file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/tasks/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. #
428
Python
46.666661
76
0.808411
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/controllers/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.quadruped.controllers.qp_controller import A1QPController from omni.isaac.quadruped.controllers.a1_robot_control import A1RobotControl
580
Python
47.416663
76
0.824138
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/controllers/a1_robot_control.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np # bezier is used in leg trajectory generation import bezier # use osqp to solve QP import osqp import scipy.sparse as sp from typing import Tuple from omni.isaac.quadruped.utils.rot_utils import skew from omni.isaac.quadruped.utils.a1_ctrl_states import A1CtrlStates from omni.isaac.quadruped.utils.a1_ctrl_params import A1CtrlParams from omni.isaac.quadruped.utils.a1_desired_states import A1DesiredStates class A1RobotControl: """[summary] The A1 robot controller This class uses A1CtrlStates to save data. The control joint torque is generated using a QP controller """ def __init__(self) -> None: """Initializes the class instance. """ pass """ Operations """ # swing traj update def update_plan( self, desired_states: A1DesiredStates, input_states: A1CtrlStates, input_params: A1CtrlParams, dt: float ) -> None: """[summary] update swing leg trajectory and several counters Args: desired_states {A1DesiredStates} -- the desired states input_states {A1CtrlStates} -- the control states input_params {A1CtrlParams} -- the control parameters dt {float} -- The simulation time-step. """ self._update_gait_plan(input_states) self._update_foot_plan(desired_states, input_states, input_params, dt) # increase _counter input_states._counter += 1 input_states._exp_time += dt input_states._gait_counter += input_states._gait_counter_speed input_states._gait_counter %= input_states._counter_per_gait # 논문의 3-D def generate_ctrl( self, desired_states: A1DesiredStates, input_states: A1CtrlStates, input_params: A1CtrlParams ) -> None: """ [summary] main function, generate foot ground reaction force using QP and calculate joint torques Args: desired_states {A1DesiredStates} -- the desired states input_states {A1CtrlStates} -- the control states input_params {A1CtrlParams} -- the control parameters """ # first second, do nothing, wait sensor and stuff got stablized if input_states._exp_time < 0.1: return np.zeros(12) # initial control if input_states._init_transition == 0 and input_states._prev_transition == 0: input_params._kp_linear[0:2] = np.array([500, 500]) # foot control foot_pos_final = input_states._foot_pos_target_rel foot_pos_cur = np.zeros([4, 3]) for i, leg in enumerate(["FL", "FR", "RL", "RR"]): # robot frame으로 변환 foot_pos_cur[i, :] = input_states._rot_mat_z.T @ input_states._foot_pos_abs[i, :] bezier_time = np.zeros(4) for i in range(4): # early contact, 상태 바꾸고 다시 리셋한다. if input_states._gait_counter[i] < input_states._counter_per_swing: bezier_time[i] = 0.0 input_states._foot_pos_start_rel[i, :] = foot_pos_cur[i, :] input_states._early_contacts[i] = False else: bezier_time[i] = ( input_states._gait_counter[i] - input_states._counter_per_swing ) / input_states._counter_per_swing # _rot_mat_z : R^{world}_{robot yaw} # # _foot_pos_start_rel : (R^{world}_{robot yaw}).T * _foot_pos_abs(rotated robot frame) # => robot frame 기준 현재 다리 위치 # foot_pos_final : _foot_pos_target_rel (foot target pos in the relative frame (robot frame)) # # foot_pos_target => robot frame 기준 target # 논문의 3-C # _kp_foot: swing foot position error coefficient # _kp_linear: stance foot force position error coefficient foot_pos_target = self._get_from_bezier_curve(input_states._foot_pos_start_rel, foot_pos_final, bezier_time) foot_pos_error = foot_pos_target - foot_pos_cur foot_forces_kin = (input_params._kp_foot * foot_pos_error).flatten() # detect early contacts # how to determine which foot is in contact: check gait counter for i in range(4): # slow contact if not input_states._contacts[i] and input_states._gait_counter[i] <= input_states._counter_per_swing * 1.5: input_states._early_contacts[i] = False # early contact if ( not input_states._contacts[i] and input_states._early_contacts[i] is False and input_states._foot_forces[i] > input_params._foot_force_low and input_states._gait_counter[i] > input_states._counter_per_swing * 1.5 ): input_states._early_contacts[i] = True for i in range(4): input_states._contacts[i] = input_states._contacts[i] or input_states._early_contacts[i] # root control # grf : 지금 world frame 기준 # grf는 현재 COM에 가해지는 6dof 힘인 상황 grf = self._compute_grf(desired_states, input_states, input_params) grf_rel = grf @ input_states._rot_mat foot_forces_grf = -grf_rel.flatten() # convert to torque M = np.kron(np.eye(4, dtype=int), input_params._km_foot) # torques_init = input_states._j_foot.T @ foot_forces_init # J * 극좌표 = Cartesian # 지금은 극좌표 = J.inv * Cartesian # kin => swing / grf => contact # 몸체를 중심점으로 생각하면, 끝점에 의한 모멘트 평형만 생각하면 된다. # M @ foot_forces_kin => 토크 # np.linalg.inv(input_states._j_foot) 곱해주기 => 극 좌표 변환 # tau = J.inv @ M @ K_p(p_des - p) torques_kin = np.linalg.inv(input_states._j_foot) @ M @ foot_forces_kin # torques_kin = input_states._j_foot.T @ foot_forces_kin # tau = J.T @ F torques_grf = input_states._j_foot.T @ foot_forces_grf # combine torques torques_init = np.zeros(12) for i in range(4): torques_init[3 * i : 3 * i + 3] = torques_grf[3 * i : 3 * i + 3] # combine torques torques = np.zeros(12) for i in range(4): if input_states._contacts[i]: torques[3 * i : 3 * i + 3] = torques_grf[3 * i : 3 * i + 3] else: torques[3 * i : 3 * i + 3] = torques_kin[3 * i : 3 * i + 3] # _init_transition이면 => torques (grf + kin) # 아니면 => torques_init (grf만 고려) torques = (1 - input_states._init_transition) * torques_init + input_states._init_transition * torques torques += input_params._torque_gravity # for i in range(12): # if torques[i] < -1000: # torques[i] = -1000 # if torques[i] > 1000: # torques[i] = 1000 return torques """ Internal helpers. """ # trot, gallop과 같은 보행 제어 + 카운터 설정 def _update_gait_plan(self, input_states: A1CtrlStates) -> None: """ [summary] update gait counters Args: input_states {A1CtrlStates} -- the control states """ # initialize _counter if input_states._counter == 0 or input_states._gait_type != input_states._gait_type_last: if input_states._gait_type == 2: input_states._gait_counter = np.array([0.0, 120.0, 0.0, 120.0]) elif input_states._gait_type == 1: input_states._gait_counter = np.array([0.0, 120.0, 120.0, 0.0]) else: input_states._gait_counter = np.array([0.0, 0.0, 0.0, 0.0]) # update _counter speed for i in range(4): if input_states._gait_type == 2: input_states._gait_counter_speed[i] = 1.4 elif input_states._gait_type == 1: input_states._gait_counter_speed[i] = 1.4 else: input_states._gait_counter_speed[i] = 0.0 input_states._contacts[i] = input_states._gait_counter[i] < input_states._counter_per_swing input_states._gait_type_last = input_states._gait_type # 논문의 3-E swing시 다리의 궤적을 2차원으로 사영시킨 위치를 계산한다. def _update_foot_plan( self, desired_states: A1DesiredStates, input_states: A1CtrlStates, input_params: A1CtrlParams, dt: float ) -> None: """ [summary] update foot swing target positions Args: input_states {A1DesiredStates} -- the desried states input_states {A1CtrlStates} -- the control states input_params {A1CtrlParams} -- the control parameters dt {float} -- delta time since last update """ # heuristic plan lin_pos = input_states._root_pos # lin_pos_rel = input_states._rot_mat_z.T @ lin_pos lin_pos_d = desired_states._root_pos_d # lin_pos_rel_d = input_states._rot_mat_z.T @ lin_pos_d lin_vel = input_states._root_lin_vel # body frame lin_vel_rel = input_states._rot_mat_z.T @ lin_vel input_states._foot_pos_target_rel = input_params._default_foot_pos.copy() for i in range(4): weight_y = np.square(np.abs(input_params._default_foot_pos[i, 2]) / 9.8) weight2 = input_states._counter_per_swing / input_states._gait_counter_speed[i] * dt / 2.0 delta_x = weight_y * (lin_vel_rel[0] - desired_states._root_lin_vel_d[0]) + weight2 * lin_vel_rel[0] delta_y = weight_y * (lin_vel_rel[1] - desired_states._root_lin_vel_d[1]) + weight2 * lin_vel_rel[1] if delta_x < -0.1: delta_x = -0.1 if delta_x > 0.1: delta_x = 0.1 if delta_y < -0.1: delta_y = -0.1 if delta_y > 0.1: delta_y = 0.1 input_states._foot_pos_target_rel[i, 0] += delta_x input_states._foot_pos_target_rel[i, 1] += delta_y # swing trajectory 계산 - 베지어 통해 def _get_from_bezier_curve( self, foot_pos_start: np.ndarray, foot_pos_final: np.ndarray, bezier_time: float ) -> np.ndarray: """[summary] generate swing foot position target from a bezier curve Args: foot_pos_start {np.ndarray} -- The curve start point foot_pos_final {np.ndarray} -- The curve end point bezier_time {float} -- The curve interpolation time, should be within [0,1]. """ bezier_degree = 4 bezier_s = np.linspace(0, 1, bezier_degree + 1) bezier_nodes = np.zeros([2, bezier_degree + 1]) bezier_nodes[0, :] = bezier_s foot_pos_target = np.zeros([4, 3]) foot_pos_target_x = foot_pos_target[:, 0] foot_pos_target_y = foot_pos_target[:, 1] foot_pos_target_z = foot_pos_target[:, 2] for i in range(4): bezier_x = np.array( [ foot_pos_start[i, 0], foot_pos_start[i, 0], foot_pos_final[i, 0], foot_pos_final[i, 0], foot_pos_final[i, 0], ] ) bezier_nodes[1, :] = bezier_x bezier_curve = bezier.Curve(bezier_nodes, bezier_degree) foot_pos_target_x[i] = bezier_curve.evaluate(bezier_time[i])[1, 0] for i in range(4): bezier_y = np.array( [ foot_pos_start[i, 1], foot_pos_start[i, 1], foot_pos_final[i, 1], foot_pos_final[i, 1], foot_pos_final[i, 1], ] ) bezier_nodes[1, :] = bezier_y bezier_curve = bezier.Curve(bezier_nodes, bezier_degree) foot_pos_target_y[i] = bezier_curve.evaluate(bezier_time[i])[1, 0] for i in range(4): bezier_z = np.array( [ foot_pos_start[i, 2], foot_pos_start[i, 2], foot_pos_final[i, 2], foot_pos_final[i, 2], foot_pos_final[i, 2], ] ) foot_clearance1 = 0.0 foot_clearance2 = 0.5 bezier_z[1] += foot_clearance1 bezier_z[2] += foot_clearance2 bezier_nodes[1, :] = bezier_z bezier_curve = bezier.Curve(bezier_nodes, bezier_degree) foot_pos_target_z[i] = bezier_curve.evaluate(bezier_time[i])[1, 0] return foot_pos_target def _compute_grf( self, desired_states: A1DesiredStates, input_states: A1CtrlStates, input_params: A1CtrlParams ) -> np.ndarray: """ [summary] main internal function, generate foot ground reaction force using QP Args: desired_states {A1DesiredStates} -- the desired states input_states {A1CtrlStates} -- the control states input_params {A1CtrlParams} -- the control parameters Returns: grf {np.ndarray} """ inertia_inv, root_acc, acc_weight, u_weight = self._get_qp_params(desired_states, input_states, input_params) modified_contacts = np.array([True, True, True, True]) if input_states._init_transition < 1.0: modified_contacts = np.array([True, True, True, True]) else: modified_contacts = input_states._contacts mu = 0.2 # use osqp # np.diag(np.square(np.array([1, 1, 1, 20, 20, 10]))) # array([[ 1, 0, 0, 0, 0, 0], # [ 0, 1, 0, 0, 0, 0], # [ 0, 0, 1, 0, 0, 0], # [ 0, 0, 0, 400, 0, 0], # [ 0, 0, 0, 0, 400, 0], # [ 0, 0, 0, 0, 0, 100]]) # u_weight = 1e-3 # QP prepare Q = np.diag(np.square(acc_weight)) R = u_weight F_min = 0 F_max = 250.0 # C.T @ Q @ C + R # C : control - state matrix / x = Cu / x: root_acc & u : GRF # R / Q : weight matrix hessian = np.identity(12) * R + inertia_inv.T @ Q @ inertia_inv # zero-reference MPC formulation # TODO: 여기가 이해가 안간다. # -C.T @ Q @ x gradient = -inertia_inv.T @ Q @ root_acc linearMatrix = np.zeros([20, 12]) lowerBound = np.zeros(20) upperBound = np.zeros(20) for i in range(4): # extract F_zi linearMatrix[i, 2 + i * 3] = 1.0 # friction pyramid # 1. F_xi < uF_zi linearMatrix[4 + i * 4, i * 3] = 1.0 linearMatrix[4 + i * 4, 2 + i * 3] = -mu lowerBound[4 + i * 4] = -np.inf # 2. -F_xi > uF_zi linearMatrix[4 + i * 4 + 1, i * 3] = -1.0 linearMatrix[4 + i * 4 + 1, 2 + i * 3] = -mu lowerBound[4 + i * 4 + 1] = -np.inf # 3. F_yi < uF_zi linearMatrix[4 + i * 4 + 2, 1 + i * 3] = 1.0 linearMatrix[4 + i * 4 + 2, 2 + i * 3] = -mu lowerBound[4 + i * 4 + 2] = -np.inf # 4. -F_yi > uF_zi linearMatrix[4 + i * 4 + 3, 1 + i * 3] = -1.0 linearMatrix[4 + i * 4 + 3, 2 + i * 3] = -mu lowerBound[4 + i * 4 + 3] = -np.inf c_flag = 1.0 if modified_contacts[i] else 0.0 lowerBound[i] = c_flag * F_min upperBound[i] = c_flag * F_max # 0 <= FL_z <= 250 # 0 <= FR_z <= 250 # 0 <= RL_z <= 250 # 0 <= RR_z <= 250 # -0.2*FL_z <= FL_y <= 0.2*FL_z # -0.2*FR_z <= FR_x <= 0.2*FR_z # -0.2*FR_z <= FR_y <= 0.2*FR_z # -0.2*RL_z <= RL_x <= 0.2*RL_z # -0.2*RL_z <= RL_y <= 0.2*RL_z # -0.2*RR_z <= RR_x <= 0.2*RR_z # -0.2*RR_z <= RR_y <= 0.2*RR_z # sp.csc_matrix example # # row = np.array([0, 2, 2, 0, 1, 2]) # col = np.array([0, 0, 1, 2, 2, 2]) # data = np.array([1, 2, 3, 4, 5, 6]) # csc_array((data, (row, col)), shape=(3, 3)).toarray() # array([[1, 0, 4], # [0, 0, 5], # [2, 3, 6]]) # 어떤 컴팩트한 포맷으로 변환된다. 계산 효율위해서 인 것 같음 sparse_hessian = sp.csc_matrix(hessian) # initialize the OSQP solver solver = osqp.OSQP() solver.setup( P=sparse_hessian, q=gradient, A=sp.csc_matrix(linearMatrix), l=lowerBound, u=upperBound, verbose=False ) results = solver.solve() # print("compare casadi with osqp") # print(grf_vec) # print(results.x) grf = results.x.reshape(4, 3) # print(results.x) # print(grf) return grf def _get_qp_params( self, desired_states: A1DesiredStates, input_states: A1CtrlStates, input_params: A1CtrlParams ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ [summary] main internal function, construct parameters of the QP problem Args: desired_states {A1DesiredStates} -- the desired states input_states {A1CtrlStates} -- the control states input_params {A1CtrlParams} -- the control parameters Returns: qp_params: {Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray] -- inertia_inv, root_acc, acc_weight, u_weight} """ # continuous yaw error # reference: http://ltu.diva-portal.org/smash/get/diva2:1010947/FULLTEXT01.pdf euler_error = desired_states._euler_d - input_states._euler # _euler_d : the desired body orientation in _euler angle # _euler : robot _euler angle in world frame # limit euler error to pi/2 if euler_error[2] > 3.1415926 * 1.5: # eulerd 3.14 euler -3.14 euler_error[2] = desired_states._euler_d[2] - 3.1415926 * 2 - input_states._euler[2] # euler_error[2] = euler_error[2] - 3.1415926 * 2 elif euler_error[2] < -3.1415926 * 1.5: euler_error[2] = desired_states._euler_d[2] + 3.1415926 * 2 - input_states._euler[2] # 논문의 3-C root_acc = np.zeros(6) # _root_pos_d : the desired body position in world frame # _root_pos : robot position in world frame root_acc[0:3] = input_params._kp_linear * (desired_states._root_pos_d - input_states._root_pos) # 결국 다 world로 바꾼다. # _root_lin_vel_d이 robot frame 기준이어서 _root_lin_vel를 다시 robot frame으로 바꾼 뒤 다시 변환하는 것임 # _rot_mat_z : R^{world}_{robot yaw} # _root_lin_vel_d : the desired body velocity in robot frame # _root_lin_vel : robot linear velocity in world frame root_acc[0:3] += input_states._rot_mat_z @ ( input_params._kd_linear * (desired_states._root_lin_vel_d - input_states._rot_mat_z.T @ input_states._root_lin_vel) ) # euler_error도 world 기준임 # _root_ang_vel_d : the desired body angular velocity # _root_ang_vel : robot angular velocity in world frame TODO: 여기 조금 이상하네 주석이 잘못된건가? root_acc[3:6] = input_params._kp_angular * euler_error root_acc[3:6] += input_params._kd_angular * ( desired_states._root_ang_vel_d - input_states._rot_mat_z.T @ input_states._root_ang_vel ) # Add gravity mass = input_params._robot_mass root_acc[2] += mass * 9.8 for i in range(6): if root_acc[i] < -500: root_acc[i] = -500 if root_acc[i] > 500: root_acc[i] = 500 # Create inverse inertia matrix - 논문의 3B # # TODO: inertia_inv이 자체가 무슨 의미를 갖고 있지? => F=MA에서 M^{-1}에 해당해서 inertia_inv라고 하지 않았나 생각해봄 inertia_inv = np.zeros([6, 12]) inertia_inv[0:3] = np.tile(np.eye(3), 4) # TODO: use the real inertia from URDF # _foot_pos_abs: the foot current pos in the absolute frame (rotated robot frame) - world frame 다리 위치임 # inertia_inv 하단부는 결국 robot frame 기준으로 _foot_pos_abs 변환한 것이다. => 이게 inertia inverse?? # 벡터와 벡터의 cross product는 skew-sym-matrix와 벡터의 곱으로 나타낼 수 있다. 동일함 for i in range(4): skew_mat = skew(input_states._foot_pos_abs[i, :]) inertia_inv[3:6, i * 3 : i * 3 + 3] = input_states._rot_mat_z.T @ skew_mat # QP weight acc_weight = np.array([1, 1, 1, 20, 20, 10]) u_weight = 1e-3 return inertia_inv, root_acc, acc_weight, u_weight
20,885
Python
37.322936
125
0.537276
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/controllers/qp_controller.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Union, List import numpy as np import carb # omni-isaac-a1 from omni.isaac.quadruped.utils.a1_classes import A1Measurement, A1Command # QP controller related from omni.isaac.quadruped.utils.a1_ctrl_states import A1CtrlStates from omni.isaac.quadruped.utils.a1_ctrl_params import A1CtrlParams from omni.isaac.quadruped.utils.a1_desired_states import A1DesiredStates from omni.isaac.quadruped.controllers.a1_robot_control import A1RobotControl from omni.isaac.quadruped.utils.a1_sys_model import A1SysModel from omni.isaac.quadruped.utils.go1_sys_model import Go1SysModel from omni.isaac.quadruped.utils.rot_utils import get_xyz_euler_from_quaternion, get_rotation_matrix_from_euler class A1QPController: """[summary] A1 QP controller as a layer. An implementation of the QP controller[1] References: [1] Bledt, Gerardo, et al. "MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. """ def __init__(self, name: str, _simulate_dt: float, waypoint_pose=None) -> None: """Initialize the QP Controller. Args: name {str} -- The name of the layer. _simulated_dt {float} -- rough estimation of the time interval of the control loop """ # rough estimation of the time interval of the control loop self.simulate_dt = _simulate_dt # (nearly) constant control related parameters self._ctrl_params = A1CtrlParams() # control state varibles self._ctrl_states = A1CtrlStates() # control goal state varibles self._desired_states = A1DesiredStates() # robot controller self._root_control = A1RobotControl() # kinematic calculator if name == "A1": self._sys_model = A1SysModel() else: self._sys_model = Go1SysModel() # variables that toggle standing/moving mode self._init_transition = 0 self._prev_transition = 0 # an auto planner for collecting data self.waypoint_tgt_idx = 1 if waypoint_pose is not None: self.waypoint_pose = waypoint_pose else: self.waypoint_pose = [] """ Operations """ def setup(self) -> None: """[summary] Reset the ctrl states. """ self.ctrl_state_reset() def reset(self) -> np.ndarray: """[summary] Reset the ctrl states. """ self.ctrl_state_reset() def set_target_command(self, base_command: Union[List[float], np.ndarray]) -> None: """[summary] Set target base velocity command from joystick Args: base_command{Union[List[float], np.ndarray} -- velocity commands for the robot """ self._current_base_command = base_command def advance(self, dt: float, measurement: A1Measurement, path_follow=False, auto_start=True) -> np.array: """[summary] Perform torque command generation. Args: dt {float} -- Timestep update in the world. measurement {A1Measurement} -- Current measurement from robot. path_follow {bool} -- True if a waypoint is pathed in, false if not auto_start {bool} -- True to start trotting after 1 second automatically, False for start trotting after "Enter" is pressed Returns: np.ndarray -- The desired joint torques for the robot. """ # update controller states from A1Measurement self.update(dt, measurement) if auto_start: if (self._ctrl_states._exp_time > 1) and self._ctrl_states._init_transition == 0: self._ctrl_states._init_transition = 1 # 아주 간단한 P 제어 경로 추적 if path_follow: if self._ctrl_states._exp_time > 6: if self.waypoint_tgt_idx == len(self.waypoint_pose) and self._ctrl_states._init_transition == 1: self._ctrl_states._init_transition = 0 self._ctrl_states._prev_transition = 1 carb.log_info("stop motion") self.waypoint_tgt_idx += 1 elif self.waypoint_tgt_idx < len(self.waypoint_pose) and self._ctrl_states._init_transition == 1: cur_pos = np.array( [self._ctrl_states._root_pos[0], self._ctrl_states._root_pos[1], self._ctrl_states._euler[2]] ) # position에서 x, y, yaw 만 빼낸다. diff_pose = self.waypoint_pose[self.waypoint_tgt_idx] - cur_pos diff_pos = np.array([diff_pose[0], diff_pose[1], 0]) # yaw angle 보정 # fix yaw angle for diff_pos if diff_pose[2] > 1.5 * 3.14: # tgt 3.14, cur -3.14 diff_pose[2] = diff_pose[2] - 6.28 if diff_pose[2] < -1.5 * 3.14: # tgt -3.14, cur 3.14 diff_pose[2] = 6.28 + diff_pose[2] # diff_pos를 body frame으로 변환한 뒤 아주 간단하게 * 10을 해서 경로로 전환한다. # vel command body frame diff_pos_r = self._ctrl_states._rot_mat_z.T @ diff_pos self._current_base_command[0] = 10 * diff_pos_r[0] self._current_base_command[1] = 10 * diff_pos_r[1] # yaw command self._current_base_command[2] = 10 * diff_pose[2] # target pose에 도달하면 다음 target으로 넘어간다. if np.linalg.norm(diff_pose) < 0.1 and self.waypoint_tgt_idx < len(self.waypoint_pose): self.waypoint_tgt_idx += 1 # print(self.waypoint_tgt_idx, " - ", self.waypoint_pose[self.waypoint_tgt_idx]) else: # 모든 target pose에 도달했을 때 # self.waypoint_tgt_idx > len(self.waypoint_pose), in this case the planner is disabled carb.log_info("target reached, back to manual control mode") path_follow = False pass # desired states update # velocity updates # update controller states from target command self._desired_states._root_lin_vel_d[0] = self._current_base_command[0] self._desired_states._root_lin_vel_d[1] = self._current_base_command[1] self._desired_states._root_ang_vel_d[2] = self._current_base_command[2] # euler angle update # _euler_d : desired body orientation in _euler angle self._desired_states._euler_d[2] += self._desired_states._root_ang_vel_d[2] * dt # position locking if self._ctrl_states._init_transition == 1: if np.linalg.norm(self._desired_states._root_lin_vel_d[0]) > 0.05: self._ctrl_params._kp_linear[0] = 0 self._desired_states._root_pos_d[0] = self._ctrl_states._root_pos[0] if np.linalg.norm(self._desired_states._root_lin_vel_d[0]) < 0.05: self._ctrl_params._kp_linear[0] = 5000 if np.linalg.norm(self._desired_states._root_lin_vel_d[1]) > 0.05: self._ctrl_params._kp_linear[1] = 0 self._desired_states._root_pos_d[1] = self._ctrl_states._root_pos[1] if np.linalg.norm(self._desired_states._root_lin_vel_d[1]) < 0.05: self._ctrl_params._kp_linear[1] = 5000 if np.linalg.norm(self._desired_states._root_ang_vel_d[2]) == 0: self._desired_states._euler_d[2] = self._ctrl_states._euler[2] # record position once when moving back into init transition = 0 state if self._ctrl_states._prev_transition == 1 and self._ctrl_states._init_transition < 1: self._ctrl_params._kp_linear[0:2] = np.array([500, 500]) self._desired_states._euler_d[2] = self._ctrl_states._euler[2] self._desired_states._root_pos_d[0:2] = self._ctrl_states._root_pos[0:2] self._desired_states._root_lin_vel_d[0] = 0 self._desired_states._root_lin_vel_d[1] = 0 # make sure this logic only run once self._ctrl_states._prev_transition = self._ctrl_states._init_transition self._root_control.update_plan(self._desired_states, self._ctrl_states, self._ctrl_params, dt) # update_plan updates swing foot target # swing foot control and stance foot control torques = self._root_control.generate_ctrl(self._desired_states, self._ctrl_states, self._ctrl_params) return torques def switch_mode(self): """[summary] toggle between stationary/moving mode""" self._ctrl_states._prev_transition = self._ctrl_states._init_transition self._ctrl_states._init_transition = self._current_base_command[3] """ Internal helpers. """ def ctrl_state_reset(self) -> None: """[summary] reset _ctrl_states and _ctrl_params to non-default values """ # following changes to A1CtrlParams alters the robot gait execution performance self._ctrl_params = A1CtrlParams() self._ctrl_params._kp_linear = np.array([500, 500.0, 1600.0]) self._ctrl_params._kd_linear = np.array([2000.0, 2000.0, 4000.0]) self._ctrl_params._kp_angular = np.array([600.0, 600.0, 0.0]) self._ctrl_params._kd_angular = np.array([0.0, 0.0, 500.0]) kp_foot_x = 11250.0 kp_foot_y = 11250.0 kp_foot_z = 11500.0 self._ctrl_params._kp_foot = np.array( [ [kp_foot_x, kp_foot_y, kp_foot_z], [kp_foot_x, kp_foot_y, kp_foot_z], [kp_foot_x, kp_foot_y, kp_foot_z], [kp_foot_x, kp_foot_y, kp_foot_z], ] ) self._ctrl_params._kd_foot = np.array([0.0, 0.0, 0.0]) self._ctrl_params._km_foot = np.diag([0.7, 0.7, 0.7]) self._ctrl_params._robot_mass = 12.5 self._ctrl_params._foot_force_low = 5.0 self._ctrl_states = A1CtrlStates() self._ctrl_states._counter = 0.0 self._ctrl_states._gait_counter = np.array([0.0, 0.0, 0.0, 0.0]) self._ctrl_states._exp_time = 0.0 def update(self, dt: float, measurement: A1Measurement): """[summary] Fill measurement into _ctrl_states Args: dt {float} -- Timestep update in the world. measurement {A1Measurement} -- Current measurement from robot. """ self._ctrl_states._root_quat[0] = measurement.state.base_frame.quat[3] # w self._ctrl_states._root_quat[1] = measurement.state.base_frame.quat[0] # x self._ctrl_states._root_quat[2] = measurement.state.base_frame.quat[1] # y self._ctrl_states._root_quat[3] = measurement.state.base_frame.quat[2] # z self._ctrl_states._root_pos = measurement.state.base_frame.pos self._ctrl_states._root_lin_vel = measurement.state.base_frame.lin_vel if self._ctrl_states._root_quat[0] < 0: self._ctrl_states._root_quat = -self._ctrl_states._root_quat self._ctrl_states._euler = get_xyz_euler_from_quaternion(self._ctrl_states._root_quat) self._ctrl_states._rot_mat = get_rotation_matrix_from_euler(self._ctrl_states._euler) # according to rl_controler in isaac.anymal, base_frame.ang_vel is in world frame self._ctrl_states._root_ang_vel = self._ctrl_states._rot_mat.T @ measurement.state.base_frame.ang_vel self._ctrl_states._rot_mat_z = get_rotation_matrix_from_euler(np.array([0.0, 0.0, self._ctrl_states._euler[2]])) # still keep the option of using forward diff velocities for i in range(12): if abs(dt > 1e-10): self._ctrl_states._joint_vel[i] = ( measurement.state.joint_pos[i] - self._ctrl_states._joint_pos[i] ) / dt else: self._ctrl_states._joint_vel[i] = 0.0 self._ctrl_states._joint_pos[i] = measurement.state.joint_pos[i] # self._ctrl_states._joint_vel[i] = measurement.state.joint_vel[i] for i, leg in enumerate(["FL", "FR", "RL", "RR"]): # notice the id order of A1SysModel follows that on A1 hardware # [1, 0, 3, 2] -> [FL, FR, RL, RR] swap_i = self._ctrl_params._swap_foot_indices[i] self._ctrl_states._foot_pos_rel[i, :] = self._sys_model.forward_kinematics( swap_i, self._ctrl_states._joint_pos[i * 3 : (i + 1) * 3] ) self._ctrl_states._j_foot[i * 3 : (i + 1) * 3, i * 3 : (i + 1) * 3] = self._sys_model.jacobian( swap_i, self._ctrl_states._joint_pos[i * 3 : (i + 1) * 3] ) self._ctrl_states._foot_pos_abs[i, :] = self._ctrl_states._rot_mat @ self._ctrl_states._foot_pos_rel[i, :] self._ctrl_states._foot_forces[i] = measurement.foot_forces[i] self._ctrl_states._exp_time += dt
13,538
Python
42.957792
135
0.583764
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/tests/test_a1.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit.commands import carb.tokens import asyncio import numpy as np from omni.isaac.core import World from omni.isaac.quadruped.robots.unitree import Unitree from omni.isaac.core.utils.physics import simulate_async from omni.isaac.quadruped.utils.rot_utils import get_xyz_euler_from_quaternion from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import create_new_stage_async class TestA1(omni.kit.test.AsyncTestCase): async def setUp(self): World.clear_instance() await create_new_stage_async() # This needs to be set so that kit updates match physics updates self._physics_rate = 400 carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate)) self._physics_dt = 1 / self._physics_rate self._world = World(stage_units_in_meters=1.0, physics_dt=self._physics_dt, rendering_dt=32 * self._physics_dt) await self._world.initialize_simulation_context_async() self._world.scene.add_default_ground_plane( z_position=0, name="default_ground_plane", prim_path="/World/defaultGroundPlane", static_friction=0.2, dynamic_friction=0.2, restitution=0.01, ) self._base_command = [1.0, 0, 0, 0] self._stage = omni.usd.get_context().get_stage() self._timeline = omni.timeline.get_timeline_interface() self._path_follow = False self._auto_start = True await omni.kit.app.get_app().next_update_async() pass async def tearDown(self): await omni.kit.app.get_app().next_update_async() self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await omni.kit.app.get_app().next_update_async() pass async def test_a1_add(self): self._path_follow = False self._auto_start = True await self.spawn_a1() await omni.kit.app.get_app().next_update_async() self._a1 = self._a1 = self._world.scene.get_object("A1") await omni.kit.app.get_app().next_update_async() self.assertEqual(self._a1.num_dof, 12) self.assertTrue(get_prim_at_path("/World/A1").IsValid(), True) print("robot articulation passed") await omni.kit.app.get_app().next_update_async() # if dc interface is valid, that means the prim is likely imported correctly async def test_robot_move_command(self): self._path_follow = False self._auto_start = True await self.spawn_a1() await omni.kit.app.get_app().next_update_async() self._a1 = self._a1 = self._world.scene.get_object("A1") self.start_pos = np.array(self._a1.get_world_pose()[0]) await simulate_async(seconds=2.0) self.current_pos = np.array(self._a1.get_world_pose()[0]) print(str(self.current_pos)) delta = np.linalg.norm(self.current_pos[0] - self.start_pos[0]) self.assertTrue(delta > 0.5) pass async def test_robot_move_forward_waypoint(self): self._path_follow = True self._auto_start = True await self.spawn_a1(waypoints=[np.array([0.0, 0.0, 0.0]), np.array([0.5, 0.0, 0.0])]) await omni.kit.app.get_app().next_update_async() self._a1 = self._world.scene.get_object("A1") await omni.kit.app.get_app().next_update_async() self.start_pos = np.array(self._a1.get_world_pose()[0]) await simulate_async(seconds=1.5) self.current_pos = np.array(self._a1.get_world_pose()[0]) delta = self.current_pos - self.start_pos print(str(delta)) # x should be around 1, y, z should be around 0 self.assertAlmostEquals(0.5, delta[0], 0) self.assertTrue(abs(delta[1]) < 0.1) self.assertTrue(abs(delta[2]) < 0.1) async def test_robot_turn_waypoint(self): self._path_follow = False self._auto_start = True # turn 90 degrees await self.spawn_a1() # waypoints=[np.array([0.0, 0.0, -1.57])]) await omni.kit.app.get_app().next_update_async() self._a1 = self._world.scene.get_object("A1") await omni.kit.app.get_app().next_update_async() self._base_command = [0.0, 0.0, 1.0, 0.0] self.start_quat = np.array(self._a1.get_world_pose()[1][[1, 2, 3, 0]]) await simulate_async(seconds=1.5) self.current_quat = np.array(self._a1.get_world_pose()[1][[1, 2, 3, 0]]) self.start_pos = get_xyz_euler_from_quaternion(self.start_quat) self.current_pos = get_xyz_euler_from_quaternion(self.current_quat) delta = np.array(abs(self.current_pos) - abs(self.start_pos)) print(str(delta)) self.assertTrue(abs(delta[2]) < 0.1) self.assertTrue(abs(delta[1]) < 0.1) self.assertTrue(abs(delta[0]) > 3.14 / 4) # Add this test when the controller has better side movement performance # async def test_robot_shift(self): # await self.spawn_a1() # # move side ways at 1.8 m/s (due to tuning, it is likely slower than that) # self._base_command = [0.0, 1.8, 0, 0] # await omni.kit.app.get_app().next_update_async() # self._a1 = self._world.scene.get_object("A1") # await omni.kit.app.get_app().next_update_async() # self.start_pos = np.array(self.dc.get_rigid_body_pose(self._a1._root_handle).p) # await simulate_async(seconds=10.0) # self.current_pos = np.array(self.dc.get_rigid_body_pose(self._a1._root_handle).p) # delta = self.current_pos - self.start_pos # print("delta: " + str(delta)) # print("start: " + str(self.start_pos)) # print("current: " + str(self.current_pos)) # # y should be around 0.5, x, z should be around 0 # self.assertTrue(abs(delta[1]) > 0.5) # self.assertTrue(abs(delta[0]) < 0.1) # self.assertTrue(abs(delta[2]) < 0.1) async def spawn_a1(self, waypoints=None, model="A1"): self._prim_path = "/World/" + model self._a1 = self._world.scene.get_object("A1") if self._a1 is None: self._a1 = self._world.scene.add( Unitree( prim_path=self._prim_path, name=model, position=np.array([0, 0, 0.40]), physics_dt=self._physics_dt, model=model, way_points=waypoints, ) ) self._a1._qp_controller.ctrl_state_reset() self._world.add_physics_callback("a1_advance", callback_fn=self.on_physics_step) await self._world.reset_async() return def on_physics_step(self, step_size): if self._a1 and self._a1._handle: self._a1.advance( dt=step_size, goal=self._base_command, path_follow=self._path_follow, auto_start=self._auto_start )
7,981
Python
37.191387
119
0.617466
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/tests/__init__.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .test_a1 import * from .test_go1 import *
481
Python
39.166663
76
0.796258
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/tests/test_go1.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit.commands import carb.tokens import asyncio import numpy as np from omni.isaac.core import World from omni.isaac.quadruped.robots.unitree import Unitree from omni.isaac.core.utils.stage import create_new_stage_async from omni.isaac.core.utils.prims import get_prim_at_path class TestGo1(omni.kit.test.AsyncTestCase): async def setUp(self): World.clear_instance() await create_new_stage_async() # This needs to be set so that kit updates match physics updates self._physics_rate = 400 carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate)) self._physics_dt = 1 / self._physics_rate self._world = World(stage_units_in_meters=1.0, physics_dt=self._physics_dt, rendering_dt=32 * self._physics_dt) await self._world.initialize_simulation_context_async() self._world.scene.add_default_ground_plane( z_position=0, name="default_ground_plane", prim_path="/World/defaultGroundPlane", static_friction=0.2, dynamic_friction=0.2, restitution=0.01, ) self._base_command = [0.0, 0, 0, 0] self._stage = omni.usd.get_context().get_stage() self._timeline = omni.timeline.get_timeline_interface() self._path_follow = False self._auto_start = True await omni.kit.app.get_app().next_update_async() pass async def tearDown(self): await omni.kit.app.get_app().next_update_async() self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await omni.kit.app.get_app().next_update_async() pass async def test_go1_add(self): self._path_follow = False self._auto_start = True await self.spawn_go1(model="Go1") await omni.kit.app.get_app().next_update_async() self._go1 = self._world.scene.get_object("Go1") self.assertEqual(self._go1.num_dof, 12) # actually verify this number self.assertTrue(get_prim_at_path("/World/Go1").IsValid(), True) print("articulation check passed") await omni.kit.app.get_app().next_update_async() # if dc interface is valid, that means the prim is likely imported correctly async def spawn_go1(self, waypoints=None, model="Go1"): self._prim_path = "/World/" + model self._go1 = self._world.scene.get_object("Go1") if self._go1 is None: self._go1 = self._world.scene.add( Unitree( prim_path=self._prim_path, name=model, position=np.array([1, 1, 0.45]), physics_dt=self._physics_dt, model=model, way_points=waypoints, ) ) self._go1._qp_controller.ctrl_state_reset() self._world.add_physics_callback("go1_advance", callback_fn=self.on_physics_step) await self._world.reset_async() return def on_physics_step(self, step_size): if self._go1 and self._go1._handle: # print(self._base_command) self._go1.advance( dt=step_size, goal=self._base_command, path_follow=self._path_follow, auto_start=self._auto_start )
4,335
Python
38.063063
119
0.636448
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/a1_desired_states.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from dataclasses import dataclass, field @dataclass class A1DesiredStates: """ A collection of desired goal states used by the QP agent """ _root_pos_d: np.array = field(default_factory=lambda: np.array([0.0, 0.0, 0.35])) """ control goal paramter: the desired body position in world frame""" _root_lin_vel_d: np.array = field(default_factory=lambda: np.array([0.0, 0.0, 0.0])) """ control goal paramter: the desired body velocity in robot frame """ _euler_d: np.array = field(default_factory=lambda: np.array([0.0, 0.0, 0.0])) """ control goal paramter: the desired body orientation in _euler angle """ _root_ang_vel_d: np.array = field(default_factory=lambda: np.array([0.0, 0.0, 0.0])) """ control goal paramter: the desired body angular velocity """
1,244
Python
41.931033
88
0.721865
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/a1_classes.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from dataclasses import field, dataclass import numpy as np from omni.isaac.quadruped.utils.types import NamedTuple, FrameState @dataclass class A1State(NamedTuple): """The kinematic state of the articulated robot.""" base_frame: FrameState = field(default_factory=lambda: FrameState("root")) """State of base frame""" joint_pos: np.ndarray = field(default_factory=lambda: np.zeros(12)) """Joint positions with shape: (12,)""" joint_vel: np.ndarray = field(default_factory=lambda: np.zeros(12)) """Joint positions with shape: (12,)""" @dataclass class A1Measurement(NamedTuple): """The state of the robot along with the mounted sensor data.""" state: A1State = field(default=A1State) """The state of the robot.""" foot_forces: np.ndarray = field(default_factory=lambda: np.zeros(4)) """Feet contact force of the robot in the order: FL, FR, RL, RR.""" base_lin_acc: np.ndarray = field(default_factory=lambda: np.zeros(3)) """Accelerometer reading from IMU attached to robot's base.""" base_ang_vel: np.ndarray = field(default_factory=lambda: np.zeros(3)) """Gyroscope reading from IMU attached to robot's base.""" @dataclass class A1Command(NamedTuple): """The command on the robot actuators.""" desired_joint_torque: np.ndarray = field(default_factory=lambda: np.zeros(12)) """Desired joint positions of the robot: (12,)"""
1,843
Python
34.461538
82
0.720564
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/actuator_network.py
# python from typing import Union, Tuple import numpy as np from numpy import genfromtxt import torch class LstmSeaNetwork: """Implements an SEA network with LSTM hidden layers.""" def __init__(self): # define the network self._network = None self._hidden_state = torch.zeros((2, 12, 8), requires_grad=False) self._cell_state = torch.zeros((2, 12, 8), requires_grad=False) # default joint position self._default_joint_pos = None """ Properties """ def get_hidden_state(self) -> np.ndarray: if self._hidden_state is None: return np.zeros((12, 8)) else: return self._hidden_state[1].detach().numpy() """ Operations """ def setup(self, path_or_buffer, default_joint_pos: Union[list, np.ndarray]): # load the network from JIT file self._network = torch.jit.load(path_or_buffer) # set the default joint position self._default_joint_pos = np.asarray(default_joint_pos) def reset(self): # reset the hidden state of LSTM with torch.no_grad(): self._hidden_state[:, :, :] = 0.0 self._cell_state[:, :, :] = 0.0 @torch.no_grad() def compute_torques(self, joint_pos, joint_vel, actions) -> Tuple[np.ndarray, np.ndarray]: # create sea network input obs actions = actions.copy() actuator_net_input = torch.zeros((12, 1, 2)) actuator_net_input[:, 0, 0] = torch.from_numpy(actions + self._default_joint_pos - joint_pos) actuator_net_input[:, 0, 1] = torch.from_numpy(np.clip(joint_vel, -20.0, 20)) # call the network torques, (self._hidden_state, self._cell_state) = self._network( actuator_net_input, (self._hidden_state, self._cell_state) ) # return the torque to apply with clipping along with hidden state return torques.detach().clip(-80.0, 80.0).numpy(), self._hidden_state[1].numpy() class SeaNetwork(torch.nn.Module): """Implements a SEA network with MLP hidden layers.""" def __init__(self): super().__init__() # define layer architecture self._sea_network = torch.nn.Sequential( torch.nn.Linear(6, 32), torch.nn.Softsign(), torch.nn.Linear(32, 32), torch.nn.Softsign(), torch.nn.Linear(32, 1), ) # define the delays self._num_delays = 2 self._delays = [8, 3] # define joint histories self._history_size = self._delays[0] self._joint_pos_history = np.zeros((12, self._history_size + 1)) self._joint_vel_history = np.zeros((12, self._history_size + 1)) # define scaling for the actuator network self._sea_vel_scale = 0.4 self._sea_pos_scale = 3.0 self._sea_output_scale = 20.0 self._action_scale = 0.5 # default joint position self._default_joint_pos = None """ Operations """ def setup(self, weights_path: str, default_joint_pos: Union[list, np.ndarray]): # load the weights into network self._load_weights(weights_path) # set the default joint position self._default_joint_pos = np.asarray(default_joint_pos) def reset(self): self._joint_pos_history.fill(0.0) self._joint_vel_history.fill(0.0) def compute_torques(self, joint_pos, joint_vel, actions) -> np.ndarray: self._update_joint_history(joint_pos, joint_vel, actions) return self._compute_sea_torque() """ Internal helpers. """ def _load_weights(self, weights_path: str): # load the data data = genfromtxt(weights_path, delimiter=",") # manually defines the number of neurons in MLP expected_num_params = 6 * 32 + 32 + 32 * 32 + 32 + 32 * 1 + 1 assert data.size == expected_num_params # assign neuron weights to each linear layer idx = 0 for layer in self._sea_network: if not isinstance(layer, torch.nn.Softsign): # layer weights weight = np.reshape( data[idx : idx + layer.in_features * layer.out_features], newshape=(layer.in_features, layer.out_features), ).T layer.weight = torch.nn.Parameter(torch.from_numpy(weight.astype(np.float32))) idx += layer.out_features * layer.in_features # layer biases bias = data[idx : idx + layer.out_features] layer.bias = torch.nn.Parameter(torch.from_numpy(bias.astype(np.float32))) idx += layer.out_features # set the module in eval mode self.eval() def _update_joint_history(self, joint_pos, joint_vel, actions): # convert to numpy (sanity) joint_pos = np.asarray(joint_pos) joint_vel = np.asarray(joint_vel) # compute error in position joint_pos_error = self._action_scale * actions + self._default_joint_pos - joint_pos # store into history self._joint_pos_history[:, : self._history_size] = self._joint_pos_history[:, 1:] self._joint_vel_history[:, : self._history_size] = self._joint_vel_history[:, 1:] self._joint_pos_history[:, self._history_size] = joint_pos_error self._joint_vel_history[:, self._history_size] = joint_vel def _compute_sea_torque(self): inp = torch.zeros((12, 6)) for dof in range(12): inp[dof, 0] = self._sea_vel_scale * self._joint_vel_history[dof, self._history_size - self._delays[0]] inp[dof, 1] = self._sea_vel_scale * self._joint_vel_history[dof, self._history_size - self._delays[1]] inp[dof, 2] = self._sea_vel_scale * self._joint_vel_history[dof, self._history_size] inp[dof, 3] = self._sea_pos_scale * self._joint_pos_history[dof, self._history_size - self._delays[0]] inp[dof, 4] = self._sea_pos_scale * self._joint_pos_history[dof, self._history_size - self._delays[1]] inp[dof, 5] = self._sea_pos_scale * self._joint_pos_history[dof, self._history_size] return self._sea_output_scale * self._sea_network(inp) # EOF
6,248
Python
38.301887
114
0.587388
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/rot_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # python import numba as nb import numpy as np @nb.jit(nopython=True) def get_rotation_matrix_from_quaternion(quat: np.ndarray) -> np.ndarray: """Convert a quaternion to a rotation matrix. Args: quat (np.ndarray): A 4x1 vector in order (w, x, y, z) Returns: np.ndarray: The resulting 3x3 rotation matrix. """ w, x, y, z = quat rot = np.array( [ [2 * (w ** 2 + x ** 2) - 1, 2 * (x * y - w * z), 2 * (x * z + w * y)], [2 * (x * y + w * z), 2 * (w ** 2 + y ** 2) - 1, 2 * (y * z - w * x)], [2 * (x * z - w * y), 2 * (y * z + w * x), 2 * (w ** 2 + z ** 2) - 1], ] ) return rot @nb.jit(nopython=True) def get_xyz_euler_from_quaternion(quat: np.ndarray) -> np.ndarray: """Convert a quaternion to XYZ euler angles. Args: quat (np.ndarray): A 4x1 vector in order (w, x, y, z). Returns: np.ndarray: A 3x1 vector containing (roll, pitch, yaw). """ w, x, y, z = quat y_sqr = y * y t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y_sqr) eulerx = np.arctan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 eulery = np.arcsin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y_sqr + z * z) eulerz = np.arctan2(t3, t4) result = np.zeros(3) result[0] = eulerx result[1] = eulery result[2] = eulerz return result @nb.jit(nopython=True) def get_quaternion_from_euler(euler: np.ndarray, order: str = "XYZ") -> np.ndarray: """Convert an euler angle to a quaternion based on specified euler angle order. Supported Euler angle orders: {'XYZ', 'YXZ', 'ZXY', 'ZYX', 'YZX', 'XZY'}. Args: euler (np.ndarray): A 3x1 vector with angles in radians. order (str, optional): The specified order of input euler angles. Defaults to "XYZ". Raises: ValueError: If input order is not valid. Reference: [1] https://github.com/mrdoob/three.js/blob/master/src/math/Quaternion.js """ # extract input angles r, p, y = euler # compute constants y = y / 2.0 p = p / 2.0 r = r / 2.0 c3 = np.cos(y) s3 = np.sin(y) c2 = np.cos(p) s2 = np.sin(p) c1 = np.cos(r) s1 = np.sin(r) # convert to quaternion based on order if order == "XYZ": result = np.array( [ c1 * c2 * c3 - s1 * s2 * s3, c1 * s2 * s3 + c2 * c3 * s1, c1 * c3 * s2 - s1 * c2 * s3, c1 * c2 * s3 + s1 * c3 * s2, ] ) if result[0] < 0: result = -result return result elif order == "YXZ": result = np.array( [ c1 * c2 * c3 + s1 * s2 * s3, s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, ] ) return result elif order == "ZXY": result = np.array( [ c1 * c2 * c3 - s1 * s2 * s3, s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 + s1 * s2 * c3, ] ) return result elif order == "ZYX": result = np.array( [ c1 * c2 * c3 + s1 * s2 * s3, s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, ] ) return result elif order == "YZX": result = np.array( [ c1 * c2 * c3 - s1 * s2 * s3, s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 + s1 * c2 * s3, c1 * c2 * s3 - s1 * s2 * c3, ] ) return result elif order == "XZY": result = np.array( [ c1 * c2 * c3 + s1 * s2 * s3, s1 * c2 * c3 - c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3, c1 * c2 * s3 + s1 * s2 * c3, ] ) return result else: raise ValueError("Input euler angle order is meaningless.") @nb.jit(nopython=True) def get_rotation_matrix_from_euler(euler: np.ndarray, order: str = "XYZ") -> np.ndarray: quat = get_quaternion_from_euler(euler, order) return get_rotation_matrix_from_quaternion(quat) @nb.jit(nopython=True) def quat_multiplication(q: np.ndarray, p: np.ndarray) -> np.ndarray: """Compute the product of two quaternions. Args: q (np.ndarray): First quaternion in order (w, x, y, z). p (np.ndarray): Second quaternion in order (w, x, y, z). Returns: np.ndarray: A 4x1 vector representing a quaternion in order (w, x, y, z). """ quat = np.array( [ p[0] * q[0] - p[1] * q[1] - p[2] * q[2] - p[3] * q[3], p[0] * q[1] + p[1] * q[0] - p[2] * q[3] + p[3] * q[2], p[0] * q[2] + p[1] * q[3] + p[2] * q[0] - p[3] * q[1], p[0] * q[3] - p[1] * q[2] + p[2] * q[1] + p[3] * q[0], ] ) return quat @nb.jit(nopython=True) def skew(vector: np.ndarray) -> np.ndarray: """Convert vector to skew symmetric matrix. This function returns a skew-symmetric matrix to perform cross-product as a matrix multiplication operation, i.e.: np.cross(a, b) = np.dot(skew(a), b) Args: vector (np.ndarray): A 3x1 vector. Returns: np.ndarray: The resluting skew-symmetric matrix. """ mat = np.array([[0, -vector[2], vector[1]], [vector[2], 0, -vector[0]], [-vector[1], vector[0], 0]]) return mat
6,140
Python
27.966981
104
0.484528
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.quadruped.utils.a1_classes import A1State, A1Command, A1Measurement from omni.isaac.quadruped.utils.types import NamedTuple, FrameState from omni.isaac.quadruped.utils.a1_ctrl_states import A1CtrlStates from omni.isaac.quadruped.utils.a1_ctrl_params import A1CtrlParams from omni.isaac.quadruped.utils.a1_desired_states import A1DesiredStates from omni.isaac.quadruped.utils.a1_sys_model import A1SysModel from omni.isaac.quadruped.utils.go1_sys_model import Go1SysModel from omni.isaac.quadruped.utils.actuator_network import LstmSeaNetwork from omni.isaac.quadruped.utils import rot_utils
1,036
Python
53.578945
83
0.833012
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/go1_sys_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """[summary] The kinematics parameters value come from https://github.com/unitreerobotics/unitree_ros/blob/master/robots/a1_description/xacro/const.xacro It calculates the forward kinematics and jacobians of the Unitree A1 robot legs """ import numpy as np from dataclasses import dataclass @dataclass(frozen=True) class Go1SysModel: """Constants and functions related to the forward kinematics of the robot""" """ Properties """ THIGH_OFFSET = 0.08 """constant: the length of the thigh motor""" LEG_OFFSET_X = 0.1881 """constant: x distance from the robot COM to the leg base""" LEG_OFFSET_Y = 0.04675 """constant: y distance from the robot COM to the leg base""" THIGH_LENGTH = 0.213 """constant: length of the leg""" C_FR = 0 """constant: FR leg id in A1's hardware convention""" C_FL = 1 """constant: FL leg id in A1's hardware convention""" C_RR = 2 """constant: RR leg id in A1's hardware convention""" C_RL = 3 """constant: RL leg id in A1's hardware convention""" def __init__(self): """Initializes the class instance. """ pass """ Operations """ def forward_kinematics(self, idx: int, q: np.array) -> np.array: """get the forward_kinematics of the leg Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg """ # these two variables indicates the quadrant of the leg fx = self.LEG_OFFSET_X fy = self.LEG_OFFSET_Y d = self.THIGH_OFFSET if idx == self.C_FR: fy *= -1 d *= -1 elif idx == self.C_FL: pass elif idx == self.C_RR: fx *= -1 fy *= -1 d *= -1 else: fx *= -1 length = self.THIGH_LENGTH q1 = q[0] q2 = q[1] q3 = q[2] p = np.zeros(3) p[0] = fx - length * np.sin(q2 + q3) - length * np.sin(q2) p[1] = ( fy + d * np.cos(q1) + length * np.cos(q2) * np.sin(q1) + length * np.cos(q2) * np.cos(q3) * np.sin(q1) - length * np.sin(q1) * np.sin(q2) * np.sin(q3) ) p[2] = ( d * np.sin(q1) - length * np.cos(q1) * np.cos(q2) - length * np.cos(q1) * np.cos(q2) * np.cos(q3) + length * np.cos(q1) * np.sin(q2) * np.sin(q3) ) return p def jacobian(self, idx: int, q: np.array) -> np.ndarray: """get the jacobian of the leg Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg """ # these two variables indicates the quadrant of the leg fx = self.LEG_OFFSET_X fy = self.LEG_OFFSET_Y d = self.THIGH_OFFSET if idx == self.C_FR: fy *= -1 d *= -1 elif idx == self.C_FL: pass elif idx == self.C_RR: fx *= -1 fy *= -1 d *= -1 else: fx *= -1 length = self.THIGH_LENGTH q1 = q[0] q2 = q[1] q3 = q[2] J = np.zeros([3, 3]) # J[1,1] = 0 J[0, 1] = -length * (np.cos(q2 + q3) + np.cos(q2)) J[0, 2] = -length * np.cos(q2 + q3) J[1, 0] = ( length * np.cos(q1) * np.cos(q2) - d * np.sin(q1) + length * np.cos(q1) * np.cos(q2) * np.cos(q3) - length * np.cos(q1) * np.sin(q2) * np.sin(q3) ) J[1, 1] = -length * np.sin(q1) * (np.sin(q2 + q3) + np.sin(q2)) J[1, 2] = -length * np.sin(q2 + q3) * np.sin(q1) J[2, 0] = ( d * np.cos(q1) + length * np.cos(q2) * np.sin(q1) + length * np.cos(q2) * np.cos(q3) * np.sin(q1) - length * np.sin(q1) * np.sin(q2) * np.sin(q3) ) J[2, 1] = length * np.cos(q1) * (np.sin(q2 + q3) + np.sin(q2)) J[2, 2] = length * np.sin(q2 + q3) * np.cos(q1) return J def foot_vel(self, idx: int, q: np.array, dq: np.array) -> np.array: """get the foot velocity Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg dq {np.array}: the joint angular velocities of a leg """ my_jacobian = self.jacobian(idx, q) vel = my_jacobian @ dq return vel
5,027
Python
29.472727
98
0.519594
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/types.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # enable deferred annotations from __future__ import annotations # python import dataclasses from dataclasses import dataclass, field from typing import List, Union, Dict, Any import numpy as np @dataclass class NamedTuple(object): """[Summary] The backend data structure for data-passing between various modules. In order to support use cases where the data would have mixed types (such as bool/integer/array), we provide a light data-class to capture this formalism while allowing the data to be shared between different modules easily. The objective is to support complex agent designs and support multi-agent environments. The usage of this class is quite similar to that of a dictionary, since underneath, we rely on the key names to "pass" data from one container into another. However, we do not use the dictionary since a data-class helps in providing type hints which is in practice quite useful. Reference: https://stackoverflow.com/questions/51671699/data-classes-vs-typing-namedtuple-primary-use-cases """ def update(self, data: Union[NamedTuple, List[NamedTuple], Dict[str, Any]]): """Update values from another named tuple. Note: Unlike `dict.update(dict)`, this method does not add element(s) to the instance if the key is not present. Arguments: data {Union[NamedTuple, List[NamedTuple], Dict[str, Any]} -- The input data to update values from. Raises: TypeError -- When input data is not of type :class:`NamedTuple` or :class:`List[NamedTuple]`. """ # convert to dictionary if isinstance(data, dict): data_dict = data elif isinstance(data, list): data_dict = {} for d in data: data_dict.update(d.__dict__) elif isinstance(data, NamedTuple): data_dict = data.__dict__ else: name = self.__class__.__name__ raise TypeError( f"Invalid input data type: {type(data)}. Valid: [`{name}`, `List[{name}]`, `Dict[str, Any]`]." ) # iterate over dictionary and add values to matched keys for key, value in data_dict.items(): try: self.__setattr__(key, value) except AttributeError: pass def as_dict(self) -> dict: """Converts the dataclass to dictionary recursively. Returns: dict: Instance information as a dictionary """ return dataclasses.asdict(self) @dataclass class FrameState(NamedTuple): """The state of a kinematic frame. Attributes: name: The name of the frame. pos: The Cartesian position of the frame. quat: The quaternion orientation (x, y, z, w) of the frame. lin_vel: The linear velocity of the frame. ang_vel: The angular velocity of the frame. """ name: str """Frame name.""" pos: np.ndarray = field(default_factory=lambda: np.zeros(3)) """Catersian position of frame.""" quat: np.ndarray = field(default_factory=lambda: np.array([0.0, 0.0, 0.0, 1.0])) """Quaternion orientation of frame: (x, y, z, w)""" lin_vel: np.ndarray = field(default_factory=lambda: np.zeros(3)) """Linear velocity of frame.""" ang_vel: np.ndarray = field(default_factory=lambda: np.zeros(3)) """Angular velocity of frame.""" @property def pose(self) -> np.ndarray: """Returns: A numpy array with position and orientation.""" return np.concatenate([self.pos, self.quat]) # EOF
4,051
Python
33.931034
118
0.651691
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/a1_sys_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """[summary] The kinematics parameters value come from https://github.com/unitreerobotics/unitree_ros/blob/master/robots/a1_description/xacro/const.xacro It calculates the forward kinematics and jacobians of the Unitree A1 robot legs """ import numpy as np from dataclasses import dataclass @dataclass(frozen=True) class A1SysModel: """Constants and functions related to the forward kinematics of the robot""" """ Properties """ THIGH_OFFSET = 0.0838 """constant: the length of the thigh motor""" LEG_OFFSET_X = 0.1805 """constant: x distance from the robot COM to the leg base""" LEG_OFFSET_Y = 0.047 """constant: y distance from the robot COM to the leg base""" THIGH_LENGTH = 0.22 """constant: length of the leg""" C_FR = 0 """constant: FR leg id in A1's hardware convention""" C_FL = 1 """constant: FL leg id in A1's hardware convention""" C_RR = 2 """constant: RR leg id in A1's hardware convention""" C_RL = 3 """constant: RL leg id in A1's hardware convention""" def __init__(self): """Initializes the class instance. """ pass """ Operations """ def forward_kinematics(self, idx: int, q: np.array) -> np.array: """get the forward_kinematics of the leg Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg """ # these two variables indicates the quadrant of the leg fx = self.LEG_OFFSET_X fy = self.LEG_OFFSET_Y d = self.THIGH_OFFSET if idx == self.C_FR: fy *= -1 d *= -1 elif idx == self.C_FL: pass elif idx == self.C_RR: fx *= -1 fy *= -1 d *= -1 else: fx *= -1 length = self.THIGH_LENGTH q1 = q[0] q2 = q[1] q3 = q[2] p = np.zeros(3) p[0] = fx - length * np.sin(q2 + q3) - length * np.sin(q2) p[1] = ( fy + d * np.cos(q1) + length * np.cos(q2) * np.sin(q1) + length * np.cos(q2) * np.cos(q3) * np.sin(q1) - length * np.sin(q1) * np.sin(q2) * np.sin(q3) ) p[2] = ( d * np.sin(q1) - length * np.cos(q1) * np.cos(q2) - length * np.cos(q1) * np.cos(q2) * np.cos(q3) + length * np.cos(q1) * np.sin(q2) * np.sin(q3) ) return p def jacobian(self, idx: int, q: np.array) -> np.ndarray: """get the jacobian of the leg Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg """ # these two variables indicates the quadrant of the leg fx = self.LEG_OFFSET_X fy = self.LEG_OFFSET_Y d = self.THIGH_OFFSET if idx == self.C_FR: fy *= -1 d *= -1 elif idx == self.C_FL: pass elif idx == self.C_RR: fx *= -1 fy *= -1 d *= -1 else: fx *= -1 length = self.THIGH_LENGTH q1 = q[0] q2 = q[1] q3 = q[2] J = np.zeros([3, 3]) # J[1,1] = 0 J[0, 1] = -length * (np.cos(q2 + q3) + np.cos(q2)) J[0, 2] = -length * np.cos(q2 + q3) J[1, 0] = ( length * np.cos(q1) * np.cos(q2) - d * np.sin(q1) + length * np.cos(q1) * np.cos(q2) * np.cos(q3) - length * np.cos(q1) * np.sin(q2) * np.sin(q3) ) J[1, 1] = -length * np.sin(q1) * (np.sin(q2 + q3) + np.sin(q2)) J[1, 2] = -length * np.sin(q2 + q3) * np.sin(q1) J[2, 0] = ( d * np.cos(q1) + length * np.cos(q2) * np.sin(q1) + length * np.cos(q2) * np.cos(q3) * np.sin(q1) - length * np.sin(q1) * np.sin(q2) * np.sin(q3) ) J[2, 1] = length * np.cos(q1) * (np.sin(q2 + q3) + np.sin(q2)) J[2, 2] = length * np.sin(q2 + q3) * np.cos(q1) return J def foot_vel(self, idx: int, q: np.array, dq: np.array) -> np.array: """get the foot velocity Arguments: idx {int}: the index of the leg, must use the A1 hardware convention q {np.array}: the joint angles of a leg dq {np.array}: the joint angular velocities of a leg """ my_jacobian = self.jacobian(idx, q) vel = my_jacobian @ dq return vel
5,025
Python
29.460606
98
0.519403
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/a1_ctrl_params.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from dataclasses import dataclass, field @dataclass class A1CtrlParams: """ A collection of parameters used by the QP agent """ _robot_mass: float = field(default=16.0) """The mass of the robot""" _swap_foot_indices: np.array = field(default=np.array([1, 0, 3, 2], dtype=int)) """A index list help to convert between A1 hardware leg index order and A1 Isaac Sim leg index order""" _foot_force_low: float = field(default=5.0) """ controller parameter: the low threshold of foot contact force""" _default_foot_pos: np.ndarray = field( default=np.array([[+0.17, +0.15, -0.3], [+0.17, -0.15, -0.3], [-0.17, +0.15, -0.3], [-0.17, -0.15, -0.3]]) ) """ controller parameter: the default foot pos in robot frame when the robot is standing still""" _kp_lin_x: float = field(default=0.0) """ control parameter: the raibert foothold strategy, x position target coefficient""" _kd_lin_x: float = field(default=0.15) """ control parameter: the raibert foothold strategy, x velocity target coefficient""" _kf_lin_x: float = field(default=0.2) """ control parameter: the raibert foothold strategy, x desired velocity target coefficient""" _kp_lin_y: float = field(default=0.0) """ control parameter: the raibert foothold strategy, y position target coefficient""" _kd_lin_y: float = field(default=0.1) """ control parameter: the raibert foothold strategy, y velocity target coefficient""" _kf_lin_y: float = field(default=0.2) """ control parameter: the raibert foothold strategy, y desired velocity target coefficient""" _kp_foot: np.ndarray = field( default=np.array( [[500.0, 500.0, 2000.0], [500.0, 500.0, 2000.0], [500.0, 500.0, 2000.0], [500.0, 500.0, 2000.0]] ) ) """ control parameter: the swing foot position error coefficient""" _kd_foot: np.ndarray = field(default=np.array([0.0, 0.0, 0.0])) """ control parameter: the swing foot velocity error coefficient""" _km_foot: np.ndarray = field(default=np.diag([0.1, 0.1, 0.02])) """ control parameter: the swing foot force amplitude coefficient""" _kp_linear: np.ndarray = field(default=np.array([20.0, 20.0, 2000.0])) """ control parameter: the stance foot force position error coefficient""" _kd_linear: np.ndarray = field(default=np.array([50.0, 50.0, 0.0])) """ control parameter: the stance foot force velocity error coefficient""" _kp_angular: np.ndarray = field(default=np.array([600.0, 600.0, 10.0])) """ control parameter: the stance foot force orientation error coefficient""" _kd_angular: np.ndarray = field(default=np.array([3.0, 3.0, 10.0])) """ control parameter: the stance foot force orientation angular velocity error coefficient""" _torque_gravity: np.ndarray = field(default=np.array([0.80, 0, 0, -0.80, 0, 0, 0.80, 0, 0, -0.80, 0, 0])) """ control parameter: gravity compentation heuristic"""
3,415
Python
43.363636
114
0.675842
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/utils/a1_ctrl_states.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from dataclasses import dataclass, field @dataclass class A1CtrlStates: """ A collection of variables used by the QP agent """ _counter_per_gait: float = field(default=240.0) """The number of ticks of one gait cycle""" _counter_per_swing: float = field(default=120.0) """The number of ticks of one swing phase (half of the gait cycle)""" _counter: float = field(default=0.0) """A _counter used to determine how many ticks since the simulation starts""" _exp_time: float = field(default=0.0) """Simulation time since the simulation starts""" _gait_counter: np.array = field(default_factory=lambda: np.zeros(4)) """Each leg has its own _counter with initial phase""" _gait_counter_speed: np.array = field(default_factory=lambda: np.zeros(4)) """The speed of gait _counter update""" _root_pos: np.array = field(default_factory=lambda: np.zeros(3)) """feedback state: robot position in world frame""" _root_quat: np.array = field(default_factory=lambda: np.zeros(4)) """feedback state: robot quaternion in world frame""" _root_lin_vel: np.array = field(default_factory=lambda: np.zeros(3)) """feedback state: robot linear velocity in world frame""" _root_ang_vel: np.array = field(default_factory=lambda: np.zeros(3)) """feedback state: robot angular velocity in world frame""" # 오타 같은데, robot frame 같음 _joint_pos: np.array = field(default_factory=lambda: np.zeros(12)) """feedback state: robot motor joint angles""" _joint_vel: np.array = field(default_factory=lambda: np.zeros(12)) """feedback state: robot motor joint angular velocities""" _foot_forces: np.array = field(default_factory=lambda: np.zeros(4)) """feedback state: robot foot contact forces""" _foot_pos_target_world: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot target pos in the world frame""" _foot_pos_target_abs: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot target pos in the absolute frame (rotated robot frame)""" _foot_pos_target_rel: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot target pos in the relative frame (robot frame)""" _foot_pos_start_rel: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot current pos in the relative frame (robot frame)""" _euler: np.array = field(default_factory=lambda: np.zeros(3)) """indirect feedback state: robot _euler angle in world frame""" _rot_mat: np.ndarray = field(default_factory=lambda: np.zeros([3, 3])) """indirect feedback state: robot rotation matrix in world frame""" _rot_mat_z: np.ndarray = field(default_factory=lambda: np.zeros([3, 3])) """indirect feedback state: robot rotation matrix with just the yaw angle in world frame""" # R^{world}_{robot yaw} _foot_pos_abs: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot current pos in the absolute frame (rotated robot frame)""" _foot_pos_rel: np.ndarray = field(default_factory=lambda: np.zeros([4, 3])) """ controller variables: the foot current pos in the relative frame (robot frame)""" _j_foot: np.ndarray = field(default_factory=lambda: np.zeros([12, 12])) """ controller variables: the foot jacobian in the relative frame (robot frame)""" _gait_type: int = field(default=1) """ control variable: type of gait, currently only 1 is defined, which is a troting gait""" _gait_type_last: int = field(default=1) """ control varialbe: saves the previous gait. Reserved for future use""" _contacts: np.array = field(default_factory=lambda: np.array([False] * 4)) """ control varialbe: determine each foot has contact with ground or not""" _early_contacts: np.array = field(default_factory=lambda: np.array([False] * 4)) """ control varialbe: determine each foot has early contact with ground or not (unexpect contact during foot swing)""" _init_transition: int = field(default=0) """ control variable: determine whether the robot should be in walking mode or standstill mode """ _prev_transition: int = field(default=0) """ control variable: previous mode"""
4,796
Python
44.685714
122
0.69558
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/robots/unitree.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni import omni.kit.commands from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, define_prim from omni.isaac.sensor import _sensor from omni.isaac.core.utils.stage import get_current_stage, get_stage_units from omni.isaac.core.articulations import Articulation from omni.isaac.quadruped.utils.a1_classes import A1State, A1Measurement, A1Command from omni.isaac.quadruped.controllers import A1QPController from omni.isaac.sensor import ContactSensor, IMUSensor from typing import Optional, List from collections import deque import numpy as np import carb class Unitree(Articulation): """For unitree based quadrupeds (A1 or Go1)""" def __init__( self, prim_path: str, name: str = "unitree_quadruped", physics_dt: Optional[float] = 1 / 400.0, usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, model: Optional[str] = "A1", way_points: Optional[np.ndarray] = None, ) -> None: """ [Summary] initialize robot, set up sensors and controller Args: prim_path {str} -- prim path of the robot on the stage name {str} -- name of the quadruped physics_dt {float} -- physics downtime of the controller usd_path {str} -- robot usd filepath in the directory position {np.ndarray} -- position of the robot orientation {np.ndarray} -- orientation of the robot model {str} -- robot model (can be either A1 or Go1) way_points {np.ndarray} -- waypoint and heading of the robot """ self._stage = get_current_stage() self._prim_path = prim_path prim = get_prim_at_path(self._prim_path) if not prim.IsValid(): prim = define_prim(self._prim_path, "Xform") if usd_path: prim.GetReferences().AddReference(usd_path) else: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets server") if model == "A1": asset_path = assets_root_path + "/Isaac/Robots/Unitree/a1.usd" else: asset_path = assets_root_path + "/Isaac/Robots/Unitree/go1.usd" carb.log_warn("asset path is: " + asset_path) prim.GetReferences().AddReference(asset_path) # state, foot_forces, base_lin_acc, base_ang_vel self._measurement = A1Measurement() # desired_joint_torque self._command = A1Command() # base_frame, joint_pos, joint_vel self._state = A1State() # base_frame, joint_pos, joint_vel self._default_a1_state = A1State() if position is not None: self._default_a1_state.base_frame.pos = np.asarray(position) else: self._default_a1_state.base_frame.pos = np.array([0.0, 0.0, 0.0]) self._default_a1_state.base_frame.quat = np.array([0.0, 0.0, 0.0, 1.0]) self._default_a1_state.base_frame.ang_vel = np.array([0.0, 0.0, 0.0]) self._default_a1_state.base_frame.lin_vel = np.array([0.0, 0.0, 0.0]) self._default_a1_state.joint_pos = np.array([0.0, 1.2, -1.8, 0, 1.2, -1.8, 0.0, 1.2, -1.8, 0, 1.2, -1.8]) self._default_a1_state.joint_vel = np.zeros(12) self._goal = np.zeros(3) self.meters_per_unit = get_stage_units() super().__init__(prim_path=self._prim_path, name=name, position=position, orientation=orientation) # contact sensor setup # "FL", "FR", "RL", "RR" self.feet_order = ["FL", "FR", "RL", "RR"] self.feet_path = [ self._prim_path + "/FL_foot", self._prim_path + "/FR_foot", self._prim_path + "/RL_foot", self._prim_path + "/RR_foot", ] self.color = [(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 0, 1)] self._contact_sensors = [None] * 4 for i in range(4): self._contact_sensors[i] = ContactSensor( prim_path=self.feet_path[i] + "/sensor", min_threshold=0, max_threshold=1000000, radius=0.03, dt=physics_dt, ) self.foot_force = np.zeros(4) self.enable_foot_filter = True self._FILTER_WINDOW_SIZE = 20 self._foot_filters = [deque(), deque(), deque(), deque()] # imu sensor setup self.imu_path = self._prim_path + "/imu_link" self._imu_sensor = IMUSensor( prim_path=self.imu_path + "/imu_sensor", name="imu", dt=physics_dt, translation=np.array([0, 0, 0]), orientation=np.array([1, 0, 0, 0]), ) self.base_lin = np.zeros(3) self.ang_vel = np.zeros(3) # Controller self.physics_dt = physics_dt if way_points: self._qp_controller = A1QPController(model, self.physics_dt, way_points) else: self._qp_controller = A1QPController(model, self.physics_dt) self._qp_controller.setup() self._dof_control_modes: List[int] = list() return def set_state(self, state: A1State) -> None: """[Summary] Set the kinematic state of the robot. Args: state {A1State} -- The state of the robot to set. Raises: RuntimeError: When the DC Toolbox interface has not been configured. """ self.set_world_pose(position=state.base_frame.pos, orientation=state.base_frame.quat[[3, 0, 1, 2]]) self.set_linear_velocity(state.base_frame.lin_vel) self.set_angular_velocity(state.base_frame.ang_vel) # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert controller order to DC order for setting state self.set_joint_positions( positions=np.asarray(np.array(state.joint_pos.reshape([4, 3]).T.flat), dtype=np.float32) ) self.set_joint_velocities( velocities=np.asarray(np.array(state.joint_vel.reshape([4, 3]).T.flat), dtype=np.float32) ) self.set_joint_efforts(np.zeros_like(state.joint_pos)) return def update_contact_sensor_data(self) -> None: """[summary] Updates processed contact sensor data from the robot feets, store them in member variable foot_force """ # Order: FL, FR, BL, BR for i in range(len(self.feet_path)): frame = self._contact_sensors[i].get_current_frame() if "force" in frame: if self.enable_foot_filter: self._foot_filters[i].append(frame["force"]) if len(self._foot_filters[i]) > self._FILTER_WINDOW_SIZE: self._foot_filters[i].popleft() self.foot_force[i] = np.mean(self._foot_filters[i]) else: self.foot_force[i] = frame["force"] def update_imu_sensor_data(self) -> None: """[summary] Updates processed imu sensor data from the robot body, store them in member variable base_lin and ang_vel """ frame = self._imu_sensor.get_current_frame() self.base_lin = frame["lin_acc"] self.ang_vel = frame["ang_vel"] return def update(self) -> None: """[summary] update robot sensor variables, state variables in A1Measurement """ self.update_contact_sensor_data() self.update_imu_sensor_data() # joint pos and vel from the DC interface self.joint_state = super().get_joints_state() # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert DC order to controller order for joint info self._state.joint_pos = np.array(self.joint_state.positions.reshape([3, 4]).T.flat) self._state.joint_vel = np.array(self.joint_state.velocities.reshape([3, 4]).T.flat) # base frame base_pose = self.get_world_pose() self._state.base_frame.pos = base_pose[0] self._state.base_frame.quat = base_pose[1][[1, 2, 3, 0]] self._state.base_frame.lin_vel = self.get_linear_velocity() self._state.base_frame.ang_vel = self.get_angular_velocity() # assign to _measurement obj self._measurement.state = self._state self._measurement.foot_forces = np.asarray(self.foot_force) self._measurement.base_ang_vel = np.asarray(self.ang_vel) self._measurement.base_lin_acc = np.asarray(self.base_lin) return def advance(self, dt, goal, path_follow=False, auto_start=True) -> np.ndarray: """[summary] compute desired torque and set articulation effort to robot joints Argument: dt {float} -- Timestep update in the world. goal {List[int]} -- x velocity, y velocity, angular velocity, state switch path_follow {bool} -- true for following coordinates, false for keyboard control auto_start {bool} -- true for start trotting after 1 sec, false for start trotting after switch mode function is called Returns: np.ndarray -- The desired joint torques for the robot. """ if goal is None: goal = self._goal else: self._goal = goal self.update() self._qp_controller.set_target_command(goal) self._command.desired_joint_torque = self._qp_controller.advance(dt, self._measurement, path_follow, auto_start) # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert controller order to DC order for command torque torque_reorder = np.array(self._command.desired_joint_torque.reshape([4, 3]).T.flat) self.set_joint_efforts(np.asarray(torque_reorder, dtype=np.float32)) return self._command def initialize(self, physics_sim_view=None) -> None: """[summary] initialize dc interface, set up drive mode and initial robot state """ super().initialize(physics_sim_view=physics_sim_view) self.get_articulation_controller().set_effort_modes("force") self.get_articulation_controller().switch_control_mode("effort") self.set_state(self._default_a1_state) for i in range(4): self._contact_sensors[i].initialize() return def post_reset(self) -> None: """[summary] post reset articulation and qp_controller """ super().post_reset() for i in range(4): self._contact_sensors[i].post_reset() self._qp_controller.reset() self.set_state(self._default_a1_state) return
12,884
Python
39.518868
127
0.593294
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/robots/unitree_vision.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # python from typing import Optional import numpy as np # omniverse from pxr import UsdGeom, Gf import omni.kit.commands import omni.usd import omni.graph.core as og from omni.isaac.quadruped.robots import Unitree from omni.isaac.core.utils.viewports import set_camera_view from omni.kit.viewport.utility import get_active_viewport, get_viewport_from_window_name from omni.isaac.core.utils.prims import set_targets class UnitreeVision(Unitree): """[Summary] For unitree based quadrupeds (A1 or Go1) with camera """ def __init__( self, prim_path: str, name: str = "unitree_quadruped", physics_dt: Optional[float] = 1 / 400.0, usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, model: Optional[str] = "A1", is_ros2: Optional[bool] = False, way_points: Optional[np.ndarray] = None, ) -> None: """ [Summary] initialize robot, set up sensors and controller Arguments: prim_path {str} -- prim path of the robot on the stage name {str} -- name of the quadruped physics_dt {float} -- physics downtime of the controller usd_path {str} -- robot usd filepath in the directory position {np.ndarray} -- position of the robot orientation {np.ndarray} -- orientation of the robot model {str} -- robot model (can be either A1 or Go1) way_points {np.ndarray} -- waypoints for the robot """ super().__init__(prim_path, name, physics_dt, usd_path, position, orientation, model, way_points) self.image_width = 640 self.image_height = 480 self.cameras = [ # 0name, 1offset, 2orientation, 3hori aperture, 4vert aperture, 5projection, 6focal length, 7focus distance ("/camera_left", Gf.Vec3d(0.2693, 0.025, 0.067), (90, 0, -90), 21, 16, "perspective", 24, 400), ("/camera_right", Gf.Vec3d(0.2693, -0.025, 0.067), (90, 0, -90), 21, 16, "perspective", 24, 400), ] self.camera_graphs = [] # after stage is defined self._stage = omni.usd.get_context().get_stage() # add cameras on the imu link for i in range(len(self.cameras)): # add camera prim camera = self.cameras[i] camera_path = self._prim_path + "/imu_link" + camera[0] camera_prim = UsdGeom.Camera(self._stage.DefinePrim(camera_path, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetRotate(camera[2], UsdGeom.XformCommonAPI.RotationOrderXYZ) xform_api.SetTranslate(camera[1]) camera_prim.GetHorizontalApertureAttr().Set(camera[3]) camera_prim.GetVerticalApertureAttr().Set(camera[4]) camera_prim.GetProjectionAttr().Set(camera[5]) camera_prim.GetFocalLengthAttr().Set(camera[6]) camera_prim.GetFocusDistanceAttr().Set(camera[7]) self.is_ros2 = is_ros2 ros_version = "ROS1" ros_bridge_version = "ros_bridge." self.ros_vp_offset = 1 if self.is_ros2: ros_version = "ROS2" ros_bridge_version = "ros2_bridge." # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys graph_path = "/ROS_" + camera[0].split("/")[-1] (camera_graph, _, _, _) = og.Controller.edit( { "graph_path": graph_path, "evaluator_name": "execution", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_SIMULATION, }, { keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("setViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac." + ros_bridge_version + ros_version + "CameraHelper"), ("cameraHelperInfo", "omni.isaac." + ros_bridge_version + ros_version + "CameraHelper"), ], keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "setViewportResolution.inputs:execIn"), ("createViewport.outputs:viewport", "setViewportResolution.inputs:viewport"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:name", "Viewport " + str(i + self.ros_vp_offset)), ("setViewportResolution.inputs:height", int(self.image_height)), ("setViewportResolution.inputs:width", int(self.image_width)), ("cameraHelperRgb.inputs:frameId", camera[0]), ("cameraHelperRgb.inputs:nodeNamespace", "/isaac_a1"), ("cameraHelperRgb.inputs:topicName", "camera_forward" + camera[0] + "/rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", camera[0]), ("cameraHelperInfo.inputs:nodeNamespace", "/isaac_a1"), ("cameraHelperInfo.inputs:topicName", camera[0] + "/camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ], }, ) set_targets( prim=self._stage.GetPrimAtPath(graph_path + "/setCamera"), attribute="inputs:cameraPrim", target_prim_paths=[camera_path], ) self.camera_graphs.append(camera_graph) self.viewports = [] for viewport_name in ["Viewport", "Viewport 1", "Viewport 2"]: viewport_api = get_viewport_from_window_name(viewport_name) self.viewports.append(viewport_api) self.set_camera_execution_step = True def dockViewports(self) -> None: """ [Summary] For instantiating and docking view ports """ # first, set main viewport main_viewport = get_active_viewport() set_camera_view(eye=[3.0, 3.0, 3.0], target=[0, 0, 0], camera_prim_path="/OmniverseKit_Persp") main_viewport = omni.ui.Workspace.get_window("Viewport") left_camera_viewport = omni.ui.Workspace.get_window("Viewport 1") right_camera_viewport = omni.ui.Workspace.get_window("Viewport 2") if main_viewport is not None and left_camera_viewport is not None and right_camera_viewport is not None: left_camera_viewport.dock_in(main_viewport, omni.ui.DockPosition.RIGHT, 2 / 3.0) right_camera_viewport.dock_in(left_camera_viewport, omni.ui.DockPosition.RIGHT, 0.5) def setCameraExeutionStep(self, step: np.uint) -> None: """ [Summary] Sets the execution step in the omni.isaac.core_nodes.IsaacSimulationGate node located in the camera sensor pipeline """ for viewport in self.viewports[self.ros_vp_offset :]: if viewport is not None: import omni.syntheticdata._syntheticdata as sd rv = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv + "IsaacSimulationGate", viewport.get_render_product_path() ) camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport.get_render_product_path() ) og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(step) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(step) def update(self) -> None: """ [Summary] Update robot variables from the environment """ super().update() if self.set_camera_execution_step: self.setCameraExeutionStep(1) self.dockViewports() self.set_camera_execution_step = False def advance(self, dt, goal, path_follow=False) -> np.ndarray: """[summary] calls the unitree advance to compute torque Argument: dt {float} -- Timestep update in the world. goal {List[int]} -- x velocity, y velocity, angular velocity, state switch path_follow {bool} -- True for following a set of coordinates, False for keyboard control Returns: np.ndarray -- The desired joint torques for the robot. """ super().advance(dt, goal, path_follow)
10,522
Python
44.752174
123
0.589052
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/robots/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.quadruped.robots.unitree import Unitree from omni.isaac.quadruped.robots.unitree_vision import UnitreeVision from omni.isaac.quadruped.robots.unitree_direct import UnitreeDirect from omni.isaac.quadruped.robots.anymal import Anymal
677
Python
47.428568
76
0.827179
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/robots/unitree_direct.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, define_prim from omni.isaac.sensor import _sensor from omni.isaac.core.utils.stage import get_current_stage, get_stage_units from omni.isaac.core.articulations import Articulation from omni.isaac.quadruped.utils.a1_classes import A1State, A1Measurement, A1Command from omni.isaac.sensor import ContactSensor from typing import Optional, List from collections import deque import numpy as np import carb class UnitreeDirect(Articulation): """ For unitree based quadrupeds (A1 or Go1) This class only read command from an external torque and send the torque command to the articulation directly, perhaps a external ROS node generates the command """ def __init__( self, prim_path: str, name: str = "unitree_quadruped_ROS", physics_dt: Optional[float] = 1 / 400.0, usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, model: Optional[str] = "A1", ) -> None: """ [Summary] initialize robot, set up sensors and controller Args: prim_path {str} -- prim path of the robot on the stage name {str} -- name of the quadruped physics_dt {float} -- physics downtime of the controller usd_path {str} -- robot usd filepath in the directory position {np.ndarray} -- position of the robot orientation {np.ndarray} -- orientation of the robot model {str} -- robot model (can be either A1 or Go1) """ self._stage = get_current_stage() self._prim_path = prim_path prim = get_prim_at_path(self._prim_path) if not prim.IsValid(): prim = define_prim(self._prim_path, "Xform") if usd_path: prim.GetReferences().AddReference(usd_path) else: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") if model == "A1": asset_path = assets_root_path + "/Isaac/Robots/Unitree/a1.usd" else: asset_path = assets_root_path + "/Isaac/Robots/Unitree/go1.usd" carb.log_warn("asset path is: " + asset_path) prim.GetReferences().AddReference(asset_path) self._measurement = A1Measurement() self._state = A1State() self._command = A1Command() self._default_a1_state = A1State() if position is not None: self._default_a1_state.base_frame.pos = np.asarray(position) else: self._default_a1_state.base_frame.pos = np.array([0.0, 0.0, 0.0]) self._default_a1_state.base_frame.quat = np.array([0.0, 0.0, 0.0, 1.0]) self._default_a1_state.base_frame.ang_vel = np.array([0.0, 0.0, 0.0]) self._default_a1_state.base_frame.lin_vel = np.array([0.0, 0.0, 0.0]) self._default_a1_state.joint_pos = np.array([0.0, 1.2, -1.8, 0, 1.2, -1.8, 0.0, 1.2, -1.8, 0, 1.2, -1.8]) self._default_a1_state.joint_vel = np.zeros(12) self.meters_per_unit = get_stage_units() super().__init__(prim_path=self._prim_path, name=name, position=position, orientation=orientation) # contact sensor setup self.feet_order = ["FL", "FR", "RL", "RR"] self.feet_path = [ self._prim_path + "/FL_foot", self._prim_path + "/FR_foot", self._prim_path + "/RL_foot", self._prim_path + "/RR_foot", ] self.color = [(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 0, 1)] self._contact_sensors = [None] * 4 for i in range(4): self._contact_sensors[i] = ContactSensor( prim_path=self.feet_path[i] + "/sensor", min_threshold=0, max_threshold=1000000, radius=0.03, dt=physics_dt, ) self.foot_force = np.zeros(4) self.enable_foot_filter = True self._FILTER_WINDOW_SIZE = 20 self._foot_filters = [deque(), deque(), deque(), deque()] # imu sensor setup # imu sensor setup self.imu_path = self._prim_path + "/imu_link" self._imu_sensor = IMUSensor( prim_path=self.imu_path + "/imu_sensor", name="imu", dt=physics_dt, translation=np.array([0, 0, 0]), orientation=np.array([1, 0, 0, 0]), ) self.base_lin = np.zeros(3) self.ang_vel = np.zeros(3) # direct send command self._dof_control_modes: List[int] = list() return def set_state(self, state: A1State) -> None: """[Summary] Set the kinematic state of the robot. Args: state {A1State} -- The state of the robot to set. Raises: RuntimeError: When the DC Toolbox interface has not been configured. """ self.set_world_pose(position=state.base_frame.pos, orientation=state.base_frame.quat[[3, 0, 1, 2]]) self.set_linear_velocity(state.base_frame.lin_vel) self.set_angular_velocity(state.base_frame.ang_vel) # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert controller order to DC order for setting state self.set_joint_positions( positions=np.asarray(np.array(state.joint_pos.reshape([4, 3]).T.flat), dtype=np.float32) ) self.set_joint_velocities( velocities=np.asarray(np.array(state.joint_vel.reshape([4, 3]).T.flat), dtype=np.float32) ) self.set_joint_efforts(np.zeros_like(state.joint_pos)) return def update_contact_sensor_data(self) -> None: """[summary] Updates processed contact sensor data from the robot feets, store them in member variable foot_force """ # Order: FL, FR, BL, BR for i in range(len(self.feet_path)): frame = self._contact_sensors[i].get_current_frame() if "force" in frame: if self.enable_foot_filter: self._foot_filters[i].append(frame["force"]) if len(self._foot_filters[i]) > self._FILTER_WINDOW_SIZE: self._foot_filters[i].popleft() self.foot_force[i] = np.mean(self._foot_filters[i]) else: self.foot_force[i] = frame["force"] def update_imu_sensor_data(self): """[summary] Updates processed imu sensor data from the robot body, store them in member variable base_lin and ang_vel """ frame = self._imu_sensor.get_current_frame() self.base_lin = frame["lin_acc"] self.ang_vel = frame["ang_vel"] return def update(self): """[summary] update robot sensor variables, state variables in A1Measurement """ self.update_contact_sensor_data() self.update_imu_sensor_data() # joint pos and vel from the DC interface self.joint_state = super().get_joints_state() # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert DC order to controller order for joint info self._state.joint_pos = np.array(self.joint_state.positions.reshape([3, 4]).T.flat) self._state.joint_vel = np.array(self.joint_state.velocities.reshape([3, 4]).T.flat) # base frame # base frame base_pose = self.get_world_pose() self._state.base_frame.pos = base_pose[0] self._state.base_frame.quat = base_pose[1][[1, 2, 3, 0]] self._state.base_frame.lin_vel = self.get_linear_velocity() self._state.base_frame.ang_vel = self.get_angular_velocity() # assign to _measurement obj self._measurement.state = self._state self._measurement.foot_forces = np.asarray(self.foot_force) self._measurement.base_ang_vel = np.asarray(self.ang_vel) self._measurement.base_lin_acc = np.asarray(self.base_lin) return def advance(self): """[summary] direct control the robot using desired_joint_torque Argument: dt {float} -- Timestep update in the world. goal {List[int]} -- x velocity, y velocity, angular velocity, state switch Returns: np.ndarray -- The desired joint torques for the robot. """ # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the QP controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # we convert controller order to DC order for command torque torque_reorder = np.array(self._command.desired_joint_torque.reshape([4, 3]).T.flat) self.set_joint_efforts(np.asarray(torque_reorder, dtype=np.float32)) return self._command def initialize(self, physics_sim_view=None) -> None: """[summary] initialize dc interface, set up drive mode and initial robot state """ super().initialize(physics_sim_view=physics_sim_view) self.get_articulation_controller().set_effort_modes("force") self.get_articulation_controller().switch_control_mode("effort") self.set_state(self._default_a1_state) return def post_reset(self) -> None: """[summary] post reset articulation and qp_controller """ super().post_reset() self.set_state(self._default_a1_state) return def set_command_torque(self, _desired_joint_torque) -> None: """ Allow external nodes directly set robot command torque _desired_joint_torque should be a 12x1 vector of torques """ self._command.desired_joint_torque = _desired_joint_torque return
11,922
Python
39.010067
119
0.592266
kimsooyoung/legged_robotics/omni.isaac.quadruped/omni/isaac/quadruped/robots/anymal.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni import omni.kit.commands from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path, define_prim from omni.isaac.core.utils.rotations import quat_to_rot_matrix, quat_to_euler_angles, euler_to_rot_matrix from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.articulations import Articulation from omni.isaac.quadruped.utils import LstmSeaNetwork import io from pxr import Gf from typing import Optional, List import numpy as np import torch import carb class Anymal(Articulation): """The ANYmal quadruped""" def __init__( self, prim_path: str, name: str = "anymal", usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """ [Summary] initialize robot, set up sensors and controller Args: prim_path {str} -- prim path of the robot on the stage name {str} -- name of the quadruped usd_path {str} -- robot usd filepath in the directory position {np.ndarray} -- position of the robot orientation {np.ndarray} -- orientation of the robot """ self._stage = get_current_stage() self._prim_path = prim_path prim = get_prim_at_path(self._prim_path) assets_root_path = get_assets_root_path() if not prim.IsValid(): prim = define_prim(self._prim_path, "Xform") if usd_path: prim.GetReferences().AddReference(usd_path) else: if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_c.usd" carb.log_warn("asset path is: " + asset_path) prim.GetReferences().AddReference(asset_path) super().__init__(prim_path=self._prim_path, name=name, position=position, orientation=orientation) self._dof_control_modes: List[int] = list() # Policy file_content = omni.client.read_file(assets_root_path + "/Isaac/Samples/Quadruped/Anymal_Policies/policy_1.pt")[ 2 ] file = io.BytesIO(memoryview(file_content).tobytes()) self._policy = torch.jit.load(file) self._base_vel_lin_scale = 2.0 self._base_vel_ang_scale = 0.25 self._joint_pos_scale = 1.0 self._joint_vel_scale = 0.05 self._action_scale = 0.5 self._default_joint_pos = np.array([0.0, 0.4, -0.8, 0.0, -0.4, 0.8, -0.0, 0.4, -0.8, -0.0, -0.4, 0.8]) self._previous_action = np.zeros(12) self._policy_counter = 0 # Actuator network file_content = omni.client.read_file( assets_root_path + "/Isaac/Samples/Quadruped/Anymal_Policies/sea_net_jit2.pt" )[2] file = io.BytesIO(memoryview(file_content).tobytes()) self._actuator_network = LstmSeaNetwork() self._actuator_network.setup(file, self._default_joint_pos) self._actuator_network.reset() # Height scaner y = np.arange(-0.5, 0.6, 0.1) x = np.arange(-0.8, 0.9, 0.1) grid_x, grid_y = np.meshgrid(x, y) self._scan_points = np.zeros((grid_x.size, 3)) self._scan_points[:, 0] = grid_x.transpose().flatten() self._scan_points[:, 1] = grid_y.transpose().flatten() self.physx_query_interface = omni.physx.get_physx_scene_query_interface() self._query_info = [] def _hit_report_callback(self, hit): current_hit_body = hit.rigid_body if "/World/GroundPlane" in current_hit_body: self._query_info.append(hit.distance) return True def _compute_observation(self, command): """[summary] compute the observation vector for the policy Argument: command {np.ndarray} -- the robot command (v_x, v_y, w_z) Returns: np.ndarray -- The observation vector. """ lin_vel_I = self.get_linear_velocity() ang_vel_I = self.get_angular_velocity() pos_IB, q_IB = self.get_world_pose() R_IB = quat_to_rot_matrix(q_IB) R_BI = R_IB.transpose() lin_vel_b = np.matmul(R_BI, lin_vel_I) ang_vel_b = np.matmul(R_BI, ang_vel_I) gravity_b = np.matmul(R_BI, np.array([0.0, 0.0, -1.0])) obs = np.zeros(235) # Base lin vel obs[:3] = self._base_vel_lin_scale * lin_vel_b # Base ang vel obs[3:6] = self._base_vel_ang_scale * ang_vel_b # Gravity obs[6:9] = gravity_b # Command obs[9] = self._base_vel_lin_scale * command[0] obs[10] = self._base_vel_lin_scale * command[1] obs[11] = self._base_vel_ang_scale * command[2] # Joint states # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the learning controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # Convert DC order to controller order for joint info current_joint_pos = self.get_joint_positions() current_joint_vel = self.get_joint_velocities() current_joint_pos = np.array(current_joint_pos.reshape([3, 4]).T.flat) current_joint_vel = np.array(current_joint_vel.reshape([3, 4]).T.flat) obs[12:24] = self._joint_pos_scale * (current_joint_pos - self._default_joint_pos) obs[24:36] = self._joint_vel_scale * current_joint_vel obs[36:48] = self._previous_action # height_scanner rpy = -quat_to_euler_angles(q_IB) rpy[:2] = 0.0 yaw_rot = np.array(Gf.Matrix3f(euler_to_rot_matrix(rpy))) world_scan_points = np.matmul(yaw_rot, self._scan_points.T).T + pos_IB for i in range(world_scan_points.shape[0]): self._query_info.clear() self.physx_query_interface.raycast_all( tuple(world_scan_points[i]), (0.0, 0.0, -1.0), 100, self._hit_report_callback ) if self._query_info: distance = min(self._query_info) obs[48 + i] = np.clip(distance - 0.5, -1.0, 1.0) else: print("No hit") return obs def advance(self, dt, command): """[summary] compute the desired torques and apply them to the articulation Argument: dt {float} -- Timestep update in the world. command {np.ndarray} -- the robot command (v_x, v_y, w_z) """ if self._policy_counter % 4 == 0: obs = self._compute_observation(command) with torch.no_grad(): obs = torch.from_numpy(obs).view(1, -1).float() self.action = self._policy(obs).detach().view(-1).numpy() self._previous_action = self.action.copy() self._dc_interface.wake_up_articulation(self._handle) # joint_state from the DC interface now has the order of # 'FL_hip_joint', 'FR_hip_joint', 'RL_hip_joint', 'RR_hip_joint', # 'FL_thigh_joint', 'FR_thigh_joint', 'RL_thigh_joint', 'RR_thigh_joint', # 'FL_calf_joint', 'FR_calf_joint', 'RL_calf_joint', 'RR_calf_joint' # while the learning controller uses the order of # FL_hip_joint FL_thigh_joint FL_calf_joint # FR_hip_joint FR_thigh_joint FR_calf_joint # RL_hip_joint RL_thigh_joint RL_calf_joint # RR_hip_joint RR_thigh_joint RR_calf_joint # Convert DC order to controller order for joint info current_joint_pos = self.get_joint_positions() current_joint_vel = self.get_joint_velocities() current_joint_pos = np.array(current_joint_pos.reshape([3, 4]).T.flat) current_joint_vel = np.array(current_joint_vel.reshape([3, 4]).T.flat) joint_torques, _ = self._actuator_network.compute_torques( current_joint_pos, current_joint_vel, self._action_scale * self.action ) # finally convert controller order to DC order for command torque torque_reorder = np.array(joint_torques.reshape([4, 3]).T.flat) self._dc_interface.set_articulation_dof_efforts(self._handle, torque_reorder) self._policy_counter += 1 def initialize(self, physics_sim_view=None) -> None: """[summary] initialize the dc interface, set up drive mode """ super().initialize(physics_sim_view=physics_sim_view) self.get_articulation_controller().set_effort_modes("force") self.get_articulation_controller().switch_control_mode("effort") def post_reset(self) -> None: """[summary] post reset articulation """ super().post_reset()
9,695
Python
38.255061
120
0.597834
kimsooyoung/legged_robotics/omni.isaac.quadruped/docs/CHANGELOG.md
# Changelog ## [1.3.0] - 2023-02-01 ### Removed - Removed Quadruped class - Removed dynamic control extension dependency - Used omni.isaac.sensor classes for Contact and IMU sensors ## [1.2.2] - 2022-12-10 ### Fixed - Updated camera pipeline with writers ## [1.2.1] - 2022-11-03 ### Fixed - Incorrect viewport name issue - Viewports not docking correctly ## [1.2.0] - 2022-08-30 ### Changed - Remove direct legacy viewport calls ## [1.1.2] - 2022-05-19 ### Changed - Updated unitree vision class to use OG ROS nodes - Updated ROS1/ROS2 quadruped standalone samples to use OG ROS nodes ## [1.1.1] - 2022-05-15 ### Fixed - DC joint order change related fixes. ## [1.1.0] - 2022-05-05 ### Added - added the ANYmal robot ## [1.0.2] - 2022-04-21 ### Changed - decoupled sensor testing from A1 and Go1 unit test - fixed contact sensor bug in example and standalone ## [1.0.1] - 2022-04-20 ### Changed - Replaced find_nucleus_server() with get_assets_root_path() ## [1.0.0] - 2022-04-13 ### Added - quadruped class, unitree class (support both a1, go1), unitree vision class (unitree class with stereo cameras), and unitree direct class (unitree class that subscribe to external controllers) - quadruped controllers - documentations and unit tests - quadruped standalone with ros 1 and ros 2 vio examples
1,318
Markdown
21.355932
194
0.704856
kimsooyoung/legged_robotics/omni.isaac.quadruped/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.quadruped extension
109
Markdown
35.666655
100
0.816514
kimsooyoung/legged_robotics/omni.isaac.quadruped/docs/index.rst
Quadruped Robots [omni.isaac.quadruped] ####################################### Quadruped ====================== .. automodule:: omni.isaac.quadruped.quadruped :inherited-members: :members: :undoc-members: :exclude-members: Quadruped Controller ======================= .. automodule:: omni.isaac.quadruped.controllers :inherited-members: :imported-members: :members: :undoc-members: :exclude-members: Quadruped Robots ====================== .. automodule:: omni.isaac.quadruped.robots :inherited-members: :imported-members: :members: :undoc-members: :exclude-members: Quadruped Utilities ======================== .. automodule:: omni.isaac.quadruped.utils :inherited-members: :imported-members: :members: :undoc-members: :exclude-members:
829
reStructuredText
17.043478
48
0.576598
kimsooyoung/rb_issac_tutorial/data_test_ur.py
import h5py import numpy as np import pylab as plt file_name = "./ur_bin_filling.hdf5" # file_name = "./ur_bin_palleting.hdf5" with h5py.File(file_name, 'r') as f: print(f.keys()) print(f"keys: {f['isaac_dataset'].keys()}") print(f"sim_time: {f['isaac_dataset']['sim_time'].shape}") print(f"joint_positions: {f['isaac_dataset']['joint_positions'].shape}") print(f"joint_velocities: {f['isaac_dataset']['joint_velocities'].shape}") print(f"camera_images: {f['isaac_dataset']['camera_images'].keys()}") sim_time = f['isaac_dataset']['sim_time'][:] joint_positions = f['isaac_dataset']['joint_positions'][:] joint_velocities = f['isaac_dataset']['joint_velocities'][:] if file_name == "./ur_bin_filling.hdf5": ee_camera = f['isaac_dataset']['camera_images']['ee_camera'][:] side_camera = f['isaac_dataset']['camera_images']['side_camera'][:] front_camera = f['isaac_dataset']['camera_images']['front_camera'][:] plt.figure(1) plt.imshow(ee_camera[7]) plt.figure(2) plt.imshow(side_camera[7]) plt.figure(3) plt.imshow(front_camera[7]) elif file_name == "./ur_bin_palleting.hdf5": ee_camera = f['isaac_dataset']['camera_images']['ee_camera'][:] left_camera = f['isaac_dataset']['camera_images']['left_camera'][:] right_camera = f['isaac_dataset']['camera_images']['right_camera'][:] front_camera = f['isaac_dataset']['camera_images']['front_camera'][:] back_camera = f['isaac_dataset']['camera_images']['back_camera'][:] plt.figure(1) plt.imshow(ee_camera[1]) plt.figure(2) plt.imshow(left_camera[1]) plt.figure(3) plt.imshow(right_camera[1]) plt.figure(4) plt.imshow(front_camera[1]) plt.figure(5) plt.imshow(back_camera[1]) print(f"sim_time: {sim_time}") print(f"joint_positions[0]: {joint_positions[0]}") print(f"joint_velocities[0]: {joint_velocities[0]}") plt.show()
2,038
Python
30.36923
78
0.592738
kimsooyoung/rb_issac_tutorial/data_test_franka.py
import h5py import numpy as np import pylab as plt file_name = "./franka_nuts_basic.hdf5" # file_name = "./franka_bolts_nuts_table.hdf5" with h5py.File(file_name, 'r') as f: print(f.keys()) print(f"keys: {f['isaac_dataset'].keys()}") print(f"sim_time: {f['isaac_dataset']['sim_time'].shape}") print(f"joint_positions: {f['isaac_dataset']['joint_positions'].shape}") print(f"joint_velocities: {f['isaac_dataset']['joint_velocities'].shape}") print(f"camera_images: {f['isaac_dataset']['camera_images'].keys()}") print(f"camera_images: {f['isaac_dataset']['camera_images']['hand_camera'].shape}") print(f"camera_images: {f['isaac_dataset']['camera_images']['top_camera'].shape}") print(f"camera_images: {f['isaac_dataset']['camera_images']['front_camera'].shape}") sim_time = f['isaac_dataset']['sim_time'][:] joint_positions = f['isaac_dataset']['joint_positions'][:] joint_velocities = f['isaac_dataset']['joint_velocities'][:] hand_camera = f['isaac_dataset']['camera_images']['hand_camera'][:] top_camera = f['isaac_dataset']['camera_images']['top_camera'][:] front_camera = f['isaac_dataset']['camera_images']['front_camera'][:] print(f"sim_time: {sim_time}") print(f"joint_positions[0]: {joint_positions[0]}") print(f"joint_velocities[0]: {joint_velocities[0]}") plt.figure(1) plt.imshow(hand_camera[7]) plt.figure(2) plt.imshow(top_camera[7]) plt.figure(3) plt.imshow(front_camera[7]) plt.show()
1,512
Python
34.186046
88
0.636905
kimsooyoung/rb_issac_tutorial/data_test.py
import h5py import numpy as np import pylab as plt file_name = "/home/kimsooyoung/Documents/cam_test.hdf5" with h5py.File(file_name, 'r') as f: # data = f['my_dataset'][:] print(f.keys()) print(f['isaac_save_data'].keys()) print(f['isaac_save_data']['image'].shape) print(f['isaac_save_data']['sim_time'].shape) print(type(f['isaac_save_data']['image'][0])) print(f['isaac_save_data']['sim_time'][0]) plt.imshow(f['isaac_save_data']['image'][0]) plt.show()
497
Python
25.210525
55
0.617706
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/ik_solver.py
from omni.isaac.motion_generation import ArticulationKinematicsSolver, LulaKinematicsSolver from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.articulations import Articulation from typing import Optional import carb class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: #TODO: change the config path # desktop # my_path = "/home/kimsooyoung/Documents/IsaacSim/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" # self._urdf_path = "/home/kimsooyoung/Downloads/USD/cobotta_pro_900/" # lactop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/cobotta_pro_900/" self._kinematics = LulaKinematicsSolver( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", urdf_path=self._urdf_path+"cobotta_pro_900.urdf" ) if end_effector_frame_name is None: end_effector_frame_name = "onrobot_rg6_base_link" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,388
Python
45.299998
125
0.698127
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .lula_kinematic_solver import LULAKinematicSolverExample from .franka_test import FrankaIK """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="AddingNewManip", name="LULAKinematicSolver", title="LULAKinematicSolver", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=LULAKinematicSolverExample(), # sample=FrankaIK(), ) return
2,173
Python
42.479999
135
0.743212
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/franka_test.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample # This extension has franka related tasks and controllers as well from omni.isaac.franka import Franka from omni.isaac.core.objects import DynamicCuboid from omni.isaac.franka.controllers import PickPlaceController from omni.isaac.franka.tasks import PickPlace from omni.isaac.core.tasks import BaseTask from omni.isaac.motion_generation import (ArticulationKinematicsSolver, ArticulationMotionPolicy, LulaKinematicsSolver, RmpFlow, interface_config_loader) import numpy as np class FrankaIK(BaseSample): def __init__(self) -> None: super().__init__() self._sim_step = 0 return def setup_scene(self): self._world = self.get_world() self._world.scene.add_default_ground_plane() self._franka = self._world.scene.add( Franka( prim_path="/World/Fancy_Franka", name="fancy_franka" )) return async def setup_post_load(self): self._world = self.get_world() self._franka = self._world.scene.get_object("fancy_franka") self._franka.gripper.set_joint_positions(self._franka.gripper.joint_opened_positions) # define LulaKinematicsSolver & ArticulationKinematicsSolver kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config("Franka") self._kine_solver = LulaKinematicsSolver(**kinematics_config) self._art_kine_solver = ArticulationKinematicsSolver(self._franka, self._kine_solver, "right_gripper") # acquire controller for action applying self._articulation_controller = self._franka.get_articulation_controller() self._action = None self._world.add_physics_callback("sim_step", callback_fn=self.physics_step) await self._world.play_async() return async def setup_post_reset(self): await self._world.play_async() return def physics_step(self, step_size): self._sim_step += 1 if (self._sim_step > 100) and (self._action is None): target_pos = np.array([0.5, 0.0, 0.5]) robot_base_translation, robot_base_orientation = self._franka.get_world_pose() self._kine_solver.set_robot_base_pose(robot_base_translation, robot_base_orientation) self._action, ik_success = self._art_kine_solver.compute_inverse_kinematics( target_pos ) # Apply action if ik_success: print("IK Great") else: print("IK failed") elif (self._sim_step > 100) and (self._action is not None): self._franka.apply_action(self._action) return
3,304
Python
37.430232
110
0.64316
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/lula_kinematic_solver.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.core.articulations import Articulation from omni.isaac.manipulators import SingleManipulator import numpy as np import carb from omni.isaac.motion_generation import ArticulationKinematicsSolver, LulaKinematicsSolver, interface_config_loader class LULAKinematicSolverExample(BaseSample): def __init__(self) -> None: super().__init__() # robot usd path carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._robot_path = self._server_root + "/Projects/RBROS2/cobotta_pro_900/cobotta_pro_900/cobotta_pro_900.usd" # simulation step counter self._sim_step = 0 # robot joint default positions self._joints_default_positions = np.zeros(12) self._joints_default_positions[7] = 0.628 self._joints_default_positions[8] = 0.628 # Desired end effector pose self._target_pos = np.array([1.0, 0.0, 1.0]) self._target_rot = np.array([1.0, 0.0, 0.0, 0.0]) # wxyz quaternion # various solvers and controllers self._kine_solver = None self._articulation = None self._art_kine_solver = None self._articulation_controller = None return def setup_scene(self): self._world = self.get_world() self._world.scene.add_default_ground_plane() # add robot to the scene add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/cobotta") self._articulation = Articulation("/World/cobotta") #define the gripper self._gripper = ParallelGripper( #We chose the following values while inspecting the articulation end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.628, 0.628]), ) #define the manipulator self._my_denso = self._world.scene.add( SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=self._gripper) ) self._my_denso.set_joints_default_state( positions=self._joints_default_positions ) return async def setup_post_load(self): self._world = self.get_world() self._my_denso = self._world.scene.get_object("cobotta_robot") # laptop path self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/cobotta_pro_900/" self._kine_solver = LulaKinematicsSolver( # robot_description_path=self._desc_path+"rmpflow/robot_descriptor_common.yaml", robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", urdf_path=self._urdf_path+"cobotta_pro_900.urdf", ) self._art_kine_solver = ArticulationKinematicsSolver(self._my_denso, self._kine_solver, "onrobot_rg6_base_link") self._articulation_controller = self._my_denso.get_articulation_controller() self._action = None self._world.add_physics_callback("sim_step", callback_fn=self.sim_step_cb) await self._world.play_async() return async def setup_post_reset(self): self._articulation_controller.reset() await self._world.play_async() return def sim_step_cb(self, step_size): self._sim_step += 1 if (self._sim_step > 100) and (self._action is None): target_pos = np.array([0.5, 0.0, 0.5]) robot_base_translation, robot_base_orientation = self._my_denso.get_world_pose() self._kine_solver.set_robot_base_pose(robot_base_translation, robot_base_orientation) self._action, ik_success = self._art_kine_solver.compute_inverse_kinematics( target_pos ) # Apply action if ik_success: print("IK Great") else: print("IK failed") elif (self._sim_step > 100) and (self._action is not None): self._articulation_controller.apply_action(self._action) return
5,364
Python
39.037313
120
0.644295
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/rmpflow/robot_descriptor.yaml
api_version: 1.0 cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] cspace_to_urdf_rules: [] composite_task_spaces: []
230
YAML
15.499999
38
0.56087
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/rmpflow/denso_rmpflow_common.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 body_collision_controllers: - name: onrobot_rg6_base_link radius: .05
2,282
YAML
28.64935
51
0.583699
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/rmpflow/robot_descriptor_common.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # RMPflow will only use these joints to control the robot position. cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 # Global frame of the URDF root_link: world # The default cspace position of this robot default_q: [ 0.0,0.3,1.2,0.0,0.0,0.0 ] # RMPflow uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, RMPflow will # not be able to avoid obstacles. collision_spheres: - J1: - "center": [0.0, 0.0, 0.1] "radius": 0.08 - "center": [0.0, 0.0, 0.15] "radius": 0.08 - "center": [0.0, 0.0, 0.2] "radius": 0.08 - J2: - "center": [0.0, 0.08, 0.0] "radius": 0.08 - "center": [0.0, 0.16, 0.0] "radius": 0.08 - "center": [0.0, 0.175, 0.05] "radius": 0.065 - "center": [0.0, 0.175, 0.1] "radius": 0.065 - "center": [0.0, 0.175, 0.15] "radius": 0.065 - "center": [0.0, 0.175, 0.2] "radius": 0.065 - "center": [0.0, 0.175, 0.25] "radius": 0.065 - "center": [0.0, 0.175, 0.3] "radius": 0.065 - "center": [0.0, 0.175, 0.35] "radius": 0.065 - "center": [0.0, 0.175, 0.4] "radius": 0.065 - "center": [0.0, 0.175, 0.45] "radius": 0.065 - "center": [0.0, 0.175, 0.5] "radius": 0.065 - "center": [0.0, 0.1, 0.5] "radius": 0.07 - J3: - "center": [0.0, 0.025, 0] "radius": 0.065 - "center": [0.0, -0.025, 0] "radius": 0.065 - "center": [0.0, -0.025, 0.05] "radius": 0.065 - "center": [0.0, -0.025, 0.1] "radius": 0.065 - "center": [0.0, -0.025, 0.15] "radius": 0.06 - "center": [0.0, -0.025, 0.2] "radius": 0.06 - "center": [0.0, -0.025, 0.25] "radius": 0.06 - "center": [0.0, -0.025, 0.3] "radius": 0.06 - "center": [0.0, -0.025, 0.35] "radius": 0.055 - "center": [0.0, -0.025, 0.4] "radius": 0.055 - J5: - "center": [0.0, 0.05, 0] "radius": 0.055 - "center": [0.0, 0.1, 0] "radius": 0.055 - J6: - "center": [0.0, 0.0, -0.05] "radius": 0.05 - "center": [0.0, 0.0, -0.1] "radius": 0.05 - "center": [0.0, 0.0, -0.15] "radius": 0.05 - "center": [0.0, 0.0, 0.04] "radius": 0.035 - "center": [0.0, 0.0, 0.08] "radius": 0.035 - "center": [0.0, 0.0, 0.12] "radius": 0.035 - right_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - right_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01 - left_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - left_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01
3,988
YAML
26.701389
80
0.522818
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/tasks/pick_place.py
from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.stage import add_reference_to_stage import omni.isaac.core.tasks as tasks from typing import Optional import numpy as np import carb class PickPlace(tasks.PickPlace): def __init__( self, name: str = "denso_pick_place", cube_initial_position: Optional[np.ndarray] = None, cube_initial_orientation: Optional[np.ndarray] = None, target_position: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.PickPlace.__init__( self, name=name, cube_initial_position=cube_initial_position, cube_initial_orientation=cube_initial_orientation, target_position=target_position, cube_size=np.array([0.0515, 0.0515, 0.0515]), offset=offset, ) carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._robot_path = self._server_root + "/Projects/RBROS2/cobotta_pro_900/cobotta_pro_900/cobotta_pro_900.usd" return def set_robot(self) -> SingleManipulator: #TODO: change the asset path here # laptop add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/cobotta") gripper = ParallelGripper( end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.2, 0.2]) ) manipulator = SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper ) joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 manipulator.set_joints_default_state(positions=joints_default_positions) return manipulator
2,427
Python
36.937499
117
0.639061
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/controllers/pick_place.py
import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.manipulators.grippers import ParallelGripper from .rmpflow import RMPFlowController from omni.isaac.core.articulations import Articulation class PickPlaceController(manipulators_controllers.PickPlaceController): def __init__( self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, events_dt=None ) -> None: if events_dt is None: #These values needs to be tuned in general, you checkout each event in execution and slow it down or speed #it up depends on how smooth the movments are events_dt = [0.005, 0.002, 1, 0.05, 0.0008, 0.005, 0.0008, 0.1, 0.0008, 0.008] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, events_dt=events_dt, #This value can be changed # start_picking_height=0.6 ) return
1,184
Python
38.499999
118
0.640203
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipLULA/controllers/rmpflow.py
import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation class RMPFlowController(mg.MotionPolicyController): def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: # TODO: chamge the follow paths # laptop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/cobotta_pro_900/" self.rmpflow = mg.lula.motion_policies.RmpFlow( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", rmpflow_config_path=self._desc_path+"rmpflow/denso_rmpflow_common.yaml", urdf_path=self._urdf_path+"cobotta_pro_900.urdf", end_effector_frame_name="onrobot_rg6_base_link", maximum_substep_size=0.00334 ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
1,686
Python
45.86111
125
0.68446
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .limo_diff_drive import LimoDiffDrive """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="WheeledRobots", name="LimoDiffDrive", title="LimoDiffDrive", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=LimoDiffDrive(), ) return
2,061
Python
41.958332
135
0.741388
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/limo_diff_drive.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.wheeled_robots.controllers import WheelBasePoseController from omni.isaac.core.physics_context.physics_context import PhysicsContext from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController import numpy as np import carb class LimoDiffDrive(BaseSample): def __init__(self) -> None: super().__init__() carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) # self._robot_path = self._server_root + "/Projects/RBROS2/WheeledRobot/limo_base.usd" self._robot_path = self._server_root + "/Projects/RBROS2/WheeledRobot/limo_diff_thin.usd" return def setup_scene(self): world = self.get_world() world.scene.add_default_ground_plane() add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/Limo") # Reference : https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.wheeled_robots/docs/index.html?highlight=wheeledrobot#omni.isaac.wheeled_robots.robots.WheeledRobot self._wheeled_robot = world.scene.add( WheeledRobot( prim_path="/World/Limo/base_link", name="my_limo", # Caution. Those are DOF "Joints", Not "Links" wheel_dof_names=[ "front_left_wheel", "front_right_wheel", "rear_left_wheel", "rear_right_wheel", ], create_robot=False, usd_path=self._robot_path, position=np.array([0, 0.0, 0.02]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) self._save_count = 0 self._scene = PhysicsContext() self._scene.set_physics_dt(1 / 30.0) return async def setup_post_load(self): self._world = self.get_world() # Reference : https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.wheeled_robots/docs/index.html?highlight=differentialcontroller self._diff_controller = DifferentialController( name="simple_control", wheel_radius=0.045, # Caution. This will not be the same with a real wheelbase for 4WD cases. # Reference : https://forums.developer.nvidia.com/t/how-to-drive-clearpath-jackal-via-ros2-messages-in-isaac-sim/275907/4 wheel_base=0.43 ) self._diff_controller.reset() self._wheeled_robot.initialize() self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions) return def send_robot_actions(self, step_size): self._save_count += 1 wheel_action = None # linear X, angular Z commands if self._save_count >= 0 and self._save_count < 150: wheel_action = self._diff_controller.forward(command=[0.3, 0.0]) elif self._save_count >= 150 and self._save_count < 300: wheel_action = self._diff_controller.forward(command=[-0.3, 0.0]) elif self._save_count >= 300 and self._save_count < 450: wheel_action = self._diff_controller.forward(command=[0.0, 0.3]) elif self._save_count >= 450 and self._save_count < 600: wheel_action = self._diff_controller.forward(command=[0.0, -0.3]) else: self._save_count = 0 wheel_action.joint_velocities = np.hstack((wheel_action.joint_velocities, wheel_action.joint_velocities)) self._wheeled_robot.apply_wheel_actions(wheel_action) return async def setup_pre_reset(self): if self._world.physics_callback_exists("sim_step"): self._world.remove_physics_callback("sim_step") self._save_count = 0 self._world.pause() return async def setup_post_reset(self): self._diff_controller.reset() await self._world.play_async() self._world.pause() return def world_cleanup(self): self._world.pause() return
5,079
Python
39.64
196
0.6456
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/WheeledRobotLimoDiff/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/ik_solver.py
from omni.isaac.motion_generation import ArticulationKinematicsSolver, LulaKinematicsSolver from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.articulations import Articulation from typing import Optional import carb class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: #TODO: change the config path # desktop # my_path = "/home/kimsooyoung/Documents/IsaacSim/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" # self._urdf_path = "/home/kimsooyoung/Downloads/USD/cobotta_pro_900/" # lactop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/mirobot_ros2/mirobot_description/urdf/" self._kinematics = LulaKinematicsSolver( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", urdf_path=self._urdf_path+"mirobot_urdf_2.urdf" ) if end_effector_frame_name is None: end_effector_frame_name = "Link6" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,395
Python
45.533332
127
0.700358
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .pick_place_example import PickandPlaceExample """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="AddingNewManip2", name="PickandPlaceROS2", title="PickandPlaceROS2", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=PickandPlaceExample(), ) return
2,084
Python
42.437499
135
0.744242
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/pick_place_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.manipulators.grippers.surface_gripper import SurfaceGripper from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.manipulators import SingleManipulator from omni.isaac.dynamic_control import _dynamic_control as dc from omni.isaac.core.prims import RigidPrim, GeometryPrim from pxr import Gf, Sdf, UsdGeom, UsdLux, UsdPhysics import omni.graph.core as og import numpy as np import omni import carb from .controllers.pick_place import PickPlaceController def createRigidBody(stage, bodyType, boxActorPath, mass, scale, position, rotation, color): p = Gf.Vec3f(position[0], position[1], position[2]) orientation = Gf.Quatf(rotation[0], rotation[1], rotation[2], rotation[3]) scale = Gf.Vec3f(scale[0], scale[1], scale[2]) bodyGeom = bodyType.Define(stage, boxActorPath) bodyPrim = stage.GetPrimAtPath(boxActorPath) bodyGeom.AddTranslateOp().Set(p) bodyGeom.AddOrientOp().Set(orientation) bodyGeom.AddScaleOp().Set(scale) bodyGeom.CreateDisplayColorAttr().Set([color]) UsdPhysics.CollisionAPI.Apply(bodyPrim) if mass > 0: massAPI = UsdPhysics.MassAPI.Apply(bodyPrim) massAPI.CreateMassAttr(mass) UsdPhysics.RigidBodyAPI.Apply(bodyPrim) UsdPhysics.CollisionAPI(bodyPrim) return bodyGeom class PickandPlaceExample(BaseSample): def __init__(self) -> None: super().__init__() self._gripper = None self._my_mirobot = None self._articulation_controller = None # simulation step counter self._sim_step = 0 self._target_position = np.array([0.2, -0.08, 0.06]) return def og_setup(self): domain_id = 30 try: # Clock OG og.Controller.edit( {"graph_path": "/ROS2Clock", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("onPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("context", "omni.isaac.ros2_bridge.ROS2Context"), ("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.SET_VALUES: [ ("context.inputs:domain_id", domain_id), ], og.Controller.Keys.CONNECT: [ ("onPlaybackTick.outputs:tick", "publishClock.inputs:execIn"), ("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"), ("context.outputs:context", "publishClock.inputs:context"), ], }, ) # Joint Pub Sub og.Controller.edit( {"graph_path": "/ROS2JointPubSub", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeJointState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "ArticulationController.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ("SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand"), ("SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand"), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ ("ArticulationController.inputs:usePath", True), ("ArticulationController.inputs:robotPath", "/World/mirobot"), ("PublishJointState.inputs:targetPrim", "/World/mirobot"), ("SubscribeJointState.inputs:topicName", "/issac/joint_command"), ("PublishJointState.inputs:topicName", "/issac/joint_states"), ], }, ) except Exception as e: print(e) def setup_robot(self): carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._robot_path = self._server_root + "/Projects/RBROS2/mirobot_ros2/mirobot_description/urdf/mirobot_urdf_2/mirobot_urdf_2_ee.usd" add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/mirobot") # define the gripper self._gripper = SurfaceGripper( end_effector_prim_path="/World/mirobot/ee_link", translate=0.02947, direction="x", # kp=1.0e4, # kd=1.0e3, # disable_gravity=False, ) self._gripper.set_force_limit(value=1.0e2) self._gripper.set_torque_limit(value=1.0e3) # define the manipulator self._my_mirobot = self._world.scene.add( SingleManipulator( prim_path="/World/mirobot", name="mirobot", end_effector_prim_name="ee_link", gripper=self._gripper ) ) self._joints_default_positions = np.zeros(6) self._my_mirobot.set_joints_default_state(positions=self._joints_default_positions) def setup_bin(self): self._nucleus_server = get_assets_root_path() table_path = self._nucleus_server + "/Isaac/Props/KLT_Bin/small_KLT.usd" add_reference_to_stage(usd_path=table_path, prim_path=f"/World/bin") self._bin_initial_position = np.array([0.2, 0.08, 0.06]) / get_stage_units() self._packing_bin = self._world.scene.add( GeometryPrim( prim_path="/World/bin", name=f"packing_bin", position=self._bin_initial_position, orientation=euler_angles_to_quat(np.array([np.pi, 0, 0])), scale=np.array([0.25, 0.25, 0.25]), collision=True ) ) self._packing_bin_geom = self._world.scene.get_object(f"packing_bin") massAPI = UsdPhysics.MassAPI.Apply(self._packing_bin_geom.prim.GetPrim()) massAPI.CreateMassAttr().Set(0.001) def setup_box(self): # Box to be picked self.box_start_pose = dc.Transform([0.2, 0.08, 0.06], [1, 0, 0, 0]) self._stage = omni.usd.get_context().get_stage() self._boxGeom = createRigidBody( self._stage, UsdGeom.Cube, "/World/Box", 0.0010, [0.015, 0.015, 0.015], self.box_start_pose.p, self.box_start_pose.r, [0.2, 0.2, 1] ) def setup_scene(self): self._world = self.get_world() self._world.scene.add_default_ground_plane() self.setup_robot() # self.setup_bin() self.setup_box() self.og_setup() return async def setup_post_load(self): self._world = self.get_world() self._my_controller = PickPlaceController( name="controller", gripper=self._gripper, robot_articulation=self._my_mirobot, events_dt=[ 0.008, 0.005, 0.1, 0.1, 0.0025, 0.5, 0.0025, 0.1, 0.008, 0.08 ], ) self._articulation_controller = self._my_mirobot.get_articulation_controller() self._world.add_physics_callback("sim_step", callback_fn=self.sim_step_cb) return async def setup_post_reset(self): self._my_controller.reset() await self._world.play_async() return def sim_step_cb(self, step_size): # # bin case # bin_pose, _ = self._packing_bin_geom.get_world_pose() # pick_position = bin_pose # place_position = self._target_position # box case box_matrix = omni.usd.get_world_transform_matrix(self._boxGeom) box_trans = box_matrix.ExtractTranslation() pick_position = np.array(box_trans) place_position = self._target_position joints_state = self._my_mirobot.get_joints_state() actions = self._my_controller.forward( picking_position=pick_position, placing_position=place_position, current_joint_positions=joints_state.positions, # This offset needs tuning as well end_effector_offset=np.array([0, 0, 0.02947+0.02]), end_effector_orientation=euler_angles_to_quat(np.array([0, 0, 0])), ) if self._my_controller.is_done(): print("done picking and placing") self._articulation_controller.apply_action(actions) return
10,546
Python
39.102661
140
0.583634
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/rmpflow/robot_descriptor.yaml
api_version: 1.0 cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] cspace_to_urdf_rules: [] composite_task_spaces: []
224
YAML
15.071427
38
0.575893
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/rmpflow/mirrobot_rmpflow_common.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 body_collision_controllers: - name: Link6 radius: .05
2,266
YAML
28.441558
51
0.582083
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/rmpflow/denso_rmpflow_common.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 body_collision_controllers: - name: onrobot_rg6_base_link radius: .05
2,282
YAML
28.64935
51
0.583699
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/controllers/pick_place.py
from omni.isaac.manipulators.grippers.surface_gripper import SurfaceGripper import omni.isaac.manipulators.controllers as manipulators_controllers from .rmpflow import RMPFlowController from omni.isaac.core.articulations import Articulation # - Phase 0: Move end_effector above the cube center at the 'end_effector_initial_height'. # - Phase 1: Lower end_effector down to encircle the target cube # - Phase 2: Wait for Robot's inertia to settle. # - Phase 3: close grip. # - Phase 4: Move end_effector up again, keeping the grip tight (lifting the block). # - Phase 5: Smoothly move the end_effector toward the goal xy, keeping the height constant. # - Phase 6: Move end_effector vertically toward goal height at the 'end_effector_initial_height'. # - Phase 7: loosen the grip. # - Phase 8: Move end_effector vertically up again at the 'end_effector_initial_height' # - Phase 9: Move end_effector towards the old xy position. class PickPlaceController(manipulators_controllers.PickPlaceController): def __init__( self, name: str, gripper: SurfaceGripper, robot_articulation: Articulation, events_dt=None ) -> None: if events_dt is None: #These values needs to be tuned in general, you checkout each event in execution and slow it down or speed #it up depends on how smooth the movments are events_dt = [0.005, 0.002, 1, 0.05, 0.0008, 0.005, 0.0008, 0.1, 0.0008, 0.008] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, events_dt=events_dt, end_effector_initial_height=0.05, #This value can be changed # start_picking_height=0.6 ) return
1,930
Python
44.976189
118
0.674611
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlaceROS2/controllers/rmpflow.py
import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation class RMPFlowController(mg.MotionPolicyController): def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: # TODO: chamge the follow paths # # laptop # self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/" # self._urdf_path = "/home/kimsooyoung/Downloads/Source/mirobot_ros2/mirobot_description/urdf/" # desktop self._desc_path = "/home/kimsooyoung/Downloads/source/RoadBalanceEdu/rb_issac_tutorial/RoadBalanceEdu/MirobotPickandPlace/" self._urdf_path = "/home/kimsooyoung/Downloads/source/mirobot_ros2/mirobot_description/urdf/" self.rmpflow = mg.lula.motion_policies.RmpFlow( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", rmpflow_config_path=self._desc_path+"rmpflow/mirrobot_rmpflow_common.yaml", urdf_path=self._urdf_path+"mirobot_urdf_2.urdf", end_effector_frame_name="Link6", maximum_substep_size=0.00334 ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
1,955
Python
47.899999
131
0.691049
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .hello_robot import HelloRobot """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="", name="HelloRobot", title="HelloRobot", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=HelloRobot(), ) return
2,032
Python
41.354166
135
0.738189
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/HelloRobot/hello_robot.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction import numpy as np class HelloRobot(BaseSample): def __init__(self) -> None: super().__init__() return def setup_scene(self): world = self.get_world() world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" self._jetbot = world.scene.add( WheeledRobot( prim_path="/World/Fancy_Robot", name="fancy_robot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, ) ) return async def setup_post_load(self): self._world = self.get_world() self._jetbot = self._world.scene.get_object("fancy_robot") self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions) return def send_robot_actions(self, step_size): self._jetbot.apply_wheel_actions(ArticulationAction(joint_positions=None, joint_efforts=None, joint_velocities=5 * np.random.rand(2,))) return
1,954
Python
39.729166
101
0.634084
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .gripper_control import GripperControl """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="AddingNewManip", name="GripperControl", title="GripperControl", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=GripperControl(), ) return
2,066
Python
42.062499
135
0.742498
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/gripper_control.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.manipulators import SingleManipulator import numpy as np import carb class GripperControl(BaseSample): def __init__(self) -> None: super().__init__() carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._robot_path = self._server_root + "/Projects/RBROS2/cobotta_pro_900/cobotta_pro_900/cobotta_pro_900.usd" self._joints_default_positions = np.zeros(12) self._joints_default_positions[7] = 0.628 self._joints_default_positions[8] = 0.628 # simulation step counter self._sim_step = 0 return def setup_scene(self): world = self.get_world() world.scene.add_default_ground_plane() # add robot to the scene add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/cobotta") #define the gripper self._gripper = ParallelGripper( #We chose the following values while inspecting the articulation end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.628, 0.628]), ) #define the manipulator self._my_denso = self._world.scene.add( SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=self._gripper) ) self._my_denso.set_joints_default_state( positions=self._joints_default_positions ) return async def setup_post_load(self): self._world = self.get_world() self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions) return def send_robot_actions(self, step_size): self._sim_step += 1 gripper_positions = self._my_denso.gripper.get_joint_positions() if self._sim_step < 500: #close the gripper slowly self._my_denso.gripper.apply_action( ArticulationAction( joint_positions=[ gripper_positions[0] + 0.1, gripper_positions[1] - 0.1 ] )) if self._sim_step > 500: #open the gripper slowly self._my_denso.gripper.apply_action( ArticulationAction( joint_positions=[ gripper_positions[0] - 0.1, gripper_positions[1] + 0.1 ] )) if self._sim_step == 1000: self._sim_step = 0 return
3,791
Python
35.461538
117
0.608283
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipGripperControl/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/garage_conveyor.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.franka.controllers import PickPlaceController from omni.isaac.examples.base_sample import BaseSample import numpy as np from omni.isaac.core.physics_context.physics_context import PhysicsContext from omni.isaac.core.prims.geometry_prim import GeometryPrim # Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html from pxr import Sdf, UsdLux, Gf from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core import SimulationContext import omni.replicator.core as rep import carb import omni from os.path import expanduser import datetime now = datetime.datetime.now() PROPS = { 'spam' : "/Isaac/Props/YCB/Axis_Aligned/010_potted_meat_can.usd", 'jelly' : "/Isaac/Props/YCB/Axis_Aligned/009_gelatin_box.usd", 'tuna' : "/Isaac/Props/YCB/Axis_Aligned/007_tuna_fish_can.usd", 'cleanser' : "/Isaac/Props/YCB/Axis_Aligned/021_bleach_cleanser.usd", 'tomato_soup' : "/Isaac/Props/YCB/Axis_Aligned/005_tomato_soup_can.usd" } class GarageConveyor(BaseSample): def __init__(self) -> None: super().__init__() carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._nucleus_server = get_assets_root_path() # Enable scripts carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True) # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Replicator Writerdir now_str = now.strftime("%Y-%m-%d_%H:%M:%S") self._out_dir = str(expanduser("~") + "/Documents/grocery_data_" + now_str) self._franka_position = np.array([-0.8064, 1.3602, 0.0]) # (w, x, y, z) self._franka_rotation = np.array([0.0, 0.0, 0.0, 1.0]) self._table_scale = 0.01 self._table_height = 0.0 self._table_position = np.array([-0.7, 1.8, 0.007]) # Gf.Vec3f(0.5, 0.0, 0.0) self._bin_path = self._nucleus_server + "/Isaac/Props/KLT_Bin/small_KLT_visual.usd" self._bin_scale = np.array([2.0, 2.0, 1.0]) self._test_bin_position = np.array([-1.75, 1.2, 0.85]) self._test_bin_orientation = np.array([0.7071068, 0, 0, 0.7071068]) self._bin1_position = np.array([-0.5, 2.1, 0.90797]) self._bin2_position = np.array([-0.5, 1.6, 0.90797]) self._plane_scale = np.array([0.4, 0.24, 1.0]) self._plane_position = np.array([-1.75, 1.2, 0.9]) self._plane_rotation = np.array([0.0, 0.0, 0.0]) return def add_background(self): self._world = self.get_world() bg_path = self._server_root + "/Projects/RBROS2/ConveyorGarage/Garage_wo_Conv_OG.usd" add_reference_to_stage(usd_path=bg_path, prim_path=f"/World/Garage") def add_training_bin(self): add_reference_to_stage(usd_path=self._bin_path, prim_path="/World/training_bin") self._world.scene.add(GeometryPrim(prim_path="/World/training_bin", name=f"training_bin_ref_geom", collision=True)) self._bin1_ref_geom = self._world.scene.get_object(f"training_bin_ref_geom") self._bin1_ref_geom.set_local_scale(np.array([self._bin_scale])) self._bin1_ref_geom.set_world_pose( position=self._test_bin_position, orientation=self._test_bin_orientation ) self._bin1_ref_geom.set_default_state( position=self._test_bin_position, orientation=self._test_bin_orientation ) def add_light(self): stage = omni.usd.get_context().get_stage() distantLight = UsdLux.CylinderLight.Define(stage, Sdf.Path("/World/cylinderLight")) distantLight.CreateIntensityAttr(60000) distantLight.AddTranslateOp().Set(Gf.Vec3f(-1.2, 0.9, 3.0)) distantLight.AddScaleOp().Set((0.1, 4.0, 0.1)) distantLight.AddRotateXYZOp().Set((0, 0, 90)) def random_props(self, file_name, class_name, max_number=3, one_in_n_chance=4): file_name = self._nucleus_server + file_name instances = rep.randomizer.instantiate(file_name, size=max_number, mode='scene_instance') with instances: rep.physics.collider() rep.modify.semantics([('class', class_name)]) rep.randomizer.scatter_2d(self.plane, check_for_collisions=True) rep.modify.pose( rotation=rep.distribution.uniform((-180,-180, -180), (180, 180, 180)), ) visibility_dist = [True] + [False]*(one_in_n_chance) rep.modify.visibility(rep.distribution.choice(visibility_dist)) def add_replicator(self): self.cam = rep.create.camera( position=(-1.75, 1.2, 2.0), # rotation=(-90, 0, 0), look_at=(-1.75, 1.2, 0.8) ) # self.rp = rep.create.render_product(self.cam, resolution=(1024, 1024)) self.rp = rep.create.render_product(self.cam, resolution=(1280, 720)) self.plane = rep.create.plane( scale=self._plane_scale, position=self._plane_position, rotation=self._plane_rotation, visible=False ) rep.randomizer.register(self.random_props) return def setup_scene(self): self._world = self.get_world() self._stage = omni.usd.get_context().get_stage() self.simulation_context = SimulationContext() self.add_background() self.add_light() self.add_training_bin() self.add_replicator() self._scene = PhysicsContext() self._scene.set_physics_dt(1 / 30.0) return async def setup_post_load(self): self._world = self.get_world() self._world.scene.enable_bounding_boxes_computations() with rep.trigger.on_frame(num_frames=50, interval=2): for n, f in PROPS.items(): self.random_props(f, n) # Create a writer and apply the augmentations to its corresponding annotators self._writer = rep.WriterRegistry.get("BasicWriter") print(f"Writing data to: {self._out_dir}") self._writer.initialize( output_dir=self._out_dir, rgb=True, bounding_box_2d_tight=True, ) # Attach render product to writer self._writer.attach([self.rp]) return async def setup_post_reset(self): await self._world.play_async() return def world_cleanup(self): self._world.pause() return
7,479
Python
37.556701
123
0.63578
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "RoadBalanceEdu" EXTENSION_DESCRIPTION = ""
495
Python
37.153843
76
0.80404
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .garage_conveyor import GarageConveyor """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="Replicator", name="ReplicatorFactory", title="ReplicatorFactory", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=GarageConveyor(), ) return
2,068
Python
42.104166
135
0.742747
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/inference/model_info.py
import tritonclient.grpc as grpcclient inference_server_url = "localhost:8003" triton_client = grpcclient.InferenceServerClient(url=inference_server_url) # find out info about model model_name = "our_new_model" config_info = triton_client.get_model_config(model_name) print(config_info)
290
Python
25.454543
74
0.793103
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/inference/inference.py
from tritonclient.utils import triton_to_np_dtype import tritonclient.grpc as grpcclient import cv2 import numpy as np from matplotlib import pyplot as plt inference_server_url = "localhost:8003" triton_client = grpcclient.InferenceServerClient(url=inference_server_url) model_name = "our_new_model" # load image data target_width, target_height = 1280, 720 image_bgr = cv2.imread("rgb_0055.png") # image_bgr = cv2.imread("rgb_0061.png") # image_bgr = cv2.imread("rgb_0083.png") image_bgr = cv2.resize(image_bgr, (target_width, target_height)) image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) image = np.float32(image_rgb) # preprocessing image = image/255 image = np.moveaxis(image, -1, 0) # HWC to CHW image = image[np.newaxis, :] # add batch dimension image = np.float32(image) plt.imshow(image_rgb) # create input input_name = "input" inputs = [grpcclient.InferInput(input_name, image.shape, "FP32")] inputs[0].set_data_from_numpy(image) output_names = ["boxes", "labels", "scores"] outputs = [grpcclient.InferRequestedOutput(n) for n in output_names] results = triton_client.infer(model_name, inputs, outputs=outputs) boxes, labels, scores = [results.as_numpy(o) for o in output_names] # annotate annotated_image = image_bgr.copy() props_dict = { 0: 'klt_bin', 1: 'tomato_soup', 2: 'tuna', 3: 'spam', 4: 'jelly', 5: 'cleanser', } if boxes.size > 0: # ensure something is found for box, lab, scr in zip(boxes, labels, scores): if scr > 0.4: box_top_left = int(box[0]), int(box[1]) box_bottom_right = int(box[2]), int(box[3]) text_origin = int(box[0]), int(box[3]) border_color = list(np.random.random(size=3) * 256) text_color = (255, 255, 255) font_scale = 0.9 thickness = 1 # bounding box2 img = cv2.rectangle( annotated_image, box_top_left, box_bottom_right, border_color, thickness=5, lineType=cv2.LINE_8 ) print(f"index: {lab}, label: {props_dict[lab]}, score: {scr:.2f}") # For the text background # Finds space required by the text so that we can put a background with that amount of width. (w, h), _ = cv2.getTextSize( props_dict[lab], cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1 ) # Prints the text. img = cv2.rectangle( img, (box_top_left[0], box_top_left[1] - 20), (box_top_left[0] + w, box_top_left[1]), border_color, -1 ) img = cv2.putText( img, props_dict[lab], box_top_left, cv2.FONT_HERSHEY_SIMPLEX, 0.6, text_color, 1 ) plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)) plt.show()
2,945
Python
28.757575
105
0.582343
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/export/model_export.py
import os import torch import torchvision import warnings warnings.filterwarnings("ignore") device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # load the PyTorch model. pytorch_dir = "/home/kimsooyoung/Documents/model.pth" model = torch.load(pytorch_dir).cuda() # Export Model width = 1280 height = 720 dummy_input = torch.rand(1, 3, height, width).cuda() torch.onnx.export( model, dummy_input, "model.onnx", opset_version=11, input_names=["input"], output_names=["boxes", "labels", "scores"] )
556
Python
20.423076
83
0.69964
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/viz/data_visualize.py
import os import json import hashlib from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches # # Desktop # data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-21_18:52:00" # Laptop data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-23_16:43:00" out_dir = "/home/kimsooyoung/Documents" number = "0025" # Write Visualization Functions # data_to_colour # takes in our data from a specific label ID and maps it to the proper color for the bounding box. def data_to_colour(data): if isinstance(data, str): data = bytes(data, "utf-8") else: data = bytes(data) m = hashlib.sha256() m.update(data) key = int(m.hexdigest()[:8], 16) r = ((((key >> 0) & 0xFF) + 1) * 33) % 255 g = ((((key >> 8) & 0xFF) + 1) * 33) % 255 b = ((((key >> 16) & 0xFF) + 1) * 33) % 255 inv_norm_i = 128 * (3.0 / (r + g + b)) return (int(r * inv_norm_i) / 255, int(g * inv_norm_i) / 255, int(b * inv_norm_i) / 255) # colorize_bbox_2d # takes in the path to the RGB image for the background, # the bounding box data, the labels, and the path to store the visualization. # It outputs a colorized bounding box. def colorize_bbox_2d(rgb_path, data, id_to_labels, file_path): rgb_img = Image.open(rgb_path) colors = [data_to_colour(bbox["semanticId"]) for bbox in data] fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(rgb_img) for bbox_2d, color, index in zip(data, colors, id_to_labels.keys()): labels = id_to_labels[str(index)] rect = patches.Rectangle( xy=(bbox_2d["x_min"], bbox_2d["y_min"]), width=bbox_2d["x_max"] - bbox_2d["x_min"], height=bbox_2d["y_max"] - bbox_2d["y_min"], edgecolor=color, linewidth=2, label=labels, fill=False, ) ax.add_patch(rect) plt.legend(loc="upper left") plt.savefig(file_path) # Load Synthetic Data and Visualize rgb_path = data_dir rgb = "rgb_"+number+".png" rgb_path = os.path.join(rgb_path, rgb) import os print(os.path.abspath(".")) # load the bounding box data. npy_path = data_dir bbox2d_tight_file_name = "bounding_box_2d_tight_"+number+".npy" data = np.load(os.path.join(npy_path, bbox2d_tight_file_name)) # load the labels corresponding to the image. json_path = data_dir bbox2d_tight_labels_file_name = "bounding_box_2d_tight_labels_"+number+".json" bbox2d_tight_id_to_labels = None with open(os.path.join(json_path, bbox2d_tight_labels_file_name), "r") as json_data: bbox2d_tight_id_to_labels = json.load(json_data) # Finally, we can call our function and see the labeled image! colorize_bbox_2d(rgb_path, data, bbox2d_tight_id_to_labels, os.path.join(out_dir, "bbox2d_tight.png"))
2,789
Python
31.823529
102
0.642524
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ReplicatorFactory/train/fast_rcnn_train.py
from PIL import Image import os import numpy as np import torch import torch.utils.data import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision import transforms as T import json import shutil epochs = 15 num_classes = 6 data_dir = "/home/kimsooyoung/Documents/grocery_data_2024-05-23_16:43:00" output_file = "/home/kimsooyoung/Documents/model.pth" device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print(f"Using device: {device}") class GroceryDataset(torch.utils.data.Dataset): # This function is run once when instantiating the Dataset object def __init__(self, root, transforms): self.root = root self.transforms = transforms # In the first portion of this code we are taking our single dataset folder # and splitting it into three folders based on the file types. # This is just a preprocessing step. list_ = os.listdir(root) for file_ in list_: name, ext = os.path.splitext(file_) ext = ext[1:] if ext == '': continue if os.path.exists(root+ '/' + ext): shutil.move(root+'/'+file_, root+'/'+ext+'/'+file_) else: os.makedirs(root+'/'+ext) shutil.move(root+'/'+file_, root+'/'+ext+'/'+file_) self.imgs = list(sorted(os.listdir(os.path.join(root, "png")))) self.label = list(sorted(os.listdir(os.path.join(root, "json")))) self.box = list(sorted(os.listdir(os.path.join(root, "npy")))) # We have our three attributes with the img, label, and box data # Loads and returns a sample from the dataset at the given index idx def __getitem__(self, idx): img_path = os.path.join(self.root, "png", self.imgs[idx]) img = Image.open(img_path).convert("RGB") label_path = os.path.join(self.root, "json", self.label[idx]) with open(os.path.join('root', label_path), "r") as json_data: json_labels = json.load(json_data) box_path = os.path.join(self.root, "npy", self.box[idx]) dat = np.load(str(box_path)) boxes = [] labels = [] for i in dat: obj_val = i[0] xmin = torch.as_tensor(np.min(i[1]), dtype=torch.float32) xmax = torch.as_tensor(np.max(i[3]), dtype=torch.float32) ymin = torch.as_tensor(np.min(i[2]), dtype=torch.float32) ymax = torch.as_tensor(np.max(i[4]), dtype=torch.float32) if (ymax > ymin) & (xmax > xmin): boxes.append([xmin, ymin, xmax, ymax]) area = (xmax - xmin) * (ymax - ymin) labels += [json_labels.get(str(obj_val)).get('class')] label_dict = {} # Labels for the dataset static_labels = { 'klt_bin' : 0, 'tomato_soup' : 1, 'tuna' : 2, 'spam' : 3, 'jelly' : 4, 'cleanser' : 5 } labels_out = [] # Transforming the input labels into a static label dictionary to use for i in range(len(labels)): label_dict[i] = labels[i] for i in label_dict: fruit = label_dict[i] final_fruit_label = static_labels[fruit] labels_out += [final_fruit_label] target = {} target["boxes"] = torch.as_tensor(boxes, dtype=torch.float32) target["labels"] = torch.as_tensor(labels_out, dtype=torch.int64) target["image_id"] = torch.tensor([idx]) target["area"] = area if self.transforms is not None: img= self.transforms(img) return img, target # Finally we have a function for the number of samples in our dataset def __len__(self): return len(self.imgs) # Create Helper Functions # converting to `Tensor` objects and also converting the `dtypes`. def get_transform(train): transforms = [] transforms.append(T.PILToTensor()) transforms.append(T.ConvertImageDtype(torch.float)) return T.Compose(transforms) # Create a function to collate our samples. def collate_fn(batch): return tuple(zip(*batch)) # Create Model and Train # We are starting with the pretrained (default weights) object detection # fasterrcnn_resnet50 model from Torchvision. def create_model(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights='DEFAULT') in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model # create our dataset by using our custom GroceryDataset class # This is then passed into our DataLoader. dataset = GroceryDataset(data_dir, get_transform(train=True)) data_loader = torch.utils.data.DataLoader( dataset, # batch_size=16, batch_size=8, shuffle=True, collate_fn=collate_fn ) # create our model with the N classes # And then transfer it to the GPU for training. model = create_model(num_classes) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.001) len_dataloader = len(data_loader) # Now we can actually train our model. # Keep track of our loss and print it out as we train. model.train() ep = 0 for epoch in range(epochs): optimizer.zero_grad() ep += 1 i = 0 for imgs, annotations in data_loader: i += 1 imgs = list(img.to(device) for img in imgs) annotations = [{k: v.to(device) for k, v in t.items()} for t in annotations] loss_dict = model(imgs, annotations) losses = sum(loss for loss in loss_dict.values()) losses.backward() optimizer.step() print(f'Epoch: {ep} Iteration: {i}/{len_dataloader}, Loss: {losses}') torch.save(model, output_file)
5,909
Python
33.360465
84
0.616856
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/ik_solver.py
from omni.isaac.motion_generation import ArticulationKinematicsSolver, LulaKinematicsSolver from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.articulations import Articulation from typing import Optional import carb class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: #TODO: change the config path # desktop # my_path = "/home/kimsooyoung/Documents/IsaacSim/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" # self._urdf_path = "/home/kimsooyoung/Downloads/USD/cobotta_pro_900/" # lactop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/mirobot_ros2/mirobot_description/urdf/" self._kinematics = LulaKinematicsSolver( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", urdf_path=self._urdf_path+"mirobot_urdf_2.urdf" ) if end_effector_frame_name is None: end_effector_frame_name = "Link6" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,395
Python
45.533332
127
0.700358
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .follow_target_example import FollowTargetExample """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="WegoRobotics", name="FollowTarget", title="FollowTarget", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=FollowTargetExample(), ) return
2,076
Python
42.270832
135
0.743256
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/follow_target_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.manipulators import SingleManipulator import omni.isaac.core.tasks as tasks from typing import Optional import numpy as np import carb from .ik_solver import KinematicsSolver from .controllers.rmpflow import RMPFlowController # Inheriting from the base class Follow Target class FollowTarget(tasks.FollowTarget): def __init__( self, name: str = "mirobot_follow_target", target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.FollowTarget.__init__( self, name=name, target_prim_path=target_prim_path, target_name=target_name, target_position=target_position, target_orientation=target_orientation, offset=offset, ) carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get("/persistent/isaac/asset_root/default") self._server_root = get_url_root(default_asset_root) self._robot_path = self._server_root + "/Projects/simple_robo_arm.usd" self._joints_default_positions = np.zeros(7) return def set_robot(self) -> SingleManipulator: # add robot to the scene add_reference_to_stage(usd_path=self._robot_path, prim_path="/World/simple_robot") # #define the gripper # gripper = ParallelGripper( # #We chose the following values while inspecting the articulation # end_effector_prim_path="/World/mirobot/onrobot_rg6_base_link", # joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], # joint_opened_positions=np.array([0, 0]), # joint_closed_positions=np.array([0.628, -0.628]), # action_deltas=np.array([-0.628, 0.628]), # ) # define the manipulator manipulator = SingleManipulator( prim_path="/World/simple_robot", name="simple_robot", end_effector_prim_name="link8_1", gripper=None, ) manipulator.set_joints_default_state(positions=self._joints_default_positions) return manipulator class FollowTargetExample(BaseSample): def __init__(self) -> None: super().__init__() self._articulation_controller = None self._my_controller = None # simulation step counter self._sim_step = 0 return def setup_scene(self): self._world = self.get_world() self._world.scene.add_default_ground_plane() # We add the task to the world here my_task = FollowTarget( name="simple_robot_follow_target", target_position=np.array([0.15, 0, 0.15]), target_orientation=np.array([1, 0, 0, 0]), ) self._world.add_task(my_task) return async def setup_post_load(self): self._world = self.get_world() self._task_params = self._world.get_task("simple_robot_follow_target").get_params() self._target_name = self._task_params["target_name"]["value"] self._my_mirobot = self._world.scene.get_object(self._task_params["robot_name"]["value"]) # # IK controller # self._my_controller = KinematicsSolver(self._my_mirobot) # RMPFlow controller self._my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=self._my_mirobot) self._articulation_controller = self._my_mirobot.get_articulation_controller() self._world.add_physics_callback("sim_step", callback_fn=self.sim_step_cb) return async def setup_post_reset(self): self._my_controller.reset() await self._world.play_async() return def sim_step_cb(self, step_size): observations = self._world.get_observations() pos = observations[self._target_name]["position"] ori = observations[self._target_name]["orientation"] # # IK controller # actions, succ = self._my_controller.compute_inverse_kinematics( # target_position=pos # ) # if succ: # self._articulation_controller.apply_action(actions) # else: # carb.log_warn("IK did not converge to a solution. No action is being taken.") # RMPFlow controller actions = self._my_controller.forward( target_end_effector_position=pos, target_end_effector_orientation=ori, ) self._articulation_controller.apply_action(actions) return
5,527
Python
35.130719
119
0.641578
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/rmpflow/robot_descriptor.yaml
api_version: 1.0 cspace: - link1_to_base_link - link2_to_link1 - link3_to_link2 - link4_to_link3 - link5_to_link4 - link6_to_link5 - link7_to_link6 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] cspace_to_urdf_rules: [] composite_task_spaces: []
303
YAML
19.266665
44
0.60396
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/rmpflow/simple_robot_rmpflow_common.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 body_collision_controllers: - name: link8_1 radius: .05
2,273
YAML
28.532467
56
0.58161
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/controllers/rmpflow.py
import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation class RMPFlowController(mg.MotionPolicyController): def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: # TODO: chamge the follow paths # laptop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/SimpleRobotFollowTarget/" self._urdf_path = "/home/kimsooyoung/ros2_ws/src/simple_robo_arm_description/urdf/" self.rmpflow = mg.lula.motion_policies.RmpFlow( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", rmpflow_config_path=self._desc_path+"rmpflow/simple_robot_rmpflow_common.yaml", urdf_path=self._urdf_path+"simple_robo_arm.urdf", end_effector_frame_name="link8_1", maximum_substep_size=0.00334 ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
1,697
Python
46.166665
131
0.685327
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/ur10_gripper.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.core.objects import DynamicCuboid from omni.isaac.manipulators.grippers import SurfaceGripper from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController import numpy as np import carb class UR10Gripper(BaseSample): def __init__(self) -> None: super().__init__() self._my_controller = None self._articulation_controller = None # simulation step counter self._sim_step = 0 return def setup_robot(self): self._world = self.get_world() assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/UR10") gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd" # add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link") # gripper = SurfaceGripper( # end_effector_prim_path="/World/UR10/ee_link", # translate=0.1611, # # direction="x", # direction="z", # ) # self._ur10 = self._world.scene.add( # SingleManipulator( # prim_path="/World/UR10", # name="my_ur10", # end_effector_prim_name="ee_link", # # gripper=gripper # gripper=None # ) # ) # self._ur10.set_joints_default_state( # positions=np.array([-np.pi/2, -np.pi/2, -np.pi/2, -np.pi/2, np.pi/2, 0]) # ) self._cube = self._world.scene.add( DynamicCuboid( name="cube", position=np.array([0.3, 0.3, 0.3]), prim_path="/World/Cube", scale=np.array([0.0515, 0.0515, 0.0515]), size=1.0, color=np.array([0, 0, 1]), ) ) def setup_scene(self): self._world = self.get_world() self._world.scene.add_default_ground_plane() self.setup_robot() return async def setup_post_load(self): self._world = self.get_world() # self._my_controller = PickPlaceController( # name="pick_place_controller", # gripper=self._ur10.gripper, # robot_articulation=self._ur10 # ) # self._articulation_controller = self._ur10.get_articulation_controller() # self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions) return def send_robot_actions(self, step_size): # self._sim_step += 1 # observations = self._world.get_observations() # actions = self._my_controller.forward( # picking_position=self._cube.get_local_pose()[0], # placing_position=np.array([0.7, 0.7, 0.0515 / 2.0]), # current_joint_positions=self._ur10.get_joint_positions(), # # end_effector_offset=np.array([0, 0, 0.02]), # end_effector_offset=np.array([0, 0, 0.03]), # ) # if self._my_controller.is_done(): # print("done picking and placing") # self._articulation_controller.apply_action(actions) return
4,054
Python
33.07563
98
0.594475
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "MyExtension" EXTENSION_DESCRIPTION = ""
492
Python
36.923074
76
0.802846
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from .ur10_gripper import UR10Gripper """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="RoadBalanceEdu", submenu_name="AddingNewManip", name="ManipURGripper", title="ManipURGripper", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=UR10Gripper(), ) return
2,057
Python
41.874999
135
0.741371
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import Extension
464
Python
45.499995
76
0.814655
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/ManipURGripper/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
kimsooyoung/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/ik_solver.py
from omni.isaac.motion_generation import ArticulationKinematicsSolver, LulaKinematicsSolver from omni.isaac.core.utils.nucleus import get_assets_root_path, get_url_root from omni.isaac.core.articulations import Articulation from typing import Optional import carb class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: #TODO: change the config path # desktop # my_path = "/home/kimsooyoung/Documents/IsaacSim/rb_issac_tutorial/RoadBalanceEdu/ManipFollowTarget/" # self._urdf_path = "/home/kimsooyoung/Downloads/USD/cobotta_pro_900/" # lactop self._desc_path = "/home/kimsooyoung/Documents/IssacSimTutorials/rb_issac_tutorial/RoadBalanceEdu/MirobotFollowTarget/" self._urdf_path = "/home/kimsooyoung/Downloads/Source/mirobot_ros2/mirobot_description/urdf/" self._kinematics = LulaKinematicsSolver( robot_description_path=self._desc_path+"rmpflow/robot_descriptor.yaml", urdf_path=self._urdf_path+"mirobot_urdf_2.urdf" ) if end_effector_frame_name is None: end_effector_frame_name = "Link6" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,395
Python
45.533332
127
0.700358