get("access_token", None) return None async def _search(self, search_criteria: SearchCriteria) -> Tuple[List[AssetModel], bool]: assets: List[AssetModel] = [] if self._keep_page_size: required_count = ( search_criteria.page.size if search_criteria.page.size < self._max_count_per_page else self._max_count_per_page ) else: required_count = search_criteria.page.size params = { "type": "models", "q": "", "downloadable": "true", "cursor": (search_criteria.page.number - 1) * required_count, "sort_by": "-likeCount" } if search_criteria.keywords: params["q"] = " ".join(search_criteria.keywords) if search_criteria.filter.categories: category = self._pick_category(categories=search_criteria.filter.categories) if category: if params["q"] == "": params["q"] = category.lower() else: params["q"] += f" {category.lower()}" # if search_criteria.sort and len(search_criteria.sort) >= 2: # sort_field, sort_order = search_criteria.sort # # Add other properties if SketchFab supports more sorting options in the future. # if sort_field in ["published_at"]: # params["sort_by"] = sort_field # if sort_order.lower() == "desc": # params["sort_by"] = f"-likeCount" # The SketchFab API limits the number of search results per page to at most 24 to_continue = True while required_count > 0: params["count"] = min(self._max_count_per_page, required_count) (page_assets, to_continue) = await self._search_one_page(params) if page_assets: params["cursor"] += params["count"] required_count -= params["count"] assets.extend(page_assets) if not to_continue: break else: break return (assets, to_continue) async def _search_one_page(self, params: Dict) -> Tuple[List[AssetModel], bool]: """ Search one page. Max 24 assets. Args: params (Dict): Search parameters. Returns: List[AssetModel]: List of searched assets. bool: True means more results to be searched. False means end of search. """ to_continue = True items = [] import aiohttp async with aiohttp.ClientSession() as session: async with session.get(self._search_url, params=params) as response: results = await response.json() cursors = results.get("cursors", {}) # If no more resutls to_continue = cursors["next"] is not None items = results.get("results", []) assets: List[AssetModel] = [] for item in items: item_categories = [x.get("name", "") for x in item.get("categories", [])] item_tags = [x.get("name", "") for x in item.get("tags", [])] item_thumbnails = [x for x in item.get("thumbnails", {}).get("images", [])] item_thumbnail = self._pick_most_appropriate_thumbnail(item_thumbnails) if item.get("isDownloadable"): download_url = f"{self._models_url}/{item.get('uid')}/download" else: download_url = "" if item_thumbnail is not None: assets.append( AssetModel( identifier=item.get("uid"), name=item.get("name"), version="", published_at=item.get("publishedAt"), categories=item_categories, tags=item_tags, vendor=self._provider_id, download_url=download_url, product_url=item.get("viewerUrl", ""), # price=0.0, # SketchFab does not display price for assets when using the search API. thumbnail=item_thumbnail, ) ) return (assets, to_continue) def _sanitize_categories(self, categories: List[str]) -> List[str]: """ Sanitize the given list of ``SearchCriteria`` categories. Args: categories (List[str]): List of ``SearchCriteria`` categories to sanitize. Returns: List[str]: Sanitized category names from the given list of categories. """ sanitized_categories: List[str] = [] for category in categories: if category.startswith("/"): category = category[1:] category_keywords = category.split("/") sanitized_categories.extend(category_keywords) return sanitized_categories def _pick_category(self, categories: List[str]) -> Optional[str]: """ Pick the most appropriate category from the list of ``SearchCriteria`` categories. Args: categories (List[str]): List of ``SearchCriteria`` categories from which to pick the most appropriate category for a search. Returns: Optional[str]: The most appropriate category from the given list of ``SearchCriteria`` categories, or ``None`` if no category could be identified. """ sanitized_categories = self._sanitize_categories(categories=categories) if sanitized_categories: return sanitized_categories[-1] return None def _pick_most_appropriate_thumbnail(self, thumbnails: List[Dict[str, Union[str, int]]]) -> Optional[str]: """ Pick the most appropriate thumbnail URL from the list of provided image metadata abot the asset. Args: thumbnails (): List of image metadata about the asset. Returns: Optional[str]: The URL of the image thumbnail to use for the asset, or ``None`` if no suitable thumbnail was found. """ high_res_thumbnails: List[Dict[str, Union[str, int]]] = [] low_res_thumbnails: List[Dict[str, Union[str, int]]] = [] # Sort the thumbnails in 2 buckets (whether higher resolution than desired, or lower than desired): for thumbnail in thumbnails: thumbnail_width: Optional[int] = thumbnail.get("width") thumbnail_height: Optional[int] = thumbnail.get("height") if thumbnail_width is not None and thumbnail_height is not None: if thumbnail_width >= self._min_thumbnail_size and thumbnail_height >= self._min_thumbnail_size: high_res_thumbnails.append(thumbnail) else: low_res_thumbnails.append(thumbnail) # Pick the most appropriate thumbnail within the list of high-res candidates: if high_res_thumbnails: candidate_thumbnail: Dict[str, Union[str, int]] = high_res_thumbnails[0] for thumbnail in high_res_thumbnails: if thumbnail.get("width") < candidate_thumbnail.get("width") and thumbnail.get( "height" ) < candidate_thumbnail.get("height"): candidate_thumbnail = thumbnail return candidate_thumbnail.get("url") # Pick the largest thumbnail within the list of low-res candidates: if low_res_thumbnails: candidate_thumbnail: Dict[str, Union[str, int]] = low_res_thumbnails[0] for thumbnail in low_res_thumbnails: if thumbnail.get("width") > candidate_thumbnail.get("width") and thumbnail.get( "height" ) > candidate_thumbnail.get("height"): candidate_thumbnail = thumbnail return candidate_thumbnail.get("url") return None async def _download(self, asset: AssetModel, dest_url: str, on_progress_fn: Callable[[float], None] = None) -> Dict: """ Downloads an asset from the asset store. This function needs to be implemented as part of an implementation of the BaseAssetStore. This function is called by the public `download` function that will wrap this function in a timeout. """ ret_value = {"url": None} if not (asset and asset.download_url): ret_value["status"] = omni.client.Result.ERROR_NOT_FOUND return ret_value import aiohttp async with aiohttp.ClientSession() as session: headers = {"Authorization": "Bearer %s" % self.get_access_token()} async with session.get(asset.download_url, headers=headers) as response: results = await response.json() # Parse downloaded response; see https://sketchfab.com/developers/download-api/downloading-models if "usdz" in results: download_url = results["usdz"].get("url") else: ret_value["status"] = omni.client.Result.ERROR_NOT_FOUND carb.log_error(f"[{asset.name}] Invalid download url: {asset.download_url}!") carb.log_info(f"addtional result: {results}") return ret_value content = bytearray() # Download content from the given url downloaded = 0 async with session.get(download_url) as response: size = int(response.headers.get("content-length", 0)) if size > 0: async for chunk in response.content.iter_chunked(1024 * 512): content.extend(chunk) downloaded += len(chunk) if on_progress_fn: on_progress_fn(float(downloaded) / size) else: if on_progress_fn: on_progress_fn(0) content = await response.read() if on_progress_fn: on_progress_fn(1) if response.ok: # Write to destination filename = os.path.basename(download_url.split("?")[0]) dest_url = f"{dest_url}/{filename}" (result, list_entry) = await omni.client.stat_async(dest_url) if result == omni.client.Result.OK: # If dest file already exists, use asset identifier in filename to different dest_url = dest_url[:-5] + "_" + str(asset.identifier) + ".usdz" ret_value["status"] = await omni.client.write_file_async(dest_url, content) ret_value["url"] = dest_url else: carb.log_error(f"[{asset.name}] access denied: {download_url}") ret_value["status"] = omni.client.Result.ERROR_ACCESS_DENIED return ret_value def destroy(self): self._auth_params = None
14,630
Python
41.906158
120
0.582707
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/omni/asset_provider/sketchfab/tests/test_sketchfab.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from typing import Any import omni.kit.test import aiohttp from unittest.mock import patch from typing import Dict from omni.services.browser.asset import SearchCriteria, AssetModel from ..sketchfab import SketchFabAssetProvider class MockHeader: def __init__(self): pass def get(self, attr: str, default: Any): return default class MockResponse: def __init__(self, json: Dict = {}, data: str = ""): self._json = json self._data = data self.headers = MockHeader() @property def ok(self): return True async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): pass async def json(self) -> Dict: return self._json async def read(self) -> str: return self._data class SketchfabTestCase(omni.kit.test.AsyncTestCaseFailOnLogError): VALID_USERNAME = "username" VALID_PASSWORD = "password" VALID_ACCESS_TOKEN = "access_token" DOWNLOADED_CONTENT = "abc def" def _mock_aiohttp_post_impl(self, url: str, params: Dict = None): import carb.settings from ..constants import SETTING_ROOT settings = carb.settings.get_settings() if url == settings.get_as_string(SETTING_ROOT + "accessTokenUrl"): # Auth endpoint if params["username"] == self.VALID_USERNAME and params["password"] == self.VALID_PASSWORD: return MockResponse(json={"access_token": self.VALID_ACCESS_TOKEN}) else: return MockResponse(json={"error": "invalid_grant", "error_description": "Invalid credentials given."}) return MockResponse(json={}) def _mock_aiohttp_get_impl(self, url: str, headers: Dict = None): if headers is not None: self.assertTrue(self.VALID_ACCESS_TOKEN in headers["Authorization"]) if url.endswith("download"): return MockResponse(json={"usdz": {"url": url.split("?")[0]}}) else: return MockResponse(data=self.DOWNLOADED_CONTENT) async def _mock_write_file_impl(self, url: str, buffer): return omni.client.Result.OK # NOTE: this test is disabled by default to avoid reaching out to Turbosquid continiously during our tests. async def notest_search_no_criteria(self): """Test listing first page assets.""" store = SketchFabAssetProvider() RESULTS_COUNT = 50 (result, *_) = await store.search(search_criteria=SearchCriteria(), search_timeout=60) self.assertEqual(len(result), RESULTS_COUNT) async def test_authentication_succeeds(self): """Test listing first page assets.""" under_test = SketchFabAssetProvider() username = self.VALID_USERNAME password = self.VALID_PASSWORD with patch.object(aiohttp.ClientSession, "post", side_effect=self._mock_aiohttp_post_impl): await under_test.authenticate(username, password) self.assertTrue(under_test.authorized()) async def test_authentication_fails(self): """Test listing first page assets.""" under_test = SketchFabAssetProvider() username = self.VALID_USERNAME password = "invalid_password" with patch.object(aiohttp.ClientSession, "post", side_effect=self._mock_aiohttp_post_impl): await under_test.authenticate(username, password) self.assertFalse(under_test.authorized()) async def test_download_succeeds(self): """Test listing first page assets.""" under_test = SketchFabAssetProvider() username = self.VALID_USERNAME password = self.VALID_PASSWORD with patch.object(aiohttp.ClientSession, "post", side_effect=self._mock_aiohttp_post_impl): await under_test.authenticate(username, password) with patch.object(aiohttp.ClientSession, "get", side_effect=self._mock_aiohttp_get_impl): with patch("omni.client.write_file_async", side_effect=self._mock_write_file_impl) as mock_write_file: asset = AssetModel( identifier="1c54053d-49dd-4e18-ba46-abbe49a905b0", name="car-suv-1", version="1.0.1-beta", published_at="2020-12-15T17:49:22+00:00", categories=["/vehicles/cars/suv"], tags=["vehicle", "cars", "suv"], vendor="NVIDIA", download_url="https://acme.org/downloads/vehicles/cars/suv/car-suv-1.usdz?download", product_url="https://acme.org/products/purchase/car-suv-1", price=10.99, thumbnail="https://images.com/thumbnails/256x256/car-suv-1.png", ) dest_url = "C:/Users/user/Downloads" results = await under_test.download(asset, dest_url) expected_filename = os.path.basename(asset.download_url.split("?")[0]) expected_url = f"{dest_url}/{expected_filename}" mock_write_file.assert_called_once_with(expected_url, self.DOWNLOADED_CONTENT) self.assertEqual(results["status"], omni.client.Result.OK) self.assertEqual(results["url"], expected_url)
5,692
Python
38.811189
119
0.636683
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/docs/CHANGELOG.md
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [0.0.1] - 2023-09-13 ### Changed - Initialize extension
312
Markdown
30.299997
168
0.730769
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/docs/README.md
# Insiderobo Asset Provider [omni.asset_provider.digitalbotlab]
63
Markdown
62.999937
63
0.84127
DigitalBotLab/InsideroboConnector/Exts/~omni.asset_provider.digitalbotlab/docs/index.rst
Base Job Facility ################# This Extension offers a facility offering base job features. :platform: windows-x86_64, linux-x86_64 :members: :private-members: :special-members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
304
reStructuredText
20.785713
60
0.661184
DigitalBotLab/InsideroboConnector/Exts/insiderobo.license/insiderobo/license/extension.py
import omni.ext import omni.ui as ui import omni.usd from pxr import Sdf import os # import omni.kit.window.file from .params import LICENSE2PATH # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[insiderobo.license] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class InsideroboLicenseExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[insiderobo.license] insiderobo license startup") self._count = 0 self._window = ui.Window("Insiderobo License", width=300, height=300) with self._window.frame: with ui.VStack(): with ui.HStack(height = 20): ui.Label("Prim Path:", width = 100) self.prim_path_ui = ui.StringField() with ui.HStack(height = 20): ui.Label("License Name:", width = 100) self.license_name_ui = ui.StringField() self.license_name_ui.model.set_value("kinova") with ui.HStack(height = 20): ui.Label("License Path:", width = 100) # self.license_path_ui = ui.StringField() # self.license_name = self.license_name_ui.model.get_value_as_string() # self.license_path_ui.model.set_value(LICENSE2PATH[self.license_name]) ui.Button("Add License to Prim", height = 20, clicked_fn=self.add_license) def add_license(self): print("adding license") stage = omni.usd.get_context().get_stage() prim_path = self.prim_path_ui.model.get_value_as_string() # if the prim path is empty, use the default prim path if prim_path == "": prim_path = stage.GetDefaultPrim().GetPath().pathString self.license_name = self.license_name_ui.model.get_value_as_string() license_path = LICENSE2PATH[self.license_name] #self.license_path_ui.model.get_value_as_string() prim = stage.GetPrimAtPath(prim_path) # load the license file into string license_file = open(license_path, "r") license_text = license_file.read() print("license text: ", license_text) attribute_name = f"{self.license_name}_license" if not prim.HasAttribute(attribute_name): # create a new attribute on the prim prim.CreateAttribute(attribute_name, Sdf.ValueTypeNames.String, False).Set(license_text) # save the stage omni.usd.get_context().get_stage().Save() license_file.close() def debug(self): print("[insiderobo.license] insiderobo license debug: ") def on_shutdown(self): print("[insiderobo.license] insiderobo license shutdown")
3,364
Python
38.588235
119
0.615933
DigitalBotLab/InsideroboConnector/Exts/insiderobo.license/insiderobo/license/params.py
# parameters import os # Get the absolute path of the current script file script_path = os.path.abspath(__file__) # Get the directory of the script file script_directory = os.path.dirname(script_path) LICENSE2PATH = { "kinova": os.path.join(script_directory, "licences", "KINOVA_LICENSE.txt"), "ufactory": os.path.join(script_directory, "licences", "UFACTORY_LICENSE.txt"), "digitalbotlab": os.path.join(script_directory, "licences", "DIGITALBOTLAB_EXTENDED_LICENSE.txt"), "universal_robot": os.path.join(script_directory, "licences", "UR_LICENESE_INFO.txt"), "franka": os.path.join(script_directory, "licences", "FRANKA_LICENSE.txt"), }
660
Python
40.312497
102
0.719697
DigitalBotLab/3DRotationCalculator/Extension/exts/rotaiton.calculator/rotaiton/calculator/extension.py
import omni.ext import omni.ui as ui from .ui.custom_multifield_widget import CustomMultifieldWidget from pxr import Gf import numpy as np from .numpy_utils import euler_angles_to_quat # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class RotaitonCalculatorExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[rotaiton.calculator] rotaiton calculator startup") self._count = 0 self._window = ui.Window("3D Rotation Calculator", width=300, height=100, visible=True) with self._window.frame: with ui.VStack(): with ui.CollapsableFrame("Quaternion mul", collapsed=False, height = 0): with ui.VStack(): with ui.HStack(height = 20): self.q1_widget = CustomMultifieldWidget( label="Quaternion 1:", sublabels=[ "w", "x", "y", "z"], default_vals=[1, 0, 0, 0], ) with ui.HStack(height = 20): self.q2_widget = CustomMultifieldWidget( label="Quaternion 2:", sublabels=[ "w", "x", "y", "z"], default_vals=[1, 0, 0, 0], ) ui.Line(height = 5) with ui.HStack(height = 20): self.q_widget = CustomMultifieldWidget( label="Result:", sublabels=[ "w", "x", "y", "z"], default_vals=[1, 0, 0, 0], read_only= True ) self.q_str_widget = ui.StringField(width = 200, height = 20) ui.Line(height = 5) with ui.HStack(): ui.Button("Quaternion mul", height = 20, clicked_fn=self.quaternioin_mul) with ui.CollapsableFrame("Euler to Quaternion", collapsed=False, height = 0): with ui.VStack(): with ui.HStack(height = 20): self.euler_widget = CustomMultifieldWidget( label="Euler angles (degree):", sublabels=[ "roll", "pitch", "yaw"], default_vals=[0, 0, 0], ) ui.Line(height = 5) with ui.HStack(height = 20): self.quat_widget = CustomMultifieldWidget( label="Quaternion:", sublabels=[ "w", "x", "y", "z"], default_vals=[1, 0, 0, 0], read_only= True ) ui.Button("Euler to Quat", height = 20, clicked_fn=self.euler2quat) def on_shutdown(self): print("[rotaiton.calculator] rotaiton calculator shutdown") def quaternioin_mul(self): print("quaternioin_mul") q1 = [self.q1_widget.multifields[i].model.as_float for i in range(4)] # wxyz q1 = Gf.Quatf(q1[0], q1[1], q1[2], q1[3]) q2 = [self.q2_widget.multifields[i].model.as_float for i in range(4)] # wxyz q2 = Gf.Quatf(q2[0], q2[1], q2[2], q2[3]) q = q1 * q2 self.q_widget.update([q.GetReal(), *q.GetImaginary()]) self.q_str_widget.model.set_value(str(q)) def euler2quat(self): print("euler2quat") euler = [self.euler_widget.multifields[i].model.as_float for i in range(3)] # roll pitch yaw q = euler_angles_to_quat(euler, degrees=True).tolist() self.quat_widget.update(q)
4,260
Python
49.129411
119
0.482629
DigitalBotLab/3DRotationCalculator/Extension/exts/rotaiton.calculator/rotaiton/calculator/ui/controller.py
# controller import carb class UIController(): w = False s = False a = False d = False q = False e = False up = False down = False left = False right = False # Controller.scale = 0.1 left_control = False def __init__(self) -> None: self.user_control = 0.25 self.network_control = 0.25 UIController.reset_movement() @classmethod def reset_movement(cls): UIController.w = False UIController.s = False UIController.a = False UIController.d = False UIController.q = False UIController.e = False UIController.up = False UIController.down = False UIController.left = False UIController.right = False # Controller.left_control = False def handle_keyboard_event(self, event): if ( event.type == carb.input.KeyboardEventType.KEY_PRESS or event.type == carb.input.KeyboardEventType.KEY_REPEAT ): # print("event input", event.input) if event.input == carb.input.KeyboardInput.W: UIController.w = True if event.input == carb.input.KeyboardInput.S: UIController.s = True if event.input == carb.input.KeyboardInput.A: UIController.a = True if event.input == carb.input.KeyboardInput.D: UIController.d = True if event.input == carb.input.KeyboardInput.Q: UIController.q = True if event.input == carb.input.KeyboardInput.E: UIController.e = True if event.input == carb.input.KeyboardInput.UP: UIController.up = True if event.input == carb.input.KeyboardInput.DOWN: UIController.down = True if event.input == carb.input.KeyboardInput.LEFT: UIController.left = True if event.input == carb.input.KeyboardInput.RIGHT: UIController.right = True if event.input == carb.input.KeyboardInput.LEFT_CONTROL: UIController.left_control = True if event.type == carb.input.KeyboardEventType.KEY_RELEASE: # print("event release", event.input) if event.input == carb.input.KeyboardInput.W: UIController.w = False if event.input == carb.input.KeyboardInput.S: UIController.s = False if event.input == carb.input.KeyboardInput.A: UIController.a = False if event.input == carb.input.KeyboardInput.D: UIController.d = False if event.input == carb.input.KeyboardInput.Q: UIController.q = False if event.input == carb.input.KeyboardInput.E: UIController.e = False if event.input == carb.input.KeyboardInput.UP: UIController.up = False if event.input == carb.input.KeyboardInput.DOWN: UIController.down = False if event.input == carb.input.KeyboardInput.LEFT: UIController.left = False if event.input == carb.input.KeyboardInput.RIGHT: UIController.right = False if event.input == carb.input.KeyboardInput.LEFT_CONTROL: UIController.left_control = False def PoolUserControl(self): return self.user_control def PoolNetworkControl(self): return 0.1 if UIController.w else 0.25 def QueryMove(self): move = [0, 0, 0] if UIController.w: move[0] += 1 if UIController.s: move[0] -= 1 if UIController.a: move[1] += 1 if UIController.d: move[1] -= 1 if UIController.q: move[2] -= 1 if UIController.e: move[2] += 1 return move def QueryRotation(self): rotation = [0, 0] if UIController.up: rotation[0] += 1 if UIController.down: rotation[0] -= 1 if UIController.left: rotation[1] += 1 if UIController.right: rotation[1] -= 1 return rotation def QueryGripper(self): if not UIController.left_control: return 1 # open else: return -1 # close
4,435
Python
30.239436
68
0.544081
NVIDIA-AI-IOT/isaac_camera_benchmark/camera_benchmark.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: MIT # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import carb from omni.isaac.kit import SimulationApp import sys import csv from datetime import datetime import json import argparse parser = argparse.ArgumentParser(description="Ros2 Bridge Sample") parser.add_argument('--config_path', default='config.json', help='Path to the world to create a navigation mesh.') args, unknown = parser.parse_known_args() ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" DEFAULT_CONFIG = { 'record': False, 'simulation': {"renderer": "RayTracedLighting", "headless": False}, 'camera': [ {'translate': [-1, 5, 1], 'resolution': [640, 480]}, {'translate': [-1, 1, 6], 'resolution': [640, 480]}, {'translate': [-1, 7, 3], 'resolution': [640, 480]}, # {'translate': [1, 2, 3], 'resolution': [640, 480]}, ] } def read_config(filename): try: with open(filename, 'r') as file: config_data = json.load(file) except FileNotFoundError: print( f"Config file '{filename}' not found. Using default configuration.") return DEFAULT_CONFIG # Update default config with values from the file config = DEFAULT_CONFIG.copy() config.update(config_data) return config # Load config file config = read_config(args.config_path) simulation_app = SimulationApp(config['simulation']) import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import stage, extensions, nucleus from pxr import Gf, UsdGeom, Usd from omni.kit.viewport.utility import get_active_viewport import omni.graph.core as og # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_app.update() import threading import rclpy from rclpy.node import Node from rclpy.qos import qos_profile_sensor_data from sensor_msgs.msg import Image def create_camera(translate=[-1, 5, 1], resolution=[640, 480], number_camera=0): camera_stage_path = "/Camera" + f"{number_camera}" ros_camera_graph_path = ROS_CAMERA_GRAPH_PATH + f"{number_camera}" # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(camera_stage_path, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(translate[0], translate[1], translate[2])) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() viewport_name = f"Viewport{number_camera}" if number_camera != 0 else "" # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ros_camera_graph_path, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:execOut", "setViewportResolution.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("createViewport.outputs:viewport", "setViewportResolution.inputs:viewport"), ("setViewportResolution.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:name", viewport_name), ("createViewport.inputs:viewportId", number_camera), ("setViewportResolution.inputs:width", resolution[0]), ("setViewportResolution.inputs:height", resolution[1]), ("setCamera.inputs:cameraPrim", f"{camera_stage_path}"), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", f"/Camera{number_camera}/rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", f"/Camera{number_camera}/camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", f"/Camera{number_camera}/depth"), ("cameraHelperDepth.inputs:type", "depth"), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() return xform_api class BenchmarkCamera(Node): def __init__(self, config): super().__init__("benchmark_camera_node") # Run ROS2 node in a separate thread executor = rclpy.executors.MultiThreadedExecutor() executor.add_node(self) executor_thread = threading.Thread(target=executor.spin, daemon=True) executor_thread.start() # Chech if record is enable current_date = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") self.file_path = f'benchmark_camera_{current_date}.csv' if 'record' in config and config['record'] else '' # Init variables self.last_printed_tn = 0 self.msg_t0 = -1 self.msg_tn = 0 self.window_size = 10000 # window_size self.times = [] self.fps = 0 # Get camera list from config file self.xform_api_camera = [] self.simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) if 'camera' not in config or len(config['camera']) == 0: carb.log_error("There are no camera in list, please add one in config file") simulation_app.close() sys.exit() for idx, camera in enumerate(config['camera']): self.xform_api_camera += [create_camera(translate=camera['translate'], resolution=camera['resolution'], number_camera=idx)] self.subscription = self.create_subscription( Image, # Replace with the actual message type you're subscribing to '/Camera0/rgb', # Replace with the actual topic name self.callback_hz, qos_profile_sensor_data, ) def callback_hz(self, msg): curr_rostime = self.get_clock().now() if curr_rostime.nanoseconds == 0: if len(self.times) > 0: print('time has reset, resetting counters') self.times = [] return curr = curr_rostime.nanoseconds msg_t0 = self.msg_t0 if msg_t0 < 0 or msg_t0 > curr: self.msg_t0 = curr self.msg_tn = curr self.times = [] else: self.times.append(curr - self.msg_tn) self.msg_tn = curr if len(self.times) > self.window_size: self.times.pop(0) def plot_benchmark(self, fps): if not self.times: return elif self.last_printed_tn == 0: self.last_printed_tn = self.msg_tn return elif self.msg_tn < self.last_printed_tn + 1e9: return # Get frequency every one minute n = len(self.times) mean = sum(self.times) / n rate = 1. / mean if mean > 0. else 0 self.last_printed_tn = self.msg_tn # Print benchmark rate_print = rate * 1e9 self.get_logger().info( f"ROS avg: {rate_print:.3f} Hz - Isaac SIM FPs: {fps:.2f}") # Print benchmark to csv file if self.file_path: self.csv_writer.writerow([rate_print, fps]) def run_simulation(self): # Need to initialize physics getting any articulation..etc self.simulation_context.initialize_physics() self.simulation_context.play() frame = 0 # Dock all viewports n_vieports = len(self.xform_api_camera) if n_vieports > 1: viewport = omni.ui.Workspace.get_window('Viewport') for idx in reversed(range(1, n_vieports)): viewport_idx = omni.ui.Workspace.get_window(f"Viewport{idx}") viewport_idx.dock_in(viewport, omni.ui.DockPosition.RIGHT) # Open csv file if self.file_path: csv_file = open(self.file_path, 'w', newline='') # Create a CSV writer object self.csv_writer = csv.writer(csv_file) self.get_logger().info(f'Recording benchmark to {self.file_path}') # Run simulation while simulation_app.is_running(): # Run with a fixed step size self.simulation_context.step(render=True) # rclpy.spin_once(self, timeout_sec=0.0) if self.simulation_context.is_playing(): if self.simulation_context.current_time_step_index == 0: self.simulation_context.reset() # Get viewport fps and plot benchmark viewport_api = get_active_viewport() self.plot_benchmark(viewport_api.fps) # Rotate camera by 0.5 degree every frame for xform_api in self.xform_api_camera: xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) frame = frame + 1 # Cleanup if self.file_path: csv_file.close() self.simulation_context.stop() simulation_app.close() if __name__ == "__main__": rclpy.init() # Start simulation subscriber = BenchmarkCamera(config) subscriber.run_simulation() # Cleanup rclpy.shutdown() # EOF
13,144
Python
41.540453
135
0.629793
NVIDIA-AI-IOT/isaac_camera_benchmark/README.md
# isaac_camera_benchmark This tool run a simple test to check the performance of your desktop on Isaac SIM. ![Camera benchmark](.doc/camera_benchmark.png) You can run multiple test and read: * Camera performance from 1 to more * Change resolution * ROS2 This tool will plot on your bash the ROS topic frequency average and the FPS from Isaac SIM. This tool will run a set of camera on your Isaac SIM environment and will start to rotate every camera autonomously. ## Hardware required Workstation: 1. x86/64 machine 2. Install Ubuntu 20.04 or Ubuntu 22.04 3. NVIDIA Graphic card with RTX 4. Display 5. Keyboard and Mouse ### Run demo Clone this repository and move to repository folder ```console git clone https://github.com/nvidia_iot/isaac_camera_benchmark.git cd isaac_camera_benchmark ``` Run the installer ```console ./run_camera_benchmark.sh ``` #### NVIDIA Isaac SIM Follow the documentation on NVIDIA Isaac SIM [Workstation install](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_workstation.html) 1. Download the [Omniverse Launcher](https://www.nvidia.com/en-us/omniverse/) 2. [Install Omniverse Launcher](https://docs.omniverse.nvidia.com/prod_launcher/prod_launcher/installing_launcher.html) 3. Install [Cache](https://docs.omniverse.nvidia.com/prod_nucleus/prod_utilities/cache/installation/workstation.html) from the Omniverse Launcher 4. Install [Nucleus](https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/workstation/installation.html) from the Omniverse Launcher Open Omniverse Launcher ![Omniverse launcher](https://docs.omniverse.nvidia.com/isaacsim/latest/_images/isaac_main_launcher_exchange.png) Move to Library and choice "Omniverse Isaac SIM" and download the latest 2023.1 version ![Omniverse library](https://docs.omniverse.nvidia.com/isaacsim/latest/_images/isaac_main_launcher_library.png) ## Setup Isaac Camera Benchmark To add a new camera or change the benchmark simulation, you can simply create a new file `config.json` that override the default configuration. ### Add a new camera Make a new field called `camera` and for each camera add these fields: * `translate` position camera inside the environment * `resolution` Camera resolution, suggested * 640 x 480 * 1024 x 768 * **FHD** - 1920 x 1080 * **2K** - 2560 x 1440 * **4K** - 3840 x 2160 Example a json file can be composed in this way ```json { "camera": [ {"translate": [-1, 5, 1], "resolution": [640, 480]}, {"translate": [0, 0, 0], "resolution": [1024, 768]}, ] } ``` ### Change simulation type On the `simulation` field you can change the simulation configuration, example make it headless like the example below ```json { "simulation": {"renderer": "RayTracedLighting", "headless": true} } ``` ### Export benchmark to csv file If you want to export the output in a csv file you can enable the option that automatically generate a file with name `benchmark_camera_<CURRENT DATE>.csv` ```json { "record": true } ``` ## Record camera output If you want to record in a ros2 bag file all camera you can simply run ```console ./ros2record.sh ``` That simply export all camera in a **rosbag2** folder, the output will be like the picture below. ![ros2 bag record](.doc/ros2record.png) All ros2bag file will be available on folder `isaac_camera_benchmark/rosbag`.
3,365
Markdown
27.525423
155
0.743239