file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/pick_up_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from controllers.pick_place import PickPlaceController from omni.isaac.core import World from tasks.pick_place import PickPlace parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) target_position = np.array([-0.3, 0.6, 0]) target_position[2] = 0.0515 / 2.0 my_task = PickPlace(name="denso_pick_place", target_position=target_position) my_world.add_task(my_task) my_world.reset() my_denso = my_world.scene.get_object("cobotta_robot") # initialize the controller my_controller = PickPlaceController(name="controller", robot_articulation=my_denso, gripper=my_denso.gripper) task_params = my_world.get_task("denso_pick_place").get_params() articulation_controller = my_denso.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() # forward the observation values to the controller to get the actions actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0, 0.25]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
2,371
Python
38.533333
109
0.719106
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/follow_target_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from controllers.rmpflow import RMPFlowController from omni.isaac.core import World from tasks.follow_target import FollowTarget parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) # Initialize the Follow Target task with a target location for the cube to be followed by the end effector my_task = FollowTarget(name="denso_follow_target", target_position=np.array([0.5, 0, 0.5])) my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("denso_follow_target").get_params() target_name = task_params["target_name"]["value"] denso_name = task_params["robot_name"]["value"] my_denso = my_world.scene.get_object(denso_name) # initialize the controller my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_denso) # make RmpFlow aware of the ground plane ground_plane = my_world.scene.get_object(name="default_ground_plane") my_controller.add_obstacle(ground_plane) articulation_controller = my_denso.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
2,270
Python
38.842105
106
0.748899
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/gripper_control.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/cobotta") # define the gripper gripper = ParallelGripper( # We chose the following values while inspecting the articulation end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.628, 0.628]), ) # define the manipulator my_denso = my_world.scene.add( SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper, ) ) # set the default positions of the other gripper joints to be opened so # that its out of the way of the joints we want to control when gripping an object for instance. joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 my_denso.set_joints_default_state(positions=joints_default_positions) my_world.scene.add_default_ground_plane() my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 gripper_positions = my_denso.gripper.get_joint_positions() if i < 500: # close the gripper slowly my_denso.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] + 0.1, gripper_positions[1] - 0.1]) ) if i > 500: # open the gripper slowly my_denso.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] - 0.1, gripper_positions[1] + 0.1]) ) if i == 1000: i = 0 if args.test is True: break simulation_app.close()
3,250
Python
37.247058
108
0.707692
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/rmpflow/robot_descriptor.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 default_q: [ 0.0,0.3,1.2,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: - {name: finger_joint, rule: fixed, value: 0.0} - {name: left_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_outer_knuckle_joint, rule: fixed, value: 0.0} - {name: left_inner_finger_joint, rule: fixed, value: 0.0} - {name: right_inner_finger_joint, rule: fixed, value: 0.0} # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - J1: - "center": [0.0, 0.0, 0.1] "radius": 0.08 - "center": [0.0, 0.0, 0.15] "radius": 0.08 - "center": [0.0, 0.0, 0.2] "radius": 0.08 - J2: - "center": [0.0, 0.08, 0.0] "radius": 0.08 - "center": [0.0, 0.174, 0.0] "radius": 0.08 - "center": [-0.0, 0.186, 0.05] "radius": 0.065 - "center": [0.0, 0.175, 0.1] "radius": 0.065 - "center": [-0.0, 0.18, 0.15] "radius": 0.065 - "center": [0.0, 0.175, 0.2] "radius": 0.065 - "center": [0.0, 0.175, 0.25] "radius": 0.065 - "center": [0.0, 0.175, 0.3] "radius": 0.065 - "center": [0.0, 0.175, 0.35] "radius": 0.065 - "center": [0.0, 0.175, 0.4] "radius": 0.065 - "center": [0.0, 0.175, 0.45] "radius": 0.065 - "center": [0.0, 0.175, 0.5] "radius": 0.065 - "center": [-0.002, 0.1, 0.507] "radius": 0.07 - J3: - "center": [0.0, 0.025, 0.0] "radius": 0.065 - "center": [0.0, -0.025, 0.0] "radius": 0.065 - "center": [0.0, -0.025, 0.05] "radius": 0.065 - "center": [0.0, -0.025, 0.1] "radius": 0.065 - "center": [0.0, -0.025, 0.15] "radius": 0.06 - "center": [0.0, -0.025, 0.2] "radius": 0.06 - "center": [0.0, -0.025, 0.25] "radius": 0.06 - "center": [0.0, -0.025, 0.3] "radius": 0.06 - "center": [0.0, -0.025, 0.35] "radius": 0.055 - "center": [0.0, -0.025, 0.4] "radius": 0.055 - J5: - "center": [0.0, 0.05, 0.0] "radius": 0.055 - "center": [0.0, 0.1, 0.0] "radius": 0.055 - J6: - "center": [0.0, 0.0, -0.05] "radius": 0.05 - "center": [0.0, 0.0, -0.1] "radius": 0.05 - "center": [0.0, 0.0, -0.15] "radius": 0.05 - "center": [0.0, 0.0, 0.04] "radius": 0.035 - "center": [0.0, 0.0, 0.08] "radius": 0.035 - "center": [0.0, 0.0, 0.12] "radius": 0.035 - right_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - right_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01 - left_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - left_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01
4,073
YAML
27.690141
80
0.51289
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/tasks/pick_place.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional import numpy as np import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper class PickPlace(tasks.PickPlace): def __init__( self, name: str = "denso_pick_place", cube_initial_position: Optional[np.ndarray] = None, cube_initial_orientation: Optional[np.ndarray] = None, target_position: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.PickPlace.__init__( self, name=name, cube_initial_position=cube_initial_position, cube_initial_orientation=cube_initial_orientation, target_position=target_position, cube_size=np.array([0.0515, 0.0515, 0.0515]), offset=offset, ) return def set_robot(self) -> SingleManipulator: assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/cobotta") gripper = ParallelGripper( end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.2, 0.2]), ) manipulator = SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper, ) joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 manipulator.set_joints_default_state(positions=joints_default_positions) return manipulator
2,648
Python
39.753846
81
0.66352
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/controllers/pick_place.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.core.articulations import Articulation from omni.isaac.manipulators.grippers import ParallelGripper from .rmpflow import RMPFlowController class PickPlaceController(manipulators_controllers.PickPlaceController): def __init__(self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, events_dt=None) -> None: if events_dt is None: events_dt = [0.005, 0.002, 1, 0.05, 0.0008, 0.005, 0.0008, 0.1, 0.0008, 0.008] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, events_dt=events_dt, end_effector_initial_height=0.6, ) return
1,362
Python
41.593749
118
0.713656
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/controllers/rmpflow.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name class RMPFlowController(mg.MotionPolicyController): def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: self.rmpflow = mg.lula.motion_policies.RmpFlow( robot_description_path=os.path.join(os.path.dirname(__file__), "../rmpflow/robot_descriptor.yaml"), rmpflow_config_path=os.path.join(os.path.dirname(__file__), "../rmpflow/denso_rmpflow_common.yaml"), urdf_path=os.path.join(os.path.dirname(__file__), "../rmpflow/cobotta_pro_900.urdf"), end_effector_frame_name="gripper_center", maximum_substep_size=0.00334, ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) ( self._default_position, self._default_orientation, ) = self._articulation_motion_policy._robot_articulation.get_world_pose() self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
2,038
Python
45.340908
112
0.705103
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import matplotlib.pyplot as plt import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera my_world = World(stage_units_in_meters=1.0) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_1", position=np.array([5.0, 3, 1.0]), scale=np.array([0.6, 0.5, 0.2]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_3 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_2", position=np.array([-5, 1, 3.0]), scale=np.array([0.1, 0.1, 0.1]), size=1.0, color=np.array([0, 0, 255]), linear_velocity=np.array([0, 0, 0.4]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 25.0]), frequency=20, resolution=(256, 256), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) my_world.scene.add_default_ground_plane() my_world.reset() camera.initialize() i = 0 camera.add_motion_vectors_to_frame() while simulation_app.is_running(): my_world.step(render=True) print(camera.get_current_frame()) if i == 100: points_2d = camera.get_image_coords_from_world_points( np.array([cube_3.get_world_pose()[0], cube_2.get_world_pose()[0]]) ) points_3d = camera.get_world_points_from_image_coords(points_2d, np.array([24.94, 24.9])) print(points_2d) print(points_3d) imgplot = plt.imshow(camera.get_rgba()[:, :, :3]) plt.show() print(camera.get_current_frame()["motion_vectors"]) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 simulation_app.close()
2,399
Python
29
97
0.64777
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/imu_sensor.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.sensor import IMUSensor from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Carter/nova_carter_sensors.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Carter") my_carter = my_world.scene.add( Articulation(prim_path="/World/Carter", name="my_carter", position=np.array([0, 0.0, 0.5])) ) wheel_dof_names = ["joint_wheel_left", "joint_wheel_right"] my_controller = DifferentialController(name="simple_control", wheel_radius=0.04295, wheel_base=0.4132) imu_sensor = my_world.scene.add( IMUSensor( prim_path="/World/Carter/caster_wheel_left/imu_sensor", name="imu", frequency=60, translation=np.array([0, 0, 0]), ) ) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): wheel_dof_indices = [my_carter.get_dof_index(wheel_dof_names[i]) for i in range(len(wheel_dof_names))] if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() print(imu_sensor.get_current_frame()) actions = ArticulationAction() if i >= 0 and i < 1000: # forward actions = my_controller.forward(command=[0.05, 0]) elif i >= 1000 and i < 1265: # rotate actions = my_controller.forward(command=[0.0, np.pi / 12]) elif i >= 1265 and i < 2000: # forward actions = my_controller.forward(command=[0.05, 0]) elif i == 2000: i = 0 i += 1 joint_actions = ArticulationAction() joint_actions.joint_velocities = np.zeros(my_carter.num_dof) if actions.joint_velocities is not None: for j in range(len(wheel_dof_indices)): joint_actions.joint_velocities[wheel_dof_indices[j]] = actions.joint_velocities[j] my_carter.apply_action(joint_actions) simulation_app.close()
3,133
Python
35.022988
110
0.687201
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/effort_sensor.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # In this example, please drag the cube along the arm and see how the effort measurement from the effort sensor changes from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.sensor.scripts.effort_sensor import EffortSensor from pxr import UsdPhysics assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0, physics_dt=1.0 / 60, rendering_dt=1.0 / 60) my_world.scene.add_default_ground_plane(z_position=-1) asset_path = assets_root_path + "/Isaac/Robots/Simple/simple_articulation.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/Articulation") arm_joint = "/Articulation/Arm/RevoluteJoint" prim = get_prim_at_path(arm_joint) joint = UsdPhysics.RevoluteJoint(prim) joint.CreateAxisAttr("Y") DynamicCuboid( prim_path="/World/Cube", name="cube_1", position=np.array([1.5, 0, 0.2]), color=np.array([255, 0, 0]), size=0.1, mass=1, ) my_world.reset() effort_sensor = EffortSensor(prim_path=arm_joint) while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): reading = effort_sensor.get_sensor_reading() print(f"Sensor Time: {reading.time} Value: {reading.value} Validity: {reading.is_valid}") if my_world.current_time_step_index == 0: my_world.reset() simulation_app.close()
2,253
Python
33.151515
119
0.743009
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/rotating_lidar_rtx.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.sensor import LidarRtx from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Carter/nova_carter_sensors.usd" my_carter = my_world.scene.add( WheeledRobot( prim_path="/World/Carter", name="my_carter", wheel_dof_names=["joint_wheel_left", "joint_wheel_right"], create_robot=True, usd_path=asset_path, position=np.array([0, 0.0, 0.5]), ) ) # config_file_name="Example_Rotary" my_lidar = my_world.scene.add( LidarRtx(prim_path="/World/Carter/chassis_link/front_hawk/right/lidar_rig/lidar", name="lidar") ) cube_1 = my_world.scene.add( DynamicCuboid(prim_path="/World/cube", name="cube_1", position=np.array([2, 2, 2.5]), scale=np.array([20, 0.2, 5])) ) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/World/cube_2", name="cube_2", position=np.array([2, -2, 2.5]), scale=np.array([20, 0.2, 5]) ) ) my_controller = DifferentialController(name="simple_control", wheel_radius=0.04295, wheel_base=0.4132) my_world.reset() my_lidar.add_range_data_to_frame() my_lidar.add_point_cloud_data_to_frame() my_lidar.enable_visualization() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 1000: print(my_lidar.get_current_frame()) # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i >= 1000 and i < 1265: # rotate my_carter.apply_wheel_actions(my_controller.forward(command=[0.0, np.pi / 12])) elif i >= 1265 and i < 2000: # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i == 2000: i = 0 i += 1 if args.test is True and i > 100: break my_world.stop() simulation_app.update() simulation_app.close()
3,309
Python
33.123711
119
0.684195
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera_opencv_fisheye.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) # Option: "renderer": "PathTracing" import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera from PIL import Image, ImageDraw # Given the OpenCV camera matrix and distortion coefficients (Fisheye, Kannala-Brandt model), # creates a camera and a sample scene, renders an image and saves it to # camera_opencv_fisheye.png file. The asset is also saved to camera_opencv_fisheye.usd file. # Currently only supports square images (there is an issue in the rendering pipeline). # To produce non-square images, the region of the image that is not used should be cropped width, height = 1920, 1200 camera_matrix = [[455.8, 0.0, 943.8], [0.0, 454.7, 602.3], [0.0, 0.0, 1.0]] distortion_coefficients = [0.05, 0.01, -0.003, -0.0005] # Camera sensor size and optical path parameters. These parameters are not the part of the # OpenCV camera model, but they are nessesary to simulate the depth of field effect. # # To disable the depth of field effect, set the f_stop to 0.0. This is useful for debugging. pixel_size = 3 # in microns, 3 microns is common f_stop = 1.8 # f-number, the ratio of the lens focal length to the diameter of the entrance pupil focus_distance = 0.6 # in meters, the distance from the camera to the object plane diagonal_fov = 235 # in degrees, the diagonal field of view to be rendered # Create a world, add a 1x1x1 meter cube, a ground plane, and a camera world = World(stage_units_in_meters=1.0) world.scene.add_default_ground_plane() cube_1 = world.scene.add( DynamicCuboid( prim_path="/new_cube_1", name="cube_1", position=np.array([0, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_2 = world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_2", position=np.array([2, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([0, 255, 0]), ) ) cube_3 = world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_3", position=np.array([0, 4, 1]), scale=np.array([2.0, 2.0, 2.0]), size=1.0, color=np.array([0, 0, 255]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 2.0]), # 1 meter away from the side of the cube frequency=30, resolution=(width, height), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) # Setup the scene and render a frame world.reset() camera.initialize() # Calculate the focal length and aperture size from the camera matrix ((fx, _, cx), (_, fy, cy), (_, _, _)) = camera_matrix horizontal_aperture = pixel_size * 1e-3 * width vertical_aperture = pixel_size * 1e-3 * height focal_length_x = fx * pixel_size * 1e-3 focal_length_y = fy * pixel_size * 1e-3 focal_length = (focal_length_x + focal_length_y) / 2 # in mm # Set the camera parameters, note the unit conversion between Isaac Sim sensor and Kit camera.set_focal_length(focal_length / 10.0) camera.set_focus_distance(focus_distance) camera.set_lens_aperture(f_stop * 100.0) camera.set_horizontal_aperture(horizontal_aperture / 10.0) camera.set_vertical_aperture(vertical_aperture / 10.0) camera.set_clipping_range(0.05, 1.0e5) # Set the distortion coefficients camera.set_projection_type("fisheyePolynomial") camera.set_kannala_brandt_properties(width, height, cx, cy, diagonal_fov, distortion_coefficients) # Get the rendered frame and save it to a file for i in range(100): world.step(render=True) camera.get_current_frame() img = Image.fromarray(camera.get_rgba()[:, :, :3]) # Optional step, draw the 3D points to the image plane using the OpenCV fisheye model def draw_points_opencv_fisheye(points3d): import cv2 rvecs, tvecs = np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]) points, jac = cv2.fisheye.projectPoints( np.expand_dims(points3d, 1), rvecs, tvecs, np.array(camera_matrix), np.array(distortion_coefficients) ) draw = ImageDraw.Draw(img) for pt in points: x, y = pt[0] print("Drawing point at: ", x, y) draw.ellipse((x - 4, y - 4, x + 4, y + 4), fill="yellow", outline="yellow") # Draw a few 3D points at the image plane (camera is pointing down to the ground plane). # OpenCV doen't support projecting points behind the camera, so we avoid that. draw_points_opencv_fisheye( points3d=np.array( [ [0.5, 0.5, 1.0], [-0.5, 0.5, 1.0], [0.5, -0.5, 1.0], [-0.5, -0.5, 1.0], [-3.0, -1.0, 0.0], [-3.0, 1.0, 0.0], [-0.5, -1.5, 1.0], [0.5, -1.5, 1.0], ] ) ) print("Saving the rendered image to: camera_opencv_fisheye.png") img.save("camera_opencv_fisheye.png") print("Saving the asset to camera_opencv_fisheye.usd") world.scene.stage.Export("camera_opencv_fisheye.usd") simulation_app.close()
5,598
Python
34.891025
109
0.670954
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera_ros.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # Given a printout of ROS topic, containing the intrinsic and extrinsic parameters of the camera, # creates a camera and a sample scene, renders an image and saves it to camera_ros.png file. # The asset is also saved to camera_ros.usd file. The camera model is based on Intel RealSense D435i. from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) import math import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils import yaml from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera from PIL import Image, ImageDraw # To create a model of a given ROS camera, print the camera_info topic with: # rostopicecho /camera/color/camera_info # And copy the output into the yaml_data variable below. Populate additional parameters using the sensor manual. # # Note: only rational_polynomial model is supported in this example. For plump_bob or pinhole # models set the distortion_model to "rational_polynomial" and compliment array D with 0.0 to 8 elements # The camera_info topic in the Isaac Sim ROS bridge will be in the rational_polynomial format. # # Note: when fx is not equal to fy (pixels are not square), the average of fx and fy is used as the focal length. # and the intrinsic matrix is adjusted to have square pixels. This updated matrix is used for rendering and # it is also populated into the camera_info topic in the Isaac Sim ROS bridge. yaml_data = """ # rostopic echo /camera/color/camera_info header: seq: 211 stamp: secs: 1694379352 nsecs: 176209771 frame_id: "camera_color_optical_frame" height: 480 width: 640 distortion_model: "rational_polynomial" D: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] K: [612.4178466796875, 0.0, 309.72296142578125, 0.0, 612.362060546875, 245.35870361328125, 0.0, 0.0, 1.0] R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] P: [612.4178466796875, 0.0, 309.72296142578125, 0.0, 0.0, 612.362060546875, 245.35870361328125, 0.0, 0.0, 0.0, 1.0, 0.0] """ # Camera sensor size and optical path parameters. These parameters are not the part of the # OpenCV camera model, but they are nessesary to simulate the depth of field effect. # # To disable the depth of field effect, set the f_stop to 0.0. This is useful for debugging. pixel_size = 1.4 # Pixel size in microns, 3 microns is common f_stop = 2.0 # F-number, the ratio of the lens focal length to the diameter of the entrance pupil focus_distance = 0.5 # Focus distance in meters, the distance from the camera to the object plane # Parsing the YAML data data = yaml.safe_load(yaml_data) print("Header Frame ID:", data["header"]["frame_id"]) width, height, K, D = data["width"], data["height"], data["K"], data["D"] # Create a world, add a 1x1x1 meter cube, a ground plane, and a camera world = World(stage_units_in_meters=1.0) world.scene.add_default_ground_plane() world.reset() cube_1 = world.scene.add( DynamicCuboid( prim_path="/new_cube_1", name="cube_1", position=np.array([0, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([255, 0, 0]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 3.0]), # 2 meter away from the side of the cube frequency=30, resolution=(width, height), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) camera.initialize() # Calculate the focal length and aperture size from the camera matrix (fx, _, cx, _, fy, cy, _, _, _) = K horizontal_aperture = pixel_size * 1e-3 * width vertical_aperture = pixel_size * 1e-3 * height focal_length_x = fx * pixel_size * 1e-3 focal_length_y = fy * pixel_size * 1e-3 focal_length = (focal_length_x + focal_length_y) / 2 # in mm # Set the camera parameters, note the unit conversion between Isaac Sim sensor and Kit camera.set_focal_length(focal_length / 10.0) camera.set_focus_distance(focus_distance) camera.set_lens_aperture(f_stop * 100.0) camera.set_horizontal_aperture(horizontal_aperture / 10.0) camera.set_vertical_aperture(vertical_aperture / 10.0) camera.set_clipping_range(0.05, 1.0e5) # Set the distortion coefficients, this is nessesary, when cx, cy are not in the center of the image diagonal = 2 * math.sqrt(max(cx, width - cx) ** 2 + max(cy, height - cy) ** 2) diagonal_fov = 2 * math.atan2(diagonal, fx + fy) * 180 / math.pi camera.set_projection_type("fisheyePolynomial") camera.set_rational_polynomial_properties(width, height, cx, cy, diagonal_fov, D) # Get the rendered frame and save it to a file for i in range(100): world.step(render=True) camera.get_current_frame() img = Image.fromarray(camera.get_rgba()[:, :, :3]) # Optional step, draw the 3D points to the image plane using the OpenCV fisheye model def draw_points_opencv(points3d): try: # To install, run python.sh -m pip install opencv-python import cv2 rvecs, tvecs = np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]) points, jac = cv2.projectPoints( np.expand_dims(points3d, 1), rvecs, tvecs, np.array(K).reshape(3, 3), np.array(D) ) draw = ImageDraw.Draw(img) for pt in points: x, y = pt[0] print("Drawing point at: ", x, y) draw.ellipse((x - 4, y - 4, x + 4, y + 4), fill="orange", outline="orange") except: print("OpenCV is not installed, skipping OpenCV overlay") print("To install OpenCV, run: python.sh -m pip install opencv-python") # Draw the 3D points to the image plane draw_points_opencv(points3d=np.array([[0.5, 0.5, 4.0], [-0.5, 0.5, 4.0], [0.5, -0.5, 4.0], [-0.5, -0.5, 4.0]])) print("Saving the rendered image to: camera_ros.png") img.save("camera_ros.png") print("Saving the asset to camera_ros.usd") world.scene.stage.Export("camera_ros.usd") simulation_app.close()
6,319
Python
39.774193
120
0.700902
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/carter_multiple_robot_navigation.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp HOSPITAL_USD_PATH = "/Isaac/Samples/ROS2/Scenario/multiple_robot_carter_hospital_navigation.usd" OFFICE_USD_PATH = "/Isaac/Samples/ROS2/Scenario/multiple_robot_carter_office_navigation.usd" # Default environment: Hospital ENV_USD_PATH = HOSPITAL_USD_PATH if len(sys.argv) > 1: if sys.argv[1] == "office": # Choosing Office environment ENV_USD_PATH = OFFICE_USD_PATH elif sys.argv[1] != "hospital": carb.log_warn("Environment name is invalid. Choosing default Hospital environment.") else: carb.log_warn("Environment name not specified. Choosing default Hospital environment.") CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of Multiple Robot Navigation scenario simulation_app = SimulationApp(CONFIG) import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from omni.isaac.core.utils.extensions import enable_extension from pxr import Sdf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") # Locate assets root folder to load sample assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() usd_path = assets_root_path + ENV_USD_PATH omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) simulation_app.update() simulation_context.play() simulation_app.update() while simulation_app.is_running(): # runs with a realtime clock simulation_app.update() simulation_context.stop() simulation_app.close()
2,512
Python
29.646341
99
0.766322
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/rtx_lidar.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp # Example for creating a RTX lidar sensor and publishing PointCloud2 data simulation_app = SimulationApp({"headless": False}) import omni import omni.kit.viewport.utility import omni.replicator.core as rep from omni.isaac.core import SimulationContext from omni.isaac.core.utils import nucleus, stage from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() simulation_app.update() # Loading the simple_room environment stage.add_reference_to_stage( assets_root_path + "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "/background" ) simulation_app.update() # Create the lidar sensor that generates data into "RtxSensorCpu" # Sensor needs to be rotated 90 degrees about X so that its Z up # Possible options are Example_Rotary and Example_Solid_State # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse _, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxLidar", path="/sensor", parent=None, config="Example_Rotary", translation=(0, 0, 1.0), orientation=Gf.Quatd(1.0, 0.0, 0.0, 0.0), # Gf.Quatd is w,i,j,k ) # RTX sensors are cameras and must be assigned to their own render product hydra_texture = rep.create.render_product(sensor.GetPath(), [1, 1], name="Isaac") simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) simulation_app.update() # Create Point cloud publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS2PublishPointCloud") writer.initialize(topicName="point_cloud", frameId="sim_lidar") writer.attach([hydra_texture]) # Create the debug draw pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "DebugDrawPointCloud") writer.attach([hydra_texture]) # Create LaserScan publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS2PublishLaserScan") writer.initialize(topicName="laser_scan", frameId="sim_lidar") writer.attach([hydra_texture]) simulation_app.update() simulation_context.play() while simulation_app.is_running(): simulation_app.update() # cleanup and shutdown simulation_context.stop() simulation_app.close()
3,055
Python
32.582417
113
0.765303
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/clock.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import time import carb from omni.isaac.kit import SimulationApp # Example ROS2 bridge sample showing rclpy and rosclock interaction simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() # Note that this is not the system level rclpy, but one compiled for omniverse import rclpy from rosgraph_msgs.msg import Clock rclpy.init() clock_topic = "sim_time" manual_clock_topic = "manual_time" # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishManualClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ # Connecting execution of OnPlaybackTick node to PublishClock to automatically publish each frame ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), # Connecting execution of OnImpulseEvent node to PublishManualClock so it will only publish when an impulse event is triggered ("OnImpulseEvent.outputs:execOut", "PublishManualClock.inputs:execIn"), # Connecting simulationTime data of ReadSimTime to the clock publisher nodes ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishManualClock.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ # Assigning topic names to clock publishers ("PublishClock.inputs:topicName", clock_topic), ("PublishManualClock.inputs:topicName", manual_clock_topic), ], }, ) except Exception as e: print(e) simulation_app.update() simulation_app.update() # Define ROS2 callbacks def sim_clock_callback(data): print("sim time:", data.clock) def manual_clock_callback(data): print("manual stepped sim time:", data.clock) # Create rclpy ndoe node = rclpy.create_node("isaac_sim_clock") # create subscribers sim_clock_sub = node.create_subscription(Clock, clock_topic, sim_clock_callback, 1) manual_clock_sub = node.create_subscription(Clock, manual_clock_topic, manual_clock_callback, 1) time.sleep(1.0) simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.render() # This updates rendering/app loop which calls the sim clock simulation_context.step(render=False) # runs with a non-realtime clock rclpy.spin_once(node, timeout_sec=0.0) # Spin node once # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_app.update() # runs with a realtime clock rclpy.spin_once(node, timeout_sec=0.0) # Spin node once # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # shutdown rclpy.shutdown() simulation_context.stop() simulation_app.close()
4,822
Python
37.584
142
0.710908
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/carter_stereo.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="Carter Stereo Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS2 bridge sample showing manual control over messages simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from pxr import Sdf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") # Locate assets root folder to load sample assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() exit() usd_path = assets_root_path + "/Isaac/Samples/ROS2/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) ros_cameras_graph_path = "/World/Nova_Carter_ROS/front_hawk" # Enabling rgb image publishers for left camera. Cameras will automatically publish images each frame og.Controller.set(og.Controller.attribute(ros_cameras_graph_path + "/left_camera_render_product.inputs:enabled"), True) simulation_context.play() simulation_context.step() # Enabling rgb image publishers for right camera after left cameras are initialized. Cameras will automatically publish images each frame og.Controller.set(og.Controller.attribute(ros_cameras_graph_path + "/right_camera_render_product.inputs:enabled"), True) # Simulate for one second to warm up sim and let everything settle for frame in range(60): simulation_context.step() # Create a ROS publisher to publish message to spin robot in place # If system level rclpy is sourced in bashrc or terminal, it is imported otherwise backup rclpy libraries shipped with Isaac sim is used import rclpy rclpy.init() from geometry_msgs.msg import Twist node = rclpy.create_node("carter_stereo") publisher = node.create_publisher(Twist, "cmd_vel", 10) frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Publish the ROS Twist message every 2 frames if frame % 2 == 0: message = Twist() message.angular.z = 0.5 # spin in place publisher.publish(message) if args.test and frame > 120: break frame = frame + 1 node.destroy_node() rclpy.shutdown() simulation_context.stop() simulation_app.close()
3,363
Python
32.64
137
0.765685
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/camera_manual.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of stages and manual publishing of images simulation_app = SimulationApp(CONFIG) import omni import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS2 bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_app.update() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ROS_CAMERA_GRAPH_PATH, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:viewportId", 0), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", "rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", "camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", "depth"), ("cameraHelperDepth.inputs:type", "depth"), ("setCamera.inputs:cameraPrim", [usdrt.Sdf.Path(CAMERA_STAGE_PATH)]), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() # Use the IsaacSimulationGate step value to block execution on specific frames SD_GRAPH_PATH = "/Render/PostProcess/SDGPipeline" viewport_api = get_active_viewport() if viewport_api is not None: import omni.syntheticdata._syntheticdata as sd curr_stage = omni.usd.get_context().get_stage() # Required for editing the SDGPipeline graph which exists in the Session Layer with Usd.EditContext(curr_stage, curr_stage.GetSessionLayer()): # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport_api.get_render_product_path() ) rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name ) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running() and simulation_context.is_playing(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) # Set the step value for the simulation gates to zero to stop execution og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(0) # Publish the ROS rgb image message every 5 frames if frame % 5 == 0: # Enable rgb Branch node to start publishing rgb image og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Depth image message every 60 frames if frame % 60 == 0: # Enable depth Branch node to start publishing depth image og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Camera Info message every frame og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(1) frame = frame + 1 simulation_context.stop() simulation_app.close()
8,054
Python
42.074866
106
0.706109
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/moveit.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb import numpy as np from omni.isaac.kit import SimulationApp FRANKA_STAGE_PATH = "/Franka" FRANKA_USD_PATH = "/Isaac/Robots/Franka/franka_alt_fingers.usd" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Room/simple_room.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of stages # and creation of ROS components simulation_app = SimulationApp(CONFIG) import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from pxr import Gf # enable ROS2 bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Preparing stage viewports.set_camera_view(eye=np.array([1.2, 1.2, 0.8]), target=np.array([0, 0, 0.5])) # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Loading the franka robot USD prims.create_prim( FRANKA_STAGE_PATH, "Xform", position=np.array([0, -0.64, 0]), orientation=rotations.gf_rotation_to_np_array(Gf.Rotation(Gf.Vec3d(0, 0, 1), 90)), usd_path=assets_root_path + FRANKA_USD_PATH, ) simulation_app.update() # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeJointState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "SubscribeJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishClock.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "ArticulationController.inputs:execIn"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeJointState.inputs:context"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ( "SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand", ), ( "SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand", ), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ # Setting the /Franka target prim to Articulation Controller node ("ArticulationController.inputs:usePath", True), ("ArticulationController.inputs:robotPath", FRANKA_STAGE_PATH), ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeJointState.inputs:topicName", "isaac_joint_commands"), ("PublishJointState.inputs:targetPrim", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ("PublishTF.inputs:targetPrims", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ], }, ) except Exception as e: print(e) simulation_app.update() # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Tick the Publish/Subscribe JointState and Publish Clock nodes each frame og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.stop() simulation_app.close()
5,442
Python
41.523437
109
0.684491
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/subscriber.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.extensions import enable_extension # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() import time # Note that this is not the system level rclpy, but one compiled for omniverse import numpy as np import rclpy from rclpy.node import Node from std_msgs.msg import Empty class Subscriber(Node): def __init__(self): super().__init__("tutorial_subscriber") # setting up the world with a cube self.timeline = omni.timeline.get_timeline_interface() self.ros_world = World(stage_units_in_meters=1.0) self.ros_world.scene.add_default_ground_plane() # add a cube in the world cube_path = "/cube" self.ros_world.scene.add( VisualCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 10]), size=0.2) ) self._cube_position = np.array([0, 0, 0]) # setup the ROS2 subscriber here self.ros_sub = self.create_subscription(Empty, "move_cube", self.move_cube_callback, 10) self.ros_world.reset() def move_cube_callback(self, data): # callback function to set the cube position to a new one upon receiving a (empty) ROS2 message if self.ros_world.is_playing(): self._cube_position = np.array([np.random.rand() * 0.40, np.random.rand() * 0.40, 0.10]) def run_simulation(self): self.timeline.play() while simulation_app.is_running(): self.ros_world.step(render=True) rclpy.spin_once(self, timeout_sec=0.0) if self.ros_world.is_playing(): if self.ros_world.current_time_step_index == 0: self.ros_world.reset() # the actual setting the cube pose is done here self.ros_world.scene.get_object("cube_1").set_world_pose(self._cube_position) # Cleanup self.timeline.stop() self.destroy_node() simulation_app.close() if __name__ == "__main__": rclpy.init() subscriber = Subscriber() subscriber.run_simulation()
2,787
Python
33
103
0.670255
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/multiple_tasks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.dofbot.controllers import PickPlaceController from omni.isaac.dofbot.tasks import PickPlace from omni.isaac.franka.controllers.stacking_controller import StackingController as FrankaStackingController from omni.isaac.franka.tasks import Stacking as FrankaStacking from omni.isaac.universal_robots.controllers import StackingController as UR10StackingController from omni.isaac.universal_robots.tasks import Stacking as UR10Stacking from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup my_world = World(stage_units_in_meters=1.0) tasks = [] num_of_tasks = 3 tasks.append(FrankaStacking(name="task_0", offset=np.array([0, -2, 0]))) my_world.add_task(tasks[-1]) tasks.append(UR10Stacking(name="task_1", offset=np.array([0.5, 0.5, 0]))) my_world.add_task(tasks[-1]) tasks.append(PickPlace(offset=np.array([0, -1, 0]))) my_world.add_task(tasks[-1]) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" my_kaya = my_world.scene.add( WheeledRobot( prim_path="/World/Kaya", name="my_kaya", wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"], create_robot=True, usd_path=kaya_asset_path, position=np.array([-1, 0, 0]), ) ) jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" my_jetbot = my_world.scene.add( WheeledRobot( prim_path="/World/Jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([-1.5, -1.5, 0]), ) ) my_world.reset() robots = [] for i in range(num_of_tasks): task_params = tasks[i].get_params() robots.append(my_world.scene.get_object(task_params["robot_name"]["value"])) controllers = [] controllers.append( FrankaStackingController( name="pick_place_controller", gripper=robots[0].gripper, robot_articulation=robots[0], picking_order_cube_names=tasks[0].get_cube_names(), robot_observation_name=robots[0].name, ) ) controllers[-1].reset() controllers.append( UR10StackingController( name="pick_place_controller", gripper=robots[1].gripper, robot_articulation=robots[1], picking_order_cube_names=tasks[1].get_cube_names(), robot_observation_name=robots[1].name, ) ) controllers[-1].reset() controllers.append( PickPlaceController(name="pick_place_controller", gripper=robots[2].gripper, robot_articulation=robots[2]) ) kaya_setup = HolonomicRobotUsdSetup( robot_prim_path=my_kaya.prim_path, com_prim_path="/World/Kaya/base_link/control_offset" ) ( wheel_radius, wheel_positions, wheel_orientations, mecanum_angles, wheel_axis, up_axis, ) = kaya_setup.get_holonomic_controller_params() kaya_controller = HolonomicController( name="holonomic_controller", wheel_radius=wheel_radius, wheel_positions=wheel_positions, wheel_orientations=wheel_orientations, mecanum_angles=mecanum_angles, wheel_axis=wheel_axis, up_axis=up_axis, ) jetbot_controller = DifferentialController(name="simple_control", wheel_radius=0.03, wheel_base=0.1125) pick_place_task_params = tasks[2].get_params() articulation_controllers = [] for i in range(num_of_tasks): articulation_controllers.append(robots[i].get_articulation_controller()) i = 0 my_world.pause() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() controllers[0].reset() controllers[1].reset() controllers[2].reset() kaya_controller.reset() jetbot_controller.reset() observations = my_world.get_observations() actions = controllers[0].forward(observations=observations, end_effector_offset=np.array([0, 0, 0])) articulation_controllers[0].apply_action(actions) actions = controllers[1].forward(observations=observations, end_effector_offset=np.array([0, 0, 0.02])) articulation_controllers[1].apply_action(actions) actions = controllers[2].forward( picking_position=observations[pick_place_task_params["cube_name"]["value"]]["position"], placing_position=observations[pick_place_task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[pick_place_task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, -0.06, 0]), ) articulation_controllers[2].apply_action(actions) if i >= 0 and i < 500: my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0.2, 0.0, 0.0])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.1, 0])) elif i >= 500 and i < 1000: # TODO: change with new USD my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0, 0.2, 0.0])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.0, np.pi / 10])) elif i >= 1000 and i < 1500: # TODO: change with new USD my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0, 0.0, 0.6])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.1, 0])) i += 1 simulation_app.close()
6,457
Python
38.619632
115
0.696144
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/stacking.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.universal_robots.controllers import StackingController from omni.isaac.universal_robots.tasks import Stacking my_world = World(stage_units_in_meters=1.0) my_task = Stacking() my_world.add_task(my_task) my_world.reset() robot_name = my_task.get_params()["robot_name"]["value"] my_ur10 = my_world.scene.get_object(robot_name) my_controller = StackingController( name="stacking_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10, picking_order_cube_names=my_task.get_cube_names(), robot_observation_name=robot_name, ) articulation_controller = my_ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward(observations=observations, end_effector_offset=np.array([0.0, 0.0, 0.02])) articulation_controller.apply_action(actions) simulation_app.close()
1,669
Python
36.11111
114
0.745956
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kaya/kaya_move.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" my_kaya = my_world.scene.add( WheeledRobot( prim_path="/World/Kaya", name="my_kaya", wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"], create_robot=True, usd_path=kaya_asset_path, position=np.array([0, 0.0, 0.02]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) my_world.scene.add_default_ground_plane() kaya_setup = HolonomicRobotUsdSetup( robot_prim_path=my_kaya.prim_path, com_prim_path="/World/Kaya/base_link/control_offset" ) ( wheel_radius, wheel_positions, wheel_orientations, mecanum_angles, wheel_axis, up_axis, ) = kaya_setup.get_holonomic_controller_params() my_controller = HolonomicController( name="holonomic_controller", wheel_radius=wheel_radius, wheel_positions=wheel_positions, wheel_orientations=wheel_orientations, mecanum_angles=mecanum_angles, wheel_axis=wheel_axis, up_axis=up_axis, ) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 500: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.4, 0.0, 0.0])) elif i >= 500 and i < 1000: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.0, 0.4, 0.0])) elif i >= 1000 and i < 1200: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.0, 0.0, 0.05])) elif i == 1200: i = 0 i += 1 simulation_app.close()
2,828
Python
33.084337
93
0.694484
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/multiple_tasks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.franka.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) tasks = [] num_of_tasks = 2 for i in range(num_of_tasks): tasks.append(PickPlace(name="task" + str(i), offset=np.array([0, (i * 2) - 3, 0]))) my_world.add_task(tasks[-1]) my_world.reset() frankas = [] cube_names = [] for i in range(num_of_tasks): task_params = tasks[i].get_params() frankas.append(my_world.scene.get_object(task_params["robot_name"]["value"])) cube_names.append(task_params["cube_name"]["value"]) controllers = [] for i in range(num_of_tasks): controllers.append( PickPlaceController(name="pick_place_controller", gripper=frankas[i].gripper, robot_articulation=frankas[i]) ) controllers[-1].reset() articulation_controllers = [] for i in range(num_of_tasks): articulation_controllers.append(frankas[i].get_articulation_controller()) my_world.pause() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() for i in range(num_of_tasks): controllers[i].reset() observations = my_world.get_observations() for i in range(num_of_tasks): articulation_controllers.append(frankas[i].get_articulation_controller()) actions = controllers[i].forward( picking_position=observations[cube_names[i]]["position"], placing_position=observations[cube_names[i]]["target_position"], current_joint_positions=observations[frankas[i].name]["joint_positions"], end_effector_offset=np.array([0, 0, 0]), ) articulation_controllers[i].apply_action(actions) simulation_app.close()
2,447
Python
37.857142
116
0.691868
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/franka_gripper.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse from omni.isaac.core import World from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.franka import Franka parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) my_franka = my_world.scene.add(Franka(prim_path="/World/Franka", name="my_franka")) my_world.scene.add_default_ground_plane() my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 gripper_positions = my_franka.gripper.get_joint_positions() if i < 500: my_franka.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] - (0.005), gripper_positions[1] - (0.005)]) ) if i > 500: my_franka.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] + (0.005), gripper_positions[1] + (0.005)]) ) if i == 1000: i = 0 if args.test is True: break simulation_app.close()
1,791
Python
33.461538
116
0.686209
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_command_api_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import time import numpy as np import omni from omni.isaac.core.objects import DynamicCuboid, VisualCuboid from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider, DfStateSequence from omni.isaac.cortex.dfb import DfBasicContext from omni.isaac.cortex.robot import add_franka_to_stage class NullspaceShiftState(DfState): def __init__(self): super().__init__() self.config_mean = np.array([0.00, -1.3, 0.00, -2.87, 0.00, 2.00, 0.75]) self.target_p = np.array([0.7, 0.0, 0.5]) self.construction_time = time.time() def enter(self): # Change the posture configuration while maintaining a consistent target. posture_config = self.config_mean + np.random.randn(7) self.context.robot.arm.send_end_effector(target_position=self.target_p, posture_config=posture_config) self.entry_time = time.time() # Close the gripper if open and open the gripper if closed. It closes more quickly than it # opens. gripper = self.context.robot.gripper if gripper.get_width() > 0.05: gripper.close(speed=0.5) else: gripper.open(speed=0.1) print("[%f] <enter> sampling posture config" % (self.entry_time - self.construction_time)) def step(self): if time.time() - self.entry_time < 2.0: return self return None def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/franka")) world.scene.add_default_ground_plane() decider_network = DfNetwork( DfStateMachineDecider(DfStateSequence([NullspaceShiftState()], loop=True)), context=DfBasicContext(robot) ) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,443
Python
33.422535
113
0.695456
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_belief_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync_belief") parser.add_argument( "--behavior", type=str, default=None, help="Which behavior to run. See behavior/franka for available behavior files. By default, it launches no behavior.", ) parser.add_argument( "--auto_sync_objects", action="store_true", help="Automatically sync the objects with their measured poses." ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_object import CortexObject from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import CortexControlRos, CortexObjectsRos, cortex_init_ros_node class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync_belief") world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 cortex_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) cortex_objects[spec.name] = CortexObject(obj) robot.register_obstacle(cortex_objects[spec.name]) world.scene.add_default_ground_plane() cortex_control = CortexControlRos(robot) cortex_objects_ros = CortexObjectsRos(cortex_objects, auto_sync_objects=args.auto_sync_objects) decider_network = None context_monitor = ContextStateMonitor(print_dt=0.25) if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) elif args.behavior is not None: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) if decider_network: decider_network.context.add_monitor(context_monitor.monitor) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
3,330
Python
34.43617
121
0.694895
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/follow_example_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import VisualSphere from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider from omni.isaac.cortex.dfb import DfBasicContext from omni.isaac.cortex.robot import add_franka_to_stage class FollowState(DfState): """The context object is available as self.context. We have access to everything in the context object, which in this case is everything in the robot object (the command API and the follow sphere). """ @property def robot(self): return self.context.robot @property def follow_sphere(self): return self.context.robot.follow_sphere def enter(self): self.robot.gripper.close() self.follow_sphere.set_world_pose(*self.robot.arm.get_fk_pq().as_tuple()) def step(self): target_position, _ = self.follow_sphere.get_world_pose() self.robot.arm.send_end_effector(target_position=target_position) return self # Always transition back to this state. def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) # Add a sphere to the scene to follow, and store it off in a new member as part of the robot. robot.follow_sphere = world.scene.add( VisualSphere( name="follow_sphere", prim_path="/World/FollowSphere", radius=0.02, color=np.array([0.7, 0.0, 0.7]) ) ) world.scene.add_default_ground_plane() # Add a simple state machine decider network with the single state defined above. This state # will be persistently stepped because it always returns itself. world.add_decider_network(DfNetwork(DfStateMachineDecider(FollowState()), context=DfBasicContext(robot))) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,441
Python
34.911764
111
0.722655
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync") parser.add_argument( "--behavior", type=str, default="block_stacking_behavior", help="Which behavior to run. See behavior/franka for available behavior files.", ) parser.add_argument( "--auto_sync_objects", action="store_true", help="Automatically sync the objects with their measured poses." ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_object import CortexObject from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import ( CortexControlRos, CortexObjectsRos, CortexSimObjectsRos, CortexSimRobotRos, cortex_init_ros_node, ) class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync") world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) sim_prim = XFormPrim(prim_path="/Sim") sim_prim.set_world_pose(position=np.array([-2.0, 0.0, 0.0])) sim_robot = world.add_robot( add_franka_to_stage(name="franka_sim", prim_path="/Sim/Franka", use_motion_commander=False) ) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 cortex_objects = {} sim_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) cortex_objects[spec.name] = CortexObject(obj) robot.register_obstacle(cortex_objects[spec.name]) sim_obj = world.scene.add( DynamicCuboid( prim_path="/Sim/Obs/{}".format(spec.name), name="{}_sim".format(spec.name), size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) sim_objects[spec.name] = sim_obj world.scene.add_default_ground_plane() cortex_sim = CortexSimRobotRos(sim_robot) cortex_sim_objects_ros = CortexSimObjectsRos(sim_objects) cortex_control = CortexControlRos(robot) cortex_objects_ros = CortexObjectsRos(cortex_objects, auto_sync_objects=args.auto_sync_objects) decider_network = None context_monitor = ContextStateMonitor(print_dt=0.25) if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) elif args.behavior is not None: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) if decider_network: decider_network.context.add_monitor(context_monitor.monitor) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
4,202
Python
33.450819
112
0.669205
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/demo_ur10_conveyor_main.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import random import numpy as np import omni.isaac.cortex.math_util as math_util import omni.isaac.cortex.sample_behaviors.ur10.bin_stacking_behavior as behavior from omni.isaac.core.objects import VisualCapsule, VisualSphere from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.cortex.cortex_rigid_prim import CortexRigidPrim from omni.isaac.cortex.cortex_utils import get_assets_root_path_or_die from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import CortexUr10 class Ur10Assets: def __init__(self): self.assets_root_path = get_assets_root_path_or_die() self.ur10_table_usd = ( self.assets_root_path + "/Isaac/Samples/Leonardo/Stage/ur10_bin_stacking_short_suction.usd" ) self.small_klt_usd = self.assets_root_path + "/Isaac/Props/KLT_Bin/small_KLT.usd" self.background_usd = self.assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" self.rubiks_cube_usd = self.assets_root_path + "/Isaac/Props/Rubiks_Cube/rubiks_cube.usd" def print_diagnostics(diagnostic): print("=========== logical state ==========") if diagnostic.bin_name: print("active bin info:") print("- bin_obj.name: {}".format(diagnostic.bin_name)) print("- bin_base: {}".format(diagnostic.bin_base)) print("- grasp_T:\n{}".format(diagnostic.grasp)) print("- is_grasp_reached: {}".format(diagnostic.grasp_reached)) print("- is_attached: {}".format(diagnostic.attached)) print("- needs_flip: {}".format(diagnostic.needs_flip)) else: print("<no active bin>") print("------------------------------------") def random_bin_spawn_transform(): x = random.uniform(-0.15, 0.15) y = 1.5 z = -0.15 position = np.array([x, y, z]) z = random.random() * 0.02 - 0.01 w = random.random() * 0.02 - 0.01 norm = np.sqrt(z**2 + w**2) quat = math_util.Quaternion([w / norm, 0, 0, z / norm]) if random.random() > 0.5: print("<flip>") # flip the bin so it's upside down quat = quat * math_util.Quaternion([0, 0, 1, 0]) else: print("<no flip>") return position, quat.vals class BinStackingTask(BaseTask): def __init__(self, env_path, assets): super().__init__("bin_stacking") self.assets = assets self.env_path = "/World/Ur10Table" self.bins = [] self.stashed_bins = [] self.on_conveyor = None def _spawn_bin(self, rigid_bin): x, q = random_bin_spawn_transform() rigid_bin.set_world_pose(position=x, orientation=q) rigid_bin.set_linear_velocity(np.array([0, -0.30, 0])) rigid_bin.set_visibility(True) def post_reset(self) -> None: if len(self.bins) > 0: for rigid_bin in self.bins: self.scene.remove_object(rigid_bin.name) self.bins.clear() self.on_conveyor = None def pre_step(self, time_step_index, simulation_time) -> None: """Spawn a new randomly oriented bin if the previous bin has been placed.""" spawn_new = False if self.on_conveyor is None: spawn_new = True else: (x, y, z), _ = self.on_conveyor.get_world_pose() is_on_conveyor = y > 0.0 and -0.4 < x and x < 0.4 if not is_on_conveyor: spawn_new = True if spawn_new: name = "bin_{}".format(len(self.bins)) prim_path = self.env_path + "/bins/{}".format(name) add_reference_to_stage(usd_path=self.assets.small_klt_usd, prim_path=prim_path) self.on_conveyor = self.scene.add(CortexRigidPrim(name=name, prim_path=prim_path)) self._spawn_bin(self.on_conveyor) self.bins.append(self.on_conveyor) def main(): world = CortexWorld() env_path = "/World/Ur10Table" ur10_assets = Ur10Assets() add_reference_to_stage(usd_path=ur10_assets.ur10_table_usd, prim_path=env_path) add_reference_to_stage(usd_path=ur10_assets.background_usd, prim_path="/World/Background") background_prim = XFormPrim( "/World/Background", position=[10.00, 2.00, -1.18180], orientation=[0.7071, 0, 0, 0.7071] ) robot = world.add_robot(CortexUr10(name="robot", prim_path="{}/ur10".format(env_path))) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/FlipStationSphere", name="flip_station_sphere", position=np.array([0.73, 0.76, -0.13]), radius=0.2, visible=False, ) ) robot.register_obstacle(obs) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/NavigationDome", name="navigation_dome_obs", position=[-0.031, -0.018, -1.086], radius=1.1, visible=False, ) ) robot.register_obstacle(obs) az = np.array([1.0, 0.0, -0.3]) ax = np.array([0.0, 1.0, 0.0]) ay = np.cross(az, ax) R = math_util.pack_R(ax, ay, az) quat = math_util.matrix_to_quat(R) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationBarrier", name="navigation_barrier_obs", position=[0.471, 0.276, -0.463 - 0.1], orientation=quat, radius=0.5, height=0.9, visible=False, ) ) robot.register_obstacle(obs) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationFlipStation", name="navigation_flip_station_obs", position=np.array([0.766, 0.755, -0.5]), radius=0.5, height=0.5, visible=False, ) ) robot.register_obstacle(obs) world.add_task(BinStackingTask(env_path, ur10_assets)) world.add_decider_network(behavior.make_decider_network(robot, print_diagnostics)) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
6,687
Python
33.474227
106
0.612233
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/franka_examples_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("franka_examples") parser.add_argument( "--behavior", type=str, default="block_stacking_behavior", help="Which behavior to run. See behavior/franka for available behavior files.", ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid, VisualCuboid from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import Behavior, CortexWorld, LogicalStateMonitor from omni.isaac.cortex.robot import add_franka_to_stage from omni.isaac.cortex.tools import SteadyRate class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): world = CortexWorld() context_monitor = ContextStateMonitor(print_dt=0.25) robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, position=np.array([x, -0.4, width / 2]), ) ) robot.register_obstacle(obj) world.scene.add_default_ground_plane() print() print("loading behavior: {}".format(args.behavior)) print() if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) else: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) decider_network.context.add_monitor(context_monitor.monitor) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,733
Python
32.753086
90
0.678741
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_sim_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync_sim") args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import CortexSimObjectsRos, CortexSimRobotRos, cortex_init_ros_node class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync_sim") world = CortexWorld() sim_robot = world.add_robot( add_franka_to_stage(name="franka_sim", prim_path="/Sim/Franka", use_motion_commander=False) ) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 sim_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): sim_obj = world.scene.add( DynamicCuboid( prim_path="/Sim/Obs/{}".format(spec.name), name="{}_sim".format(spec.name), size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) sim_objects[spec.name] = sim_obj world.scene.add_default_ground_plane() cortex_sim = CortexSimRobotRos(sim_robot) cortex_sim_objects_ros = CortexSimObjectsRos(sim_objects) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,400
Python
31.013333
106
0.668333
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/follow_example_modified_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import VisualSphere from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider from omni.isaac.cortex.dfb import DfRobotApiContext from omni.isaac.cortex.robot import add_franka_to_stage class FollowState(DfState): """The context object is available as self.context. We have access to everything in the context object, which in this case is everything in the robot object (the command API and the follow sphere). """ @property def robot(self): return self.context.robot @property def follow_sphere(self): return self.context.robot.follow_sphere def enter(self): self.follow_sphere.set_world_pose(*self.robot.arm.get_fk_pq().as_tuple()) def step(self): target_position, _ = self.follow_sphere.get_world_pose() self.robot.arm.send_end_effector(target_position=target_position) return self # Always transition back to this state. class FollowContext(DfRobotApiContext): def __init__(self, robot): super().__init__(robot) self.reset() self.add_monitors( [FollowContext.monitor_end_effector, FollowContext.monitor_gripper, FollowContext.monitor_diagnostics] ) def reset(self): self.is_target_reached = False def monitor_end_effector(self): eff_p = self.robot.arm.get_fk_p() target_p, _ = self.robot.follow_sphere.get_world_pose() self.is_target_reached = np.linalg.norm(target_p - eff_p) < 0.01 def monitor_gripper(self): if self.is_target_reached: self.robot.gripper.close() else: self.robot.gripper.open() def monitor_diagnostics(self): print("is_target_reached: {}".format(self.is_target_reached)) def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) # Add a sphere to the scene to follow, and store it off in a new member as part of the robot. robot.follow_sphere = world.scene.add( VisualSphere( name="follow_sphere", prim_path="/World/FollowSphere", radius=0.02, color=np.array([0.7, 0.0, 0.7]) ) ) world.scene.add_default_ground_plane() # Add a simple state machine decider network with the single state defined above. This state # will be persistently stepped because it always returns itself. world.add_decider_network(DfNetwork(DfStateMachineDecider(FollowState()), context=FollowContext(robot))) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
3,228
Python
33.351063
114
0.696406
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/behaviors/franka/franka_behaviors.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.cortex.dfb import DfDiagnosticsMonitor from omni.isaac.cortex.sample_behaviors.franka import ( block_stacking_behavior, peck_decider_network, peck_game, peck_state_machine, ) from omni.isaac.cortex.sample_behaviors.franka.simple import simple_decider_network, simple_state_machine behaviors = { "block_stacking_behavior": block_stacking_behavior, "peck_decider_network": peck_decider_network, "peck_game": peck_game, "peck_state_machine": peck_state_machine, "simple_decider_network": simple_decider_network, "simple_state_machine": simple_state_machine, } class ContextStateMonitor(DfDiagnosticsMonitor): """ State monitor to read the context and pass it to the UI. For these behaviors, the context has a `diagnostic_message` that contains the text to be displayed, and each behavior implements its own monitor to update that. """ def __init__(self, print_dt, diagnostic_fn=None): super().__init__(print_dt=print_dt) def print_diagnostics(self, context): if hasattr(context, "diagnostics_message"): print("====================================") print(context.diagnostics_message)
1,637
Python
37.093022
112
0.719609
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/jetbot_move.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" my_jetbot = my_world.scene.add( WheeledRobot( prim_path="/World/Jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([0, 0.0, 2.0]), ) ) my_world.scene.add_default_ground_plane() my_controller = DifferentialController(name="simple_control", wheel_radius=0.03, wheel_base=0.1125) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 1000: # forward my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) print(my_jetbot.get_linear_velocity()) elif i >= 1000 and i < 1300: # rotate my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.0, np.pi / 12])) print(my_jetbot.get_angular_velocity()) elif i >= 1300 and i < 2000: # forward my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i == 2000: i = 0 i += 1 if args.test is True: break simulation_app.close()
2,568
Python
34.680555
99
0.682243
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/eval.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from env import JetBotEnv try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() policy_path = "./cnn_policy/jetbot_policy.zip" my_env = JetBotEnv(headless=False) model = PPO.load(policy_path) for _ in range(20): obs, _ = my_env.reset() done = False while not done: actions, _ = model.predict(observation=obs, deterministic=True) obs, reward, done, truncated, info = my_env.step(actions) my_env.render() my_env.close()
1,166
Python
30.54054
190
0.731561
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/env.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import carb import gymnasium import numpy as np from gymnasium import spaces class JetBotEnv(gymnasium.Env): metadata = {"render.modes": ["human"]} def __init__( self, skip_frame=1, physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, max_episode_length=256, seed=0, headless=True, ) -> None: from omni.isaac.kit import SimulationApp self.headless = headless self._simulation_app = SimulationApp({"headless": self.headless, "anti_aliasing": 0}) self._skip_frame = skip_frame self._dt = physics_dt * self._skip_frame self._max_episode_length = max_episode_length self._steps_after_reset = int(rendering_dt / physics_dt) from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot self._my_world = World(physics_dt=physics_dt, rendering_dt=rendering_dt, stage_units_in_meters=1.0) self._my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" self.jetbot = self._my_world.scene.add( WheeledRobot( prim_path="/jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([0, 0.0, 0.03]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) self.jetbot_controller = DifferentialController(name="simple_control", wheel_radius=0.0325, wheel_base=0.1125) self.goal = self._my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0.60, 0.30, 0.05]), size=0.1, color=np.array([1.0, 0, 0]), ) ) self.seed(seed) self.reward_range = (-float("inf"), float("inf")) gymnasium.Env.__init__(self) self.action_space = spaces.Box(low=-1, high=1.0, shape=(2,), dtype=np.float32) self.observation_space = spaces.Box(low=float("inf"), high=float("inf"), shape=(16,), dtype=np.float32) self.max_velocity = 1 self.max_angular_velocity = math.pi self.reset_counter = 0 return def get_dt(self): return self._dt def step(self, action): previous_jetbot_position, _ = self.jetbot.get_world_pose() # action forward velocity , angular velocity on [-1, 1] raw_forward = action[0] raw_angular = action[1] # we want to force the jetbot to always drive forward # so we transform to [0,1]. we also scale by our max velocity forward = (raw_forward + 1.0) / 2.0 forward_velocity = forward * self.max_velocity # we scale the angular, but leave it on [-1,1] so the # jetbot can remain an ambiturner. angular_velocity = raw_angular * self.max_angular_velocity # we apply our actions to the jetbot for i in range(self._skip_frame): self.jetbot.apply_wheel_actions( self.jetbot_controller.forward(command=[forward_velocity, angular_velocity]) ) self._my_world.step(render=False) observations = self.get_observations() info = {} done = False truncated = False if self._my_world.current_time_step_index - self._steps_after_reset >= self._max_episode_length: done = True truncated = True goal_world_position, _ = self.goal.get_world_pose() current_jetbot_position, _ = self.jetbot.get_world_pose() previous_dist_to_goal = np.linalg.norm(goal_world_position - previous_jetbot_position) current_dist_to_goal = np.linalg.norm(goal_world_position - current_jetbot_position) reward = previous_dist_to_goal - current_dist_to_goal if current_dist_to_goal < 0.1: done = True return observations, reward, done, truncated, info def reset(self, seed=None): self._my_world.reset() self.reset_counter = 0 # randomize goal location in circle around robot alpha = 2 * math.pi * np.random.rand() r = 1.00 * math.sqrt(np.random.rand()) + 0.20 self.goal.set_world_pose(np.array([math.sin(alpha) * r, math.cos(alpha) * r, 0.05])) observations = self.get_observations() return observations, {} def get_observations(self): self._my_world.render() jetbot_world_position, jetbot_world_orientation = self.jetbot.get_world_pose() jetbot_linear_velocity = self.jetbot.get_linear_velocity() jetbot_angular_velocity = self.jetbot.get_angular_velocity() goal_world_position, _ = self.goal.get_world_pose() obs = np.concatenate( [ jetbot_world_position, jetbot_world_orientation, jetbot_linear_velocity, jetbot_angular_velocity, goal_world_position, ] ) return obs def render(self, mode="human"): return def close(self): self._simulation_app.close() return def seed(self, seed=None): self.np_random, seed = gymnasium.utils.seeding.np_random(seed) np.random.seed(seed) return [seed]
6,310
Python
38.198758
118
0.606339
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/train.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb import torch as th from env import JetBotEnv parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() log_dir = "./cnn_policy" # set headles to false to visualize training my_env = JetBotEnv(headless=True) # in test mode we manually install sb3 if args.test is True: import omni.kit.pipapi omni.kit.pipapi.install("stable-baselines3==2.0.0", module="stable_baselines3") omni.kit.pipapi.install("tensorboard") # import stable baselines try: from stable_baselines3 import PPO from stable_baselines3.common.callbacks import CheckpointCallback from stable_baselines3.ppo import MlpPolicy except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3" ) exit() try: import tensorboard except Exception as e: carb.log_error(e) carb.log_error( "please install tensorboard in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install tensorboard" ) exit() policy_kwargs = dict(activation_fn=th.nn.ReLU, net_arch=[dict(vf=[128, 128, 128], pi=[128, 128, 128])]) policy = MlpPolicy total_timesteps = 500000 if args.test is True: total_timesteps = 10000 checkpoint_callback = CheckpointCallback(save_freq=10000, save_path=log_dir, name_prefix="jetbot_policy_checkpoint") model = PPO( policy, my_env, policy_kwargs=policy_kwargs, verbose=1, n_steps=2560, batch_size=64, learning_rate=0.000125, gamma=0.9, ent_coef=7.5e-08, clip_range=0.3, n_epochs=5, gae_lambda=1.0, max_grad_norm=0.9, vf_coef=0.95, device="cuda:0", tensorboard_log=log_dir, ) model.learn(total_timesteps=total_timesteps, callback=[checkpoint_callback]) model.save(log_dir + "/jetbot_policy") my_env.close()
2,533
Python
29.53012
189
0.730754
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ocs2/franka_arm_ocs2.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Launch Omniverse Toolkit first.""" # kit from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) """Rest everything follows.""" # python import os import numpy as np from omni.isaac.core.objects.sphere import VisualSphere from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.viewports import set_camera_view # isaac-core from omni.isaac.core.world import World # isaac-franka from omni.isaac.franka import Franka # isaac-ocs2 enable_extension("omni.isaac.ocs2") from omni.isaac.ocs2.end_effector_pose_tracking_mpc import EndEffectorPoseTrackingMpc # print settings np.set_printoptions(formatter={"float_kind": "{:.2f}".format}) def main(): """Sets the Franka control mode to "velocity" and tests the MPC.""" # Add MPC config = { "urdf_path": "data/franka/urdf/panda.urdf", "lib_folder": "/tmp/ocs2/auto_generated/franka", "mpc_config_path": "data/franka/mpc/task.info", } mpc_interface = EndEffectorPoseTrackingMpc(config["mpc_config_path"], config["lib_folder"], config["urdf_path"]) # Receive the number of arm dimensions arm_num_dof = mpc_interface.state_dim # print info about MPC print(mpc_interface) # Load kit helper my_world = World(stage_units_in_meters=1.0, physics_dt=0.01) # Set main camera set_camera_view([1.5, 1.5, 1.5], [0.0, 0.0, 0.0]) # Spawn things into stage # -- ground my_world.scene.add_default_ground_plane() # -- robot robot = my_world.scene.add(Franka("/World/Robot")) # -- markers goal_vis_prim = my_world.scene.add( VisualSphere("/World/Vis/ee_goal", name="ee_goal", radius=0.01, color=np.asarray([1.0, 0.0, 0.0])) ) ee_vis_prim = my_world.scene.add( VisualSphere("/World/Vis/ee_curr", name="ee_curr", radius=0.01, color=np.asarray([0.0, 0.0, 1.0])) ) # Play the simulator my_world.reset() # Set control mode robot._articulation_view.switch_control_mode("velocity") robot.disable_gravity() # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping dt = 0.01 sim_time = 0.0 # Define goals for the arm ee_goal_index = 0 ee_goals = [ [0.5, 0.5, 0.7, 0.707, 0, 0.707, 0], [0.5, -0.4, 0.6, 0.707, 0.707, 0.0, 0.0], [0.5, 0, 0.5, 0.0, 1.0, 0.0, 0.0], ] # Define a goal for the arm ee_goal_pose = np.array(ee_goals[ee_goal_index]) # Obtain measurements arm_joint_pos = robot.get_joint_positions()[:arm_num_dof] ee_curr_pose = robot.end_effector.get_world_pose() ee_curr_pose = np.concatenate((ee_curr_pose[0], ee_curr_pose[1]), axis=0) # Update visualization goal_vis_prim.set_world_pose(ee_goal_pose[:3], ee_goal_pose[3:]) ee_vis_prim.set_world_pose(ee_curr_pose[:3], ee_curr_pose[3:]) # Define target trajectory mpc_interface.set_target_trajectory( time_traj=[sim_time, sim_time + 2], state_traj=[ee_curr_pose, ee_goal_pose], input_traj=[None, None] ) # Reset the MPC mpc_interface.reset(sim_time, arm_joint_pos) # Simulate physics for count in range(100000): # obtain current measurements arm_joint_pos = robot.get_joint_positions()[:arm_num_dof] # compute arm's optimal control command arm_cmd = mpc_interface.advance(sim_time, arm_joint_pos) # print mpc cost # perform actions action = ArticulationAction(joint_velocities=arm_cmd, joint_indices=[range(arm_num_dof)]) robot.apply_action(action) # perform step my_world.step() # update sim-time sim_time += dt # obtain new measurements ee_curr_pose = robot.end_effector.get_world_pose() ee_curr_pose = np.concatenate((ee_curr_pose[0], ee_curr_pose[1]), axis=0) # compute the waypoint error error = np.linalg.norm(ee_curr_pose[:3] - ee_goal_pose[:3]) # update visualization ee_vis_prim.set_world_pose(ee_curr_pose[:3], ee_curr_pose[3:]) # get next waypoint if error < 0.014: # print goal state print( f"\tMPC cost: { mpc_interface.get_current_cost()}\n", f"\tCurrent EE state:\n" f"\t\tI_r_IE : {ee_curr_pose[:3]} \n" f"\t\tq_IE : {ee_curr_pose[3:]} \n" f"\tGoal EE state:\n" f"\t\tI_r_IE_des: {ee_goals[ee_goal_index][:3]} \n" f"\t\tq_IE_des : {ee_goals[ee_goal_index][3:]} \n" "----------------------------------------------", ) # next goal ee_goal_index += 1 if ee_goal_index >= len(ee_goals): ee_goal_index = 0 # Define a goal for the arm ee_goal_pose = np.array(ee_goals[ee_goal_index]) # Update prims goal_vis_prim.set_world_pose(ee_goal_pose[:3], ee_goal_pose[3:]) # Define target trajectory mpc_interface.set_target_trajectory( time_traj=[sim_time, sim_time + 2], state_traj=[ee_curr_pose, ee_goal_pose], input_traj=[None, None] ) if __name__ == "__main__": # Run OCS2 example with Franka main() # Close the simulator simulation_app.close() # EOF
5,836
Python
34.16265
116
0.61292
2820207922/isaac_ws/standalone_examples/api/omni.importer.urdf/urdf_import.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp # URDF import, configuration and simulation sample kit = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni.kit.commands from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics # Setting up import configuration: status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = True import_config.fix_base = False import_config.distance_scale = 100 # Get path to extension data: extension_path = get_extension_path_from_name("omni.importer.urdf") # Import URDF, stage_path contains the path the path to the usd prim in the stage. status, stage_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf", import_config=import_config, get_articulation_root=True, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, -50), color=Gf.Vec3f(0.5), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Get handle to the Drive API for both wheels left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular") right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular") # Set the velocity drive target in degrees/second left_wheel_drive.GetTargetVelocityAttr().Set(150) right_wheel_drive.GetTargetVelocityAttr().Set(150) # Set the drive damping, which controls the strength of the velocity drive left_wheel_drive.GetDampingAttr().Set(15000) right_wheel_drive.GetDampingAttr().Set(15000) # Set the drive stiffness, which controls the strength of the position drive # In this case because we want to do velocity control this should be set to zero left_wheel_drive.GetStiffnessAttr().Set(0) right_wheel_drive.GetStiffnessAttr().Set(0) # Start simulation omni.timeline.get_timeline_interface().play() # perform one simulation step so physics is loaded and dynamic control works. kit.update() art = Articulation(prim_path=stage_path) art.initialize() if not art.handles_initialized: print(f"{stage_path} is not an articulation") else: print(f"Got articulation {stage_path} with handle {art.articulation_handle}") # perform simulation for frame in range(100): kit.update() # Shutdown and exit omni.timeline.get_timeline_interface().stop() kit.close()
3,877
Python
36.288461
111
0.780242
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/clock.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import time import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="ROS Clock Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS bridge sample showing rospy and rosclock interaction simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension if args.test: from omni.isaac.ros_bridge.scripts.roscore import Roscore from omni.isaac.ros_bridge.tests.common import wait_for_rosmaster roscore = Roscore() wait_for_rosmaster() # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy # Note that this is not the system level rospy, but one compiled for omniverse from rosgraph_msgs.msg import Clock clock_topic = "sim_time" manual_clock_topic = "manual_time" simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("PublishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishManualClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], og.Controller.Keys.CONNECT: [ # Connecting execution of OnPlaybackTick node to PublishClock to automatically publish each frame ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), # Connecting execution of OnImpulseEvent node to PublishManualClock so it will only publish when an impulse event is triggered ("OnImpulseEvent.outputs:execOut", "PublishManualClock.inputs:execIn"), # Connecting simulationTime data of ReadSimTime to the clock publisher nodes ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishManualClock.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ # Assigning topic names to clock publishers ("PublishClock.inputs:topicName", clock_topic), ("PublishManualClock.inputs:topicName", manual_clock_topic), ], }, ) except Exception as e: print(e) simulation_app.update() simulation_app.update() # Define ROS callbacks def sim_clock_callback(data): print("sim time:", data.clock.to_sec()) def manual_clock_callback(data): print("manual stepped sim time:", data.clock.to_sec()) # Create rospy ndoe rospy.init_node("isaac_sim_clock", anonymous=True, disable_signals=True, log_level=rospy.ERROR) # create subscribers sim_clock_sub = rospy.Subscriber(clock_topic, Clock, sim_clock_callback) manual_clock_sub = rospy.Subscriber(manual_clock_topic, Clock, manual_clock_callback) time.sleep(1.0) # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.render() # This updates rendering/app loop which calls the sim clock simulation_context.step(render=False) # runs with a non-realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_app.update() # runs with a realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # cleanup and shutdown sim_clock_sub.unregister() manual_clock_sub.unregister() simulation_context.stop() if args.test: roscore = None simulation_app.close()
5,492
Python
35.865772
142
0.716497
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/carter_stereo.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="Carter Stereo Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS bridge sample showing manual control over messages simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from pxr import Sdf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Locate assets root folder to load sample assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() exit() usd_path = assets_root_path + "/Isaac/Samples/ROS/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) ros_cameras_graph_path = "/World/Carter_ROS/ROS_Cameras" # Enabling rgb and depth image publishers for left camera. Cameras will automatically publish images each frame og.Controller.set( og.Controller.attribute(ros_cameras_graph_path + "/isaac_create_render_product_left.inputs:enabled"), True ) # Enabling rgb and depth image publishers for right camera. Cameras will automatically publish images each frame og.Controller.set( og.Controller.attribute(ros_cameras_graph_path + "/isaac_create_render_product_right.inputs:enabled"), True ) simulation_context.play() simulation_context.step() # Simulate for one second to warm up sim and let everything settle for frame in range(60): simulation_context.step() # Dock the second camera window left_viewport = omni.ui.Workspace.get_window("Viewport") right_viewport = omni.ui.Workspace.get_window("Viewport 2") if right_viewport is not None and left_viewport is not None: right_viewport.dock_in(left_viewport, omni.ui.DockPosition.RIGHT) right_viewport = None left_viewport = None import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy # Create a rostopic to publish message to spin robot in place # Note that this is not the system level rospy, but one compiled for omniverse from geometry_msgs.msg import Twist rospy.init_node("carter_stereo", anonymous=True, disable_signals=True, log_level=rospy.ERROR) pub = rospy.Publisher("cmd_vel", Twist, queue_size=10) frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Publish the ROS Twist message every 2 frames if frame % 2 == 0: message = Twist() message.angular.z = 0.5 # spin in place pub.publish(message) if args.test and frame > 120: break frame = frame + 1 pub.unregister() rospy.signal_shutdown("carter_stereo complete") simulation_context.stop() simulation_app.close()
4,162
Python
32.039682
112
0.760692
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/contact.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.kit.commands from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.sensor import _sensor from pxr import Gf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Note that this is not the system level rospy, but one compiled for omniverse import numpy as np import rospy try: from isaac_tutorials.msg import ContactSensor except ModuleNotFoundError: carb.log_error("isaac_tutorials message definition was not found, please source the ros workspace") simulation_app.close() exit() rospy.init_node("contact_sample", anonymous=True, disable_signals=True, log_level=rospy.ERROR) timeline = omni.timeline.get_timeline_interface() contact_pub = rospy.Publisher("/contact_report", ContactSensor, queue_size=0) cs = _sensor.acquire_contact_sensor_interface() meters_per_unit = 1.0 ros_world = World(stage_units_in_meters=1.0) # add a cube in the world cube_path = "/cube" cube_1 = ros_world.scene.add( DynamicCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 1.5]), size=1.0) ) simulation_app.update() # Add a plane for cube to collide with ros_world.scene.add_default_ground_plane() simulation_app.update() # putting contact sensor in the ContactSensor Message format def format_contact(c_out, contact): c_out.time = float(contact["time"]) c_out.value = float(contact["value"] * meters_per_unit) c_out.in_contact = bool(contact["inContact"]) return c_out # Setup contact sensor on cube result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/Contact_Sensor", parent=cube_path, min_threshold=0, max_threshold=100000000, color=Gf.Vec4f(1, 1, 1, 1), radius=-1, sensor_period=1.0 / 60.0, translation=Gf.Vec3d(0, 0, 0), ) simulation_app.update() # initiate the message handle c_out = ContactSensor() # start simulation timeline.play() for frame in range(10000): ros_world.step(render=False) # Get processed contact data reading = cs.get_sensor_readings(cube_path + "/Contact_Sensor") if reading.shape[0]: for r in reading: print(r) # pack the raw data into ContactSensor format and publish it c = format_contact(c_out, r) contact_pub.publish(c) # Cleanup timeline.stop() contact_pub.unregister() rospy.signal_shutdown("contact_sample complete") simulation_app.close()
3,408
Python
28.136752
103
0.734742
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/camera_noise.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} simulation_app = SimulationApp(CONFIG) import numpy as np import omni import omni.graph.core as og import omni.replicator.core as rep import omni.syntheticdata._syntheticdata as sd import warp as wp from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.isaac.core.utils.render_product import set_camera_prim_path from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # grab our render product and directly set the camera prim render_product_path = get_active_viewport().get_render_product_path() set_camera_prim_path(render_product_path, CAMERA_STAGE_PATH) # GPU Noise Kernel for illustrative purposes, input is rgba, outputs rgb @wp.kernel def image_gaussian_noise_warp( data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8), seed: int, sigma: float = 0.5 ): i, j = wp.tid() dim_i = data_out.shape[0] dim_j = data_out.shape[1] pixel_id = i * dim_i + j state_r = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 0)) state_g = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 1)) state_b = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 2)) data_out[i, j, 0] = wp.uint8(float(data_in[i, j, 0]) + (255.0 * sigma * wp.randn(state_r))) data_out[i, j, 1] = wp.uint8(float(data_in[i, j, 1]) + (255.0 * sigma * wp.randn(state_g))) data_out[i, j, 2] = wp.uint8(float(data_in[i, j, 2]) + (255.0 * sigma * wp.randn(state_b))) # register new augmented annotator that adds noise to rgba and then outputs to rgb to the ROS publisher can publish rep.annotators.register( name="rgb_gaussian_noise", annotator=rep.annotators.augment_compose( source_annotator=rep.annotators.get("rgb", device="cuda"), augmentations=[ rep.annotators.Augmentation.from_function( image_gaussian_noise_warp, sigma=0.1, seed=1234, data_out_shape=(-1, -1, 3) ), ], ), ) # Create a new writer with the augmented image rep.writers.register_node_writer( name=f"CustomROS1PublishImage", node_type_id="omni.isaac.ros_bridge.ROS1PublishImage", annotators=[ "rgb_gaussian_noise", omni.syntheticdata.SyntheticData.NodeConnectionTemplate( "IsaacReadSimulationTime", attributes_mapping={"outputs:simulationTime": "inputs:timeStamp"} ), ], category="custom", ) # Create the new writer and attach to our render product writer = rep.writers.get(f"CustomROS1PublishImage") writer.initialize(topicName="rgb_augmented", frameId="sim_camera") writer.attach([render_product_path]) simulation_app.update() # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) frame = frame + 1 simulation_context.stop() simulation_app.close()
5,338
Python
35.319728
115
0.729299
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/subscriber.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.extensions import enable_extension # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import time # Note that this is not the system level rospy, but one compiled for omniverse import numpy as np import rospy from std_msgs.msg import Empty class Subscriber: def __init__(self): # setting up the world with a cube self.timeline = omni.timeline.get_timeline_interface() self.ros_world = World(stage_units_in_meters=1.0) self.ros_world.scene.add_default_ground_plane() # add a cube in the world cube_path = "/cube" self.ros_world.scene.add( VisualCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 10]), size=0.2) ) self._cube_position = np.array([0, 0, 0]) # setup the ros subscriber here self.ros_sub = rospy.Subscriber("/move_cube", Empty, self.move_cube_callback, queue_size=10) self.ros_world.reset() def move_cube_callback(self, data): # callback function to set the cube position to a new one upon receiving a (empty) ros message if self.ros_world.is_playing(): self._cube_position = np.array([np.random.rand() * 0.40, np.random.rand() * 0.40, 0.10]) def run_simulation(self): self.timeline.play() while simulation_app.is_running(): self.ros_world.step(render=True) if self.ros_world.is_playing(): if self.ros_world.current_time_step_index == 0: self.ros_world.reset() # the actual setting the cube pose is done here self.ros_world.scene.get_object("cube_1").set_world_pose(self._cube_position) # Cleanup self.ros_sub.unregister() rospy.signal_shutdown("subscriber example complete") self.timeline.stop() simulation_app.close() if __name__ == "__main__": rospy.init_node("tutorial_subscriber", anonymous=True, disable_signals=True, log_level=rospy.ERROR) subscriber = Subscriber() subscriber.run_simulation()
3,108
Python
34.329545
103
0.684685
codemaster0407/ICECTCI-Hackathon/README.md
# ICECTCI-Hackathon # PROBLEM STATEMENT Problem Statement 3– Natural language processing Title: AI-Assisted Learning for NVIDIA SDKs and Toolkits Problem Statement: Develop an AI-powered language model (LLM) that assists users in understanding and effectively using various NVIDIA SDKs (Software Development Kits) and toolkits. The objective of this hackathon is to create an interactive and user-friendly platform that provides comprehensive information, examples, and guidance on NVIDIA's SDKs and toolkits. By leveraging the power of language models and NVIDIA toolkits, participants aim to simplify the learning curve for developers and empower them to utilize NVIDIA's technologies more efficiently. ### Chatbot_final.ipynb This notebook can be used for inference on queries as per the user's interest. ### Evaluate_1.ipynb Notebook to evaluate the fine-tuned models. ### FALCON7B_r32_a64_gen_tot This directory contains the finetuned Falcon-7B LLM with PEFT adapters. ### pup_gorilla_model This directory contains the finetuned Gorilla-7B LLM with PEFT adapters. ### DATA_EXTRACTION This directory contains all the code and extracted data files from different sources.
1,197
Markdown
35.303029
97
0.802005
codemaster0407/ICECTCI-Hackathon/FALCON7B_r32_a64_gen_tot/README.md
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
491
Markdown
20.391303
74
0.735234
KhaledSharif/omniverse-gym/setup.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages INSTALL_REQUIRES = [ "numpy==1.23.5", "protobuf==3.20.2", "omegaconf==2.3.0", "hydra-core==1.3.2", "urllib3==1.26.16", "rl-games==1.6.1", "moviepy==1.0.3" ] setup( name="omniisaacgymenvs", author="[email protected]", version="1.0.0", description="Omniverse Isaac Gym Envs for Robot Learning in NVIDIA Isaac Sim", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, )
765
Python
25.413792
94
0.647059
KhaledSharif/omniverse-gym/run.py
import os import gym import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import ( retrieve_checkpoint_path, get_experience, ) from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register( "RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv( config_name, num_actors, **kwargs ), ) env_configurations.register( "rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env} ) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self, module_path, experiment_dir): self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join( module_path, "runs" ) # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( { "train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None, } ) @hydra.main(version_base=None, config_name="config", config_path="./cfg") def parse_hydra_configs(cfg: DictConfig): headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f"cuda:{local_rank}" enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience( headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app, ) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience, ) # parse experiment directory module_path = os.path.abspath(os.curdir) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == "": videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = { "render_modes": ["rgb_array"], "render_fps": cfg.recording_fps, } else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length, ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed initialize_task(cfg_dict, env) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if __name__ == "__main__": parse_hydra_configs()
5,048
Python
32.437086
116
0.627377
KhaledSharif/omniverse-gym/README.md
# omniverse-gym Examples of how to use NVIDIA Omniverse Isaac Sim for to solve Reinforcement Learning Games (RL-Games) ## Installation Follow the Isaac Sim [documentation](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html) to install the latest Isaac Sim release (2023.1.1) To install `omniisaacgymenvs`, first clone this repository: ```bash git clone https://github.com/KhaledSharif/omniverse-gym.git ``` Once cloned, locate the [python executable in Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html). By default, this should be `python.sh`. We will refer to this path as `PYTHON_PATH`. To set a `PYTHON_PATH` variable in the terminal that links to the python executable, we can run a command that resembles the following. Make sure to update the paths to your local path. For Linux: ```bash alias PYTHON_PATH=~/.local/share/ov/pkg/isaac_sim-2023.1.1/python.sh ``` Install the repository and its dependencies: ```bash PYTHON_PATH -m pip install -e . ``` To run a simple form of PPO from `rl_games`, use the single-threaded training script: ```bash PYTHON_PATH run.py task=Cartpole ``` The result is saved to the current working directory in a new directory called `runs`. You can now evaluate your model by running the same environment in test (inference) mode using the saved model checkpoint. ```bash PYTHON_PATH run.py task=Cartpole test=True checkpoint=runs/Cartpole/nn/Cartpole.pth ```
1,491
Markdown
35.390243
226
0.768612
KhaledSharif/omniverse-gym/cfg/README.md
## Reinforcement Learning Configuration ### What is Hydra? Hydra is an open-source Python framework that simplifies the development of research and other complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line. ### What is ./config.yaml? - Task Configuration: This section specifies the task name, experiment name, the number of environments to use for training, the random seed, and whether to use deterministic PyTorch operations. - Device Configuration: This section configures the physics engine (PhysX), the pipeline (CPU or GPU), the device to be used for simulation (CPU or GPU), the device for running the RL algorithm, and whether to enable multi-GPU training. - PhysX Arguments: This section sets the number of worker threads and the solver type for the PhysX physics engine. - RL Training Arguments: These arguments control various aspects of the RL training process, such as running in test mode, loading a checkpoint, evaluation mode, headless rendering, live streaming, timeout settings, recording settings (e.g., interval, length, FPS, directory), and wandb (Weights & Biases) integration for logging and monitoring. - Default Settings: This section sets the default task and training configuration based on the specified task (in this case, Cartpole). Hydra Configuration: This section configures the output directory for the training logs and results using the Hydra configuration management framework. ### What is ./task/*.yaml? - Environment Settings: This section defines the number of parallel environments, episode length, observation and action clipping, control frequency, noise in initial conditions, number of props, aggregation mode, and reward scales for different objectives (e.g., distance, rotation, finger positions). - Simulation Settings: This section configures the simulation parameters, such as time step, gravity, ground plane, lighting, fabric usage, and whether to use GPU acceleration. It also sets the default physics material properties (friction, restitution). - Physics Engine Settings: These settings are specific to the PhysX physics engine, including worker thread count, solver type, GPU usage, solver iteration counts, contact offsets, bounce thresholds, friction parameters, sleeping and stabilization settings, and GPU buffer capacities. - Object-Specific Settings: These sections override specific parameters for individual objects or actors within the environment, such as the robot arm (e.g., Franka), cabinets, and props. These settings include enabling self-collisions, gyroscopic forces, solver iteration counts, sleep and stabilization thresholds, density, maximum depenetration velocity, and shape-specific parameters like contact and rest offsets. ### What is ./train/*.yaml? Params: This section contains the main parameters for the RL algorithm and neural network architecture. - seed: Random seed value for reproducibility. - algo: The algorithm to be used, in this case, a2c_continuous (Advantage Actor-Critic for continuous actions). - model: The model type, typically continuous_a2c_logstd for continuous action spaces. - network: Configuration for the neural network architecture, including the type (actor-critic), activation functions, initialization methods, and layer sizes. Load Checkpoint: Parameters related to loading a pre-trained model checkpoint. - load_checkpoint: A flag to determine whether to load a checkpoint or not. - load_path: The path to the checkpoint file to be loaded. Config: This section contains various configuration settings for the training process. - name: The name of the experiment or environment. - full_experiment_name: The full name of the experiment. - env_name: The name of the environment to be used (in this case, rlgpu). - device: The device to be used for training (e.g., CPU or GPU). - multi_gpu: A flag to enable multi-GPU training. - ppo: A flag to indicate that PPO is being used. - mixed_precision: A flag to enable mixed-precision training (useful for GPU acceleration). - normalize_input, normalize_value, normalize_advantage: Flags for normalizing input, value, and advantage estimates. - num_actors: The number of parallel environments to run. - reward_shaper: Configuration for reward scaling. - gamma, tau: Discount factors for future rewards. - learning_rate, lr_schedule: Learning rate and its scheduling strategy. - kl_threshold: The KL divergence threshold for adaptive KL penalty in PPO. - score_to_win: The target score to consider the task as solved. - max_epochs, save_best_after, save_frequency: Parameters for training duration and checkpointing. - grad_norm, entropy_coef, truncate_grads, e_clip: Gradient-related parameters and entropy regularization. - horizon_length, minibatch_size, mini_epochs: Parameters for batching and optimization. - critic_coef, clip_value, seq_length, bounds_loss_coef: Additional parameters for the critic and bounding loss.
5,022
Markdown
85.603447
418
0.797093
KhaledSharif/omniverse-gym/omniisaacgymenvs/README.md
## Omniverse Isaac Gym Envs TBD
33
Markdown
7.499998
27
0.727273
KhaledSharif/omniverse-gym/omniisaacgymenvs/envs/README.md
## Reinforcement Learning Environments ```python class VecEnvBase( headless: bool, sim_device: int = 0, enable_livestream: bool = False, enable_viewport: bool = False, launch_simulation_app: bool = True, experience: Optional[str] = None ) ``` - VecEnvBase: A base class that provides an interface for connecting RL policies with task implementations, following the gym.Env interface. It handles simulation initialization, task registration, and basic environment interactions like reset, step, and render. - TaskStopException: An exception class used to signal task termination. - TrainerMT: An abstract base class for controlling the start and stop of an RL policy. - VecEnvMT: A multi-threaded environment wrapper that separates the RL policy execution and simulation tasks into different threads, enabling interaction with the UI during RL training. It uses message queues for inter-thread communication, managing the flow of actions from the policy to the task, and data from the task to the policy. The code provides methods for setting up the simulation environment, initializing tasks, stepping through the simulation, rendering, resetting the environment, and handling actions and observations. It supports both single-threaded and multi-threaded modes of operation, with the multi-threaded mode allowing for UI interaction during training.
1,380
Markdown
71.684207
344
0.791304
KhaledSharif/omniverse-gym/omniisaacgymenvs/robots/README.md
## Reinforcement Learning Robots The Robot class provides a common interface for creating and managing robot articulations in the Isaac Sim simulation environment. It allows for configuring various properties, such as position, orientation, scale, visibility, and articulation controller. It also provides methods for applying actions (joint positions, velocities, and efforts), applying visual materials, handling gravity, and retrieving information about the robot's state, articulation bodies, and applied actions. ### Constructor Parameters - prim_path: The path of the Prim (Primitive) to encapsulate or create. - name: A shortname to be used as a key by the Scene class. It needs to be unique if the object is added to the Scene. - position: The position in the world frame of the Prim. Shape is (3,). - translation: The translation in the local frame of the Prim (with respect to its parent Prim). Shape is (3,). - orientation: The quaternion orientation in the world/local frame of the Prim (depends on whether translation or position is specified). The quaternion is scalar-first (w, x, y, z). Shape is (4,). - scale: The local scale to be applied to the Prim's dimensions. Shape is (3,). - visible: A boolean indicating whether the Prim should be visible in the stage during rendering. - articulation_controller: A custom ArticulationController that inherits from the base ArticulationController class. If not provided, a basic ArticulationController is created. ### Properties - articulation_handle: A handler to the articulation, which is a unique identifier used by the Dynamic Control extension to manage the articulation. - dof_names: A list of Prim names for each degree of freedom (DoF). - dof_properties: A NumPy array containing the properties of the articulation DoFs, such as type, limits, drive mode, maximum velocity and effort, stiffness, and damping. ### Methods - apply_action: Applies joint positions, velocities, and/or efforts to control the articulation. - apply_visual_material: Applies a visual material (e.g., PreviewSurface, OmniPBR, OmniGlass) to the Prim and optionally its descendants. - disable_gravity: Keeps gravity from affecting the robot. - enable_gravity: Allows gravity to affect the robot. - get_angular_velocity: Gets the angular velocity of the root articulation Prim. - get_applied_action: Gets the last applied action (joint positions, velocities, and efforts). - get_applied_joint_efforts: Gets the efforts applied to the joints set by the set_joint_efforts method. - get_applied_visual_material: Returns the currently applied visual material, if supported. - get_articulation_body_count: Gets the number of bodies (links) that make up the articulation. - get_articulation_controller: Gets the articulation controller. - get_default_state: Gets the default Prim states (spatial position and orientation).
2,865
Markdown
76.459457
484
0.788482
KazWong/omniverse_sample/README.md
ov_sample: original sample from omniverse script_window: sample for omniverse script editor omnihelper: sample for python in command line isaac is the bash script to run isaac python replace your path to isaac_sim-2021.1.1 ``` source /path/to /isaac_sim-2021.1.1/setup_python_env.sh /path/to /isaac_sim-2021.1.1/python.sh $@ ```
333
Markdown
26.833331
55
0.756757
KazWong/omniverse_sample/ov_sample/ros2_samples/navigation/carter_navigation/launch/carter_visualization.launch.py
## Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node ## This launch file is only used for seperately running Rviz2 with the carter_navigation configuration. def generate_launch_description(): use_sim_time = LaunchConfiguration("use_sim_time", default="true") rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz") return LaunchDescription( [ DeclareLaunchArgument("use_sim_time", default_value="True", description="Flag to enable use_sim_time"), Node( package="rviz2", executable="rviz2", name="rviz2", output="screen", parameters=[{"use_sim_time": use_sim_time}], arguments=["-d", rviz_config_dir], ), ] )
1,468
Python
38.702702
119
0.69891
KazWong/omniverse_sample/ov_sample/ros2_samples/navigation/carter_navigation/maps/carter_warehouse_navigation.yaml
image: carter_warehouse_navigation.png resolution: 0.05 origin: [-10.325, -12.225, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
142
YAML
19.428569
38
0.739437
KazWong/omniverse_sample/ov_sample/python_samples/environment.yml
name: isaac-sim channels: - pytorch - defaults dependencies: - cudatoolkit=11.0 - matplotlib=3.1.3 - pip=20.3.3 - python=3.7 - pytorch - requests=2.23.0 - torchaudio=0.7.2 - torchvision=0.8.2 - six=1.12.0 - pip: - gym==0.17.3 - opencv-python==4.4.0.44 - pillow==8.2.0 - scipy==1.5.4 - stable-baselines3==0.10.0 - tensorboard==2.4.0 - tensorboard-plugin-wit==1.7.0 - tensorflow-estimator==2.3.0 - tensorflow-gpu==2.3.1
499
YAML
19.833333
36
0.563126
KazWong/omniverse_sample/ov_sample/python_samples/README.md
# Python samples This folder contains samples that use the omniverse python loop to execute. ## Built in python 3.7 environment Navigate to the parent directory and execute ``` ./python.sh path/to/script.py ``` ## Anaconda - Anaconda ### Setup Create and activate the conda environment ``` conda env create -f environment.yml conda activate isaac-sim ``` Use `setenv` script to add the omniverse kit python environment to your active PYTHONPATH `source setenv.sh` ## How To Run See the Isaac Sim documentation for how to run the samples in this folder
567
Markdown
16.212121
89
0.749559
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_train.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import numpy as np import os import carb import signal import json import argparse from argparse import Namespace from omni.isaac.python_app import OmniKitHelper from jetbot_model import CustomCNN from stable_baselines3 import PPO from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback def train(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) # need to construct OmniKitHelp before importing physics, etc from jetbot_env import JetbotEnv import omni.physx # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetbotEnv(omniverse_kit, max_resets=args.rand_freq, updates_per_step=3, mirror_mode=args.mirror_mode) checkpoint_callback = CheckpointCallback( save_freq=args.save_freq, save_path="./params/", name_prefix=args.checkpoint_name ) net_arch = [256, 256, dict(pi=[128, 64, 32], vf=[128, 64, 32])] policy_kwargs = {"net_arch": net_arch, "activation_fn": torch.nn.ReLU} if args.loaded_checkpoint == "": model = PPO( "CnnPolicy", env, verbose=1, tensorboard_log=args.tensorboard_dir, policy_kwargs=policy_kwargs, device="cuda", n_steps=args.step_freq, batch_size=2048, n_epochs=50, learning_rate=0.0001, ) else: model = PPO.load(args.loaded_checkpoint, env) model.learn( total_timesteps=args.total_steps, callback=checkpoint_callback, eval_env=env, eval_freq=args.eval_freq, eval_log_path=args.evaluation_dir, reset_num_timesteps=args.reset_num_timesteps, ) model.save(args.checkpoint_name) def runEval(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } # load a zip file to evaluate here agent = PPO.load(args.evaluation_dir + "/best_model.zip", device="cuda") omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) # need to construct OmniKitHelper before importing physics, etc from jetbot_env import JetbotEnv import omni.physx # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetbotEnv(omniverse_kit, mirror_mode=args.mirror_mode) obs = env.reset() while True: action = agent.predict(obs) print(action) obs, rew, done, infos = env.step(action[0]) if done: obs = env.reset() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--loaded_checkpoint", help="path to checkpoint to be loaded", default="", nargs="?", type=str) parser.add_argument("-E", "--eval", help="evaluate checkpoint", action="store_true") parser.add_argument( "-R", "--reset_num_timesteps", help="reset the current timestep number (used in logging)", action="store_true" ) parser.add_argument( "-M", "--mirror_mode", help="reflect images and actions horizontally during training", action="store_true" ) parser.add_argument("-H", "--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument( "--checkpoint_name", help="name of checkpoint file (no suffix)", default="checkpoint_25k", type=str ) parser.add_argument("--tensorboard_dir", help="path to tensorboard log directory", default="tensorboard", type=str) parser.add_argument("--evaluation_dir", help="path to evaluation log directory", default="eval_log", type=str) parser.add_argument("--save_freq", help="number of steps before saving a checkpoint", default=4096 * 8, type=int) parser.add_argument("--eval_freq", help="number of steps before running an evaluation", default=4096 * 8, type=int) parser.add_argument("--step_freq", help="number of steps before executing a PPO update", default=10240, type=int) parser.add_argument( "--rand_freq", help="number of environment resets before domain randomization", default=1, type=int ) parser.add_argument( "--total_steps", help="the total number of steps before exiting and saving a final checkpoint", default=250000000, type=int, ) parser.add_argument( "--experimentFile", help="specify configuration via JSON. Overrides commandline", default="", type=str ) args = parser.parse_args() if args.experimentFile != "": args_dict = vars(args) if os.path.exists(args.experimentFile): with open(args.experimentFile) as f: json_args_dict = json.load(f) args_dict.update(json_args_dict) args = Namespace(**args_dict) print("running with args: ", args) def handle_exit(*args, **kwargs): print("Exiting training...") quit() signal.signal(signal.SIGINT, handle_exit) if args.eval: runEval(args) else: train(args)
5,897
Python
31.766666
119
0.652535
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni from pxr import UsdGeom, Gf, UsdPhysics import numpy as np # Camera parameters FOCAL_LENGTH = 0.75 HORIZONTAL_APERTURE = 2.350 VERTICAL_APERTURE = 2.350 # Drive Parameters DRIVE_STIFFNESS = 10000.0 # The amount the camera points down at, decrease to raise camera angle CAMERA_PIVOT = 40.0 class Jetbot: def __init__(self, omni_kit): from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.usd_path = nucleus_server + "/Isaac/Robots/Jetbot/jetbot.usd" self.robot_prim = None self._dynamic_control = _dynamic_control self.dc = _dynamic_control.acquire_dynamic_control_interface() self.ar = None # rotation is in degrees def spawn(self, location, rotation): stage = self.omni_kit.get_stage() prefix = "/World/Robot/Jetbot" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) self.robot_prim = stage.DefinePrim(prim_path, "Xform") self.robot_prim.GetReferences().AddReference(self.usd_path) xform = UsdGeom.Xformable(self.robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) self.camera_path = prim_path + "/chassis/rgb_camera/jetbot_camera" self.camera_pivot = prim_path + "/chassis/rgb_camera" # Set joint drive parameters left_wheel_joint = UsdPhysics.DriveAPI.Apply( stage.GetPrimAtPath(f"{prim_path}/chassis/left_wheel_joint"), "angular" ) left_wheel_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) right_wheel_joint = UsdPhysics.DriveAPI.Apply( stage.GetPrimAtPath(f"{prim_path}/chassis/right_wheel_joint"), "angular" ) right_wheel_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) def teleport(self, location, rotation, settle=False): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) self.dc.wake_up_articulation(self.ar) rot_quat = Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation).GetQuaternion() tf = self._dynamic_control.Transform( location, (rot_quat.GetImaginary()[0], rot_quat.GetImaginary()[1], rot_quat.GetImaginary()[2], rot_quat.GetReal()), ) self.dc.set_rigid_body_pose(self.chassis, tf) self.dc.set_rigid_body_linear_velocity(self.chassis, [0, 0, 0]) self.dc.set_rigid_body_angular_velocity(self.chassis, [0, 0, 0]) self.command((0, 0)) # Settle the robot onto the ground if settle: frame = 0 velocity = 1 while velocity > 0.1 and frame < 120: self.omni_kit.update(1.0 / 60.0) lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) velocity = np.linalg.norm([lin_vel.x, lin_vel.y, lin_vel.z]) frame = frame + 1 def activate_camera(self): # Set camera parameters stage = self.omni_kit.get_stage() cameraPrim = UsdGeom.Camera(stage.GetPrimAtPath(self.camera_path)) cameraPrim.GetFocalLengthAttr().Set(FOCAL_LENGTH) cameraPrim.GetHorizontalApertureAttr().Set(HORIZONTAL_APERTURE) cameraPrim.GetVerticalApertureAttr().Set(VERTICAL_APERTURE) # Point camera down at road pivot_prim = stage.GetPrimAtPath(self.camera_pivot) transform_attr = pivot_prim.GetAttribute("xformOp:transform") transform_attr.Set( transform_attr.Get().SetRotateOnly(Gf.Matrix3d(Gf.Rotation(Gf.Vec3d(0, 1, 0), CAMERA_PIVOT))) ) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera_path)) def command(self, motor_value): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) self.wheel_left = self.dc.find_articulation_dof(self.ar, "left_wheel_joint") self.wheel_right = self.dc.find_articulation_dof(self.ar, "right_wheel_joint") self.dc.wake_up_articulation(self.ar) left_speed = self.wheel_speed_from_motor_value(motor_value[0]) right_speed = self.wheel_speed_from_motor_value(motor_value[1]) self.dc.set_dof_velocity_target(self.wheel_left, np.clip(left_speed, -10, 10)) self.dc.set_dof_velocity_target(self.wheel_right, np.clip(right_speed, -10, 10)) # idealized motor model def wheel_speed_from_motor_value(self, input): return input def observations(self): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) dc_pose = self.dc.get_rigid_body_pose(self.chassis) dc_lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) dc_local_lin_vel = self.dc.get_rigid_body_local_linear_velocity(self.chassis) dc_ang_vel = self.dc.get_rigid_body_angular_velocity(self.chassis) return { "pose": (dc_pose.p.x, dc_pose.p.y, dc_pose.p.z, dc_pose.r.w, dc_pose.r.x, dc_pose.r.y, dc_pose.r.z), "linear_velocity": (dc_lin_vel.x, dc_lin_vel.y, dc_lin_vel.z), "local_linear_velocity": (dc_local_lin_vel.x, dc_local_lin_vel.y, dc_local_lin_vel.z), "angular_velocity": (dc_ang_vel.x, dc_ang_vel.y, dc_ang_vel.z), }
6,442
Python
44.373239
117
0.652903
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_model.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import torch.nn.functional as F from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomCNN(BaseFeaturesExtractor): """ :param observation_space: (gym.Space) :param features_dim: (int) Number of features extracted. This corresponds to the number of unit for the last layer. """ def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 512): super(CustomCNN, self).__init__(observation_space, features_dim) # We assume CxHxW images (channels first) # Re-ordering will be done by pre-preprocessing or wrapper n_input_channels = observation_space.shape[0] # print(observation_space.shape) self.cnn = nn.Sequential( nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Flatten(), ) # Compute shape by doing one forward pass with torch.no_grad(): n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[1] print("POST CONV FEATURES = ", n_flatten) # define the hidden layer to translate to a fixed number of features self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU()) def forward(self, observations: torch.Tensor) -> torch.Tensor: return self.linear(self.cnn(observations))
2,166
Python
37.696428
100
0.669898
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_env.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import numpy as np import carb from pxr import UsdGeom, Gf import os import time import atexit import asyncio import numpy as np import random import collections import matplotlib.pyplot as plt import omni from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.python_app import OmniKitHelper from omni.isaac.synthetic_utils import SyntheticDataHelper from jetbot import Jetbot from road_environment import Environment import gym from gym import spaces class JetbotEnv: metadata = {"render.modes": ["human"]} def __init__( self, omni_kit, z_height=0, max_resets=10, updates_per_step=3, steps_per_rollout=1000, mirror_mode=False ): self.MIRROR_MODE = mirror_mode self.action_space = spaces.Box(low=0, high=2.0, shape=(2,), dtype=np.float32) # IMPORTANT NOTE! SB3 wraps all image spaces in a transposer. # it assumes the image outputed is of standard form self.observation_space = spaces.Box(low=0, high=255, shape=(224, 224, 1), dtype=np.uint8) self.noise = 0.05 # every time we update the stage, this is how much time will be simulated self.dt = 1 / 30.0 self.omniverse_kit = omni_kit self.sd_helper = SyntheticDataHelper() self.roads = Environment(self.omniverse_kit) # make environment z up self.omniverse_kit.set_up_axis(UsdGeom.Tokens.z) # we are going to train on a randomized loop that fits in a 2x2 tile area. self.shape = [2, 2] self.roads.generate_road(self.shape) self.roads.generate_lights() # spawn robot self.jetbot = Jetbot(self.omniverse_kit) self.initial_loc = self.roads.get_valid_location() self.jetbot.spawn(Gf.Vec3d(self.initial_loc[0], self.initial_loc[1], 5), 0) # switch kit camera to jetbot camera self.jetbot.activate_camera() # start simulation self.omniverse_kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) frame = frame + 1 print("done after frame: ", frame) self.initialized = False self.numsteps = 0 self.numresets = 0 self.maxresets = max_resets self.updates_per_step = updates_per_step self.steps_per_rollout = steps_per_rollout self.hist_length = collections.deque([0.0] * 10, maxlen=10) self.hist_forward_vel = collections.deque([0.0] * 10, maxlen=10) self.hist_ang_vel = collections.deque([0.0] * 30, maxlen=30) self.avg_forward_vel = 0 self.dist_traveled = 0 self.total_reward = 0 # Randomly mirror horizontally self.update_mirror_mode() def update_mirror_mode(self): # Mirror if mode is enabled and we randomly sample True self.mirror_mode = self.MIRROR_MODE & random.choice([False, True]) def calculate_reward(self): # distance to nearest point on path in units of block. [0,1] dist = self.roads.distance_to_path_in_tiles(self.current_pose) self.dist = dist dist_reward = np.exp(-dist ** 2 / 0.15 ** 2) reward = self.current_forward_velocity * dist_reward # if we are driving backwards, large negative reward # if self.current_forward_velocity < 0: # reward = self.current_forward_velocity # THIS IS FOR DEBUGGING ONLY if self.numsteps % 10 == 0 or reward < 0: print( "{:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f}".format( reward, self.current_forward_velocity, self.avg_forward_vel, dist_reward, self.dist_traveled, self.current_ang_vel, ) ) self.total_reward += reward return reward def is_dead(self): done = False # terminate if we leave boundary if not self.roads.is_inside_path_boundary(self.current_pose): print("dead not inside boundary", self.numsteps) done = True # kill the episode after 500 steps if self.numsteps > self.steps_per_rollout: print("dead self.numsteps > self.steps_per_rollout", self.numsteps) done = True # terminate if we are driving backwards for too long if self.avg_forward_vel <= 0 and self.numsteps > 35: print("dead self.avg_forward_vel <= 1 after 35 steps ", self.avg_forward_vel) done = True return done def transform_action(self, action): # If mirrored, swap wheel controls if self.mirror_mode: action = action[::-1] return action def transform_state_image(self, im): # If enabled, mirror image horizontally if self.mirror_mode: return np.flip(im, axis=1) return im def step(self, action): if self.initialized: self.previous_loc = self.current_loc transformed_action = self.transform_action(action) self.jetbot.command(transformed_action) frame = 0 reward = 0 # every time step is called we actually update the scene by updates_per_step. while frame < self.updates_per_step: # render at 1/30, simulate at 1/60, which means 2 substeps per frame self.omniverse_kit.update(self.dt, 1.0 / 60.0, 2.0) frame = frame + 1 # compute reward once simulation is complete obs = self.jetbot.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] self.current_ang_vel = obs["angular_velocity"][2] self.current_loc = self.roads.get_tile_from_pose(self.current_pose) self.hist_forward_vel.append(self.current_forward_velocity) self.dist_traveled = self.dist_traveled + self.current_forward_velocity * self.dt self.hist_ang_vel.append(self.current_ang_vel) self.avg_forward_vel = sum(self.hist_forward_vel) / len(self.hist_forward_vel) if not self.initialized: self.previous_loc = self.roads.get_tile_from_pose(self.current_pose) reward = self.calculate_reward() # the synthetic data helper is our way of grabbing the image data we need from the camera. currently the SD helper # only supports a single camera, however you can use it to access camera data as a cuda tensor directly on the # device. stable baselines 3 is expecting a numpy array, so we pull the data to the host # additional sensors that could be of interest and can be added to this list: # "depth", "instanceSegmentation", "semanticSegmentation" viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) # we only need the rgb channels of the rgb image currentState = gt["rgb"][:, :, :3].astype(np.float) currentState = self.transform_state_image(currentState) if not self.initialized: self.previousState = currentState img = np.dot(currentState, [0.299, 0.587, 0.114]) # np.concatenate((currentState, self.previousState), axis=2) img = img.reshape((img.shape[0], img.shape[1], 1)) # the real camera will have noise on each pixel, so we add some uniform noise here to simulate thats # uncomment below to add noise to image img = np.clip((255 * self.noise * np.random.randn(224, 224, 1) + img.astype(np.float)), 0, 255).astype(np.uint8) self.previousState = currentState self.numsteps += 1 done = self.is_dead() return img, reward, done, {} def reset(self): # Randomly mirror horizontally self.update_mirror_mode() # randomize the road configuration every self.maxresets resets. if self.numresets % self.maxresets == 0: size = random.randrange(2, 6) self.shape = [size, size] self.roads.reset(self.shape) if not self.initialized: state, reward, done, info, = self.step([0, 0]) self.initialized = True # every time we reset, we move the robot to a random location, and pointing along the direction of the road loc = self.roads.get_valid_location() # the random angle offset can be increased here rot = self.roads.get_forward_direction(loc) + random.uniform(-10, 10) self.jetbot.teleport( Gf.Vec3d(loc[0] + random.uniform(-2.5, 2.5), loc[1] + random.uniform(-2.5, 2.5), 5), rot, settle=True ) obs = self.jetbot.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] self.current_loc = self.roads.get_tile_from_pose(self.current_pose) self.previous_loc = self.roads.get_tile_from_pose(self.current_pose) self.dist = self.roads.distance_to_path_in_tiles(self.current_pose) # wait for loading if self.numresets % self.maxresets == 0: while self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) img = np.dot( currentState.astype(np.float), [0.299, 0.587, 0.114] ) # np.concatenate((currentState, currentState), axis=2) img = img.reshape((img.shape[0], img.shape[1], 1)) # uncomment below to add noise to image img = np.clip((255 * self.noise * np.random.randn(224, 224, 1) + img.astype(np.float)), 0, 255).astype(np.uint8) print( "reset ", sum(self.hist_length) / len(self.hist_length), self.numresets, self.dist_traveled, self.avg_forward_vel, self.total_reward, ) self.numsteps = 0 self.previousState = currentState self.numresets += 1 self.total_reward = 0 self.dist_traveled = 0 return img
11,046
Python
37.093103
123
0.62457
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/road_environment.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni import numpy as np from pxr import UsdGeom, Gf, Sdf, UsdPhysics from jetbot_city.road_map import * from jetbot_city.road_map_path_helper import * from jetbot_city.road_map_generator import * from omni.isaac.synthetic_utils import DomainRandomization import math class Environment: def __init__(self, omni_kit, z_height=0): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit result, nucleus_server = find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return result, nucleus_server = find_nucleus_server("/Library/Props/Road_Tiles/Parts/") if result is False: carb.log_error( "Could not find nucleus server with /Library/Props/Road_Tiles/Parts/ folder. Please refer to the documentation to aquire the road tile assets" ) return # 1=I 2=L 3=T, 4=X self.tile_usd = { 0: None, 1: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4336p01.usd", "offset": 180}, 2: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4342p01.usd", "offset": 180}, 3: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4341p01.usd", "offset": 180}, 4: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4343p01.usd", "offset": 180}, } # list of tiles that can be spawned self.texture_list = [ nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] self.tile_size = [25.0, 25.0] # 1=UP, 2 = DOWN, 3 = LEFT, 4= RIGHT self.direction_map = {1: 180, 2: 0, 3: -90, 4: 90} self.prims = [] # list of spawned tiles self.height = z_height # height of the ground tiles self.tiles = None self.state = None # because the ground plane is what the robot drives on, we only do this once. We can then re-generate the road as often as we need without impacting physics self.setup_physics() self.road_map = None self.road_path_helper = None self.map_generator = LoopRoadMapGenerator() contents = omni.client.list(nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/")[1] for entry in contents: self.texture_list.append( nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/" + entry.relative_path ) contents = omni.client.list(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/")[1] names = [] loaded_paths = [] for entry in contents: if not entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: names.append(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/" + entry.relative_path) loaded_paths.append("/DR/mesh_component/mesh_" + entry.relative_path[0:-4]) print(loaded_paths) self.omni_kit.create_prim("/World/Floor", "Xform") stage = omni.usd.get_context().get_stage() cubeGeom = UsdGeom.Cube.Define(stage, "/World/Floor/thefloor") cubeGeom.CreateSizeAttr(300) offset = Gf.Vec3f(75, 75, -150.1) cubeGeom.AddTranslateOp().Set(offset) # Create a sphere room so the world is not black self.omni_kit.create_prim("/World/Room", "Sphere", attributes={"radius": 1e3}) prims = [] self.dr = DomainRandomization() self.dr.toggle_manual_mode() self.dr.create_mesh_comp(prim_paths=prims, mesh_list=names, mesh_range=[1, 1]) self.omni_kit.update(1 / 60.0) print("waiting for materials to load...") while self.omni_kit.is_loading(): self.omni_kit.update(1 / 60.0) lights = [] for i in range(5): prim_path = "/World/Lights/light_" + str(i) self.omni_kit.create_prim( prim_path, "SphereLight", translation=(0, 0, 200), rotation=(0, 0, 0), attributes={"radius": 10, "intensity": 1000.0, "color": (1.0, 1.0, 1.0)}, ) lights.append(prim_path) frames = 1 # enable randomization for environment self.dr.create_movement_comp(prim_paths=loaded_paths, min_range=(0, 0, 15), max_range=(150, 150, 15)) self.dr.create_rotation_comp(prim_paths=loaded_paths) self.dr.create_visibility_comp(prim_paths=loaded_paths, num_visible_range=(15, 15)) self.dr.create_light_comp(light_paths=lights) self.dr.create_movement_comp(prim_paths=lights, min_range=(0, 0, 30), max_range=(150, 150, 30)) self.dr.create_texture_comp( prim_paths=["/World/Floor"], enable_project_uvw=True, texture_list=self.texture_list ) self.dr.create_color_comp(prim_paths=["/World/Room"]) def generate_lights(self): prim_path = omni.usd.get_stage_next_free_path(self.omni_kit.get_stage(), "/World/Env/Light", False) self.prims.append(prim_path) self.omni_kit.create_prim( prim_path, "RectLight", translation=(75, 75, 100), rotation=(0, 0, 0), attributes={"height": 150, "width": 150, "intensity": 2000.0, "color": (1.0, 1.0, 1.0)}, ) def reset(self, shape): # print(self.prims) # cmd = omni.kit.builtin.init.DeletePrimsCommand(self.prims) # cmd.do() stage = omni.usd.get_context().get_stage() for layer in stage.GetLayerStack(): edit = Sdf.BatchNamespaceEdit() for path in self.prims: prim_spec = layer.GetPrimAtPath(path) if prim_spec is None: continue parent_spec = prim_spec.realNameParent if parent_spec is not None: edit.Add(path, Sdf.Path.emptyPath) layer.Apply(edit) self.prims = [] self.generate_road(shape) self.dr.randomize_once() def generate_road(self, shape): self.tiles, self.state, self.road_map = self.map_generator.generate(shape) tiles = self.tiles state = self.state self.road_path_helper = RoadMapPathHelper(self.road_map) if tiles.shape != state.shape: print("tiles and state sizes don't match") return stage = self.omni_kit.get_stage() rows, cols = tiles.shape self.valid_tiles = [] for x in range(0, rows): for y in range(0, cols): if tiles[x, y] != 0: pos_x = x * self.tile_size[0] + 12.5 pos_y = y * self.tile_size[1] + 12.5 self.create_tile( stage, self.tile_usd[tiles[x, y]]["asset"], Gf.Vec3d(pos_x, pos_y, self.height), self.direction_map[state[x, y]] + self.tile_usd[tiles[x, y]]["offset"], ) for x in range(0, rows): for y in range(0, cols): # print(paths[x,y]) if tiles[x, y] != 0: self.valid_tiles.append([x, y]) def generate_road_from_numpy(self, tiles, state): self.tiles = tiles self.state = state self.road_map = RoadMap.create_from_numpy(self.tiles, self.state) self.road_path_helper = RoadMapPathHelper(self.road_map) if tiles.shape != state.shape: print("tiles and state sizes don't match") return stage = self.omni_kit.get_stage() rows, cols = tiles.shape self.valid_tiles = [] for x in range(0, rows): for y in range(0, cols): if tiles[x, y] != 0: pos_x = x * self.tile_size[0] + 12.5 pos_y = y * self.tile_size[1] + 12.5 self.create_tile( stage, self.tile_usd[tiles[x, y]]["asset"], Gf.Vec3d(pos_x, pos_y, self.height), self.direction_map[state[x, y]] + self.tile_usd[tiles[x, y]]["offset"], ) for x in range(0, rows): for y in range(0, cols): # print(paths[x,y]) if tiles[x, y] != 0: self.valid_tiles.append([x, y]) def create_tile(self, stage, path, location, rotation): prefix = "/World/Env/Tiles/Tile" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) self.prims.append(prim_path) tile_prim = stage.DefinePrim(prim_path, "Xform") tile_prim.GetReferences().AddReference(path) xform = UsdGeom.Xformable(tile_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) def setup_physics(self): from pxr import PhysxSchema, PhysicsSchemaTools stage = self.omni_kit.get_stage() # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/Env/PhysicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/Env/PhysicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/Env/PhysicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create physics plane for the ground PhysicsSchemaTools.addGroundPlane( stage, "/World/Env/GroundPlane", "Z", 100.0, Gf.Vec3f(0, 0, self.height), Gf.Vec3f(1.0) ) # Hide the visual geometry imageable = UsdGeom.Imageable(stage.GetPrimAtPath("/World/Env/GroundPlane/geom")) if imageable: imageable.MakeInvisible() def get_valid_location(self): if self.tiles is None: print("cannot provide valid location until road is generated") return (0, 0) i = np.random.choice(len(self.valid_tiles), 1)[0] dist, point = self.road_path_helper.distance_to_path(self.valid_tiles[i]) x, y = point print("get valid location called", self.valid_tiles[i], point) return (x * self.tile_size[0], y * self.tile_size[1]) # Computes an approximate forward vector based on the current spawn point and nearby valid path point def get_forward_direction(self, loc): if self.road_path_helper is not None: k = 100 dists, pts = self.road_path_helper.get_k_nearest_path_points(np.array([self.get_tile_from_pose(loc)]), k) pointa = pts[0][0] pointb = pts[0][k - 1] if random.choice([False, True]): pointa, pointb = pointb, pointa return math.degrees(math.atan2(pointb[1] - pointa[1], pointb[0] - pointa[0])) # Compute the x,y tile location from the robot pose def get_tile_from_pose(self, pose): return (pose[0] / self.tile_size[0], pose[1] / self.tile_size[1]) def distance_to_path(self, robot_pose): if self.road_path_helper is not None: distance, point = self.road_path_helper.distance_to_path(self.get_tile_from_pose(robot_pose)) return distance * self.tile_size[0] def distance_to_path_in_tiles(self, robot_pose): if self.road_path_helper is not None: distance, point = self.road_path_helper.distance_to_path(self.get_tile_from_pose(robot_pose)) return distance def distance_to_boundary(self, robot_pose): if self.road_path_helper is not None: distance = self.road_path_helper.distance_to_boundary(self.get_tile_from_pose(robot_pose)) return distance * self.tile_size[0] def is_inside_path_boundary(self, robot_pose): if self.road_path_helper is not None: return self.road_path_helper.is_inside_path_boundary(self.get_tile_from_pose(robot_pose))
13,501
Python
42.13738
164
0.595289
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import enum import random from collections import deque import numpy as np import os import io import cv2 import PIL.Image import pickle from typing import List, Set, Dict, Tuple, Optional from .priority_queue import * DEFAULT_IMAGE_SIZE = (32, 32) def mask_L(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) cv2.circle(mask, (size, 0), size // 2, (255, 255, 255), thickness) return PIL.Image.fromarray(mask) def mask_I(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) cv2.line(mask, (size // 2, 0), (size // 2, size), (255, 255, 255), thickness, cv2.LINE_4) return PIL.Image.fromarray(mask) def mask_T(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) mask = np.maximum(mask, cv2.circle(mask, (0, size), size // 2, (255, 255, 255), thickness)) mask = np.maximum(mask, cv2.circle(mask, (size, size), size // 2, (255, 255, 255), thickness)) mask = np.maximum(mask, cv2.line(mask, (0, size // 2), (size, size // 2), (255, 255, 255), thickness, cv2.LINE_4)) return PIL.Image.fromarray(mask) def mask_X(size=256, thickness=1): mask = mask_L(size, thickness) mask = np.maximum(mask, mask_I(size, thickness)) for i in range(4): mask = np.maximum(mask, cv2.rotate(mask, cv2.ROTATE_90_CLOCKWISE)) return PIL.Image.fromarray(mask) _I_IMAGE = mask_I() _L_IMAGE = mask_L() _T_IMAGE = mask_T() _X_IMAGE = mask_X() class RoadBlockType(enum.IntEnum): EMPTY = 0 I = 1 L = 2 T = 3 X = 4 def ports(self): if self == RoadBlockType.I: return [0, 1, 0, 1] # left, top, right, bottom elif self == RoadBlockType.L: return [0, 1, 1, 0] elif self == RoadBlockType.T: return [1, 0, 1, 1] elif self == RoadBlockType.X: return [1, 1, 1, 1] else: return [0, 0, 0, 0] def image(self, size=DEFAULT_IMAGE_SIZE): if self == RoadBlockType.I: return _I_IMAGE.resize(size) elif self == RoadBlockType.L: return _L_IMAGE.resize(size) elif self == RoadBlockType.T: return _T_IMAGE.resize(size) elif self == RoadBlockType.X: return _X_IMAGE.resize(size) else: return PIL.Image.fromarray(np.zeros(size + (3,), dtype=np.uint8)) def paths_mask(self, size=DEFAULT_IMAGE_SIZE, thickness=1): if self == RoadBlockType.I: return mask_I(size[0], thickness) elif self == RoadBlockType.L: return mask_L(size[0], thickness) elif self == RoadBlockType.T: return mask_T(size[0], thickness) elif self == RoadBlockType.X: return mask_X(size[0], thickness) else: return PIL.Image.fromarray(np.zeros(size, dtype=np.uint8)) class RoadBlockState(enum.IntEnum): HIDDEN = 0 UP = 1 # 0 DOWN = 2 # 180 LEFT = 3 # CCW 90 RIGHT = 4 # CW 90 @staticmethod def random(): return RoadBlockState(np.random.randint(len(RoadBlockState))) class RoadBlock(object): def __init__(self, type: RoadBlockType, state: RoadBlockState): self.type = type self.state = state def __iter__(self): yield self.type yield self.state def ports(self): if self.state == RoadBlockState.HIDDEN: return [0, 0, 0, 0] elif self.state == RoadBlockState.UP: return self.type.ports() elif self.state == RoadBlockState.DOWN: return list(np.roll(self.type.ports(), 2)) elif self.state == RoadBlockState.LEFT: return list(np.roll(self.type.ports(), -1)) else: return list(np.roll(self.type.ports(), 1)) def has_left_port(self): return self.ports()[0] def has_right_port(self): return self.ports()[2] def has_top_port(self): return self.ports()[1] def has_bottom_port(self): return self.ports()[3] def image(self, size=DEFAULT_IMAGE_SIZE): # if self.state == RoadBlockState.HIDDEN or self.type == RoadBlockType.EMPTY: # return PIL.Image.fromarray(np.zeros(size + (3,), dtype=np.uint8)) image = self.type.image(size=size) if self.state == RoadBlockState.LEFT: image = image.rotate(90) elif self.state == RoadBlockState.RIGHT: image = image.rotate(-90) elif self.state == RoadBlockState.DOWN: image = image.rotate(180) return image def paths_mask(self, size=DEFAULT_IMAGE_SIZE, thickness=1): # if self.state == RoadBlockState.HIDDEN or self.type == RoadBlockType.EMPTY: # return PIL.Image.fromarray(np.zeros(size, dtype=np.uint8)) image = self.type.paths_mask(size=size, thickness=thickness) if self.state == RoadBlockState.LEFT: image = image.rotate(90) elif self.state == RoadBlockState.RIGHT: image = image.rotate(-90) elif self.state == RoadBlockState.DOWN: image = image.rotate(180) return image def l1_distance(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) class RoadLocation(object): def __init__(self, i, j): self.i = i self.j = j def __iter__(self): yield self.i yield self.j class RoadMap(object): def __init__(self, grid: List[List[RoadBlock]]): self.grid = grid @staticmethod def create_random_from_types(types: List[RoadBlockType], NI, NJ): grid = [] for i in range(NI): row = [] for j in range(NJ): row.append(RoadBlock(RoadBlockType.EMPTY, RoadBlockState.random())) grid.append(row) # construct positions locations = [] for i in range(NI): for j in range(NJ): locations.append(RoadLocation(i, j)) np.random.shuffle(locations) locations = locations[0 : len(types)] for i, loc in enumerate(locations): grid[loc.i][loc.j] = RoadBlock(types[i], RoadBlockState.random()) return RoadMap(grid) @staticmethod def create_from_numpy(types, states): grid = [] for i in range(types.shape[0]): row = [] for j in range(types.shape[1]): row.append(RoadBlock(RoadBlockType(types[i, j]), RoadBlockState(states[i, j]))) grid.append(row) return RoadMap(grid) @property def NI(self): return len(self.grid) @property def NJ(self): return len(self.grid[0]) def numpy(self): types = [] states = [] for i in range(self.NI): types_i = [] states_i = [] for j in range(self.NJ): types_i.append(int(self.grid[i][j].type)) states_i.append(int(self.grid[i][j].state)) types.append(types_i) states.append(states_i) return np.array(types), np.array(states) def _children(self, i, j): block = self.grid[i][j] children = [] if i > 0: top = self.grid[i - 1][j] if top.has_bottom_port() and block.has_top_port(): children.append((i - 1, j)) if i < self.NI - 1: bottom = self.grid[i + 1][j] if bottom.has_top_port() and block.has_bottom_port(): children.append((i + 1, j)) if j > 0: left = self.grid[i][j - 1] if left.has_right_port() and block.has_left_port(): children.append((i, j - 1)) if j < self.NJ - 1: right = self.grid[i][j + 1] if right.has_left_port() and block.has_right_port(): children.append((i, j + 1)) return children def _search_path(self, i, j, visited): q = deque() q.append((i, j)) path = [] while q: i, j = q.popleft() path.append((i, j)) for child in self._children(i, j): if not visited[child[0], child[1]]: q.append(child) visited[child[0], child[1]] = True return path def find_shortest_path(self, a, b): visited = np.zeros((self.NI, self.NJ), dtype=np.bool) q = PriorityQueue() q.push((l1_distance(a, b), [a])) visited[a[0], a[1]] = 1 while not q.empty(): cost, path = q.pop() tail = path[-1] if tail[0] == b[0] and tail[1] == b[1]: return path for child in self._children(tail[0], tail[1]): if not visited[child[0], child[1]]: child_path = path + [child] child_cost = len(child_path) + l1_distance(child, b) q.push((child_cost, child_path)) visited[child[0], child[1]] = 1 return None def paths(self): visited = np.zeros((self.NI, self.NJ), dtype=np.bool) # set blocks that cannot be path components as visited for i in range(self.NI): for j in range(self.NJ): block = self.grid[i][j] if block.state == RoadBlockState.HIDDEN or block.type == RoadBlockType.EMPTY: visited[i, j] = True paths = [] for i in range(self.NI): for j in range(self.NJ): if not visited[i, j]: visited[i, j] = True path = self._search_path(i, j, visited) paths.append(path) return paths def num_open_ports(self): num_open = 0 for i in range(self.NJ): for j in range(self.NI): num_open += np.count_nonzero(self.grid[i][j].ports()) - len(self._children(i, j)) return num_open def num_ports(self): num_ports = 0 for i in range(self.NJ): for j in range(self.NI): num_ports += np.count_nonzero(self.grid[i][j].ports()) # - len(self._children(i, j)) return num_ports def num_closed_ports(self): num_ports = 0 for i in range(self.NJ): for j in range(self.NI): num_ports += len(self._children(i, j)) return num_ports def image(self, block_size=DEFAULT_IMAGE_SIZE): si = block_size[0] sj = block_size[1] image = np.zeros((si * self.NI, sj * self.NJ, 3), dtype=np.uint8) for i in range(self.NJ): for j in range(self.NI): image[i * si : i * si + si, j * sj : j * sj + sj] = np.array(self.grid[i][j].image(size=block_size)) return PIL.Image.fromarray(image) def paths_mask(self, block_size=DEFAULT_IMAGE_SIZE, thickness=1): si = block_size[0] sj = block_size[1] image = np.zeros((si * self.NI, sj * self.NJ), dtype=np.uint8) for i in range(self.NJ): for j in range(self.NI): image[i * si : i * si + si, j * sj : j * sj + sj] = np.array( self.grid[i][j].paths_mask(size=block_size, thickness=thickness) ) return PIL.Image.fromarray(image) def obs(self): obs = np.zeros((4, self.NI, self.NJ), dtype=np.float32) for i in range(self.NI): for j in range(self.NJ): obs[0, i, j] = self.grid[i][j].has_left_port() obs[1, i, j] = self.grid[i][j].has_top_port() obs[2, i, j] = self.grid[i][j].has_right_port() obs[3, i, j] = self.grid[i][j].has_bottom_port() return obs def swap_(self, a, b): tmp = self.grid[a[0]][a[1]] self.grid[a[0]][a[1]] = self.grid[b[0]][b[1]] self.grid[b[0]][b[1]] = tmp def render(self, widget): # Render the environment to the screen imgByteArr = io.BytesIO() self.image(block_size=(64, 64)).save(imgByteArr, format="PNG") imgByteArr = imgByteArr.getvalue() widget.value = imgByteArr def save(self, f): types, states = self.numpy() data = {"types": types, "states": states} if isinstance(f, str): with open(f, "wb") as f: pickle.dump(data, f) else: pickle.dump(data, f) @staticmethod def load(f): if isinstance(f, str): with open(f, "rb") as f: data = pickle.load(f) else: data = pickle.load(f) return RoadMap.create_from_numpy(data["types"], data["states"]) def ports(self): ports = np.zeros((self.NI, self.NJ, 4), np.bool) for i in range(self.NI): for j in range(self.NJ): ports[i, j, 0] = self.grid[i][j].has_left_port() ports[i, j, 1] = self.grid[i][j].has_top_port() ports[i, j, 2] = self.grid[i][j].has_right_port() ports[i, j, 3] = self.grid[i][j].has_bottom_port() return ports @staticmethod def create_from_ports(ports): NI = ports.shape[0] NJ = ports.shape[1] types = np.zeros(ports.shape[0:2], dtype=np.int64) states = np.zeros(ports.shape[0:2], dtype=np.int64) for i in range(NI): for j in range(NJ): pij = ports[i, j] for typ in RoadBlockType: if (np.roll(typ.ports(), 0) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.UP break elif (np.roll(typ.ports(), 1) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.RIGHT break elif (np.roll(typ.ports(), 2) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.DOWN break elif (np.roll(typ.ports(), 3) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.LEFT break return RoadMap.create_from_numpy(types, states)
14,731
Python
31.449339
118
0.530242
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map_generator.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .road_map import * from .priority_queue import * def children(occupancy, point): NI = occupancy.shape[0] NJ = occupancy.shape[1] children = [] if point[0] > 0: pt = [point[0] - 1, point[1]] children.append(pt) if point[0] < NI - 1: pt = [point[0] + 1, point[1]] children.append(pt) if point[1] > 0: pt = [point[0], point[1] - 1] children.append(pt) if point[1] < NJ - 1: pt = [point[0], point[1] + 1] children.append(pt) return children def l1_distance(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) def find_path(occupancy, point_a, point_b): visited = np.copy(occupancy) visited[point_a[0], point_b[0]] = 1 q = PriorityQueue() # cost heuristic, path... for child in children(visited, point_a): if not visited[child[0], child[1]]: q.push((1 + l1_distance(child, point_b), [child])) visited[child[0], child[1]] = 1 while not q.empty(): cost, path = q.pop() tail = path[-1] for child in children(visited, tail): if child[0] == point_b[0] and child[1] == point_b[1]: return path elif not visited[child[0], child[1]]: child_cost = len(path) + l1_distance(child, point_b) child_path = path + [child] q.push((child_cost, child_path)) visited[child[0], child[1]] = 1 return None def add_port(ports, a, b): # port order: left,top,right,bottom if b[1] > a[1]: # b to right of a ports[a[0], a[1], 2] = 1 ports[b[0], b[1], 0] = 1 elif b[1] < a[1]: # b to left of a ports[a[0], a[1], 0] = 1 ports[b[0], b[1], 2] = 1 elif b[0] > a[0]: # b above a ports[a[0], a[1], 3] = 1 ports[b[0], b[1], 1] = 1 elif b[0] < a[0]: # b below a ports[a[0], a[1], 1] = 1 ports[b[0], b[1], 3] = 1 def ports_to_types_states(ports): NI = ports.shape[0] NJ = ports.shape[1] types = np.zeros(ports.shape[0:2], dtype=np.int64) states = np.zeros(ports.shape[0:2], dtype=np.int64) for i in range(NI): for j in range(NJ): pij = ports[i, j] for typ in RoadBlockType: if (np.roll(typ.ports(), 0) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.UP break elif (np.roll(typ.ports(), 1) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.RIGHT break elif (np.roll(typ.ports(), 2) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.DOWN break elif (np.roll(typ.ports(), 3) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.LEFT break return types, states class RoadMapGenerator(object): def generate(self, shape): raise NotImplementedError class LoopRoadMapGenerator(RoadMapGenerator): def generate(self, shape): GRID_SIZE = shape ports = np.zeros((GRID_SIZE[0], GRID_SIZE[1], 4), np.bool) occupancy = np.zeros(GRID_SIZE, np.uint8) start = (np.random.randint(GRID_SIZE[0]), np.random.randint(GRID_SIZE[1])) path = [] path.append(start) occupancy[start[0], start[1]] = 1 runner = start while True: # get valid children valid_children = [] for child in children(occupancy, runner): if not occupancy[child[0], child[1]]: child_occupancy = np.copy(occupancy) child_occupancy[child[0], child[1]] = 1 child_path = find_path(child_occupancy, child, start) if child_path is not None: valid_children.append(child) # exit if no valid child paths if len(valid_children) == 0: break # navigate to random child idx = np.random.randint(len(valid_children)) runner = valid_children[idx] path.append(runner) occupancy[runner[0], runner[1]] = 1 path = path + find_path(occupancy, runner, start) + [start] for i in range(len(path) - 1): add_port(ports, path[i], path[i + 1]) types, states = ports_to_types_states(ports) road_map = RoadMap.create_from_numpy(types, states) return types, states, road_map
5,124
Python
29.505952
82
0.523224
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/priority_queue.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. class PriorityQueue(object): def __init__(self): self.items = [] def push(self, item): a = 0 b = len(self.items) - 1 while a <= b: c = a + (b - a) // 2 if self.items[c][0] < item[0]: # 0, 1 (0), a = c + 1 elif self.items[c][0] > item[0]: b = c - 1 else: break if a >= len(self.items): idx = len(self.items) elif b < 0: idx = 0 else: idx = a + (b - a) // 2 self.items.insert(idx, item) def pop(self): return self.items.pop(0) def empty(self): return len(self.items) == 0
1,137
Python
27.449999
76
0.550572
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map_path_helper.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .road_map import * from scipy.spatial import KDTree import cv2 import matplotlib.pyplot as plt import numpy as np class RoadMapPathHelper(object): def __init__(self, road_map, block_resolution=128, path_thickness_ratio=19 / 32): self._road_map = road_map self._block_resolution = block_resolution self._map_path_mask = np.array(self._road_map.paths_mask((block_resolution, block_resolution), thickness=1)) self._map_boundary_mask = np.array( self._road_map.paths_mask( (block_resolution, block_resolution), thickness=int(block_resolution * path_thickness_ratio) ) ) mask_pts = np.transpose(np.nonzero(self._map_path_mask)) mask_pts = mask_pts / block_resolution # get points in grid coordinates self._path_kdtree = KDTree(mask_pts) boundary_points = np.transpose(np.nonzero(cv2.Laplacian(self._map_boundary_mask, cv2.CV_32F))) boundary_points = boundary_points / block_resolution self._boundary_kdtree = KDTree(boundary_points) # print("boundary points shape! ", boundary_points.shape) # plt.imshow(self._map_boundary_mask) # plt.show() def get_k_nearest_path_points(self, points, k=1): dists, indices = self._path_kdtree.query(points, k=k) return dists, self._path_kdtree.data[indices] def distance_to_path(self, point): dists, pts = self.get_k_nearest_path_points(np.array([point])) return (float(dists[0]), pts[0]) def get_k_nearest_boundary_points(self, points, k=1): dists, indices = self._boundary_kdtree.query(points, k=k) return dists, self._boundary_kdtree.data[indices] def distance_to_boundary(self, point): dists, pts = self.get_k_nearest_boundary_points(np.array([point])) return float(dists[0]) def is_inside_path_boundary(self, point): return ( self._map_boundary_mask[int(point[0] * self._block_resolution), int(point[1] * self._block_resolution)] > 0 )
2,485
Python
41.862068
119
0.675654
KazWong/omniverse_sample/ov_sample/python_samples/ros/clock.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import time import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Example ROS bridge sample showing rospy and rosclock interaction kit = OmniKitHelper(config=CONFIG) import omni # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage kit.update() result, check = omni.kit.commands.execute("RosBridgeRosMasterCheck") if not check: carb.log_error("Please run roscore before executing this script") kit.stop() kit.shutdown() exit() # Note that this is not the system level rospy, but one compiled for omniverse from rosgraph_msgs.msg import Clock import rospy # create a clock using sim time result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_Sim", clock_topic="/sim_time", sim_time=True ) # create a clock using system time result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_System", clock_topic="/system_time", sim_time=False ) # create a clock which we will publish manually, set enabled to false to make it manually controlled result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_Manual", clock_topic="/manual_time", sim_time=True, enabled=False ) kit.update() kit.update() # Define ROS callbacks def sim_clock_callback(data): print("sim time:", data.clock.to_sec()) def system_clock_callback(data): print("system time:", data.clock.to_sec()) def manual_clock_callback(data): print("manual stepped sim time:", data.clock.to_sec()) # Create rospy ndoe rospy.init_node("isaac_sim_test_gripper", anonymous=True, disable_signals=True, log_level=rospy.ERROR) # create subscribers sim_clock_sub = rospy.Subscriber("sim_time", Clock, sim_clock_callback) system_clock_sub = rospy.Subscriber("system_time", Clock, system_clock_callback) manual_clock_sub = rospy.Subscriber("manual_time", Clock, manual_clock_callback) time.sleep(1.0) # start simulation kit.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: result, status = omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock_Manual") kit.update(1.0 / 60.0) # runs with a non-realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: result, status = omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock_Manual") kit.update() # runs with a realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # cleanup and shutdown sim_clock_sub.unregister() system_clock_sub.unregister() manual_clock_sub.unregister() kit.stop() kit.shutdown()
4,151
Python
37.803738
114
0.687786
KazWong/omniverse_sample/ov_sample/python_samples/ros/carter_stereo.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import time import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": False, } if __name__ == "__main__": # Example ROS bridge sample showing manual control over messages kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from pxr import Sdf # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # Locate /Isaac folder on nucleus server to load sample result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() usd_path = nucleus_server + "/Isaac/Samples/ROS/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") # Disable all ROS components so we can demonstrate publishing manually # Otherwise, if a component is enabled, it will publish every timestep omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Camera_Stereo_Right.enabled"), value=False, prev=None, ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Camera_Stereo_Left.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Lidar.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_DifferentialBase.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster.enabled"), value=False, prev=None, ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Carter_Broadcaster.enabled"), value=False, prev=None ) omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/ROS_Clock.enabled"), value=False, prev=None) kit.play() kit.update(1.0 / 60.0) # Tick all of the components once to make sure all of the ROS nodes are initialized # For cameras this also handles viewport initialization etc. omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Right") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Left") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Lidar") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_DifferentialBase") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/ROS_Clock") # Simulate for one second to warm up sim and let everything settle for frame in range(60): kit.update(1.0 / 60.0) # Dock the second camera window right_viewport = omni.ui.Workspace.get_window("Viewport") left_viewport = omni.ui.Workspace.get_window("Viewport_2") if right_viewport is not None and left_viewport is not None: left_viewport.dock_in(right_viewport, omni.ui.DockPosition.LEFT) # Create a rostopic to publish message to spin robot in place # Note that this is not the system level rospy, but one compiled for omniverse from geometry_msgs.msg import Twist import rospy rospy.init_node("carter_stereo", anonymous=True, disable_signals=True, log_level=rospy.ERROR) pub = rospy.Publisher("cmd_vel", Twist, queue_size=10) frame = 0 while kit.app.is_running(): # Run with a fixed step size kit.update(1.0 / 60.0) # Publish clock every frame omni.kit.commands.execute("RosBridgeTickComponent", path="/World/ROS_Clock") # publish TF and Lidar every 2 frames if frame % 2 == 0: omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Lidar") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_DifferentialBase") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Broadcaster") # because we only tick the differential base component every two frames, we can also publish the ROS message at the same rate message = Twist() message.angular.z = 0.2 # spin in place pub.publish(message) # Publish cameras every 60 frames or one second of simulation if frame % 60 == 0: omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Right") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Left") frame = frame + 1 pub.unregister() rospy.signal_shutdown("carter_stereo complete") kit.stop() kit.shutdown()
6,107
Python
45.984615
137
0.700508
KazWong/omniverse_sample/ov_sample/python_samples/ros/moveit.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper FRANKA_STAGE_PATH = "/Franka" FRANKA_USD_PATH = "/Isaac/Robots/Franka/franka_alt_fingers.usd" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Room/simple_room.usd" CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": False, } def wait_load_stage(): # Wait two frames so stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") if __name__ == "__main__": # Example ROS bridge sample demonstrating the manual loading of stages # and creation of ROS components kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from omni.isaac.utils.scripts.scene_utils import create_background from pxr import Gf # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # Locate /Isaac folder on nucleus server to load environment and robot stages result, _nucleus_path = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() # Initialize extension and UI elements _viewport = omni.kit.viewport.get_default_viewport_window() _usd_context = omni.usd.get_context() # Preparing stage _viewport.set_camera_position("/OmniverseKit_Persp", 120, 120, 80, True) _viewport.set_camera_target("/OmniverseKit_Persp", 0, 0, 50, True) _stage = _usd_context.get_stage() # Loading the simple_room environment background_asset_path = _nucleus_path + BACKGROUND_USD_PATH create_background(_stage, background_asset_path, background_path=BACKGROUND_STAGE_PATH, offset=Gf.Vec3d(0, 0, 0)) wait_load_stage() # Loading the franka robot USD franka_asset_path = _nucleus_path + FRANKA_USD_PATH prim = _stage.DefinePrim(FRANKA_STAGE_PATH, "Xform") prim.GetReferences().AddReference(franka_asset_path) rot_mat = Gf.Matrix3d(Gf.Rotation((0, 0, 1), 90)) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath(), old_transform_matrix=None, new_transform_matrix=Gf.Matrix4d().SetRotate(rot_mat).SetTranslateOnly(Gf.Vec3d(0, -64, 0)), ) wait_load_stage() # Loading all ROS components initially as disabled so we can demonstrate publishing manually # Otherwise, if a component is enabled, it will publish every timestep # Load ROS Clock omni.kit.commands.execute("ROSBridgeCreateClock", path="/ROS_Clock", enabled=False) # Load Joint State omni.kit.commands.execute( "ROSBridgeCreateJointState", path="/ROS_JointState", articulation_prim_rel=[FRANKA_STAGE_PATH], enabled=False ) # Load Pose Tree omni.kit.commands.execute( "ROSBridgeCreatePoseTree", path="/ROS_PoseTree", target_prims_rel=[FRANKA_STAGE_PATH], enabled=False ) kit.play() kit.update(1.0 / 60.0) # Tick all of the components once to make sure all of the ROS nodes are initialized omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_JointState") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_PoseTree") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") # Simulate for one second to warm up sim and let everything settle for frame in range(60): kit.update(1.0 / 60.0) kit.play() while kit.app.is_running(): # Run with a fixed step size kit.update(1.0 / 60.0) # Publish clock, TF and JointState each frame omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_JointState") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_PoseTree") kit.stop() kit.shutdown()
4,589
Python
35.72
117
0.70146
KazWong/omniverse_sample/ov_sample/python_samples/simple/franka_articulation.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # This sample loads an articulation and prints its information kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server stage = kit.get_stage() result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") asset_path = nucleus_server + "/Isaac/Robots/Franka/franka_alt_fingers.usd" omni.usd.get_context().open_stage(asset_path) # start simulation kit.play() # perform timestep kit.update(1.0 / 60.0) dc = _dynamic_control.acquire_dynamic_control_interface() # Get handle to articulation art = dc.get_articulation("/panda") if art == _dynamic_control.INVALID_HANDLE: print("*** '%s' is not an articulation" % "/panda") else: # Print information about articulation root = dc.get_articulation_root_body(art) print(str("Got articulation handle %d \n" % art) + str("--- Hierarchy\n")) body_states = dc.get_articulation_body_states(art, _dynamic_control.STATE_ALL) print(str("--- Body states:\n") + str(body_states) + "\n") dof_states = dc.get_articulation_dof_states(art, _dynamic_control.STATE_ALL) print(str("--- DOF states:\n") + str(dof_states) + "\n") dof_props = dc.get_articulation_dof_properties(art) print(str("--- DOF properties:\n") + str(dof_props) + "\n") # Simulate robot coming to a rest configuration for i in range(100): kit.update(1.0 / 60.0) # Simulate robot for a fixed number of frames and specify a joint position target for i in range(100): dof_ptr = dc.find_articulation_dof(art, "panda_joint2") # This should be called each frame of simulation if state on the articulation is being changed. dc.wake_up_articulation(art) # Set joint position target dc.set_dof_position_target(dof_ptr, -1.5) kit.update(1.0 / 60.0) kit.stop() kit.shutdown()
2,778
Python
37.068493
103
0.674946
KazWong/omniverse_sample/ov_sample/python_samples/simple/control_your_robot.py
#https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/controlling_robot.html import os import omni from omni.isaac.python_app import OmniKitHelper omni.timeline.get_timeline_interface().play()
202
Python
24.374997
83
0.811881
KazWong/omniverse_sample/ov_sample/python_samples/simple/load_stage.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import carb import omni # This sample loads a usd stage and starts simulation CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting", } if __name__ == "__main__": import argparse # Set up command line arguments parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument("--usd_path", type=str, help="Path to usd file", required=True) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() # Start the omniverse application CONFIG["headless"] = args.headless kit = OmniKitHelper(config=CONFIG) # Locate /Isaac folder on nucleus server to load sample from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() asset_path = nucleus_server + "/Isaac" usd_path = asset_path + args.usd_path omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") kit.play() # Run in test mode, exit after a fixed number of steps if args.test is True: for i in range(10): # Run in realtime mode, we don't specify the step size kit.update() else: while kit.app.is_running(): # Run in realtime mode, we don't specify the step size kit.update() kit.stop() kit.shutdown()
2,421
Python
34.101449
100
0.678232
KazWong/omniverse_sample/ov_sample/python_samples/simple/livestream.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import omni # This sample enables a livestream server to connect to when running headless CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "window_width": 1920, "window_height": 1080, "headless": True, "renderer": "RayTracedLighting", "display_options": 3807, # Set display options to show default grid } if __name__ == "__main__": # Start the omniverse application kit = OmniKitHelper(config=CONFIG) # Enable Livestream extension ext_manager = omni.kit.app.get_app().get_extension_manager() kit.set_setting("/app/window/drawMouse", True) kit.set_setting("/app/livestream/proto", "ws") ext_manager.set_extension_enabled_immediate("omni.kit.livestream.core", True) ext_manager.set_extension_enabled_immediate("omni.kit.livestream.native", True) # Run until closed while kit.app.is_running(): # Run in realtime mode, we don't specify the step size kit.update() kit.stop() kit.shutdown()
1,538
Python
34.790697
83
0.714564
KazWong/omniverse_sample/ov_sample/python_samples/simple/change_resolution.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import random CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Simple example showing how to change resolution kit = OmniKitHelper(config=CONFIG) kit.update(1.0 / 60.0) for i in range(100): width = random.randint(128, 1980) height = random.randint(128, 1980) kit.set_setting("/app/renderer/resolution/width", width) kit.set_setting("/app/renderer/resolution/height", height) kit.update(1.0 / 60.0) print(f"resolution set to: {width}, {height}") # cleanup kit.shutdown()
1,160
Python
34.181817
76
0.701724
KazWong/omniverse_sample/ov_sample/python_samples/simple/urdf_import.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # URDF import, configuration and simualtion sample kit = OmniKitHelper(config=CONFIG) import omni.kit.commands from pxr import Sdf, Gf, UsdPhysics, UsdLux, PhysxSchema # Setting up import configuration: status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = True import_config.fix_base = False # Get path to extension data: ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.urdf") extension_path = ext_manager.get_extension_path(ext_id) # Import URDF omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf", import_config=import_config, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, -50), color=Gf.Vec3f(0.5), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Get handle to the Drive API for both wheels left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular") right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular") # Set the velocity drive target in degrees/second left_wheel_drive.GetTargetVelocityAttr().Set(150) right_wheel_drive.GetTargetVelocityAttr().Set(150) # Set the drive damping, which controls the strength of the velocity drive left_wheel_drive.GetDampingAttr().Set(15000) right_wheel_drive.GetDampingAttr().Set(15000) # Set the drive stiffness, which controls the strength of the position drive # In this case because we want to do velocity control this should be set to zero left_wheel_drive.GetStiffnessAttr().Set(0) right_wheel_drive.GetStiffnessAttr().Set(0) # Start simulation kit.play() # perform simulation for frame in range(100): kit.update(1.0 / 60.0) # Shutdown and exit kit.stop() kit.shutdown()
3,757
Python
36.58
115
0.713335
KazWong/omniverse_sample/ov_sample/python_samples/simple/time_stepping.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Example usage, with step size test kit = OmniKitHelper(config=CONFIG) import omni.physx from pxr import UsdPhysics, Sdf UsdPhysics.Scene.Define(kit.get_stage(), Sdf.Path("/World/physicsScene")) # Create callbacks to both editor and physics step callbacks def editor_update(e: carb.events.IEvent): dt = e.payload["dt"] print("kit update step:", dt, "seconds") def physics_update(dt: float): print("physics update step:", dt, "seconds") # start simulation kit.play() # assign callbacks update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(editor_update) physics_sub = omni.physx.acquire_physx_interface().subscribe_physics_step_events(physics_update) # perform step experiments print(f"Rendering and Physics with {1} second step size:") kit.update(1.0) print(f"Rendering and Physics with {1/60} seconds step:") kit.update(1.0 / 60.0) print(f"Rendering {1/30} seconds step size and Physics {1/120} seconds step size:") kit.update(1.0 / 30.0, 1.0 / 120.0, 4) # cleanup update_sub = None physics_sub = None kit.stop() kit.shutdown()
1,873
Python
33.072727
107
0.695675
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/gtc2020_track_utils.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from PIL import Image # TODO : This is custom, specific to the GTC2020 Jetracer course. # Make a more general solution. def line_seg_closest_point(v0, v1, p0): # Project p0 onto (v0, v1) line, then clamp to line segment d = v1 - v0 q = p0 - v0 t = np.dot(q, d) / np.dot(d, d) t = np.clip(t, 0, 1) return v0 + t * d def line_seg_distance(v0, v1, p0): p = line_seg_closest_point(v0, v1, p0) return np.linalg.norm(p0 - p) # Canonical arc is centered at origin, and goes from 0 to a0 radians def canonical_arc_distance(R, a0, x): a = np.arctan2(x[1], x[0]) if a < 0: a = a + 2 * np.pi if a > a0: if a < a0 / 2 + np.pi: a = a0 else: a = 0 p = R * np.array([np.cos(a), np.sin(a)]) return np.linalg.norm(x - p) def arc_distance(c, r, a0, a1, x): # Point relative to arc origin x0 = x - c # Rotate point to canonical angle (where arc starts at 0) c = np.cos(-a0) s = np.sin(-a0) R = np.array([[c, -s], [s, c]]) x0 = np.dot(R, x0) return canonical_arc_distance(r, a1 - a0, x0) def closest_point_arc(c, r, a0, a1, x): # Direction to point x0 = x - c x0 = x0 / np.linalg.norm(x0) # print(c, x0, r, c + x0 * r) return c + x0 * r # The forward direction at the closest point on an arc def closest_point_arc_direction(c, r, a0, a1, x): # Direction to point x0 = x - c x0 = x0 / np.linalg.norm(x0) # The tangent is unit circle point rotated pi/2 radians return np.array([-x0[1], x0[0]]) def arc_endpoints(c, r, a0, a1): c0 = np.cos(a0) s0 = np.sin(a0) c1 = np.cos(a1) s1 = np.sin(a1) return c + r * np.array([[c0, s0], [c1, s1]]) # Measurements (in meters) m0 = 7.620 m1 = 10.668 m2 = 5.491 m3 = 3.048 m4 = 4.348 m5 = 5.380 # Track width w = 1.22 w_2 = w / 2 # Arc arrays arc_center = np.zeros((4, 2)) arc_radius = np.zeros(4) arc_angles = np.zeros((4, 2)) # Arcs # Bottom left arc_center[0] = np.array([w, w]) arc_radius[0] = w_2 arc_angles[0] = [np.pi, np.pi * 1.5] # Top left arc_center[1] = np.array([m3, m0]) arc_radius[1] = m3 - w_2 arc_angles[1] = [1.75 * np.pi, 3 * np.pi] ep1 = arc_endpoints(arc_center[1], arc_radius[1], arc_angles[1][0], arc_angles[1][1]) # Others arc_center[2] = np.array([m5, m4]) arc_radius[2] = 0.5 * (2.134 + 0.914) arc_angles[2] = [0.75 * np.pi, 1.25 * np.pi] ep2 = arc_endpoints(arc_center[2], arc_radius[2], arc_angles[2][0], arc_angles[2][1]) arc_center[3] = np.array([m2, w]) arc_radius[3] = w_2 arc_angles[3] = [np.pi * 1.5, np.pi * 2.25] ep3 = arc_endpoints(arc_center[3], arc_radius[3], arc_angles[3][0], arc_angles[3][1]) # line segment points line_verts = [ np.array([w_2, w]), np.array([w_2, m0]), ep1[0], ep2[0], ep2[1], ep3[1], np.array([m2, w_2]), np.array([w, w_2]), ] def random_track_point(): # TODO : Refactor these dimensions, which show up in multiple places p = np.random.random(2) * [6.711, 10.668] result = track_segment_closest_point(p) return result * 100 # convert to cm. TODO standardize all entry points to cm # Minimum distances to all segments of the track def track_segment_distance(p): d = np.zeros(8) d[0] = line_seg_distance(line_verts[0], line_verts[1], p) d[1] = line_seg_distance(line_verts[2], line_verts[3], p) d[2] = line_seg_distance(line_verts[4], line_verts[5], p) d[3] = line_seg_distance(line_verts[6], line_verts[7], p) d[4] = arc_distance(arc_center[0], arc_radius[0], arc_angles[0][0], arc_angles[0][1], p) d[5] = arc_distance(arc_center[1], arc_radius[1], arc_angles[1][0], arc_angles[1][1], p) d[6] = arc_distance(arc_center[2], arc_radius[2], arc_angles[2][0], arc_angles[2][1], p) d[7] = arc_distance(arc_center[3], arc_radius[3], arc_angles[3][0], arc_angles[3][1], p) return d def track_segment_closest_point(p): d = track_segment_distance(p) # If a line segment is the closest if np.min(d[:4]) < np.min(d[4:]): idx = np.argmin(d[:4], axis=0) return line_seg_closest_point(line_verts[idx * 2], line_verts[idx * 2 + 1], p) # If an arc is the closest else: idx = np.argmin(d[4:], axis=0) return closest_point_arc(arc_center[idx], arc_radius[idx], arc_angles[idx][0], arc_angles[idx][1], p) # Distance to closest point on the track def center_line_dist(p): p = 0.01 * p # Convert from m to cm return np.min(track_segment_distance(p)) # Forward vector at the closest point on the center line def closest_point_track_direction(p): p = 0.01 * p # Convert from m to cm d = track_segment_distance(p) # If a line segment is the closest if np.min(d[:4]) < np.min(d[4:]): idx = np.argmin(d[:4], axis=0) v = line_verts[idx * 2 + 1] - line_verts[idx * 2] return v / np.linalg.norm(v) # If an arc is the closest else: idx = np.argmin(d[4:], axis=0) v = closest_point_arc_direction(arc_center[idx], arc_radius[idx], arc_angles[idx][0], arc_angles[idx][1], p) # TODO : All arcs are defined counter-clockwise, # but this doesn't always represent the forward direction on the track. # This is a hack to correct the tangent vector on all but one of the arcs. if idx != 2: v = -v return v LANE_WIDTH = 0.7 # width of whole track is w = 1.22. To get out of bound is > 1.22/2, so around 0.7 TRACK_DIMS = [671, 1066] # the track is within (0, 0) to (671.1 cm, 1066.8 cm) def is_racing_forward(prev_pose, curr_pose): prev_pose = 0.01 * prev_pose curr_pose = 0.01 * curr_pose bottom_left_corner = np.array([0, 0]) top_left_corner = np.array([0, 10.668]) top_right_corner = np.array([6.711, 10.668]) bottom_right_corner = np.array([6.711, 0]) d0 = line_seg_distance(bottom_left_corner, top_left_corner, curr_pose) d1 = line_seg_distance(top_left_corner, top_right_corner, curr_pose) d2 = line_seg_distance(top_right_corner, bottom_right_corner, curr_pose) d3 = line_seg_distance(bottom_right_corner, bottom_left_corner, curr_pose) min_d = np.min([d0, d1, d2, d3]) which_side = np.array([0, 0]) if min_d == d0: which_side = top_left_corner - bottom_left_corner elif min_d == d1: which_side = top_right_corner - top_left_corner elif min_d == d2: which_side = bottom_right_corner - top_right_corner elif min_d == d3: which_side = bottom_left_corner - bottom_right_corner which_size_unit = which_side / np.linalg.norm(which_side) curr_vel = curr_pose - prev_pose curr_vel_norm = np.linalg.norm(curr_vel) curr_vel_unit = np.array([0, 0]) # checking divide by zero if curr_vel_norm: curr_vel_unit = curr_vel / curr_vel_norm return np.dot(curr_vel_unit, which_size_unit) def is_outside_track_boundary(curr_pose): dist = center_line_dist(curr_pose) return dist < LANE_WIDTH if __name__ == "__main__": print("Generating test PNGs") # scale s = 0.02 H = int(10668 * s) W = int(6711 * s) d = np.zeros((H, W)) fwd = np.zeros((H, W, 3)) h = np.zeros((H, W)) print(H, W) for _ in range(10000): p_scaled = np.random.random(2) * [W, H] p_meters = p_scaled / s / 1000.0 # p_proj = line_seg_closest_point(line_verts[6], line_verts[7], p_meters) p_proj = track_segment_closest_point(p_meters) # print(h.shape, p_scaled, p_meters, p_proj, p_proj * s) p_proj = p_proj + np.random.normal([0, 0], 0.1) idx = p_proj * s * 1000.0 idx = np.floor(idx) idx = np.clip(idx, [0, 0], [W - 1, H - 1]) # HACK idx = idx.astype("int") h[idx[1], idx[0]] = h[idx[1], idx[0]] + 1 for i in range(H): y = ((i + 0.5) / s) / 10.0 if i % 10 == 0: print("{:0.1f}%".format(i / H * 100)) for j in range(W): x = ((j + 0.5) / s) / 10.0 p = np.array([x, y]) d[i, j] = center_line_dist(p) f = closest_point_track_direction(p) fwd[i, j] = np.array([0.5 * (f[0] + 1), 0.5 * (f[1] + 1), 0]) print("100.0%") # Images have zero at the top, so we flip vertically d = np.flipud(d) fwd = np.flip(fwd, axis=0) h = np.flipud(h) # Distance function im = Image.fromarray((d * 255 / np.max(d)).astype("uint8")) im.save("dist.png") # Track forward vector im = Image.fromarray((fwd * 255).astype("uint8"), "RGB") im.save("fwd.png") # Track forward vector X im = Image.fromarray((fwd[:, :, 0] * 255).astype("uint8")) im.save("fwd_x.png") # Track forward vector Y im = Image.fromarray((fwd[:, :, 1] * 255).astype("uint8")) im.save("fwd_y.png") # H h = h / np.max(h) im = Image.fromarray((h * 255).astype("uint8")) im.save("h.png")
9,404
Python
25.643059
116
0.581986
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer_env.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch from torchvision.transforms import ColorJitter import PIL import numpy as np import carb import omni import omni.kit.app from pxr import UsdGeom, Gf, Sdf, Usd, Semantics import os import json import time import atexit import asyncio import numpy as np import random import matplotlib.pyplot as plt from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.python_app import OmniKitHelper from omni.isaac.synthetic_utils import SyntheticDataHelper from jetracer import Jetracer from track_environment import Environment from gtc2020_track_utils import * import gym from gym import spaces class JetracerEnv: metadata = {"render.modes": ["human"]} # TODO : Extract more training options def __init__( self, omni_kit, z_height=0, max_resets=10, updates_per_step=3, steps_per_rollout=500, mirror_mode=False, backwards_term_mode=0, reward_mode=0, ): self.MIRROR_MODE = mirror_mode self.BACKWARDS_TERMINATION_MODE = backwards_term_mode self.REWARD_MODE = reward_mode print("MIRROR_MODE = {}".format(self.MIRROR_MODE)) print("BACKWARDS_TERMINATION_MODE = {}".format(self.BACKWARDS_TERMINATION_MODE)) print("REWARD_MODE = {}".format(self.REWARD_MODE)) self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=np.float32) self.observation_space = spaces.Box(low=0, high=255, shape=(224, 224, 6), dtype=np.uint8) self.color_jitter = ColorJitter(0.1, 0.05, 0.05, 0.05) self.noise = 0.05 self.dt = 1 / 30.0 self.omniverse_kit = omni_kit self.sd_helper = SyntheticDataHelper() self.roads = Environment(self.omniverse_kit) # make environment z up self.omniverse_kit.set_up_axis(UsdGeom.Tokens.z) # generate roads self.shape = [6, 6] self.roads.generate_road(self.shape) self.roads.generate_lights() # randomize once to initialize stage # the following two lines must be called prior to Jetracer initialization # any DR related setup calls should occur before this point self.omniverse_kit.update(1 / 60.0) self.roads.dr.randomize_once() # spawn robot self.jetracer = Jetracer(self.omniverse_kit) self.initial_loc = self.roads.get_valid_location() self.jetracer.spawn(Gf.Vec3d(self.initial_loc[0], self.initial_loc[1], 5), 0) self.prev_pose = [0, 0, 0] self.current_pose = [0, 0, 0] # switch kit camera to jetracer camera self.jetracer.activate_camera() # start simulation self.omniverse_kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) frame = frame + 1 print("done after frame: ", frame) self.initialized = False self.numsteps = 0 self.numresets = 0 self.maxresets = 10 # set this to 1 after around 200k steps to randomnize less # self.maxresets = 1 # Randomly mirror horizontally self.update_mirror_mode() def update_mirror_mode(self): # Mirror if mode is enabled and we randomly sample True self.mirror_mode = self.MIRROR_MODE & random.choice([False, True]) def calculate_reward(self): # Current and last positions pose = np.array([self.current_pose[0], self.current_pose[1]]) prev_pose = np.array([self.prev_pose[0], self.prev_pose[1]]) # Finite difference velocity calculation vel = pose - prev_pose vel_norm = vel vel_magnitude = np.linalg.norm(vel) if vel_magnitude > 0.0: vel_norm = vel / vel_magnitude # Distance from the center of the track dist = center_line_dist(pose) self.dist = dist # racing_forward = is_racing_forward(prev_pose, pose) # reward = racing_forward * self.current_speed * np.exp(-dist ** 2 / 0.05 ** 2) fwd_dir = closest_point_track_direction(pose) fwd_dot = np.dot(fwd_dir, vel_norm) if self.REWARD_MODE == 0: reward = fwd_dot * self.current_speed * np.exp(-dist ** 2 / 0.05 ** 2) elif self.REWARD_MODE == 1: reward = fwd_dot * self.current_speed return reward def is_dead(self): return not is_outside_track_boundary(np.array([self.current_pose[0], self.current_pose[1]])) def transform_action(self, action): # If mirrored, swap steering direction if self.mirror_mode: action[1] = -action[1] return action def transform_state_image(self, im): # If enabled, mirror image horizontally if self.mirror_mode: return np.flip(im, axis=1) return im def reset(self): # Randomly mirror horizontally self.update_mirror_mode() if self.numresets % self.maxresets == 0: self.roads.reset(self.shape) if not self.initialized: state, reward, done, info, = self.step([0, 0]) self.initialized = True # Random track point in cm, with a 10 cm stddev gaussian offset loc = random_track_point() loc = loc + np.random.normal([0.0, 0.0], 10.0) # Forward direction at that point fwd = closest_point_track_direction(loc) # Forward angle in degrees, with a 10 degree stddev gaussian offset rot = np.arctan2(fwd[1], fwd[0]) rot = rot * 180.0 / np.pi rot = rot + np.random.normal(10.0) self.jetracer.teleport(Gf.Vec3d(loc[0], loc[1], 5), rot, settle=True) obs = self.jetracer.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] if self.numresets % self.maxresets == 0: frame = 0 while self.omniverse_kit.is_loading(): # or frame < 750: self.omniverse_kit.update(self.dt) frame += 1 viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) img = np.concatenate((currentState, currentState), axis=2) img = np.clip((255 * self.noise * np.random.randn(224, 224, 6) + img.astype(np.float)), 0, 255).astype(np.uint8) self.numsteps = 0 self.previousState = currentState self.numresets += 1 return img def is_driving_backwards(self): # TODO : Refactor, the bulk of this code is shared with the reward function. # Also, find out at what point in an iteration this is called, # compared to the reward, physics and stuff. # If off by a timestep it's close enough, probably won't cause any issues. # Current and last positions pose = np.array([self.current_pose[0], self.current_pose[1]]) prev_pose = np.array([self.prev_pose[0], self.prev_pose[1]]) # Finite difference velocity calculation vel = pose - prev_pose vel_norm = vel vel_magnitude = np.linalg.norm(vel) if vel_magnitude > 0.0: vel_norm = vel / vel_magnitude # Forward direction on the track fwd_dir = closest_point_track_direction(pose) # Normalized velocity projected onto the forward direction fwd_dot = np.dot(fwd_dir, vel_norm) # Going backwards more than 3*pi/8 radians return fwd_dot < np.cos(7.0 * np.pi / 8.0) def step(self, action): print("Number of steps ", self.numsteps) # print("Action ", action) transformed_action = self.transform_action(action) self.jetracer.command(transformed_action) frame = 0 total_reward = 0 reward = 0 while frame < 3: self.omniverse_kit.update(self.dt) obs = self.jetracer.observations() self.prev_pose = self.current_pose self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] reward = self.calculate_reward() done = self.is_dead() total_reward += reward frame = frame + 1 viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) if not self.initialized: self.previousState = currentState img = np.concatenate((currentState, self.previousState), axis=2) img = np.clip((255 * self.noise * np.random.randn(224, 224, 6) + img.astype(np.float)), 0, 255).astype(np.uint8) self.previousState = currentState other = np.array( [*obs["pose"], *obs["linear_velocity"], *obs["local_linear_velocity"], *obs["angular_velocity"]] ) other = np.expand_dims(other.astype(float), 0) self.numsteps += 1 if done: print("robot is dead") if self.numsteps > 500: done = True print("robot stepped 500 times") if self.dist > LANE_WIDTH: print("robot out of bounds. dist = ", self.dist) done = True if self.BACKWARDS_TERMINATION_MODE == 0: if self.current_forward_velocity <= -35: print("robot was going backwards forward velocity = ", self.current_forward_velocity) done = True elif self.BACKWARDS_TERMINATION_MODE == 1: if self.is_driving_backwards(): print("Robot was driving backwards") done = True return img, reward, done, {}
10,660
Python
32.420063
120
0.61257
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni from pxr import UsdGeom, Gf import numpy as np class Jetracer: def __init__(self, omni_kit): from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit # Enable this after stage is loaded to prevent errors ext_manager = self.omni_kit.app.get_extension_manager() ext_manager.set_extension_enabled("omni.physx.vehicle", True) result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.usd_path = nucleus_server + "/Isaac/Robots/Jetracer/jetracer.usd" self.robot_prim = None self._dynamic_control = _dynamic_control self.dc = _dynamic_control.acquire_dynamic_control_interface() self.ar = None # rotation is in degrees def spawn(self, location, rotation): stage = self.omni_kit.get_stage() prefix = "/World/Robot/Jetracer" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) print(prim_path) self.robot_prim = stage.DefinePrim(prim_path, "Xform") self.robot_prim.GetReferences().AddReference(self.usd_path) xform = UsdGeom.Xformable(self.robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) self.camera_path = prim_path + "/Jetracer/Vehicle/jetracer_camera" # self.camera_path = prim_path + "Vehicle/jetracer_camera" def teleport(self, location, rotation, settle=False): if self.ar is None: self.ar = self.dc.get_rigid_body(self.robot_prim.GetPath().pathString + "/Vehicle") self.chassis = self.ar self.dc.wake_up_rigid_body(self.ar) rot_quat = Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation).GetQuaternion() tf = self._dynamic_control.Transform( location, (rot_quat.GetImaginary()[0], rot_quat.GetImaginary()[1], rot_quat.GetImaginary()[2], rot_quat.GetReal()), ) self.dc.set_rigid_body_pose(self.chassis, tf) self.dc.set_rigid_body_linear_velocity(self.chassis, [0, 0, 0]) self.dc.set_rigid_body_angular_velocity(self.chassis, [0, 0, 0]) self.command((0, 0)) if settle: frame = 0 velocity = 1 print("Settling robot...") while velocity > 0.1 and frame < 120: self.omni_kit.update(1.0 / 60.0) lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) velocity = np.linalg.norm([lin_vel.x, lin_vel.y, lin_vel.z]) # print("velocity magnitude is: ", velocity) frame = frame + 1 # print("done after frame: HERE", frame) def activate_camera(self): vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera_path)) def command(self, motor_value): if self.ar is None: vehicle_path = self.robot_prim.GetPath().pathString + "/Jetracer/Vehicle" print(vehicle_path) self.ar = self.dc.get_rigid_body(vehicle_path) self.chassis = self.ar print(self.chassis) stage = self.omni_kit.get_stage() # for child_prim in stage.Traverse(): # print(child_prim.GetPath().pathString) self.accelerator = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:accelerator") self.left_steer = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:steerLeft") self.right_steer = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:steerRight") self.target_gear = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:targetGear") # TODO add brake physxVehicleController:brake self.dc.wake_up_rigid_body(self.ar) accel_cmd = self.wheel_speed_from_motor_value(motor_value[0]) steer_left_cmd = self.wheel_speed_from_motor_value(motor_value[1]) acceleration = max(min(accel_cmd, 1), -1) steering = max(min(steer_left_cmd, 1), -1) gear = 1 # going forward if acceleration < 0: gear = -1 # reverse self.accelerator.Set(abs(acceleration)) self.target_gear.Set(gear) if steering > 0: self.right_steer.Set(steering) else: self.left_steer.Set(abs(steering)) # idealized motor model that converts a pwm value to a velocity def wheel_speed_from_motor_value(self, input): threshold = 0.05 if input >= 0: if input > threshold: return 1.604 * input - 0.05 else: return 0 elif input < 0: if input < -threshold: return 1.725 * input + 0.0757 else: return 0 def observations(self): if self.ar is None: self.ar = self.dc.get_rigid_body(self.robot_prim.GetPath().pathString + "/Vehicle") self.chassis = self.ar dc_pose = self.dc.get_rigid_body_pose(self.chassis) dc_lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) dc_local_lin_vel = self.dc.get_rigid_body_local_linear_velocity(self.chassis) dc_ang_vel = self.dc.get_rigid_body_angular_velocity(self.chassis) return { "pose": (dc_pose.p.x, dc_pose.p.y, dc_pose.p.z, dc_pose.r.w, dc_pose.r.x, dc_pose.r.y, dc_pose.r.z), "linear_velocity": (dc_lin_vel.x, dc_lin_vel.y, dc_lin_vel.z), "local_linear_velocity": (dc_local_lin_vel.x, dc_local_lin_vel.y, dc_local_lin_vel.z), "angular_velocity": (dc_ang_vel.x, dc_ang_vel.y, dc_ang_vel.z), }
6,524
Python
42.21192
117
0.622777
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/track_environment.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni import random from pxr import UsdGeom, Gf, Sdf, UsdPhysics from omni.isaac.synthetic_utils import DomainRandomization from gtc2020_track_utils import * class Environment: def __init__(self, omni_kit, z_height=0): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit self.find_nucleus_server = find_nucleus_server result, nucleus_server = self.find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return self.texture_list = [ nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] self.prims = [] # list of spawned tiles self.height = z_height # height of the ground tiles self.state = None # because the ground plane is what the robot drives on, we only do this once. We can then re-generate the road as often as we need without impacting physics self.setup_physics() contents = omni.client.list(nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/")[1] for entry in contents: self.texture_list.append( nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/" + entry.relative_path ) contents = omni.client.list(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/")[1] names = [] loaded_paths = [] for entry in contents: if not entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: names.append(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/" + entry.relative_path) loaded_paths.append("/World/DR/mesh_component/mesh_" + entry.relative_path[0:-4]) print(loaded_paths) self.omni_kit.create_prim("/World/Floor", "Xform") stage = omni.usd.get_context().get_stage() cubeGeom = UsdGeom.Cube.Define(stage, "/World/Floor/thefloor") cubeGeom.CreateSizeAttr(300) offset = Gf.Vec3f(75, 75, -150.1) cubeGeom.AddTranslateOp().Set(offset) prims = [] self.dr = DomainRandomization() self.dr.toggle_manual_mode() self.dr.create_mesh_comp(prim_paths=prims, mesh_list=names, mesh_range=[1, 1]) self.omni_kit.update(1 / 60.0) print("waiting for materials to load...") while self.omni_kit.is_loading(): self.omni_kit.update(1 / 60.0) lights = [] for i in range(5): prim_path = "/World/Lights/light_" + str(i) self.omni_kit.create_prim( prim_path, "SphereLight", translation=(0, 0, 200), rotation=(0, 0, 0), attributes={"radius": 10, "intensity": 1000.0, "color": (1.0, 1.0, 1.0)}, ) lights.append(prim_path) self.dr.create_movement_comp( prim_paths=loaded_paths, min_range=(0, 0, 15), max_range=(TRACK_DIMS[0], TRACK_DIMS[1], 15) ) self.dr.create_rotation_comp(prim_paths=loaded_paths) self.dr.create_visibility_comp(prim_paths=loaded_paths, num_visible_range=(15, 15)) self.dr.create_light_comp(light_paths=lights) self.dr.create_movement_comp( prim_paths=lights, min_range=(0, 0, 30), max_range=(TRACK_DIMS[0], TRACK_DIMS[1], 30) ) self.dr.create_texture_comp( prim_paths=["/World/Floor"], enable_project_uvw=True, texture_list=self.texture_list ) def generate_lights(self): # TODO: center this onto the track prim_path = omni.usd.get_stage_next_free_path(self.omni_kit.get_stage(), "/World/Env/Light", False) # self.prims.append(prim_path) # LOCMOD revisit (don't add so it won't be removed on reset) self.omni_kit.create_prim( prim_path, "RectLight", translation=(75, 75, 100), rotation=(0, 0, 0), attributes={"height": 150, "width": 150, "intensity": 2000.0, "color": (1.0, 1.0, 1.0)}, ) def reset(self, shape): # this deletes objects in self.prims stage = omni.usd.get_context().get_stage() for layer in stage.GetLayerStack(): edit = Sdf.BatchNamespaceEdit() for path in self.prims: prim_spec = layer.GetPrimAtPath(path) if prim_spec is None: continue parent_spec = prim_spec.realNameParent if parent_spec is not None: edit.Add(path, Sdf.Path.emptyPath) layer.Apply(edit) self.prims = [] # self.pxrImageable.MakeInvisible() # LOCMOD revisit # self.generate_road(shape) self.dr.randomize_once() def generate_road(self, shape): stage = self.omni_kit.get_stage() self.add_track(stage) def add_track(self, stage): result, nucleus_server = self.find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return path = nucleus_server + "/Isaac/Environments/Jetracer/jetracer_track_solid.usd" prefix = "/World/Env/Track" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) # self.prims.append(prim_path) #(don't add so the jetracer track won't be removed on reset) track_prim = stage.DefinePrim(prim_path, "Xform") track_prim.GetReferences().AddReference(path) # xform = UsdGeom.Xformable(track_prim) # xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") # mat = Gf.Matrix4d().SetTranslate(location) # mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) # xform_op.Set(mat) def setup_physics(self): from pxr import PhysxSchema, PhysicsSchemaTools stage = self.omni_kit.get_stage() # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/Env/PhysicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/Env/PhysicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/Env/PhysicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create physics plane for the ground PhysicsSchemaTools.addGroundPlane( stage, "/World/Env/GroundPlane", "Z", 100.0, Gf.Vec3f(0, 0, self.height), Gf.Vec3f(1.0) ) # Hide the visual geometry imageable = UsdGeom.Imageable(stage.GetPrimAtPath("/World/Env/GroundPlane/geom")) if imageable: imageable.MakeInvisible() def get_valid_location(self): # keep try until within the center track dist = 1 x = 4 y = 4 while dist > LANE_WIDTH: x = random.randint(0, TRACK_DIMS[0]) y = random.randint(0, TRACK_DIMS[1]) dist = center_line_dist(np.array([x, y])) print("get valid location called", x, y) return (x, y)
8,502
Python
41.515
164
0.620325
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/online_generation/segmentation/dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Dataset with online randomized scene generation for Instance Segmentation training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by adding assets from the user-specified classes with randomized pose and colour. The camera position is also randomized before capturing groundtruth consisting of an RGB rendered image, Tight 2D Bounding Boxes and Instance Segmentation masks. """ import os import glob import torch import random import numpy as np import signal import omni from omni.isaac.python_app import OmniKitHelper # to work around torch's SSL issue import ssl ssl._create_default_https_context = ssl._create_unverified_context # Setup default generation variables # Value are (min, max) ranges RANDOM_TRANSLATION_X = (-30.0, 30.0) RANDOM_TRANSLATION_Z = (-30.0, 30.0) RANDOM_ROTATION_Y = (0.0, 360.0) SCALE = 20 CAMERA_DISTANCE = 300 BBOX_AREA_THRESH = 16 # Default rendering parameters RENDER_CONFIG = { "renderer": "PathTracing", "samples_per_pixel_per_frame": 12, "headless": False, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } class RandomObjects(torch.utils.data.IterableDataset): """Dataset of random ShapeNet objects. Objects are randomly chosen from selected categories and are positioned, rotated and coloured randomly in an empty room. RGB, BoundingBox2DTight and Instance Segmentation are captured by moving a camera aimed at the centre of the scene which is positioned at random at a fixed distance from the centre. This dataset is intended for use with ShapeNet but will function with any dataset of USD models structured as `root/category/**/*.usd. One note is that this is designed for assets without materials attached. This is to avoid requiring to compile MDLs and load textures while training. Args: categories (tuple of str): Tuple or list of categories. For ShapeNet, these will be the synset IDs. max_asset_size (int): Maximum asset file size that will be loaded. This prevents out of memory errors due to loading large meshes. num_assets_min (int): Minimum number of assets populated in the scene. num_assets_max (int): Maximum number of assets populated in the scene. split (float): Fraction of the USDs found to use for training. train (bool): If true, use the first training split and generate infinite random scenes. """ def __init__( self, root, categories, max_asset_size=None, num_assets_min=3, num_assets_max=5, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.synthetic_utils import shapenet self.sd_helper = SyntheticDataHelper() self.stage = self.kit.get_stage() # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet category_ids = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in categories] self.categories = category_ids self.range_num_assets = (num_assets_min, max(num_assets_min, num_assets_max)) self.references = self._find_usd_assets(root, category_ids, max_asset_size, split, train) self._setup_world() self.cur_idx = 0 self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def _setup_world(self): from pxr import UsdGeom """Setup lights, walls, floor, ceiling and camera""" # In a practical setting, the room parameters should attempt to match those of the # target domain. Here, we insteady choose for simplicity. self.kit.create_prim( "/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]} ) self.kit.create_prim( "/World/Ground", "Cylinder", translation=(0.0, -0.5, 0.0), rotation=(90.0, 0.0, 0.0), attributes={"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]}, ) self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (0.0, 0.365, 0.848)}, ) self.kit.create_prim( "/World/Light2", "SphereLight", translation=(450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (1.0, 0.278, 0.0)}, ) self.kit.create_prim("/World/Asset", "Xform") self.camera_rig = UsdGeom.Xformable(self.kit.create_prim("/World/CameraRig", "Xform")) self.camera = self.kit.create_prim("/World/CameraRig/Camera", "Camera", translation=(0.0, 0.0, CAMERA_DISTANCE)) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera.GetPath())) self.viewport = omni.kit.viewport.get_default_viewport_window() self.kit.update() def _find_usd_assets(self, root, categories, max_asset_size, split, train=True): """Look for USD files under root/category for each category specified. For each category, generate a list of all USD files found and select assets up to split * len(num_assets) if `train=True`, otherwise select the remainder. """ references = {} for category in categories: all_assets = glob.glob(os.path.join(root, category, "**/*.usd"), recursive=True) # Filter out large files (which can prevent OOM errors during training) if max_asset_size is None: assets_filtered = all_assets else: assets_filtered = [] for a in all_assets: if os.stat(a).st_size > max_asset_size * 1e6: print(f"{a} skipped as it exceeded the max size {max_asset_size} MB.") else: assets_filtered.append(a) num_assets = len(assets_filtered) if num_assets == 0: raise ValueError(f"No USDs found for category {category} under max size {max_asset_size} MB.") if train: references[category] = assets_filtered[: int(num_assets * split)] else: references[category] = assets_filtered[int(num_assets * split) :] return references def _add_preview_surface(self, prim, diffuse, roughness, metallic): from pxr import UsdShade, Sdf """Add a preview surface material using the metallic workflow.""" path = f"{prim.GetPath()}/mat" material = UsdShade.Material.Define(self.stage, path) pbrShader = UsdShade.Shader.Define(self.stage, f"{path}/shader") pbrShader.CreateIdAttr("UsdPreviewSurface") pbrShader.CreateInput("diffuseColor", Sdf.ValueTypeNames.Float3).Set(diffuse) pbrShader.CreateInput("roughness", Sdf.ValueTypeNames.Float).Set(roughness) pbrShader.CreateInput("metallic", Sdf.ValueTypeNames.Float).Set(metallic) material.CreateSurfaceOutput().ConnectToSource(pbrShader, "surface") UsdShade.MaterialBindingAPI(prim).Bind(material) def load_single_asset(self, ref, semantic_label, suffix=""): from pxr import UsdGeom """Load a USD asset with random pose. args ref (str): Path to the USD that this prim will reference. semantic_label (str): Semantic label. suffix (str): String to add to the end of the prim's path. """ x = random.uniform(*RANDOM_TRANSLATION_X) z = random.uniform(*RANDOM_TRANSLATION_Z) rot_y = random.uniform(*RANDOM_ROTATION_Y) asset = self.kit.create_prim( f"/World/Asset/mesh{suffix}", "Xform", scale=(SCALE, SCALE, SCALE), rotation=(0.0, rot_y, 0.0), ref=ref, semantic_label=semantic_label, ) bound = UsdGeom.Mesh(asset).ComputeWorldBound(0.0, "default") box_min_y = bound.GetBox().GetMin()[1] UsdGeom.XformCommonAPI(asset).SetTranslate((x, -box_min_y, z)) return asset def populate_scene(self): """Clear the scene and populate it with assets.""" self.stage.RemovePrim("/World/Asset") self.assets = [] num_assets = random.randint(*self.range_num_assets) for i in range(num_assets): category = random.choice(list(self.references.keys())) ref = random.choice(self.references[category]) self.assets.append(self.load_single_asset(ref, category, i)) def randomize_asset_material(self): """Ranomize asset material properties""" for asset in self.assets: colour = (random.random(), random.random(), random.random()) # Here we choose not to have materials unrealistically rough or reflective. roughness = random.uniform(0.1, 0.9) # Here we choose to have more metallic than non-metallic objects. metallic = random.choices([0.0, 1.0], weights=(0.8, 0.2))[0] self._add_preview_surface(asset, colour, roughness, metallic) def randomize_camera(self): """Randomize the camera position.""" # By simply rotating a camera "rig" instead repositioning the camera # itself, we greatly simplify our job. # Clear previous transforms self.camera_rig.ClearXformOpOrder() # Change azimuth angle self.camera_rig.AddRotateYOp().Set(random.random() * 360) # Change elevation angle self.camera_rig.AddRotateXOp().Set(random.random() * -90) def __iter__(self): return self def __next__(self): # Generate a new scene self.populate_scene() self.randomize_camera() self.randomize_asset_material() # step once and then wait for materials to load self.kit.update() print("waiting for materials to load...") while self.kit.is_loading(): self.kit.update() print("done") self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(["rgb", "boundingBox2DTight", "instanceSegmentation"], self.viewport) # RGB # Drop alpha channel image = gt["rgb"][..., :3] # Cast to tensor if numpy array if isinstance(gt["rgb"], np.ndarray): image = torch.tensor(image, dtype=torch.float, device="cuda") # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"] # Create mapping from categories to index mapping = {cat: i + 1 for i, cat in enumerate(self.categories)} bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist()) # For each bounding box, map semantic label to label index labels = torch.LongTensor([mapping[bb["semanticLabel"]] for bb in gt_bbox]) # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Idenfiy invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) # Instance Segmentation instance_data, instance_mappings = gt["instanceSegmentation"][0], gt["instanceSegmentation"][1] instance_list = [im[0] for im in gt_bbox] masks = np.zeros((len(instance_list), *instance_data.shape), dtype=np.bool) for i, instances in enumerate(instance_list): masks[i] = np.isin(instance_data, instances) if isinstance(masks, np.ndarray): masks = torch.tensor(masks, device="cuda") target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "masks": masks[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser("Dataset test") parser.add_argument("--categories", type=str, nargs="+", required=True, help="List of object classes to use") parser.add_argument( "--max-asset-size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument( "--root", type=str, default=None, help="Root directory containing USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) args = parser.parse_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: args.root = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" dataset = RandomObjects(args.root, args.categories, max_asset_size=args.max_asset_size) from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.synthetic_utils import shapenet categories = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in args.categories] # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) colours = vis.random_colours(num_instances, enable_random=False) overlay = np.zeros_like(np_image) for mask, colour in zip(target["masks"].cpu().numpy(), colours): overlay[mask, :3] = colour axes[1].imshow(overlay) mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [shapenet.SYNSET_TO_LABEL[mapping[label.item()]] for label in target["labels"]] vis.plot_boxes(ax, target["boxes"].tolist(), labels=labels, colours=colours) plt.draw() plt.savefig("dataset.png") if dataset.exiting: break # cleanup dataset.kit.shutdown()
15,242
Python
40.308943
120
0.63056
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/online_generation/segmentation/train.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Instance Segmentation Training Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [Mask-RCNN](https://arxiv.org/abs/1703.06870) model. """ import os import torch from torch.utils.data import DataLoader import torchvision import matplotlib.pyplot as plt import numpy as np import signal from dataset import RandomObjects def main(args): device = "cuda" # Setup data train_set = RandomObjects( args.root, args.categories, num_assets_min=3, num_assets_max=5, max_asset_size=args.max_asset_size ) train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.synthetic_utils import shapenet # Setup Model model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False, num_classes=1 + len(args.categories)) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.kit.shutdown() break model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 mask_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: fig.suptitle(f"Iteration {i:05}", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) colours = vis.random_colours(num_instances, enable_random=False) overlay = np.zeros_like(np_image) for mask, colour in zip(pred["masks"], colours): overlay[mask.squeeze().cpu().numpy() > mask_thresh, :3] = colour axes[1].imshow(overlay, alpha=0.5) # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet args.categories = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in args.categories] mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [shapenet.SYNSET_TO_LABEL[mapping[label.item()]] for label in pred["labels"]] vis.plot_boxes(axes[1], pred["boxes"], labels=labels, colours=colours) plt.draw() plt.savefig("train.png") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument( "--root", type=str, default=None, help="Root directory containing ShapeNet USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) parser.add_argument( "--categories", type=str, nargs="+", required=True, help="List of ShapeNet categories to use (space seperated)." ) parser.add_argument( "--max-asset-size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max-iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted masks during training.") args = parser.parse_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: args.root = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" main(args)
5,320
Python
35.951389
120
0.617105
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/basic/visualize_groundtruth.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Demonstration of using OmniKit to generate a scene, collect groundtruth and visualize the results. """ import copy import os import omni import random import numpy as np from omni.isaac.python_app import OmniKitHelper import matplotlib.pyplot as plt TRANSLATION_RANGE = 300.0 SCALE = 50.0 def main(): kit = OmniKitHelper( {"renderer": "RayTracedLighting", "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit'} ) from pxr import UsdGeom, Semantics from omni.isaac.synthetic_utils import SyntheticDataHelper sd_helper = SyntheticDataHelper() from omni.syntheticdata import visualize, helpers # SCENE SETUP # Get the current stage stage = kit.get_stage() # Add a distant light stage.DefinePrim("/World/Light", "DistantLight") # Create 10 randomly positioned and coloured spheres and cube # We will assign each a semantic label based on their shape (sphere/cube) for i in range(10): prim_type = random.choice(["Cube", "Sphere"]) prim = stage.DefinePrim(f"/World/cube{i}", prim_type) translation = np.random.rand(3) * TRANSLATION_RANGE UsdGeom.XformCommonAPI(prim).SetTranslate(translation.tolist()) UsdGeom.XformCommonAPI(prim).SetScale((SCALE, SCALE, SCALE)) prim.GetAttribute("primvars:displayColor").Set([np.random.rand(3).tolist()]) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Get groundtruth kit.update() viewport = omni.kit.viewport.get_default_viewport_window() gt = sd_helper.get_groundtruth( [ "rgb", "depth", "boundingBox2DTight", "boundingBox2DLoose", "instanceSegmentation", "semanticSegmentation", "boundingBox3D", ], viewport, ) # GROUNDTRUTH VISUALIZATION # Setup a figure _, axes = plt.subplots(2, 4, figsize=(20, 7)) axes = axes.flat for ax in axes: ax.axis("off") # RGB axes[0].set_title("RGB") for ax in axes[:-1]: ax.imshow(gt["rgb"]) # DEPTH axes[1].set_title("Depth") depth_data = np.clip(gt["depth"], 0, 255) axes[1].imshow(visualize.colorize_depth(depth_data.squeeze())) # BBOX2D TIGHT axes[2].set_title("BBox 2D Tight") rgb_data = copy.deepcopy(gt["rgb"]) axes[2].imshow(visualize.colorize_bboxes(gt["boundingBox2DTight"], rgb_data)) # BBOX2D LOOSE axes[3].set_title("BBox 2D Loose") rgb_data = copy.deepcopy(gt["rgb"]) axes[3].imshow(visualize.colorize_bboxes(gt["boundingBox2DLoose"], rgb_data)) # INSTANCE SEGMENTATION axes[4].set_title("Instance Segmentation") instance_seg = gt["instanceSegmentation"][0] instance_rgb = visualize.colorize_segmentation(instance_seg) axes[4].imshow(instance_rgb, alpha=0.7) # SEMANTIC SEGMENTATION axes[5].set_title("Semantic Segmentation") semantic_seg = gt["semanticSegmentation"] semantic_rgb = visualize.colorize_segmentation(semantic_seg) axes[5].imshow(semantic_rgb, alpha=0.7) # BBOX 3D axes[6].set_title("BBox 3D") bbox_3d_data = gt["boundingBox3D"] bboxes_3d_corners = bbox_3d_data["corners"] projected_corners = helpers.world_to_image(bboxes_3d_corners.reshape(-1, 3), viewport) projected_corners = projected_corners.reshape(-1, 8, 3) rgb_data = copy.deepcopy(gt["rgb"]) bboxes3D_rgb = visualize.colorize_bboxes_3d(projected_corners, rgb_data) axes[6].imshow(bboxes3D_rgb) # Save figure print("saving figure to: ", os.getcwd() + "/visualize_groundtruth.png") plt.savefig("visualize_groundtruth.png") # cleanup kit.shutdown() if __name__ == "__main__": main()
4,370
Python
31.139706
110
0.670252
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/offline_generation/generator_stereo.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset using two cameras """ import asyncio import copy import numpy as np import os import random import torch import signal import carb import omni from omni.isaac.python_app import OmniKitHelper # Default rendering parameters RENDER_CONFIG = { "renderer": "RayTracedLighting", "samples_per_pixel_per_frame": 12, "headless": False, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } class RandomScenario(torch.utils.data.IterableDataset): def __init__(self, scenario_path, max_queue_size): self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper, DataWriter, DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.writer_helper = DataWriter self.dr_helper.toggle_manual_mode() self.stage = self.kit.get_stage() self.result = True from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server if scenario_path is None: self.result, nucleus_server = find_nucleus_server() if self.result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" scenario_path = self.asset_path + "/Samples/Synthetic_Data/Stage/warehouse_with_sensors.usd" self.scenario_path = scenario_path self.max_queue_size = max_queue_size self.data_writer = None self._setup_world(scenario_path) self.cur_idx = 0 self.exiting = False self._viewport = omni.kit.viewport.get_viewport_interface() self._sensor_settings = {} signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def add_stereo_setup(self): from pxr import Gf, UsdGeom stage = omni.usd.get_context().get_stage() # Create two camera center_point = Gf.Vec3d(0, 0, 200) stereoPrimPath = "/World/Stereo" leftCameraPrimPath = stereoPrimPath + "/LeftCamera" rightCameraPrimPath = stereoPrimPath + "/RightCamera" self.stereoPrim = stage.DefinePrim(stereoPrimPath, "Xform") UsdGeom.XformCommonAPI(self.stereoPrim).SetTranslate(center_point) leftCameraPrim = stage.DefinePrim(leftCameraPrimPath, "Camera") UsdGeom.XformCommonAPI(leftCameraPrim).SetTranslate(Gf.Vec3d(0, -10, 0)) UsdGeom.XformCommonAPI(leftCameraPrim).SetRotate(Gf.Vec3f(90, 0, 90)) rightCameraPrim = stage.DefinePrim(rightCameraPrimPath, "Camera") UsdGeom.XformCommonAPI(rightCameraPrim).SetTranslate(Gf.Vec3d(0, 10, 0)) UsdGeom.XformCommonAPI(rightCameraPrim).SetRotate(Gf.Vec3f(90, 0, 90)) # Need to set this before setting viewport window size carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/width", -1) carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/height", -1) # Get existing viewport, set active camera as left camera viewport_handle_1 = omni.kit.viewport.get_viewport_interface().get_instance("Viewport") viewport_window_1 = omni.kit.viewport.get_viewport_interface().get_viewport_window(viewport_handle_1) viewport_window_1.set_texture_resolution(1280, 720) viewport_window_1.set_active_camera(leftCameraPrimPath) # Create new viewport, set active camera as right camera viewport_handle_2 = omni.kit.viewport.get_viewport_interface().create_instance() viewport_window_2 = omni.kit.viewport.get_viewport_interface().get_viewport_window(viewport_handle_2) viewport_window_2.set_active_camera("/World/Stereo/RightCamera") viewport_window_2.set_texture_resolution(1280, 720) viewport_window_2.set_window_pos(720, 0) viewport_window_2.set_window_size(720, 890) # Setup stereo camera movement randomization radius = 100 target_points_list = [] for theta in range(200, 300): th = theta * np.pi / 180 x = radius * np.cos(th) + center_point[0] y = radius * np.sin(th) + center_point[1] target_points_list.append(Gf.Vec3f(x, y, center_point[2])) lookat_target_points_list = [a for a in target_points_list[1:]] lookat_target_points_list.append(target_points_list[0]) result, prim = omni.kit.commands.execute( "CreateTransformComponentCommand", prim_paths=[stereoPrimPath], target_points=target_points_list, lookat_target_points=lookat_target_points_list, enable_sequential_behavior=True, ) async def load_stage(self, path): await omni.usd.get_context().open_stage_async(path) def _setup_world(self, scenario_path): # Load scenario setup_task = asyncio.ensure_future(self.load_stage(scenario_path)) while not setup_task.done(): self.kit.update() self.add_stereo_setup() self.kit.update() self.kit.setup_renderer() self.kit.update() def __iter__(self): return self def __next__(self): # step once and then wait for materials to load self.dr_helper.randomize_once() self.kit.update() while self.kit.is_loading(): self.kit.update() # Enable/disable sensor output and their format sensor_settings_viewport_1 = { "rgb": {"enabled": True}, "depth": {"enabled": True, "colorize": True, "npy": True}, "instance": {"enabled": True, "colorize": True, "npy": True}, "semantic": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_tight": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_loose": {"enabled": True, "colorize": True, "npy": True}, } sensor_settings_viewport_2 = { "rgb": {"enabled": True}, "depth": {"enabled": True, "colorize": True, "npy": True}, "instance": {"enabled": True, "colorize": True, "npy": True}, "semantic": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_tight": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_loose": {"enabled": True, "colorize": True, "npy": True}, } viewports = self._viewport.get_instance_list() self._viewport_names = [self._viewport.get_viewport_window_name(vp) for vp in viewports] # Make sure two viewports are initialized if len(self._viewport_names) != 2: return self._sensor_settings[self._viewport_names[0]] = copy.deepcopy(sensor_settings_viewport_1) self._sensor_settings[self._viewport_names[1]] = copy.deepcopy(sensor_settings_viewport_2) self._num_worker_threads = 4 self._output_folder = os.getcwd() + "/output" # Write to disk if self.data_writer is None: self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self._sensor_settings ) self.data_writer.start_threads() image = None for viewport_name in self._viewport_names: groundtruth = { "METADATA": { "image_id": str(self.cur_idx), "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, }, "DATA": {}, } gt_list = [] if self._sensor_settings[viewport_name]["rgb"]["enabled"]: gt_list.append("rgb") if self._sensor_settings[viewport_name]["depth"]["enabled"]: gt_list.append("depthLinear") if self._sensor_settings[viewport_name]["bbox_2d_tight"]["enabled"]: gt_list.append("boundingBox2DTight") if self._sensor_settings[viewport_name]["bbox_2d_loose"]["enabled"]: gt_list.append("boundingBox2DLoose") if self._sensor_settings[viewport_name]["instance"]["enabled"]: gt_list.append("instanceSegmentation") if self._sensor_settings[viewport_name]["semantic"]["enabled"]: gt_list.append("semanticSegmentation") # Render new frame self.kit.update() # Collect Groundtruth viewport = self._viewport.get_viewport_window(self._viewport.get_instance(viewport_name)) gt = self.sd_helper.get_groundtruth(gt_list, viewport) # RGB image = gt["rgb"] if self._sensor_settings[viewport_name]["rgb"]["enabled"] and gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth if self._sensor_settings[viewport_name]["depth"]["enabled"] and gt["state"]["depthLinear"]: groundtruth["DATA"]["DEPTH"] = gt["depthLinear"].squeeze() groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self._sensor_settings[viewport_name]["depth"]["colorize"] groundtruth["METADATA"]["DEPTH"]["NPY"] = self._sensor_settings[viewport_name]["depth"]["npy"] # Instance Segmentation if self._sensor_settings[viewport_name]["instance"]["enabled"] and gt["state"]["instanceSegmentation"]: instance_data = gt["instanceSegmentation"][0] groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self._sensor_settings[viewport_name]["instance"][ "colorize" ] groundtruth["METADATA"]["INSTANCE"]["NPY"] = self._sensor_settings[viewport_name]["instance"]["npy"] # Semantic Segmentation if self._sensor_settings[viewport_name]["semantic"]["enabled"] and gt["state"]["semanticSegmentation"]: semantic_data = gt["semanticSegmentation"] semantic_data[semantic_data == 65535] = 0 # deals with invalid semantic id groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data.shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data.shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self._sensor_settings[viewport_name]["semantic"][ "colorize" ] groundtruth["METADATA"]["SEMANTIC"]["NPY"] = self._sensor_settings[viewport_name]["semantic"]["npy"] # 2D Tight BBox if self._sensor_settings[viewport_name]["bbox_2d_tight"]["enabled"] and gt["state"]["boundingBox2DTight"]: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self._sensor_settings[viewport_name][ "bbox_2d_tight" ]["colorize"] groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = self._sensor_settings[viewport_name]["bbox_2d_tight"][ "npy" ] # 2D Loose BBox if self._sensor_settings[viewport_name]["bbox_2d_loose"]["enabled"] and gt["state"]["boundingBox2DLoose"]: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self._sensor_settings[viewport_name][ "bbox_2d_loose" ]["colorize"] groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = self._sensor_settings[viewport_name]["bbox_2d_loose"][ "npy" ] self.data_writer.q.put(groundtruth) self.cur_idx += 1 return image if __name__ == "__main__": "Typical usage" import argparse parser = argparse.ArgumentParser("Stereo dataset generator") parser.add_argument("--scenario", type=str, help="Scenario to load from omniverse server") parser.add_argument("--num_frames", type=int, default=30, help="Number of frames to record") parser.add_argument("--max_queue_size", type=int, default=500, help="Max size of queue to store and process data") args = parser.parse_args() dataset = RandomScenario(args.scenario, args.max_queue_size) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") for image in dataset: print("ID: ", dataset.cur_idx) if dataset.cur_idx == args.num_frames: break if dataset.exiting: break # cleanup dataset.kit.shutdown()
13,669
Python
44.415282
120
0.603117
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/offline_generation/generator.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset """ import asyncio import copy import os import torch import signal import carb import omni from omni.isaac.python_app import OmniKitHelper # Default rendering parameters RENDER_CONFIG = { "renderer": "RayTracedLighting", "samples_per_pixel_per_frame": 12, "headless": True, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1024, "height": 800, } class RandomScenario(torch.utils.data.IterableDataset): def __init__(self, scenario_path, writer_mode, data_dir, max_queue_size, train_size, classes): self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper, DataWriter, KittiWriter, DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.writer_mode = writer_mode self.writer_helper = KittiWriter if writer_mode == "kitti" else DataWriter self.dr_helper.toggle_manual_mode() self.stage = self.kit.get_stage() self.result = True from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server if scenario_path is None: self.result, nucleus_server = find_nucleus_server() if self.result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" scenario_path = self.asset_path + "/Samples/Synthetic_Data/Stage/warehouse_with_sensors.usd" self.scenario_path = scenario_path self.max_queue_size = max_queue_size self.data_writer = None self.data_dir = data_dir self.train_size = train_size self.classes = classes self._setup_world(scenario_path) self.cur_idx = 0 self.exiting = False self._sensor_settings = {} signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True async def load_stage(self, path): await omni.usd.get_context().open_stage_async(path) def _setup_world(self, scenario_path): # Load scenario setup_task = asyncio.ensure_future(self.load_stage(scenario_path)) while not setup_task.done(): self.kit.update() self.kit.setup_renderer() self.kit.update() def __iter__(self): return self def __next__(self): # step once and then wait for materials to load self.dr_helper.randomize_once() self.kit.update() while self.kit.is_loading(): self.kit.update() # Enable/disable sensor output and their format self._enable_rgb = True self._enable_depth = True self._enable_instance = True self._enable_semantic = True self._enable_bbox_2d_tight = True self._enable_bbox_2d_loose = True self._enable_depth_colorize = True self._enable_instance_colorize = True self._enable_semantic_colorize = True self._enable_bbox_2d_tight_colorize = True self._enable_bbox_2d_loose_colorize = True self._enable_depth_npy = True self._enable_instance_npy = True self._enable_semantic_npy = True self._enable_bbox_2d_tight_npy = True self._enable_bbox_2d_loose_npy = True self._num_worker_threads = 4 self._output_folder = self.data_dir sensor_settings_viewport = { "rgb": {"enabled": self._enable_rgb}, "depth": { "enabled": self._enable_depth, "colorize": self._enable_depth_colorize, "npy": self._enable_depth_npy, }, "instance": { "enabled": self._enable_instance, "colorize": self._enable_instance_colorize, "npy": self._enable_instance_npy, }, "semantic": { "enabled": self._enable_semantic, "colorize": self._enable_semantic_colorize, "npy": self._enable_semantic_npy, }, "bbox_2d_tight": { "enabled": self._enable_bbox_2d_tight, "colorize": self._enable_bbox_2d_tight_colorize, "npy": self._enable_bbox_2d_tight_npy, }, "bbox_2d_loose": { "enabled": self._enable_bbox_2d_loose, "colorize": self._enable_bbox_2d_loose_colorize, "npy": self._enable_bbox_2d_loose_npy, }, } self._sensor_settings["Viewport"] = copy.deepcopy(sensor_settings_viewport) # Write to disk if self.data_writer is None: print(f"Writing data to {self._output_folder}") if self.writer_mode == "kitti": self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self.train_size, self.classes ) else: self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self._sensor_settings ) self.data_writer.start_threads() viewport_iface = omni.kit.viewport.get_viewport_interface() viewport_name = "Viewport" viewport = viewport_iface.get_viewport_window(viewport_iface.get_instance(viewport_name)) groundtruth = { "METADATA": { "image_id": str(self.cur_idx), "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, }, "DATA": {}, } gt_list = [] if self._enable_rgb: gt_list.append("rgb") if self._enable_depth: gt_list.append("depthLinear") if self._enable_bbox_2d_tight: gt_list.append("boundingBox2DTight") if self._enable_bbox_2d_loose: gt_list.append("boundingBox2DLoose") if self._enable_instance: gt_list.append("instanceSegmentation") if self._enable_semantic: gt_list.append("semanticSegmentation") # Render new frame self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(gt_list, viewport) # RGB image = gt["rgb"] if self._enable_rgb: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth if self._enable_depth: groundtruth["DATA"]["DEPTH"] = gt["depthLinear"].squeeze() groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self._enable_depth_colorize groundtruth["METADATA"]["DEPTH"]["NPY"] = self._enable_depth_npy # Instance Segmentation if self._enable_instance: instance_data = gt["instanceSegmentation"][0] instance_data_shape = instance_data.shape groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data_shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data_shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self._enable_instance_colorize groundtruth["METADATA"]["INSTANCE"]["NPY"] = self._enable_instance_npy # Semantic Segmentation if self._enable_semantic: semantic_data = gt["semanticSegmentation"] semantic_data_shape = semantic_data.shape groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data_shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data_shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self._enable_semantic_colorize groundtruth["METADATA"]["SEMANTIC"]["NPY"] = self._enable_semantic_npy # 2D Tight BBox if self._enable_bbox_2d_tight: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self._enable_bbox_2d_tight_colorize groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = self._enable_bbox_2d_tight_npy # 2D Loose BBox if self._enable_bbox_2d_loose: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self._enable_bbox_2d_loose_colorize groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = self._enable_bbox_2d_loose_npy groundtruth["METADATA"]["BBOX2DLOOSE"]["WIDTH"] = RENDER_CONFIG["width"] groundtruth["METADATA"]["BBOX2DLOOSE"]["HEIGHT"] = RENDER_CONFIG["height"] self.data_writer.q.put(groundtruth) self.cur_idx += 1 return image if __name__ == "__main__": "Typical usage" import argparse parser = argparse.ArgumentParser("Dataset generator") parser.add_argument("--scenario", type=str, help="Scenario to load from omniverse server") parser.add_argument("--num_frames", type=int, default=10, help="Number of frames to record") parser.add_argument("--writer_mode", type=str, default="npy", help="Specify output format - npy or kitti") parser.add_argument( "--data_dir", type=str, default=os.getcwd() + "/output", help="Location where data will be output" ) parser.add_argument("--max_queue_size", type=int, default=500, help="Max size of queue to store and process data") parser.add_argument( "--train_size", type=int, default=8, help="Number of frames for training set, works when writer_mode is kitti" ) parser.add_argument( "--classes", type=str, nargs="+", default=[], help="Which classes to write labels for, works when writer_mode is kitti. Defaults to all classes", ) args = parser.parse_args() dataset = RandomScenario( args.scenario, args.writer_mode, args.data_dir, args.max_queue_size, args.train_size, args.classes ) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") for image in dataset: print("ID: ", dataset.cur_idx) if dataset.cur_idx == args.num_frames: break if dataset.exiting: break # cleanup dataset.kit.shutdown()
11,119
Python
37.881119
118
0.595377
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/advanced/shapenet_usd_convertor.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import pprint from omni.isaac.python_app import OmniKitHelper """Convert ShapeNetCore V2 to USD without materials. By only converting the ShapeNet geometry, we can more quickly load assets into scenes for the purpose of creating large datasets or for online training of Deep Learning models. """ if __name__ == "__main__": RENDER_CONFIG = {"experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit'} kit = OmniKitHelper(config=RENDER_CONFIG) import argparse from omni.isaac.synthetic_utils import shapenet parser = argparse.ArgumentParser("Convert ShapeNet assets to USD") parser.add_argument( "--categories", type=str, nargs="+", default=None, help="List of ShapeNet categories to convert (space seperated).", ) parser.add_argument( "--max-models", type=int, default=None, help="If specified, convert up to `max-models` per category." ) parser.add_argument( "--load-materials", action="store_true", help="If specified, materials will be loaded from shapenet meshes" ) args = parser.parse_args() # Ensure Omniverse Kit is launched via OmniKitHelper before shapenet_convert() is called shapenet.shapenet_convert(args.categories, args.max_models, args.load_materials) # cleanup kit.shutdown()
1,763
Python
37.347825
115
0.723199
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/advanced/visualize_groundtruth_physics.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Demonstration of using OmniKit to generate a scene, collect groundtruth and visualize the results. This advanced sample also simulates physics and uses a custom glass material """ import copy import os import random import numpy as np from omni.isaac.python_app import OmniKitHelper import matplotlib.pyplot as plt TRANSLATION_RANGE = 300.0 SCALE = 50.0 # specify a custom config CUSTOM_CONFIG = { "width": 1024, "height": 1024, "renderer": "PathTracing", "samples_per_pixel_per_frame": 128, "max_bounces": 10, "max_specular_transmission_bounces": 6, "max_volume_bounces": 4, "subdiv_refinement_level": 2, "headless": True, "sync_loads": True, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } def main(): kit = OmniKitHelper(CUSTOM_CONFIG) from pxr import Gf, Sdf, UsdShade, UsdGeom, Semantics from omni.isaac.synthetic_utils import SyntheticDataHelper sd_helper = SyntheticDataHelper() from omni.syntheticdata import visualize, helpers from omni.physx.scripts import utils from pxr import UsdPhysics, PhysxSchema, PhysicsSchemaTools import omni # SCENE SETUP # Get the current stage stage = kit.get_stage() # Add a sphere light kit.create_prim( "/World/Light1", "SphereLight", translation=(0, 200, 0), attributes={"radius": 100, "intensity": 100000.0, "color": (1, 1, 1)}, ) # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/physicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create a ground plane PhysicsSchemaTools.addGroundPlane(stage, "/World/groundPlane", "Z", 1000, Gf.Vec3f(0, 0, -100), Gf.Vec3f(1.0)) # Create 10 randomly positioned and coloured spheres and cube # We will assign each a semantic label based on their shape (sphere/cube/cone) prims = [] for i in range(10): prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) prim = stage.DefinePrim(f"/World/cube{i}", prim_type) translation = np.random.rand(3) * TRANSLATION_RANGE UsdGeom.XformCommonAPI(prim).SetTranslate(translation.tolist()) UsdGeom.XformCommonAPI(prim).SetScale((SCALE, SCALE, SCALE)) # prim.GetAttribute("primvars:displayColor").Set([np.random.rand(3).tolist()]) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Add physics to prims utils.setRigidBody(prim, "convexHull", False) # Set Mass to 1 kg mass_api = UsdPhysics.MassAPI.Apply(prim) mass_api.CreateMassAttr(1) # add prim reference to list prims.append(prim) # Apply glass material for prim in prims: # Create Glass material mtl_created_list = [] kit.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniGlass.mdl", mtl_name="OmniGlass", mtl_created_list=mtl_created_list, ) mtl_prim = stage.GetPrimAtPath(mtl_created_list[0]) # Set material inputs, these can be determined by looking at the .mdl file # or by selecting the Shader attached to the Material in the stage window and looking at the details panel color = Gf.Vec3f(random.random(), random.random(), random.random()) omni.usd.create_material_input(mtl_prim, "glass_color", color, Sdf.ValueTypeNames.Color3f) omni.usd.create_material_input(mtl_prim, "glass_ior", 1.25, Sdf.ValueTypeNames.Float) # This value is the volumetric light absorption scale, reduce to zero to make glass clearer omni.usd.create_material_input(mtl_prim, "depth", 0.001, Sdf.ValueTypeNames.Float) # Enable for thin glass objects if needed omni.usd.create_material_input(mtl_prim, "thin_walled", False, Sdf.ValueTypeNames.Bool) # Bind the material to the prim prim_mat_shade = UsdShade.Material(mtl_prim) UsdShade.MaterialBindingAPI(prim).Bind(prim_mat_shade, UsdShade.Tokens.strongerThanDescendants) # force RayTracedLighting mode for better performance while simulating physics kit.set_setting("/rtx/rendermode", "RayTracedLighting") # start simulation kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or kit.is_loading(): kit.update(1 / 60.0) frame = frame + 1 print("done") # Return to user specified render mode kit.set_setting("/rtx/rendermode", CUSTOM_CONFIG["renderer"]) print("capturing...") # Get groundtruth using glass material kit.update() viewport = omni.kit.viewport.get_default_viewport_window() gt = sd_helper.get_groundtruth( [ "rgb", "depth", "boundingBox2DTight", "boundingBox2DLoose", "instanceSegmentation", "semanticSegmentation", "boundingBox3D", ], viewport, ) print("done") # everything is captured, stop simulating kit.stop() print("visualize results") # GROUNDTRUTH VISUALIZATION # Setup a figure _, axes = plt.subplots(2, 4, figsize=(20, 7)) axes = axes.flat for ax in axes: ax.axis("off") # RGB axes[0].set_title("RGB") for ax in axes[:-1]: ax.imshow(gt["rgb"]) # DEPTH axes[1].set_title("Depth") depth_data = np.clip(gt["depth"], 0, 255) axes[1].imshow(visualize.colorize_depth(depth_data.squeeze())) # BBOX2D TIGHT axes[2].set_title("BBox 2D Tight") rgb_data = copy.deepcopy(gt["rgb"]) axes[2].imshow(visualize.colorize_bboxes(gt["boundingBox2DTight"], rgb_data)) # BBOX2D LOOSE axes[3].set_title("BBox 2D Loose") rgb_data = copy.deepcopy(gt["rgb"]) axes[3].imshow(visualize.colorize_bboxes(gt["boundingBox2DLoose"], rgb_data)) # INSTANCE SEGMENTATION axes[4].set_title("Instance Segmentation") instance_seg = gt["instanceSegmentation"][0] instance_rgb = visualize.colorize_segmentation(instance_seg) axes[4].imshow(instance_rgb, alpha=0.7) # SEMANTIC SEGMENTATION axes[5].set_title("Semantic Segmentation") semantic_seg = gt["semanticSegmentation"] semantic_rgb = visualize.colorize_segmentation(semantic_seg) axes[5].imshow(semantic_rgb, alpha=0.7) # BBOX 3D axes[6].set_title("BBox 3D") bbox_3d_data = gt["boundingBox3D"] bboxes_3d_corners = bbox_3d_data["corners"] projected_corners = helpers.world_to_image(bboxes_3d_corners.reshape(-1, 3), viewport) projected_corners = projected_corners.reshape(-1, 8, 3) rgb_data = copy.deepcopy(gt["rgb"]) bboxes3D_rgb = visualize.colorize_bboxes_3d(projected_corners, rgb_data) axes[6].imshow(bboxes3D_rgb) # Save figure print("saving figure to: ", os.getcwd() + "/visualize_groundtruth_physics.png") plt.savefig("visualize_groundtruth_physics.png") # cleanup kit.shutdown() if __name__ == "__main__": main()
8,243
Python
35.31718
114
0.672449
KazWong/omniverse_sample/ov_sample/python_samples/isaac_sdk/load_stage.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import carb import omni # This sample loads a usd stage and creates a robot engine bridge application and starts simulation # Disposes average fps of the simulation for given time # Useful for testing an Isaac SDK sample scene using python CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting", } class UsdLoadSample: def __init__(self, args): CONFIG["headless"] = args.headless self.kit = OmniKitHelper(config=CONFIG) self.usd_path = "" self._viewport = omni.kit.viewport.get_viewport_interface() def start(self): self.kit.play() def stop(self): self.kit.stop() omni.kit.commands.execute("RobotEngineBridgeDestroyApplication") self.kit.shutdown() def load_stage(self, args): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return False self._asset_path = nucleus_server + "/Isaac" self.usd_path = self._asset_path + args.usd_path omni.usd.get_context().open_stage(self.usd_path, None) # Wait two frames so that stage starts loading self.kit.app.update() self.kit.app.update() return True def configure_bridge(self, json_file: str = "isaacsim.app.json"): """ Configure the SDK bridge application that publishes data over tcp """ ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.robot_engine_bridge") reb_extension_path = ext_manager.get_extension_path(ext_id) app_file = f"{reb_extension_path}/resources/isaac_engine/json/{json_file}" carb.log_info(f"create application with: {reb_extension_path} {app_file}") return omni.kit.commands.execute( "RobotEngineBridgeCreateApplication", asset_path=reb_extension_path, app_file=app_file ) def disable_existing_reb_cameras(self): """ Disable existing REB_Camera prims for perf testing """ import omni.isaac.RobotEngineBridgeSchema as REBSchema stage = self.kit.get_stage() for prim in stage.Traverse(): if prim.IsA(REBSchema.RobotEngineCamera): reb_camera_prim = REBSchema.RobotEngineCamera(prim) reb_camera_prim.GetEnabledAttr().Set(False) def create_reb_camera(self, cameraIndex, name, width, height): """Create a new REB camera in the stage""" from pxr import Gf result, reb_camera_prim = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Camera", parent=None, rgb_output_component="output", rgb_output_channel="encoder_color_{}".format(cameraIndex), depth_output_component="output", depth_output_channel="encoder_depth_{}".format(cameraIndex), segmentation_output_component="output", segmentation_output_channel="encoder_segmentation_{}".format(cameraIndex), bbox2d_output_component="output", bbox2d_output_channel="encoder_bbox_{}".format(cameraIndex), bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="encoder_bbox3d_{}".format(cameraIndex), bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=["{}".format(name)], resolution=Gf.Vec2i(int(width), int(height)), ) if __name__ == "__main__": import argparse import time parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument("--usd_path", type=str, help="Path to usd file", required=True) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") parser.add_argument("--benchmark", default=False, action="store_true", help="Run in benchmark mode") parser.add_argument( "--benchmark_timeout", type=int, default=60, help="Total walltime in seconds to calculate average FPS for" ) parser.add_argument( "--add_rebcamera", nargs="*", type=str, default=[], help="Total number of REB Camera prims to add, existing ones will be disabled if this option is specified", ) args, unknown = parser.parse_known_args() sample = UsdLoadSample(args) if sample.load_stage(args): print("Loading stage...") while sample.kit.is_loading(): sample.kit.update(1.0 / 60.0) print("Loading Complete") # Add parameterized rebcamera along with viewport if args.add_rebcamera is not None and len(args.add_rebcamera) > 0: # disable existing cameras if we are making new ones sample.disable_existing_reb_cameras() reb_count = 0 for name in args.add_rebcamera: info = name.split(",") sample.create_reb_camera(reb_count, info[0], info[1], info[2]) reb_count = reb_count + 1 sample.configure_bridge() sample.start() if args.test is True: for i in range(10): sample.kit.update() sample.stop() elif args.benchmark is True: # Warm up simulation while sample._viewport.get_viewport_window().get_fps() < 1: sample.kit.update(1.0 / 60.0) fps_count = 0 start_time = time.perf_counter() end_time = start_time + args.benchmark_timeout count = 0 # Calculate average fps while sample.kit.app.is_running() and end_time > time.perf_counter(): sample.kit.update(1.0 / 60.0) fps = sample._viewport.get_viewport_window().get_fps() fps_count = fps_count + fps count = count + 1 sample.stop() print(f"\n----------- Avg. FPS over {args.benchmark_timeout} sec : {fps_count/count}-----------") else: while sample.kit.app.is_running(): # Run in realtime mode, we don't specify the step size sample.kit.update() sample.stop()
7,211
Python
39.977273
115
0.617667
KazWong/omniverse_sample/ov_sample/python_samples/isaac_sdk/pose_estimation.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import random import os import omni from omni.isaac.python_app import OmniKitHelper import carb.tokens import argparse CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": True, "renderer": "RayTracedLighting", } # D435 FOCAL_LEN = 1.93 HORIZONTAL_APERTURE = 2.682 VERTICAL_APERTURE = 1.509 FOCUS_DIST = 400 RANDOMIZE_SCENE_EVERY_N_STEPS = 10 class DualCameraSample: def __init__(self): self.kit = OmniKitHelper(config=CONFIG) import omni.physx from pxr import UsdGeom, Usd, Gf from omni.isaac.synthetic_utils import DomainRandomization from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.robot_engine_bridge import _robot_engine_bridge self._re_bridge = _robot_engine_bridge.acquire_robot_engine_bridge_interface() self._viewport = omni.kit.viewport.get_viewport_interface() self.dr_helper = DomainRandomization() self.sd_helper = SyntheticDataHelper() self.frame = 0 self.Gf = Gf self.UsdGeom = UsdGeom self.Usd = Usd def shutdown(self): self.kit.shutdown() def start(self): self.kit.play() def stop(self): self.kit.stop() omni.kit.commands.execute("RobotEngineBridgeDestroyApplication") def create_stage(self): # open base stage and set up axis to Z stage = self.kit.get_stage() rootLayer = stage.GetRootLayer() rootLayer.SetPermissionToEdit(True) with self.Usd.EditContext(stage, rootLayer): self.UsdGeom.SetStageUpAxis(stage, self.UsdGeom.Tokens.z) # make two prims, one for env and one for just the room # this allows us to add other prims to environment for randomization and still hide them all at once self._environment = stage.DefinePrim("/environment", "Xform") self._room = stage.DefinePrim("/environment/room", "Xform") from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return False self._asset_path = nucleus_server + "/Isaac" stage_path = self._asset_path + "/Environments/Simple_Room/simple_room.usd" self._room.GetReferences().AddReference(stage_path) self._target_prim = self.kit.create_prim( "/objects/cube", "Cube", translation=(0, 0, 100), scale=(10, 10, 50), semantic_label="target" ) # make sure that we wait for the stage to load self.kit.app.update() self.kit.app.update() return True def create_camera(self): self._camera = self.kit.create_prim( "/World/Camera", "Camera", translation=(0.0, 0.0, 0.0), attributes={ "focusDistance": FOCUS_DIST, "focalLength": FOCAL_LEN, "horizontalAperture": HORIZONTAL_APERTURE, "verticalAperture": VERTICAL_APERTURE, }, ) # activate new camera self._viewport.get_viewport_window().set_active_camera(str(self._camera.GetPath())) # the camera reference frame between sdk and sim seems to be flipped 180 on x # this prim acts as a proxy to do that coordinate transformation self._camera_proxy = self.kit.create_prim("/World/Camera/proxy", "Xform", rotation=(180, 0, 0)) def create_bridge_components(self): result, self.occluded_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Occluded_Provider", parent=None, rgb_output_component="output", rgb_output_channel="encoder_color", depth_output_component="output", depth_output_channel="encoder_depth", segmentation_output_component="output", segmentation_output_channel="encoder_segmentation", bbox2d_output_component="output", bbox2d_output_channel="encoder_bbox", bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="encoder_bbox3d", bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=[self._camera.GetPath()], resolution=self.Gf.Vec2i(1280, 720), ) result, self.unoccluded_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Unoccluded_Provider", parent=None, rgb_output_component="output", rgb_output_channel="decoder_color", depth_output_component="output", depth_output_channel="decoder_depth", segmentation_output_component="output", segmentation_output_channel="decoder_segmentation", bbox2d_output_component="output", bbox2d_output_channel="decoder_bbox", bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="decoder_bbox3d", bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=[self._camera.GetPath()], resolution=self.Gf.Vec2i(1280, 720), ) # turn both cameras off so that we don't send an image when time is stepped self.occluded_provider.GetEnabledAttr().Set(False) self.unoccluded_provider.GetEnabledAttr().Set(False) # create rigid body sink to publish ground truth pose information result, self.rbs_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateRigidBodySink", path="/World/REB_RigidBodiesSink", parent=None, enabled=False, output_component="output", output_channel="bodies", rigid_body_prims_rel=[self._camera_proxy.GetPath(), self._target_prim.GetPath()], ) # disable rigid body sink until the final image is sent out so its only published once self.rbs_provider.GetEnabledAttr().Set(False) def configure_bridge(self, json_file: str = "isaacsim.app.json"): ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.robot_engine_bridge") reb_extension_path = ext_manager.get_extension_path(ext_id) app_file = f"{reb_extension_path}/resources/isaac_engine/json/{json_file}" carb.log_info(f"create application with: {reb_extension_path} {app_file}") return omni.kit.commands.execute( "RobotEngineBridgeCreateApplication", asset_path=reb_extension_path, app_file=app_file ) def configure_randomization(self): texture_list = [ self._asset_path + "/Samples/DR/Materials/Textures/checkered.png", self._asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", self._asset_path + "/Samples/DR/Materials/Textures/picture_a.png", self._asset_path + "/Samples/DR/Materials/Textures/picture_b.png", self._asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", self._asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] base_path = str(self._room.GetPath()) self.texture_comp = self.dr_helper.create_texture_comp([base_path], False, texture_list) # self.color_comp = self.dr_helper.create_color_comp([base_path+"/floor"]) # disable automatic DR, we run it ourselves in the step function # add a movement and rotation component # the movement component is offset by 100cm in z so that the object remains above the table self.movement_comp = self.dr_helper.create_movement_comp( [str(self._target_prim.GetPath())], min_range=(-10, -10, -10 + 100), max_range=(10, 10, 10 + 100) ) self.rotation_comp = self.dr_helper.create_rotation_comp([str(self._target_prim.GetPath())]) self.dr_helper.toggle_manual_mode() def randomize_camera(self): # randomize camera position self._viewport.get_viewport_window().set_camera_position( str(self._camera.GetPath()), random.randrange(-250, 250), random.randrange(-250, 250), random.randrange(10, 250), True, ) # get target pose and point camera at it pose = omni.usd.get_world_transform_matrix(self._target_prim) # can specify an offset on target position target = pose.ExtractTranslation() + self.Gf.Vec3d(0, 0, 0) self._viewport.get_viewport_window().set_camera_target( str(self._camera.GetPath()), target[0], target[1], target[2], True ) def randomize_scene(self): self.dr_helper.randomize_once() def toggle_environment(self, state): imageable = self.UsdGeom.Imageable(self._environment) if state: imageable.MakeVisible() else: imageable.MakeInvisible() def step(self): # randomize camera every frame self.randomize_camera() # randomize textures every 10 frames if self.frame % RANDOMIZE_SCENE_EVERY_N_STEPS == 0: self.randomize_scene() self.toggle_environment(True) self.kit.update(1.0 / 60.0) # render occluded view omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.occluded_provider.GetPath())) # hide everything but the object self.toggle_environment(False) self.kit.update(0) # render unoccluded view omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.unoccluded_provider.GetPath())) omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.rbs_provider.GetPath())) # output fps every 100 frames if self.frame % 100 == 0: print("FPS: ", self._viewport.get_viewport_window().get_fps()) self.frame = self.frame + 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate Occluded and Unoccluded data") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() sample = DualCameraSample() # On start if state creation was successful if sample.create_stage(): sample.create_camera() sample.configure_randomization() # wait for stage to load while sample.kit.is_loading(): sample.kit.update(0) sample.create_bridge_components() sample.configure_bridge() sample.start() while sample.kit.app.is_running(): sample.step() if args.test: break sample.stop() sample.shutdown()
11,691
Python
39.041096
113
0.62886
KazWong/omniverse_sample/ov_sample/python_samples/core/app_framework.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import sys import carb import omni.kit.app import asyncio # Simple example showing the minimal setup to run omniverse app from python class PythonApp: def __init__(self): # Load app plugin self.framework = carb.get_framework() self.framework.load_plugins( loaded_file_wildcards=["omni.kit.app.plugin"], search_paths=[os.path.abspath(f'{os.environ["CARB_APP_PATH"]}/plugins')], ) self.app = omni.kit.app.get_app() # Path to where kit was built to app_root = os.environ["CARB_APP_PATH"] # Inject experience config: sys.argv.insert(1, f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit') # Add paths to extensions sys.argv.append(f"--ext-folder") sys.argv.append(f'{os.path.abspath(os.environ["ISAAC_PATH"])}/exts') # Run headless sys.argv.append("--no-window") # Set some settings sys.argv.append("--/app/asyncRendering=False") # Start the app self.app.startup("Isaac-Sim", app_root, sys.argv) def shutdown(self): # Shutdown self.app.shutdown() self.framework.unload_all_plugins() print("Shutdown complete") if __name__ == "__main__": kit = PythonApp() # Do something, in this case we wait for stage to open and then exit stage_task = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) while not stage_task.done(): kit.app.update() kit.shutdown()
1,952
Python
30
85
0.655225
KazWong/omniverse_sample/ov_sample/python_samples/core/helper.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Simple example showing how to start and stop the helper kit = OmniKitHelper(config=CONFIG) ### Perform any omniverse imports here after the helper loads ### kit.play() # Start simulation kit.update(1.0 / 60.0) # Render a single frame kit.stop() # Stop Simulation kit.shutdown() # Cleanup application
1,000
Python
34.749999
76
0.727
KazWong/omniverse_sample/ov_sample/python_samples/dofbot/online_training/dofbot_cube_detection.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Dofbot Cube Detection Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [MobileNetV3](https://arxiv.org/abs/1905.02244) model. """ import torch from torch.utils.data import DataLoader import torchvision import matplotlib.pyplot as plt import numpy as np import signal from dofbot_dataset import RandomObjects import ssl ssl._create_default_https_context = ssl._create_unverified_context def main(args): device = "cuda" # Setup data train_set = RandomObjects() train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) def handle_exit(self, *args, **kwargs): print("exiting cube detection dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) from omni.isaac.synthetic_utils import visualization as vis # Setup Model if args.eval_model == "": model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn( pretrained=False, num_classes=1 + len(args.categories) ) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) else: model = torch.load(args.eval_model) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.kit.shutdown() break if args.eval_model == "": model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] if args.eval_model == "": loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: if args.eval_model == "": fig.suptitle(f"Iteration {i:05} \n {loss:.6f}", fontsize=14) else: fig.suptitle(f"Iteration {i:05} \n Evaluating", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) colours = vis.random_colours(num_instances, enable_random=False) mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [mapping[label.item()] for label in pred["labels"]] vis.plot_boxes(ax, pred["boxes"].tolist(), labels=labels, colours=colours, label_size=10) if not labels: axes[1].set_title("None") plt.draw() plt.savefig("train.png") # save every 100 steps if i % 100 == 0 and args.eval_model == "": torch.save(model, "cube_model_" + str(i) + ".pth") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max-iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted bounding boxes during training.") parser.add_argument("--eval_model", help="model file to evaluate", default="", type=str) args = parser.parse_args() # Temporary args.visualize = True args.categories = ["None", "Cube", "Sphere", "Cone"] main(args)
4,774
Python
34.110294
119
0.591537
KazWong/omniverse_sample/ov_sample/python_samples/dofbot/online_training/dofbot_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Cube Dataset with online randomized scene generation for Bounding Box Detection training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by creating a cube that rests on a plane. The cube pose, colours and textures are randomized. The camera position is also randomized within a range expected for the Dofbot's POV before capturing groundtruth consisting of an RGB rendered image, and Tight 2D Bounding Boxes """ from math import floor import os import torch import random import numpy as np import signal import omni import carb from omni.isaac.python_app import OmniKitHelper # Setup default generation variables # Value are (min, max) ranges OBJ_TRANSLATION_X = (-60.0, 60.0) OBJ_TRANSLATION_Z = (-60.0, 60.0) OBJ_ROTATION_Y = (0.0, 360.0) LIGHT_INTENSITY = (500.0, 50000.0) # Camera POV generation variables AZIMUTH_ROTATION = (-30.0, 30.0) ELEVATION_ROTATION = (-70.0, -20.0) CAM_TRANSLATION_XYZ = (-50.0, 50.0) OBJECT_SCALE = (15, 20) CAMERA_DISTANCE = 800 BBOX_AREA_THRESH = 16 BLANK_SCENES = (5, 8) # between 5-8% # Default rendering parameters RENDER_CONFIG = { "renderer": "PathTracing", "samples_per_pixel_per_frame": 12, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "headless": False, "width": 640, "height": 480, } class RandomObjects(torch.utils.data.IterableDataset): """Dataset of cube + distractor objects - domain randomize position/colour/texture/lighting/camera angle The RGB image and BoundingBox are captured by moving a camera aimed at the centre of the scene which is positioned at random but at a fixed distance from the centre. """ def __init__( self, categories=["None", "Cube", "Sphere", "Cone"], num_assets_min=1, num_assets_max=3, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = OmniKitHelper(config=RENDER_CONFIG) self.stage = self.kit.get_stage() from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.synthetic_utils import DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.dr_helper.toggle_manual_mode() from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return result, nucleus_server = find_nucleus_server("/Library/Props/Road_Tiles/Parts/") if result is False: carb.log_error( "Could not find nucleus server with /Library/Props/Road_Tiles/Parts/ folder. Please refer to the documentation to aquire the road tile assets" ) return self.categories = categories self.range_num_assets = (num_assets_min, num_assets_max) self.asset_path = nucleus_server + "/Isaac" self._setup_world() self.cur_idx = 0 self.empty_idx = floor(100 / random.uniform(*BLANK_SCENES)) self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) # turn this on to fix the PathTracing + Play (needed for overlap test) producing line artifacts carb.settings.get_settings().set_bool("/rtx/resetPtAccumOnAnimTimeChange", True) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def _setup_world(self): from pxr import Sdf, UsdGeom, Gf, UsdPhysics, PhysxSchema # Create physics scene for collision testing scene = UsdPhysics.Scene.Define(self.stage, Sdf.Path("/World/physicsScene")) scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(self.stage.GetPrimAtPath("/World/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(self.stage, "/World/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") """Setup lights, walls, floor, ceiling and camera""" # Setup Room self.kit.create_prim( "/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]} ) # Setup ground plane ground_scale = max(OBJECT_SCALE) ground_prim = self.stage.DefinePrim("/World/Ground", "Cylinder") UsdGeom.XformCommonAPI(ground_prim).SetScale((ground_scale, ground_scale, ground_scale)) UsdGeom.XformCommonAPI(ground_prim).SetTranslate((0.0, ground_scale * -0.5, 0.0)) UsdGeom.XformCommonAPI(ground_prim).SetRotate((90.0, 0.0, 0.0)) attributes = {"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]} for k, v in attributes.items(): ground_prim.GetAttribute(k).Set(v) # Setup lights self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (0.0, 0.365, 0.848)}, ) self.kit.create_prim( "/World/Light2", "SphereLight", translation=(450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (1.0, 0.278, 0.0)}, ) self.kit.create_prim("/World/Asset", "Xform") # Setup camera self.camera_rig = UsdGeom.Xformable(self.kit.create_prim("/World/CameraRig", "Xform")) self.camera = self.kit.create_prim("/World/CameraRig/Camera", "Camera", translation=(0.0, 0.0, CAMERA_DISTANCE)) # Change azimuth angle self.camera_rig.AddRotateYOp().Set(0) # Change elevation angle self.camera_rig.AddRotateXOp().Set(-40) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera.GetPath())) self.viewport = omni.kit.viewport.get_default_viewport_window() self.create_dr_comp() self.kit.update() def load_single_asset(self, prim_type, scale, i): from omni.physx.scripts import utils from pxr import Semantics, UsdGeom overlapping = True attempts = 0 max_attempts = 5 # after 5 placement attempts, move on stage = self.kit.get_stage() # Randomly generate transforms until a valid position is found # (i.e. new object will not overlap with existing ones) # print("attempting to spawn object...", end=" ") while overlapping and attempts < max_attempts: x = random.uniform(*OBJ_TRANSLATION_X) y = scale # assumes bounding box of standard prim is 1 cubic unit z = random.uniform(*OBJ_TRANSLATION_Z) rot_y = random.uniform(*OBJ_ROTATION_Y) # Validate this proposed transform rot = carb.Float4(0.0, 0.0, 1.0, 0.0) origin = carb.Float3(float(x), float(y), float(z)) extent = carb.Float3(float(scale), float(scale), float(scale)) overlapping = self.check_overlap(extent, origin, rot) attempts += 1 if overlapping: return None # print("object spawned!") # No overlap, define the prim and apply the transform prim = stage.DefinePrim(f"/World/Asset/obj{i}", prim_type) bound = UsdGeom.Mesh(prim).ComputeWorldBound(0.0, "default") box_min_y = bound.GetBox().GetMin()[1] * scale UsdGeom.XformCommonAPI(prim).SetScale((scale, scale, scale)) UsdGeom.XformCommonAPI(prim).SetTranslate((x, -box_min_y, z)) UsdGeom.XformCommonAPI(prim).SetRotate((0, rot_y, 0)) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Add physics to the prim utils.setCollider(prim, approximationShape="convexHull") return prim # OVERLAP -------------------------------------------- def report_hit(self, hit): """ Existing object turns red if the proposed position would result in a collision Note: use for troubleshooting, material randomization must be disabled for this to work """ from pxr import UsdGeom, Gf, Vt hitColor = Vt.Vec3fArray([Gf.Vec3f(180.0 / 255.0, 16.0 / 255.0, 0.0)]) usdGeom = UsdGeom.Mesh.Get(self.stage, hit.rigid_body) usdGeom.GetDisplayColorAttr().Set(hitColor) return True def check_overlap(self, extent, origin, rot): from omni.physx import get_physx_scene_query_interface numHits = get_physx_scene_query_interface().overlap_box(extent, origin, rot, self.report_hit, False) return numHits > 0 # POPULATE AND RANDOMIZE ------------------------------- def create_dr_comp(self): """Creates DR components with various attributes. The asset prims to randomize is an empty list for most components since we get a new list of assets every iteration. The asset list will be updated for each component in update_dr_comp() """ texture_list = [ self.asset_path + "/Samples/DR/Materials/Textures/checkered.png", self.asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_a.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_b.png", self.asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", self.asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] material_list = [ self.asset_path + "/Samples/DR/Materials/checkered.mdl", self.asset_path + "/Samples/DR/Materials/checkered_color.mdl", self.asset_path + "/Samples/DR/Materials/marble_tile.mdl", self.asset_path + "/Samples/DR/Materials/picture_a.mdl", self.asset_path + "/Samples/DR/Materials/picture_b.mdl", self.asset_path + "/Samples/DR/Materials/textured_wall.mdl", ] light_list = ["World/Light1", "World/Light2"] self.texture_comp = self.dr_helper.create_texture_comp([], True, texture_list) self.color_comp = self.dr_helper.create_color_comp([]) self.material_comp = self.dr_helper.create_material_comp([], material_list) self.movement_comp = self.dr_helper.create_movement_comp([]) self.rotation_comp = self.dr_helper.create_rotation_comp([]) self.scale_comp = self.dr_helper.create_scale_comp([], max_range=(50, 50, 50)) self.light_comp = self.dr_helper.create_light_comp(light_list) self.visibility_comp = self.dr_helper.create_visibility_comp([]) def update_dr_comp(self, dr_comp): """Updates DR component with the asset prim paths that will be randomized""" comp_prim_paths_target = dr_comp.GetPrimPathsRel() comp_prim_paths_target.ClearTargets(True) # Add targets for all objects in scene (cube + distractors) for asset in self.assets: comp_prim_paths_target.AddTarget(asset.GetPrimPath()) # Can also add target for ground plane # comp_prim_paths_target.AddTarget("/World/Ground") def populate_scene(self): from omni.physx.scripts import utils """Clear the scene and populate it with assets.""" self.stage.RemovePrim("/World/Asset") self.assets = [] # Start simulation so we can check overlaps before spawning self.kit.play() # After every (n = self.empty_idx) scenes, generate a blank scene if (self.cur_idx % self.empty_idx) != 0: # Add random number of objects num_objects = random.randint(*self.range_num_assets) for i in range(num_objects): prim_type = random.choice(self.categories) prim_scale = random.uniform(*OBJECT_SCALE) new_asset = self.load_single_asset(prim_type, prim_scale, i) # Make sure valid object was returned before appending if new_asset: self.assets.append(new_asset) self.kit.update() else: print("Blank scene -------------------------------------------------------------") self.stage.RemovePrim("/World/Asset") self.assets = [] # Pick a new value for (n = self.empty_idx) self.empty_idx = floor(100 / random.uniform(*BLANK_SCENES)) def randomize_camera(self): """Randomize the camera position.""" # Clear previous transforms self.camera_rig.ClearXformOpOrder() # Change azimuth angle self.camera_rig.AddRotateYOp().Set(random.uniform(*AZIMUTH_ROTATION)) # Change elevation angle self.camera_rig.AddRotateXOp().Set(random.uniform(*ELEVATION_ROTATION)) # Move camera position (translate) translation_xyz = tuple(random.uniform(*CAM_TRANSLATION_XYZ) for _ in range(3)) self.camera_rig.AddTranslateOp().Set(translation_xyz) def randomize_lighting(self): self.stage.RemovePrim("/World/Light1") intens = random.uniform(*LIGHT_INTENSITY) self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": intens, "color": (0.0, 0.365, 0.848)}, ) self.kit.update() # ITERATION---------------------------------------------- def __iter__(self): return self def __next__(self): print("next!------------------------------") # Generate a new scene self.populate_scene() self.randomize_camera() self.update_dr_comp(self.texture_comp) self.dr_helper.randomize_once() self.randomize_lighting() # Step once and then wait for materials to load self.kit.update() print("waiting for materials to load...") while self.kit.is_loading(): self.kit.update() print("done") self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(["rgb", "boundingBox2DTight"], self.viewport) # RGB # Drop alpha channel image = gt["rgb"][..., :3] # Cast to tensor if numpy array if isinstance(gt["rgb"], np.ndarray): image = torch.tensor(image, dtype=torch.float, device="cuda") # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"] # Create mapping from categories to index self.categories = ["None", "Cube", "Sphere", "Cone"] mapping = {cat: i + 1 for i, cat in enumerate(self.categories)} bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist()) labels = torch.LongTensor([mapping[bb["semanticLabel"]] for bb in gt_bbox]) # If no objects present in view if bboxes.nelement() == 0: print("No object present in view") target = { "boxes": torch.zeros((0, 4), dtype=torch.float32), "labels": torch.tensor([1], dtype=torch.int64), "image_id": torch.LongTensor([self.cur_idx]), "area": torch.tensor(0, dtype=torch.float32), "iscrowd": torch.zeros((0,), dtype=torch.int64), } else: # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Identify invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import matplotlib.pyplot as plt dataset = RandomObjects() from omni.isaac.synthetic_utils import visualization as vis # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() count = 0 for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) colours = vis.random_colours(num_instances, enable_random=False) categories = categories = ["None", "Cube", "Sphere", "Cone"] mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [mapping[label.item()] for label in target["labels"]] vis.plot_boxes(ax, target["boxes"].tolist(), labels=labels, colours=colours) plt.draw() plt.savefig("dataset.png") if dataset.exiting: break # cleanup dataset.kit.stop() dataset.kit.shutdown()
18,433
Python
40.147321
158
0.616015
KazWong/omniverse_sample/ov_sample/ros_samples/joint_control/ros_publisher.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import rospy from sensor_msgs.msg import JointState import numpy as np import time import argparse parser = argparse.ArgumentParser() parser.add_argument( "--mode", required=True, help="position: for joint position control. velocity for joint velocity control" ) args = parser.parse_args() rospy.init_node("test_rosbridge", anonymous=True) pub = rospy.Publisher("/joint_command", JointState, queue_size=10) joint_state = JointState() joint_state.name = [ "panda_joint1", "panda_joint2", "panda_joint3", "panda_joint4", "panda_joint5", "panda_joint6", "panda_joint7", "panda_finger_joint1", "panda_finger_joint2", ] num_joints = len(joint_state.name) # make sure kit's editor is playing for receiving messages ## if args.mode == "position": joint_state.position = np.array([0.0] * num_joints) default_joints = [0.0, -1.16, -0.0, -2.3, -0.0, 1.6, 1.1, 0.4, 0.4] # limiting the movements to a smaller range (this is not the range of the robot, just the range of the movement max_joints = np.array(default_joints) + 0.5 min_joints = np.array(default_joints) - 0.5 # position control the robot to wiggle around each joint time_start = time.time() rate = rospy.Rate(20) while not rospy.is_shutdown(): joint_state.position = np.sin(time.time() - time_start) * (max_joints - min_joints) * 0.5 + default_joints pub.publish(joint_state) rate.sleep() elif args.mode == "velocity": rate = rospy.Rate(0.5) joint_state.position = [] joint_state.velocity = np.array([-0.7] * num_joints) while not rospy.is_shutdown(): pub.publish(joint_state) rate.sleep() joint_state.velocity = -joint_state.velocity else: print("control mode error")
2,235
Python
28.421052
115
0.689485
KazWong/omniverse_sample/ov_sample/ros_samples/isaac_moveit/scripts/panda_finger_joint2_publisher.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. #!/usr/bin/env python import rospy from sensor_msgs.msg import JointState finger_joint2 = JointState() finger_joint2.name = ["panda_finger_joint2"] def joint_states_callback(message): for i, name in enumerate(message.name): if name == "panda_finger_joint1": pos = message.position[i] finger_joint2.position = [pos] pub.publish(finger_joint2) return if __name__ == "__main__": rospy.init_node("panda_finger_joint2_publisher") pub = rospy.Publisher("/joint_command", JointState, queue_size=1) rospy.Subscriber("/joint_command", JointState, joint_states_callback, queue_size=1) rospy.spin()
1,116
Python
32.848484
87
0.72043
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/base_local_planner_params.yaml
TrajectoryPlannerROS: holonomic_robot: false max_vel_x: 0.5 min_vel_x: 0.1 max_vel_theta: 0.8 min_vel_theta: -0.8 min_in_place_vel_theta: 0.4 acc_lim_theta: 0.2 acc_lim_x: 0.5 acc_lim_y: 0.0 xy_goal_tolerance: 0.15 yaw_goal_tolerance: 0.05 occdist_scale: 1.0 escape_vel: -0.1
303
YAML
19.266665
29
0.646865
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/costmap_common_params.yaml
obstacle_range: 100 raytrace_range: 3 robot_radius: 0.5 inflation_radius: 0.15 observation_sources: laser_scan_sensor laser_scan_sensor: {sensor_frame: carter_lidar, data_type: LaserScan, topic: /scan, marking: true, clearing: true}
233
YAML
32.428567
114
0.772532
KazWong/omniverse_sample/ov_sample/ros_samples/teleport/ros_pose_client.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from __future__ import print_function from isaac_ros_messages.srv import IsaacPose, IsaacPoseRequest from geometry_msgs.msg import Pose, Twist, Vector3 import rospy import numpy as np def send_pose_cube_client(new_pose): rospy.wait_for_service("/teleport_pos") try: send_pose = rospy.ServiceProxy("/teleport_pos", IsaacPose) send_pose(new_pose) except rospy.ServiceException as e: print("Service call failed: %s" % e) def compose_pose(pos_vec, quat_vec): obj_pose = Pose() obj_pose.position.x = pos_vec[0] obj_pose.position.y = pos_vec[1] obj_pose.position.z = pos_vec[2] obj_pose.orientation.w = quat_vec[0] obj_pose.orientation.x = quat_vec[1] obj_pose.orientation.y = quat_vec[2] obj_pose.orientation.z = quat_vec[3] return obj_pose def compose_twist(lx, ly, lz, ax, ay, az): obj_twist = Twist() obj_twist.linear.x = lx obj_twist.linear.y = ly obj_twist.linear.z = lz obj_twist.angular.x = ax obj_twist.angular.y = ay obj_twist.angular.z = az return obj_twist def compose_vec3(x, y, z): obj_scale = Vector3() obj_scale.x = x obj_scale.y = y obj_scale.z = z return obj_scale if __name__ == "__main__": rospy.init_node("test_ros_teleport", anonymous=True) new_isaac_pose_cube = IsaacPoseRequest() new_isaac_pose_cube.names = ["/Cube"] cube_pos_vec = np.array([0.0, 0.0, 0.0]) quat_vec = np.array([1, 0.0, 0.0, 0.0]) rate = rospy.Rate(1) # hz while not rospy.is_shutdown(): # new random pose cube_pos_vec = np.random.rand(3) * 0.1 cube_pose = compose_pose(cube_pos_vec, quat_vec) new_isaac_pose_cube.poses = [cube_pose] # publish send_pose_cube_client(new_isaac_pose_cube) rate.sleep()
2,264
Python
28.415584
76
0.661219