file_path
stringlengths 20
207
| content
stringlengths 5
3.85M
| size
int64 5
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/rmpflow/robot_descriptor.yaml
|
api_version: 1.0
cspace:
- joint1
- joint2
- joint3
- joint4
- joint5
- joint6
root_link: world
default_q: [
0.00, 0.00, 0.00, 0.00, 0.00, 0.00
]
cspace_to_urdf_rules: []
composite_task_spaces: []
| 224 |
YAML
| 15.071427 | 38 | 0.575893 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/rmpflow/mirrobot_rmpflow_common.yaml
|
joint_limit_buffers: [.01, .01, .01, .01, .01, .01]
rmp_params:
cspace_target_rmp:
metric_scalar: 50.
position_gain: 100.
damping_gain: 50.
robust_position_term_thresh: .5
inertia: 1.
cspace_trajectory_rmp:
p_gain: 100.
d_gain: 10.
ff_gain: .25
weight: 50.
cspace_affine_rmp:
final_handover_time_std_dev: .25
weight: 2000.
joint_limit_rmp:
metric_scalar: 1000.
metric_length_scale: .01
metric_exploder_eps: 1e-3
metric_velocity_gate_length_scale: .01
accel_damper_gain: 200.
accel_potential_gain: 1.
accel_potential_exploder_length_scale: .1
accel_potential_exploder_eps: 1e-2
joint_velocity_cap_rmp:
max_velocity: 1.
velocity_damping_region: .3
damping_gain: 1000.0
metric_weight: 100.
target_rmp:
accel_p_gain: 30.
accel_d_gain: 85.
accel_norm_eps: .075
metric_alpha_length_scale: .05
min_metric_alpha: .01
max_metric_scalar: 10000
min_metric_scalar: 2500
proximity_metric_boost_scalar: 20.
proximity_metric_boost_length_scale: .02
xi_estimator_gate_std_dev: 20000.
accept_user_weights: false
axis_target_rmp:
accel_p_gain: 210.
accel_d_gain: 60.
metric_scalar: 10
proximity_metric_boost_scalar: 3000.
proximity_metric_boost_length_scale: .08
xi_estimator_gate_std_dev: 20000.
accept_user_weights: false
collision_rmp:
damping_gain: 50.
damping_std_dev: .04
damping_robustness_eps: 1e-2
damping_velocity_gate_length_scale: .01
repulsion_gain: 800.
repulsion_std_dev: .01
metric_modulation_radius: .5
metric_scalar: 10000.
metric_exploder_std_dev: .02
metric_exploder_eps: .001
damping_rmp:
accel_d_gain: 30.
metric_scalar: 50.
inertia: 100.
canonical_resolve:
max_acceleration_norm: 50.
projection_tolerance: .01
verbose: false
body_cylinders:
- name: base
pt1: [0,0,.333]
pt2: [0,0,0.]
radius: .05
body_collision_controllers:
- name: Link6
radius: .05
| 2,266 |
YAML
| 28.441558 | 51 | 0.582083 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/rmpflow/denso_rmpflow_common.yaml
|
joint_limit_buffers: [.01, .01, .01, .01, .01, .01]
rmp_params:
cspace_target_rmp:
metric_scalar: 50.
position_gain: 100.
damping_gain: 50.
robust_position_term_thresh: .5
inertia: 1.
cspace_trajectory_rmp:
p_gain: 100.
d_gain: 10.
ff_gain: .25
weight: 50.
cspace_affine_rmp:
final_handover_time_std_dev: .25
weight: 2000.
joint_limit_rmp:
metric_scalar: 1000.
metric_length_scale: .01
metric_exploder_eps: 1e-3
metric_velocity_gate_length_scale: .01
accel_damper_gain: 200.
accel_potential_gain: 1.
accel_potential_exploder_length_scale: .1
accel_potential_exploder_eps: 1e-2
joint_velocity_cap_rmp:
max_velocity: 1.
velocity_damping_region: .3
damping_gain: 1000.0
metric_weight: 100.
target_rmp:
accel_p_gain: 30.
accel_d_gain: 85.
accel_norm_eps: .075
metric_alpha_length_scale: .05
min_metric_alpha: .01
max_metric_scalar: 10000
min_metric_scalar: 2500
proximity_metric_boost_scalar: 20.
proximity_metric_boost_length_scale: .02
xi_estimator_gate_std_dev: 20000.
accept_user_weights: false
axis_target_rmp:
accel_p_gain: 210.
accel_d_gain: 60.
metric_scalar: 10
proximity_metric_boost_scalar: 3000.
proximity_metric_boost_length_scale: .08
xi_estimator_gate_std_dev: 20000.
accept_user_weights: false
collision_rmp:
damping_gain: 50.
damping_std_dev: .04
damping_robustness_eps: 1e-2
damping_velocity_gate_length_scale: .01
repulsion_gain: 800.
repulsion_std_dev: .01
metric_modulation_radius: .5
metric_scalar: 10000.
metric_exploder_std_dev: .02
metric_exploder_eps: .001
damping_rmp:
accel_d_gain: 30.
metric_scalar: 50.
inertia: 100.
canonical_resolve:
max_acceleration_norm: 50.
projection_tolerance: .01
verbose: false
body_cylinders:
- name: base
pt1: [0,0,.333]
pt2: [0,0,0.]
radius: .05
body_collision_controllers:
- name: onrobot_rg6_base_link
radius: .05
| 2,282 |
YAML
| 28.64935 | 51 | 0.583699 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/controllers/pick_place.py
|
from omni.isaac.manipulators.grippers.surface_gripper import SurfaceGripper
import omni.isaac.manipulators.controllers as manipulators_controllers
from .rmpflow import RMPFlowController
from omni.isaac.core.articulations import Articulation
# - Phase 0: Move end_effector above the cube center at the 'end_effector_initial_height'.
# - Phase 1: Lower end_effector down to encircle the target cube
# - Phase 2: Wait for Robot's inertia to settle.
# - Phase 3: close grip.
# - Phase 4: Move end_effector up again, keeping the grip tight (lifting the block).
# - Phase 5: Smoothly move the end_effector toward the goal xy, keeping the height constant.
# - Phase 6: Move end_effector vertically toward goal height at the 'end_effector_initial_height'.
# - Phase 7: loosen the grip.
# - Phase 8: Move end_effector vertically up again at the 'end_effector_initial_height'
# - Phase 9: Move end_effector towards the old xy position.
class PickPlaceController(manipulators_controllers.PickPlaceController):
def __init__(
self,
name: str,
gripper: SurfaceGripper,
robot_articulation: Articulation,
events_dt=None
) -> None:
if events_dt is None:
#These values needs to be tuned in general, you checkout each event in execution and slow it down or speed
#it up depends on how smooth the movments are
events_dt = [0.005, 0.002, 1, 0.05, 0.0008, 0.005, 0.0008, 0.1, 0.0008, 0.008]
manipulators_controllers.PickPlaceController.__init__(
self,
name=name,
cspace_controller=RMPFlowController(
name=name + "_cspace_controller", robot_articulation=robot_articulation
),
gripper=gripper,
events_dt=events_dt,
end_effector_initial_height=0.05,
#This value can be changed
# start_picking_height=0.6
)
return
| 1,930 |
Python
| 44.976189 | 118 | 0.674611 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/controllers/rmpflow.py
|
import omni.isaac.motion_generation as mg
from omni.isaac.core.articulations import Articulation
class RMPFlowController(mg.MotionPolicyController):
def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None:
# TODO: chamge the follow paths
# # laptop
# self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/"
# self._urdf_path = "/home/kimsooyoung/Downloads/Source/mirobot_ros2/mirobot_description/urdf/"
# desktop
self._desc_path = "/home/kimsooyoung/Downloads/source/RoadBalanceEdu/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/"
self._urdf_path = "/home/kimsooyoung/Downloads/source/mirobot_ros2/mirobot_description/urdf/"
self.rmpflow = mg.lula.motion_policies.RmpFlow(
robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml",
rmpflow_config_path=self._desc_path+"rmpflow/mirrobot_rmpflow_common.yaml",
urdf_path=self._urdf_path+"mirobot_urdf_2.urdf",
end_effector_frame_name="Link6",
maximum_substep_size=0.00334
)
self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt)
mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp)
self._default_position, self._default_orientation = (
self._articulation_motion_policy._robot_articulation.get_world_pose()
)
self._motion_policy.set_robot_base_pose(
robot_position=self._default_position, robot_orientation=self._default_orientation
)
return
def reset(self):
mg.MotionPolicyController.reset(self)
self._motion_policy.set_robot_base_pose(
robot_position=self._default_position, robot_orientation=self._default_orientation
)
| 1,955 |
Python
| 47.899999 | 131 | 0.691049 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/garage_conveyor.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from omni.isaac.examples.base_sample import BaseSample
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
from pxr import Sdf, UsdLux, Gf, UsdPhysics, PhysxSchema
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.core.utils.rotations import euler_angles_to_quat
import omni.isaac.core.utils.numpy.rotations as rot_utils
from omni.isaac.core import SimulationContext
from omni.isaac.sensor import Camera
from .geom_utils import createRigidBody, addObjectsGeom
from .inference_utils import triton_inference
import omni.replicator.core as rep
import omni.graph.core as og
import numpy as np
import random
import carb
import omni
import cv2
PROPS = {
'spam' : "/Isaac/Props/YCB/Axis_Aligned/010_potted_meat_can.usd",
'jelly' : "/Isaac/Props/YCB/Axis_Aligned/009_gelatin_box.usd",
'tuna' : "/Isaac/Props/YCB/Axis_Aligned/007_tuna_fish_can.usd",
'cleanser' : "/Isaac/Props/YCB/Axis_Aligned/021_bleach_cleanser.usd",
'tomato_soup' : "/Isaac/Props/YCB/Axis_Aligned/005_tomato_soup_can.usd"
}
class GarageConveyor(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
self._nucleus_server = get_assets_root_path()
self._bin_path = self._nucleus_server + "/Isaac/Props/KLT_Bin/small_KLT_visual.usd"
self._bin_mass = 10.5
self._bin_scale = np.array([2.0, 2.0, 1.0])
self._bin_position = np.array([7.0, -0.2, 1.0])
self._plane_scale = np.array([0.4, 0.24, 1.0])
self._plane_position = np.array([-1.75, 1.2, 0.9])
self._plane_rotation = np.array([0.0, 0.0, 0.0])
self._gemini_usd_path = self._server_root + "/NVIDIA/Assets/Isaac/2023.1.1/Isaac/Sensors/Orbbec/Gemini 2/orbbec_gemini2_V1.0.usd"
self._gemini_position = np.array([-1.75, 1.2, 1.5])
self._gemini_rotation = np.array([0.0, 0.7071068, -0.7071068, 0])
self._sim_count = 0
self._is_captured = False
return
def add_background(self):
self._world = self.get_world()
bg_path = self._server_root + "/Projects/RBROS2/ConveyorGarage/Franka_Garage_Empty.usd"
add_reference_to_stage(usd_path=bg_path, prim_path=f"/World/Garage")
def add_camera(self):
self._camera = Camera(
prim_path="/World/normal_camera",
position=np.array([-1.75, 1.2, 2.0]),
frequency=30,
resolution=(1280, 720),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0, 90, 180
]), degrees=True),
)
self._camera.set_focal_length(2.0)
self._camera.initialize()
self._camera.add_motion_vectors_to_frame()
def add_bin(self, scene):
add_reference_to_stage(usd_path=self._bin_path, prim_path="/World/inference_bin")
createRigidBody(self._stage, "/World/inference_bin", False)
self._bin_ref_geom = addObjectsGeom(
scene, "inference_bin",
self._bin_scale, self._bin_position,
self._bin_mass, orientation=None
)
def add_random_objects(self, scene, num_objects=3):
choicelist = [random.choice( list(PROPS.keys()) ) for i in range(num_objects)]
for _object in choicelist:
prim_path = self._nucleus_server + PROPS[_object]
prim_name = f"{_object}_{random.randint(0, 100)}"
add_reference_to_stage(usd_path=prim_path, prim_path=f"/World/{prim_name}")
createRigidBody(self._stage, f"/World/{prim_name}")
position = (
random.uniform(6.8, 7.05),
random.uniform(-0.3, -0.1),
random.uniform(1.1, 1.3)
)
prim_geom = addObjectsGeom(
scene, prim_name,
np.array([1.0, 1.0, 1.0]),
position,
0.02
)
def add_light(self):
distantLight = UsdLux.CylinderLight.Define(self._stage, Sdf.Path("/World/cylinderLight"))
distantLight.CreateIntensityAttr(60000)
distantLight.AddTranslateOp().Set(Gf.Vec3f(-1.2, 0.9, 3.0))
distantLight.AddScaleOp().Set((0.1, 4.0, 0.1))
distantLight.AddRotateXYZOp().Set((0, 0, 90))
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self.simulation_context = SimulationContext()
self.add_background()
self.add_light()
self.add_camera()
self.add_bin(self._world.scene)
self.add_random_objects(self._world.scene, num_objects=3)
self._scene = PhysicsContext()
self._scene.set_physics_dt(1 / 30.0)
return
async def setup_post_load(self):
self._world = self.get_world()
self._world.scene.enable_bounding_boxes_computations()
self._world.add_physics_callback("sim_step", callback_fn=self.physics_callback) #callback names have to be unique
self._cur_bin_position, _ = self._bin_ref_geom.get_world_pose()
self._prev_bin_position = self._cur_bin_position
return
def physics_callback(self, step_size):
self._cur_bin_position, _ = self._bin_ref_geom.get_world_pose()
bin_vel = np.linalg.norm(self._cur_bin_position - self._prev_bin_position)
if self._cur_bin_position[1] > 1.1 and bin_vel < 1e-5 and not self._is_captured:
print("capture image...")
self._is_captured = True
self._camera.get_current_frame()
cur_img = self._camera.get_rgba()[:, :, :3]
triton_inference(cur_img)
else:
# print(f"bin_vel: {bin_vel} / self._is_captured : {self._is_captured} / self._cur_bin_position[1]: {self._cur_bin_position[1]}")
pass
self._sim_count += 1
self._prev_bin_position = self._cur_bin_position
async def setup_post_reset(self):
await self._world.play_async()
return
def world_cleanup(self):
self._world.pause()
return
| 7,012 |
Python
| 37.745856 | 141 | 0.628066 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .garage_conveyor import GarageConveyor
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="Replicator",
name="ReplicatorFactoryDemo",
title="ReplicatorFactoryDemo",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=GarageConveyor(),
)
return
| 2,076 |
Python
| 42.270832 | 135 | 0.743738 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/inference_utils.py
|
from tritonclient.utils import triton_to_np_dtype
import tritonclient.grpc as grpcclient
import cv2
import numpy as np
from matplotlib import pyplot as plt
inference_server_url = "localhost:8003"
triton_client = grpcclient.InferenceServerClient(url=inference_server_url)
model_name = "our_new_model"
props_dict = {
0: 'klt_bin',
1: 'tomato_soup',
2: 'tuna',
3: 'spam',
4: 'jelly',
5: 'cleanser',
}
def triton_inference(image_bgr):
target_width, target_height = 1280, 720
image_bgr = cv2.resize(image_bgr, (target_width, target_height))
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image = np.float32(image_rgb)
# preprocessing
image = image/255
image = np.moveaxis(image, -1, 0) # HWC to CHW
image = image[np.newaxis, :] # add batch dimension
image = np.float32(image)
plt.imshow(image_rgb)
# create input
input_name = "input"
inputs = [grpcclient.InferInput(input_name, image.shape, "FP32")]
inputs[0].set_data_from_numpy(image)
output_names = ["boxes", "labels", "scores"]
outputs = [grpcclient.InferRequestedOutput(n) for n in output_names]
results = triton_client.infer(model_name, inputs, outputs=outputs)
boxes, labels, scores = [results.as_numpy(o) for o in output_names]
# annotate
annotated_image = image_bgr.copy()
if boxes.size > 0: # ensure something is found
for box, lab, scr in zip(boxes, labels, scores):
if scr > 0.4:
box_top_left = int(box[0]), int(box[1])
box_bottom_right = int(box[2]), int(box[3])
text_origin = int(box[0]), int(box[3])
border_color = list(np.random.random(size=3) * 256)
text_color = (255, 255, 255)
font_scale = 0.9
thickness = 1
# bounding box2
img = cv2.rectangle(
annotated_image,
box_top_left,
box_bottom_right,
border_color,
thickness=5,
lineType=cv2.LINE_8
)
print(f"index: {lab}, label: {props_dict[lab]}, score: {scr:.2f}")
# For the text background
# Finds space required by the text so that we can put a background with that amount of width.
(w, h), _ = cv2.getTextSize(
props_dict[lab], cv2.FONT_HERSHEY_SIMPLEX,
0.6, 1
)
# Prints the text.
img = cv2.rectangle(
img, (box_top_left[0], box_top_left[1] - 20),
(box_top_left[0] + w, box_top_left[1]),
border_color, -1
)
img = cv2.putText(
img, props_dict[lab], box_top_left,
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
text_color, 1
)
final_img = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
cv2.imwrite("/home/kimsooyoung/Documents/annotated_img.png", final_img)
| 3,145 |
Python
| 31.432989 | 109 | 0.539269 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/geom_utils.py
|
from omni.physx.scripts import utils
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from pxr import Gf, PhysxSchema, Usd, UsdPhysics, UsdShade, UsdGeom, Sdf, Tf, UsdLux
import numpy as np
def createRigidBody(stage, primPath, kinematic=False):
bodyPrim = stage.GetPrimAtPath(primPath)
utils.setRigidBody(bodyPrim, "convexDecomposition", kinematic)
def addObjectsGeom(scene, name, scale, ini_pos, mass, orientation=None):
scene.add(GeometryPrim(prim_path=f"/World/{name}", name=f"{name}_ref_geom", collision=True))
geom = scene.get_object(f"{name}_ref_geom")
if orientation is None:
# Usually - (x, y, z, w)
# But in Isaac Sim - (w, x, y, z)
orientation = np.array([1.0, 0.0, 0.0, 0.0])
geom.set_local_scale(scale)
geom.set_world_pose(position=ini_pos)
geom.set_collision_approximation("convexDecomposition")
geom.set_default_state(position=ini_pos, orientation=orientation)
massAPI = UsdPhysics.MassAPI.Apply(geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(mass)
return geom
| 1,072 |
Python
| 37.321427 | 96 | 0.70709 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/inference/model_info.py
|
import tritonclient.grpc as grpcclient
inference_server_url = "localhost:8003"
triton_client = grpcclient.InferenceServerClient(url=inference_server_url)
# find out info about model
model_name = "our_new_model"
config_info = triton_client.get_model_config(model_name)
print(config_info)
| 290 |
Python
| 25.454543 | 74 | 0.793103 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/inference/inference.py
|
from tritonclient.utils import triton_to_np_dtype
import tritonclient.grpc as grpcclient
import cv2
import numpy as np
from matplotlib import pyplot as plt
inference_server_url = "localhost:8003"
triton_client = grpcclient.InferenceServerClient(url=inference_server_url)
model_name = "our_new_model"
# load image data
target_width, target_height = 1280, 720
image_bgr = cv2.imread("rgb_0055.png")
# image_bgr = cv2.imread("rgb_0061.png")
# image_bgr = cv2.imread("rgb_0083.png")
image_bgr = cv2.resize(image_bgr, (target_width, target_height))
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image = np.float32(image_rgb)
# preprocessing
image = image/255
image = np.moveaxis(image, -1, 0) # HWC to CHW
image = image[np.newaxis, :] # add batch dimension
image = np.float32(image)
plt.imshow(image_rgb)
# create input
input_name = "input"
inputs = [grpcclient.InferInput(input_name, image.shape, "FP32")]
inputs[0].set_data_from_numpy(image)
output_names = ["boxes", "labels", "scores"]
outputs = [grpcclient.InferRequestedOutput(n) for n in output_names]
results = triton_client.infer(model_name, inputs, outputs=outputs)
boxes, labels, scores = [results.as_numpy(o) for o in output_names]
# annotate
annotated_image = image_bgr.copy()
props_dict = {
0: 'klt_bin',
1: 'tomato_soup',
2: 'tuna',
3: 'spam',
4: 'jelly',
5: 'cleanser',
}
if boxes.size > 0: # ensure something is found
for box, lab, scr in zip(boxes, labels, scores):
if scr > 0.4:
box_top_left = int(box[0]), int(box[1])
box_bottom_right = int(box[2]), int(box[3])
text_origin = int(box[0]), int(box[3])
border_color = list(np.random.random(size=3) * 256)
text_color = (255, 255, 255)
font_scale = 0.9
thickness = 1
# bounding box2
img = cv2.rectangle(
annotated_image,
box_top_left,
box_bottom_right,
border_color,
thickness=5,
lineType=cv2.LINE_8
)
print(f"index: {lab}, label: {props_dict[lab]}, score: {scr:.2f}")
# For the text background
# Finds space required by the text so that we can put a background with that amount of width.
(w, h), _ = cv2.getTextSize(
props_dict[lab], cv2.FONT_HERSHEY_SIMPLEX,
0.6, 1
)
# Prints the text.
img = cv2.rectangle(
img, (box_top_left[0], box_top_left[1] - 20),
(box_top_left[0] + w, box_top_left[1]),
border_color, -1
)
img = cv2.putText(
img, props_dict[lab], box_top_left,
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
text_color, 1
)
plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB))
plt.show()
| 2,945 |
Python
| 28.757575 | 105 | 0.582343 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/export/model_export.py
|
import os
import torch
import torchvision
import warnings
warnings.filterwarnings("ignore")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# load the PyTorch model.
pytorch_dir = "/home/kimsooyoung/Documents/model.pth"
model = torch.load(pytorch_dir).cuda()
# Export Model
dummy_input = torch.rand(1, 3, 1024, 1024).cuda()
torch.onnx.export(
model,
dummy_input,
"model.onnx",
opset_version=11,
input_names=["input"],
output_names=["boxes", "labels", "scores"]
)
| 527 |
Python
| 20.999999 | 83 | 0.698292 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/viz/data_visualize.py
|
import os
import json
import hashlib
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# # Desktop
# data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-21_18:52:00"
# Laptop
data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-23_01:28:15"
out_dir = "/home/kimsooyoung/Documents"
number = "0025"
# Write Visualization Functions
# data_to_colour
# takes in our data from a specific label ID and maps it to the proper color for the bounding box.
def data_to_colour(data):
if isinstance(data, str):
data = bytes(data, "utf-8")
else:
data = bytes(data)
m = hashlib.sha256()
m.update(data)
key = int(m.hexdigest()[:8], 16)
r = ((((key >> 0) & 0xFF) + 1) * 33) % 255
g = ((((key >> 8) & 0xFF) + 1) * 33) % 255
b = ((((key >> 16) & 0xFF) + 1) * 33) % 255
inv_norm_i = 128 * (3.0 / (r + g + b))
return (int(r * inv_norm_i) / 255, int(g * inv_norm_i) / 255, int(b * inv_norm_i) / 255)
# colorize_bbox_2d
# takes in the path to the RGB image for the background,
# the bounding box data, the labels, and the path to store the visualization.
# It outputs a colorized bounding box.
def colorize_bbox_2d(rgb_path, data, id_to_labels, file_path):
rgb_img = Image.open(rgb_path)
colors = [data_to_colour(bbox["semanticId"]) for bbox in data]
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(rgb_img)
for bbox_2d, color, index in zip(data, colors, id_to_labels.keys()):
labels = id_to_labels[str(index)]
rect = patches.Rectangle(
xy=(bbox_2d["x_min"], bbox_2d["y_min"]),
width=bbox_2d["x_max"] - bbox_2d["x_min"],
height=bbox_2d["y_max"] - bbox_2d["y_min"],
edgecolor=color,
linewidth=2,
label=labels,
fill=False,
)
ax.add_patch(rect)
plt.legend(loc="upper left")
plt.savefig(file_path)
# Load Synthetic Data and Visualize
rgb_path = data_dir
rgb = "rgb_"+number+".png"
rgb_path = os.path.join(rgb_path, rgb)
import os
print(os.path.abspath("."))
# load the bounding box data.
npy_path = data_dir
bbox2d_tight_file_name = "bounding_box_2d_tight_"+number+".npy"
data = np.load(os.path.join(npy_path, bbox2d_tight_file_name))
# load the labels corresponding to the image.
json_path = data_dir
bbox2d_tight_labels_file_name = "bounding_box_2d_tight_labels_"+number+".json"
bbox2d_tight_id_to_labels = None
with open(os.path.join(json_path, bbox2d_tight_labels_file_name), "r") as json_data:
bbox2d_tight_id_to_labels = json.load(json_data)
# Finally, we can call our function and see the labeled image!
colorize_bbox_2d(rgb_path, data, bbox2d_tight_id_to_labels, os.path.join(out_dir, "bbox2d_tight.png"))
| 2,789 |
Python
| 31.823529 | 102 | 0.642524 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactoryDemo/train/fast_rcnn_train.py
|
from PIL import Image
import os
import numpy as np
import torch
import torch.utils.data
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision import transforms as T
import json
import shutil
epochs = 15
num_classes = 6
data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-23_01:28:15"
output_file = "/home/kimsooyoung/Documents/model.pth"
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print(f"Using device: {device}")
class GroceryDataset(torch.utils.data.Dataset):
# This function is run once when instantiating the Dataset object
def __init__(self, root, transforms):
self.root = root
self.transforms = transforms
# In the first portion of this code we are taking our single dataset folder
# and splitting it into three folders based on the file types.
# This is just a preprocessing step.
list_ = os.listdir(root)
for file_ in list_:
name, ext = os.path.splitext(file_)
ext = ext[1:]
if ext == '':
continue
if os.path.exists(root+ '/' + ext):
shutil.move(root+'/'+file_, root+'/'+ext+'/'+file_)
else:
os.makedirs(root+'/'+ext)
shutil.move(root+'/'+file_, root+'/'+ext+'/'+file_)
self.imgs = list(sorted(os.listdir(os.path.join(root, "png"))))
self.label = list(sorted(os.listdir(os.path.join(root, "json"))))
self.box = list(sorted(os.listdir(os.path.join(root, "npy"))))
# We have our three attributes with the img, label, and box data
# Loads and returns a sample from the dataset at the given index idx
def __getitem__(self, idx):
img_path = os.path.join(self.root, "png", self.imgs[idx])
img = Image.open(img_path).convert("RGB")
label_path = os.path.join(self.root, "json", self.label[idx])
with open(os.path.join('root', label_path), "r") as json_data:
json_labels = json.load(json_data)
box_path = os.path.join(self.root, "npy", self.box[idx])
dat = np.load(str(box_path))
boxes = []
labels = []
for i in dat:
obj_val = i[0]
xmin = torch.as_tensor(np.min(i[1]), dtype=torch.float32)
xmax = torch.as_tensor(np.max(i[3]), dtype=torch.float32)
ymin = torch.as_tensor(np.min(i[2]), dtype=torch.float32)
ymax = torch.as_tensor(np.max(i[4]), dtype=torch.float32)
if (ymax > ymin) & (xmax > xmin):
boxes.append([xmin, ymin, xmax, ymax])
area = (xmax - xmin) * (ymax - ymin)
labels += [json_labels.get(str(obj_val)).get('class')]
label_dict = {}
# Labels for the dataset
static_labels = {
'klt_bin' : 0,
'tomato_soup' : 1,
'tuna' : 2,
'spam' : 3,
'jelly' : 4,
'cleanser' : 5
}
labels_out = []
# Transforming the input labels into a static label dictionary to use
for i in range(len(labels)):
label_dict[i] = labels[i]
for i in label_dict:
fruit = label_dict[i]
final_fruit_label = static_labels[fruit]
labels_out += [final_fruit_label]
target = {}
target["boxes"] = torch.as_tensor(boxes, dtype=torch.float32)
target["labels"] = torch.as_tensor(labels_out, dtype=torch.int64)
target["image_id"] = torch.tensor([idx])
target["area"] = area
if self.transforms is not None:
img= self.transforms(img)
return img, target
# Finally we have a function for the number of samples in our dataset
def __len__(self):
return len(self.imgs)
# Create Helper Functions
# converting to `Tensor` objects and also converting the `dtypes`.
def get_transform(train):
transforms = []
transforms.append(T.PILToTensor())
transforms.append(T.ConvertImageDtype(torch.float))
return T.Compose(transforms)
# Create a function to collate our samples.
def collate_fn(batch):
return tuple(zip(*batch))
# Create Model and Train
# We are starting with the pretrained (default weights) object detection
# fasterrcnn_resnet50 model from Torchvision.
def create_model(num_classes):
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights='DEFAULT')
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
# create our dataset by using our custom GroceryDataset class
# This is then passed into our DataLoader.
dataset = GroceryDataset(data_dir, get_transform(train=True))
data_loader = torch.utils.data.DataLoader(
dataset,
# batch_size=16,
batch_size=8,
shuffle=True,
collate_fn=collate_fn
)
# create our model with the N classes
# And then transfer it to the GPU for training.
model = create_model(num_classes)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.001)
len_dataloader = len(data_loader)
# Now we can actually train our model.
# Keep track of our loss and print it out as we train.
model.train()
ep = 0
for epoch in range(epochs):
optimizer.zero_grad()
ep += 1
i = 0
for imgs, annotations in data_loader:
i += 1
imgs = list(img.to(device) for img in imgs)
annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations]
loss_dict = model(imgs, annotations)
losses = sum(loss for loss in loss_dict.values())
losses.backward()
optimizer.step()
print(f'Epoch: {ep} Iteration: {i}/{len_dataloader}, Loss: {losses}')
torch.save(model, output_file)
| 5,909 |
Python
| 33.360465 | 84 | 0.616856 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/nut_bolt_controller.py
|
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import typing
import numpy as np
from omni.isaac.core.controllers.base_controller import BaseController
from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController
from omni.isaac.franka.franka import Franka
from omni.isaac.manipulators.controllers.pick_place_controller import PickPlaceController
from .nut_vibra_table_controller import VibraFSM
from .screw_controller import ScrewController
class NutBoltController(BaseController):
"""
A state machine to tie nuts onto bolts with a vibrating table feeding the nuts
- State 0: Pick and Place from pickup location on vibration table to different bolts
- State 1: Screw nut onto bolt
Args:
name (str): Name id of the controller
franka (Franka): Franka Robot
"""
def __init__(self, name: str, franka: Franka) -> None:
BaseController.__init__(self, name=name)
self._event = 0
self._franka = franka
self._gripper = self._franka.gripper
self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units())
self._pause = False
self._cspace_controller = RMPFlowController(name="pickplace_cspace_controller", robot_articulation=self._franka)
pick_place_events_dt = [0.008, 0.005, 1, 0.1, 0.05, 0.01, 0.0025]
self._pick_place_controller = PickPlaceController(
name="pickplace_controller",
cspace_controller=self._cspace_controller,
gripper=self._gripper,
end_effector_initial_height=self._end_effector_initial_height,
events_dt=pick_place_events_dt,
)
self._screw_controller = ScrewController(
name=f"screw_controller", cspace_controller=self._cspace_controller, gripper=self._gripper
)
self._vibraSM = VibraFSM()
self._i = self._vibraSM._i
self._vibraSM.stop_feed_after_delay(delay_sec=5.0)
return
def is_paused(self) -> bool:
"""
Returns:
bool: True if the state machine is paused. Otherwise False.
"""
return self._pause
def get_current_event(self) -> int:
"""
Returns:
int: Current event/ phase of the state machine
"""
return self._event
def forward(
self,
initial_picking_position: np.ndarray,
bolt_top: np.ndarray,
gripper_to_nut_offset: np.ndarray,
x_offset: np.ndarray,
) -> np.ndarray:
"""Runs the controller one step.
Args:
initial_picking_position (np.ndarray): initial nut position at table feeder
bolt_top (np.ndarray): bolt target position
#"""
_vibra_table_transforms = np.array([0.0, 0.0, 0.0])
if self.is_paused():
return _vibra_table_transforms
offsetPos = self._vibraSM.update()
_vibra_table_transforms = np.array(offsetPos, dtype=float)
if self._vibraSM._state == "stop" and self._event == 0:
initial_effector_orientation = quat_to_euler_angles(self._gripper.get_world_pose()[1])
initial_effector_orientation[2] = np.pi / 2
initial_end_effector_orientation = euler_angles_to_quat(initial_effector_orientation)
actions = self._pick_place_controller.forward(
picking_position=initial_picking_position + gripper_to_nut_offset,
placing_position=bolt_top + np.array([x_offset, 0.0, 0.0]),
current_joint_positions=self._franka.get_joint_positions(),
end_effector_orientation=initial_end_effector_orientation,
)
self._franka.apply_action(actions)
if self._pick_place_controller.is_done():
self._vibraSM._set_delayed_state_change(delay_sec=1.0, nextState="backward")
self._event = 1
if self._event == 1:
actions2 = self._screw_controller.forward(
franka_art_controller=self._franka.get_articulation_controller(),
bolt_position=bolt_top,
current_joint_positions=self._franka.get_joint_positions(),
current_joint_velocities=self._franka.get_joint_velocities(),
)
self._franka.apply_action(actions2)
if self._screw_controller.is_paused():
self.pause()
self._i += 1
return _vibra_table_transforms
def reset(self, franka: Franka) -> None:
"""Resets the state machine to start from the first phase/ event
Args:
franka (Franka): Franka Robot
"""
BaseController.reset(self)
self._event = 0
self._pause = False
self._franka = franka
self._gripper = self._franka.gripper
self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units())
self._pick_place_controller.reset(end_effector_initial_height=self._end_effector_initial_height)
self._screw_controller.reset()
return
def pause(self) -> None:
"""Pauses the state machine's time and phase."""
self._pause = True
return
def resume(self) -> None:
"""Resumes the state machine's time and phase."""
self._pause = False
return
| 5,896 |
Python
| 38.313333 | 120 | 0.633311 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/screw_controller.py
|
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import typing
import numpy as np
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.controllers.articulation_controller import ArticulationController
from omni.isaac.core.controllers.base_controller import BaseController
from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.manipulators.grippers.gripper import Gripper
class ScrewController(BaseController):
"""
A state machine for screwing nuts on bolts
Each phase runs for 1 second, which is the internal time of the state machine
Dt of each phase/ event step is defined
- State 0: Lower end_effector down to encircle the nut
- State 1: Close grip
- State 2: Re-Center end-effector grip with that of the nut and bolt
- State 3: Screw Clockwise
- State 4: Open grip (initiates at this state and cycles until limit)
- State 5: Screw counter-clockwise
Args:
name (str): Name id of the controller
cspace_controller (BaseController): a cartesian space controller that returns an ArticulationAction type
gripper (Gripper): a gripper controller for open/ close actions.
events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. 10 phases dt has to be defined. Defaults to None.
Raises:
Exception: events dt need to be list or numpy array
Exception: events dt need have length of 5 or less
"""
def __init__(
self,
name: str,
cspace_controller: BaseController,
gripper: Gripper,
events_dt: typing.Optional[typing.List[float]] = None,
) -> None:
BaseController.__init__(self, name=name)
self._event = 4
self._t = 0
self._events_dt = events_dt
if self._events_dt is None:
self._events_dt = [0.01, 0.1, 0.1, 0.025, 0.1, 0.05]
else:
if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
raise Exception("events dt need to be list or numpy array")
elif isinstance(self._events_dt, np.ndarray):
self._events_dt = self._events_dt.tolist()
if len(self._events_dt) > 5:
raise Exception("events dt need have length of 5 or less")
self._cspace_controller = cspace_controller
self._gripper = gripper
self._pause = False
self._start = True
self._screw_position = np.array([0.0, 0.0, 0.0])
self._final_position = np.array([0.0, 0.0, 0.0])
self._screw_speed = 360.0 / 180.0 * np.pi
self._screw_speed_back = 720.0 / 180.0 * np.pi
return
def is_paused(self) -> bool:
"""
Returns:
bool: True if the state machine is paused. Otherwise False.
"""
return self._pause
def get_current_event(self) -> int:
"""
Returns:
int: Current event/ phase of the state machine
"""
return self._event
def forward(
self,
franka_art_controller: ArticulationController,
bolt_position: np.ndarray,
current_joint_positions: np.ndarray,
current_joint_velocities: np.ndarray,
) -> ArticulationAction:
"""Runs the controller one step.
Args:
franka_art_controller (ArticulationController): Robot's Articulation Controller.
bolt_position (np.ndarray): bolt position to reference for screwing position.
current_joint_positions (np.ndarray): Current joint positions of the robot.
current_joint_velocities (np.ndarray): Current joint velocities of the robot.
Returns:
ArticulationAction: action to be executed by the ArticulationController
"""
if self._pause or self._event >= len(self._events_dt):
target_joints = [None] * current_joint_positions.shape[0]
return ArticulationAction(joint_positions=target_joints)
if self._event == 0 and self._start:
self._screw_position = np.copy(bolt_position)
self._final_position = np.copy(bolt_position)
self._start = False
self._target_end_effector_orientation = self._gripper.get_world_pose()[1]
if self._event == 0:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
orientation_quat = self._gripper.get_world_pose()[1]
self.orientation_euler = quat_to_euler_angles(orientation_quat)
target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2])
target_orientation_quat = euler_angles_to_quat(target_orientation_euler)
target_joints = self._cspace_controller.forward(
target_end_effector_position=self._screw_position,
target_end_effector_orientation=target_orientation_quat,
)
if self._event == 1:
self._lower = False
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
target_joints = self._gripper.forward(action="close")
if self._event == 2:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
orientation_quat = self._gripper.get_world_pose()[1]
self.orientation_euler = quat_to_euler_angles(orientation_quat)
target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2])
target_orientation_quat = euler_angles_to_quat(target_orientation_euler)
finger_pos = current_joint_positions[-2:]
positive_x_offset = finger_pos[1] - finger_pos[0]
target_joints = self._cspace_controller.forward(
target_end_effector_position=self._screw_position + np.array([positive_x_offset, 0.0, -0.001]),
target_end_effector_orientation=target_orientation_quat,
)
if self._event == 3:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity")
target_joint_velocities = [None] * current_joint_velocities.shape[0]
target_joint_velocities[6] = self._screw_speed
if current_joint_positions[6] > 2.7:
target_joint_velocities[6] = 0.0
target_joints = ArticulationAction(joint_velocities=target_joint_velocities)
if self._event == 4:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
target_joints = self._gripper.forward(action="open")
if self._event == 5:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity")
target_joint_velocities = [None] * current_joint_velocities.shape[0]
target_joint_velocities[6] = -self._screw_speed_back
if current_joint_positions[6] < -0.4:
target_joint_velocities[6] = 0.0
target_joints = ArticulationAction(joint_velocities=target_joint_velocities)
self._t += self._events_dt[self._event]
if self._t >= 1.0:
self._event = (self._event + 1) % 6
self._t = 0
if self._event == 5:
if not self._start and (bolt_position[2] - self._final_position[2] > 0.0198):
self.pause()
return ArticulationAction(joint_positions=[None] * current_joint_positions.shape[0])
if self._start:
self._screw_position[2] -= 0.001
self._final_position[2] -= 0.001
if bolt_position[2] - self._screw_position[2] < 0.013:
self._screw_position[2] -= 0.0018
self._final_position[2] -= 0.0018
return target_joints
def reset(self, events_dt: typing.Optional[typing.List[float]] = None) -> None:
"""Resets the state machine to start from the first phase/ event
Args:
events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. Defaults to None.
Raises:
Exception: events dt need to be list or numpy array
Exception: events dt need have length of 5 or less
"""
BaseController.reset(self)
self._cspace_controller.reset()
self._event = 4
self._t = 0
self._pause = False
self._start = True
self._screw_position = np.array([0.0, 0.0, 0.0])
self._final_position = np.array([0.0, 0.0, 0.0])
self._screw_speed = 360.0 / 180.0 * np.pi
self._screw_speed_back = 720.0 / 180.0 * np.pi
# self._gripper = gripper
if events_dt is not None:
self._events_dt = events_dt
if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
raise Exception("events dt need to be list or numpy array")
elif isinstance(self._events_dt, np.ndarray):
self._events_dt = self._events_dt.tolist()
if len(self._events_dt) > 5:
raise Exception("events dt need have length of 5 or less")
return
def is_done(self) -> bool:
"""
Returns:
bool: True if the state machine reached the last phase. Otherwise False.
"""
if self._event >= len(self._events_dt):
return True
else:
return False
def pause(self) -> None:
"""Pauses the state machine's time and phase."""
self._pause = True
return
def resume(self) -> None:
"""Resumes the state machine's time and phase."""
self._pause = False
return
| 10,293 |
Python
| 42.434599 | 146 | 0.61605 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .franka_nut_and_bolt import FrankaNutAndBolt
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ETRIDemo",
name="FrankaNutsTable",
title="FrankaNutsTable",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FrankaNutAndBolt(),
)
return
| 2,070 |
Python
| 42.145832 | 135 | 0.742029 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/franka_nut_and_bolt.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
from omni.isaac.core.materials.physics_material import PhysicsMaterial
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from omni.isaac.core.prims.xform_prim import XFormPrim
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core import SimulationContext
from omni.isaac.franka.franka import Franka
from omni.isaac.sensor import Camera
import omni.isaac.core.utils.numpy.rotations as rot_utils
import omni.usd
import h5py
from pxr import Gf, PhysxSchema, Usd, UsdPhysics, UsdShade, UsdGeom, Sdf, Tf, UsdLux
from .nut_bolt_controller import NutBoltController
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
class FrankaNutAndBolt(BaseSample):
def __init__(self) -> None:
super().__init__()
# SCENE GEOMETRY
# env (group) spacing:
self._env_spacing = 2.0
# franka
self._stool_height = 0.15
self._franka_position = np.array([0.269, 0.1778, 0.0]) # Gf.Vec3f(0.269, 0.1778, 0.0)
# table and vibra table:
self._table_position = np.array([0.5, 0.0, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0)
self._table_scale = 0.01
self._tooling_plate_offset = np.array([0.0, 0.0, 0.0])
self._vibra_table_position_offset = np.array([0.157, -0.1524, 0.0])
self._vibra_top_offset = np.array([0.0, 0.0, 0.15])
self._vibra_table_top_to_collider_offset = np.array([0.05, 2.5, -0.59]) * 0.01
# xyz relative to the vibra table where the nut should be picked up
self._vibra_table_nut_pickup_pos_offset = np.array([0.124, 0.24, 0.158])
# nut
self._nut_height = 0.016
self._nut_spiral_center_vibra_offset = np.array([-0.04, -0.17, 0.01])
# randomize initial nut and bolt positions
self._nut_radius = 0.055
self._nut_height_delta = 0.03
self._nut_dist_delta = 0.03
self._mass_nut = 0.065
# pipe and bolt parameters
self._bolt_length = 0.1
self._bolt_radius = 0.11
self._pipe_pos_on_table = np.array([0.2032, 0.381, 0.0])
self._bolt_z_offset_to_pipe = 0.08
self._gripper_to_nut_offset = np.array([0.0, 0.0, 0.003])
self._top_of_bolt = (
np.array([0.0, 0.0, self._bolt_length + (self._nut_height / 2)]) + self._gripper_to_nut_offset
)
# randomization
self._randomize_nut_positions = True
self._nut_position_noise_minmax = 0.005
self._rng_seed = 8
# states
self._reset_hydra_instancing_on_shutdown = False
self._time = 0.0
self._fsm_time = 0.0
# some global sim options:
self._time_steps_per_second = 240 # 4.167ms aprx
self._fsm_update_rate = 60
self._solverPositionIterations = 4
self._solverVelocityIterations = 1
self._solver_type = "TGS"
self._ik_damping = 0.1
self._num_bolts = 6
self._num_nuts = 12
self._sim_dt = 1.0 / self._time_steps_per_second
self._fsm_update_dt = 1.0 / self._fsm_update_rate
self._sim_time_list = []
self._joint_positions = []
self._joint_velocities = []
self._camera1_img = []
self._camera2_img = []
self._camera3_img = []
return
def setup_scene(self):
# setup asset paths:
self.nucleus_server = get_assets_root_path()
self.asset_folder = self.nucleus_server + "/Isaac/Samples/Examples/FrankaNutBolt/"
self.asset_paths = {
"shop_table": self.asset_folder + "SubUSDs/Shop_Table/Shop_Table.usd",
"tooling_plate": self.asset_folder + "SubUSDs/Tooling_Plate/Tooling_Plate.usd",
"nut": self.asset_folder + "SubUSDs/Nut/M20_Nut_Tight_R256_Franka_SI.usd",
"bolt": self.asset_folder + "SubUSDs/Bolt/M20_Bolt_Tight_R512_Franka_SI.usd",
"vibra_table_top": self.asset_folder + "SubUSDs/VibrationTable_Top/VibrationTable_Top.usd",
"vibra_table_bot": self.asset_folder + "SubUSDs/VibrationTable_Base/VibrationTable_Base.usd",
"vibra_table_collision": self.asset_folder + "SubUSDs/VibrationTable_Top_collision.usd",
"vibra_table_clamps": self.asset_folder + "SubUSDs/Clamps/Clamps.usd",
"pipe": self.asset_folder + "SubUSDs/Pipe/Pipe.usd",
}
world = self.get_world()
world.scene.add_default_ground_plane()
stage = omni.usd.get_context().get_stage()
self.simulation_context = SimulationContext()
# Change Default SphereLight Intensity
sphereLight = stage.GetPrimAtPath("/World/defaultGroundPlane/SphereLight")
sphereLightIntensity = sphereLight.GetAttribute("intensity")
sphereLightIntensity.Set(10000)
# Add Distance Light
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/World/distantLight"))
distantLight.CreateIntensityAttr(300)
# Add New Sphere Light
new_sphereLight = UsdLux.SphereLight.Define(stage, Sdf.Path("/World/sphereLight"))
new_sphereLight.CreateIntensityAttr(20000)
new_sphereLight.AddTranslateOp().Set(Gf.Vec3f(3.0, 0.0, 2.5))
world.scene.add(XFormPrim(prim_path="/World/collisionGroups", name="collision_groups_xform"))
self._setup_simulation()
# add_table_assets
add_reference_to_stage(usd_path=self.asset_paths["shop_table"], prim_path="/World/env/table")
world.scene.add(GeometryPrim(prim_path="/World/env/table", name=f"table_ref_geom", collision=True))
add_reference_to_stage(usd_path=self.asset_paths["tooling_plate"], prim_path="/World/env/tooling_plate")
world.scene.add(GeometryPrim(prim_path="/World/env/tooling_plate", name=f"tooling_plate_geom", collision=True))
add_reference_to_stage(usd_path=self.asset_paths["pipe"], prim_path="/World/env/pipe")
world.scene.add(GeometryPrim(prim_path="/World/env/pipe", name=f"pipe_geom", collision=True))
# add_vibra_table_assets
add_reference_to_stage(usd_path=self.asset_paths["vibra_table_bot"], prim_path="/World/env/vibra_table_bottom")
world.scene.add(GeometryPrim(prim_path="/World/env/vibra_table_bottom", name=f"vibra_table_bottom_geom"))
add_reference_to_stage(
usd_path=self.asset_paths["vibra_table_clamps"], prim_path="/World/env/vibra_table_clamps"
)
world.scene.add(
GeometryPrim(prim_path="/World/env/vibra_table_clamps", name=f"vibra_table_clamps_geom", collision=True)
)
world.scene.add(XFormPrim(prim_path="/World/env/vibra_table", name=f"vibra_table_xform"))
add_reference_to_stage(usd_path=self.asset_paths["vibra_table_top"], prim_path="/World/env/vibra_table/visual")
add_reference_to_stage(
usd_path=self.asset_paths["vibra_table_collision"], prim_path="/World/env/vibra_table/collision"
)
world.scene.add(XFormPrim(prim_path="/World/env/vibra_table/visual", name=f"vibra_table_visual_xform"))
world.scene.add(
GeometryPrim(
prim_path="/World/env/vibra_table/collision", name=f"vibra_table_collision_ref_geom", collision=True
)
)
# add_nuts_bolts_assets
for bolt in range(self._num_bolts):
add_reference_to_stage(usd_path=self.asset_paths["bolt"], prim_path=f"/World/env/bolt{bolt}")
world.scene.add(GeometryPrim(prim_path=f"/World/env/bolt{bolt}", name=f"bolt{bolt}_geom"))
for nut in range(self._num_nuts):
add_reference_to_stage(usd_path=self.asset_paths["nut"], prim_path=f"/World/env/nut{nut}")
world.scene.add(GeometryPrim(prim_path=f"/World/env/nut{nut}", name=f"nut{nut}_geom"))
# add_franka_assets
self._franka = world.scene.add(Franka(prim_path="/World/env/franka", name=f"franka"))
self._camera1 = Camera(
prim_path="/World/env/franka/panda_hand/hand_camera",
# position=np.array([0.088, 0.0, 0.926]),
translation=np.array([0.1, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
180, -90 - 25, 0
]), degrees=True),
)
self._camera1.set_clipping_range(0.1, 1000000.0)
self._camera1.initialize()
self._camera1.add_motion_vectors_to_frame()
self._camera1.set_visibility(False)
self._camera2 = Camera(
prim_path="/World/top_camera",
position=np.array([0.5, 0.0, 5.0]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0, 90, 0
]), degrees=True),
)
self._camera2.initialize()
self._camera2.set_visibility(True)
# HDF Data Collection Setup
self._save_count = 0
self._f = h5py.File('franka_bolts_nuts_table.hdf5','w')
self._group_f = self._f.create_group("isaac_dataset")
self._img_f = self._group_f.create_group("camera_images")
return
async def setup_post_load(self):
self._world = self.get_world()
self._rng = np.random.default_rng(self._rng_seed)
self._world.scene.enable_bounding_boxes_computations()
await self._setup_materials()
# next four functions are for setting up the right positions and orientations for all assets
await self._add_table()
await self._add_vibra_table()
await self._add_nuts_and_bolt(add_debug_nut=self._num_nuts == 2)
await self._add_franka()
self._controller = NutBoltController(name="nut_bolt_controller", franka=self._franka)
self._franka.gripper.open()
self._rbApi2 = UsdPhysics.RigidBodyAPI.Apply(self._vibra_table_xform.prim.GetPrim())
self._world.add_physics_callback(f"sim_step", callback_fn=self.physics_step)
self._camera3 = Camera(
prim_path="/World/front_camera",
position=self._franka_position + np.array([1.0, 0.0, 0.3 + self._table_height]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0, 0, 180
]), degrees=True),
)
self._camera3.set_clipping_range(0.1, 1000000.0)
self._camera3.set_focal_length(1.0)
self._camera3.initialize()
self._camera3.set_visibility(False)
await self._world.play_async()
return
def physics_step(self, step_size):
self._camera1.get_current_frame()
self._camera2.get_current_frame()
self._camera3.get_current_frame()
current_time = self.simulation_context.current_time
current_joint_pos = self._franka.get_joint_positions()
current_joint_vel = self._franka.get_joint_velocities()
if self._save_count % 100 == 0:
self._sim_time_list.append(current_time)
self._joint_positions.append(current_joint_pos)
self._joint_velocities.append(current_joint_vel)
self._camera1_img.append(self._camera1.get_rgba()[:, :, :3])
self._camera2_img.append(self._camera2.get_rgba()[:, :, :3])
self._camera3_img.append(self._camera3.get_rgba()[:, :, :3])
print("Collecting data...")
elif self._save_count > 2000:
self.world_cleanup()
self._save_count += 1
if self._controller.is_paused():
if self._controller._i >= min(self._num_nuts, self._num_bolts):
self._rbApi2.CreateVelocityAttr().Set(Gf.Vec3f(0.0, 0.0, 0.0))
return
self._controller.reset(self._franka)
if self._controller._i < min(self._num_nuts, self._num_bolts):
initial_position = self._vibra_table_nut_pickup_pos_offset + self._vibra_table_position
self._bolt_geom = self._world.scene.get_object(f"bolt{self._controller._i}_geom")
finger_pos = self._franka.get_joint_positions()[-2:]
positive_x_offset = finger_pos[1] - finger_pos[0]
bolt_position, _ = self._bolt_geom.get_world_pose()
placing_position = bolt_position + self._top_of_bolt
_vibra_table_transforms = self._controller.forward(
initial_picking_position=initial_position,
bolt_top=placing_position,
gripper_to_nut_offset=self._gripper_to_nut_offset,
x_offset=positive_x_offset,
)
self._rbApi2.CreateVelocityAttr().Set(
Gf.Vec3f(_vibra_table_transforms[0], _vibra_table_transforms[1], _vibra_table_transforms[2])
)
return
async def _setup_materials(self):
self._bolt_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/BoltMaterial",
name="bolt_material_physics",
static_friction=0.2,
dynamic_friction=0.2,
)
self._nut_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/NutMaterial",
name="nut_material_physics",
static_friction=0.2,
dynamic_friction=0.2,
)
self._vibra_table_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/VibraTableMaterial",
name="vibra_table_material_physics",
static_friction=0.2,
dynamic_friction=0.2,
)
self._franka_finger_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/FrankaFingerMaterial",
name="franka_finger_material_physics",
static_friction=0.7,
dynamic_friction=0.7,
)
await self._world.reset_async()
async def _add_table(self):
##shop_table
self._table_ref_geom = self._world.scene.get_object(f"table_ref_geom")
self._table_ref_geom.set_local_scale(np.array([self._table_scale]))
self._table_ref_geom.set_world_pose(position=self._table_position)
self._table_ref_geom.set_default_state(position=self._table_position)
lb = self._world.scene.compute_object_AABB(name=f"table_ref_geom")
zmin = lb[0][2]
zmax = lb[1][2]
self._table_position[2] = -zmin
self._table_height = zmax
self._table_ref_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._table_ref_geom.prim_path)
##tooling_plate
self._tooling_plate_geom = self._world.scene.get_object(f"tooling_plate_geom")
self._tooling_plate_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"tooling_plate_geom")
zmin = lb[0][2]
zmax = lb[1][2]
tooling_transform = self._tooling_plate_offset
tooling_tranfsorm[2] = -zmin + self._table_height
tooling_transform = tooling_transform + self._table_position
self._tooling_plate_geom.set_world_pose(position=tooling_transform)
self._tooling_plate_geom.set_default_state(position=tooling_transform)
self._tooling_plate_geom.set_collision_approximation("boundingCube")
self._table_height += zmax - zmin
self._convexIncludeRel.AddTarget(self._tooling_plate_geom.prim_path)
##pipe
self._pipe_geom = self._world.scene.get_object(f"pipe_geom")
self._pipe_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"pipe_geom")
zmin = lb[0][2]
zmax = lb[1][2]
self._pipe_height = zmax - zmin
pipe_transform = self._pipe_pos_on_table
pipe_transform[2] = -zmin + self._table_height
pipe_transform = pipe_transform + self._table_position
self._pipe_geom.set_world_pose(position=pipe_transform, orientation=np.array([0, 0, 0, 1]))
self._pipe_geom.set_default_state(position=pipe_transform, orientation=np.array([0, 0, 0, 1]))
self._pipe_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._pipe_geom.prim_path)
await self._world.reset_async()
async def _add_vibra_table(self):
self._vibra_table_bottom_geom = self._world.scene.get_object(f"vibra_table_bottom_geom")
self._vibra_table_bottom_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"vibra_table_bottom_geom")
zmin = lb[0][2]
bot_part_pos = self._vibra_table_position_offset
bot_part_pos[2] = -zmin + self._table_height
bot_part_pos = bot_part_pos + self._table_position
self._vibra_table_bottom_geom.set_world_pose(position=bot_part_pos)
self._vibra_table_bottom_geom.set_default_state(position=bot_part_pos)
self._vibra_table_bottom_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._vibra_table_bottom_geom.prim_path)
# clamps
self._vibra_table_clamps_geom = self._world.scene.get_object(f"vibra_table_clamps_geom")
self._vibra_table_clamps_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._vibra_table_clamps_geom.prim_path)
# vibra_table
self._vibra_table_xform = self._world.scene.get_object(f"vibra_table_xform")
self._vibra_table_position = bot_part_pos
vibra_kinematic_prim = self._vibra_table_xform.prim
rbApi = UsdPhysics.RigidBodyAPI.Apply(vibra_kinematic_prim.GetPrim())
rbApi.CreateRigidBodyEnabledAttr(True)
rbApi.CreateKinematicEnabledAttr(True)
# visual
self._vibra_table_visual_xform = self._world.scene.get_object(f"vibra_table_visual_xform")
self._vibra_table_visual_xform.set_world_pose(position=self._vibra_top_offset)
self._vibra_table_visual_xform.set_default_state(position=self._vibra_top_offset)
self._vibra_table_visual_xform.set_local_scale(np.array([self._table_scale]))
# not clear why this makes a difference for the position (new bug although no change to code)
self._vibra_table_visual_xform.prim.SetInstanceable(True)
# collision
self._vibra_table_collision_ref_geom = self._world.scene.get_object(f"vibra_table_collision_ref_geom")
offset = self._vibra_top_offset + self._vibra_table_top_to_collider_offset
self._vibra_table_collision_ref_geom.set_local_scale(np.array([1.0]))
self._vibra_table_collision_ref_geom.set_world_pose(position=offset)
self._vibra_table_collision_ref_geom.set_default_state(position=offset)
self._vibra_table_collision_ref_geom.apply_physics_material(self._vibra_table_physics_material)
self._convexIncludeRel.AddTarget(self._vibra_table_collision_ref_geom.prim_path)
self._vibra_table_collision_ref_geom.set_collision_approximation("convexHull")
vibra_kinematic_prim.SetInstanceable(True)
self._vibra_table_xform.set_world_pose(position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1]))
self._vibra_table_xform.set_default_state(
position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1])
)
self._vibra_table_visual_xform.set_default_state(
position=self._vibra_table_visual_xform.get_world_pose()[0],
orientation=self._vibra_table_visual_xform.get_world_pose()[1],
)
self._vibra_table_collision_ref_geom.set_default_state(
position=self._vibra_table_collision_ref_geom.get_world_pose()[0],
orientation=self._vibra_table_collision_ref_geom.get_world_pose()[1],
)
await self._world.reset_async()
async def _add_nuts_and_bolt(self, add_debug_nut=False):
angle_delta = np.pi * 2.0 / self._num_bolts
for j in range(self._num_bolts):
self._bolt_geom = self._world.scene.get_object(f"bolt{j}_geom")
self._bolt_geom.prim.SetInstanceable(True)
bolt_pos = np.array(self._pipe_pos_on_table) + self._table_position
bolt_pos[0] += np.cos(j * angle_delta) * self._bolt_radius
bolt_pos[1] += np.sin(j * angle_delta) * self._bolt_radius
bolt_pos[2] = self._bolt_z_offset_to_pipe + self._table_height
self._bolt_geom.set_world_pose(position=bolt_pos)
self._bolt_geom.set_default_state(position=bolt_pos)
self._boltMeshIncludeRel.AddTarget(self._bolt_geom.prim_path)
self._bolt_geom.apply_physics_material(self._bolt_physics_material)
await self._generate_nut_initial_poses()
for nut_idx in range(self._num_nuts):
nut_pos = self._nut_init_poses[nut_idx, :3].copy()
if add_debug_nut and nut_idx == 0:
nut_pos[0] = 0.78
nut_pos[1] = self._vibra_table_nut_pickup_pos_offset[1] + self._vibra_table_position[1] # 0.0264
if add_debug_nut and nut_idx == 1:
nut_pos[0] = 0.78
nut_pos[1] = 0.0264 - 0.04
self._nut_geom = self._world.scene.get_object(f"nut{nut_idx}_geom")
self._nut_geom.prim.SetInstanceable(True)
self._nut_geom.set_world_pose(position=np.array(nut_pos.tolist()))
self._nut_geom.set_default_state(position=np.array(nut_pos.tolist()))
physxRBAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim)
physxRBAPI.CreateSolverPositionIterationCountAttr().Set(self._solverPositionIterations)
physxRBAPI.CreateSolverVelocityIterationCountAttr().Set(self._solverVelocityIterations)
self._nut_geom.apply_physics_material(self._nut_physics_material)
self._convexIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_Convex")
self._nutMeshIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_SDF")
rbApi3 = UsdPhysics.RigidBodyAPI.Apply(self._nut_geom.prim.GetPrim())
rbApi3.CreateRigidBodyEnabledAttr(True)
physxAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim.GetPrim())
physxAPI.CreateSleepThresholdAttr().Set(0.0)
massAPI = UsdPhysics.MassAPI.Apply(self._nut_geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(self._mass_nut)
await self._world.reset_async()
async def _generate_nut_initial_poses(self):
self._nut_init_poses = np.zeros((self._num_nuts, 7), dtype=np.float32)
self._nut_init_poses[:, -1] = 1 # quat to identity
nut_spiral_center = self._vibra_table_position + self._nut_spiral_center_vibra_offset
nut_spiral_center += self._vibra_top_offset
for nut_idx in range(self._num_nuts):
self._nut_init_poses[nut_idx, :3] = np.array(nut_spiral_center)
self._nut_init_poses[nut_idx, 0] += self._nut_radius * np.sin(
np.pi / 3.0 * nut_idx
) + self._nut_dist_delta * (nut_idx // 6)
self._nut_init_poses[nut_idx, 1] += self._nut_radius * np.cos(
np.pi / 3.0 * nut_idx
) + self._nut_dist_delta * (nut_idx // 6)
self._nut_init_poses[nut_idx, 2] += self._nut_height_delta * (nut_idx // 6)
if self._randomize_nut_positions:
self._nut_init_poses[nut_idx, 0] += self._rng.uniform(
-self._nut_position_noise_minmax, self._nut_position_noise_minmax
)
self._nut_init_poses[nut_idx, 1] += self._rng.uniform(
-self._nut_position_noise_minmax, self._nut_position_noise_minmax
)
await self._world.reset_async()
async def _add_franka(self):
self._franka = self._world.scene.get_object(f"franka")
franka_pos = np.array(self._franka_position)
franka_pos[2] = franka_pos[2] + self._table_height
self._franka.set_world_pose(position=franka_pos)
self._franka.set_default_state(position=franka_pos)
self._franka.gripper.open()
kps = np.array([6000000.0, 600000.0, 6000000.0, 600000.0, 25000.0, 15000.0, 25000.0, 15000.0, 15000.0])
kds = np.array([600000.0, 60000.0, 300000.0, 30000.0, 3000.0, 3000.0, 3000.0, 6000.0, 6000.0])
self._franka.get_articulation_controller().set_gains(kps=kps, kds=kds, save_to_usd=True)
self._frankaHandIncludeRel.AddTarget(self._franka.prim_path + "/panda_leftfinger")
self._frankaHandIncludeRel.AddTarget(self._franka.prim_path + "/panda_rightfinger")
franka_left_finger = self._world.stage.GetPrimAtPath(
"/World/env/franka/panda_leftfinger/geometry/panda_leftfinger"
)
x = UsdShade.MaterialBindingAPI.Apply(franka_left_finger)
x.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
franka_right_finger = self._world.stage.GetPrimAtPath(
"/World/env/franka/panda_rightfinger/geometry/panda_rightfinger"
)
x2 = UsdShade.MaterialBindingAPI.Apply(franka_right_finger)
x2.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
await self._world.reset_async()
def _setup_simulation(self):
self._scene = PhysicsContext()
self._scene.set_solver_type(self._solver_type)
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
self._scene.set_friction_offset_threshold(0.01)
self._scene.set_friction_correlation_distance(0.0005)
self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024)
self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024)
self._scene.set_gpu_heap_capacity(64 * 1024 * 1024)
self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024)
# added because of new errors regarding collisionstacksize
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(get_prim_at_path("/physicsScene"))
physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(76000000) # or whatever min is needed
# group to include SDF mesh of nut only
self._meshCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/meshColliders"
)
collectionAPI = Usd.CollectionAPI.Apply(self._meshCollisionGroup.GetPrim(), "colliders")
self._nutMeshIncludeRel = collectionAPI.CreateIncludesRel()
# group to include all convex collision (nut convex, pipe, table, vibrating table, other small assets on the table)
self._convexCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/convexColliders"
)
collectionAPI = Usd.CollectionAPI.Apply(self._convexCollisionGroup.GetPrim(), "colliders")
self._convexIncludeRel = collectionAPI.CreateIncludesRel()
# group to include bolt prim only (only has SDF mesh)
self._boltCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/boltColliders"
)
collectionAPI = Usd.CollectionAPI.Apply(self._boltCollisionGroup.GetPrim(), "colliders")
self._boltMeshIncludeRel = collectionAPI.CreateIncludesRel()
# group to include the franka hands prims only
self._frankaHandCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/frankaHandColliders"
)
collectionAPI = Usd.CollectionAPI.Apply(self._frankaHandCollisionGroup.GetPrim(), "colliders")
self._frankaHandIncludeRel = collectionAPI.CreateIncludesRel()
# invert group logic so only groups that filter each-other will collide:
self._scene.set_invert_collision_group_filter(True)
# # the SDF mesh collider nuts should only collide with the bolts
filteredRel = self._meshCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/boltColliders")
# # the convex hull nuts should collide with other nuts, the vibra table, table, pipe and small assets on the table.
# It should also collide with the franka grippers
filteredRel = self._convexCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/convexColliders")
filteredRel.AddTarget("/World/collisionGroups/frankaHandColliders")
# # the SDF mesh bolt only collides with the SDF mesh nut colliders
# and with the franka grippers
filteredRel = self._boltCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/meshColliders")
filteredRel.AddTarget("/World/collisionGroups/frankaHandColliders")
async def setup_pre_reset(self):
return
async def setup_post_reset(self):
self._controller._vibraSM.reset()
self._controller._vibraSM._i = 2
self._controller.reset(franka=self._franka)
self._controller._i = self._controller._vibraSM._i
self._franka.gripper.open()
self._controller._vibraSM.start_feed()
await self._world.play_async()
return
def world_cleanup(self):
self._controller = None
self._group_f.create_dataset(f"sim_time", data=self._sim_time_list, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_positions", data=self._joint_positions, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_velocities", data=self._joint_velocities, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"hand_camera", data=self._camera1_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"top_camera", data=self._camera2_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"front_camera", data=self._camera3_img, compression='gzip', compression_opts=9)
self._f.close()
print("Data saved")
self._save_count = 0
self._world.pause()
return
| 31,138 |
Python
| 48.115142 | 126 | 0.638898 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/nut_vibra_table_controller.py
|
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
class VibraFSM:
_amplitudes = {
"stop": np.array((0.0, 0.0, 0.0), dtype=np.float32), # [m]
"run_feed": np.array((0.000, 0.03, 0.02), dtype=np.float32), # [m]
"backward": np.array((0.000, -0.03, 0.02), dtype=np.float32), # [m]
"realign": np.array((-0.03, 0.0, 0.02), dtype=np.float32), # [m]
}
_motion_frequency = 60.0 # [Hz]
# configure unblock-cycle:
_feed_time = 3.5
_stop_time = 5.0
_backward_time = 0.75
_realign_time = 0.75
def __init__(self, dt=None):
self.reset()
self._i = 2
if dt is not None:
self._dt = dt
def reset(self):
self._dt = 1.0 / 240.0
self._time = 0.0
self.state = "stop"
self._after_delay_state = None
def start_feed(self):
self.state = "run_feed"
# kick off unblock cycle
self._set_delayed_state_change(delay_sec=self._feed_time, nextState="backward")
def stop_feed_after_delay(self, delay_sec: float):
self.state = "run_feed"
self._set_delayed_state_change(delay_sec=delay_sec, nextState="stop")
def _set_delayed_state_change(self, delay_sec: float, nextState: str):
self._after_delay_state = nextState
self._wait_end_time = self._time + delay_sec
def update(self):
self._time += self._dt
# process wait if necessary
if self._after_delay_state is not None and self._time > self._wait_end_time:
self.state = self._after_delay_state
# auto-unblock cycle
if self._state == "run_feed":
self.stop_feed_after_delay(self._stop_time)
elif self._state == "backward":
self._set_delayed_state_change(delay_sec=self._backward_time, nextState="realign")
elif self._state == "realign":
self._set_delayed_state_change(delay_sec=self._realign_time, nextState="run_feed")
else:
self._after_delay_state = None
return self._motion_amplitude
def is_stopped(self):
return self._state == "stop"
def is_stopping(self):
return self.is_stopped() or self._after_delay_state == "stop"
@property
def state(self):
return self._state
@state.setter
def state(self, newState):
self._state = newState
if self._state in self._amplitudes:
self._motion_amplitude = self._amplitudes[self._state]
else:
self._motion_amplitude = self._amplitudes["stop"]
| 2,983 |
Python
| 34.105882 | 98 | 0.601408 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNutsTable/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .limo_ackermann import LimoAckermann
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="WegoRobotics",
name="LimoAckermannROS2",
title="LimoAckermannROS2",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=LimoAckermann(),
)
return
| 2,067 |
Python
| 42.083332 | 135 | 0.742622 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/limo_ackermann.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from pxr import UsdGeom, Gf, UsdPhysics, Sdf, Gf, Tf, UsdLux
from omni.physx.scripts import deformableUtils, physicsUtils
import omni.graph.core as og
import numpy as np
import usdrt.Sdf
import omni
import carb
class LimoAckermann(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
self.TRACK_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/LIMO_simulation_table.usd"
# self.ROBOT_PATH = self._server_root + "/Projects/RBROS2/WheeledRobot/limo_diff_thin.usd"
self.ROBOT_PATH = self._server_root + "/Projects/WegoLimo/Limo/limo_ackermann.usd"
# omniverse://localhost/Projects/WegoLimo/Limo/limo_ackermann.usd
self._domain_id = 30
self._maxWheelRotation = 1e6
self._maxWheelVelocity = 1e6
self._trackWidth = 0.13
self._turningWheelRadius = 0.045
self._wheelBase = 0.2
self._targetPrim = "/World/Limo/base_link"
self._robotPath = "/World/Limo/base_link"
self._cameraPath = "/World/Limo/depth_link/rgb_camera"
return
def og_setup(self):
try:
og.Controller.edit(
{"graph_path": "/ROS2Ackermann", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("subscribeTwist", "omni.isaac.ros2_bridge.ROS2SubscribeTwist"),
("scaleToFromStage", "omni.isaac.core_nodes.OgnIsaacScaleToFromStageUnit"),
("angVelBreak", "omni.graph.nodes.BreakVector3"),
("linVelBreak", "omni.graph.nodes.BreakVector3"),
("wheelbase", "omni.graph.nodes.ConstantDouble"),
("multiply", "omni.graph.nodes.Multiply"),
("atan2", "omni.graph.nodes.ATan2"),
("toRad", "omni.graph.nodes.ToRad"),
("ackermannCtrl", "omni.isaac.wheeled_robots.AckermannSteering"),
("wheelJointNames", "omni.graph.nodes.ConstructArray"),
("wheelRotationVel", "omni.graph.nodes.ConstructArray"),
("hingeJointNames", "omni.graph.nodes.ConstructArray"),
("hingePosVel", "omni.graph.nodes.ConstructArray"),
("articulationRotation", "omni.isaac.core_nodes.IsaacArticulationController"),
("articulationPosition", "omni.isaac.core_nodes.IsaacArticulationController"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("subscribeTwist.inputs:topicName", "cmd_vel"),
("wheelbase.inputs:value", self._wheelBase),
("ackermannCtrl.inputs:maxWheelRotation", self._maxWheelRotation),
("ackermannCtrl.inputs:maxWheelVelocity", self._maxWheelVelocity),
("ackermannCtrl.inputs:trackWidth", self._trackWidth),
("ackermannCtrl.inputs:turningWheelRadius", self._turningWheelRadius),
("ackermannCtrl.inputs:useAcceleration", False),
("wheelJointNames.inputs:arraySize", 4),
("wheelJointNames.inputs:arrayType", "token[]"),
("wheelJointNames.inputs:input0", "rear_left_wheel"),
("wheelJointNames.inputs:input1", "rear_right_wheel"),
("wheelJointNames.inputs:input2", "front_left_wheel"),
("wheelJointNames.inputs:input3", "front_right_wheel"),
("hingeJointNames.inputs:arraySize", 2),
("hingeJointNames.inputs:arrayType", "token[]"),
("hingeJointNames.inputs:input0", "left_steering_hinge_wheel"),
("hingeJointNames.inputs:input1", "right_steering_hinge_wheel"),
("wheelRotationVel.inputs:arraySize", 4),
("wheelRotationVel.inputs:arrayType", "double[]"),
("hingePosVel.inputs:arraySize", 2),
("hingePosVel.inputs:arrayType", "double[]"),
("articulationRotation.inputs:targetPrim", [usdrt.Sdf.Path(self._targetPrim)]),
("articulationRotation.inputs:robotPath", self._targetPrim),
("articulationRotation.inputs:usePath", False),
("articulationPosition.inputs:targetPrim", [usdrt.Sdf.Path(self._targetPrim)]),
("articulationPosition.inputs:robotPath", self._targetPrim),
("articulationPosition.inputs:usePath", False),
],
og.Controller.Keys.CREATE_ATTRIBUTES: [
("wheelJointNames.inputs:input1", "token"),
("wheelJointNames.inputs:input2", "token"),
("wheelJointNames.inputs:input3", "token"),
("hingeJointNames.inputs:input1", "token"),
("wheelRotationVel.inputs:input1", "double"),
("wheelRotationVel.inputs:input2", "double"),
("wheelRotationVel.inputs:input3", "double"),
("hingePosVel.inputs:input1", "double"),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "subscribeTwist.inputs:execIn"),
("context.outputs:context", "subscribeTwist.inputs:context"),
("subscribeTwist.outputs:linearVelocity", "scaleToFromStage.inputs:value"),
("scaleToFromStage.outputs:result", "linVelBreak.inputs:tuple"),
("subscribeTwist.outputs:angularVelocity", "angVelBreak.inputs:tuple"),
("subscribeTwist.outputs:execOut", "ackermannCtrl.inputs:execIn"),
("angVelBreak.outputs:z", "multiply.inputs:a"),
("linVelBreak.outputs:x", "ackermannCtrl.inputs:speed"),
("wheelbase.inputs:value", "multiply.inputs:b"),
("wheelbase.inputs:value", "ackermannCtrl.inputs:wheelBase"),
("multiply.outputs:product", "atan2.inputs:a"),
("linVelBreak.outputs:x", "atan2.inputs:b"),
("atan2.outputs:result", "toRad.inputs:degrees"),
("toRad.outputs:radians", "ackermannCtrl.inputs:steeringAngle"),
("ackermannCtrl.outputs:leftWheelAngle", "hingePosVel.inputs:input0"),
("ackermannCtrl.outputs:rightWheelAngle", "hingePosVel.inputs:input1"),
("ackermannCtrl.outputs:wheelRotationVelocity", "wheelRotationVel.inputs:input0"),
("ackermannCtrl.outputs:wheelRotationVelocity", "wheelRotationVel.inputs:input1"),
("ackermannCtrl.outputs:wheelRotationVelocity", "wheelRotationVel.inputs:input2"),
("ackermannCtrl.outputs:wheelRotationVelocity", "wheelRotationVel.inputs:input3"),
("ackermannCtrl.outputs:execOut", "articulationRotation.inputs:execIn"),
("wheelJointNames.outputs:array", "articulationRotation.inputs:jointNames"),
("wheelRotationVel.outputs:array", "articulationRotation.inputs:velocityCommand"),
("ackermannCtrl.outputs:execOut", "articulationPosition.inputs:execIn"),
("hingeJointNames.outputs:array", "articulationPosition.inputs:jointNames"),
("hingePosVel.outputs:array", "articulationPosition.inputs:positionCommand"),
],
},
)
og.Controller.edit(
{"graph_path": "/ROS2Odom", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("computeOdom", "omni.isaac.core_nodes.IsaacComputeOdometry"),
("publishOdom", "omni.isaac.ros2_bridge.ROS2PublishOdometry"),
("publishRawTF", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("computeOdom.inputs:chassisPrim", [usdrt.Sdf.Path(self._targetPrim)]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "computeOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishRawTF.inputs:execIn"),
("readSimTime.outputs:simulationTime", "publishOdom.inputs:timeStamp"),
("readSimTime.outputs:simulationTime", "publishRawTF.inputs:timeStamp"),
("context.outputs:context", "publishOdom.inputs:context"),
("context.outputs:context", "publishRawTF.inputs:context"),
("computeOdom.outputs:angularVelocity", "publishOdom.inputs:angularVelocity"),
("computeOdom.outputs:linearVelocity", "publishOdom.inputs:linearVelocity"),
("computeOdom.outputs:orientation", "publishOdom.inputs:orientation"),
("computeOdom.outputs:position", "publishOdom.inputs:position"),
("computeOdom.outputs:orientation", "publishRawTF.inputs:rotation"),
("computeOdom.outputs:position", "publishRawTF.inputs:translation"),
],
},
)
# Camera OG
og.Controller.edit(
{"graph_path": "/ROS2Camera", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("renderer", "omni.isaac.core_nodes.IsaacCreateRenderProduct"),
("RGBPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("DepthPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("CameraInfoPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("renderer.inputs:cameraPrim", [usdrt.Sdf.Path(self._cameraPath)]),
("RGBPublish.inputs:topicName", "/limo/rgb"),
("RGBPublish.inputs:type", "rgb"),
("RGBPublish.inputs:resetSimulationTimeOnStop", True),
("RGBPublish.inputs:frameId", "limo_rgbd_frame"),
("DepthPublish.inputs:topicName", "/limo/depth"),
("DepthPublish.inputs:type", "depth"),
("DepthPublish.inputs:resetSimulationTimeOnStop", True),
("DepthPublish.inputs:frameId", "limo_rgbd_frame"),
("CameraInfoPublish.inputs:topicName", "/limo/camera_info"),
("CameraInfoPublish.inputs:type", "camera_info"),
("CameraInfoPublish.inputs:resetSimulationTimeOnStop", True),
("CameraInfoPublish.inputs:frameId", "limo_rgbd_frame"),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "renderer.inputs:execIn"),
("context.outputs:context", "RGBPublish.inputs:context"),
("context.outputs:context", "DepthPublish.inputs:context"),
("context.outputs:context", "CameraInfoPublish.inputs:context"),
("renderer.outputs:execOut", "RGBPublish.inputs:execIn"),
("renderer.outputs:execOut", "DepthPublish.inputs:execIn"),
("renderer.outputs:execOut", "CameraInfoPublish.inputs:execIn"),
("renderer.outputs:renderProductPath", "RGBPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "DepthPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "CameraInfoPublish.inputs:renderProductPath"),
],
},
)
except Exception as e:
print(e)
def add_background(self):
add_reference_to_stage(usd_path=self.TRACK_PATH, prim_path="/World/LimoTrack")
bg_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/LimoTrack")
physicsUtils.set_or_add_scale_op(bg_mesh, scale=Gf.Vec3f(0.01, 0.01, 0.01))
def add_robot(self):
add_reference_to_stage(usd_path=self.ROBOT_PATH, prim_path="/World/Limo")
limo_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/Limo")
physicsUtils.set_or_add_translate_op(limo_mesh, translate=Gf.Vec3f(0.0, -0.18, 0.0))
def add_light(self):
distantLight1 = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/distantLight1"))
distantLight1.CreateIntensityAttr(3000)
distantLight1.AddTranslateOp().Set(Gf.Vec3f(0.0, 0.0, 0.0))
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self.add_background()
self.add_light()
self.add_robot()
self.og_setup()
self._save_count = 0
return
async def setup_post_load(self):
self._world = self.get_world()
# self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
return
async def setup_pre_reset(self):
if self._world.physics_callback_exists("sim_step"):
self._world.remove_physics_callback("sim_step")
self._world.pause()
return
async def setup_post_reset(self):
await self._world.play_async()
self._world.pause()
return
def world_cleanup(self):
self._world.pause()
return
| 15,868 |
Python
| 57.992565 | 109 | 0.560814 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoAckermannROS2/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/hello_deformable.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
from omni.isaac.core.materials.deformable_material import DeformableMaterial
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.physx.scripts import deformableUtils, physicsUtils
from omni.isaac.examples.base_sample import BaseSample
from pxr import UsdGeom, Gf, UsdPhysics
import omni.physx
import omni.usd
import omni
class HelloDeformable(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def _setup_simulation(self):
self._scene = PhysicsContext()
self._scene.set_solver_type("TGS")
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
def setup_scene(self):
world = self.get_world()
self._setup_simulation()
stage = omni.usd.get_context().get_stage()
world.scene.add_default_ground_plane()
# Create cube
result, path = omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Cube")
omni.kit.commands.execute("MovePrim", path_from=path, path_to="/World/cube")
omni.usd.get_context().get_selection().set_selected_prim_paths([], False)
cube_mesh = UsdGeom.Mesh.Get(stage, "/World/cube")
physicsUtils.set_or_add_translate_op(cube_mesh, translate=Gf.Vec3f(0.0, 0.0, 0.5))
# physicsUtils.set_or_add_orient_op(cube_mesh, orient=Gf.Quatf(0.707, 0.707, 0, 0))
physicsUtils.set_or_add_scale_op(cube_mesh, scale=Gf.Vec3f(0.1, 0.1, 0.1))
cube_mesh.CreateDisplayColorAttr([(1.0, 0.0, 0.0)])
# Apply PhysxDeformableBodyAPI and PhysxCollisionAPI to skin mesh and set parameter to default values
deformableUtils.add_physx_deformable_body(
stage,
"/World/cube",
collision_simplification=True,
simulation_hexahedral_resolution=10,
self_collision=False,
)
# Create a deformable body material and set it on the deformable body
deformable_material_path = omni.usd.get_stage_next_free_path(stage, "/World/deformableBodyMaterial", True)
deformableUtils.add_deformable_body_material(
stage,
deformable_material_path,
youngs_modulus=10000.0,
poissons_ratio=0.49,
damping_scale=0.0,
dynamic_friction=0.5,
)
physicsUtils.add_physics_material_to_prim(stage, stage.GetPrimAtPath("/World/cube"), "/World/cube")
async def setup_post_load(self):
self._world = self.get_world()
return
| 3,016 |
Python
| 37.679487 | 114 | 0.671088 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .hello_deformable import HelloDeformable
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="",
name="HelloDeformable",
title="HelloDeformable",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=HelloDeformable(),
)
return
| 2,057 |
Python
| 41.874999 | 135 | 0.741371 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloDeformable/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/franka_factory.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.franka.controllers import PickPlaceController
from omni.isaac.examples.base_sample import BaseSample
import numpy as np
from omni.isaac.core.prims.geometry_prim import GeometryPrim
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
from pxr import Sdf, UsdLux, Gf
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core import SimulationContext
import carb
import omni
from .franka_playing import FrankaPlaying
class FrankaGarage(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
self._franka_position = np.array([-0.8064, 1.3602, 0.0])
# (w, x, y, z)
self._franka_rotation = np.array([0.0, 0.0, 0.0, 1.0])
self._table_scale = 0.01
self._table_height = 0.0
self._table_position = np.array([-0.7, 1.8, 0.007]) # Gf.Vec3f(0.5, 0.0, 0.0)
self._bin_scale = np.array([1.5, 1.5, 0.5])
self._bin1_position = np.array([-0.5, 2.1, 0.90797])
self._bin2_position = np.array([-0.5, 1.6, 0.90797])
return
def add_background(self):
self._world = self.get_world()
self._nucleus_server = get_assets_root_path()
bg_path = self._server_root + "/Projects/RBROS2/ConveyorGarage/Franka_Garage_Empty.usd"
add_reference_to_stage(usd_path=bg_path, prim_path=f"/World/Franka_Garage")
def add_bin(self):
bin_path = self._nucleus_server + "/Isaac/Props/KLT_Bin/small_KLT_visual.usd"
# bin 1
add_reference_to_stage(usd_path=bin_path, prim_path="/World/bin1")
self._world.scene.add(GeometryPrim(prim_path="/World/bin1", name=f"bin1_ref_geom", collision=True))
self._bin1_ref_geom = self._world.scene.get_object(f"bin1_ref_geom")
self._bin1_ref_geom.set_local_scale(np.array([self._bin_scale]))
self._bin1_ref_geom.set_world_pose(position=self._bin1_position)
self._bin1_ref_geom.set_default_state(position=self._bin1_position)
# bin 2
add_reference_to_stage(usd_path=bin_path, prim_path="/World/bin2")
self._world.scene.add(GeometryPrim(prim_path="/World/bin2", name=f"bin2_ref_geom", collision=True))
self._bin2_ref_geom = self._world.scene.get_object(f"bin2_ref_geom")
self._bin2_ref_geom.set_local_scale(np.array([self._bin_scale]))
self._bin2_ref_geom.set_world_pose(position=self._bin2_position)
self._bin2_ref_geom.set_default_state(position=self._bin2_position)
def add_light(self):
stage = omni.usd.get_context().get_stage()
distantLight = UsdLux.CylinderLight.Define(stage, Sdf.Path("/World/cylinderLight"))
distantLight.CreateIntensityAttr(60000)
distantLight.AddTranslateOp().Set(Gf.Vec3f(-1.2, 0.9, 3.0))
distantLight.AddScaleOp().Set((0.1, 4.0, 0.1))
distantLight.AddRotateXYZOp().Set((0, 0, 90))
async def add_table(self):
table_path = self._nucleus_server + "/Isaac/Samples/Examples/FrankaNutBolt/SubUSDs/Shop_Table/Shop_Table.usd"
add_reference_to_stage(usd_path=table_path, prim_path="/World/table")
self._world.scene.add(GeometryPrim(prim_path="/World/table", name=f"table_ref_geom", collision=True))
self._table_ref_geom = self._world.scene.get_object(f"table_ref_geom")
self._table_ref_geom.set_local_scale(np.array([self._table_scale]))
self._table_ref_geom.set_world_pose(position=self._table_position)
self._table_ref_geom.set_default_state(position=self._table_position)
lb = self._world.scene.compute_object_AABB(name=f"table_ref_geom")
zmin = lb[0][2]
zmax = lb[1][2]
self._table_height = zmax
async def add_controller(self):
self._franka = self._world.scene.get_object("franka")
self._controller = PickPlaceController(
name="pick_place_controller",
gripper=self._franka.gripper,
robot_articulation=self._franka,
end_effector_initial_height=1.1,
)
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self.simulation_context = SimulationContext()
self.add_background()
self.add_light()
self.add_bin()
self._world.add_task(
FrankaPlaying(
name="franka_task",
object="tuna_fish_can"
))
return
async def setup_post_load(self):
self._world = self.get_world()
self._world.scene.enable_bounding_boxes_computations()
# for compute_object_AABB from add_table,
# bounding box computations should be enabled before,
# which means we need to wait for the scene to be loaded
# That's for franka too.
await self.add_table()
await self.add_controller()
self._world.add_physics_callback("sim_step", callback_fn=self.physics_callback) #callback names have to be unique
return
def physics_callback(self, step_size):
current_observations = self._world.get_observations()
object_position = current_observations["object"]["position"]
# print(object_position)
if object_position[1] > 1.25:
print("picking and placing")
actions = self._controller.forward(
picking_position=object_position,
placing_position=current_observations["object"]["goal_position"],
current_joint_positions=current_observations["franka"]["joint_positions"],
end_effector_orientation=euler_angles_to_quat(
# np.array([0, np.pi, -np.pi/2])
np.array([0, np.pi, 0])
),
)
if self._controller.is_done():
print("done picking and placing")
self._franka.apply_action(actions)
return
# async def setup_pre_reset(self):
# return
async def setup_post_reset(self):
self._controller.reset()
await self._world.play_async()
return
def world_cleanup(self):
self._world.pause()
return
| 7,073 |
Python
| 37.032258 | 121 | 0.639333 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/franka_playing.py
|
from omni.isaac.core.tasks import BaseTask
from omni.isaac.franka.franka import Franka
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from pxr import Gf, PhysxSchema, Usd, UsdPhysics, UsdShade, UsdGeom, Sdf, Tf, UsdLux
from omni.physx.scripts import utils
import numpy as np
import omni
def createRigidBody(stage, primPath):
bodyPrim = stage.GetPrimAtPath(primPath)
# UsdPhysics.RigidBodyAPI.Apply(bodyPrim)
utils.setRigidBody(bodyPrim, "convexDecomposition", False)
def addObjectsGeom(scene, name, scale, ini_pos, mass, orientation=None):
scene.add(GeometryPrim(prim_path=f"/World/{name}", name=f"{name}_ref_geom", collision=True))
geom = scene.get_object(f"{name}_ref_geom")
if orientation is None:
# Usually - (x, y, z, w)
# But in Isaac Sim - (w, x, y, z)
orientation = np.array([1.0, 0.0, 0.0, 0.0])
object_scale = np.array([1.0, 1.0, 1.0])
if isinstance(scale, float):
object_scale = np.array([scale, scale, scale])
elif isinstance(scale, list):
object_scale = np.array(scale)
geom.set_local_scale(object_scale)
geom.set_world_pose(position=ini_pos)
geom.set_default_state(position=ini_pos, orientation=orientation)
massAPI = UsdPhysics.MassAPI.Apply(geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(mass)
return geom
class FrankaPlaying(BaseTask):
def __init__(self, name, object="sugar_box"):
super().__init__(name=name, offset=None)
self._object = object
self._franka_position = np.array([-1.0, 1.8602, 0.8976])
self._franka_rotation = np.array([0.0, 0.0, 0.0, 1.0]) # (w, x, y, z)
self._sugar_box_scale = 0.7
self._tomato_soup_scale = 1.0
self._tuna_fish_can_scale = 0.9
# self._obj_ini_pos = np.array([-1.0, 1.4, 1.0])
# self._obj_ini_pos = np.array([-1.5, 1.29418, 0.79])
self._obj_ini_pos = np.array([8.0, -0.05, 0.8])
self._obj_target = np.array([-0.5, 2.17, 1.1])
return
def add_franka(self, scene):
self._franka = scene.add(
Franka(
prim_path="/World/franka",
name="franka",
gripper_open_position=np.array([0.2, 0.2]) / get_stage_units()
)
)
# adjust franka position
self._franka = scene.get_object(f"franka")
franka_pos = np.array(self._franka_position)
self._franka.set_world_pose(
position=franka_pos,
orientation=self._franka_rotation
)
def add_sugar_box(self, scene):
sugar_box_path = get_assets_root_path() + "/Isaac/Props/YCB/Axis_Aligned_Physics/004_sugar_box.usd"
add_reference_to_stage(usd_path=sugar_box_path, prim_path="/World/sugar_box")
self._sugar_box_ref_geom = addObjectsGeom(scene, "sugar_box", self._sugar_box_scale, self._obj_ini_pos, 0.02)
def add_tomato_soup_can(self, scene):
tomato_soup_can_path = get_assets_root_path() + "/Isaac/Props/YCB/Axis_Aligned_Physics/005_tomato_soup_can.usd"
add_reference_to_stage(usd_path=tomato_soup_can_path, prim_path="/World/tomato_soup_can")
self._tomato_soup_can_ref_geom = addObjectsGeom(scene, "tomato_soup_can", self._tomato_soup_scale, self._obj_ini_pos, 0.02)
def add_tuna_fish_can(self, scene):
tuna_fish_can_path = get_assets_root_path() + "/Isaac/Props/YCB/Axis_Aligned/007_tuna_fish_can.usd"
add_reference_to_stage(usd_path=tuna_fish_can_path, prim_path="/World/tuna_fish_can")
# give rigid body property for visual only objects
stage = omni.usd.get_context().get_stage()
createRigidBody(stage, "/World/tuna_fish_can")
orientation = np.array([ 0.7071068, 0.7071068, 0.0, 0.0 ])
self._tuna_fish_can_ref_geom = addObjectsGeom(scene, "tuna_fish_can", self._tuna_fish_can_scale, self._obj_ini_pos, 0.02, orientation)
def set_up_scene(self, scene):
super().set_up_scene(scene)
self.add_franka(scene)
if self._object == "sugar_box":
self.add_sugar_box(scene)
elif self._object == "tomato_soup_can":
self.add_tomato_soup_can(scene)
elif self._object == "tuna_fish_can":
self.add_tuna_fish_can(scene)
return
def get_observations(self):
current_joint_positions = self._franka.get_joint_positions()
currnet_joint_velocities = self._franka.get_joint_velocities()
observations = {
self._franka.name: {
"joint_positions": current_joint_positions,
"joint_velocities": currnet_joint_velocities,
},
}
if self._object == "sugar_box":
sugar_box_position, _ = self._sugar_box_ref_geom.get_world_pose()
observations["object"] = {
"position": sugar_box_position,
"goal_position": self._obj_target
}
elif self._object == "tomato_soup_can":
tomato_soup_can_position, _ = self._tomato_soup_can_ref_geom.get_world_pose()
observations["object"] = {
"position": tomato_soup_can_position,
"goal_position": self._obj_target
}
elif self._object == "tuna_fish_can":
tuna_fish_can_position, _ = self._tuna_fish_can_ref_geom.get_world_pose()
observations["object"] = {
"position": tuna_fish_can_position,
"goal_position": self._obj_target
}
return observations
def post_reset(self):
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
self._task_achieved = False
return
| 5,904 |
Python
| 36.373417 | 142 | 0.609417 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .franka_factory import FrankaGarage
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ROS2 Examples",
name="FrankaGarage",
title="FrankaGarage",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FrankaGarage(),
)
return
| 2,056 |
Python
| 41.854166 | 135 | 0.740759 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaFactory/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/pick_and_place_twice.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka import Franka
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.franka.controllers import PickPlaceController
import numpy as np
class HelloManip(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
franka = world.scene.add(Franka(prim_path="/World/Fancy_Franka", name="fancy_franka"))
world.scene.add(
DynamicCuboid(
prim_path="/World/random_cube1",
name="fancy_cube1",
position=np.array([0.3, 0.3, 0.3]),
scale=np.array([0.0515, 0.0515, 0.0515]),
color=np.array([0, 0, 1.0]),
)
)
world.scene.add(
DynamicCuboid(
prim_path="/World/random_cube2",
name="fancy_cube2",
position=np.array([0.5, 0.0, 0.3]),
scale=np.array([0.0515, 0.0515, 0.0515]),
color=np.array([0, 0, 1.0]),
)
)
self._event = 0
return
async def setup_post_load(self):
self._world = self.get_world()
self._franka = self._world.scene.get_object("fancy_franka")
self._fancy_cube1 = self._world.scene.get_object("fancy_cube1")
self._fancy_cube2 = self._world.scene.get_object("fancy_cube2")
# Initialize a pick and place controller
self._controller = PickPlaceController(
name="pick_place_controller",
gripper=self._franka.gripper,
robot_articulation=self._franka,
)
self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
# World has pause, stop, play..etc
# Note: if async version exists, use it in any async function is this workflow
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
await self._world.play_async()
return
# This function is called after Reset button is pressed
# Resetting anything in the world should happen here
async def setup_post_reset(self):
self._controller.reset()
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
await self._world.play_async()
return
def physics_step(self, step_size):
cube_position1, _ = self._fancy_cube1.get_world_pose()
cube_position2, _ = self._fancy_cube2.get_world_pose()
goal_position1 = np.array([-0.3, -0.3, 0.0515 / 2.0])
goal_position2 = np.array([-0.2, -0.3, 0.0515 / 2.0])
current_joint_positions = self._franka.get_joint_positions()
if self._event == 0:
actions = self._controller.forward(
picking_position=cube_position1,
placing_position=goal_position1,
current_joint_positions=current_joint_positions,
)
self._franka.apply_action(actions)
elif self._event == 1:
actions = self._controller.forward(
picking_position=cube_position2,
placing_position=goal_position2,
current_joint_positions=current_joint_positions,
)
self._franka.apply_action(actions)
# Only for the pick and place controller, indicating if the state
# machine reached the final state.
if self._controller.is_done():
self._event += 1
self._controller.reset()
return
| 4,083 |
Python
| 37.168224 | 94 | 0.607886 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/hello_manip_basic.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka import Franka
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.franka.controllers import PickPlaceController
import numpy as np
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.prims import define_prim, get_prim_at_path
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from omni.isaac.core.prims.xform_prim import XFormPrim
from omni.isaac.core.prims.rigid_prim import RigidPrim
from omni.isaac.universal_robots import UR10
from omni.isaac.core.materials.physics_material import PhysicsMaterial
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from pxr import Gf, PhysxSchema, Usd, UsdPhysics, UsdShade
import carb
class HelloManip(BaseSample):
def __init__(self) -> None:
super().__init__()
# some global sim options:
self._time_steps_per_second = 240 # 4.167ms aprx
self._fsm_update_rate = 60
self._solverPositionIterations = 4
self._solverVelocityIterations = 1
self._solver_type = "TGS"
self._ik_damping = 0.1
self._num_nuts = 2
self._num_bins = 2
# Asset Path from Nucleus
# self._cube_asset_path = get_assets_root_path() + "/Isaac/Props/Blocks/nvidia_cube.usd"
self._bin_asset_path = get_assets_root_path() + "/Isaac/Props/KLT_Bin/small_KLT.usd"
self._nut_asset_path = get_assets_root_path() + "/Isaac/Samples/Examples/FrankaNutBolt/SubUSDs/Nut/M20_Nut_Tight_R256_Franka_SI.usd"
self._bin_position = np.array([
[ 0.35, -0.25, 0.1],
[ 0.35, 0.25, 0.1],
])
self._bins = []
self._bins_offset = 0.1
self._nuts_position = np.array([
[0.35, -0.22, 0.2],
[0.30, -0.28, 0.2],
])
# self._nut_position_x = np.array([0.28, 0.4])
# self._nut_position_y = np.array([-0.35, -0.15])
# self._nut_position_z = 0.2
self._nuts = []
self._nuts_offset = 0.005
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
prim = get_prim_at_path("/World/defaultGroundPlane")
self._setup_simulation()
franka = world.scene.add(Franka(prim_path="/World/Fancy_Franka", name="fancy_franka"))
# ur10 = world.scene.add(UR10(prim_path="/World/UR10", name="UR10"))
# RigidPrim Ref.
# https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#omni.isaac.core.prims.RigidPrim
# GeometryPrim Ref.
# https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html?highlight=geometryprim#omni.isaac.core.prims.GeometryPrim
for bins in range(self._num_bins):
add_reference_to_stage(
usd_path=self._bin_asset_path,
prim_path=f"/World/bin{bins}",
)
_bin = world.scene.add(
RigidPrim(
prim_path=f"/World/bin{bins}",
name=f"bin{bins}",
position=self._bin_position[bins] / get_stage_units(),
orientation=euler_angles_to_quat(np.array([np.pi, 0., 0.])),
mass=0.1, # kg
)
)
self._bins.append(_bin)
for nut in range(self._num_nuts):
# nut_position = np.array([
# np.random.randint(*(self._nut_position_x*100)) / 100,
# np.random.randint(*(self._nut_position_y*100)) / 100,
# self._nut_position_z,
# ])
add_reference_to_stage(
usd_path=self._nut_asset_path,
prim_path=f"/World/nut{nut}",
)
nut = world.scene.add(
GeometryPrim(
prim_path=f"/World/nut{nut}",
name=f"nut{nut}_geom",
position=self._nuts_position[nut] / get_stage_units(),
collision=True,
# mass=0.1, # kg
)
)
self._nuts.append(nut)
return
def _setup_simulation(self):
self._scene = PhysicsContext()
self._scene.set_solver_type(self._solver_type)
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
self._scene.set_friction_offset_threshold(0.01)
self._scene.set_friction_correlation_distance(0.0005)
self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024)
self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024)
self._scene.set_gpu_heap_capacity(64 * 1024 * 1024)
self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024)
# added because of new errors regarding collisionstacksize
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(get_prim_at_path("/physicsScene"))
physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(76000000) # or whatever min is needed
async def setup_post_load(self):
self._world = self.get_world()
self._franka = self._world.scene.get_object("fancy_franka")
# Initialize a pick and place controller
self._controller = PickPlaceController(
name="pick_place_controller",
gripper=self._franka.gripper,
robot_articulation=self._franka,
)
self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
# World has pause, stop, play..etc
# Note: if async version exists, use it in any async function is this workflow
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
await self._world.play_async()
return
# This function is called after Reset button is pressed
# Resetting anything in the world should happen here
async def setup_post_reset(self):
self._controller.reset()
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
await self._world.play_async()
return
def physics_step(self, step_size):
target_position, _ = self._nuts[0].get_world_pose()
target_position[2] += self._nuts_offset
goal_position, _ = self._bins[1].get_world_pose()
goal_position[2] += self._bins_offset
# print(goal_position)
current_joint_positions = self._franka.get_joint_positions()
actions = self._controller.forward(
picking_position=target_position,
placing_position=goal_position,
current_joint_positions=current_joint_positions,
)
self._franka.apply_action(actions)
# Only for the pick and place controller, indicating if the state
# machine reached the final state.
if self._controller.is_done():
self._world.pause()
return
| 7,645 |
Python
| 39.670213 | 163 | 0.616089 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .franka_nuts_pick_and_place import FrankaNutsBasic
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ETRIDemo",
name="FrankaNutsBasic",
title="FrankaNutsBasic",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FrankaNutsBasic(),
)
return
| 2,075 |
Python
| 42.249999 | 135 | 0.742169 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/franka_nuts_pick_and_place.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.franka.controllers import PickPlaceController
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.tasks import BaseTask
from omni.isaac.franka import Franka
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.prims.rigid_prim import RigidPrim
from omni.isaac.sensor import Camera
import omni.isaac.core.utils.numpy.rotations as rot_utils
from omni.isaac.core import SimulationContext
from pxr import PhysxSchema
from datetime import datetime
import numpy as np
import h5py
class FrankaPlaying(BaseTask):
#NOTE: we only cover here a subset of the task functions that are available,
# checkout the base class for all the available functions to override.
# ex: calculate_metrics, is_done..etc.
def __init__(self, name):
super().__init__(name=name, offset=None)
self._num_nuts = 2
self._num_bins = 2
# Asset Path from Nucleus
self._bin_asset_path = get_assets_root_path() + "/Isaac/Props/KLT_Bin/small_KLT.usd"
self._nut_asset_path = get_assets_root_path() + "/Isaac/Samples/Examples/FrankaNutBolt/SubUSDs/Nut/M20_Nut_Tight_R256_Franka_SI.usd"
self._bin_position = np.array([
[ 0.35, -0.25, 0.1],
[ 0.35, 0.25, 0.1],
])
self._bins = []
self._bins_offset = 0.1
self._nuts_position = np.array([
[0.35, -0.22, 0.2],
[0.30, -0.28, 0.2],
])
self._nuts = []
self._nuts_offset = 0.005
self._goal_position = np.array([
[0.35, 0.18, 0.2],
[0.30, 0.25, 0.2],
])
self._pick_position = np.array([0, 0, 0])
self._task_achieved = False
self._task_event = 0
return
def setup_cameras(self):
# Exception: You can not define translation and position at the same time
self._camera1 = Camera(
prim_path="/World/Fancy_Franka/panda_hand/hand_camera",
# position=np.array([0.088, 0.0, 0.926]),
translation=np.array([0.1, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
180, -90 - 25, 0
]), degrees=True),
)
self._camera1.set_clipping_range(0.1, 1000000.0)
self._camera1.initialize()
self._camera1.add_motion_vectors_to_frame()
self._camera1.set_visibility(False)
self._camera2 = Camera(
prim_path="/World/top_camera",
position=np.array([0.0, 0.0, 5.0]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0, 90, 0
]), degrees=True),
)
self._camera2.initialize()
self._camera2.set_visibility(False)
self._camera3 = Camera(
prim_path="/World/front_camera",
position=np.array([1.0, 0.0, 0.3]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0, 0, 180
]), degrees=True),
)
self._camera3.set_clipping_range(0.1, 1000000.0)
self._camera3.set_focal_length(1.0)
self._camera3.initialize()
self._camera3.set_visibility(False)
return
def setup_bins(self, scene):
for bins in range(self._num_bins):
add_reference_to_stage(
usd_path=self._bin_asset_path,
prim_path=f"/World/bin{bins}",
)
_bin = scene.add(
RigidPrim(
prim_path=f"/World/bin{bins}",
name=f"bin{bins}",
position=self._bin_position[bins] / get_stage_units(),
orientation=euler_angles_to_quat(np.array([np.pi, 0., 0.])),
mass=0.1, # kg
)
)
self._bins.append(_bin)
return
def setup_nuts(self, scene):
for nut in range(self._num_nuts):
add_reference_to_stage(
usd_path=self._nut_asset_path,
prim_path=f"/World/nut{nut}",
)
nut = scene.add(
GeometryPrim(
prim_path=f"/World/nut{nut}",
name=f"nut{nut}_geom",
position=self._nuts_position[nut] / get_stage_units(),
collision=True,
# mass=0.1, # kg
)
)
self._nuts.append(nut)
return
# Here we setup all the assets that we care about in this task.
def set_up_scene(self, scene):
super().set_up_scene(scene)
scene.add_default_ground_plane()
self._franka = scene.add(
Franka(
prim_path="/World/Fancy_Franka",
name="fancy_franka"
)
)
self.setup_cameras()
self.setup_bins(scene)
self.setup_nuts(scene)
return
# Information exposed to solve the task is returned from the task through get_observations
def get_observations(self):
current_joint_positions = self._franka.get_joint_positions()
currnet_joint_velocities = self._franka.get_joint_velocities()
self._pick_position1, _ = self._nuts[0].get_world_pose()
self._pick_position1[2] += self._nuts_offset
self._pick_position2, _ = self._nuts[1].get_world_pose()
self._pick_position2[2] += self._nuts_offset
observations = {
self._franka.name: {
"joint_positions": current_joint_positions,
"joint_velocities": currnet_joint_velocities,
},
"nut0_geom": {
"position": self._pick_position1,
"goal_position": self._goal_position[0],
},
"nut1_geom": {
"position": self._pick_position2,
"goal_position": self._goal_position[1],
},
}
return observations
# Called before each physics step,
# for instance we can check here if the task was accomplished by
# changing the color of the cube once its accomplished
def pre_step(self, control_index, simulation_time):
return
# Called after each reset,
# for instance we can always set the gripper to be opened at the beginning after each reset
# also we can set the cube's color to be blue
def post_reset(self):
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
# self._nuts[0].get_applied_visual_material().set_color(color=np.array([0, 0, 1.0]))
self._task_achieved = False
return
@property
def camera1(self):
return self._camera1
@property
def camera2(self):
return self._camera2
@property
def camera3(self):
return self._camera3
class FrankaNutsBasic(BaseSample):
def __init__(self) -> None:
super().__init__()
# some global sim options:
self._time_steps_per_second = 240 # 4.167ms aprx
self._fsm_update_rate = 60
self._solverPositionIterations = 4
self._solverVelocityIterations = 1
self._solver_type = "TGS"
self._ik_damping = 0.1
self._event = 0
self._step_size = 0.01
return
def _setup_simulation(self):
self._scene = PhysicsContext()
self._scene.set_solver_type(self._solver_type)
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
self._scene.set_friction_offset_threshold(0.01)
self._scene.set_friction_correlation_distance(0.0005)
self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024)
self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024)
self._scene.set_gpu_heap_capacity(64 * 1024 * 1024)
self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024)
# added because of new errors regarding collisionstacksize
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(get_prim_at_path("/physicsScene"))
physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(76000000) # or whatever min is needed
def setup_dataset(self):
self._f = None
self._sim_time_list = []
self._joint_positions = []
self._joint_velocities = []
self._camera1_img = []
self._camera2_img = []
self._camera3_img = []
now = datetime.now() # current date and time
date_time_str = now.strftime("%m_%d_%Y_%H_%M_%S")
file_name = f'franka_nuts_basis_{date_time_str}.hdf5'
print(file_name)
self._f = h5py.File(file_name,'w')
self._group_f = self._f.create_group("isaac_dataset")
self._save_count = 0
self._img_f = self._group_f.create_group("camera_images")
return
def setup_scene(self):
print("setup_scene")
world = self.get_world()
self.simulation_context = SimulationContext()
self._setup_simulation()
self.setup_dataset()
# We add the task to the world here
self._franka_playing = FrankaPlaying(name="my_first_task")
world.add_task(self._franka_playing)
return
async def setup_post_load(self):
print("setup_post_load")
self._world = self.get_world()
# The world already called the setup_scene from the task (with first reset of the world)
# so we can retrieve the task objects
self._franka = self._world.scene.get_object("fancy_franka")
self._controller = PickPlaceController(
name="pick_place_controller",
gripper=self._franka.gripper,
robot_articulation=self._franka,
)
self._camera1 = self._franka_playing.camera1
self._camera2 = self._franka_playing.camera2
self._camera3 = self._franka_playing.camera3
self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
await self._world.play_async()
return
async def setup_pre_reset(self):
if self._f is not None:
self._f.close()
self._f = None
elif self._f is None:
print("Create new file for new data collection...")
self.setup_dataset()
self._save_count = 0
self._event = 0
return
async def setup_post_reset(self):
self._controller.reset()
await self._world.play_async()
return
def physics_step(self, step_size):
# Gets all the tasks observations
self._camera1.get_current_frame()
self._camera2.get_current_frame()
self._camera3.get_current_frame()
current_observations = self._world.get_observations()
current_time = self.simulation_context.current_time
current_joint_pos = current_observations["fancy_franka"]["joint_positions"]
current_joint_vel = current_observations["fancy_franka"]["joint_velocities"]
# print(step_size)
if self._save_count % 100 == 0:
if current_joint_pos is not None and current_joint_vel is not None:
self._sim_time_list.append(current_time)
self._joint_positions.append(current_joint_pos)
self._joint_velocities.append(current_joint_vel)
self._camera1_img.append(self._camera1.get_rgba()[:, :, :3])
self._camera2_img.append(self._camera2.get_rgba()[:, :, :3])
self._camera3_img.append(self._camera3.get_rgba()[:, :, :3])
print("Collecting data...")
if self._event == 0:
actions = self._controller.forward(
picking_position=current_observations["nut0_geom"]["position"],
placing_position=current_observations["nut0_geom"]["goal_position"],
current_joint_positions=current_joint_pos,
)
self._franka.apply_action(actions)
elif self._event == 1:
actions = self._controller.forward(
picking_position=current_observations["nut1_geom"]["position"],
placing_position=current_observations["nut1_geom"]["goal_position"],
current_joint_positions=current_joint_pos,
)
self._franka.apply_action(actions)
self._save_count += 1
if self._controller.is_done():
self._controller.reset()
self._event += 1
if self._event == 2:
self.world_cleanup()
return
def world_cleanup(self):
try:
if self._f is not None:
self._group_f.create_dataset(f"sim_time", data=self._sim_time_list, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_positions", data=self._joint_positions, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_velocities", data=self._joint_velocities, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"hand_camera", data=self._camera1_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"top_camera", data=self._camera2_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"front_camera", data=self._camera3_img, compression='gzip', compression_opts=9)
self._f.close()
print("Data saved")
elif self._f is None:
print("Invalid Operation Data not saved")
except Exception as e:
print(e)
finally:
self._f = None
self._save_count = 0
self._world.pause()
return
| 14,771 |
Python
| 33.921986 | 140 | 0.580259 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaNuts/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/URPalletizing/__init__.py
|
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .ur10_palletizing_extension import BinStackingExtension
| 493 |
Python
| 43.909087 | 76 | 0.819473 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/URPalletizing/ur10_palletizing.py
|
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import random
import numpy as np
import omni
import h5py
import omni.isaac.cortex.math_util as math_util
import omni.isaac.core.utils.numpy.rotations as rot_utils
from omni.isaac.core import SimulationContext
from omni.isaac.core.objects.capsule import VisualCapsule
from omni.isaac.core.objects.sphere import VisualSphere
from omni.isaac.core.prims.xform_prim import XFormPrim
from omni.isaac.core.tasks.base_task import BaseTask
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.cortex.cortex_rigid_prim import CortexRigidPrim
from omni.isaac.cortex.cortex_utils import get_assets_root_path
from omni.isaac.cortex.robot import CortexUr10
from omni.isaac.cortex.sample_behaviors.ur10 import bin_stacking_behavior as behavior
from omni.isaac.examples.cortex.cortex_base import CortexBase
from omni.isaac.sensor import Camera
class Ur10Assets:
def __init__(self):
self.assets_root_path = get_assets_root_path()
self.ur10_table_usd = (
self.assets_root_path + "/Isaac/Samples/Leonardo/Stage/ur10_bin_stacking_short_suction.usd"
)
self.small_klt_usd = self.assets_root_path + "/Isaac/Props/KLT_Bin/small_KLT.usd"
self.background_usd = self.assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd"
self.rubiks_cube_usd = self.assets_root_path + "/Isaac/Props/Rubiks_Cube/rubiks_cube.usd"
def random_bin_spawn_transform():
x = random.uniform(-0.15, 0.15)
y = 1.5
z = -0.15
position = np.array([x, y, z])
z = random.random() * 0.02 - 0.01
w = random.random() * 0.02 - 0.01
norm = np.sqrt(z**2 + w**2)
quat = math_util.Quaternion([w / norm, 0, 0, z / norm])
if random.random() > 0.5:
print("<flip>")
# flip the bin so it's upside down
quat = quat * math_util.Quaternion([0, 0, 1, 0])
else:
print("<no flip>")
return position, quat.vals
class BinStackingTask(BaseTask):
def __init__(self, env_path, assets) -> None:
super().__init__("bin_stacking")
self.assets = assets
self.env_path = env_path
self.bins = []
self.stashed_bins = []
self.on_conveyor = None
def _spawn_bin(self, rigid_bin):
x, q = random_bin_spawn_transform()
rigid_bin.set_world_pose(position=x, orientation=q)
rigid_bin.set_linear_velocity(np.array([0, -0.30, 0]))
rigid_bin.set_visibility(True)
def post_reset(self) -> None:
if len(self.bins) > 0:
for rigid_bin in self.bins:
self.scene.remove_object(rigid_bin.name)
self.bins.clear()
self.on_conveyor = None
def pre_step(self, time_step_index, simulation_time) -> None:
"""Spawn a new randomly oriented bin if the previous bin has been placed."""
spawn_new = False
if self.on_conveyor is None:
spawn_new = True
else:
(x, y, z), _ = self.on_conveyor.get_world_pose()
is_on_conveyor = y > 0.0 and -0.4 < x and x < 0.4
if not is_on_conveyor:
spawn_new = True
if spawn_new:
name = "bin_{}".format(len(self.bins))
prim_path = self.env_path + "/bins/{}".format(name)
# "/Isaac/Props/KLT_Bin/small_KLT.usd"
# prim_path
add_reference_to_stage(usd_path=self.assets.small_klt_usd, prim_path=prim_path)
self.on_conveyor = self.scene.add(CortexRigidPrim(name=name, prim_path=prim_path))
self._spawn_bin(self.on_conveyor)
self.bins.append(self.on_conveyor)
def world_cleanup(self):
self.bins = []
self.stashed_bins = []
self.on_conveyor = None
return
class BinStacking(CortexBase):
def __init__(self, monitor_fn=None):
super().__init__()
self._monitor_fn = monitor_fn
self.robot = None
self._sim_time_list = []
self._joint_positions = []
self._joint_velocities = []
self._camera1_img = []
self._camera2_img = []
self._camera3_img = []
self._camera4_img = []
self._camera5_img = []
self._save_count = 0
def _setup_camera(self):
self._camera1 = Camera(
prim_path="/World/Ur10Table/ur10/ee_link/ee_camera",
# position=np.array([0.088, 0.0, 0.926]),
translation=np.array([-0.15, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
180.0, -15.0, 0.0
]), degrees=True),
)
self._camera1.set_clipping_range(0.1, 1000000.0)
self._camera1.set_focal_length(1.5)
self._camera1.initialize()
self._camera1.add_motion_vectors_to_frame()
self._camera1.set_visibility(False)
self._camera2 = Camera(
prim_path="/World/left_camera",
position=np.array([2.5, 0.0, 0.0]),
# translation=np.array([0.0, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0.0, 0.0, 180.0
]), degrees=True),
)
self._camera2.set_focal_length(1.5)
self._camera2.set_visibility(False)
self._camera2.initialize()
self._camera3 = Camera(
prim_path="/World/right_camera",
position=np.array([-2.5, 0.0, 0.0]),
# translation=np.array([0.0, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0.0, 0.0, 0.0
]), degrees=True),
)
self._camera3.set_focal_length(1.5)
self._camera3.set_visibility(False)
self._camera3.initialize()
self._camera4 = Camera(
prim_path="/World/front_camera",
position=np.array([0.0, 2.0, 0.0]),
# translation=np.array([0.0, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0.0, 0.0, -90.0
]), degrees=True),
)
self._camera4.set_focal_length(1.5)
self._camera4.set_visibility(False)
self._camera4.initialize()
self._camera5 = Camera(
prim_path="/World/back_camera",
position=np.array([0.5, -2.0, -0.2]),
# translation=np.array([0.0, 0.0, -0.1]),
frequency=30,
resolution=(640, 480),
orientation=rot_utils.euler_angles_to_quats(
np.array([
0.0, 0.0, 90.0
]), degrees=True),
)
self._camera5.set_focal_length(1.5)
self._camera5.set_visibility(False)
self._camera5.initialize()
def _setup_data_collection(self):
self._f = h5py.File('ur_bin_palleting.hdf5','w')
self._group_f = self._f.create_group("isaac_dataset")
self._save_count = 0
self._img_f = self._group_f.create_group("camera_images")
def setup_scene(self):
world = self.get_world()
self.simulation_context = SimulationContext()
env_path = "/World/Ur10Table"
ur10_assets = Ur10Assets()
add_reference_to_stage(usd_path=ur10_assets.ur10_table_usd, prim_path=env_path)
add_reference_to_stage(usd_path=ur10_assets.background_usd, prim_path="/World/Background")
background_prim = XFormPrim(
"/World/Background", position=[10.00, 2.00, -1.18180], orientation=[0.7071, 0, 0, 0.7071]
)
self.robot = world.add_robot(CortexUr10(name="robot", prim_path="{}/ur10".format(env_path)))
obs = world.scene.add(
VisualSphere(
"/World/Ur10Table/Obstacles/FlipStationSphere",
name="flip_station_sphere",
position=np.array([0.73, 0.76, -0.13]),
radius=0.2,
visible=False,
)
)
self.robot.register_obstacle(obs)
obs = world.scene.add(
VisualSphere(
"/World/Ur10Table/Obstacles/NavigationDome",
name="navigation_dome_obs",
position=[-0.031, -0.018, -1.086],
radius=1.1,
visible=False,
)
)
self.robot.register_obstacle(obs)
az = np.array([1.0, 0.0, -0.3])
ax = np.array([0.0, 1.0, 0.0])
ay = np.cross(az, ax)
R = math_util.pack_R(ax, ay, az)
quat = math_util.matrix_to_quat(R)
obs = world.scene.add(
VisualCapsule(
"/World/Ur10Table/Obstacles/NavigationBarrier",
name="navigation_barrier_obs",
position=[0.471, 0.276, -0.463 - 0.1],
orientation=quat,
radius=0.5,
height=0.9,
visible=False,
)
)
self.robot.register_obstacle(obs)
obs = world.scene.add(
VisualCapsule(
"/World/Ur10Table/Obstacles/NavigationFlipStation",
name="navigation_flip_station_obs",
position=np.array([0.766, 0.755, -0.5]),
radius=0.5,
height=0.5,
visible=False,
)
)
self.robot.register_obstacle(obs)
self._setup_camera()
self._setup_data_collection()
async def setup_post_load(self):
world = self.get_world()
env_path = "/World/Ur10Table"
ur10_assets = Ur10Assets()
if not self.robot:
self.robot = world._robots["robot"]
world._current_tasks.clear()
world._behaviors.clear()
world._logical_state_monitors.clear()
self.task = BinStackingTask(env_path, ur10_assets)
print(world.scene)
self.task.set_up_scene(world.scene)
world.add_task(self.task)
self.decider_network = behavior.make_decider_network(self.robot, self._on_monitor_update)
world.add_decider_network(self.decider_network)
return
def _on_monitor_update(self, diagnostics):
decision_stack = ""
if self.decider_network._decider_state.stack:
decision_stack = "\n".join(
[
"{0}{1}".format(" " * i, element)
for i, element in enumerate(str(i) for i in self.decider_network._decider_state.stack)
]
)
if self._monitor_fn:
self._monitor_fn(diagnostics, decision_stack)
def _on_physics_step(self, step_size):
world = self.get_world()
self._camera1.get_current_frame()
self._camera2.get_current_frame()
self._camera3.get_current_frame()
self._camera4.get_current_frame()
self._camera5.get_current_frame()
current_time = self.simulation_context.current_time
current_joint_state = self.robot.get_joints_state()
current_joint_positions = current_joint_state.positions
current_joint_velocities = current_joint_state.velocities
print(self._save_count)
if self._save_count % 50 == 0:
self._sim_time_list.append(current_time)
self._joint_positions.append(current_joint_positions)
self._joint_velocities.append(current_joint_velocities)
self._camera1_img.append(self._camera1.get_rgba()[:, :, :3])
self._camera2_img.append(self._camera2.get_rgba()[:, :, :3])
self._camera3_img.append(self._camera3.get_rgba()[:, :, :3])
self._camera4_img.append(self._camera4.get_rgba()[:, :, :3])
self._camera5_img.append(self._camera5.get_rgba()[:, :, :3])
print("Collecting data...")
if self._save_count > 3000:
self.save_data()
self._save_count += 1
world.step(False, False)
return
async def on_event_async(self):
world = self.get_world()
await omni.kit.app.get_app().next_update_async()
world.reset_cortex()
world.add_physics_callback("sim_step", self._on_physics_step)
await world.play_async()
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
return
def world_cleanup(self):
return
def save_data(self):
self._group_f.create_dataset(f"sim_time", data=self._sim_time_list, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_positions", data=self._joint_positions, compression='gzip', compression_opts=9)
self._group_f.create_dataset(f"joint_velocities", data=self._joint_velocities, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"ee_camera", data=self._camera1_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"left_camera", data=self._camera2_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"right_camera", data=self._camera3_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"front_camera", data=self._camera4_img, compression='gzip', compression_opts=9)
self._img_f.create_dataset(f"back_camera", data=self._camera5_img, compression='gzip', compression_opts=9)
self._f.close()
print("Data saved")
self._save_count = 0
self._world.pause()
return
| 14,252 |
Python
| 35.359694 | 126 | 0.57648 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/URPalletizing/ur10_palletizing_extension.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import asyncio
import os
import omni.ui as ui
from omni.isaac.cortex.cortex_world import CortexWorld
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.ui.ui_utils import btn_builder, cb_builder, get_style, str_builder
from .ur10_palletizing import BinStacking
class BinStackingExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ETRIDemo",
name="UR10 Palletizing",
title="UR10 Palletizing",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/tutorial_replicator_ur10_palletizing.html#isaac-sim-app-tutorial-replicator-ur10-palletizing",
overview="This Example shows how to do Palletizing using UR10 robot and Cortex behaviors in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.",
sample=BinStacking(self.on_diagnostics),
file_path=os.path.abspath(__file__),
number_of_extra_frames=2,
)
self.decision_stack = ""
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_task_controls_ui(frame)
return
def on_diagnostics(self, diagnostic, decision_stack):
if self.decision_stack != decision_stack:
self.decision_stack = decision_stack
if decision_stack:
decision_stack = "\n".join(
[
"{0}{1}".format(" " * (i + 1) if i > 0 else "", element)
for i, element in enumerate(decision_stack.replace("]", "").split("["))
]
)
self.state_model.set_value(decision_stack)
if diagnostic.bin_name:
self.selected_bin.set_value(str(diagnostic.bin_name))
self.bin_base.set_value(str(diagnostic.bin_base.prim_path))
self.grasp_reached.set_value((diagnostic.grasp_reached))
self.is_attached.set_value((diagnostic.attached))
self.needs_flip.set_value((diagnostic.needs_flip))
else:
self.selected_bin.set_value(str("No Bin Selected"))
self.bin_base.set_value("")
self.grasp_reached.set_value(False)
self.is_attached.set_value(False)
self.needs_flip.set_value(False)
def get_world(self):
return CortexWorld.instance()
def _on_start_button_event(self):
asyncio.ensure_future(self.sample.on_event_async())
self.task_ui_elements["Start Palletizing"].enabled = False
return
def post_reset_button_event(self):
self.task_ui_elements["Start Palletizing"].enabled = True
return
def post_load_button_event(self):
self.task_ui_elements["Start Palletizing"].enabled = True
return
def post_clear_button_event(self):
self.task_ui_elements["Start Palletizing"].enabled = False
return
def build_task_controls_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
# Update the Frame Title
frame.title = "Task Controls"
frame.visible = True
dict = {
"label": "Start Palletizing",
"type": "button",
"text": "Start Palletizing",
"tooltip": "Start Palletizing",
"on_clicked_fn": self._on_start_button_event,
}
self.task_ui_elements["Start Palletizing"] = btn_builder(**dict)
self.task_ui_elements["Start Palletizing"].enabled = False
# with self._main_stack:
with self.get_frame(index=1):
self.get_frame(index=1).title = "Diagnostics"
self.get_frame(index=1).visible = True
self._diagnostics = ui.VStack(spacing=5)
# self._diagnostics.enabled = False
with self._diagnostics:
ui.Label("Decision Stack", height=20)
self.state_model = ui.SimpleStringModel()
ui.StringField(self.state_model, multiline=True, height=120)
self.selected_bin = str_builder("Selected Bin", "<No Bin Selected>", read_only=True)
self.bin_base = str_builder("Bin Base", "", read_only=True)
self.grasp_reached = cb_builder("Grasp Reached", False)
self.is_attached = cb_builder("Is Attached", False)
self.needs_flip = cb_builder("Needs Flip", False)
| 5,043 |
Python
| 42.860869 | 187 | 0.608368 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .hello_manip import HelloManip
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="",
name="HelloManipulator",
title="HelloManipulator",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=HelloManip(),
)
return
| 2,044 |
Python
| 41.604166 | 135 | 0.739726 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/hello_manip.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
# This extension has franka related tasks and controllers as well
from omni.isaac.franka import Franka
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.franka.controllers import PickPlaceController
from omni.isaac.franka.tasks import PickPlace
from omni.isaac.core.tasks import BaseTask
import numpy as np
class FrankaPlaying(BaseTask):
#NOTE: we only cover here a subset of the task functions that are available,
# checkout the base class for all the available functions to override.
# ex: calculate_metrics, is_done..etc.
def __init__(self, name):
super().__init__(name=name, offset=None)
self._goal_position = np.array([-0.3, -0.3, 0.0515 / 2.0])
self._task_achieved = False
return
# Here we setup all the assets that we care about in this task.
def set_up_scene(self, scene):
super().set_up_scene(scene)
scene.add_default_ground_plane()
self._cube = scene.add(DynamicCuboid(prim_path="/World/random_cube",
name="fancy_cube",
position=np.array([0.3, 0.3, 0.3]),
scale=np.array([0.0515, 0.0515, 0.0515]),
color=np.array([0, 0, 1.0])))
self._franka = scene.add(Franka(prim_path="/World/Fancy_Franka",
name="fancy_franka"))
return
# Information exposed to solve the task is returned from the task through get_observations
def get_observations(self):
cube_position, _ = self._cube.get_world_pose()
current_joint_positions = self._franka.get_joint_positions()
observations = {
self._franka.name: {
"joint_positions": current_joint_positions,
},
self._cube.name: {
"position": cube_position,
"goal_position": self._goal_position
}
}
return observations
# Called before each physics step,
# for instance we can check here if the task was accomplished by
# changing the color of the cube once its accomplished
def pre_step(self, control_index, simulation_time):
cube_position, _ = self._cube.get_world_pose()
if not self._task_achieved and np.mean(np.abs(self._goal_position - cube_position)) < 0.02:
# Visual Materials are applied by default to the cube
# in this case the cube has a visual material of type
# PreviewSurface, we can set its color once the target is reached.
self._cube.get_applied_visual_material().set_color(color=np.array([0, 1.0, 0]))
self._task_achieved = True
return
# Called after each reset,
# for instance we can always set the gripper to be opened at the beginning after each reset
# also we can set the cube's color to be blue
def post_reset(self):
self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions)
self._cube.get_applied_visual_material().set_color(color=np.array([0, 0, 1.0]))
self._task_achieved = False
return
class HelloManip(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
# We add the task to the world here
world.add_task(FrankaPlaying(name="my_first_task"))
return
async def setup_post_load(self):
self._world = self.get_world()
# The world already called the setup_scene from the task (with first reset of the world)
# so we can retrieve the task objects
self._franka = self._world.scene.get_object("fancy_franka")
self._controller = PickPlaceController(
name="pick_place_controller",
gripper=self._franka.gripper,
robot_articulation=self._franka,
)
self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
await self._world.play_async()
return
async def setup_post_reset(self):
self._controller.reset()
await self._world.play_async()
return
def physics_step(self, step_size):
# Gets all the tasks observations
current_observations = self._world.get_observations()
actions = self._controller.forward(
picking_position=current_observations["fancy_cube"]["position"],
placing_position=current_observations["fancy_cube"]["goal_position"],
current_joint_positions=current_observations["fancy_franka"]["joint_positions"],
)
self._franka.apply_action(actions)
if self._controller.is_done():
self._world.pause()
return
| 5,289 |
Python
| 42.719008 | 99 | 0.629609 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloManipulator/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .dingo_library import DingoLibrary
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ROS2 Examples",
name="DingoLibrary",
title="DingoLibrary",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=DingoLibrary(),
)
return
| 2,055 |
Python
| 41.833332 | 135 | 0.740633 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/dingo_library.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
import numpy as np
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.sensor import Camera, RotatingLidarPhysX
from omni.isaac.core import World
import omni.graph.core as og
import usdrt.Sdf
import omni.isaac.core.utils.numpy.rotations as rot_utils
from omni.isaac.core import SimulationContext
from omni.physx.scripts import deformableUtils, physicsUtils
from pxr import UsdGeom, Gf, UsdPhysics, Sdf, Gf, Tf, UsdLux
from PIL import Image
import carb
import h5py
import omni
import cv2
class DingoLibrary(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
return
def og_setup(self):
domain_id = 0
try:
# Twist OG
maxLinearSpeed = 3.0
wheelDistance = 0.23632
wheelRadius = 0.049
jointNames = ["left_wheel_joint", "right_wheel_joint"]
base_link_prim = "/World/dingo/base_link"
og.Controller.edit(
{"graph_path": "/ROS2DiffDrive", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("subscribeTwist", "omni.isaac.ros2_bridge.ROS2SubscribeTwist"),
("scaleToFromStage", "omni.isaac.core_nodes.OgnIsaacScaleToFromStageUnit"),
("breakLinVel", "omni.graph.nodes.BreakVector3"),
("breakAngVel", "omni.graph.nodes.BreakVector3"),
("diffController", "omni.isaac.wheeled_robots.DifferentialController"),
("artController", "omni.isaac.core_nodes.IsaacArticulationController"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("diffController.inputs:maxLinearSpeed", maxLinearSpeed),
("diffController.inputs:wheelDistance", wheelDistance),
("diffController.inputs:wheelRadius", wheelRadius),
("artController.inputs:jointNames", jointNames),
("artController.inputs:usePath", False),
("artController.inputs:targetPrim", [usdrt.Sdf.Path(base_link_prim)]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "subscribeTwist.inputs:execIn"),
("onPlaybackTick.outputs:tick", "artController.inputs:execIn"),
("context.outputs:context", "subscribeTwist.inputs:context"),
("subscribeTwist.outputs:execOut", "diffController.inputs:execIn"),
("subscribeTwist.outputs:angularVelocity", "breakAngVel.inputs:tuple"),
("subscribeTwist.outputs:linearVelocity", "scaleToFromStage.inputs:value"),
("scaleToFromStage.outputs:result", "breakLinVel.inputs:tuple"),
("breakAngVel.outputs:z", "diffController.inputs:angularVelocity"),
("breakLinVel.outputs:x", "diffController.inputs:linearVelocity"),
# ("diffController.outputs:effortCommand", "artController.inputs:effortCommand"),
# ("diffController.outputs:positionCommand", "artController.inputs:positionCommand"),
("diffController.outputs:velocityCommand", "artController.inputs:velocityCommand"),
],
},
)
# Static TF OG
og.Controller.edit(
{"graph_path": "/ROS2TF", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("publishTF", "omni.isaac.ros2_bridge.ROS2PublishTransformTree"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("publishTF.inputs:parentPrim", [usdrt.Sdf.Path("/World/dingo/base_link")]),
("publishTF.inputs:targetPrims", [
usdrt.Sdf.Path("/World/dingo/left_wheel_link"),
usdrt.Sdf.Path("/World/dingo/right_wheel_link"),
usdrt.Sdf.Path("/World/dingo/base_link/velodyne_frame"),
usdrt.Sdf.Path("/World/dingo/base_link/realsense_frame"),
usdrt.Sdf.Path("/World/dingo/base_link/realsense_frame/realsense_left_stereo_frame"),
usdrt.Sdf.Path("/World/dingo/base_link/realsense_frame/realsense_right_stereo_frame"),
]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "publishTF.inputs:execIn"),
("context.outputs:context", "publishTF.inputs:context"),
("readSimTime.outputs:simulationTime", "publishTF.inputs:timeStamp"),
],
},
)
# Odom TF OG
og.Controller.edit(
{"graph_path": "/ROS2Odom", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("computeOdom", "omni.isaac.core_nodes.IsaacComputeOdometry"),
("publishOdom", "omni.isaac.ros2_bridge.ROS2PublishOdometry"),
("publishRawTF", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("computeOdom.inputs:chassisPrim", [usdrt.Sdf.Path("/World/dingo")]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "computeOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishRawTF.inputs:execIn"),
("readSimTime.outputs:simulationTime", "publishOdom.inputs:timeStamp"),
("readSimTime.outputs:simulationTime", "publishRawTF.inputs:timeStamp"),
("context.outputs:context", "publishOdom.inputs:context"),
("context.outputs:context", "publishRawTF.inputs:context"),
("computeOdom.outputs:angularVelocity", "publishOdom.inputs:angularVelocity"),
("computeOdom.outputs:linearVelocity", "publishOdom.inputs:linearVelocity"),
("computeOdom.outputs:orientation", "publishOdom.inputs:orientation"),
("computeOdom.outputs:position", "publishOdom.inputs:position"),
("computeOdom.outputs:orientation", "publishRawTF.inputs:rotation"),
("computeOdom.outputs:position", "publishRawTF.inputs:translation"),
],
},
)
# Clock OG
og.Controller.edit(
{"graph_path": "/ROS2Clock", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("publishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "publishClock.inputs:execIn"),
("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"),
("context.outputs:context", "publishClock.inputs:context"),
],
},
)
# 2D Lidar OG
og.Controller.edit(
{"graph_path": "/ROS2LaserScan", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("readLidar", "omni.isaac.range_sensor.IsaacReadLidarBeams"),
("publishLidar", "omni.isaac.ros2_bridge.ROS2PublishLaserScan"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("publishLidar.inputs:frameId", "velodyne_frame"),
("readLidar.inputs:lidarPrim", [usdrt.Sdf.Path("/World/dingo/base_link/velodyne_frame/Lidar/laserscan_lidar")]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "readLidar.inputs:execIn"),
("context.outputs:context", "publishLidar.inputs:context"),
("readSimTime.outputs:simulationTime", "publishLidar.inputs:timeStamp"),
("readLidar.outputs:execOut", "publishLidar.inputs:execIn"),
("readLidar.outputs:azimuthRange", "publishLidar.inputs:azimuthRange"),
("readLidar.outputs:depthRange", "publishLidar.inputs:depthRange"),
("readLidar.outputs:horizontalFov", "publishLidar.inputs:horizontalFov"),
("readLidar.outputs:horizontalResolution", "publishLidar.inputs:horizontalResolution"),
("readLidar.outputs:intensitiesData", "publishLidar.inputs:intensitiesData"),
("readLidar.outputs:linearDepthData", "publishLidar.inputs:linearDepthData"),
("readLidar.outputs:numCols", "publishLidar.inputs:numCols"),
("readLidar.outputs:numRows", "publishLidar.inputs:numRows"),
("readLidar.outputs:rotationRate", "publishLidar.inputs:rotationRate"),
],
},
)
# 3D Lidar OG
og.Controller.edit(
{"graph_path": "/ROS2PointCloud", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("readLidar", "omni.isaac.range_sensor.IsaacReadLidarPointCloud"),
("publishLidar", "omni.isaac.ros2_bridge.ROS2PublishPointCloud"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("publishLidar.inputs:frameId", "velodyne_frame"),
("readLidar.inputs:lidarPrim", [usdrt.Sdf.Path("/World/dingo/base_link/velodyne_frame/Lidar/pointcloud_lidar")]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "readLidar.inputs:execIn"),
("context.outputs:context", "publishLidar.inputs:context"),
("readSimTime.outputs:simulationTime", "publishLidar.inputs:timeStamp"),
("readLidar.outputs:execOut", "publishLidar.inputs:execIn"),
("readLidar.outputs:data", "publishLidar.inputs:data"),
],
},
)
# Left Camera OG
og.Controller.edit(
{"graph_path": "/ROS2CameraLeft", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("renderer", "omni.isaac.core_nodes.IsaacCreateRenderProduct"),
("RGBPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("DepthPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("CameraInfoPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("renderer.inputs:cameraPrim", [usdrt.Sdf.Path("/World/dingo/base_link/realsense_frame/realsense_left_stereo_frame/realsense_left_stereo_camera")]),
("RGBPublish.inputs:topicName", "/left/rgb"),
("RGBPublish.inputs:type", "rgb"),
("RGBPublish.inputs:resetSimulationTimeOnStop", True),
("RGBPublish.inputs:frameId", "realsense_left_stereo_frame"),
("DepthPublish.inputs:topicName", "/left/depth"),
("DepthPublish.inputs:type", "depth"),
("DepthPublish.inputs:resetSimulationTimeOnStop", True),
("DepthPublish.inputs:frameId", "realsense_left_stereo_frame"),
("CameraInfoPublish.inputs:topicName", "/left/camera_info"),
("CameraInfoPublish.inputs:type", "camera_info"),
("CameraInfoPublish.inputs:resetSimulationTimeOnStop", True),
("CameraInfoPublish.inputs:frameId", "realsense_left_stereo_frame"),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "renderer.inputs:execIn"),
("context.outputs:context", "RGBPublish.inputs:context"),
("context.outputs:context", "DepthPublish.inputs:context"),
("context.outputs:context", "CameraInfoPublish.inputs:context"),
("renderer.outputs:execOut", "RGBPublish.inputs:execIn"),
("renderer.outputs:execOut", "DepthPublish.inputs:execIn"),
("renderer.outputs:execOut", "CameraInfoPublish.inputs:execIn"),
("renderer.outputs:renderProductPath", "RGBPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "DepthPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "CameraInfoPublish.inputs:renderProductPath"),
],
},
)
# Right Camera OG
og.Controller.edit(
{"graph_path": "/ROS2CameraRight", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("renderer", "omni.isaac.core_nodes.IsaacCreateRenderProduct"),
("RGBPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("DepthPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("CameraInfoPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", domain_id),
("renderer.inputs:cameraPrim", [usdrt.Sdf.Path("/World/dingo/base_link/realsense_frame/realsense_right_stereo_frame/realsense_right_stereo_camera")]),
("RGBPublish.inputs:topicName", "/right/rgb"),
("RGBPublish.inputs:type", "rgb"),
("RGBPublish.inputs:resetSimulationTimeOnStop", True),
("RGBPublish.inputs:frameId", "realsense_right_stereo_frame"),
("DepthPublish.inputs:topicName", "/right/depth"),
("DepthPublish.inputs:type", "depth"),
("DepthPublish.inputs:resetSimulationTimeOnStop", True),
("DepthPublish.inputs:frameId", "realsense_right_stereo_frame"),
("CameraInfoPublish.inputs:topicName", "/right/camera_info"),
("CameraInfoPublish.inputs:type", "camera_info"),
("CameraInfoPublish.inputs:resetSimulationTimeOnStop", True),
("CameraInfoPublish.inputs:frameId", "realsense_right_stereo_frame"),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "renderer.inputs:execIn"),
("context.outputs:context", "RGBPublish.inputs:context"),
("context.outputs:context", "DepthPublish.inputs:context"),
("context.outputs:context", "CameraInfoPublish.inputs:context"),
("renderer.outputs:execOut", "RGBPublish.inputs:execIn"),
("renderer.outputs:execOut", "DepthPublish.inputs:execIn"),
("renderer.outputs:execOut", "CameraInfoPublish.inputs:execIn"),
("renderer.outputs:renderProductPath", "RGBPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "DepthPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "CameraInfoPublish.inputs:renderProductPath"),
],
},
)
except Exception as e:
print(e)
def add_background(self):
bg_path = self._server_root + "/Projects/RBROS2/LibraryNoRoof/Library_No_Roof_Collide_Light.usd"
add_reference_to_stage(
usd_path=bg_path,
prim_path=f"/World/Library_No_Roof",
)
bg_mesh = UsdGeom.Mesh.Get(self._stage, "/World/Library_No_Roof")
# physicsUtils.set_or_add_translate_op(bg_mesh, translate=Gf.Vec3f(0.0, 0.0, 0.0))
# physicsUtils.set_or_add_orient_op(bg_mesh, orient=Gf.Quatf(-0.5, -0.5, -0.5, -0.5))
physicsUtils.set_or_add_scale_op(bg_mesh, scale=Gf.Vec3f(0.01, 0.01, 0.01))
def add_dingo(self):
dingo_usd_path = self._server_root + "/NVIDIA/Assets/Isaac/2023.1.1/Isaac/Robots/Clearpath/Dingo/dingo.usd"
add_reference_to_stage(
usd_path=dingo_usd_path,
prim_path=f"/World/dingo",
)
dingo_mesh = UsdGeom.Mesh.Get(self._stage, "/World/dingo")
physicsUtils.set_or_add_translate_op(dingo_mesh, translate=Gf.Vec3f(0.0, 0.0, 0.02))
# physicsUtils.set_or_add_orient_op(dingo_mesh, orient=Gf.Quatf(-0.5, -0.5, -0.5, -0.5))
# physicsUtils.set_or_add_scale_op(dingo_mesh, scale=Gf.Vec3f(0.001, 0.001, 0.001))
# Dingo Left Cam has a translation Error
left_cam = UsdGeom.Mesh.Get(self._stage, "/World/dingo/base_link/realsense_frame/realsense_left_stereo_frame/realsense_left_stereo_camera")
physicsUtils.set_or_add_translate_op(left_cam, translate=Gf.Vec3f(0.0, 0.0, 0.0))
def lidar_setup(self):
self._2d_lidar = RotatingLidarPhysX(
prim_path="/World/dingo/base_link/velodyne_frame/Lidar/laserscan_lidar",
name="laserscan_lidar",
translation=np.array([0.0, 0.0, 0.0]),
)
self._2d_lidar.set_valid_range([0.4, 10.0])
self._2d_lidar.add_depth_data_to_frame()
self._2d_lidar.add_point_cloud_data_to_frame()
self._2d_lidar.enable_visualization(high_lod=False, draw_points=False, draw_lines=False)
self._3d_lidar = RotatingLidarPhysX(
prim_path="/World/dingo/base_link/velodyne_frame/Lidar/pointcloud_lidar",
name="pointcloud_lidar",
translation=np.array([0.0, 0.0, 0.0]),
valid_range=(0.4, 10.0),
)
self._3d_lidar.set_resolution([0.4, 2.0])
self._3d_lidar.add_depth_data_to_frame()
self._3d_lidar.add_point_cloud_data_to_frame()
self._3d_lidar.enable_visualization(high_lod=True, draw_points=False, draw_lines=False)
def add_light(self):
sphereLight1 = UsdLux.SphereLight.Define(self._stage, Sdf.Path("/World/SphereLight1"))
sphereLight1.CreateIntensityAttr(100000)
sphereLight1.CreateRadiusAttr(100.0)
sphereLight1.AddTranslateOp().Set(Gf.Vec3f(885.0, 657.0, 226.0))
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self.simulation_context = SimulationContext()
self.add_background()
self.add_dingo()
self.lidar_setup()
self.og_setup()
return
async def setup_post_load(self):
self._world.add_physics_callback("sim_step", callback_fn=self.physics_callback) #callback names have to be unique
return
def physics_callback(self, step_size):
return
# async def setup_pre_reset(self):
# return
# async def setup_post_reset(self):
# return
def world_cleanup(self):
self._world.pause()
return
| 23,420 |
Python
| 54.368794 | 174 | 0.55205 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/DingoLibrary/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .replicator_basic import Scatter2D
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="Replicator",
name="Scatter2D",
title="Scatter2D",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=Scatter2D(),
)
return
| 2,043 |
Python
| 41.583332 | 135 | 0.739599 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/replicator_basic.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import open_stage
import omni.replicator.core as rep
import carb.settings
import numpy as np
from os.path import expanduser
import datetime
now = datetime.datetime.now()
class Scatter2D(BaseSample):
def __init__(self) -> None:
super().__init__()
self.assets_root_path = get_assets_root_path()
self._nucleus_server_path = "omniverse://localhost/NVIDIA/"
# Enable scripts
carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True)
# Disable capture on play and async rendering
carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False)
carb.settings.get_settings().set("/omni/replicator/asyncRendering", False)
carb.settings.get_settings().set("/app/asyncRendering", False)
self.spheres = None
self._sim_step = 0
self.collision_objects = []
# Replicator Writerdir
now_str = now.strftime("%Y-%m-%d_%H:%M:%S")
self._out_dir = str(expanduser("~") + "/Documents/scatter2D_sample_" + now_str)
return
def randomize_spheres(self):
self.spheres = rep.create.sphere(scale=0.5, count=5)
with self.spheres:
rep.randomizer.scatter_2d(self.collision_objects, check_for_collisions=True)
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
self.cam = rep.create.camera(position=(0, 0, 8), look_at=(0, 0, 0))
self.rp = rep.create.render_product(self.cam, resolution=(1024, 1024))
self.plane = rep.create.plane(scale=4, position = (0, 0, 0.1), rotation=(0, 0, 0), visible=True)
self.collision_objects.append(self.plane)
rep.randomizer.register(self.randomize_spheres)
return
async def setup_post_load(self):
with rep.trigger.on_frame(num_frames=20):
rep.randomizer.randomize_spheres()
# Create a writer and apply the augmentations to its corresponding annotators
self._writer = rep.WriterRegistry.get("BasicWriter")
print(f"Writing data to: {self._out_dir}")
self._writer.initialize(
output_dir=self._out_dir,
rgb=True,
bounding_box_2d_tight=True,
)
# Attach render product to writer
self._writer.attach([self.rp])
return
| 2,958 |
Python
| 33.811764 | 104 | 0.664976 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorScatter2D/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "RoadBalanceEdu"
EXTENSION_DESCRIPTION = ""
| 495 |
Python
| 37.153843 | 76 | 0.80404 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/ros2_twist_sub.py
|
import numpy as np
# ROS2 imports
import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32
from geometry_msgs.msg import Twist, PoseStamped
def quaternion_multiply(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
y = w1*y2 - x1*z2 + y1*w2 + z1*x2
z = w1*z2 + x1*y2 - y1*x2 + z1*w2
return np.array([w, x, y, z])
class QuestROS2Sub(Node):
def __init__(self):
super().__init__('questros2_subscriber')
queue_size = 10 # Queue Size
self._rh_twist_sub = self.create_subscription(
Twist, 'q2r_right_hand_twist', self.twist_sub_callback, queue_size
)
self._rh_pose_sub = self.create_subscription(
PoseStamped, 'q2r_right_hand_pose', self.pose_sub_callback, queue_size
)
self._rh_index_btn_sub = self.create_subscription(
Float32, 'right_press_index', self.btn_sub_callback, queue_size
)
self._cur_twist = Twist()
self._cur_pose = PoseStamped()
self._btn_press = False
def twist_sub_callback(self, msg):
# self.get_logger().info(f"""
# x : {msg.linear.x:.3f} / y : {msg.linear.y:.3f} / z : {msg.linear.z:.3f}
# r : {msg.angular.x:.3f} / p : {msg.angular.y:.3f} / y : {msg.angular.z:.3f}
# """)
self._cur_twist = msg
def pose_sub_callback(self, msg):
# self.get_logger().info(f"""
# x : {msg.pose.position.x:.3f} / y : {msg.pose.position.y:.3f} / z : {msg.pose.position.z:.3f}
# x : {msg.pose.orientation.x:.3f} / y : {msg.pose.orientation.y:.3f} / z : {msg.pose.orientation.z:.3f} / w : {msg.pose.orientation.w:.3f}
# """)
self._cur_pose = msg
def btn_sub_callback(self, msg):
if msg.data == 1.0:
self._btn_press = True
else:
self._btn_press = False
# print(f"msg.data: {msg.data} / self._btn_press: {self._btn_press}")
def get_twist(self):
# return self._cur_twist
lin_x, lin_y, lin_z = self._cur_twist.linear.x, self._cur_twist.linear.y, self._cur_twist.linear.z
ang_x, ang_y, ang_z = self._cur_twist.angular.x, self._cur_twist.angular.y, self._cur_twist.angular.z
lin_x *= 5
lin_y *= 2
lin_z *= 2
return [ lin_x, lin_y, lin_z, 0.0, 0.0, 0.0]
def get_pose(self, z_offset, q_offset):
position = np.array([
self._cur_pose.pose.position.x * 2,
self._cur_pose.pose.position.y * 2,
self._cur_pose.pose.position.z * 2 + z_offset
])
orientation = np.array([
self._cur_pose.pose.orientation.x,
self._cur_pose.pose.orientation.y,
self._cur_pose.pose.orientation.z,
self._cur_pose.pose.orientation.w
])
orientation = quaternion_multiply(q_offset, orientation)
isaac_orientation = np.array([
orientation[3],
orientation[0],
orientation[1],
orientation[2],
])
return position, isaac_orientation
def get_right_btn(self):
return self._btn_press
def main(args=None):
"""Do enter into this main function first."""
rclpy.init(args=args)
quest_ros2_sub = QuestROS2Sub()
rclpy.spin(quest_ros2_sub)
quest_ros2_sub.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
"""main function"""
main()
| 3,514 |
Python
| 28.291666 | 151 | 0.550939 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .franka_cabinet import FrankaCabinet
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ROS2 Examples",
name="FrankaCabinet",
title="FrankaCabinet",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FrankaCabinet(),
)
return
| 2,060 |
Python
| 41.937499 | 135 | 0.741262 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/franka_cabinet.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
import numpy as np
from omni.isaac.core.materials.physics_material import PhysicsMaterial
from omni.isaac.core.prims.geometry_prim import GeometryPrim
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
from pxr import UsdGeom, Gf, UsdPhysics, Sdf, Gf, Tf, UsdLux, UsdShade
from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController
from omni.isaac.franka import Franka
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
import carb
import omni
import rclpy
import asyncio
from .ros2_twist_sub import QuestROS2Sub
def addObjectsGeom(scene, name, scale, ini_pos, collision=None, mass=None, orientation=None):
scene.add(GeometryPrim(prim_path=f"/World/{name}", name=f"{name}_ref_geom", collision=True))
geom = scene.get_object(f"{name}_ref_geom")
if orientation is None:
# Usually - (x, y, z, w)
# But in Isaac Sim - (w, x, y, z)
orientation = np.array([1.0, 0.0, 0.0, 0.0])
geom.set_local_scale(scale)
geom.set_world_pose(position=ini_pos)
geom.set_default_state(position=ini_pos, orientation=orientation)
geom.set_collision_enabled(False)
if collision is not None:
geom.set_collision_enabled(True)
geom.set_collision_approximation(collision)
if mass is not None:
massAPI = UsdPhysics.MassAPI.Apply(geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(mass)
return geom
class FrankaCabinet(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
self._isaac_assets_path = get_assets_root_path()
self.CUBE_URL = self._isaac_assets_path + "/Isaac/Props/Blocks/nvidia_cube.usd"
self.CABINET_URL = self._server_root + "/Projects/RBROS2/Quest2ROS/sektin_cabinet_light.usd"
self._quest_ros2_sub_node = None
self._controller = None
self._articulation_controller = None
return
def __del__(self):
if self._quest_ros2_sub_node is not None:
self._quest_ros2_sub_node.destroy_node()
return
async def ros_loop(self):
while rclpy.ok():
rclpy.spin_once(self._quest_ros2_sub_node, timeout_sec=0)
await asyncio.sleep(1e-4)
def add_light(self):
sphereLight1 = UsdLux.SphereLight.Define(self._stage, Sdf.Path("/World/SphereLight"))
sphereLight1.CreateIntensityAttr(10000)
sphereLight1.CreateRadiusAttr(0.1)
sphereLight1.AddTranslateOp().Set(Gf.Vec3f(1.0, 0.0, 1.0))
def add_cabinet(self):
add_reference_to_stage(usd_path=self.CABINET_URL, prim_path=f"/World/Cabinet")
self._cabinet_geom = addObjectsGeom(
self._world.scene, "Cabinet",
scale=np.array([1.0, 1.0, 1.0]),
ini_pos=np.array([0.9, 0.4, 0.4]),
collision=None,
mass=None,
orientation=np.array([0.0, 0.0, 0.0, 1.0])
)
def add_franka(self):
self._franka = self._world.scene.add(
Franka(
prim_path="/World/Fancy_Franka",
name="fancy_franka"
)
)
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self._world.scene.add_default_ground_plane()
self.add_franka()
self.add_light()
self.add_cabinet()
return
def add_franka_material(self):
self._franka_finger_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/FrankaFingerMaterial",
name="franka_finger_material_physics",
static_friction=0.9,
dynamic_friction=0.9,
)
franka_left_finger = self._world.stage.GetPrimAtPath(
"/World/Fancy_Franka/panda_leftfinger/geometry/panda_leftfinger"
)
x = UsdShade.MaterialBindingAPI.Apply(franka_left_finger)
x.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
franka_right_finger = self._world.stage.GetPrimAtPath(
"/World/Fancy_Franka/panda_rightfinger/geometry/panda_rightfinger"
)
x2 = UsdShade.MaterialBindingAPI.Apply(franka_right_finger)
x2.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
async def setup_post_load(self):
self._world = self.get_world()
self._my_franka = self._world.scene.get_object("fancy_franka")
self._my_gripper = self._my_franka.gripper
self.add_franka_material()
# RMPFlow controller
self._controller = RMPFlowController(
name="target_follower_controller",
robot_articulation=self._my_franka
)
# ROS 2 init
rclpy.init(args=None)
self._quest_ros2_sub_node = QuestROS2Sub()
self._articulation_controller = self._my_franka.get_articulation_controller()
self._world.add_physics_callback("sim_step", callback_fn=self.physics_callback)
await self.ros_loop()
return
def physics_callback(self, step_size):
ee_position, ee_orientation = self._quest_ros2_sub_node.get_pose(
z_offset=0.8,
# z -180 > 0, 0, -1, 0
# q_offset=np.array([0.0, 0.0, 0.0, 1.0])
# x 90 / z -180
# q_offset=np.array([0, 0.7071068, -0.7071068, 0 ])
# y 90 / z -180
q_offset=np.array([-0.7071068, 0, -0.7071068, 0 ])
)
gripper_command = self._quest_ros2_sub_node.get_right_btn()
if np.array_equal( ee_position, np.array([0.0, 0.0, 0.0]) ):
ee_position = np.array([0.4, 0, 0.5])
if gripper_command:
self._my_gripper.close()
else:
self._my_gripper.open()
# RMPFlow controller
actions = self._controller.forward(
target_end_effector_position=ee_position,
# target_end_effector_orientation=ee_orientation,
# w x y z => x y z w
# 0 0 1 0 => 0 1 0 0
# 0 0 1 0 => 0 1 0 0
target_end_effector_orientation=np.array([
0.5,
-0.5,
0.5,
-0.5
]),
)
self._articulation_controller.apply_action(actions)
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
return
async def setup_post_reset(self):
self._controller.reset()
await self._world.play_async()
return
def world_cleanup(self):
self._world.pause()
self._controller = None
return
| 7,808 |
Python
| 34.175676 | 116 | 0.616931 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/FrankaCabinet/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .kaya_robot import KayaRobot
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="WheeledRobots",
name="KayaRobot",
title="KayaRobot",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=KayaRobot(),
)
return
| 2,040 |
Python
| 41.520832 | 135 | 0.739216 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/kaya_robot.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController
from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup
import numpy as np
class KayaRobot(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
assets_root_path = get_assets_root_path()
kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd"
self._wheeled_robot = world.scene.add(
WheeledRobot(
prim_path="/World/Kaya",
name="my_kaya",
wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"],
create_robot=True,
usd_path=kaya_asset_path,
position=np.array([0, 0.0, 0.02]),
orientation=np.array([1.0, 0.0, 0.0, 0.0]),
)
)
self._save_count = 0
return
async def setup_post_load(self):
self._world = self.get_world()
kaya_setup = HolonomicRobotUsdSetup(
robot_prim_path=self._wheeled_robot.prim_path, com_prim_path="/World/Kaya/base_link/control_offset"
)
(
wheel_radius,
wheel_positions,
wheel_orientations,
mecanum_angles,
wheel_axis,
up_axis,
) = kaya_setup.get_holonomic_controller_params()
self._holonomic_controller = HolonomicController(
name="holonomic_controller",
wheel_radius=wheel_radius,
wheel_positions=wheel_positions,
wheel_orientations=wheel_orientations,
mecanum_angles=mecanum_angles,
wheel_axis=wheel_axis,
up_axis=up_axis,
)
print("wheel_radius : ", wheel_radius)
print("wheel_positions : ", wheel_positions)
print("wheel_orientations : ", wheel_orientations)
print("mecanum_angles : ", mecanum_angles)
print("wheel_axis : ", wheel_axis)
print("up_axis : ", up_axis)
self._holonomic_controller.reset()
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
return
def send_robot_actions(self, step_size):
self._save_count += 1
wheel_action = None
if self._save_count >= 0 and self._save_count < 300:
wheel_action = self._holonomic_controller.forward(command=[0.5, 0.0, 0.0])
elif self._save_count >= 300 and self._save_count < 600:
wheel_action = self._holonomic_controller.forward(command=[-0.5, 0.0, 0.0])
elif self._save_count >= 600 and self._save_count < 900:
wheel_action = self._holonomic_controller.forward(command=[0.0, 0.5, 0.0])
elif self._save_count >= 900 and self._save_count < 1200:
wheel_action = self._holonomic_controller.forward(command=[0.0, -0.5, 0.0])
elif self._save_count >= 1200 and self._save_count < 1500:
wheel_action = self._holonomic_controller.forward(command=[0.0, 0.0, 0.2])
elif self._save_count >= 1500 and self._save_count < 1800:
wheel_action = self._holonomic_controller.forward(command=[0.0, 0.0, -0.2])
else:
self._save_count = 0
self._wheeled_robot.apply_wheel_actions(wheel_action)
return
| 4,150 |
Python
| 37.435185 | 111 | 0.62241 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotsKaya/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .limo_diff_drive import LimoDiffDrive
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="WegoRobotics",
name="LimoDiffDriveROS2",
title="LimoDiffDriveROS2",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=LimoDiffDrive(),
)
return
| 2,068 |
Python
| 42.104166 | 135 | 0.742263 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/limo_diff_drive.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from pxr import UsdGeom, Gf, UsdPhysics, Sdf, Gf, Tf, UsdLux
from omni.physx.scripts import deformableUtils, physicsUtils
import omni.graph.core as og
import numpy as np
import usdrt.Sdf
import omni
import carb
class LimoDiffDrive(BaseSample):
def __init__(self) -> None:
super().__init__()
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
self.TRACK_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/LIMO_simulation_table.usd"
self.ROBOT_PATH = self._server_root + "/Projects/WegoLimo/Limo/limo_diff_thin.usd"
self.LIGHT_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/Traffic_Light.usdz"
self.STOP_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/Stop_Sign.usdz"
self.HYDRANT_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/Hydrant.usdz"
self.PARK_BENCH_PATH = self._server_root + "/Projects/WegoLimo/LimoTrack/Park_Bench.usdz"
# omniverse://localhost/Projects/WegoLimo/LimoTrack/Traffic_Light.usdz
self._domain_id = 30
self._maxLinearSpeed = 1e6
self._wheelDistance = 0.43
self._wheelRadius = 0.045
self._front_jointNames = ["rear_left_wheel", "rear_right_wheel"]
self._rear_jointNames = ["front_left_wheel", "front_right_wheel"]
self._contorl_targetPrim = "/World/Limo/base_link"
self._odom_targetPrim = "/World/Limo/base_footprint"
self._cameraPath = "/World/Limo/depth_link/rgb_camera"
return
def og_setup(self):
try:
# OG reference : https://docs.omniverse.nvidia.com/isaacsim/latest/ros2_tutorials/tutorial_ros2_drive_turtlebot.html
og.Controller.edit(
{"graph_path": "/ROS2DiffDrive", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("subscribeTwist", "omni.isaac.ros2_bridge.ROS2SubscribeTwist"),
("scaleToFromStage", "omni.isaac.core_nodes.OgnIsaacScaleToFromStageUnit"),
("breakLinVel", "omni.graph.nodes.BreakVector3"),
("breakAngVel", "omni.graph.nodes.BreakVector3"),
("diffController", "omni.isaac.wheeled_robots.DifferentialController"),
("artControllerRear", "omni.isaac.core_nodes.IsaacArticulationController"),
("artControllerFront", "omni.isaac.core_nodes.IsaacArticulationController"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("diffController.inputs:maxLinearSpeed", self._maxLinearSpeed),
("diffController.inputs:wheelDistance", self._wheelDistance),
("diffController.inputs:wheelRadius", self._wheelRadius),
("artControllerRear.inputs:jointNames", self._front_jointNames),
("artControllerRear.inputs:targetPrim", [usdrt.Sdf.Path(self._contorl_targetPrim)]),
("artControllerRear.inputs:usePath", False),
("artControllerFront.inputs:jointNames", self._rear_jointNames),
("artControllerFront.inputs:targetPrim", [usdrt.Sdf.Path(self._contorl_targetPrim)]),
("artControllerFront.inputs:usePath", False),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "subscribeTwist.inputs:execIn"),
("onPlaybackTick.outputs:tick", "artControllerRear.inputs:execIn"),
("onPlaybackTick.outputs:tick", "artControllerFront.inputs:execIn"),
("context.outputs:context", "subscribeTwist.inputs:context"),
("subscribeTwist.outputs:execOut", "diffController.inputs:execIn"),
("subscribeTwist.outputs:angularVelocity", "breakAngVel.inputs:tuple"),
("subscribeTwist.outputs:linearVelocity", "scaleToFromStage.inputs:value"),
("scaleToFromStage.outputs:result", "breakLinVel.inputs:tuple"),
("breakAngVel.outputs:z", "diffController.inputs:angularVelocity"),
("breakLinVel.outputs:x", "diffController.inputs:linearVelocity"),
("diffController.outputs:velocityCommand", "artControllerRear.inputs:velocityCommand"),
("diffController.outputs:velocityCommand", "artControllerFront.inputs:velocityCommand"),
],
},
)
# OG reference : https://docs.omniverse.nvidia.com/isaacsim/latest/ros2_tutorials/tutorial_ros2_tf.html
og.Controller.edit(
{"graph_path": "/ROS2Odom", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"),
("computeOdom", "omni.isaac.core_nodes.IsaacComputeOdometry"),
("publishOdom", "omni.isaac.ros2_bridge.ROS2PublishOdometry"),
("publishRawTF", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("computeOdom.inputs:chassisPrim", [usdrt.Sdf.Path(self._odom_targetPrim)]),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "computeOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishOdom.inputs:execIn"),
("onPlaybackTick.outputs:tick", "publishRawTF.inputs:execIn"),
("readSimTime.outputs:simulationTime", "publishOdom.inputs:timeStamp"),
("readSimTime.outputs:simulationTime", "publishRawTF.inputs:timeStamp"),
("context.outputs:context", "publishOdom.inputs:context"),
("context.outputs:context", "publishRawTF.inputs:context"),
("computeOdom.outputs:angularVelocity", "publishOdom.inputs:angularVelocity"),
("computeOdom.outputs:linearVelocity", "publishOdom.inputs:linearVelocity"),
("computeOdom.outputs:orientation", "publishOdom.inputs:orientation"),
("computeOdom.outputs:position", "publishOdom.inputs:position"),
("computeOdom.outputs:orientation", "publishRawTF.inputs:rotation"),
("computeOdom.outputs:position", "publishRawTF.inputs:translation"),
],
},
)
# Right Camera OG
og.Controller.edit(
{"graph_path": "/ROS2Camera", "evaluator_name": "execution"},
{
og.Controller.Keys.CREATE_NODES: [
("onPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("context", "omni.isaac.ros2_bridge.ROS2Context"),
("renderer", "omni.isaac.core_nodes.IsaacCreateRenderProduct"),
("RGBPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("DepthPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("CameraInfoPublish", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
og.Controller.Keys.SET_VALUES: [
("context.inputs:domain_id", self._domain_id),
("renderer.inputs:cameraPrim", [usdrt.Sdf.Path(self._cameraPath)]),
("RGBPublish.inputs:topicName", "/limo/rgb"),
("RGBPublish.inputs:type", "rgb"),
("RGBPublish.inputs:resetSimulationTimeOnStop", True),
("RGBPublish.inputs:frameId", "limo_rgbd_frame"),
("DepthPublish.inputs:topicName", "/limo/depth"),
("DepthPublish.inputs:type", "depth"),
("DepthPublish.inputs:resetSimulationTimeOnStop", True),
("DepthPublish.inputs:frameId", "limo_rgbd_frame"),
("CameraInfoPublish.inputs:topicName", "/limo/camera_info"),
("CameraInfoPublish.inputs:type", "camera_info"),
("CameraInfoPublish.inputs:resetSimulationTimeOnStop", True),
("CameraInfoPublish.inputs:frameId", "limo_rgbd_frame"),
],
og.Controller.Keys.CONNECT: [
("onPlaybackTick.outputs:tick", "renderer.inputs:execIn"),
("context.outputs:context", "RGBPublish.inputs:context"),
("context.outputs:context", "DepthPublish.inputs:context"),
("context.outputs:context", "CameraInfoPublish.inputs:context"),
("renderer.outputs:execOut", "RGBPublish.inputs:execIn"),
("renderer.outputs:execOut", "DepthPublish.inputs:execIn"),
("renderer.outputs:execOut", "CameraInfoPublish.inputs:execIn"),
("renderer.outputs:renderProductPath", "RGBPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "DepthPublish.inputs:renderProductPath"),
("renderer.outputs:renderProductPath", "CameraInfoPublish.inputs:renderProductPath"),
],
},
)
except Exception as e:
print(e)
def add_background(self):
add_reference_to_stage(usd_path=self.TRACK_PATH, prim_path="/World/LimoTrack")
bg_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/LimoTrack")
physicsUtils.set_or_add_scale_op(bg_mesh, scale=Gf.Vec3f(0.01, 0.01, 0.01))
def add_robot(self):
add_reference_to_stage(usd_path=self.ROBOT_PATH, prim_path="/World/Limo")
limo_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/Limo")
physicsUtils.set_or_add_translate_op(limo_mesh, translate=Gf.Vec3f(0.0, -0.18, 0.0))
def add_light(self):
distantLight1 = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/distantLight1"))
distantLight1.CreateIntensityAttr(3000)
distantLight1.AddTranslateOp().Set(Gf.Vec3f(0.0, 0.0, 0.0))
def add_objects(self):
# Add Traffic Light
add_reference_to_stage(usd_path=self.LIGHT_PATH, prim_path="/World/TrafficLight")
light_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/TrafficLight")
physicsUtils.set_or_add_translate_op(light_mesh, translate=Gf.Vec3f(0.8, 0.0, 0.0))
physicsUtils.set_or_add_orient_op(light_mesh, orient=Gf.Quatf(
# w, x, y, z
0.5, 0.5, -0.5, -0.5
))
physicsUtils.set_or_add_scale_op(light_mesh, scale=Gf.Vec3f(0.001, 0.001, 0.001))
# Add Stop Sign
add_reference_to_stage(usd_path=self.STOP_PATH, prim_path="/World/StopSign")
stop_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/StopSign")
physicsUtils.set_or_add_translate_op(stop_mesh, translate=Gf.Vec3f(0.8, -0.1, 0.0))
physicsUtils.set_or_add_orient_op(stop_mesh, orient=Gf.Quatf(
0.5, 0.5, -0.5, -0.5
))
physicsUtils.set_or_add_scale_op(stop_mesh, scale=Gf.Vec3f(0.001, 0.001, 0.001))
# Add Hydrant
add_reference_to_stage(usd_path=self.HYDRANT_PATH, prim_path="/World/Hydrant")
hydrant_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/Hydrant")
physicsUtils.set_or_add_translate_op(hydrant_mesh, translate=Gf.Vec3f(0.8, -0.2, 0.04))
physicsUtils.set_or_add_orient_op(hydrant_mesh, orient=Gf.Quatf(
0.5, 0.5, -0.5, -0.5
))
physicsUtils.set_or_add_scale_op(hydrant_mesh, scale=Gf.Vec3f(0.001, 0.001, 0.001))
# Add Park Bench
add_reference_to_stage(usd_path=self.PARK_BENCH_PATH, prim_path="/World/ParkBench")
bench_mesh = UsdGeom.Mesh.Get(omni.usd.get_context().get_stage(), "/World/ParkBench")
physicsUtils.set_or_add_translate_op(bench_mesh, translate=Gf.Vec3f(0.8, -0.4, 0.0))
physicsUtils.set_or_add_orient_op(bench_mesh, orient=Gf.Quatf(
0.5, 0.5, 0.5, 0.5
))
physicsUtils.set_or_add_scale_op(bench_mesh, scale=Gf.Vec3f(0.001, 0.001, 0.001))
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
self.add_background()
self.add_light()
self.add_robot()
self.add_objects()
self.og_setup()
self._save_count = 0
return
async def setup_post_load(self):
self._world = self.get_world()
# self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
return
async def setup_pre_reset(self):
if self._world.physics_callback_exists("sim_step"):
self._world.remove_physics_callback("sim_step")
self._world.pause()
return
async def setup_post_reset(self):
await self._world.play_async()
self._world.pause()
return
def world_cleanup(self):
self._world.pause()
return
| 14,810 |
Python
| 55.315589 | 128 | 0.586496 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/LimoDiffROS2/README.md
|
# Loading Extension
To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator
# Extension Usage
This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop
custom UI tools with minimal boilerplate code.
# Template Code Overview
The template is well documented and is meant to be self-explanatory to the user should they
start reading the provided python files. A short overview is also provided here:
global_variables.py:
A script that stores in global variables that the user specified when creating this extension such as the Title and Description.
extension.py:
A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This
class is meant to fulfill most ues-cases without modification.
In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py.
ui_builder.py:
This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been
set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is
the most thoroughly documented, and the user should read through it before making serious modification.
| 1,488 |
Markdown
| 58.559998 | 132 | 0.793011 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ETRIcable/cable_demo.py
|
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.franka.controllers import PickPlaceController
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka import Franka
from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.core.prims.geometry_prim import GeometryPrim
from omni.isaac.franka import Franka
from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from pxr import UsdGeom, Gf, UsdPhysics, Sdf, Gf, Tf, UsdLux
from omni.isaac.core import SimulationContext
import omni.physx.bindings._physx as physx_bindings
from omni.physx.scripts import utils, physicsUtils
import omni.physxdemos as demo
from pxr import UsdLux, UsdGeom, Sdf, Gf, UsdPhysics, UsdShade, PhysxSchema
import numpy as np
import carb
import omni
def createSdfResolution(stage, primPath, kinematic=False):
bodyPrim = stage.GetPrimAtPath(primPath)
meshCollision = PhysxSchema.PhysxSDFMeshCollisionAPI.Apply(bodyPrim)
meshCollision.CreateSdfResolutionAttr().Set(350)
def createRigidBody(stage, primPath, kinematic=False):
bodyPrim = stage.GetPrimAtPath(primPath)
rigid_api = UsdPhysics.RigidBodyAPI.Apply(bodyPrim)
rigid_api.CreateRigidBodyEnabledAttr(True)
def addObjectsGeom(scene, name, scale, ini_pos, collision=None, mass=None, orientation=None):
scene.add(GeometryPrim(prim_path=f"/World/{name}", name=f"{name}_ref_geom", collision=True))
geom = scene.get_object(f"{name}_ref_geom")
if orientation is None:
# Usually - (x, y, z, w)
# But in Isaac Sim - (w, x, y, z)
orientation = np.array([1.0, 0.0, 0.0, 0.0])
geom.set_local_scale(scale)
geom.set_world_pose(position=ini_pos)
geom.set_default_state(position=ini_pos, orientation=orientation)
geom.set_collision_enabled(False)
if collision is not None:
geom.set_collision_enabled(True)
geom.set_collision_approximation(collision)
if mass is not None:
massAPI = UsdPhysics.MassAPI.Apply(geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(mass)
return geom
class CableDemo(BaseSample):
def __init__(self) -> None:
super().__init__()
# Nucleus Path Configuration
carb.log_info("Check /persistent/isaac/asset_root/default setting")
default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default")
self._server_root = get_url_root(default_asset_root)
# self.USB_MALE_PATH = self._server_root + "/Projects/ETRI/USB_A/USB_A_2_Male_modi1_3.usd"
self.USB_MALE_PATH = self._server_root + "/Projects/ETRI/USB_A/USB_A_2_Male_modi1_3_pure.usd"
self.USB_FEMALE_PATH = self._server_root + "/Projects/ETRI/USB_A/USB_A_2_Female_modi1_7.usd"
# configure ropes:
rope_length = 300
num_ropes = 3
self._defaultPrimPath = Sdf.Path("/World")
self._linkHalfLength = 3
self._linkRadius = 0.5 * self._linkHalfLength
self._ropeLength = rope_length
self._numRopes = num_ropes
self._ropeSpacing = 15.0
self._ropeColor = demo.get_primary_color()
self._coneAngleLimit = 110
self._rope_damping = 10.0
self._rope_stiffness = 1.0
# configure collider capsule:
self._capsuleZ = 50.0
self._capsuleHeight = 400.0
self._capsuleRadius = 20.0
self._capsuleRestOffset = -2.0
self._capsuleColor = demo.get_static_color()
return
def _createCapsule(self, path: Sdf.Path):
capsuleGeom = UsdGeom.Capsule.Define(self._stage, path)
capsuleGeom.CreateHeightAttr(self._linkHalfLength)
capsuleGeom.CreateRadiusAttr(self._linkRadius)
capsuleGeom.CreateAxisAttr("X")
capsuleGeom.CreateDisplayColorAttr().Set([self._ropeColor])
UsdPhysics.CollisionAPI.Apply(capsuleGeom.GetPrim())
UsdPhysics.RigidBodyAPI.Apply(capsuleGeom.GetPrim())
massAPI = UsdPhysics.MassAPI.Apply(capsuleGeom.GetPrim())
massAPI.CreateDensityAttr().Set(0.00005)
physxCollisionAPI = PhysxSchema.PhysxCollisionAPI.Apply(capsuleGeom.GetPrim())
physxCollisionAPI.CreateRestOffsetAttr().Set(0.0)
physxCollisionAPI.CreateContactOffsetAttr().Set(self._contactOffset)
physicsUtils.add_physics_material_to_prim(self._stage, capsuleGeom.GetPrim(), self._physicsMaterialPath)
def _createJoint(self, jointPath):
joint = UsdPhysics.Joint.Define(self._stage, jointPath)
# locked DOF (lock - low is greater than high)
d6Prim = joint.GetPrim()
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "rotX")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
# Moving DOF:
dofs = ["rotY", "rotZ"]
for d in dofs:
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, d)
limitAPI.CreateLowAttr(-self._coneAngleLimit)
limitAPI.CreateHighAttr(self._coneAngleLimit)
# joint drives for rope dynamics:
driveAPI = UsdPhysics.DriveAPI.Apply(d6Prim, d)
driveAPI.CreateTypeAttr("force")
driveAPI.CreateDampingAttr(self._rope_damping)
driveAPI.CreateStiffnessAttr(self._rope_stiffness)
def _createRopes(self):
linkLength = 2.0 * self._linkHalfLength - self._linkRadius
numLinks = int(self._ropeLength / linkLength)
xStart = -numLinks * linkLength * 0.5
yStart = -(self._numRopes // 2) * self._ropeSpacing
for ropeInd in range(self._numRopes):
scopePath = self._defaultPrimPath.AppendChild(f"Rope{ropeInd}")
UsdGeom.Scope.Define(self._stage, scopePath)
# capsule instancer
instancerPath = scopePath.AppendChild("rigidBodyInstancer")
rboInstancer = UsdGeom.PointInstancer.Define(self._stage, instancerPath)
capsulePath = instancerPath.AppendChild("capsule")
self._createCapsule(capsulePath)
meshIndices = []
positions = []
orientations = []
y = yStart + ropeInd * self._ropeSpacing
z = self._capsuleZ + self._capsuleRadius + self._linkRadius * 1.4
for linkInd in range(numLinks):
meshIndices.append(0)
x = xStart + linkInd * linkLength
positions.append(Gf.Vec3f(x, y, z))
orientations.append(Gf.Quath(1.0))
meshList = rboInstancer.GetPrototypesRel()
# add mesh reference to point instancer
meshList.AddTarget(capsulePath)
rboInstancer.GetProtoIndicesAttr().Set(meshIndices)
rboInstancer.GetPositionsAttr().Set(positions)
rboInstancer.GetOrientationsAttr().Set(orientations)
# joint instancer
jointInstancerPath = scopePath.AppendChild("jointInstancer")
jointInstancer = PhysxSchema.PhysxPhysicsJointInstancer.Define(self._stage, jointInstancerPath)
jointPath = jointInstancerPath.AppendChild("joint")
self._createJoint(jointPath)
meshIndices = []
body0s = []
body0indices = []
localPos0 = []
localRot0 = []
body1s = []
body1indices = []
localPos1 = []
localRot1 = []
body0s.append(instancerPath)
body1s.append(instancerPath)
jointX = self._linkHalfLength - 0.5 * self._linkRadius
for linkInd in range(numLinks - 1):
meshIndices.append(0)
body0indices.append(linkInd)
body1indices.append(linkInd + 1)
localPos0.append(Gf.Vec3f(jointX, 0, 0))
localPos1.append(Gf.Vec3f(-jointX, 0, 0))
localRot0.append(Gf.Quath(1.0))
localRot1.append(Gf.Quath(1.0))
meshList = jointInstancer.GetPhysicsPrototypesRel()
meshList.AddTarget(jointPath)
jointInstancer.GetPhysicsProtoIndicesAttr().Set(meshIndices)
jointInstancer.GetPhysicsBody0sRel().SetTargets(body0s)
jointInstancer.GetPhysicsBody0IndicesAttr().Set(body0indices)
jointInstancer.GetPhysicsLocalPos0sAttr().Set(localPos0)
jointInstancer.GetPhysicsLocalRot0sAttr().Set(localRot0)
jointInstancer.GetPhysicsBody1sRel().SetTargets(body1s)
jointInstancer.GetPhysicsBody1IndicesAttr().Set(body1indices)
jointInstancer.GetPhysicsLocalPos1sAttr().Set(localPos1)
jointInstancer.GetPhysicsLocalRot1sAttr().Set(localRot1)
def setup_scene(self):
self._world = self.get_world()
self._stage = omni.usd.get_context().get_stage()
# self._world.scene.add_default_ground_plane()
# physics options:
self._contactOffset = 2.0
self._physicsMaterialPath = self._defaultPrimPath.AppendChild("PhysicsMaterial")
UsdShade.Material.Define(self._stage, self._physicsMaterialPath)
material = UsdPhysics.MaterialAPI.Apply(self._stage.GetPrimAtPath(self._physicsMaterialPath))
material.CreateStaticFrictionAttr().Set(0.5)
material.CreateDynamicFrictionAttr().Set(0.5)
material.CreateRestitutionAttr().Set(0)
self._world.scene.add_ground_plane()
# self.setup_simulation()
self.add_light(self._world.scene.stage)
# self._createRopes()
# # USB Male
# add_reference_to_stage(usd_path=self.USB_MALE_PATH, prim_path=f"/World/usb_male")
# createSdfResolution(self._world.scene.stage, "/World/usb_male")
# createRigidBody(self._world.scene.stage, "/World/usb_male")
# self._usb_male_geom = addObjectsGeom(
# self._world.scene, "usb_male",
# scale=np.array([0.02, 0.02, 0.02]),
# ini_pos=np.array([0.5, 0.2, -0.01]),
# # ini_pos=np.array([0.50037, -0.2, 0.06578]),
# collision="sdf",
# mass=None,
# orientation=None
# )
self.simulation_context = SimulationContext()
return
def add_light(self, stage):
sphereLight = UsdLux.SphereLight.Define(stage, Sdf.Path("/World/SphereLight"))
sphereLight.CreateRadiusAttr(0.2)
sphereLight.CreateIntensityAttr(30000)
sphereLight.AddTranslateOp().Set(Gf.Vec3f(0.0, 0.0, 2.0))
def setup_simulation(self):
self._scene = PhysicsContext()
# self._scene.set_solver_type("TGS")
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
# self._scene.set_friction_offset_threshold(0.01)
# self._scene.set_friction_correlation_distance(0.0005)
# self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024)
# self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024)
# self._scene.set_gpu_heap_capacity(64 * 1024 * 1024)
# self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024)
# # added because of new errors regarding collisionstacksize
# physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(get_prim_at_path("/physicsScene"))
# physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(76000000) # or whatever min is needed
async def setup_post_load(self):
self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
return
def physics_step(self, step_size):
return
async def setup_pre_reset(self):
return
async def setup_post_reset(self):
await self._world.play_async()
return
def world_cleanup(self):
return
| 12,777 |
Python
| 40.487013 | 112 | 0.648666 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ETRIcable/global_variables.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
EXTENSION_TITLE = "MyExtension"
EXTENSION_DESCRIPTION = ""
| 492 |
Python
| 36.923074 | 76 | 0.802846 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ETRIcable/extension.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from .cable_demo import CableDemo
"""
This file serves as a basic template for the standard boilerplate operations
that make a UI-based extension appear on the toolbar.
This implementation is meant to cover most use-cases without modification.
Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py
Most users will be able to make their desired UI extension by interacting solely with
UIBuilder.
This class sets up standard useful callback functions in UIBuilder:
on_menu_callback: Called when extension is opened
on_timeline_event: Called when timeline is stopped, paused, or played
on_physics_step: Called on every physics step
on_stage_event: Called when stage is opened or closed
cleanup: Called when resources such as physics subscriptions should be cleaned up
build_ui: User function that creates the UI they want.
"""
class Extension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="RoadBalanceEdu",
submenu_name="ETRIReal",
name="CableDemo",
title="CableDemo",
doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=CableDemo(),
)
return
| 2,035 |
Python
| 41.416666 | 135 | 0.738575 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ETRIcable/__init__.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import Extension
| 464 |
Python
| 45.499995 | 76 | 0.814655 |
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ETRIcable/ui_builder.py
|
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
from typing import List
import omni.ui as ui
from omni.isaac.ui.element_wrappers import (
Button,
CheckBox,
CollapsableFrame,
ColorPicker,
DropDown,
FloatField,
IntField,
StateButton,
StringField,
TextBlock,
XYPlot,
)
from omni.isaac.ui.ui_utils import get_style
class UIBuilder:
def __init__(self):
# Frames are sub-windows that can contain multiple UI elements
self.frames = []
# UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers
self.wrapped_ui_elements = []
###################################################################################
# The Functions Below Are Called Automatically By extension.py
###################################################################################
def on_menu_callback(self):
"""Callback for when the UI is opened from the toolbar.
This is called directly after build_ui().
"""
pass
def on_timeline_event(self, event):
"""Callback for Timeline events (Play, Pause, Stop)
Args:
event (omni.timeline.TimelineEventType): Event Type
"""
pass
def on_physics_step(self, step):
"""Callback for Physics Step.
Physics steps only occur when the timeline is playing
Args:
step (float): Size of physics step
"""
pass
def on_stage_event(self, event):
"""Callback for Stage Events
Args:
event (omni.usd.StageEventType): Event Type
"""
pass
def cleanup(self):
"""
Called when the stage is closed or the extension is hot reloaded.
Perform any necessary cleanup such as removing active callback functions
Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called
"""
# None of the UI elements in this template actually have any internal state that needs to be cleaned up.
# But it is best practice to call cleanup() on all wrapped UI elements to simplify development.
for ui_elem in self.wrapped_ui_elements:
ui_elem.cleanup()
def build_ui(self):
"""
Build a custom UI tool to run your extension.
This function will be called any time the UI window is closed and reopened.
"""
# Create a UI frame that prints the latest UI event.
self._create_status_report_frame()
# Create a UI frame demonstrating simple UI elements for user input
self._create_simple_editable_fields_frame()
# Create a UI frame with different button types
self._create_buttons_frame()
# Create a UI frame with different selection widgets
self._create_selection_widgets_frame()
# Create a UI frame with different plotting tools
self._create_plotting_frame()
def _create_status_report_frame(self):
self._status_report_frame = CollapsableFrame("Status Report", collapsed=False)
with self._status_report_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
self._status_report_field = TextBlock(
"Last UI Event",
num_lines=3,
tooltip="Prints the latest change to this UI",
include_copy_button=True,
)
def _create_simple_editable_fields_frame(self):
self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False)
with self._simple_fields_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
int_field = IntField(
"Int Field",
default_value=1,
tooltip="Type an int or click and drag to set a new value.",
lower_limit=-100,
upper_limit=100,
on_value_changed_fn=self._on_int_field_value_changed_fn,
)
self.wrapped_ui_elements.append(int_field)
float_field = FloatField(
"Float Field",
default_value=1.0,
tooltip="Type a float or click and drag to set a new value.",
step=0.5,
format="%.2f",
lower_limit=-100.0,
upper_limit=100.0,
on_value_changed_fn=self._on_float_field_value_changed_fn,
)
self.wrapped_ui_elements.append(float_field)
def is_usd_or_python_path(file_path: str):
# Filter file paths shown in the file picker to only be USD or Python files
_, ext = os.path.splitext(file_path.lower())
return ext == ".usd" or ext == ".py"
string_field = StringField(
"String Field",
default_value="Type Here or Use File Picker on the Right",
tooltip="Type a string or use the file picker to set a value",
read_only=False,
multiline_okay=False,
on_value_changed_fn=self._on_string_field_value_changed_fn,
use_folder_picker=True,
item_filter_fn=is_usd_or_python_path,
)
self.wrapped_ui_elements.append(string_field)
def _create_buttons_frame(self):
buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False)
with buttons_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
button = Button(
"Button",
"CLICK ME",
tooltip="Click This Button to activate a callback function",
on_click_fn=self._on_button_clicked_fn,
)
self.wrapped_ui_elements.append(button)
state_button = StateButton(
"State Button",
"State A",
"State B",
tooltip="Click this button to transition between two states",
on_a_click_fn=self._on_state_btn_a_click_fn,
on_b_click_fn=self._on_state_btn_b_click_fn,
physics_callback_fn=None, # See Loaded Scenario Template for example usage
)
self.wrapped_ui_elements.append(state_button)
check_box = CheckBox(
"Check Box",
default_value=False,
tooltip=" Click this checkbox to activate a callback function",
on_click_fn=self._on_checkbox_click_fn,
)
self.wrapped_ui_elements.append(check_box)
def _create_selection_widgets_frame(self):
self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False)
with self._selection_widgets_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def dropdown_populate_fn():
return ["Option A", "Option B", "Option C"]
dropdown = DropDown(
"Drop Down",
tooltip=" Select an option from the DropDown",
populate_fn=dropdown_populate_fn,
on_selection_fn=self._on_dropdown_item_selection,
)
self.wrapped_ui_elements.append(dropdown)
dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn
color_picker = ColorPicker(
"Color Picker",
default_value=[0.69, 0.61, 0.39, 1.0],
tooltip="Select a Color",
on_color_picked_fn=self._on_color_picked,
)
self.wrapped_ui_elements.append(color_picker)
def _create_plotting_frame(self):
self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False)
with self._plotting_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
import numpy as np
x = np.arange(-1, 6.01, 0.01)
y = np.sin((x - 0.5) * np.pi)
plot = XYPlot(
"XY Plot",
tooltip="Press mouse over the plot for data label",
x_data=[x[:300], x[100:400], x[200:]],
y_data=[y[:300], y[100:400], y[200:]],
x_min=None, # Use default behavior to fit plotted data to entire frame
x_max=None,
y_min=-1.5,
y_max=1.5,
x_label="X [rad]",
y_label="Y",
plot_height=10,
legends=["Line 1", "Line 2", "Line 3"],
show_legend=True,
plot_colors=[
[255, 0, 0],
[0, 255, 0],
[0, 100, 200],
], # List of [r,g,b] values; not necessary to specify
)
######################################################################################
# Functions Below This Point Are Callback Functions Attached to UI Element Wrappers
######################################################################################
def _on_int_field_value_changed_fn(self, new_value: int):
status = f"Value was changed in int field to {new_value}"
self._status_report_field.set_text(status)
def _on_float_field_value_changed_fn(self, new_value: float):
status = f"Value was changed in float field to {new_value}"
self._status_report_field.set_text(status)
def _on_string_field_value_changed_fn(self, new_value: str):
status = f"Value was changed in string field to {new_value}"
self._status_report_field.set_text(status)
def _on_button_clicked_fn(self):
status = "The Button was Clicked!"
self._status_report_field.set_text(status)
def _on_state_btn_a_click_fn(self):
status = "State Button was Clicked in State A!"
self._status_report_field.set_text(status)
def _on_state_btn_b_click_fn(self):
status = "State Button was Clicked in State B!"
self._status_report_field.set_text(status)
def _on_checkbox_click_fn(self, value: bool):
status = f"CheckBox was set to {value}!"
self._status_report_field.set_text(status)
def _on_dropdown_item_selection(self, item: str):
status = f"{item} was selected from DropDown"
self._status_report_field.set_text(status)
def _on_color_picked(self, color: List[float]):
formatted_color = [float("%0.2f" % i) for i in color]
status = f"RGBA Color {formatted_color} was picked in the ColorPicker"
self._status_report_field.set_text(status)
| 11,487 |
Python
| 38.888889 | 112 | 0.542178 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.