file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
rosklyar/omniverse_extensions/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
rosklyar/omniverse_extensions/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
rosklyar/omniverse_extensions/exts/playtika.eyedarts.export/playtika/eyedarts/export/extension.py
import omni.ext import carb.events import omni.kit.app import omni.ui as ui import omni.kit.window.filepicker as fp from pxr import Usd, UsdGeom, Gf import omni.usd import os from os.path import exists import asyncio import json # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): async def export_eyedarts(): output_folder = "C:/Users/rskliar/ue-projects/test_folder" progress_window = ui.Window("Export eye darts to json...", width=750, height=100) with progress_window.frame: with ui.VStack(): file_label = ui.StringField() pb = ui.ProgressBar() pb.model.set_value(0) stage = omni.usd.get_context().get_stage() manager = omni.audio2face.player.get_ext().player_manager() instance = manager.get_instance("/World/LazyGraph/Player") l_eye = stage.GetPrimAtPath("/World/male_fullface/char_male_model_hi/l_eye_grp_hi") r_eye = stage.GetPrimAtPath("/World/male_fullface/char_male_model_hi/r_eye_grp_hi") wav_files_folder = instance.get_abs_track_root_path() files_to_process = getWavFiles(wav_files_folder) for f in files_to_process: instance.set_track_name(f) pb.model.set_value(0) print("Processing file:" + f) file_label.model.set_value(f) fileLengthInSeconds = instance.get_range_end() time = 0.0 result = [] while(time < fileLengthInSeconds): e = await omni.kit.app.get_app().next_update_async() time += 1.0 / 60 instance.set_time(time) pose_l = omni.usd.utils.get_world_transform_matrix(l_eye) pose_r = omni.usd.utils.get_world_transform_matrix(r_eye) l_rx, l_ry, l_rz = pose_l.ExtractRotation().Decompose(Gf.Vec3d.XAxis(), Gf.Vec3d.YAxis(), Gf.Vec3d.ZAxis()) r_rx, r_ry, r_rz = pose_r.ExtractRotation().Decompose(Gf.Vec3d.XAxis(), Gf.Vec3d.YAxis(), Gf.Vec3d.ZAxis()) frame = [l_rx, l_ry, l_rz, r_rx, r_ry, r_rz] result.append(frame) pb.model.set_value(time / fileLengthInSeconds) result_json = { "numPoses": 6, "numFrames": len(result), "facsNames" : ["l_rx", "l_ry", "l_rz", "r_rx", "r_ry", "r_rz"], "weightMat": result } with open(output_folder + "/" + f[:-3] + "json", 'w') as outfile: json.dump(result_json, outfile) progress_window.destroy() progress_window.visible = False def on_change(event): if(event.type == 8): asyncio.ensure_future(export_eyedarts()) pass print("[playtika.eyedarts.export] ExportEyeDarts startup") self.output_folder = "" self.fps = 60 self._window = ui.Window("Export eye darts", width=750, height=300) self.filePicker = None self.folder_label = None print("Stream=" + str(omni.kit.app.get_app().get_message_bus_event_stream())) print("Update Stream=" + str(omni.kit.app.get_app().get_update_event_stream())) self._subscription = omni.usd.get_context().get_stage_event_stream().create_subscription_to_pop(on_change) print("[playtika.eyedarts.export] ExportEyeDarts subscription created") with self._window.frame: with ui.VStack(): def getWavFiles(json_files_folder): files = [] if json_files_folder and not exists(json_files_folder): raise Exception("Please, select existed folder with JSON files!") for file in os.listdir(json_files_folder): if file.endswith('.wav'): files.append(file) return files def on_combobox_changed(model, item): self.fps = model.get_item_value_model(model.get_item_children()[model.get_item_value_model().as_int]).as_int def on_click(): asyncio.ensure_future(export()) async def export(): progress_window = ui.Window("Export eye darts to json...", width=750, height=100) with progress_window.frame: with ui.VStack(): file_label = ui.StringField() pb = ui.ProgressBar() pb.model.set_value(0) if(self.output_folder): stage = omni.usd.get_context().get_stage() manager = omni.audio2face.player.get_ext().player_manager() instance = manager.get_instance("/World/LazyGraph/Player") l_eye = stage.GetPrimAtPath("/World/male_fullface/char_male_model_hi/l_eye_grp_hi") r_eye = stage.GetPrimAtPath("/World/male_fullface/char_male_model_hi/r_eye_grp_hi") wav_files_folder = instance.get_abs_track_root_path() files_to_process = getWavFiles(wav_files_folder) for f in files_to_process: instance.set_track_name(f) pb.model.set_value(0) print("Processing file:" + f) file_label.model.set_value(f) fileLengthInSeconds = instance.get_range_end() time = 0.0 result = [] while(time < fileLengthInSeconds): e = await omni.kit.app.get_app().next_update_async() time += 1.0 / self.fps instance.set_time(time) pose_l = omni.usd.utils.get_world_transform_matrix(l_eye) pose_r = omni.usd.utils.get_world_transform_matrix(r_eye) l_rx, l_ry, l_rz = pose_l.ExtractRotation().Decompose(Gf.Vec3d.XAxis(), Gf.Vec3d.YAxis(), Gf.Vec3d.ZAxis()) r_rx, r_ry, r_rz = pose_r.ExtractRotation().Decompose(Gf.Vec3d.XAxis(), Gf.Vec3d.YAxis(), Gf.Vec3d.ZAxis()) frame = [l_rx, l_ry, l_rz, r_rx, r_ry, r_rz] result.append(frame) pb.model.set_value(time / fileLengthInSeconds) result_json = { "numPoses": 6, "numFrames": len(result), "facsNames" : ["l_rx", "l_ry", "l_rz", "r_rx", "r_ry", "r_rz"], "weightMat": result } with open(self.output_folder + "/" + f[:-3] + "json", 'w') as outfile: json.dump(result_json, outfile) progress_window.destroy() progress_window.visible = False def on_click_open(file_name, dir_name): print("File name: " + dir_name) self.output_folder = dir_name self.folder_label.text = "Output folder: " + self.output_folder self.filePicker.hide() def show_file_picker(): print("show file picker") self.filePicker = fp.FilePickerDialog("Select output folder", apply_button_label="Select", click_apply_handler=on_click_open) self.filePicker.show() with ui.HStack(): self.folder_label = ui.Label("Output folder: " + self.output_folder, height=20) ui.Button("Select", clicked_fn=lambda: show_file_picker(), width = 20, height=20) with ui.HStack(): ui.Label("FPS: ", height=20) fpsCombobox = ui.ComboBox(0, "60", "24") fpsCombobox.model.add_item_changed_fn(lambda model, item: on_combobox_changed(model, item)) ui.Button("Export", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[playtika.eyedarts.export] ExportEyeDarts shutdown") def getWavFiles(json_files_folder): files = [] if json_files_folder and not exists(json_files_folder): raise Exception("Please, select existed folder with JSON files!") for file in os.listdir(json_files_folder): if file.endswith('.wav'): files.append(file) return files
9,417
Python
50.747252
145
0.511946
rosklyar/omniverse_extensions/exts/playtika.eyedarts.export/playtika/eyedarts/export/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
rosklyar/omniverse_extensions/exts/playtika.eyedarts.export/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "Simple UI Extension Template" description="The simplest python extension example. Use it as a starting point for your extensions." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import playtika.eyedarts.export". [[python.module]] name = "playtika.eyedarts.export"
815
TOML
27.13793
113
0.746012
MatthewDZane/XArmFollowTarget/README.md
<a name="readme-top"></a> <!-- PROJECT SHIELDS --> <!-- *** I'm using markdown "reference style" links for readability. *** Reference links are enclosed in brackets [ ] instead of parentheses ( ). *** See the bottom of this document for the declaration of the reference variables *** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use. *** https://www.markdownguide.org/basic-syntax/#reference-style-links --> [![Contributors][contributors-shield]][contributors-url] [![Forks][forks-shield]][forks-url] [![Stargazers][stars-shield]][stars-url] [![Issues][issues-shield]][issues-url] [![LinkedIn][linkedin-shield]][linkedin-url] <!-- PROJECT LOGO --> <br /> <div align="center"> <a href="https://github/MatthewDZane/XArmFollowTarget/images/IsaacSim.png"> <img src="images/IsaacSim.png" alt="IsaacSim" width="700" height="400"> </a> <h3 align="center">XArm Follow Target</h3> <p align="center"> An Autonomous Camera Controller Robot <br /> <a href="https://github/MatthewDZane/XArmFollowTarget"><strong>Explore the docs »</strong></a> <br /> </a> </p> </div> <!-- TABLE OF CONTENTS --> <details> <summary>Table of Contents</summary> <ol> <li> <a href="#about-the-project">About The Project</a> <ul> <li><a href="#built-with">Built With</a></li> </ul> </li> <li> <a href="#using-xarm-follow-target-as-a-third-party-extension">Using Xarm Follow Target as a Third Party Extension</a> </li> </ol> </details> <!-- ABOUT THE PROJECT --> ## About The Project This project autonomously controls a RealSense Camera mounted to an [XArm Robot](https://www.ufactory.cc/xarm-collaborative-robot). The repo is comprised of several scripts, which are designed to run synchronously across several different machines (XArm Robot, Local RealSense Camera Machine, and Remote Nautilus Cluster Machine), which utilize NVidia's [Isaac Sim](https://developer.nvidia.com/isaac-sim) and Intel's [RealSense Camera](https://www.intelrealsense.com/). First the RealSense Camera script sends positional data to the remote machine, using OpenCV and the Camera's depth sensors. Then, the custom Isaac Sim Extension runs a Follow Target task, solving the Kinematic equations, to calculate the correct orientation of the XArm. Finally, these new orientations are sent back to the XArm itself to then update the robot is real life. This project was headed by Professor Robert Twomey at the University of Nebraska Lincoln and is intented for educational and experimental use. <p align="right">(<a href="#readme-top">back to top</a>)</p> ### Built With This project was built using the following. * [XArm](https://www.ufactory.cc/xarm-collaborative-robot) * [Isaac Sim](https://developer.nvidia.com/isaac-sim) * [RealSense Camera](https://www.intelrealsense.com/) <div align="center"> <a href="https://gitlab.nrp-nautilus.io/MatthewZane/XArmFollowTarget/images/RealSenseCamera.png"> <img src="images/RealSenseCamera.png" alt="RealSenseCamera" width="500" height="410"> </a> </div> # Using XArm Follow Target as a Third Party Extension 1. Clone the repo into the directory where you would like to store Isaac Sim Extensions 2. Open Isaac Sim and go to Windows->Extensions 3. Click the Settings Icon (Gear) and add the path to the parent directory of the repo (not XArm or XArmFollowTarget). Now the XArm Follow Target Extention should show up under the Third Party Extensions. 4. Enable the XArm Follow Target Extension and check the Autoload setting. The XArm Follow Target Extension will now appear on the top menu bar of the Isaac Sim Application. 5. Click the XArm Follow Target to use the Extension Port Forward local ports to the Container for the realsense camera client. - once you have a XGL container running you will need to use the kubernetes CLI to get the specific pod name. This can be done with ``` kubectl get pods -n <your namespace> ``` once you have your pod name we can now prot forward the local ports to the container for communication, Run ``` kubectl port-forward <running XGL pod> 12345:12345 12346:12346 -n <your namespace> ``` We use these ports by default <!-- MARKDOWN LINKS & IMAGES --> <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links --> [contributors-shield]: https://img.shields.io/github/contributors/MatthewDZane/XArmFollowTarget.svg?style=for-the-badge [contributors-url]: https://gitlab.nrp-nautilus.io/MatthewZane/XArmFollowTarget/graphs/contributors [forks-shield]: https://img.shields.io/github/forks/MatthewDZane/XArmFollowTarget.svg?style=for-the-badge [forks-url]: https://gitlab.nrp-nautilus.io/MatthewZane/XArmFollowTarget/network/members [stars-shield]: https://img.shields.io/github/stars/MatthewDZane/XArmFollowTarget.svg?style=for-the-badge [stars-url]: https://gitlab.nrp-nautilus.io/MatthewZane/XArmFollowTarget/stargazers [issues-shield]: https://img.shields.io/github/issues/MatthewDZane/XArmFollowTarget.svg?style=for-the-badge [issues-url]: https://gitlab.nrp-nautilus.io/MatthewZane/XArmFollowTarget/issues [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-url]: https://linkedin.com/in/matthewdzane
5,280
Markdown
44.525862
471
0.743371
MatthewDZane/XArmFollowTarget/scripts/global_variables.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "XArm Follow Target" EXTENSION_DESCRIPTION = ""
570
Python
39.785711
76
0.801754
MatthewDZane/XArmFollowTarget/scripts/scenario.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # class ScenarioTemplate: def __init__(self): pass def setup_scenario(self): pass def teardown_scenario(self): pass def update_scenario(self): pass import numpy as np from omni.isaac.core.utils.types import ArticulationAction """ This scenario takes in a robot Articulation and makes it move through its joint DOFs. Additionally, it adds a cuboid prim to the stage that moves in a circle around the robot. The particular framework under which this scenario operates should not be taken as a direct recomendation to the user about how to structure their code. In the simple example put together in this template, this particular structure served to improve code readability and separate the logic that runs the example from the UI design. """ class ExampleScenario(ScenarioTemplate): def __init__(self): self._object = None self._articulation = None self._running_scenario = False self._time = 0.0 # s self._object_radius = 0.5 # m self._object_height = 0.5 # m self._object_frequency = 0.25 # Hz self._joint_index = 0 self._max_joint_speed = 4 # rad/sec self._lower_joint_limits = None self._upper_joint_limits = None self._joint_time = 0 self._path_duration = 0 self._calculate_position = lambda t, x: 0 self._calculate_velocity = lambda t, x: 0 def setup_scenario(self, articulation, object_prim): self._articulation = articulation self._object = object_prim self._initial_object_position = self._object.get_world_pose()[0] self._initial_object_phase = np.arctan2(self._initial_object_position[1], self._initial_object_position[0]) self._object_radius = np.linalg.norm(self._initial_object_position[:2]) self._running_scenario = True self._joint_index = 0 self._lower_joint_limits = articulation.dof_properties["lower"] self._upper_joint_limits = articulation.dof_properties["upper"] # teleport robot to lower joint range epsilon = 0.001 articulation.set_joint_positions(self._lower_joint_limits + epsilon) self._derive_sinusoid_params(0) def teardown_scenario(self): self._time = 0.0 self._object = None self._articulation = None self._running_scenario = False self._joint_index = 0 self._lower_joint_limits = None self._upper_joint_limits = None self._joint_time = 0 self._path_duration = 0 self._calculate_position = lambda t, x: 0 self._calculate_velocity = lambda t, x: 0 def update_scenario(self, step: float): if not self._running_scenario: return self._time += step x = self._object_radius * np.cos(self._initial_object_phase + self._time * self._object_frequency * 2 * np.pi) y = self._object_radius * np.sin(self._initial_object_phase + self._time * self._object_frequency * 2 * np.pi) z = self._initial_object_position[2] self._object.set_world_pose(np.array([x, y, z])) self._update_sinusoidal_joint_path(step) def _derive_sinusoid_params(self, joint_index: int): # Derive the parameters of the joint target sinusoids for joint {joint_index} start_position = self._lower_joint_limits[joint_index] P_max = self._upper_joint_limits[joint_index] - start_position V_max = self._max_joint_speed T = P_max * np.pi / V_max # T is the expected time of the joint path self._path_duration = T self._calculate_position = ( lambda time, path_duration: start_position + -P_max / 2 * np.cos(time * 2 * np.pi / path_duration) + P_max / 2 ) self._calculate_velocity = lambda time, path_duration: V_max * np.sin(2 * np.pi * time / path_duration) def _update_sinusoidal_joint_path(self, step): # Update the target for the robot joints self._joint_time += step if self._joint_time > self._path_duration: self._joint_time = 0 self._joint_index = (self._joint_index + 1) % self._articulation.num_dof self._derive_sinusoid_params(self._joint_index) joint_position_target = self._calculate_position(self._joint_time, self._path_duration) joint_velocity_target = self._calculate_velocity(self._joint_time, self._path_duration) action = ArticulationAction( np.array([joint_position_target]), np.array([joint_velocity_target]), joint_indices=np.array([self._joint_index]), ) self._articulation.apply_action(action)
5,251
Python
34.486486
118
0.645972
MatthewDZane/XArmFollowTarget/scripts/extension.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import weakref import asyncio import gc import omni import omni.ui as ui import omni.usd import omni.timeline import omni.kit.commands from omni.kit.menu.utils import add_menu_items, remove_menu_items from omni.isaac.ui.menu import make_menu_item_description from omni.usd import StageEventType import omni.physx as _physx from .global_variables import EXTENSION_TITLE, EXTENSION_DESCRIPTION from .ui_builder import UIBuilder """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(omni.ext.IExt): def on_startup(self, ext_id: str): """Initialize extension and UI elements""" # Events self._usd_context = omni.usd.get_context() # Build Window self._window = ui.Window( title=EXTENSION_TITLE, width=600, height=500, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) self._window.set_visibility_changed_fn(self._on_window) # UI self._models = {} self._ext_id = ext_id self._menu_items = [ make_menu_item_description(ext_id, EXTENSION_TITLE, lambda a=weakref.proxy(self): a._menu_callback()) ] add_menu_items(self._menu_items, EXTENSION_TITLE) # Filled in with User Functions self.ui_builder = UIBuilder() # Events self._usd_context = omni.usd.get_context() self._physxIFace = _physx.acquire_physx_interface() self._physx_subscription = None self._stage_event_sub = None self._timeline = omni.timeline.get_timeline_interface() def on_shutdown(self): self._models = {} remove_menu_items(self._menu_items, EXTENSION_TITLE) if self._window: self._window = None self.ui_builder.cleanup() gc.collect() def _on_window(self, visible): if self._window.visible: # Subscribe to Stage and Timeline Events self._usd_context = omni.usd.get_context() events = self._usd_context.get_stage_event_stream() self._stage_event_sub = events.create_subscription_to_pop(self._on_stage_event) stream = self._timeline.get_timeline_event_stream() self._timeline_event_sub = stream.create_subscription_to_pop(self._on_timeline_event) self._build_ui() else: self._usd_context = None self._stage_event_sub = None self._timeline_event_sub = None self.ui_builder.cleanup() def _build_ui(self): with self._window.frame: with ui.VStack(spacing=5, height=0): self._build_extension_ui() async def dock_window(): await omni.kit.app.get_app().next_update_async() def dock(space, name, location, pos=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, pos) return window tgt = ui.Workspace.get_window("Viewport") dock(tgt, EXTENSION_TITLE, omni.ui.DockPosition.LEFT, 0.33) await omni.kit.app.get_app().next_update_async() self._task = asyncio.ensure_future(dock_window()) ################################################################# # Functions below this point call user functions ################################################################# def _menu_callback(self): self._window.visible = not self._window.visible self.ui_builder.on_menu_callback() def _on_timeline_event(self, event): if event.type == int(omni.timeline.TimelineEventType.PLAY): if not self._physx_subscription: self._physx_subscription = self._physxIFace.subscribe_physics_step_events(self._on_physics_step) elif event.type == int(omni.timeline.TimelineEventType.STOP): self._physx_subscription = None self.ui_builder.on_timeline_event(event) def _on_physics_step(self, step): self.ui_builder.on_physics_step(step) def _on_stage_event(self, event): if event.type == int(StageEventType.OPENED) or event.type == int(StageEventType.CLOSED): # stage was opened or closed, cleanup self._physx_subscription = None self.ui_builder.cleanup() self.ui_builder.on_stage_event(event) def _build_extension_ui(self): # Call user function for building UI self.ui_builder.build_ui()
5,777
Python
36.764706
117
0.647395
MatthewDZane/XArmFollowTarget/scripts/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
MatthewDZane/XArmFollowTarget/scripts/ui_builder.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) import omni.ui as ui import omni.timeline from omni.isaac.core.world import World from omni.isaac.ui.ui_utils import get_style, btn_builder, state_btn_builder, cb_builder, float_builder from omni.usd import StageEventType from .XArm.xarm_sample import XArmSample import asyncio class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] self._buttons = None self._task_ui_elements = None # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() self._sample = XArmSample() ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step: float): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ if self._sample._world is not None: self._sample._world_cleanup() if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load XArm5"].enabled = True self._buttons["Load XArm7"].enabled = True self.shutdown_cleanup() return def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self._buttons = {} self._task_ui_elements = {} world_controls_frame = ui.CollapsableFrame(title="World Controls", collapsed=False) with world_controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load XArm5", "type": "button", "text": "Load", "tooltip": "Load XArm5 and Task", "on_clicked_fn": self._on_load_xarm5, } self._buttons["Load XArm5"] = btn_builder(**dict) self._buttons["Load XArm5"].enabled = True dict = { "label": "Load XArm7", "type": "button", "text": "Load", "tooltip": "Load XArm7 and Task", "on_clicked_fn": self._on_load_xarm7, } self._buttons["Load XArm7"] = btn_builder(**dict) self._buttons["Load XArm7"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False task_controls_frame = ui.CollapsableFrame(title="Task Controls", collapsed=False) with task_controls_frame: with ui.VStack(spacing=5): task_controls_frame.visible = True dict = { "label": "Follow Target", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Follow Target", "on_clicked_fn": self._on_follow_target_button_event, } self._task_ui_elements["Follow Target"] = state_btn_builder(**dict) self._task_ui_elements["Follow Target"].enabled = False dict = { "label": "Add Obstacle", "type": "button", "text": "ADD", "tooltip": "Add Obstacle", "on_clicked_fn": self._on_add_obstacle_button_event, } self._task_ui_elements["Add Obstacle"] = btn_builder(**dict) self._task_ui_elements["Add Obstacle"].enabled = False dict = { "label": "Remove Obstacle", "type": "button", "text": "REMOVE", "tooltip": "Remove Obstacle", "on_clicked_fn": self._on_remove_obstacle_button_event, } self._task_ui_elements["Remove Obstacle"] = btn_builder(**dict) self._task_ui_elements["Remove Obstacle"].enabled = False dict = { "label": "Random Target Enabled", "type": "checkbox", "default_val": True, "tooltip": "Random Target Enabled", "on_clicked_fn": self._on_random_target_enabled_event } self._task_ui_elements["Random Target Checkbox"] = cb_builder(**dict) args = { "label": "Min Face Range", "default_val": .3, "tooltip": "Min Range in Meters", } self._task_ui_elements["Min Face Range"] = float_builder(**args) self._task_ui_elements["Min Face Range"].add_value_changed_fn(self._on_min_face_range_changed_event) args = { "label": "Max Face Range", "default_val": 10, "tooltip": "Max Range in Meters", } self._task_ui_elements["Max Face Range"] = float_builder(**args) self._task_ui_elements["Max Face Range"].add_value_changed_fn(self._on_max_face_range_changed_event) def _on_load_xarm5(self): self._sample.set_xarm_version(5) self._on_random_target_enabled_event(False) self._on_min_face_range_changed_event(self._task_ui_elements["Min Face Range"].get_value_as_float()) self._on_max_face_range_changed_event(self._task_ui_elements["Max Face Range"].get_value_as_float()) async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load XArm5"].enabled = False self._buttons["Load XArm7"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_load_xarm7(self): self._sample.set_xarm_version(7) self._on_random_target_enabled_event(False) self._on_min_face_range_changed_event(self._task_ui_elements["Min Face Range"].get_value_as_float()) self._on_max_face_range_changed_event(self._task_ui_elements["Max Face Range"].get_value_as_float()) async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load XArm7"].enabled = False self._buttons["Load XArm5"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_follow_target_button_event(self, val): asyncio.ensure_future(self._sample._on_follow_target_event_async(val)) return def _on_add_obstacle_button_event(self): self._sample._on_add_obstacle_event() self._task_ui_elements["Remove Obstacle"].enabled = True return def _on_remove_obstacle_button_event(self): self._sample._on_remove_obstacle_event() world = self._sample.get_world() current_task = list(world.get_current_tasks().values())[0] if not current_task.obstacles_exist(): self._task_ui_elements["Remove Obstacle"].enabled = False return def _on_random_target_enabled_event(self, val): self._sample.rand_target_enabled = self._task_ui_elements["Random Target Checkbox"].get_value_as_bool() def _on_min_face_range_changed_event(self, val): self._sample.min_detection_range = self._task_ui_elements["Min Face Range"].get_value_as_float() def _on_max_face_range_changed_event(self, val): self._sample.max_detection_range = self._task_ui_elements["Max Face Range"].get_value_as_float() def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _on_follow_target_button_event(self, val): asyncio.ensure_future(self._sample._on_follow_target_event_async(val)) return def _on_save_data_button_event(self): self._sample._on_save_data_event(self._task_ui_elements["Output Directory"].get_value_as_string()) return def post_reset_button_event(self): self._task_ui_elements["Follow Target"].enabled = True self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = True if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" return def post_load_button_event(self): self._task_ui_elements["Follow Target"].enabled = True self._task_ui_elements["Add Obstacle"].enabled = True return def post_clear_button_event(self): self._task_ui_elements["Follow Target"].enabled = False self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = False if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" return def shutdown_cleanup(self): return def on_stage_event(self, event): if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._task_ui_elements["Follow Target"].enabled = False self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = False if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" elif event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self._sample._world_cleanup() self._sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load XArm5"].enabled = True self._buttons["Load XArm7"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): #self._buttons["Load XArm5"].enabled = False #self._buttons["Load XArm7"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
13,492
Python
40.516923
116
0.561073
MatthewDZane/XArmFollowTarget/scripts/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template extension creates a basic tool for interacting with a robot Articulation through the UI by changing its joint position targets. This format is generally useful for building UI tools to help with robot configuration or inspection. To use the template as written, the user must load a robot Articulation onto the stage, and press the PLAY button on the left-hand toolbar. Then, in the extension UI, they can select their Articulation from a drop-down menu and start controlling the robot joint position targets. The extension only functions while the timeline is running because robot Articulation objects only function while the timeline is playing (physics does not run while the timeline is stopped stopped). # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
2,057
Markdown
61.363635
132
0.79825
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm_socket.py
import ast import socket import threading import carb class XArmSocket(): def __init__(self) -> None: # sending position data to arm self.txsocket = None self.txconn = None # tracking info self.rxsocket = None self.rxconn = None self.cam_to_nose = None self.face_direction = None self.dx = None self.dy = None # threads self.txsocket_thread = None self.rxsocket_thread = None def start_txsocket(self): self.txsocket_thread = threading.Thread(target=self.setup_txsocket) self.txsocket_thread.start() def start_rxsocket(self): self.rxsocket_thread = threading.Thread(target=self.setup_rxsocket) self.rxsocket_thread.start() def setup_txsocket(self): if self.txsocket is None: self.txsocket = socket.socket() # allow socket to reuse address self.txsocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) txport = 12345 self.txsocket.bind(('', txport)) # https://docs.python.org/3/library/socket.html#socket.socket.listen self.txsocket.listen(5) # number of unaccepted connections allow (backlog) while True: self.txconn, self.txaddr = self.txsocket.accept() print("accepted tx connection from:",str(self.txaddr[0]), ":", str(self.txaddr[1])) def setup_rxsocket(self): if self.rxsocket is None: self.rxsocket = socket.socket() # allow socket to reuse address self.rxsocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) rxport = 12346 self.rxsocket.bind(('', rxport)) # https://docs.python.org/3/library/socket.html#socket.socket.listen self.rxsocket.listen(5) # number of unaccepted connections allow (backlog) while True: self.rxconn, self.rxaddr = self.rxsocket.accept() print("accepted rx connection from:",str(self.rxaddr[0]), ":", str(self.rxaddr[1])) while True: data = self.rxconn.recv(1024) if data: message = data.decode() # carb.log_error("received:" + str(type(message)) + message) cam_to_nose = [0, 0, 0] face_direction = [0, 0, 0] try: cam_to_nose[0], cam_to_nose[1], cam_to_nose[2], face_direction[0], face_direction[1], face_direction[2], dx, dy = ast.literal_eval(message) except ValueError: self.cam_to_nose = None self.face_direction = None self.dx = None self.dy = None else: # print("received:", x, y, z, dx, dy, dist) weight = 0.1 self.cam_to_nose = cam_to_nose self.face_direction = face_direction self.dx = weight*dx self.dy = weight*dy else: self.cam_to_nose = None self.face_direction = None self.dx = None self.dy = None def shut_down_socket(self): if self.txconn: try: # self._conn.send("Done".encode()) self.txsocket.shutdown(socket.SHUT_RDWR) self.txsocket.close() self.txsocket = None except socket.error as e: pass if self.rxconn: try: # self._conn.send("Done".encode()) self.rxsocket.shutdown(socket.SHUT_RDWR) self.rxsocket.close() self.rxsocket = None except socket.error as e: pass
3,939
Python
35.82243
163
0.513074
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm_rmpflow_controller.py
import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation import pathlib class XArmRMPFlowController(mg.MotionPolicyController): """[summary] Args: name (str): [description] robot_articulation (Articulation): [description] physics_dt (float, optional): [description]. Defaults to 1.0/60.0. attach_gripper (bool, optional): [description]. Defaults to False. """ def __init__( self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0, xarm_version: int = 7 ) -> None: current_directory = str(pathlib.Path(__file__).parent.resolve()).replace("\\", "/") if xarm_version == 5: relative_robot_description_path = "/XArm/XArm5/xarm5_descriptor.yaml" relative_urdf_path = "/XArm/XArm5/xarm5.urdf" relative_rmpflow_config_path = "/XArm/XArm5/xarm5_rmpflow_common.yaml" end_effector_frame_name = "link5" elif xarm_version == 7: relative_robot_description_path = "/XArm/XArm7/xarm7_descriptor.yaml" relative_urdf_path = "/XArm/XArm7/xarm7.urdf" relative_rmpflow_config_path = "/XArm/XArm7/xarm7_rmpflow_common.yaml" end_effector_frame_name = "link7" self.rmp_flow = mg.lula.motion_policies.RmpFlow( robot_description_path=current_directory + relative_robot_description_path, urdf_path=current_directory + relative_urdf_path, rmpflow_config_path=current_directory + relative_rmpflow_config_path, end_effector_frame_name=end_effector_frame_name, maximum_substep_size=0.0334, ignore_robot_state_updates=False, ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmp_flow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
2,559
Python
40.967212
109
0.638531
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm5_follow_target_with_standalone.py
import sys import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.isaac.examples") from omni.isaac.core import World from XArm.xarm_follow_target import XArmFollowTarget from XArm.xarm_rmpflow_controller import XArmRMPFlowController from XArm.xarm_socket import XArmSocket import numpy as np import time def get_new_target_orientation(position): direction_vector = np.array([0, 0, 0]) - position normalized_direction = direction_vector / np.linalg.norm(direction_vector) rotation_axis = np.cross(np.array([0, 0, -1]), normalized_direction) rotation_axis /= np.linalg.norm(rotation_axis) rotation_angle = np.arccos(np.dot(np.array([0, 0, -1]), normalized_direction)) half_angle = 0.5 * rotation_angle sin_half_angle = np.sin(half_angle) cos_half_angle = np.cos(half_angle) quaternion = np.array([ cos_half_angle, sin_half_angle * rotation_axis[0], sin_half_angle * rotation_axis[1], sin_half_angle * rotation_axis[2] ]) return quaternion def main(): xarm_version = 5 world = World(stage_units_in_meters=1.0) xarm_task = XArmFollowTarget(xarm_version=xarm_version) world.add_task(xarm_task) world.reset() task_params = world.get_task("xarm_follow_target_task").get_params() xarm_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] xarm = world.scene.get_object(xarm_name) cube = world.scene.get_object(target_name) xarm_controller = XArmRMPFlowController( name="target_follower_controller", robot_articulation=xarm, xarm_version=xarm_version ) articulation_controller = xarm.get_articulation_controller() xarm_socket = XArmSocket() xarm_socket.start_txsocket() xarm_socket.start_rxsocket() max_range = 0.6 min_range = 0.4 min_height = 0.2 last_face_seen_timeout = 1 last_face_seen_time = 0 last_rand_target_timeout = 5 last_rand_target_time = 0 start_time = time.time() wait_time = 1 while simulation_app.is_running() and time.time() < start_time + wait_time: world.step(render=True) if world.is_playing(): if world.current_time_step_index == 0: world.reset() xarm_controller.reset() while simulation_app.is_running(): world.step(render=True) if world.is_playing(): observations = world.get_observations() actions = xarm_controller.forward( target_end_effector_position=observations[task_params["target_name"]["value"]]["position"], target_end_effector_orientation=observations[task_params["target_name"]["value"]]["orientation"], ) gains = 1e15*np.ones(5), 1e14*np.ones(5) articulation_controller.set_gains(gains[0], gains[1]) # Solution from Nvidia Live Session 1:23:00 articulation_controller.apply_action(actions) if xarm_socket.txconn: try: sendData = str(xarm.get_joint_positions().tolist()) res = xarm_socket.txconn.send(sendData.encode()) if res == 0: print("channel is closed...") except: # if sending failed, recreate the socket and reconnect print("sending failed... closing connection") xarm_socket.txconn.close() xarm_socket.txconn = None current_time = time.time() if xarm_socket.dx and xarm_socket.dy: # update position of target from camera feed cube = world.scene.get_object("target") pos, _ = cube.get_world_pose() newpose = [pos[0], pos[1] + xarm_socket.dx, pos[2] + xarm_socket.dy] range = np.linalg.norm(newpose) if range < min_range: newpose = newpose / np.linalg.norm(newpose) * min_range elif range > max_range: newpose = newpose / np.linalg.norm(newpose) * max_range newpose = [newpose[0], newpose[1], max(newpose[2], min_height)] updated_quaternion = get_new_target_orientation(newpose) print("pose", pos, "->", newpose, end="") cube.set_world_pose(np.array(newpose), updated_quaternion) print("set.") xarm_socket.dx = None xarm_socket.dy = None last_face_seen_time = current_time elif ( \ xarm_task.task_achieved or \ current_time > last_rand_target_time + last_rand_target_timeout \ ) and current_time > last_face_seen_time + last_face_seen_timeout: # set random location cube = world.scene.get_object("target") randpos = [ np.random.uniform(-1, 1), np.random.uniform(-1, 1), np.random.uniform(0, 1) ] range = np.linalg.norm(randpos) if range < min_range: randpos = randpos / np.linalg.norm(randpos) * min_range elif range > max_range: randpos = randpos / np.linalg.norm(randpos) * max_range randpos = [randpos[0], randpos[1], max(randpos[2], min_height)] updated_quaternion = get_new_target_orientation(randpos) print("Setting new target pos:"+str(randpos)) cube.set_world_pose(np.array(randpos), updated_quaternion) last_rand_target_time = time.time() xarm_socket.shut_down_socket() simulation_app.close() if __name__ == '__main__': main()
6,120
Python
35.218935
113
0.577124
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm_sample.py
from omni.isaac.examples.base_sample import BaseSample from .xarm_follow_target import XArmFollowTarget from .xarm_rmpflow_controller import XArmRMPFlowController from .xarm_socket import XArmSocket import numpy as np import time import carb import omni.kit.pipapi omni.kit.pipapi.install("pyquaternion") from pyquaternion import Quaternion class XArmSample(BaseSample): def __init__(self) -> None: super().__init__() self._controller = None self._articulation_controller = None self._xarm_version = None # sending position data to arm self.xarm_socket = XArmSocket() self._max_range = None self._min_range = None self._min_height = None self._last_face_seen_timeout = 1 self._last_face_seen_time = 0 self.rand_target_enabled = True self._last_rand_target_timeout = 5 self._last_rand_target_time = 0 self.min_detection_range = None self.max_detection_range = None def set_xarm_version(self, xarm_version): self._xarm_version = xarm_version if self._xarm_version == 5: self._max_range = 0.7 self._min_range = 0.3 self._min_height = 0.1 elif self._xarm_version == 7: self._max_range = 0.7 self._min_range = 0.3 self._min_height = 0.1 def setup_scene(self): world = self.get_world() world.add_task(XArmFollowTarget(self._xarm_version)) return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") self._controller.reset() return def world_cleanup(self): self._controller = None self.xarm_socket.shut_down_socket() return async def setup_post_load(self): self._xarm_task = list(self._world.get_current_tasks().values())[0] self._task_params = self._xarm_task.get_params() self._xarm = self._world.scene.get_object(self._task_params["robot_name"]["value"]) self._controller = XArmRMPFlowController( name="target_follower_controller", robot_articulation=self._xarm, xarm_version=self._xarm_version ) self._articulation_controller = self._xarm.get_articulation_controller() self.xarm_socket.start_txsocket() self.xarm_socket.start_rxsocket() return async def _on_follow_target_event_async(self, val): world = self.get_world() if val: await world.play_async() world.add_physics_callback("sim_step", self._on_follow_target_simulation_step) else: world.remove_physics_callback("sim_step") return def _on_follow_target_simulation_step(self, step_size): observations = self._world.get_observations() actions = self._controller.forward( target_end_effector_position=observations[self._task_params["target_name"]["value"]]["position"], target_end_effector_orientation=observations[self._task_params["target_name"]["value"]]["orientation"], ) self._articulation_controller.set_gains( 1e15*np.ones(self._xarm_version), 1e14*np.ones(self._xarm_version) ) # Solution from Nvidia Live Session 1:23:00 self._articulation_controller.apply_action(actions) if self.xarm_socket.txconn: try: sendData = str(self._xarm.get_joint_positions().tolist()) #print("joints:", sendData) res = self.xarm_socket.txconn.send(sendData.encode()) if res == 0: print("channel is closed...") except Exception as e: print(e) # if sending failed, recreate the socket and reconnect print("sending failed... closing connection") self.xarm_socket.txconn.close() self.xarm_socket.txconn = None face_in_range = False if self.xarm_socket.cam_to_nose and self.xarm_socket.face_direction: cam_position, cam_orientation = self._xarm.end_effector.get_world_pose() nose_distance_from_camera = np.linalg.norm(self.xarm_socket.cam_to_nose) carb.log_error(str(self.min_detection_range) + " " + str(self.max_detection_range) + " " + str(nose_distance_from_camera)) face_in_range = nose_distance_from_camera >= self.min_detection_range and nose_distance_from_camera <= self.max_detection_range current_time = time.time() if face_in_range: carb.log_error("here") cam_orientation = Quaternion(cam_orientation) nose_position = cam_orientation.rotate(self.xarm_socket.cam_to_nose) + cam_position nose_direction = cam_orientation.rotate(self.xarm_socket.face_direction) nose_direction /= np.linalg.norm(nose_direction) # update position of target from camera feed cube = self._world.scene.get_object("target") if nose_distance_from_camera < self.min_detection_range: newpose = nose_position + nose_direction * self.min_detection_range elif nose_distance_from_camera > self.max_detection_range: newpose = nose_position + nose_direction * self.max_detection_range else: newpose = nose_position + nose_direction * nose_distance_from_camera range = np.linalg.norm(newpose) if range < self._min_range: newpose = newpose / np.linalg.norm(newpose) * self._min_range elif range > self._max_range: newpose = newpose / np.linalg.norm(newpose) * self._max_range newpose = [newpose[0], newpose[1], max(newpose[2], self._min_height)] updated_quaternion = self._get_new_target_orientation(newpose) cube.set_world_pose(np.array(newpose), updated_quaternion) self.xarm_socket.dx = None self.xarm_socket.dy = None self._last_face_seen_time = current_time elif self.rand_target_enabled and ( \ self._xarm_task.task_achieved or \ current_time > self._last_rand_target_time + self._last_rand_target_timeout \ ) and current_time > self._last_face_seen_time + self._last_face_seen_timeout: # set random location cube = self._world.scene.get_object("target") randpos = [ np.random.uniform(-1, 1), np.random.uniform(-1, 1), np.random.uniform(0, 1) ] range = np.linalg.norm(randpos) if range < self._min_range: randpos = randpos / np.linalg.norm(randpos) * self._min_range elif range > self._max_range: randpos = randpos / np.linalg.norm(randpos) * self._max_range randpos = [randpos[0], randpos[1], max(randpos[2], self._min_height)] updated_quaternion = self._get_new_target_orientation(randpos) print("Setting new target pos:"+str(randpos)) cube.set_world_pose(np.array(randpos), updated_quaternion) self._last_rand_target_time = time.time() self.xarm_socket.cam_to_nose=None self.xarm_socket.face_direction=None return def _on_add_obstacle_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] cube = current_task.add_obstacle() self._controller.add_obstacle(cube) return def _on_remove_obstacle_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] obstacle_to_delete = current_task.get_obstacle_to_delete() self._controller.remove_obstacle(obstacle_to_delete) current_task.remove_obstacle() return def _on_logging_event(self, val): world = self.get_world() data_logger = world.get_data_logger() if not world.get_data_logger().is_started(): robot_name = self._task_params["robot_name"]["value"] target_name = self._task_params["target_name"]["value"] def frame_logging_func(tasks, scene): return { "joint_positions": scene.get_object(robot_name).get_joint_positions().tolist(), "applied_joint_positions": scene.get_object(robot_name) .get_applied_action() .joint_positions.tolist(), "target_position": scene.get_object(target_name).get_world_pose()[0].tolist(), } data_logger.add_data_frame_logging_func(frame_logging_func) if val: data_logger.start() else: data_logger.pause() return def _on_save_data_event(self, log_path): world = self.get_world() data_logger = world.get_data_logger() data_logger.save(log_path=log_path) data_logger.reset() return def _get_new_target_orientation(self, position): direction_vector = np.array([0, 0, 0.3]) - position normalized_direction = direction_vector / np.linalg.norm(direction_vector) rotation_axis = np.cross(np.array([0, 0, -1]), normalized_direction) rotation_axis /= np.linalg.norm(rotation_axis) rotation_angle = np.arccos(np.dot(np.array([0, 0, -1]), normalized_direction)) half_angle = 0.5 * rotation_angle sin_half_angle = np.sin(half_angle) cos_half_angle = np.cos(half_angle) quaternion = np.array([ cos_half_angle, sin_half_angle * rotation_axis[0], sin_half_angle * rotation_axis[1], sin_half_angle * rotation_axis[2] ]) return quaternion
10,092
Python
38.89328
139
0.586504
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm7_follow_target_with_standalone.py
import sys import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.isaac.examples") from omni.isaac.core import World from XArm.xarm_follow_target import XArmFollowTarget from XArm.xarm_rmpflow_controller import XArmRMPFlowController from XArm.xarm_socket import XArmSocket import numpy as np import time def get_new_target_orientation(position): direction_vector = np.array([0, 0, 0]) - position normalized_direction = direction_vector / np.linalg.norm(direction_vector) rotation_axis = np.cross(np.array([0, 0, -1]), normalized_direction) rotation_axis /= np.linalg.norm(rotation_axis) rotation_angle = np.arccos(np.dot(np.array([0, 0, -1]), normalized_direction)) half_angle = 0.5 * rotation_angle sin_half_angle = np.sin(half_angle) cos_half_angle = np.cos(half_angle) quaternion = np.array([ cos_half_angle, sin_half_angle * rotation_axis[0], sin_half_angle * rotation_axis[1], sin_half_angle * rotation_axis[2] ]) return quaternion def main(): xarm_version = 7 world = World(stage_units_in_meters=1.0) xarm_task = XArmFollowTarget(xarm_version=xarm_version) world.add_task(xarm_task) world.reset() task_params = world.get_task("xarm_follow_target_task").get_params() xarm_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] xarm = world.scene.get_object(xarm_name) cube = world.scene.get_object(target_name) xarm_controller = XArmRMPFlowController( name="target_follower_controller", robot_articulation=xarm, xarm_version=xarm_version ) articulation_controller = xarm.get_articulation_controller() xarm_socket = XArmSocket() xarm_socket.start_txsocket() xarm_socket.start_rxsocket() max_range = 0.7 min_range = 0.3 min_height = 0.1 last_face_seen_timeout = 1 last_face_seen_time = 0 last_rand_target_timeout = 5 last_rand_target_time = 0 start_time = time.time() wait_time = 1 while simulation_app.is_running() and time.time() < start_time + wait_time: world.step(render=True) if world.is_playing(): if world.current_time_step_index == 0: world.reset() xarm_controller.reset() while simulation_app.is_running(): world.step(render=True) if world.is_playing(): observations = world.get_observations() actions = xarm_controller.forward( target_end_effector_position=observations[task_params["target_name"]["value"]]["position"], target_end_effector_orientation=observations[task_params["target_name"]["value"]]["orientation"], ) gains = 1e15*np.ones(xarm_version), 1e14*np.ones(xarm_version) articulation_controller.set_gains(gains[0], gains[1]) # Solution from Nvidia Live Session 1:23:00 articulation_controller.apply_action(actions) if xarm_socket.txconn: try: sendData = str(xarm.get_joint_positions().tolist()) res = xarm_socket.txconn.send(sendData.encode()) if res == 0: print("channel is closed...") except: # if sending failed, recreate the socket and reconnect print("sending failed... closing connection") xarm_socket.txconn.close() xarm_socket.txconn = None current_time = time.time() if xarm_socket.dx and xarm_socket.dy: # update position of target from camera feed cube = world.scene.get_object("target") pos, _ = cube.get_world_pose() newpose = [pos[0], pos[1] + xarm_socket.dx, pos[2] + xarm_socket.dy] range = np.linalg.norm(newpose) if range < min_range: newpose = newpose / np.linalg.norm(newpose) * min_range elif range > max_range: newpose = newpose / np.linalg.norm(newpose) * max_range newpose = [newpose[0], newpose[1], max(newpose[2], min_height)] updated_quaternion = get_new_target_orientation(newpose) print("pose", pos, "->", newpose, end="") cube.set_world_pose(np.array(newpose), updated_quaternion) print("set.") xarm_socket.dx = None xarm_socket.dy = None last_face_seen_time = current_time elif ( \ xarm_task.task_achieved or \ current_time > last_rand_target_time + last_rand_target_timeout \ ) and current_time > last_face_seen_time + last_face_seen_timeout: # set random location cube = world.scene.get_object("target") randpos = [ np.random.uniform(-1, 1), np.random.uniform(-1, 1), np.random.uniform(0, 1) ] range = np.linalg.norm(randpos) if range < min_range: randpos = randpos / np.linalg.norm(randpos) * min_range elif range > max_range: randpos = randpos / np.linalg.norm(randpos) * max_range randpos = [randpos[0], randpos[1], max(randpos[2], min_height)] updated_quaternion = get_new_target_orientation(randpos) print("Setting new target pos:"+str(randpos)) cube.set_world_pose(np.array(randpos), updated_quaternion) last_rand_target_time = time.time() xarm_socket.shut_down_socket() simulation_app.close() if __name__ == '__main__': main()
6,142
Python
35.349112
113
0.578313
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm_follow_target.py
from .xarm import XArm import numpy as np import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.stage import get_stage_units import carb class XArmFollowTarget(tasks.FollowTarget): """[summary] Args: name (str, optional): [description]. Defaults to "ur10_follow_target". target_prim_path (Optional[str], optional): [description]. Defaults to None. target_name (Optional[str], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__(self, xarm_version: int = 7): super().__init__(name="xarm_follow_target_task", target_position=np.array([0.3, 0.0, 0.5]) / get_stage_units(), offset=None) self._goal_position = np.array([0, 0, 0]) self.task_achieved = False self.xarm_version = xarm_version return def set_up_scene(self, scene): super().set_up_scene(scene) scene.add_default_ground_plane() self._cube = scene.get_object("target") # cpose, crot = self._cube.get_world_pose() # self._cube.set_world_pose(cpose, np.Array([180.0, 90, -180])) return def pre_step(self, control_index, simulation_time): self._goal_position, orient = self._cube.get_world_pose() end_effector_position, _ = self._xarm.end_effector.get_world_pose() # print("orientation"+str(orient)) dist = np.mean(np.abs(self._goal_position - end_effector_position)) if not self.task_achieved is bool(dist < 0.02): self.task_achieved = bool(dist < 0.02) if self.task_achieved: print("Target Reached") self._cube.get_applied_visual_material().set_color(color=np.array([0, 1.0, 0])) else: self._cube.get_applied_visual_material().set_color(color=np.array([1.0, 0, 0])) return def set_robot(self) -> XArm: """[summary] Returns: XArm: [description] """ if self.xarm_version == 5: prim_path = "/World/XArm5" name = "xarm5" positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]) elif self.xarm_version == 7: prim_path = "/World/XArm7" name = "xarm7" positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]) self._xarm = XArm(prim_path=prim_path, name=name, version=self.xarm_version) self._xarm.set_joints_default_state( positions=positions ) return self._xarm
2,758
Python
38.414285
132
0.577592
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm.py
from typing import Optional import numpy as np from omni.isaac.core.robots.robot import Robot from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.stage import add_reference_to_stage import pathlib class XArm(Robot): """[summary] Args: prim_path (str): [description] name (str, optional): [description]. Defaults to "ur10_robot". usd_path (Optional[str], optional): [description]. Defaults to None. position (Optional[np.ndarray], optional): [description]. Defaults to None. orientation (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, prim_path: str, name: str = "xarm_robot", version: Optional[int] = 7, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None ) -> None: self._end_effector = None current_directory = str(pathlib.Path(__file__).parent.resolve()).replace("\\", "/") if version == 5: relative_usd_path = "/XArm/XArm5/xarm5.usd" end_link = "/link5" elif version == 7: relative_usd_path = "/XArm/XArm7/xarm7.usd" end_link = "/link7" add_reference_to_stage(usd_path=current_directory + relative_usd_path, prim_path=prim_path) self._end_effector_prim_path = prim_path + end_link super().__init__( prim_path=prim_path, name=name, position=position, orientation=orientation, articulation_controller=None ) return @property def end_effector(self) -> RigidPrim: """[summary] Returns: RigidPrim: [description] """ return self._end_effector def initialize(self, physics_sim_view=None) -> None: """[summary] """ super().initialize(physics_sim_view) self._end_effector = RigidPrim(prim_path=self._end_effector_prim_path, name=self.name + "_end_effector") self.disable_gravity() self._end_effector.initialize(physics_sim_view) return def post_reset(self) -> None: """[summary] """ Robot.post_reset(self) self._end_effector.post_reset() return
2,275
Python
30.178082
116
0.593846
MatthewDZane/XArmFollowTarget/scripts/XArm/README.md
# Using XArm Follow Target as an Isaac Example 1. cd into the Isaac Sim User examples directory. ``` /home/user/.local/share/ov/pkg/isaac_sim-2022.2.1/exts/omni.isaac.examples/omni/isaac/examples/user_examples/ ``` 2. Clone the repo as XArmFollowTarget. ``` git clone https://gitlab.nrp-nautilus.io/isaac/xarm.git XArmFollowTarget ``` 3. Add the following lines to the .../user_examples/__init__.py file (not in the repo directory): ``` from omni.isaac.examples.user_examples.XArmFollowTarget.scripts.XArm.xarm_sample import XArmSample from omni.isaac.examples.user_examples.XArmFollowTarget.scripts.XArm.xarm_extension import XArmExtension ``` 4. After this runs you should see the XArm extension in the Example drop down in the Isaac-sim gui 5. To recieve the position output run the **client.py** script found in the folder, the **server.py** runs by default once the example is loaded.
896
Markdown
41.714284
146
0.767857
MatthewDZane/XArmFollowTarget/scripts/XArm/xarm_extension.py
import asyncio import os import omni import omni.ui as ui from omni.usd import StageEventType from omni.isaac.core import World from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.ui.ui_utils import btn_builder, get_style, state_btn_builder, setup_ui_headers, cb_builder, float_builder from .xarm_sample import XArmSample class XArmExtension(BaseSampleExtension): def on_startup(self, ext_id: str): self._buttons = {} self._task_ui_elements = {} super().on_startup(ext_id) super().start_extension( menu_name="", submenu_name="", name="XArm", title="XArm", doc_link="", overview="", sample=XArmSample(), file_path=os.path.abspath(__file__), number_of_extra_frames=0, ) return def shutdown_cleanup(self): if self._sample._world is not None: self._sample._world_cleanup() if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load XArm5"].enabled = True self._buttons["Load XArm7"].enabled = True return def _build_ui( self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open ): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self._window = omni.ui.Window( name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load XArm5", "type": "button", "text": "Load", "tooltip": "Load XArm5 and Task", "on_clicked_fn": self._on_load_xarm5, } self._buttons["Load XArm5"] = btn_builder(**dict) self._buttons["Load XArm5"].enabled = True dict = { "label": "Load XArm7", "type": "button", "text": "Load", "tooltip": "Load XArm7 and Task", "on_clicked_fn": self._on_load_xarm7, } self._buttons["Load XArm7"] = btn_builder(**dict) self._buttons["Load XArm7"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False task_controls_frame = ui.CollapsableFrame( title="Task Controls", collapsed=False ) with task_controls_frame: with ui.VStack(spacing=5): task_controls_frame.visible = True dict = { "label": "Follow Target", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Follow Target", "on_clicked_fn": self._on_follow_target_button_event, } self._task_ui_elements["Follow Target"] = state_btn_builder(**dict) self._task_ui_elements["Follow Target"].enabled = False dict = { "label": "Add Obstacle", "type": "button", "text": "ADD", "tooltip": "Add Obstacle", "on_clicked_fn": self._on_add_obstacle_button_event, } self._task_ui_elements["Add Obstacle"] = btn_builder(**dict) self._task_ui_elements["Add Obstacle"].enabled = False dict = { "label": "Remove Obstacle", "type": "button", "text": "REMOVE", "tooltip": "Remove Obstacle", "on_clicked_fn": self._on_remove_obstacle_button_event, } self._task_ui_elements["Remove Obstacle"] = btn_builder(**dict) self._task_ui_elements["Remove Obstacle"].enabled = False dict = { "label": "Random Target Enabled", "type": "checkbox", "default_val": False, "tooltip": "Random Target Enabled", "on_clicked_fn": self._on_random_target_enabled_event } self._task_ui_elements["Random Target Checkbox"] = cb_builder(**dict) args = { "label": "Min Face Range", "default_val": .3, "tooltip": "Min Range in Meters", } self._task_ui_elements["Min Face Range"] = float_builder(**args) self._task_ui_elements["Min Face Range"].add_value_changed_fn(self._on_min_face_range_changed_event) args = { "label": "Max Face Range", "default_val": 10, "tooltip": "Max Range in Meters", } self._task_ui_elements["Max Face Range"] = float_builder(**args) self._task_ui_elements["Max Face Range"].add_value_changed_fn(self._on_max_face_range_changed_event) def _on_load_xarm5(self): self._sample.set_xarm_version(5) self._on_random_target_enabled_event(False) self._on_min_face_range_changed_event(self._task_ui_elements["Min Face Range"].get_value_as_float()) self._on_max_face_range_changed_event(self._task_ui_elements["Max Face Range"].get_value_as_float()) async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load XArm5"].enabled = False self._buttons["Load XArm7"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_load_xarm7(self): self._sample.set_xarm_version(7) self._on_random_target_enabled_event(False) self._on_min_face_range_changed_event(self._task_ui_elements["Min Face Range"].get_value_as_float()) self._on_max_face_range_changed_event(self._task_ui_elements["Max Face Range"].get_value_as_float()) async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load XArm5"].enabled = False self._buttons["Load XArm7"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_follow_target_button_event(self, val): asyncio.ensure_future(self._sample._on_follow_target_event_async(val)) return def _on_add_obstacle_button_event(self): self._sample._on_add_obstacle_event() self._task_ui_elements["Remove Obstacle"].enabled = True return def _on_remove_obstacle_button_event(self): self._sample._on_remove_obstacle_event() world = self._sample.get_world() current_task = list(world.get_current_tasks().values())[0] if not current_task.obstacles_exist(): self._task_ui_elements["Remove Obstacle"].enabled = False return def _on_random_target_enabled_event(self, val): self._sample.rand_target_enabled = self._task_ui_elements["Random Target Checkbox"].get_value_as_bool() def _on_min_face_range_changed_event(self, val): self._sample.min_detection_range = self._task_ui_elements["Min Face Range"].get_value_as_float() def _on_max_face_range_changed_event(self, val): self._sample.min_detection_range = self._task_ui_elements["Max Face Range"].get_value_as_float() def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _on_follow_target_button_event(self, val): asyncio.ensure_future(self._sample._on_follow_target_event_async(val)) return def _on_save_data_button_event(self): self._sample._on_save_data_event(self._task_ui_elements["Output Directory"].get_value_as_string()) return def post_reset_button_event(self): self._task_ui_elements["Follow Target"].enabled = True self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = True if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" return def post_load_button_event(self): self._task_ui_elements["Follow Target"].enabled = True self._task_ui_elements["Add Obstacle"].enabled = True return def post_clear_button_event(self): self._task_ui_elements["Follow Target"].enabled = False self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = False if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" return def on_stage_event(self, event): if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._task_ui_elements["Follow Target"].enabled = False self._task_ui_elements["Remove Obstacle"].enabled = False self._task_ui_elements["Add Obstacle"].enabled = False if self._task_ui_elements["Follow Target"].text == "STOP": self._task_ui_elements["Follow Target"].text = "START" elif event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self._sample._world_cleanup() self._sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load XArm5"].enabled = True self._buttons["Load XArm7"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): #self._buttons["Load XArm5"].enabled = False #self._buttons["Load XArm7"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
13,233
Python
44.013605
124
0.516058
MatthewDZane/XArmFollowTarget/scripts/XArm/client/Test_ContainerServer.py
# server.py import socket HOST = "localhost" PORT = 12345 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((HOST, PORT)) s.listen(1) while True: conn, addr = s.accept() with conn: data = conn.recv(1024) if not data: break print("Received:", data) conn.sendall(data)
332
Python
17.499999
53
0.596386
MatthewDZane/XArmFollowTarget/scripts/XArm/client/Cont_clientTest.py
# server.py import socket HOST = "localhost" PORT = 8211 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((HOST, PORT)) s.listen(1) while True: conn, addr = s.accept() with conn: data = conn.recv(1024) if not data: break print("Received:", data) conn.sendall(data) # client.py import socket HOST = "localhost" PORT = 50000 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) s.sendall("Hello, world!".encode()) data = s.recv(1024) print("Received:", data.decode()) s.close()
573
Python
15.882352
53
0.631763
MatthewDZane/XArmFollowTarget/scripts/XArm/client/local-xarm-client.py
import socket import math import time mysocket = socket.socket() # mysocket.connect(('127.0.0.1',12345)) mysocket.connect(('192.168.4.206',12345)) """ # xArm-Python-SDK: https://github.com/xArm-Developer/xArm-Python-SDK # git clone [email protected]:xArm-Developer/xArm-Python-SDK.git # cd xArm-Python-SDK # python setup.py install """ try: from xarm.tools import utils except: pass from xarm import version from xarm.wrapper import XArmAPI arm = XArmAPI('192.168.4.15') arm.motion_enable(enable=True) arm.set_mode(0) arm.set_state(state=0) # arm.reset(wait=True) arm.set_mode(1) arm.set_state(0) time.sleep(0.1) variables = {} params = {'speed': 100, 'acc': 2000, 'angle_speed': 20, 'angle_acc': 500, 'events': {}, 'variables': variables, 'callback_in_thread': True, 'quit': False} # Register error/warn changed callback def error_warn_change_callback(data):# if data and data['error_code'] != 0: params['quit'] = True pprint('err={}, quit'.format(data['error_code'])) arm.release_error_warn_changed_callback(error_warn_change_callback) arm.register_error_warn_changed_callback(error_warn_change_callback) # Register state changed callback def state_changed_callback(data): if data and data['state'] == 4: if arm.version_number[0] >= 1 and arm.version_number[1] >= 1 and arm.version_number[2] > 0: params['quit'] = True pprint('state=4, quit') arm.release_state_changed_callback(state_changed_callback) arm.register_state_changed_callback(state_changed_callback) # Register counter value changed callback if hasattr(arm, 'register_count_changed_callback'): def count_changed_callback(data): if not params['quit']: pprint('counter val: {}'.format(data['count'])) arm.register_count_changed_callback(count_changed_callback) # Register connect changed callback def connect_changed_callback(data): if data and not data['connected']: params['quit'] = True pprint('disconnect, connected={}, reported={}, quit'.format(data['connected'], data['reported'])) arm.release_connect_changed_callback(error_warn_change_callback) arm.register_connect_changed_callback(connect_changed_callback) def close_socket(thissocket): try: thissocket.shutdown(socket.SHUT_RDWR) thissocket.close() thissocket = None except socket.error as e: pass print("socket is closed") try: while True: data = mysocket.recv(1024) message = data.decode() if message == "Done": break # print(message) try: joints = eval(message) except: continue # print(joints) joints_deg = [math.degrees(joint) for joint in joints] if arm.connected and arm.state != 4: arm.set_servo_angle_j(joints, is_radian=True) # print("moved to", joints_deg) except KeyboardInterrupt: print("closing socket...") close_socket(mysocket) print("Isaac Sim Connection Stopped") if hasattr(arm, 'release_count_changed_callback'): arm.release_count_changed_callback(count_changed_callback) arm.release_error_warn_changed_callback(state_changed_callback) arm.release_state_changed_callback(state_changed_callback) arm.release_connect_changed_callback(error_warn_change_callback)
3,384
Python
28.692982
154
0.668735
MatthewDZane/XArmFollowTarget/scripts/XArm/client/go-home.py
#!/usr/bin/env python3 # Software License Agreement (BSD License) # # Copyright (c) 2022, UFACTORY, Inc. # All rights reserved. # # Author: Vinman <[email protected]> <[email protected]> """ # Notice # 1. Changes to this file on Studio will not be preserved # 2. The next conversion will overwrite the file with the same name """ import sys import math import time import datetime import random import traceback import threading """ # xArm-Python-SDK: https://github.com/xArm-Developer/xArm-Python-SDK # git clone [email protected]:xArm-Developer/xArm-Python-SDK.git # cd xArm-Python-SDK # python setup.py install """ try: from xarm.tools import utils except: pass from xarm import version from xarm.wrapper import XArmAPI def pprint(*args, **kwargs): try: stack_tuple = traceback.extract_stack(limit=2)[0] print('[{}][{}] {}'.format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), stack_tuple[1], ' '.join(map(str, args)))) except: print(*args, **kwargs) pprint('xArm-Python-SDK Version:{}'.format(version.__version__)) arm = XArmAPI('192.168.4.15') arm.clean_warn() arm.clean_error() arm.motion_enable(True) arm.set_mode(0) arm.set_state(0) time.sleep(1) variables = {} params = {'speed': 100, 'acc': 2000, 'angle_speed': 20, 'angle_acc': 500, 'events': {}, 'variables': variables, 'callback_in_thread': True, 'quit': False} # Register error/warn changed callback def error_warn_change_callback(data): if data and data['error_code'] != 0: params['quit'] = True pprint('err={}, quit'.format(data['error_code'])) arm.release_error_warn_changed_callback(error_warn_change_callback) arm.register_error_warn_changed_callback(error_warn_change_callback) # Register state changed callback def state_changed_callback(data): if data and data['state'] == 4: if arm.version_number[0] >= 1 and arm.version_number[1] >= 1 and arm.version_number[2] > 0: params['quit'] = True pprint('state=4, quit') arm.release_state_changed_callback(state_changed_callback) arm.register_state_changed_callback(state_changed_callback) # Register counter value changed callback if hasattr(arm, 'register_count_changed_callback'): def count_changed_callback(data): if not params['quit']: pprint('counter val: {}'.format(data['count'])) arm.register_count_changed_callback(count_changed_callback) # Register connect changed callback def connect_changed_callback(data): if data and not data['connected']: params['quit'] = True pprint('disconnect, connected={}, reported={}, quit'.format(data['connected'], data['reported'])) arm.release_connect_changed_callback(error_warn_change_callback) arm.register_connect_changed_callback(connect_changed_callback) # Rotation if not params['quit']: params['angle_acc'] = 1145 if not params['quit']: params['angle_speed'] = 80 # if params['quit']: if arm.error_code == 0 and not params['quit']: code = arm.set_servo_angle(angle=[0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) if code != 0: params['quit'] = True pprint('set_servo_angle, code={}'.format(code)) # release all event if hasattr(arm, 'release_count_changed_callback'): arm.release_count_changed_callback(count_changed_callback) arm.release_error_warn_changed_callback(state_changed_callback) arm.release_state_changed_callback(state_changed_callback) arm.release_connect_changed_callback(error_warn_change_callback)
3,630
Python
32.009091
155
0.680716
MatthewDZane/XArmFollowTarget/scripts/XArm/client/realsense_facePoseClient.py
# ====== Sample Code for Smart Design Technology Blog ====== # Intel Realsense D435 cam has RGB camera with 1920×1080 resolution # Depth camera is 1280x720 # FOV is limited to 69deg x 42deg (H x V) - the RGB camera FOV # If you run this on a non-Intel CPU, explore other options for rs.align # On the NVIDIA Jetson AGX we build the pyrealsense lib with CUDA import pyrealsense2 as rs import mediapipe as mp import cv2 import numpy as np import datetime as dt import socket import sys from itertools import combinations font = cv2.FONT_HERSHEY_SIMPLEX org = (20, 100) fontScale = .5 color = (0,50,255) thickness = 1 # ====== Realsense ====== realsense_ctx = rs.context() connected_devices = [] # List of serial numbers for present cameras for i in range(len(realsense_ctx.devices)): detected_camera = realsense_ctx.devices[i].get_info(rs.camera_info.serial_number) print(f"{detected_camera}") connected_devices.append(detected_camera) device = connected_devices[0] # In this example we are only using one camera pipeline = rs.pipeline() config = rs.config() background_removed_color = 153 # Grey # ====== Mediapipe ====== mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5) mp_drawing = mp.solutions.drawing_utils drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) # ====== Socket ====== bSocket = True if (len(sys.argv) > 1): print(sys.argv) if sys.argv[1] == "--no-socket": bSocket = False if bSocket: # open socket to omniverse machine mysocket = socket.socket() # mysocket.connect(('192.168.1.62',12346)) mysocket.connect(('192.168.4.206',12346)) # mysocket.connect(('127.0.0.1',12346)) def close_socket(thissocket): try: thissocket.shutdown(socket.SHUT_RDWR) thissocket.close() thissocket = None except socket.error as e: pass print("socket is closed") def get_pixel_depth(depth_image_flipped, pixel_coodinate, img_w, img_h): #calculate distance to end of the nose x_pixel = pixel_coodinate[0] y_pixel = pixel_coodinate[1] if x_pixel >= img_w: x_pixel = img_w - 1 if y_pixel >= img_h: y_pixel = img_h - 1 return depth_image_flipped[y_pixel, x_pixel] * depth_scale def get_camera_to_pixel_vector(pixel_coodinate, inv_cam_matrix, distance_from_camera): homogeneous_nose_coordinates = np.array([ [pixel_coodinate[0]], [pixel_coodinate[1]], [1] ]) homogeneous_nose_coordinates = homogeneous_nose_coordinates / np.linalg.norm(homogeneous_nose_coordinates) cam_to_pixel = inv_cam_matrix @ homogeneous_nose_coordinates # Normalize the input vectors cam_to_pixel = cam_to_pixel / np.linalg.norm(cam_to_pixel) #print(vector_to_nose.flatten()) return cam_to_pixel * distance_from_camera def estimate_plane_normal(points): planes = list(combinations(points, 3)) #print(points) normals = [] for points in planes: a = points[1] - points[0] b = points[2] - points[0] #print (a,b) normal = np.cross(a, b) if normal[2] > 0: normal = -1 * normal normals.append(normal) plane_normal = np.mean(normals, axis=0) plane_normal = plane_normal / np.linalg.norm(plane_normal) return plane_normal # ====== Enable Streams ====== config.enable_device(device) # # For worse FPS, but better resolution: # stream_res_x = 1280 # stream_res_y = 720 # # For better FPS. but worse resolution: stream_res_x = 640 stream_res_y = 480 stream_fps = 30 config.enable_stream(rs.stream.depth, stream_res_x, stream_res_y, rs.format.z16, stream_fps) config.enable_stream(rs.stream.color, stream_res_x, stream_res_y, rs.format.bgr8, stream_fps) profile = pipeline.start(config) align_to = rs.stream.color align = rs.align(align_to) # ====== Get depth Scale ====== depth_sensor = profile.get_device().first_depth_sensor() depth_scale = depth_sensor.get_depth_scale() print(f"\tDepth Scale for Camera SN {device} is: {depth_scale}") # ====== Set clipping distance ====== clipping_distance_in_meters = 2 clipping_distance = clipping_distance_in_meters / depth_scale print(f"\tConfiguration Successful for SN {device}") # ====== Get and process images ====== print(f"Starting to capture images on SN: {device}") while True: start_time = dt.datetime.today().timestamp() # Get and align frames frames = pipeline.wait_for_frames() aligned_frames = align.process(frames) aligned_depth_frame = aligned_frames.get_depth_frame() color_frame = aligned_frames.get_color_frame() if not aligned_depth_frame or not color_frame: continue # Process images depth_image = np.asanyarray(aligned_depth_frame.get_data()) depth_image_flipped = cv2.flip(depth_image,1) color_image = np.asanyarray(color_frame.get_data()) depth_image_3d = np.dstack((depth_image,depth_image,depth_image)) #Depth image is 1 channel, while color image is 3 background_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), background_removed_color, color_image) depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) images = cv2.flip(background_removed,1) # images = background_removed color_image = cv2.flip(color_image,1) color_images_rgb = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB) #added from face-pose client img_h, img_w, img_c = color_images_rgb.shape # calculate intrinsic values focal_length = 1 * img_w intrinsics = aligned_frames.get_profile().as_video_stream_profile().get_intrinsics() cam_matrix = np.array( [ [intrinsics.fx, 0, img_w/2], [0, intrinsics.fy, img_h/2], [0, 0, 1] ]) inv_cam_matrix = np.linalg.inv(cam_matrix) # the distortion paramaters dist_matrix = np.zeros((4, 1), dtype=np.float64) face_3d = [] face_2d = [] # Process face results = face_mesh.process(color_images_rgb) if results.multi_face_landmarks: i=0 for face_landmarks in results.multi_face_landmarks: for idx, lm in enumerate(face_landmarks.landmark): if idx in [1, 33, 61, 199, 263, 291]: x, y = int(lm.x * img_w), int(lm.y * img_h) cv2.circle(color_images_rgb, (x, y), 10, (0, 0, 255), -1) face_2d.append([x, y]) landmark_distance = get_pixel_depth( depth_image_flipped, [x, y], img_w, img_h ) cam_to_landmark = get_camera_to_pixel_vector( [x, y], inv_cam_matrix, landmark_distance ) face_3d.append(cam_to_landmark.flatten()) if idx == 1: nose_pixel = (x, y) cam_to_nose = cam_to_landmark nose_distance = landmark_distance face_2d = np.array(face_2d, dtype=np.float64) face_3d = np.array(face_3d, dtype=np.float64) nose_landmark = face_landmarks.landmark[1] # solve PnP success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix) # get rotatinal matrix rmat, jac = cv2.Rodrigues(rot_vec) # get angles angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat) # get the y rotation degree x_degrees = angles[0] * 360 y_degrees = angles[1] * 360 z_degrees = angles[2] * 360 # see where the user's head is tilting if y < -10: text = "Looking Left" elif y > 10: text = "Looking Right" elif x < -10: text = "Looking Down" elif x > 10: text = "Looking Up" else: text = "Looking Forward" # display the nose direction p2 = (int(nose_pixel[0] + y_degrees * 10), int(nose_pixel[1] - x_degrees * 10)) cv2.line(color_images_rgb, (int(nose_pixel[0]), int(nose_pixel[1])), p2, (255, 0, 0), 3) # cv2.line(images, (int(nose_pixel[0]), int(nose_pixel[1])), p2, (255, 0, 0), 3) face_direction = estimate_plane_normal(face_3d) print(nose_distance, end="\t") ##vector of Nose in camera local space print(cam_to_nose.flatten(), end="\t") ##Normal of the face in camera local space print(face_direction.flatten(), end="\t") print(nose_pixel) # add the text on the image cv2.putText(color_images_rgb, text, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(color_images_rgb, "x: "+str(np.round(x_degrees, 2)), (500, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(color_images_rgb, "y: "+str(np.round(y_degrees, 2)), (500, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(color_images_rgb, "z: "+str(np.round(z_degrees, 2)), (500, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(color_images_rgb, "Distance: "+ str(np.round(nose_distance, 2)), (500, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) xdiff = 0.5-nose_landmark.x ydiff = 0.5-nose_landmark.y cv2.putText(color_images_rgb, "xdiff: "+str(np.round(xdiff, 2)), (500, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) images = cv2.putText(color_images_rgb, "ydiff: "+str(np.round(ydiff, 2)), (500, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) # mp_drawing.draw_landmarks( # image=color_images_rgb, # landmark_list=face_landmarks, # connections=mp_face_mesh.FACEMESH_CONTOURS, # landmark_drawing_spec = drawing_spec, # connection_drawing_spec=drawing_spec) if bSocket: cam_to_nose = cam_to_nose.flatten() try: #print("sending:", [cam_to_nose[0], cam_to_nose[1], cam_to_nose[2], face_direction[0], face_direction[1], face_direction[2], xdiff, ydiff]) sendData = str([ cam_to_nose[0], cam_to_nose[1], cam_to_nose[2], face_direction[0], face_direction[1], face_direction[2], xdiff, ydiff] ) mysocket.send(sendData.encode()) except: pass # Display FPS time_diff = dt.datetime.today().timestamp() - start_time fps = int(1 / time_diff) org3 = (20, org[1] + 60) images = cv2.putText(images, f"FPS: {fps}", org3, font, fontScale, color, thickness, cv2.LINE_AA) name_of_window = 'SN: ' + str(device) # Display images cv2.namedWindow(name_of_window, cv2.WINDOW_AUTOSIZE) output_bgr = cv2.cvtColor(color_images_rgb, cv2.COLOR_RGB2BGR) cv2.imshow(name_of_window, output_bgr) # cv2.imshow(name_of_window, images) # cv2.imshow(name_of_window, color_image) key = cv2.waitKey(1) # Press esc or 'q' to close the image window if key & 0xFF == ord('q') or key == 27: print(f"User pressed break key for SN: {device}") break print(f"Application Closing") pipeline.stop() print(f"Application Closed.")
11,623
Python
33.906907
155
0.593564
MatthewDZane/XArmFollowTarget/scripts/XArm/client/look-forward.py
#!/usr/bin/env python3 # Software License Agreement (BSD License) # # Copyright (c) 2022, UFACTORY, Inc. # All rights reserved. # # Author: Vinman <[email protected]> <[email protected]> """ # Notice # 1. Changes to this file on Studio will not be preserved # 2. The next conversion will overwrite the file with the same name """ import sys import math import time import datetime import random import traceback import threading # IKFast for xarm 7 import pyikfast import numpy as np """ # xArm-Python-SDK: https://github.com/xArm-Developer/xArm-Python-SDK # git clone [email protected]:xArm-Developer/xArm-Python-SDK.git # cd xArm-Python-SDK # python setup.py install """ try: from xarm.tools import utils except: pass from xarm import version from xarm.wrapper import XArmAPI def pprint(*args, **kwargs): try: stack_tuple = traceback.extract_stack(limit=2)[0] print('[{}][{}] {}'.format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), stack_tuple[1], ' '.join(map(str, args)))) except: print(*args, **kwargs) frontForwardAngle = [0, 2.5, 0, 37.3, 0, -57.3, 0] frontBackAngle = [0.0,-45.0,0.0,0.0,0.0,-45.0,0.0] pprint('xArm-Python-SDK Version:{}'.format(version.__version__)) arm = XArmAPI('192.168.4.15') arm.clean_warn() arm.clean_error() arm.motion_enable(True) arm.set_mode(0) arm.set_state(0) time.sleep(1) variables = {} params = {'speed': 50, 'acc': 2000, 'angle_speed': 20, 'angle_acc': 500, 'events': {}, 'variables': variables, 'callback_in_thread': True, 'quit': False} params['angle_acc'] = 50 params['angle_speed'] = 1000 # Register error/warn changed callback def error_warn_change_callback(data): if data and data['error_code'] != 0: params['quit'] = True pprint('err={}, quit'.format(data['error_code'])) arm.release_error_warn_changed_callback(error_warn_change_callback) arm.register_error_warn_changed_callback(error_warn_change_callback) # Register state changed callback def state_changed_callback(data): if data and data['state'] == 4: if arm.version_number[0] >= 1 and arm.version_number[1] >= 1 and arm.version_number[2] > 0: params['quit'] = True pprint('state=4, quit') arm.release_state_changed_callback(state_changed_callback) arm.register_state_changed_callback(state_changed_callback) # Register counter value changed callback if hasattr(arm, 'register_count_changed_callback'): def count_changed_callback(data): if not params['quit']: pprint('counter val: {}'.format(data['count'])) arm.register_count_changed_callback(count_changed_callback) # Register connect changed callback def connect_changed_callback(data): if data and not data['connected']: params['quit'] = True pprint('disconnect, connected={}, reported={}, quit'.format(data['connected'], data['reported'])) arm.release_connect_changed_callback(error_warn_change_callback) arm.register_connect_changed_callback(connect_changed_callback) # Rotation if not params['quit']: # params['angle_acc'] = 1145 # params['angle_speed'] = 80 # if params['quit']: if arm.error_code == 0 and not params['quit']: # code = arm.set_servo_angle(angle=[0.1, -34.9, -0.1, 1.6, 0, -63.5, 0.1], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) code = arm.set_servo_angle(angle=frontForwardAngle, speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) if code != 0: params['quit'] = True pprint('set_servo_angle, code={}'.format(code)) # look forward but retracted code = arm.set_servo_angle(angle=frontBackAngle, peed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # print(arm.get_position(), arm.get_position(is_radian=True)) # angles = list(np.radians(frontForwardAngle)) # angles = list(np.radians(frontBackAngle)) # print("start (joints): ", angles) # translate, rotate = pyikfast.forward(angles) # print("start pos (translate, rotate): ", translate, rotate, "\n") # translate = [0.400, 0.0, 0.400] # results = pyikfast.inverse(translate, rotate) # for result in results: # theseangles = list(result) # print("final angles (IK joints): ", theseangles) # finalangles = list(np.degrees(results[3])) # arm.set_servo_angle(angle=finalangles, speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # translate, rotate = pyikfast.forward(angles) # print("final FK (translate, rotate): ", translate, rotate, "\n") # frontBackAngle = [0.0,-45.0,0.0,0.0,0.0,-45.0,0.0] # angles = np.radians(frontBackAngle) # print("start (joints): ", angles) # translate, rotate = pyikfast.forward(list(angles)) # print("FK (translate, rotate): ", translate, rotate, "\n") # joints = pyikfast.inverse(translate, rotate) # look down # code = arm.set_servo_angle(angle=[0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # relative moves # arm.set_position(pitch=-88.0, relative=False, wait=True) # arm.set_position(pitch=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(pitch=-10.0, relative=True, wait=True) # testing face tracking # arm.set_tool_position(pitch=10.0, wait=True) # arm.set_tool_position(pitch=-20.0, wait=True) # arm.set_tool_position(pitch=10.0, wait=True) # arm.set_servo_angle(servo_id=1, angle=3, relative=True, is_radian=False, wait=True) # arm.set_servo_angle(servo_id=1, angle=-6, relative=True, is_radian=False, wait=True) # arm.set_servo_angle(servo_id=1, angle=3, relative=True, is_radian=False, wait=True) # arm.set_position(pitch=-20.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(pitch=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=20.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=-10, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # back to forward # arm.set_servo_angle(angle=[0.0, -45.0, 0.0, 0.0, 0.0, -45.0, 0.0], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # release all event if hasattr(arm, 'release_count_changed_callback'): arm.release_count_changed_callback(count_changed_callback) arm.release_error_warn_changed_callback(state_changed_callback) arm.release_state_changed_callback(state_changed_callback) arm.release_connect_changed_callback(error_warn_change_callback)
6,835
Python
32.674877
162
0.685296
MatthewDZane/XArmFollowTarget/scripts/XArm/client/face-pose-client.py
# from this video: # https://www.youtube.com/watch?v=-toNMaS4SeQ import cv2 import mediapipe as mp import numpy as np import time import socket import sys bSocket = True if (len(sys.argv) > 1): print(sys.argv) if sys.argv[1] == "--no-socket": bSocket = False if bSocket: # open socket to omniverse machine mysocket = socket.socket() mysocket.connect(('192.168.4.206',12346)) # robert's local machine # mysocket.connect(('192.168.1.62',12346)) # mysocket.connect(('127.0.0.1',12346)) def close_socket(thissocket): try: thissocket.shutdown(socket.SHUT_RDWR) thissocket.close() thissocket = None except socket.error as e: pass print("socket is closed") mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5) mp_drawing = mp.solutions.drawing_utils drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) # cap = cv2.VideoCapture(0) cap = cv2.VideoCapture(1) try: while cap.isOpened(): success, image = cap.read() start = time.time() image = cv2.cvtColor(cv2.flip(image, -1), cv2.COLOR_BGR2RGB) # image = cv2.cvtColor(cv2.flip(image, -2), cv2.COLOR_BGR2RGB) # improve performance image.flags.writeable = False # get the results results = face_mesh.process(image) # improve performance image.flags.writeable = True # convert colorspace image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) img_h, img_w, img_c = image.shape face_3d = [] face_2d = [] nose_norm = [] if results.multi_face_landmarks: for face_landmarks in results.multi_face_landmarks: for idx, lm in enumerate(face_landmarks.landmark): if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199: if idx == 1: nose_2d = (lm.x * img_w, lm.y * img_h) nose_norm = (lm.x, lm.y) nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000) x, y = int(lm.x * img_w), int(lm.y * img_h) cv2.circle(image, (x, y), 10, (0, 0, 255), -1) face_2d.append([x, y]) face_3d.append([x, y, lm.z]) # convert to numpy array face_2d = np.array(face_2d, dtype=np.float64) # convert to np array face_3d = np.array(face_3d, dtype=np.float64) # the camera matrix focal length focal_length = 1 * img_w cam_matrix = np.array( [ [focal_length, 0, img_h/2], [0, focal_length, img_w/2], [0, 0, 1] ]) # the distortion paramaters dist_matrix = np.zeros((4, 1), dtype=np.float64) # solve PnP success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix) # get rotatinal matrix rmat, jac = cv2.Rodrigues(rot_vec) # get angles angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat) # get the y rotation degree x = angles[0] * 360 y = angles[1] * 360 z = angles[2] * 360 # see where the user's head is tilting if y < -10: text = "Looking Left" elif y > 10: text = "Looking Right" elif x < -10: text = "Looking Down" elif x > 10: text = "Looking Up" else: text = "Looking Forward" # display the nose direction nose_3d_projection, jacobian = cv2.projectPoints(nose_3d, rot_vec, trans_vec, cam_matrix, dist_matrix) p1 = (int(nose_2d[0]), int(nose_2d[1])) p2 = (int(nose_2d[0] + y * 10), int(nose_2d[1] - x * 10)) cv2.line(image, p1, p2, (255, 0, 0), 3) # add the text on the image cv2.putText(image, text, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "x: "+str(np.round(x, 2)), (500, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "y: "+str(np.round(y, 2)), (500, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "z: "+str(np.round(z, 2)), (500, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) xdiff = 0.5-nose_norm[0] ydiff = 0.5-nose_norm[1] cv2.putText(image, "xdiff: "+str(np.round(xdiff, 2)), (500, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "ydiff: "+str(np.round(ydiff, 2)), (500, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) end = time.time() totalTime = end-start fps = 1/totalTime # print("FPS: ", fps) cv2.putText(image, f'FPS: {int(fps)}', (20, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) mp_drawing.draw_landmarks( image=image, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, landmark_drawing_spec = drawing_spec, connection_drawing_spec=drawing_spec) if bSocket: try: print("sending:", [x, y, z, xdiff, ydiff]) sendData = str([x, y, z, xdiff, ydiff]) mysocket.send(sendData.encode()) except: pass cv2.imshow('Head Pose Estimation', image) if cv2.waitKey(5) & 0xFF == 27: break except KeyboardInterrupt: print("quitting") if bSocket: close_socket(mysocket) cap.release()
4,957
Python
24.958115
114
0.616905
MatthewDZane/XArmFollowTarget/scripts/XArm/XArm/XArm7/xarm7_rmpflow_common.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. joint_limit_buffers: [.01, .03, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2. # 4. # max_xd velocity_damping_region: 1.5 damping_gain: 1000.0 metric_weight: 100. # metric_scalar target_rmp: accel_p_gain: 50. #100. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false # Values >= .5 are true and < .5 are false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. # Real value should be this. #metric_scalar: 0. # Turns off collision avoidance. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_stem pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 # Each arm is approx. 1m from (arm) base to gripper center. # .1661 between links (approx .15) body_collision_controllers: - name: link7 radius: .05 - name: link5 radius: .05
3,017
YAML
30.768421
78
0.618827
MatthewDZane/XArmFollowTarget/scripts/XArm/XArm/XArm7/xarm7_descriptor.yaml
api_version: 1.0 cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 - joint7 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] cspace_to_urdf_rules: [] composite_task_spaces: [] #collision_spheres: # - panda_link0: # - "center": [0.0, 0.0, 0.05] # "radius": 0.08
348
YAML
16.449999
44
0.534483
MatthewDZane/XArmFollowTarget/scripts/XArm/XArm/XArm5/xarm5_descriptor.yaml
api_version: 1.0 cspace: - joint1 - joint2 - joint3 - joint4 - joint5 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, ] cspace_to_urdf_rules: [] composite_task_spaces: []
207
YAML
13.857142
33
0.57971
MatthewDZane/XArmFollowTarget/scripts/XArm/XArm/XArm5/xarm5_rmpflow_common.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. joint_limit_buffers: [.01, .03, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2. # 4. # max_xd velocity_damping_region: 1.5 damping_gain: 1000.0 metric_weight: 100. # metric_scalar target_rmp: accel_p_gain: 50. #100. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false # Values >= .5 are true and < .5 are false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. # Real value should be this. #metric_scalar: 0. # Turns off collision avoidance. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_stem pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 # Each arm is approx. 1m from (arm) base to gripper center. # .1661 between links (approx .15) body_collision_controllers: - name: link5 radius: .05
2,971
YAML
30.956989
78
0.62134
MatthewDZane/XArmFollowTarget/scripts/XArm/sandbox/look-forward.py
#!/usr/bin/env python3 # Software License Agreement (BSD License) # # Copyright (c) 2022, UFACTORY, Inc. # All rights reserved. # # Author: Vinman <[email protected]> <[email protected]> """ # Notice # 1. Changes to this file on Studio will not be preserved # 2. The next conversion will overwrite the file with the same name """ import sys import math import time import datetime import random import traceback import threading # IKFast for xarm 7 import numpy as np """ # xArm-Python-SDK: https://github.com/xArm-Developer/xArm-Python-SDK # git clone [email protected]:xArm-Developer/xArm-Python-SDK.git # cd xArm-Python-SDK # python setup.py install """ try: from xarm.tools import utils except: pass from xarm import version from xarm.wrapper import XArmAPI def pprint(*args, **kwargs): try: stack_tuple = traceback.extract_stack(limit=2)[0] print('[{}][{}] {}'.format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), stack_tuple[1], ' '.join(map(str, args)))) except: print(*args, **kwargs) frontForwardAngle = [0, 2.5, 0, 37.3, 0, -57.3, 0] frontBackAngle = [0.0,-45.0,0.0,0.0,0.0,-45.0,0.0] pprint('xArm-Python-SDK Version:{}'.format(version.__version__)) arm = XArmAPI('192.168.4.15') arm.clean_warn() arm.clean_error() arm.motion_enable(True) arm.set_mode(0) arm.set_state(0) time.sleep(1) variables = {} params = {'speed': 50, 'acc': 2000, 'angle_speed': 20, 'angle_acc': 500, 'events': {}, 'variables': variables, 'callback_in_thread': True, 'quit': False} params['angle_acc'] = 50 params['angle_speed'] = 1000 # Register error/warn changed callback def error_warn_change_callback(data): if data and data['error_code'] != 0: params['quit'] = True pprint('err={}, quit'.format(data['error_code'])) arm.release_error_warn_changed_callback(error_warn_change_callback) arm.register_error_warn_changed_callback(error_warn_change_callback) # Register state changed callback def state_changed_callback(data): if data and data['state'] == 4: if arm.version_number[0] >= 1 and arm.version_number[1] >= 1 and arm.version_number[2] > 0: params['quit'] = True pprint('state=4, quit') arm.release_state_changed_callback(state_changed_callback) arm.register_state_changed_callback(state_changed_callback) # Register counter value changed callback if hasattr(arm, 'register_count_changed_callback'): def count_changed_callback(data): if not params['quit']: pprint('counter val: {}'.format(data['count'])) arm.register_count_changed_callback(count_changed_callback) # Register connect changed callback def connect_changed_callback(data): if data and not data['connected']: params['quit'] = True pprint('disconnect, connected={}, reported={}, quit'.format(data['connected'], data['reported'])) arm.release_connect_changed_callback(error_warn_change_callback) arm.register_connect_changed_callback(connect_changed_callback) # Rotation if not params['quit']: # params['angle_acc'] = 1145 # params['angle_speed'] = 80 # if params['quit']: if arm.error_code == 0 and not params['quit']: # code = arm.set_servo_angle(angle=[0.1, -34.9, -0.1, 1.6, 0, -63.5, 0.1], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) code = arm.set_servo_angle(angle=frontForwardAngle, speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) if code != 0: params['quit'] = True pprint('set_servo_angle, code={}'.format(code)) # look forward but retracted code = arm.set_servo_angle(angle=frontBackAngle, peed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # print(arm.get_position(), arm.get_position(is_radian=True)) # angles = list(np.radians(frontForwardAngle)) # angles = list(np.radians(frontBackAngle)) # print("start (joints): ", angles) # translate, rotate = pyikfast.forward(angles) # print("start pos (translate, rotate): ", translate, rotate, "\n") # translate = [0.400, 0.0, 0.400] # results = pyikfast.inverse(translate, rotate) # for result in results: # theseangles = list(result) # print("final angles (IK joints): ", theseangles) # finalangles = list(np.degrees(results[3])) # arm.set_servo_angle(angle=finalangles, speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # translate, rotate = pyikfast.forward(angles) # print("final FK (translate, rotate): ", translate, rotate, "\n") # frontBackAngle = [0.0,-45.0,0.0,0.0,0.0,-45.0,0.0] # angles = np.radians(frontBackAngle) # print("start (joints): ", angles) # translate, rotate = pyikfast.forward(list(angles)) # print("FK (translate, rotate): ", translate, rotate, "\n") # joints = pyikfast.inverse(translate, rotate) # look down # code = arm.set_servo_angle(angle=[0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # relative moves # arm.set_position(pitch=-88.0, relative=False, wait=True) # arm.set_position(pitch=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(pitch=-10.0, relative=True, wait=True) # testing face tracking # arm.set_tool_position(pitch=10.0, wait=True) # arm.set_tool_position(pitch=-20.0, wait=True) # arm.set_tool_position(pitch=10.0, wait=True) # arm.set_servo_angle(servo_id=1, angle=3, relative=True, is_radian=False, wait=True) # arm.set_servo_angle(servo_id=1, angle=-6, relative=True, is_radian=False, wait=True) # arm.set_servo_angle(servo_id=1, angle=3, relative=True, is_radian=False, wait=True) # arm.set_position(pitch=-20.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(pitch=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=-10.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=20.0, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # arm.set_position(roll=-10, relative=True, wait=True) # print(arm.get_position(), arm.get_position(is_radian=True)) # back to forward # arm.set_servo_angle(angle=[0.0, -45.0, 0.0, 0.0, 0.0, -45.0, 0.0], speed=params['angle_speed'], mvacc=params['angle_acc'], wait=True, radius=-1.0) # release all event if hasattr(arm, 'release_count_changed_callback'): arm.release_count_changed_callback(count_changed_callback) arm.release_error_warn_changed_callback(state_changed_callback) arm.release_state_changed_callback(state_changed_callback) arm.release_connect_changed_callback(error_warn_change_callback)
6,819
Python
32.762376
162
0.684851
MatthewDZane/XArmFollowTarget/scripts/XArm/sandbox/face-pose-mediapipe.py
# from this video: # https://www.youtube.com/watch?v=-toNMaS4SeQ import cv2 import mediapipe as mp import numpy as np import time mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5) mp_drawing = mp.solutions.drawing_utils drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) cap = cv2.VideoCapture(0) while cap.isOpened(): success, image = cap.read() start = time.time() image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) # improve performance image.flags.writeable = False # get the results results = face_mesh.process(image) # improve performance image.flags.writeable = True # convert colorspace image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) img_h, img_w, img_c = image.shape face_3d = [] face_2d = [] nose_norm = [] if results.multi_face_landmarks: for face_landmarks in results.multi_face_landmarks: for idx, lm in enumerate(face_landmarks.landmark): if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199: if idx == 1: nose_2d = (lm.x * img_w, lm.y * img_h) nose_norm = (lm.x, lm.y) nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000) x, y = int(lm.x * img_w), int(lm.y * img_h) face_2d.append([x, y]) face_3d.append([x, y, lm.z]) # convert to numpy array face_2d = np.array(face_2d, dtype=np.float64) # convert to np array face_3d = np.array(face_3d, dtype=np.float64) # the camera matrix focal length focal_length = 1 * img_w cam_matrix = np.array( [ [focal_length, 0, img_h/2], [0, focal_length, img_w/2], [0, 0, 1] ]) # the distortion paramaters dist_matrix = np.zeros((4, 1), dtype=np.float64) # solve PnP success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix) # get rotatinal matrix rmat, jac = cv2.Rodrigues(rot_vec) # get angles angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat) # get the y rotation degree x = angles[0] * 360 y = angles[1] * 360 z = angles[2] * 360 # see where the user's head is tilting if y < -10: text = "Looking Left" elif y > 10: text = "Looking Right" elif x < -10: text = "Looking Down" elif x > 10: text = "Looking Up" else: text = "Looking Forward" # display the nose direction nose_3d_projection, jacobian = cv2.projectPoints(nose_3d, rot_vec, trans_vec, cam_matrix, dist_matrix) p1 = (int(nose_2d[0]), int(nose_2d[1])) p2 = (int(nose_2d[0] + y * 10), int(nose_2d[1] - x * 10)) cv2.line(image, p1, p2, (255, 0, 0), 3) # add the text on the image cv2.putText(image, text, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "x: "+str(np.round(x, 2)), (500, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "y: "+str(np.round(y, 2)), (500, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "z: "+str(np.round(z, 2)), (500, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) xdiff = nose_norm[0]-0.5 ydiff = 0.5-nose_norm[1] cv2.putText(image, "xdiff: "+str(np.round(xdiff, 2)), (500, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) cv2.putText(image, "ydiff: "+str(np.round(ydiff, 2)), (500, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) end = time.time() totalTime = end-start fps = 1/totalTime print("FPS: ", fps) cv2.putText(image, f'FPS: {int(fps)}', (20, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2) mp_drawing.draw_landmarks( image=image, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_CONTOURS, landmark_drawing_spec = drawing_spec, connection_drawing_spec=drawing_spec) # try: # print("sending:", [x, y, z, xdiff, ydiff]) # sendData = str([x, y, z, nose_norm[0], nose_norm[1]]) # mysocket.send(sendData.encode()) # except: # pass cv2.imshow('Head Pose Estimation', image) if cv2.waitKey(5) & 0xFF == 27: break cap.release()
4,046
Python
25.801324
113
0.623826
MatthewDZane/XArmFollowTarget/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "XArm Follow Target" description = "" authors = ["NVIDIA"] repository = "" keywords = [] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} [[python.module]] name = "scripts"
419
TOML
15.799999
34
0.658711
MatthewDZane/XArmFollowTarget/docs/CHANGELOG.md
# Changelog ## [0.1.0] - 2023-04-27 ### Added - Initial version of XArm Follow Target Extension
99
Markdown
11.499999
49
0.666667
MatthewDZane/XArmFollowTarget/docs/README.md
# Usage To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
129
Markdown
24.999995
118
0.736434
MatthewDZane/XArmFollowTarget/data/XArm/xarm_rmpflow_common.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. joint_limit_buffers: [.01, .03, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 4. # max_xd velocity_damping_region: 1.5 damping_gain: 1000.0 metric_weight: 100. # metric_scalar target_rmp: accel_p_gain: 100. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false # Values >= .5 are true and < .5 are false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. # Real value should be this. #metric_scalar: 0. # Turns off collision avoidance. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_stem pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 - name: base_tree pt1: [0,0,.333] pt2: [0,0,.333] radius: .15 # Each arm is approx. 1m from (arm) base to gripper center. # .1661 between links (approx .15) body_collision_controllers: - name: link7 radius: .05 - name: link5 radius: .05
3,091
YAML
30.232323
78
0.614688
MatthewDZane/XArmFollowTarget/data/XArm/xarm_descriptor.yaml
api_version: 1.0 cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 - joint7 root_link: world default_q: [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 ] cspace_to_urdf_rules: [] composite_task_spaces: [] #collision_spheres: # - panda_link0: # - "center": [0.0, 0.0, 0.05] # "radius": 0.08
348
YAML
16.449999
44
0.534483
natestrong/omni-ext-hello-world/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "nstrong.hello.world" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,043
Markdown
37.566037
258
0.75722
natestrong/omni-ext-hello-world/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
natestrong/omni-ext-hello-world/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
natestrong/omni-ext-hello-world/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/nstrong/hello/world/extension.py
import omni.ext import omni.ui as ui # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[nstrong.hello.world] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class NstrongHelloWorldExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[nstrong.hello.world] nstrong hello world startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Add", clicked_fn=on_click) ui.Button("Reset", clicked_fn=on_reset) def on_shutdown(self): print("[nstrong.hello.world] nstrong hello world shutdown")
1,583
Python
34.999999
119
0.607707
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/nstrong/hello/world/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/nstrong/hello/world/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/nstrong/hello/world/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import nstrong.hello.world # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = nstrong.hello.world.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,674
Python
34.638297
142
0.682198
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["NVIDIA"] # The title and description fields are primarily for displaying extension info in UI title = "nstrong hello world" description="A simple python extension example to use as a starting point for your extensions." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import nstrong.hello.world". [[python.module]] name = "nstrong.hello.world" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,583
TOML
31.999999
118
0.74542
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/docs/README.md
# Python Extension Example [nstrong.hello.world] This is an example of pure python Kit extension. It is intended to be copied and serve as a template to create new extensions.
178
Markdown
34.799993
126
0.786517
natestrong/omni-ext-hello-world/exts/nstrong.hello.world/docs/index.rst
nstrong.hello.world ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"nstrong.hello.world" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
339
reStructuredText
15.190475
43
0.619469
Vadim-Karpenko/omniverse-camera-view-optimizer/CHANGELOG.md
# Change Log All notable changes to this project will be documented in this file. ## [1.0.3] - 2022-10-05 Fixed size slider ## [1.0.2] - 2022-10-04 Improve README.md for Community Tab ## [1.0.1] - 2022-10-03 Convert icon and preview_image to png format ## [1.0.0] - 2022-10-01 Initial release.
305
Markdown
15.999999
68
0.672131
Vadim-Karpenko/omniverse-camera-view-optimizer/README.md
# Camera View Optimizer ![welcome](readme_media/welcome.jpg) ### About Omniverse extensions that allow you to quickly hide/remove objects that are not visible to the camera, to improve performance and decrease VRAM usage. ## Quick links * [Installation](#installation) * [How to use](#how-to-use) * [Linking with an Omniverse app](#linking-with-an-omniverse-app) * [Contributing](#contributing) * [Changelog](CHANGELOG.md) ## Installation To add a this extension to your Omniverse app: ### From Community tab 1. Go to **Extension Manager** (Window - Extensions) — Community tab 2. Search for **Camera View Optimizer** extension and enable it ### Manual 1. Go to **Extension Manager** (Window - Extensions) — **Gear Icon** — **Extension Search Path** 2. Add this as a search path: ``` git://github.com/Vadim-Karpenko/omniverse-camera-view-optimizer?branch=main&dir=exts ``` 3. Search for **Camera View Optimizer** extension and enable it A new window will appear next to the Properties tab: ![start window](readme_media/start_window.jpg) ## How to use - Open a scene you want to optimize - Open an extension window - The current view in the viewport is used to scan for visible objects, so make sure your camera is positioned correctly. - Make sure settings are set correctly. Hover over each option to read about what it does. - Click **Optimize** button. **Hide if contains in title** and **Show if contains in title** fields support a regular expressions (regex) that allows you to filter any object based on its title, with any pattern, simple or complex. Regex examples: - `(^Abs.*)` - all names starting with `Abs` - `(.*nt$)` - all names ending with `nt` - `(.*ph.*)` - contains `ph` - `(.*\d.*)` - contains any number - `(^((?!tree).)*$)` - any title that does not contain `tree`. You can also combine multiple conditions: - `(.*El.*|t1$)` - Has `El` **OR** ends with `t1` - `(.*El.*)(t1$)` - Has `El` **AND** ends with `t1` ## Linking with an Omniverse app For a better developer experience, it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. A convenience script to use is included. Run: ```bash > link_app.bat ``` There is also an analogous `link_app.sh` for Linux. If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ```bash > link_app.bat --app code ``` You can also just pass a path to create link to: ```bash > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2022.1.3" ``` ## Contributing Feel free to create a new issue if you run into any problems. Pull requests are welcomed.
2,740
Markdown
33.696202
202
0.712774
Vadim-Karpenko/omniverse-camera-view-optimizer/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389
Vadim-Karpenko/omniverse-camera-view-optimizer/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
Vadim-Karpenko/omniverse-camera-view-optimizer/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/karpenko/camera_view_optimizer/ext/style.py
import omni.ui as ui from omni.ui import color as cl # The main style dict cvo_window_style = { "Label::main_label": { "alignment": ui.Alignment.LEFT_CENTER, "color": cl("#a1a1a1"), "font_size": 24, }, }
236
Python
20.545453
46
0.584746
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/karpenko/camera_view_optimizer/ext/extension.py
import asyncio import math import re import omni.ext import omni.kit.commands import omni.kit.viewport_legacy import omni.physx.scripts.utils as core_utils import omni.ui as ui import omni.usd from omni.kit.viewport.utility import (get_active_viewport_camera_string, get_active_viewport_window, get_ui_position_for_prim) from pxr import Gf, Sdf, Usd, UsdGeom from .style import cvo_window_style class CameraViewOptimizer(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[karpenko.camera_view_optimizer.ext] CameraViewOptimizer startup") self._usd_context = omni.usd.get_context() self.stage = self._usd_context.get_stage() self.render_main_window() # show the window in the usual way if the stage is loaded if self.stage: self._window.deferred_dock_in("Property") else: # otherwise, show the window after the stage is loaded self._setup_window_task = asyncio.ensure_future(self._dock_window()) def on_shutdown(self): """ It deletes all the variables that were created in the extension """ print("[karpenko.camera_view_optimizer.ext] CameraViewOptimizer shutdown") self._fov_slider = None self._max_size_slider = None self._max_distance_field = None self._hide_objects_field = None self._show_objects_field = None self._base_path_field = None self._delete_objects = None self._button_optimize = None self._button_show_all = None self._button_delete_hidden = None def check_stage(self): """ It gets the current stage from the USD context """ if not hasattr(self, "stage") or not self.stage: self._usd_context = omni.usd.get_context() self.stage = self._usd_context.get_stage() def optimize(self): """ It's hiding all objects that are not visible from the camera """ self.check_stage() if not self.stage: return window = get_active_viewport_window() # Getting the camera path and prim from the stage. camera_path = get_active_viewport_camera_string() if not camera_path: return camera_prim = self.stage.GetPrimAtPath(camera_path) # get camera transform camera_translate = camera_prim.GetAttribute("xformOp:translate").Get() # It's a helper class that allows to get camera forward vector. camera_th = core_utils.CameraTransformHelper(camera_prim) # Get the vecotr of the camera forward direction. cameraForward = camera_th.get_forward() # It's creating a new translate location approximately 10 units forward from the camera. # It will be used to determinate if object is in front of the camera or not by comparing distances # between the camera and the object and the camera and the new translate location. camera_new_location = Gf.Vec3d( camera_translate[0]+(cameraForward[0] * 10), camera_translate[1]+(cameraForward[1] * 10), camera_translate[2]+(cameraForward[2] * 10) ) # It's getting all visible objects from the stage. all_objects = self.get_all_objects() # return if there are no objects if not all_objects: return # It's creating a list of objects that not visible from the camera. not_visible = [] # Get the camera focal length focal_length_param = Sdf.Path(f'{camera_path}.focalLength') focal_length = self.stage.GetPrimAtPath(Sdf.Path(camera_path)).GetAttribute('focalLength').Get() max_size = self._max_size_slider.model.as_float with omni.kit.undo.group(): if all_objects: # Changing the value of the focal length parameter of the camera so we can scan more objects. omni.kit.commands.execute( 'ChangePropertyCommand', prop_path=focal_length_param, value=self._fov_slider.model.as_float, prev=focal_length, timecode=Usd.TimeCode.Default(), ) for prim in all_objects: # Getting the position of the prim in the window. # Because it is a screen-space calculation, for some reason it returns is_visible=True when objects # is right behind the camera. ui_position, is_visible = get_ui_position_for_prim(window, prim.GetPath(), alignment=0) # additional check for visibility with different origin points of the object if not is_visible: ui_position, is_visible = get_ui_position_for_prim(window, prim.GetPath(), alignment=1) if not is_visible: ui_position, is_visible = get_ui_position_for_prim(window, prim.GetPath(), alignment=2) if not is_visible: ui_position, is_visible = get_ui_position_for_prim(window, prim.GetPath(), alignment=3) if not is_visible: ui_position, is_visible = get_ui_position_for_prim(window, prim.GetPath(), alignment=4) # Getting the position of the prim in the world. prim_translate = prim.GetAttribute("xformOp:translate").Get() # Calculating the distance between the camera and the prim. distance_to_camera = self.get_distance_between_translations(camera_translate, prim_translate) # Calculating the distance between the camera and the new translate location. distance_to_cameraforward = self.get_distance_between_translations(camera_new_location, prim_translate) # If the distance between the camera and the prim is less than the distance between # the camera and the new translate location, which is 10 units forward from first locatio, # it means that the prim is behind the camera. if is_visible: if distance_to_cameraforward > distance_to_camera + 6: is_visible = False is_distant = False # Hide if the object is too distant if distance_to_camera > self._max_distance_field.model.as_float: is_visible = False is_distant = True # Checking if the ignore_size_distant_objects is true and if the object is distant. if self._ignore_size_distant_objects.model.as_bool and is_distant: pass else: prim_size = self.get_prim_size(prim) # If one of the dimensions of the prim is bigger than the limit, we will not consider to hide it. if not is_visible and max_size != 0: if max_size < prim_size[0] or max_size < prim_size[1] or max_size < prim_size[2]: is_visible = True # Checking if the prim name matches the show or hide pattern. prim_name = prim.GetName() show_pattern = self._show_objects_field.model.as_string hide_pattern = self._hide_objects_field.model.as_string if show_pattern and (show_pattern.lower() in prim_name.lower() or re.match(show_pattern, prim_name)): is_visible = True elif hide_pattern and (hide_pattern.lower() in prim_name.lower() or re.match(hide_pattern, prim_name)): is_visible = False # Final checking if the prim is visible or not. if not is_visible: not_visible.append({ "prim": prim, "prim_path": prim.GetPath(), "type": prim.GetTypeName(), }) # Creating a list of object types that are not allowed to be hidden. not_allowed_types = [] # Check if we should hide lights as well if not self._hide_lights.model.as_bool: not_allowed_types.extend([ "DistantLight", "SphereLight", "DiskLight", "RectLight", "CylinderLight", "ConeLight"] ) if not_visible: omni.kit.commands.execute( 'HideSelectedPrimsCommand', selected_paths=[i["prim_path"] for i in not_visible if i["type"] not in not_allowed_types], ) if focal_length: # Changing the focal length of the camera back to the value before the scan. omni.kit.commands.execute( 'ChangePropertyCommand', prop_path=focal_length_param, value=focal_length, prev=self._fov_slider.model.as_float, timecode=Usd.TimeCode.Default(), ) def get_distance_between_translations(self, pos1, pos2): """ It returns the distance between two translations :param pos1: The position of the first object :param pos2: The position of the object you want to measure the distance to :return: The distance between two points in 3D space. """ if pos1 and pos2: return math.sqrt( (pos1[0] - pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2 + (pos1[2] - pos2[2]) ** 2 ) return 0 def get_prim_size(self, prim): """ It returns the size of a prim in world space :param prim: The prim you want to get the size of :return: The size of the bounding box of the prim. """ bbox_cache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), includedPurposes=[UsdGeom.Tokens.default_]) bbox_cache.Clear() prim_bbox = bbox_cache.ComputeWorldBound(prim) prim_range = prim_bbox.ComputeAlignedRange() return prim_range.GetSize() def render_main_window(self): self._window = ui.Window("Camera View Omptimizer", width=300, height=300) with self._window.frame: with ui.VStack(style=cvo_window_style): ui.Label("Camera View Optimizer", height=0, name="main_label") ui.Spacer(height=10) ui.Separator(height=6) ui.Spacer(height=10) with ui.ScrollingFrame(height=ui.Percent(63)): with ui.VStack(): with ui.VStack(): with ui.HStack(height=0): tooltip = "When checking the visibility of the object, the camera FOV will be set " \ "to the value specified in the slider and then back once scan is complete" ui.Label("Scan FOV (mm):", elided_text=True, tooltip=tooltip) # Slider for the FOV value of the camera self._fov_slider = ui.IntSlider( min=1, max=300, step=1, tooltip=tooltip, ) self._fov_slider.model.set_value(4) ui.Spacer(height=10) with ui.HStack(height=0): tooltip = "Ignore object if one of the three dimensions is greater than values provided," \ "useful for walls, floors, etc." ui.Label("Max object size:", elided_text=True, tooltip=tooltip) # Slider for the max object size self._max_size_slider = ui.IntField( min=0, max=100000, step=1, tooltip=tooltip, ) self._max_size_slider.model.set_value(150) ui.Spacer(height=10) with ui.VStack(): tooltip = "Should the extension hide lights?" # Available types of objects to hide with ui.HStack(height=0): ui.Label("Process Lights:", elided_text=True, tooltip=tooltip, width=ui.Percent(50)) self._hide_lights = ui.CheckBox(tooltip=tooltip, width=ui.Percent(5)) ui.Line(name="default", width=ui.Percent(45)) ui.Spacer(height=10) # max distance int field with ui.VStack(): tooltip = "Max distance of the object from the camera. If the object is further than this" \ " value, it will be hidden even if it is visible to the camera." with ui.HStack(height=0): ui.Label("Max distance:", tooltip=tooltip) self._max_distance_field = ui.IntField(tooltip=tooltip) self._max_distance_field.model.set_value(10000) ui.Spacer(height=10) # ignore size settings for distant objects with ui.VStack(): tooltip = "No matter the size of the object, if it is too far away, it will be hidden" with ui.HStack(height=0): ui.Label( "Ignore size for distant objects:", elided_text=True, tooltip=tooltip, width=ui.Percent(50) ) self._ignore_size_distant_objects = ui.CheckBox(tooltip=tooltip, width=ui.Percent(5)) self._ignore_size_distant_objects.model.set_value(False) ui.Line(name="default", width=ui.Percent(45)) ui.Spacer(height=10) # String field to hide objects by title with ui.VStack(): tooltip = "Hide objects by title. Partial text match and regex is supported." with ui.HStack(height=0): ui.Label("Hide if contains in title:", elided_text=True, tooltip=tooltip) self._hide_objects_field = ui.StringField(tooltip=tooltip) ui.Spacer(height=10) # string field to show objects by title with ui.VStack(): tooltip = "Show objects by title. Partial text match and regex is supported." with ui.HStack(height=0): ui.Label("Show if contains in title:", elided_text=True, tooltip=tooltip) self._show_objects_field = ui.StringField(tooltip=tooltip) ui.Spacer(height=10) # base path where to search for objects with ui.VStack(): with ui.HStack(height=0): tooltip = "Base path where to search for objects. If empty or invalid, " \ "DefaultPrim will be used, so make sure this is value is correct." ui.Label("Base path:", elided_text=True, tooltip=tooltip) self._base_path_field = ui.StringField(tooltip=tooltip) if self.stage: self._base_path_field.model.set_value( self.stage.GetDefaultPrim().GetPath().pathString ) ui.Spacer() with ui.VStack(height=40): with ui.HStack(height=40): self._button_show_all = ui.Button( "Show all", height=40, clicked_fn=self.show_all, ) self._button_delete_hidden = ui.Button( "Delete hidden", height=40, clicked_fn=self.delete_hidden, ) with ui.VStack(height=40): # Button to execute the extension self._button_optimize = ui.Button( "Optimize", height=40, clicked_fn=self.optimize, ) async def _dock_window(self): """ It waits for the property window to appear, then docks the window to it """ property_win = None frames = 3 while frames > 0: if not property_win: property_win = ui.Workspace.get_window("Property") if property_win: break # early out frames = frames - 1 await omni.kit.app.get_app().next_update_async() # Dock to property window after 5 frames. It's enough for window to appear. for _ in range(5): await omni.kit.app.get_app().next_update_async() if property_win: self._window.deferred_dock_in("Property") self._setup_window_task = None for _ in range(10): await omni.kit.app.get_app().next_update_async() self.check_stage() if self.stage: self._base_path_field.model.set_value(self.stage.GetDefaultPrim().GetPath().pathString) def get_default_prim(self): """ If the base path field is empty, return the default prim, otherwise return the prim at the path in the base path field :return: The default prim. """ self.check_stage() if not self.stage: return if self._base_path_field.model.as_string == "": return self.stage.GetDefaultPrim() else: custom_default_prim = self.stage.GetPrimAtPath(self._base_path_field.model.as_string) if not custom_default_prim: return self.stage.GetDefaultPrim() else: return custom_default_prim def get_all_objects(self, only_visible=False): """ It returns a list of all the objects in the scene, and if the only_visible parameter is set to True, it will only return objects that are visible :param only_visible: If True, only visible objects will be returned, defaults to True (optional) :return: A list of objects """ if not self.stage: return [] valid_objects = [] default_prim = self.get_default_prim() for obj in self.get_all_children_of_prim(default_prim): if obj: if only_visible: visibility_attr = obj.GetAttribute("visibility") if visibility_attr: visibility = visibility_attr.Get() if visibility != "invisible": valid_objects.append(obj) else: valid_objects.append(obj) return valid_objects def get_all_children_of_prim(self, prim): """ It takes a prim as an argument and returns a list of all the prims that are children of that prim :param prim: The prim you want to get the children of :return: A list of all the children of the prim. """ children = [] for child in prim.GetAllChildren(): if child.GetTypeName() != "Scope": children.append(child) children.extend(self.get_all_children_of_prim(child)) return children def get_all_hidden_objects(self): """ It returns a list of all the hidden objects in the scene :return: A list of objects """ if not self.stage: return [] valid_objects = [] default_prim = self.get_default_prim() for obj in self.get_all_children_of_prim(default_prim): if obj: visibility_attr = obj.GetAttribute("visibility") if visibility_attr: visibility = visibility_attr.Get() if visibility == "invisible": valid_objects.append(obj) return valid_objects def show_all(self): """ It gets all the hidden objects in the scene, and if there are any, it shows them :return: A list of objects that were hidden. """ objects_to_show = self.get_all_hidden_objects() if objects_to_show: omni.kit.commands.execute( 'ShowSelectedPrimsCommand', selected_paths=[i.GetPath() for i in objects_to_show], ) return objects_to_show def delete_hidden(self): """ It gets all the hidden objects in the scene, and if there are any, it deletes them :return: A list of objects that were deleted. """ objects_to_delete = self.get_all_hidden_objects() if objects_to_delete: omni.kit.commands.execute( 'DeletePrims', paths=[i.GetPath() for i in objects_to_delete], ) return objects_to_delete
22,251
Python
44.691992
120
0.522673
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/karpenko/camera_view_optimizer/ext/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/karpenko/camera_view_optimizer/ext/commands/__init__.py
from .usd_commands import *
27
Python
26.999973
27
0.777778
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/karpenko/camera_view_optimizer/ext/commands/usd_commands.py
from typing import List import omni.kit.commands import omni.timeline import omni.usd from pxr import UsdGeom class HideSelectedPrimsCommand(omni.kit.commands.Command): """ Hides the selected primitives Args: selected_paths (List[str]): Prim paths. """ def __init__(self, selected_paths: List[str]): """ This function is called when the user clicks the button in the UI. It takes the list of selected paths and stores it in the class :param selected_paths: List[str] :type selected_paths: List[str] """ self._stage = omni.usd.get_context().get_stage() self._selected_paths = selected_paths.copy() def _hide(self): """ This function takes the selected prims and makes them invisible """ for selected_path in self._selected_paths: selected_prim = self._stage.GetPrimAtPath(selected_path) imageable = UsdGeom.Imageable(selected_prim) imageable.MakeInvisible() def _show(self): """ It makes visible all the selected prims in the stage """ for selected_path in self._selected_paths: selected_prim = self._stage.GetPrimAtPath(selected_path) imageable = UsdGeom.Imageable(selected_prim) imageable.MakeVisible() def do(self): self._hide() def undo(self): self._show() class ShowSelectedPrimsCommand(omni.kit.commands.Command): """ Shows the selected primitives Args: selected_paths (List[str]): Prim paths. """ def __init__(self, selected_paths: List[str]): """ This function is called when the user clicks the button in the UI. It takes the list of selected paths and stores it in the class :param selected_paths: List[str] :type selected_paths: List[str] """ self._stage = omni.usd.get_context().get_stage() self._selected_paths = selected_paths.copy() def _hide(self): """ This function takes the selected prims and makes them invisible """ for selected_path in self._selected_paths: selected_prim = self._stage.GetPrimAtPath(selected_path) imageable = UsdGeom.Imageable(selected_prim) imageable.MakeInvisible() def _show(self): """ It makes visible all the selected prims in the stage """ for selected_path in self._selected_paths: selected_prim = self._stage.GetPrimAtPath(selected_path) imageable = UsdGeom.Imageable(selected_prim) imageable.MakeVisible() def do(self): self._show() def undo(self): self._hide()
2,766
Python
28.126315
105
0.605929
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.3" # The title and description fields are primarily for displaying extension info in UI title = "Camera View Optimizer" description="Omniverse extensions that allow you to quickly hide/delete objects that are not visible to the camera to save performance and VRAM." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://github.com/Vadim-Karpenko/omniverse-camera-view-optimizer" # One of categories for UI. category = "Lighting & Rendering" # Keywords for the extension keywords = ["camera", "view", "optimizer", "optimization", "performance", "vram", "memory", "hide", "delete", "visibility", "culling"] authors = ["Vadim Karpenko"] icon = "data/icon.png" preview_image = "data/preview_image.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import karpenko.camera_view_optimizer.ext". [[python.module]] name = "karpenko.camera_view_optimizer.ext" [[python.module]] name = "karpenko.camera_view_optimizer.ext.commands"
1,223
TOML
32.08108
145
0.744072
Vadim-Karpenko/omniverse-camera-view-optimizer/exts/karpenko.camera_view_optimizer.ext/docs/README.md
## Camera View Optimizer Omniverse extensions that allow you to quickly hide/remove objects that are not visible to the camera, to improve performance and decrease VRAM usage.
175
Markdown
86.999957
150
0.822857
mrsbCN/orbit.dexterous_hand/pyproject.toml
[build-system] requires = ["setuptools", "toml"] build-backend = "setuptools.build_meta" [tool.isort] atomic = true profile = "black" line_length = 120 py_version = 310 skip_glob = ["docs/*", "logs/*", "_orbit/*", "_isaac_sim/*"] group_by_package = true sections = [ "FUTURE", "STDLIB", "THIRDPARTY", "ORBITPARTY", "FIRSTPARTY", "LOCALFOLDER", ] extra_standard_library = [ "numpy", "h5py", "open3d", "torch", "tensordict", "bpy", "matplotlib", "gymnasium", "gym", "scipy", "hid", "yaml", "prettytable", "toml", "trimesh", "tqdm", ] known_thirdparty = [ "omni.isaac.core", "omni.replicator.isaac", "omni.replicator.core", "pxr", "omni.kit.*", "warp", "carb", ] known_orbitparty = [ "omni.isaac.orbit", "omni.isaac.orbit_tasks", "omni.isaac.orbit_assets" ] # Modify the following to include the package names of your first-party code known_firstparty = "orbit.ext_template" known_local_folder = "config" [tool.pyright] exclude = [ "**/__pycache__", "**/_isaac_sim", "**/_orbit", "**/docs", "**/logs", ".git", ".vscode", ] typeCheckingMode = "basic" pythonVersion = "3.10" pythonPlatform = "Linux" enableTypeIgnoreComments = true # This is required as the CI pre-commit does not download the module (i.e. numpy, torch, prettytable) # Therefore, we have to ignore missing imports reportMissingImports = "none" # This is required to ignore for type checks of modules with stubs missing. reportMissingModuleSource = "none" # -> most common: prettytable in mdp managers reportGeneralTypeIssues = "none" # -> raises 218 errors (usage of literal MISSING in dataclasses) reportOptionalMemberAccess = "warning" # -> raises 8 errors reportPrivateUsage = "warning"
1,823
TOML
20.458823
103
0.633022
mrsbCN/orbit.dexterous_hand/setup.py
"""Installation script for the 'orbit.ext_template' python package.""" import os import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # NOTE: Add dependencies "psutil", ] # Installation operation setup( # TODO: Change your package naming # ----------------------------------------------------------------- name="orbit.ext_template", packages=["orbit.ext_template"], # ----------------------------------------------------------------- author=EXTENSION_TOML_DATA["package"]["author"], maintainer=EXTENSION_TOML_DATA["package"]["maintainer"], maintainer_email=EXTENSION_TOML_DATA["package"]["maintainer_email"], url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], install_requires=INSTALL_REQUIRES, license="BSD-3-Clause", include_package_data=True, python_requires=">=3.10", classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.10", "Isaac Sim :: 2023.1.0-hotfix.1", "Isaac Sim :: 2023.1.1", ], zip_safe=False, )
1,524
Python
32.888888
89
0.622703
mrsbCN/orbit.dexterous_hand/README.md
# Extension Template for Orbit [![IsaacSim](https://img.shields.io/badge/IsaacSim-2023.1.1-silver.svg)](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) [![Orbit](https://img.shields.io/badge/Orbit-0.2.0-silver)](https://isaac-orbit.github.io/orbit/) [![Python](https://img.shields.io/badge/python-3.10-blue.svg)](https://docs.python.org/3/whatsnew/3.10.html) [![Linux platform](https://img.shields.io/badge/platform-linux--64-orange.svg)](https://releases.ubuntu.com/20.04/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![License](https://img.shields.io/badge/license-MIT-yellow.svg)](https://opensource.org/license/mit) ## Overview This repository serves as a template for building projects or extensions based on Orbit. It allows you to develop in an isolated environment, outside of the core Orbit repository. - **Project Template** Ensures access to `Isaac Sim` and `Orbit` functionalities, which can be used as a project template. - **Omniverse Extension** Can be used as an Omniverse extension, ideal for projects that leverage the Omniverse platform's graphical user interface. **Key Features:** - `Isolation` Work outside the core Orbit repository, ensuring that your development efforts remain self-contained. - `Flexibility` This template is set up to allow your code to be run as an extension in Omniverse. **Keywords:** extension, template, orbit ### License The source code is released under a [BSD 3-Clause license](https://opensource.org/licenses/BSD-3-Clause). **Author: The ORBIT Project Developers<br /> Affiliation: [The AI Institute](https://theaiinstitute.com/)<br /> Maintainer: Nico Burger, [email protected]** ## Setup Depending on the use case defined [above](#overview), follow the instructions to set up your extension template. Start with the [Basic Setup](#basic-setup), which is required for either use case. ### Basic Setup #### Dependencies This template depends on Isaac Sim and Orbit. For detailed instructions on how to install these dependencies, please refer to the [installation guide](https://isaac-orbit.github.io/orbit/source/setup/installation.html). - [Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/index.html) - [Orbit](https://isaac-orbit.github.io/orbit/) #### Configuration Decide on a name for your project or extension. This guide will refer to this name as `<your_extension_name>`. - Create a new repository based off this template [here](https://github.com/new?owner=isaac-orbit&template_name=orbit.ext_template&template_owner=isaac-orbit). Name your forked repository using the following convention: `"orbit.<your_extension_name>"`. - Clone your forked repository to a location **outside** the orbit repository. ```bash git clone <your_repository_url> ``` - To tailor this template to your needs, customize the settings in `config/extension.toml` and `setup.py` by completing the sections marked with TODO. - Rename your source folder. ```bash cd orbit.<your_extension_name> mv orbit/ext_template orbit/<your_extension_name> ``` - Define the following environment variable to specify the path to your Orbit installation: ```bash # Set the ORBIT_PATH environment variable to point to your Orbit installation directory export ORBIT_PATH=<your_orbit_path> ``` #### Set Python Interpreter Although using a virtual environment is optional, we recommend using `conda` (detailed instructions [here](https://isaac-orbit.github.io/orbit/source/setup/installation.html#setting-up-the-environment)). If you decide on using Isaac Sim's bundled Python, you can skip these steps. - If you haven't already: create and activate your `conda` environment, followed by installing extensions inside Orbit: ```bash # Create conda environment ${ORBIT_PATH}/orbit.sh --conda # Activate conda environment conda activate orbit # Install all Orbit extensions in orbit/source/extensions ${ORBIT_PATH}/orbit.sh --install ``` - Set your `conda` environment as the default interpreter in VSCode by opening the command palette (`Ctrl+Shift+P`), choosing `Python: Select Interpreter` and selecting your `conda` environment. Once you are in the virtual environment, you do not need to use `${ORBIT_PATH}/orbit.sh -p` to run python scripts. You can use the default python executable in your environment by running `python` or `python3`. However, for the rest of the documentation, we will assume that you are using `${ORBIT_PATH}/orbit.sh -p` to run python scripts. #### Set up IDE To setup the IDE, please follow these instructions: 1. Open the `orbit.<your_extension_template>` directory on Visual Studio Code IDE 2. Run VSCode Tasks, by pressing `Ctrl+Shift+P`, selecting `Tasks: Run Task` and running the `setup_python_env` in the drop down menu. When running this task, you will be prompted to add the absolute path to your Orbit installation. If everything executes correctly, it should create a file .python.env in the .vscode directory. The file contains the python paths to all the extensions provided by Isaac Sim and Omniverse. This helps in indexing all the python modules for intelligent suggestions while writing code. ### Setup as Project Template From within this repository, install your extension as a Python package to the Isaac Sim Python executable. ```bash ${ORBIT_PATH}/orbit.sh -p -m pip install --upgrade pip ${ORBIT_PATH}/orbit.sh -p -m pip install -e . ``` ### Setup as Omniverse Extension To enable your extension, follow these steps: 1. **Add the search path of your repository** to the extension manager: - Navigate to the extension manager using `Window` -> `Extensions`. - Click on the **Hamburger Icon** (☰), then go to `Settings`. - In the `Extension Search Paths`, enter the path that goes up to your repository's location without actually including the repository's own directory. For example, if your repository is located at `/home/code/orbit.ext_template`, you should add `/home/code` as the search path. - If not already present, in the `Extension Search Paths`, enter the path that leads to your local Orbit directory. For example: `/home/orbit/source/extensions` - Click on the **Hamburger Icon** (☰), then click `Refresh`. 2. **Search and enable your extension**: - Find your extension under the `Third Party` category. - Toggle it to enable your extension. ### Installing Dependencies To ensure that your program works as expected, please add your extensions's dependencies to the appropriate configuration file. Below are links for how to specify extension dependencies on ``IsaacSim`` and ``Orbit`` extensions, ``pip`` packages, ``apt`` packages, and [rosdep packages](https://docs.ros.org/en/humble/Tutorials/Intermediate/Rosdep.html). - [Extensions](https://docs.omniverse.nvidia.com/kit/docs/kit-manual/latest/guide/extensions_advanced.html#dependencies-section) - [pip packages](https://packaging.python.org/en/latest/discussions/install-requires-vs-requirements/#install-requires) - [apt packages](https://isaac-orbit.github.io/orbit/source/setup/developer.html#extension-dependency-management) - [rosdep packages](https://isaac-orbit.github.io/orbit/source/setup/developer.html#extension-dependency-management) ## Usage ### Project Template We provide an example for training and playing a policy for ANYmal on flat terrain. Install [RSL_RL](https://github.com/leggedrobotics/rsl_rl) outside of the orbit repository, e.g. `home/code/rsl_rl`. ```bash git clone https://github.com/leggedrobotics/rsl_rl.git cd rsl_rl ${ORBIT_PATH}/orbit.sh -p -m pip install -e . ``` Train a policy. ```bash cd <path_to_your_extension> ${ORBIT_PATH}/orbit.sh -p scripts/rsl_rl/train.py --task Template-Velocity-Flat-Anymal-D-v0 --num_envs 4096 --headless ``` Play the trained policy. ```bash ${ORBIT_PATH}/orbit.sh -p scripts/rsl_rl/play.py --task Template-Velocity-Flat-Anymal-D-Play-v0 --num_envs 16 ``` ### Omniverse Extension We provide an example UI extension that will load upon enabling your extension defined in `orbit/ext_template/ui_extension_example.py`. For more information on UI extensions, enable and check out the source code of the `omni.isaac.ui_template` extension and refer to the introduction on [Isaac Sim Workflows 1.2.3. GUI](https://docs.omniverse.nvidia.com/isaacsim/latest/introductory_tutorials/tutorial_intro_workflows.html#gui). ## Pre-Commit Pre-committing involves using a framework to automate the process of enforcing code quality standards before code is actually committed to a version control system, like Git. This process involves setting up hooks that run automated checks, such as code formatting, linting (checking for programming errors, bugs, stylistic errors, and suspicious constructs), and running tests. If these checks pass, the commit is allowed; if not, the commit is blocked until the issues are resolved. This ensures that all code committed to the repository adheres to the defined quality standards, leading to a cleaner, more maintainable codebase. To do so, we use the [pre-commit](https://pre-commit.com/) module. Install the module using: ```bash pip install pre-commit ``` Run the pre-commit with: ```bash pre-commit run --all-files ``` ## Finalize You are all set and no longer need the template instructions - The `orbit/ext_template` and `scripts/rsl_rl` directories act as a reference template for your convenience. Delete them if no longer required. - When ready, use this `README.md` as a template and customize where appropriate. ## Docker For docker usage, we require the following dependencies to be set up: - [Docker and Docker Compose](https://isaac-orbit.github.io/orbit/source/deployment/docker.html#docker-and-docker-compose) - [Isaac Sim Container](https://isaac-orbit.github.io/orbit/source/deployment/docker.html#obtaining-the-isaac-sim-container) Clone this template into the `${ORBIT_PATH}/source/extensions` directory, and set it up as described above in [Configuration](#configuration) (no other steps in Setup section required). Once done, start and enter your container with: ```bash # start container ${ORBIT_PATH}/docker/container.sh start # enter container ${ORBIT_PATH}/docker/container.sh enter ``` More information on working with Docker in combination with Orbit can be found [here](https://isaac-orbit.github.io/orbit/source/deployment/index.html). ## Troubleshooting ### Docker Container When running within a docker container, the following error has been encountered: `ModuleNotFoundError: No module named 'orbit'`. To mitigate, please comment out the docker specific environment definitions in `.vscode/launch.json` and run the following: ```bash echo -e "\nexport PYTHONPATH=\$PYTHONPATH:/workspace/orbit.<your_extension_name>" >> ~/.bashrc source ~/.bashrc ``` ## Bugs & Feature Requests Please report bugs and request features using the [Issue Tracker](https://github.com/isaac-orbit/orbit.ext_template/issues).
11,013
Markdown
47.519824
724
0.763734
mrsbCN/orbit.dexterous_hand/scripts/rsl_rl/play.py
"""Script to play a checkpoint if an RL agent from RSL-RL.""" """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # local imports import cli_args # isort: skip # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # append RSL-RL cli arguments cli_args.add_rsl_rl_args(parser) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch from rsl_rl.runners import OnPolicyRunner import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import get_checkpoint_path, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, export_policy_as_onnx, ) # Import extensions to set up environment tasks import orbit.ext_template.tasks # noqa: F401 TODO: import orbit.<your_extension_name> def main(): """Play with RSL-RL agent.""" # parse configuration env_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs) agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg) # wrap around environment for rsl-rl env = RslRlVecEnvWrapper(env) # specify directory for logging experiments log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # load previously trained model ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device) ppo_runner.load(resume_path) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # obtain the trained policy for inference policy = ppo_runner.get_inference_policy(device=env.unwrapped.device) # export policy to onnx export_model_dir = os.path.join(os.path.dirname(resume_path), "exported") export_policy_as_onnx(ppo_runner.alg.actor_critic, export_model_dir, filename="policy.onnx") # reset environment obs, _ = env.get_observations() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # agent stepping actions = policy(obs) # env stepping obs, _, _, _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main execution main() # close sim app simulation_app.close()
3,360
Python
32.949495
101
0.704762
mrsbCN/orbit.dexterous_hand/scripts/rsl_rl/cli_args.py
from __future__ import annotations import argparse from typing import TYPE_CHECKING if TYPE_CHECKING: from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlOnPolicyRunnerCfg def add_rsl_rl_args(parser: argparse.ArgumentParser): """Add RSL-RL arguments to the parser. Args: parser: The parser to add the arguments to. """ # create a new argument group arg_group = parser.add_argument_group("rsl_rl", description="Arguments for RSL-RL agent.") # -- experiment arguments arg_group.add_argument( "--experiment_name", type=str, default=None, help="Name of the experiment folder where logs will be stored." ) arg_group.add_argument("--run_name", type=str, default=None, help="Run name suffix to the log directory.") # -- load arguments arg_group.add_argument("--resume", type=bool, default=None, help="Whether to resume from a checkpoint.") arg_group.add_argument("--load_run", type=str, default=None, help="Name of the run folder to resume from.") arg_group.add_argument("--checkpoint", type=str, default=None, help="Checkpoint file to resume from.") # -- logger arguments arg_group.add_argument( "--logger", type=str, default=None, choices={"wandb", "tensorboard", "neptune"}, help="Logger module to use." ) arg_group.add_argument( "--log_project_name", type=str, default=None, help="Name of the logging project when using wandb or neptune." ) def parse_rsl_rl_cfg(task_name: str, args_cli: argparse.Namespace) -> RslRlOnPolicyRunnerCfg: """Parse configuration for RSL-RL agent based on inputs. Args: task_name: The name of the environment. args_cli: The command line arguments. Returns: The parsed configuration for RSL-RL agent based on inputs. """ from omni.isaac.orbit_tasks.utils.parse_cfg import load_cfg_from_registry # load the default configuration rslrl_cfg: RslRlOnPolicyRunnerCfg = load_cfg_from_registry(task_name, "rsl_rl_cfg_entry_point") # override the default configuration with CLI arguments if args_cli.seed is not None: rslrl_cfg.seed = args_cli.seed if args_cli.resume is not None: rslrl_cfg.resume = args_cli.resume if args_cli.load_run is not None: rslrl_cfg.load_run = args_cli.load_run if args_cli.checkpoint is not None: rslrl_cfg.load_checkpoint = args_cli.checkpoint if args_cli.run_name is not None: rslrl_cfg.run_name = args_cli.run_name if args_cli.logger is not None: rslrl_cfg.logger = args_cli.logger # set the project name for wandb and neptune if rslrl_cfg.logger in {"wandb", "neptune"} and args_cli.log_project_name: rslrl_cfg.wandb_project = args_cli.log_project_name rslrl_cfg.neptune_project = args_cli.log_project_name return rslrl_cfg
2,858
Python
39.842857
117
0.686494
mrsbCN/orbit.dexterous_hand/scripts/rsl_rl/train.py
"""Script to train RL agent with RSL-RL.""" """Launch Isaac Sim Simulator first.""" import argparse import os from omni.isaac.orbit.app import AppLauncher # local imports import cli_args # isort: skip # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # append RSL-RL cli arguments cli_args.add_rsl_rl_args(parser) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch from datetime import datetime from rsl_rl.runners import OnPolicyRunner import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.utils.dict import print_dict from omni.isaac.orbit.utils.io import dump_pickle, dump_yaml from omni.isaac.orbit_tasks.utils import get_checkpoint_path, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper # Import extensions to set up environment tasks import orbit.ext_template.tasks # noqa: F401 TODO: import orbit.<your_extension_name> torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False def main(): """Train with RSL-RL agent.""" # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs) agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli) # specify directory for logging experiments log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Logging experiment in directory: {log_root_path}") # specify directory for logging runs: {time-stamp}_{run_name} log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if agent_cfg.run_name: log_dir += f"_{agent_cfg.run_name}" log_dir = os.path.join(log_root_path, log_dir) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos"), "step_trigger": lambda step: step % args_cli.video_interval == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for rsl-rl env = RslRlVecEnvWrapper(env) # create runner from rsl-rl runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=log_dir, device=agent_cfg.device) # write git state to logs runner.add_git_repo_to_log(__file__) # save resume path before creating a new log_dir if agent_cfg.resume: # get path to previous checkpoint resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # load previously trained model runner.load(resume_path) # set seed of the environment env.seed(agent_cfg.seed) # dump the configuration into log-directory dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg) dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg) dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg) dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg) # run training runner.learn(num_learning_iterations=agent_cfg.max_iterations, init_at_random_ep_len=True) # close the simulator env.close() if __name__ == "__main__": # run the main execution main() # close sim app simulation_app.close()
4,801
Python
38.360655
117
0.70277
mrsbCN/orbit.dexterous_hand/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "0.1.0" # Description category = "orbit" readme = "README.md" # TODO: Change your package specifications # ----------------------------------------------------------------- title = "Extension Template" author = "ORBIT Project Developers" maintainer = "Nico Burger" maintainer_email = "[email protected]" description="Extension Template for Orbit" repository = "https://github.com/isaac-orbit/orbit.ext_template.git" keywords = ["extension", "template", "orbit"] # ----------------------------------------------------------------- [dependencies] "omni.isaac.orbit" = {} "omni.isaac.orbit_assets" = {} "omni.isaac.orbit_tasks" = {} # NOTE: Add additional dependencies here [[python.module]] # TODO: Change your package name # ----------------------------------------------------------------- name = "orbit.ext_template" # ----------------------------------------------------------------- [orbit_settings] # TODO: Uncomment and list any apt dependencies here. # If none, leave it commented out. # apt_deps = ["example_package"] # TODO: Uncomment and provide path to a ros_ws # with rosdeps to be installed. If none, # leave it commented out. # ros_ws = "path/from/extension_root/to/ros_ws"
1,291
TOML
31.299999
68
0.564679
mrsbCN/orbit.dexterous_hand/orbit/ext_template/__init__.py
""" Python module serving as a project/extension template. """ # Register Gym environments. from .tasks import * # Register UI extensions. from .ui_extension_example import *
177
Python
16.799998
54
0.745763
mrsbCN/orbit.dexterous_hand/orbit/ext_template/ui_extension_example.py
import omni.ext import omni.ui as ui # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[orbit.ext_template] some_public_function was called with x: ", x) return x**x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class ExampleExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[orbit.ext_template] startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Add", clicked_fn=on_click) ui.Button("Reset", clicked_fn=on_reset) def on_shutdown(self): print("[orbit.ext_template] shutdown")
1,527
Python
34.534883
119
0.599214
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/__init__.py
"""Package containing task implementations for various robotic environments.""" import os import toml # Conveniences to other module directories via relative paths ORBIT_TASKS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ORBIT_TASKS_METADATA = toml.load(os.path.join(ORBIT_TASKS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ORBIT_TASKS_METADATA["package"]["version"] ## # Register Gym environments. ## from omni.isaac.orbit_tasks.utils import import_packages # The blacklist is used to prevent importing configs from sub-packages _BLACKLIST_PKGS = ["utils"] # Import all configs in this package import_packages(__name__, _BLACKLIST_PKGS)
845
Python
31.53846
95
0.745562
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/__init__.py
"""Locomotion environments for legged robots.""" from .velocity import * # noqa
82
Python
19.749995
48
0.719512
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/velocity_env_cfg.py
from __future__ import annotations import math from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RandomizationTermCfg as RandTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import orbit.ext_template.tasks.locomotion.velocity.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=5, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # robots robot: ArticulationCfg = MISSING # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, track_air_time=True) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) sky_light = AssetBaseCfg( prim_path="/World/skyLight", spawn=sim_utils.DomeLightCfg(color=(0.13, 0.13, 0.13), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" base_velocity = mdp.UniformVelocityCommandCfg( asset_name="robot", resampling_time_range=(10.0, 10.0), rel_standing_envs=0.02, rel_heading_envs=1.0, heading_command=True, heading_control_stiffness=0.5, debug_vis=True, ranges=mdp.UniformVelocityCommandCfg.Ranges( lin_vel_x=(-1.0, 1.0), lin_vel_y=(-1.0, 1.0), ang_vel_z=(-1.0, 1.0), heading=(-math.pi, math.pi) ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1, n_max=0.1)) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2, n_max=0.2)) projected_gravity = ObsTerm( func=mdp.projected_gravity, noise=Unoise(n_min=-0.05, n_max=0.05), ) velocity_commands = ObsTerm(func=mdp.generated_commands, params={"command_name": "base_velocity"}) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max=1.5)) actions = ObsTerm(func=mdp.last_action) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, noise=Unoise(n_min=-0.1, n_max=0.1), clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class RandomizationCfg: """Configuration for randomization.""" # startup physics_material = RandTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.8, 0.8), "dynamic_friction_range": (0.6, 0.6), "restitution_range": (0.0, 0.0), "num_buckets": 64, }, ) add_base_mass = RandTerm( func=mdp.add_body_mass, mode="startup", params={"asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_range": (-5.0, 5.0)}, ) # reset base_external_force_torque = RandTerm( func=mdp.apply_external_force_torque, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "force_range": (0.0, 0.0), "torque_range": (-0.0, 0.0), }, ) reset_base = RandTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), "roll": (-0.5, 0.5), "pitch": (-0.5, 0.5), "yaw": (-0.5, 0.5), }, }, ) reset_robot_joints = RandTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) # interval push_robot = RandTerm( func=mdp.push_by_setting_velocity, mode="interval", interval_range_s=(10.0, 15.0), params={"velocity_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5)}}, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task track_lin_vel_xy_exp = RewTerm( func=mdp.track_lin_vel_xy_exp, weight=1.0, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) track_ang_vel_z_exp = RewTerm( func=mdp.track_ang_vel_z_exp, weight=0.5, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) # -- penalties lin_vel_z_l2 = RewTerm(func=mdp.lin_vel_z_l2, weight=-2.0) ang_vel_xy_l2 = RewTerm(func=mdp.ang_vel_xy_l2, weight=-0.05) dof_torques_l2 = RewTerm(func=mdp.joint_torques_l2, weight=-1.0e-5) dof_acc_l2 = RewTerm(func=mdp.joint_acc_l2, weight=-2.5e-7) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) feet_air_time = RewTerm( func=mdp.feet_air_time, weight=0.125, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*FOOT"), "command_name": "base_velocity", "threshold": 0.5, }, ) undesired_contacts = RewTerm( func=mdp.undesired_contacts, weight=-1.0, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*THIGH"), "threshold": 1.0}, ) # -- optional penalties flat_orientation_l2 = RewTerm(func=mdp.flat_orientation_l2, weight=0.0) dof_pos_limits = RewTerm(func=mdp.joint_pos_limits, weight=0.0) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" terrain_levels = CurrTerm(func=mdp.terrain_levels_vel) ## # Environment configuration ## @configclass class LocomotionVelocityRoughEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() randomization: RandomizationCfg = RandomizationCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 0.005 self.sim.disable_contact_processing = True self.sim.physics_material = self.scene.terrain.physics_material # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = self.decimation * self.sim.dt if self.scene.contact_forces is not None: self.scene.contact_forces.update_period = self.sim.dt # check if terrain levels curriculum is enabled - if so, enable curriculum for terrain generator # this generates terrains with increasing difficulty and is useful for training if getattr(self.curriculum, "terrain_levels", None) is not None: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = True else: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = False
10,526
Python
32.740385
118
0.625214
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/__init__.py
"""Locomotion environments with velocity-tracking commands. These environments are based on the `legged_gym` environments provided by Rudin et al. Reference: https://github.com/leggedrobotics/legged_gym """
213
Python
25.749997
86
0.779343
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/mdp/__init__.py
"""This sub-module contains the functions that are specific to the locomotion environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .curriculums import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
247
Python
34.428567
94
0.728745
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/mdp/curriculums.py
"""Common functions that can be used to create curriculum for the learning environment. The functions can be passed to the :class:`omni.isaac.orbit.managers.CurriculumTermCfg` object to enable the curriculum introduced by the function. """ from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def terrain_levels_vel( env: RLTaskEnv, env_ids: Sequence[int], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Curriculum based on the distance the robot walked when commanded to move at a desired velocity. This term is used to increase the difficulty of the terrain when the robot walks far enough and decrease the difficulty when the robot walks less than half of the distance required by the commanded velocity. .. note:: It is only possible to use this term with the terrain type ``generator``. For further information on different terrain types, check the :class:`omni.isaac.orbit.terrains.TerrainImporter` class. Returns: The mean terrain level for the given environment ids. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain command = env.command_manager.get_command("base_velocity") # compute the distance the robot walked distance = torch.norm(asset.data.root_pos_w[env_ids, :2] - env.scene.env_origins[env_ids, :2], dim=1) # robots that walked far enough progress to harder terrains move_up = distance > terrain.cfg.terrain_generator.size[0] / 2 # robots that walked less than half of their required distance go to simpler terrains move_down = distance < torch.norm(command[env_ids, :2], dim=1) * env.max_episode_length_s * 0.5 move_down *= ~move_up # update terrain levels terrain.update_env_origins(env_ids, move_up, move_down) # return the mean terrain level return torch.mean(terrain.terrain_levels.float())
2,253
Python
43.196078
112
0.742565
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/mdp/rewards.py
from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def feet_air_time(env: RLTaskEnv, command_name: str, sensor_cfg: SceneEntityCfg, threshold: float) -> torch.Tensor: """Reward long steps taken by the feet using L2-kernel. This function rewards the agent for taking steps that are longer than a threshold. This helps ensure that the robot lifts its feet off the ground and takes steps. The reward is computed as the sum of the time for which the feet are in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward first_contact = contact_sensor.compute_first_contact(env.step_dt)[:, sensor_cfg.body_ids] last_air_time = contact_sensor.data.last_air_time[:, sensor_cfg.body_ids] reward = torch.sum((last_air_time - threshold) * first_contact, dim=1) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_air_time_positive_biped(env, command_name: str, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Reward long steps taken by the feet for bipeds. This function rewards the agent for taking steps up to a specified threshold and also keep one foot at a time in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward air_time = contact_sensor.data.current_air_time[:, sensor_cfg.body_ids] contact_time = contact_sensor.data.current_contact_time[:, sensor_cfg.body_ids] in_contact = contact_time > 0.0 in_mode_time = torch.where(in_contact, contact_time, air_time) single_stance = torch.sum(in_contact.int(), dim=1) == 1 reward = torch.min(torch.where(single_stance.unsqueeze(-1), in_mode_time, 0.0), dim=1)[0] reward = torch.clamp(reward, max=threshold) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward
2,472
Python
45.660376
119
0.716019
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/__init__.py
"""Configurations for velocity-based locomotion environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
240
Python
47.199991
94
0.775
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/rough_env_cfg.py
from omni.isaac.orbit.utils import configclass from orbit.ext_template.tasks.locomotion.velocity.velocity_env_cfg import LocomotionVelocityRoughEnvCfg ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_D_CFG # isort: skip @configclass class AnymalDRoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to anymal-d self.scene.robot = ANYMAL_D_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AnymalDRoughEnvCfg_PLAY(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.randomization.base_external_force_torque = None self.randomization.push_robot = None
1,485
Python
34.380952
103
0.682828
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/flat_env_cfg.py
from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalDRoughEnvCfg @configclass class AnymalDFlatEnvCfg(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalDFlatEnvCfg_PLAY(AnymalDFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.randomization.base_external_force_torque = None self.randomization.push_robot = None
1,259
Python
31.307692
60
0.648133
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/__init__.py
import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Template-Velocity-Flat-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Flat-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Rough-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Rough-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, )
1,351
Python
27.166666
77
0.680977
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/agents/rsl_rl_cfg.py
from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalDRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_d_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalDFlatPPORunnerCfg(AnymalDRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_d_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,294
Python
26.553191
58
0.636012
mrsbCN/orbit.dexterous_hand/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/agents/__init__.py
from . import rsl_rl_cfg # noqa: F401, F403
45
Python
21.999989
44
0.666667
mrsbCN/orbit.dexterous_hand/docs/CHANGELOG.rst
Changelog --------- 0.1.0 (2024-01-29) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created an initial template for building an extension or project based on Orbit
155
reStructuredText
13.181817
81
0.593548
abmoRobotics/MAPs/README.md
# Materials Acceleration Platforms: autonomous experimentation # Dependencies 1. First install ROS 2 Foxy Fitzroy using [official toturial](https://docs.ros.org/en/foxy/Installation/Ubuntu-Install-Debians.html) for Ubuntu Focal. 2. Clone repository ``` git clone [email protected]:abmoRobotics/MAPs.git ``` 3. ``` source /opt/ros/foxy/setup.bash ``` 4. Install the required dependencies ``` cd MAPs/ros2_ws/ ``` ``` rosdep install --from-paths src -y ``` # How to run
476
Markdown
14.9
150
0.72479
abmoRobotics/MAPs/ros2_ws/asdf.py
import heapq class ValueIDManager: """ A class that manages a set of values and their corresponding IDs. The IDs are integers that are assigned to values in the order they are added. The class also keeps track of IDs that have been removed, and reuses them when new values are added. args: None methods: remove_by_value(value): Removes a value from the database. remove_by_id(id_): Removes a value from the database. add_value(value): Adds a value to the database. get_id(value): Returns the ID of a value. get_value(id_): Returns the value of an ID. sync_array(arr): Adds all values in an array to the database, and removes all values that are not in the array. """ def __init__(self): self.id_to_value = {} self.value_to_id = {} self.available_ids = [] self.index_to_entry = {} self.next_id = 0 def remove_by_id(self, id_): if id_ in self.id_to_value: del_value = self.id_to_value[id_] heapq.heappush(self.available_ids, id_) del self.id_to_value[id_] del self.value_to_id[del_value] print(f"ID: {id_} removed.") else: print(f"No such ID: {id_} in the database.") def add_value(self, value): if value in self.value_to_id: print(f"Value: {value} already exists.") else: if self.available_ids: new_id = heapq.heappop(self.available_ids) else: new_id = self.next_id self.next_id += 1 self.id_to_value[new_id] = value self.value_to_id[value] = new_id self.index_to_entry[len(self.index_to_entry)] = (value, new_id) # update new dict print(f"Value: {value} added with ID: {new_id}.") def remove_by_value(self, value): if value in self.value_to_id: del_id = self.value_to_id[value] del_index = list(self.id_to_value.keys()).index(del_id) heapq.heappush(self.available_ids, del_id) del self.value_to_id[value] del self.id_to_value[del_id] #print(self.index_to_entry) #del self.index_to_entry[del_index] # remove from new dict for index in range(del_index, len(self.index_to_entry) - 1): self.index_to_entry[index] = self.index_to_entry[index + 1] # Delete last entry after shifting del self.index_to_entry[len(self.index_to_entry) - 1] print(f"Value: {value} removed.") return del_index else: print(f"No such value: {value} in the database.") return None def get_id(self, value): return self.value_to_id.get(value, "No such value in the database.") def get_value(self, id_): return self.id_to_value.get(id_, "No such ID in the database.") def sync_array(self, arr): removed_ids = [] for value in arr: if value not in self.value_to_id: self.add_value(value) for value in list(self.value_to_id.keys()): # create a copy of keys to avoid runtime error if value not in arr: removed_id = self.remove_by_value(value) if removed_id is not None: removed_ids.append(removed_id) return removed_ids # Initialize manager value_id_manager = ValueIDManager() # Add value value_id_manager.add_value(3.3) # Add another value value_id_manager.add_value(5.5) # Sync with new array value_id_manager.sync_array([3.3, 5.5, 7.7, 0.7, 0.0, 7.0, 7.3, 0.3]) # Check state after sync print(value_id_manager.id_to_value) print(value_id_manager.value_to_id) value_id_manager.remove_by_value(7.0) print(value_id_manager.id_to_value) print(value_id_manager.value_to_id) print(value_id_manager.available_ids) value_id_manager.remove_by_id(1) print(value_id_manager.available_ids) value_id_manager.add_value(11.0) print(value_id_manager.available_ids) print(value_id_manager.id_to_value) print(value_id_manager.value_to_id) # Remove extras not in new array print(value_id_manager.index_to_entry) print(value_id_manager.sync_array([3.3, 5.5, 7.7, 0.7, 0.0, 7.0, 7.3,11.0])) print(value_id_manager.index_to_entry)
4,347
Python
34.064516
119
0.599034
abmoRobotics/MAPs/ros2_ws/plot_time_functions3.py
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import math import pandas as pd # Define the additional functions as shown in the previous response def linear_decay_priority(task_deadline_seconds, total_time_seconds): time_remaining = task_deadline_seconds return total_time_seconds - time_remaining def logistic_decay_priority(task_deadline_seconds, midpoint_seconds, steepness): time_remaining = task_deadline_seconds return -1 / (1 + math.exp(-steepness * (time_remaining - midpoint_seconds))) + 1 def time_remaining_squared_priority(task_deadline_seconds): time_remaining = task_deadline_seconds return time_remaining ** 2 def harmonic_priority(task_creation_seconds, task_deadline_seconds, alpha=1): time_remaining = task_deadline_seconds - task_creation_seconds return (time_remaining + alpha) / (task_deadline_seconds + alpha) def inverse_time_remaining_priority(task_deadline_seconds, epsilon=1e-9): time_remaining = task_deadline_seconds return 1 / (time_remaining + epsilon) # Create a range of input seconds input_seconds = np.arange(0, 200, 1) # Calculate priority scores for each function linear_decay_scores = [linear_decay_priority(x, 200) for x in input_seconds] logistic_decay_scores = [logistic_decay_priority(x, 100, 0.06) for x in input_seconds] time_remaining_squared_scores = [time_remaining_squared_priority(x) for x in input_seconds] harmonic_priority_scores = [harmonic_priority(36, x) for x in input_seconds] inverse_time_remaining_scores = [inverse_time_remaining_priority(x) for x in input_seconds] # # Create a dictionary to store the functions and their scores # function_dict = {"Linear Decay": linear_decay_scores, # "Logistic Decay": logistic_decay_scores, # "Time Remaining Squared": time_remaining_squared_scores, # "Harmonic Priority": harmonic_priority_scores, # "Inverse Time Remaining": inverse_time_remaining_scores} # # Create separate plots for each function # fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(14, 16)) # axes = axes.flatten() # for idx, (function_name, scores) in enumerate(function_dict.items()): # ax = axes[idx] # sns.lineplot(x=input_seconds, y=scores, ax=ax) # ax.set_title(function_name) # ax.set_xlabel("Input Seconds") # ax.set_ylabel("Priority Score") # # Remove the extra empty subplot # axes[-1].axis("off") # plt.tight_layout() # plt.show() # Combine the input seconds and priority scores into a single dataset data = np.column_stack((input_seconds, linear_decay_scores, logistic_decay_scores, time_remaining_squared_scores, harmonic_priority_scores, inverse_time_remaining_scores)) columns = ["Input Seconds", "Linear Decay", "Logistic Decay", "Time Remaining Squared", "Harmonic Priority", "Inverse Time Remaining"] data = pd.DataFrame(data, columns=columns) # Melt the dataset into a long format suitable for Seaborn line plots data_melted = data.melt(id_vars="Input Seconds", var_name="Function", value_name="Priority Score") # Plot the functions using Seaborn's relplot g = sns.relplot(data=data_melted, x="Input Seconds", y="Priority Score", col="Function", kind="line", col_wrap=2, facet_kws={'ylim': (-0.1, 1.1)}) g.fig.subplots_adjust(top=0.9) # Adjust the top of the subplots to create space for the title g.fig.suptitle("Additional Temporal Priority Score Functions") plt.show()
3,473
Python
41.365853
146
0.720703
abmoRobotics/MAPs/ros2_ws/tester.py
#api_key = 'apk-14166daf4872c6537ffc7e1b30afacdfc519606b7eefd932c5ad4ab5d9693f480b1a254e31ff6781937a14acc1fa4e7410d0460299a4ec3d2681fe801f79f1f81912b3826ca0cfe0c596eeb683ec32eb' api_key = 'apk-110d39e19561e2e1538f8cb18288c7543ccfbd5f6d2881f2708c64401d0f620a302f360f2123e2b9f867f56a7c5c4479a5d07c540b32d77172c5f572d8488192878aa2be3e15dd73407656a9a2d7dbf5' from rxn4chemistry import RXN4ChemistryWrapper import time rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key) #rxn4chemistry_wrapper.list_all_projects() #rxn4chemistry_wrapper.set_project('5f9b3e2a0c3e4f0001d8e4e4') #print(rxn4chemistry_wrapper.list_all_projects()['response']['payload']['content'][0]['name']) projects = rxn4chemistry_wrapper.list_all_projects()['response']['payload']['content'] time.sleep(1) for project in projects: if project['name'] == 'MAPs': rxn4chemistry_wrapper.set_project(project['id']) print(project['name']) print(rxn4chemistry_wrapper.project_id) time.sleep(1) response = rxn4chemistry_wrapper.predict_automatic_retrosynthesis( 'CCO' ) time.sleep(1) print(response)
1,092
Python
35.433332
177
0.818681
abmoRobotics/MAPs/ros2_ws/README.md
## ROS2 workspace
18
Markdown
8.499996
17
0.722222
abmoRobotics/MAPs/ros2_ws/plot_time_functions.py
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import math import pandas as pd # Define the functions as shown in the previous response # Time remaining until deadline def time_remaining_priority(task_deadline_seconds): return task_deadline_seconds # Elapsed time since creation def elapsed_time_priority(task_creation_seconds): return -task_creation_seconds # Proportional urgency (time remaining divided by total time allotted) def proportional_urgency_priority(task_creation_seconds, task_deadline_seconds): time_remaining = task_deadline_seconds - task_creation_seconds total_time_allotted = task_deadline_seconds return time_remaining / total_time_allotted # Weighted combination of time remaining and elapsed time def weighted_combination_priority(task_creation_seconds, task_deadline_seconds, weight=0.2): time_remaining = task_deadline_seconds - task_creation_seconds elapsed_time = task_creation_seconds return weight * time_remaining - (1 - weight) * elapsed_time # Exponential decay of importance def exponential_decay_priority(task_deadline_seconds, half_life_seconds=20): decay_rate = math.log(2) / half_life_seconds return math.exp(-decay_rate * task_deadline_seconds) # Create a range of input seconds input_seconds = np.arange(0, 200, 1) # Calculate priority scores for each function time_remaining_scores = [time_remaining_priority(x) for x in input_seconds] elapsed_time_scores = [elapsed_time_priority(x) for x in input_seconds] proportional_urgency_scores = [proportional_urgency_priority(x, 200) for x in input_seconds] weighted_combination_scores = [weighted_combination_priority(x, 200) for x in input_seconds] exponential_decay_scores = [exponential_decay_priority(x) for x in input_seconds] # # Combine the input seconds and priority scores into a single dataset # data = np.column_stack((input_seconds, time_remaining_scores, elapsed_time_scores, # proportional_urgency_scores, weighted_combination_scores, exponential_decay_scores)) # columns = ["Input Seconds", "Time Remaining", "Elapsed Time", "Proportional Urgency", # "Weighted Combination", "Exponential Decay"] # data = pd.DataFrame(data, columns=columns) # # Melt the dataset into a long format suitable for Seaborn line plots # data_melted = data.melt(id_vars="Input Seconds", var_name="Function", value_name="Priority Score") # # Plot the functions using Seaborn line plot # plt.figure(figsize=(10, 6)) # sns.lineplot(data=data_melted, x="Input Seconds", y="Priority Score", hue="Function") # plt.title("Temporal Priority Score Functions") # plt.show() # Create a dictionary to store the functions and their scores function_dict = {"Time Remaining": time_remaining_scores, "Elapsed Time": elapsed_time_scores, "Proportional Urgency": proportional_urgency_scores, "Weighted Combination": weighted_combination_scores, "Exponential Decay": exponential_decay_scores} # Create separate plots for each function fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(14, 16)) axes = axes.flatten() sns.set_theme(style="darkgrid") for idx, (function_name, scores) in enumerate(function_dict.items()): ax = axes[idx] sns.lineplot(x=input_seconds, y=scores, ax=ax) ax.set_title(function_name) ax.set_xlabel("Input Seconds") ax.set_ylabel("Priority Score") # Remove the extra empty subplot axes[-1].axis("off") plt.tight_layout() plt.show()
3,518
Python
41.914634
110
0.737635
abmoRobotics/MAPs/ros2_ws/plot_time_functions2.py
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import math import pandas as pd # Define the additional functions as shown in the previous response def linear_decay_priority(task_deadline_seconds, total_time_seconds): time_remaining = task_deadline_seconds return total_time_seconds - time_remaining def logistic_decay_priority(task_deadline_seconds, midpoint_seconds, steepness): time_remaining = task_deadline_seconds return -1 / (1 + math.exp(-steepness * (time_remaining - midpoint_seconds))) + 1 def time_remaining_squared_priority(task_deadline_seconds): time_remaining = task_deadline_seconds return time_remaining ** 2 def harmonic_priority(task_creation_seconds, task_deadline_seconds, alpha=1): time_remaining = task_deadline_seconds - task_creation_seconds return (time_remaining + alpha) / (task_deadline_seconds + alpha) def inverse_time_remaining_priority(task_deadline_seconds, epsilon=1e-9): time_remaining = task_deadline_seconds return 1 / (time_remaining + epsilon) # Create a range of input seconds input_seconds = np.arange(0, 200, 1) # Calculate priority scores for each function linear_decay_scores = [linear_decay_priority(x, 200) for x in input_seconds] logistic_decay_scores = [logistic_decay_priority(x, 100, 0.06) for x in input_seconds] time_remaining_squared_scores = [time_remaining_squared_priority(x) for x in input_seconds] harmonic_priority_scores = [harmonic_priority(36, x) for x in input_seconds] inverse_time_remaining_scores = [inverse_time_remaining_priority(x) for x in input_seconds] # Create a dictionary to store the functions and their scores function_dict = {"Linear Decay": linear_decay_scores, "Logistic Decay": logistic_decay_scores, "Time Remaining Squared": time_remaining_squared_scores, "Harmonic Priority": harmonic_priority_scores, "Inverse Time Remaining": inverse_time_remaining_scores} # Create separate plots for each function fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(14, 16)) axes = axes.flatten() for idx, (function_name, scores) in enumerate(function_dict.items()): ax = axes[idx] sns.lineplot(x=input_seconds, y=scores, ax=ax) ax.set_title(function_name) ax.set_xlabel("Input Seconds") ax.set_ylabel("Priority Score") # Remove the extra empty subplot axes[-1].axis("off") plt.tight_layout() plt.show()
2,445
Python
37.218749
91
0.729652
abmoRobotics/MAPs/ros2_ws/src/README.md
## Where all ROS2 packages are located
39
Markdown
18.999991
38
0.769231
abmoRobotics/MAPs/ros2_ws/src/orchestrator/setup.py
from setuptools import setup import os from glob import glob package_name = 'orchestrator' module_utils = 'utils' setup( name=package_name, version='0.0.0', packages=[package_name, module_utils], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), (os.path.join('share', package_name), glob('launch/*.launch.py')), (os.path.join('share', package_name, 'config'), glob('config/*.yaml')), ], install_requires=['setuptools'], zip_safe=True, maintainer='Anton, Mads', maintainer_email='[email protected], [email protected]', description='TODO: Package description', license='TODO: License declaration', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'shuttle = orchestrator.shuttle:main', 'gui = orchestrator.pyside_gui:main', 'manipulator = orchestrator.manipulator:main', 'task_planner = orchestrator.task_planner:main', 'spawn_manager = orchestrator.spawn_manager:main', ], }, )
1,161
Python
31.277777
79
0.615848
abmoRobotics/MAPs/ros2_ws/src/orchestrator/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, \ 'Found %d code style errors / warnings:\n' % len(errors) + \ '\n'.join(errors)
884
Python
33.03846
74
0.725113
abmoRobotics/MAPs/ros2_ws/src/orchestrator/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found code style errors / warnings'
803
Python
32.499999
74
0.743462
abmoRobotics/MAPs/ros2_ws/src/orchestrator/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found errors'
790
Python
31.958332
74
0.74557
abmoRobotics/MAPs/ros2_ws/src/orchestrator/launch/orchestrator.launch.py
from launch_ros.actions import Node from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, RegisterEventHandler, ExecuteProcess from launch.substitutions import LaunchConfiguration from launch.actions import IncludeLaunchDescription from ament_index_python.packages import get_package_share_directory from launch_ros.substitutions import FindPackageShare from launch.launch_description_sources import PythonLaunchDescriptionSource import os from utils import save_yaml from launch.event_handlers import (OnExecutionComplete, OnProcessExit, OnProcessIO, OnProcessStart, OnShutdown) def generate_launch_description(): # True / False arguments gui = LaunchConfiguration('gui') isaac_sim = LaunchConfiguration('isaac_sim') shuttle = LaunchConfiguration('sim_shuttle') no_shuttles = LaunchConfiguration('num_of_shuttles') manipulator = LaunchConfiguration('sim_manipulator') no_manipulators = LaunchConfiguration('num_of_manipulators') no_table = LaunchConfiguration('number_of_tabels') manipulator_position = LaunchConfiguration('manipulator_position') table_position = LaunchConfiguration('table_position') global_parameters = os.path.join( get_package_share_directory('acopos_bringup'), 'config', 'global_params.yaml' ) config = os.path.join( get_package_share_directory('orchestrator'), 'config', 'initial_position.yaml' ) # Decalre arguments gui_launch_arg = DeclareLaunchArgument( 'gui', description="If you want a GUI with statistiscs and feedback.", default_value='False', choices=['True', 'False'] ) isaac_sim_launch_arg = DeclareLaunchArgument( 'isaac_sim', description="If you want the simuleated environment therefore also no shuttles or manipulators.", default_value='True', choices=['True', 'False'] ) shuttle_launch_arg = DeclareLaunchArgument( 'sim_shuttle', description="If you want the simulated environment with the shuttles.", default_value='True', choices=['True', 'False'] ) manipulator_launch_arg = DeclareLaunchArgument( 'sim_manipulator', description="If you want the simulated environment with the manipulators.", default_value='True', choices=['True', 'False'] ) physical_launch_arg = DeclareLaunchArgument( 'use_physical_setup', description="If you want a physical setup or not.", default_value='False', choices=['True', 'False'] ) num_of_shuttle_launch_arg = DeclareLaunchArgument( 'num_of_shuttles', description="This will decalare the number of shuttles you want on the tabel.", default_value="5" ) num_of_manipulators_launch_arg = DeclareLaunchArgument( 'num_of_manipulators', description="This will decalare the number of manipulators you want to the tabel.", default_value="6" ) num_of_tabels_launch_arg = DeclareLaunchArgument( 'num_of_tabels', description="This will decalare the number of tabels you want.", default_value="6" ) manipulator_position_launch_arg = DeclareLaunchArgument( 'manipulator_position', description="This will decalare the nmanipulators position.", default_value="5" ) table_position_launch_arg = DeclareLaunchArgument( 'table_position', description="This will decalare the number of tabels you want.", default_value="6" ) num_of_tabels_launch_arg = DeclareLaunchArgument( 'number_of_tabels', description="This will decalare the number of tabels you want.", default_value="6" ) shuttle_node = Node( package='orchestrator', namespace='shuttle', executable='shuttle', name='shuttle', output="screen", emulate_tty=True, parameters=[ {"num_of_shuttles":no_shuttles}, {"sim_shuttle":shuttle} ] ) manipulator_node = Node( package='orchestrator', namespace='manipulator', executable='manipulator', name='manipulator', output="screen", emulate_tty=True, parameters=[config, global_parameters, {"num_of_manipulators":no_manipulators}, {"sim_manipulators":manipulator} ] ) task_planner_node = Node( package='orchestrator', namespace='task_planner', executable='task_planner', name='sim' ) gui_node = Node( package='orchestrator', executable='gui', name='gui', output="screen", emulate_tty=True, parameters=[config, global_parameters, {"num_of_shuttles":no_shuttles}, {"num_of_manipulators":no_manipulators}, {"num_of_tabels":no_table}, {"table_position":table_position}, {"robot_position":manipulator_position} ] ) spawn_node = Node( package='orchestrator', executable='spawn_manager', name='spawn_manager', output="screen", emulate_tty=True, parameters=[]) return LaunchDescription([ IncludeLaunchDescription( PythonLaunchDescriptionSource([ FindPackageShare("acopos_bringup"), '/launch', '/acopos.launch.py']) ), gui_launch_arg, isaac_sim_launch_arg, shuttle_launch_arg, manipulator_launch_arg, num_of_shuttle_launch_arg, num_of_manipulators_launch_arg, manipulator_position_launch_arg, num_of_tabels_launch_arg, table_position_launch_arg, spawn_node, gui_node, shuttle_node, manipulator_node, task_planner_node # RegisterEventHandler( # OnShutdown( # on_shutdown=[ExecuteProcess(save_yaml(shuttle_node) # )] # ) # ), ])
6,253
Python
31.743455
105
0.610587
abmoRobotics/MAPs/ros2_ws/src/orchestrator/orchestrator/task_plannerAnton.py
import rclpy from rclpy.node import Node import time import heapq from typing import List class Station(): """Class for a single station""" def __init__(self) -> None: self.available = True def get_position(self): pass def set_position(self): pass def get_availibility(self): return self.available def set_availibility(self, available: bool): self.available = available class Task(): """Class for a single task""" def __init__(self) -> None: creation_time = time.time() def get_creation_time(self): return self.creation_time class Shuttle(): """Class for a single shuttle""" def __init__(self) -> None: self.available = True def get_position(self): pass def set_position(self): pass def get_availibility(self): return self.available def set_availibility(self, available: bool): self.available = available class StationManager(): """Class for keeping track of the stations""" def __init__(self) -> None: self.stations = [] def add_station(self, station: Station): self.stations.append(station) def remove_station(self, station: Station): self.stations.remove(station) def get_stations(self): return self.stations def set_status(self, station: Station, status: bool): station.set_availibility(status) class TaskManager(): """Class for keeping track of the tasks""" def __init__(self) -> None: self.tasks = [] def add_task(self, task: Task): self.tasks.append(task) def remove_task(self, task: Task): self.tasks.remove(task) def get_tasks(self): return self.tasks class ShuttleManager(): """Class for keeping track of the shuttles""" def __init__(self) -> None: self.shuttles = [] def add_shuttle(self, shuttle: Shuttle): self.shuttles.append(shuttle) def remove_shuttle(self, shuttle: Shuttle): self.shuttles.remove(shuttle) def get_shuttles(self): return self.shuttles def get_available_shuttles(self): pass def set_status(self, shuttle: Shuttle, status: bool): shuttle.set_availibility(status) class TaskPlanner(): """ Node for planning and orchestrating tasks for the manipulators and shuttles""" def __init__(self) -> None: self.stations = StationManager() self.tasks = TaskManager() self.shuttles = ShuttleManager() self.active_tasks: List[Task] = [] self.heuristic_spatial_weight = 0.5 self.heuristic_temporal_weight = 0.5 def main(self): # 1. Assign the next task to the available shuttle and manipulator self.next_task() # 2. Check if task is done # 3. Check if sub-task is done def timer_callback(self): self.main() def priority_scores(self, task: Task) -> float: """Function to calculate the priority score of a task""" # 1. Get the requirements of the task # 2. Get the available stations and shuttles that can fulfill the requirements stations = self.get_available_stations() shuttles = self.get_available_shuttles() # 3. Calculate the priority score for each station and shuttle and store them in a heapq priority_scores_heap = [] for station in stations: for shuttle in shuttles: score = self.heuristic(task, station, shuttle) # Use heapq to store the scores heapq.heappush(priority_scores_heap, (score, station, shuttle)) # 4. Return the lowest priority score score, station, shuttle = heapq.heappop(priority_scores_heap) return score, station, shuttle def heuristic(self, task: Task, station: Station, shuttle: Shuttle, materialShuttle: Shuttle = None) -> float: """Function to calculate the heuristic of a task""" spatial_priority_score = 0 temporal_priority_score = 0 ws = self.heuristic_spatial_weight wt = self.heuristic_temporal_weight if materialShuttle is not None: station_position = station.get_position() spatial_priority_score = (station_position - shuttle.get_position()) + (station_position - materialShuttle.get_position()) else: spatial_priority_score = station.get_position() - shuttle.get_position() # 2. Calculate temporal priority score creation_time = task.get_creation_time() temporal_priority_score = time.time() - creation_time score = ws * spatial_priority_score + wt * temporal_priority_score return score def next_task(self): """Function to assign find the next task to be executed""" # 1. Check if there are any tasks tasks = self.get_tasks() if not tasks: return None # 2. Check if there are any stations available stations = self.get_available_stations() if not stations: return None # 3. Check if there are any shuttles available shuttles = self.get_available_shuttles() if not shuttles: return None # 4. Check if there are any manipulators available -> Not required for now # 5. Calculate the priority score of the tasks min_score = float('inf') min_station = None min_shuttle = None min_task = None for task in tasks: score, station, shuttle = self.priority_scores(task) if score < min_score: min_score = score min_station = station min_shuttle = shuttle min_task = task # 6. Assign the task with the lowest priority score to the available shuttle and manipulator # task = # 6.1. Update the station list self.stations.set_status(min_station, False) # 6.2. Update the shuttle list self.shuttles.set_status(min_shuttle, False) # 6.3. Update the manipulator list # 7. Update the task list self.active_tasks.append(min_task) self.tasks.remove_task(min_task) def assign_task(self, task: Task): """Function to assign a task to a shuttle and manipulator""" def get_tasks(self): """Function to get the tasks from the task manager""" if self.tasks.get_tasks(): return self.tasks.get_tasks() else: return None def get_available_stations(self): """Function to get the stations from the station manager""" if self.stations.get_stations(): return self.stations.get_stations() else: return None def get_available_shuttles(self): """Function to get the shuttles from the shuttle manager""" if self.shuttles.get_shuttles(): return self.shuttles.get_shuttles() else: None
7,100
Python
27.748988
134
0.60507