file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
Helbling-Technik/orbit.maze/pyproject.toml
# This section defines the build system requirements [build-system] requires = ["setuptools >= 61.0"] build-backend = "setuptools.build_meta" # Project metadata [project] version = "0.1.0" name = "maze" # TODO description = "Maze Extension Task for RL Learning" # TODO keywords = ["extension", "maze", "orbit"] # TODO readme = "README.md" requires-python = ">=3.10" license = {file = "LICENSE.txt"} classifiers = [ "Programming Language :: Python :: 3", ] authors = [ {name = "Kevin Schneider", email = "[email protected]"}, # TODO ] maintainers = [ {name = "Kevin Schneider", email = "[email protected]"}, # TODO ] # Tool dependent subtables [tool.setuptools] py-modules = [ 'orbit' ] # TODO, add modules required for your extension
738
TOML
22.093749
59
0.665312
Helbling-Technik/orbit.maze/README.md
# Extension Template for Orbit [![IsaacSim](https://img.shields.io/badge/IsaacSim-2023.1.1-silver.svg)](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) [![Orbit](https://img.shields.io/badge/Orbit-0.2.0-silver)](https://isaac-orbit.github.io/orbit/) [![Python](https://img.shields.io/badge/python-3.10-blue.svg)](https://docs.python.org/3/whatsnew/3.10.html) [![Linux platform](https://img.shields.io/badge/platform-linux--64-orange.svg)](https://releases.ubuntu.com/20.04/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) ## Overview This repository serves as a template for building projects or extensions based on Orbit. It allows you to develop in an isolated environment, outside of the core Orbit repository. Furthermore, this template serves three use cases: - **Python Package** Can be installed into Isaac Sim's Python environment, making it suitable for users who want to integrate their extension to `Orbit` as a python package. - **Project Template** Ensures access to `Isaac Sim` and `Orbit` functionalities, which can be used as a project template. - **Omniverse Extension** Can be used as an Omniverse extension, ideal for projects that leverage the Omniverse platform's graphical user interface. **Key Features:** - `Isolation` Work outside the core Orbit repository, ensuring that your development efforts remain self-contained. - `Flexibility` This template is set up to allow your code to be run as an extension in Omniverse. **Keywords:** extension, template, orbit ### License The source code is released under a [BSD 3-Clause license](https://opensource.org/licenses/BSD-3-Clause). **Author: The ORBIT Project Developers<br /> Affiliation: [The AI Institute](https://theaiinstitute.com/)<br /> Maintainer: Nico Burger, [email protected]** ## Setup Depending on the use case defined [above](#overview), follow the instructions to set up your extension template. Start with the [Basic Setup](#basic-setup), which is required for either use case. ### Basic Setup #### Dependencies This template depends on Isaac Sim and Orbit. For detailed instructions on how to install these dependencies, please refer to the [installation guide](https://isaac-orbit.github.io/orbit/source/setup/installation.html). - [Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/index.html) - [Orbit](https://isaac-orbit.github.io/orbit/) #### Configuration - Set up a symbolic link from Orbit to this directory. This makes it convenient to index the python modules and look for extensions shipped with Isaac Sim and Orbit. ```bash ln -s <your_orbit_path> _orbit ``` #### Environment (Optional) For clarity, we will be using the `${ISAACSIM_PATH}/python.sh` command to call the Orbit specific python interpreter. However, you might be working from within a virtual environment, allowing you to use the `python` command directly, instead of `${ISAACSIM_PATH}/python.sh`. Information on setting up a virtual environment for Orbit can be found [here](https://isaac-orbit.github.io/orbit/source/setup/installation.html#setting-up-the-environment). The `ISAACSIM_PATH` should already be set from installing Orbit, see [here](https://isaac-orbit.github.io/orbit/source/setup/installation.html#configuring-the-environment-variables). #### Configure Python Interpreter In the provided configuration, we set the default Python interpreter to use the Python executable provided by Omniverse. This is specified in the `.vscode/settings.json` file: ```json "python.defaultInterpreterPath": "${env:ISAACSIM_PATH}/python.sh" ``` This setup requires you to have set up the `ISAACSIM_PATH` environment variable. If you want to use a different Python interpreter, you need to change the Python interpreter used by selecting and activating the Python interpreter of your choice in the bottom left corner of VSCode, or opening the command palette (`Ctrl+Shift+P`) and selecting `Python: Select Interpreter`. #### Set up IDE To setup the IDE, please follow these instructions: 1. Open the `orbit.maze` directory on Visual Studio Code IDE 2. Run VSCode Tasks, by pressing Ctrl+Shift+P, selecting Tasks: Run Task and running the setup_python_env in the drop down menu. If everything executes correctly, it should create a file .python.env in the .vscode directory. The file contains the python paths to all the extensions provided by Isaac Sim and Omniverse. This helps in indexing all the python modules for intelligent suggestions while writing code. ### Setup as Python Package / Project Template From within this repository, install your extension as a Python package to the Isaac Sim Python executable. ```bash ${ISAACSIM_PATH}/python.sh -m pip install --upgrade pip ${ISAACSIM_PATH}/python.sh -m pip install -e . ``` ### Setup as Omniverse Extension To enable your extension, follow these steps: 1. **Add the search path of your repository** to the extension manager: - Navigate to the extension manager using `Window` -> `Extensions`. - Click on the **Hamburger Icon** (☰), then go to `Settings`. - In the `Extension Search Paths`, enter the path that goes up to your repository's location without actually including the repository's own directory. For example, if your repository is located at `/home/code/orbit.ext_template`, you should add `/home/code` as the search path. - If not already present, in the `Extension Search Paths`, enter the path that leads to your local Orbit directory. For example: `/home/orbit/source/extensions` - Click on the **Hamburger Icon** (☰), then click `Refresh`. 2. **Search and enable your extension**: - Find your extension under the `Third Party` category. - Toggle it to enable your extension. ## Usage ### Python Package Import your python package within `Isaac Sim` and `Orbit` using: ```python import orbit.<your_extension_name> ``` ### Project Template We provide an example for training and playing a policy for ANYmal on flat terrain. Install [RSL_RL](https://github.com/leggedrobotics/rsl_rl) outside of the orbit repository, e.g. `home/code/rsl_rl`. ```bash git clone https://github.com/leggedrobotics/rsl_rl.git cd rsl_rl ${ISAACSIM_PATH}/python.sh -m pip install -e . ``` Train a policy. ```bash cd <path_to_your_extension> ${ISAACSIM_PATH}/python.sh scripts/sb3/train.py --task Isaac-Maze-v0 --num_envs 4096 --headless ``` Play the trained policy. ```bash ${ISAACSIM_PATH}/python.sh scripts/sb3/play.py --task Isaac-Maze-v0 --num_envs 16 ``` ## Bugs & Feature Requests Please report bugs and request features using the [Issue Tracker](https://github.com/isaac-orbit/orbit.ext_template/issues).
6,738
Markdown
46.457746
631
0.756308
Helbling-Technik/orbit.maze/scripts/create_env.py
from __future__ import annotations import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Test adding sensors on a robot.") parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to spawn.") parser.add_argument("--num_cams", type=int, default=1, help="Number of cams per env (2 Max)") parser.add_argument("--save", action="store_true", default=False, help="Save the obtained data to disk.") # parser.add_argument("--livestream", type=int, default="1", help="stream remotely") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() args_cli.num_cams = min(2, args_cli.num_cams) args_cli.num_cams = max(0, args_cli.num_cams) args_cli.num_envs = max(1, args_cli.num_envs) # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app import math from PIL import Image import torch import traceback import carb import os import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.orbit.scene import InteractiveScene, InteractiveSceneCfg from omni.isaac.orbit.sensors import CameraCfg, ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.timer import Timer import omni.replicator.core as rep from omni.isaac.orbit.utils import convert_dict_to_backend from tqdm import tqdm current_script_path = os.path.abspath(__file__) # Absolute path of the project root (assuming it's three levels up from the current script) project_root = os.path.join(current_script_path, "../..") MAZE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( # usd_path=f"{ISAAC_ORBIT_NUCLEUS_DIR}/Robots/Classic/Cartpole/cartpole.usd", # Path to the USD file relative to the project root usd_path=os.path.join(project_root, "usds/Maze_Simple.usd"), # usd_path=f"../../../../usds/Maze_Simple.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=100.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.0), joint_pos={"OuterDOF_RevoluteJoint": 0.0, "InnerDOF_RevoluteJoint": 0.0} ), actuators={ "outer_actuator": ImplicitActuatorCfg( joint_names_expr=["OuterDOF_RevoluteJoint"], effort_limit=0.01, velocity_limit=1.0 / math.pi, stiffness=0.0, damping=10.0, ), "inner_actuator": ImplicitActuatorCfg( joint_names_expr=["InnerDOF_RevoluteJoint"], effort_limit=0.01, velocity_limit=1.0 / math.pi, stiffness=0.0, damping=10.0, ), }, ) @configclass class SensorsSceneCfg(InteractiveSceneCfg): """Design the scene with sensors on the robot.""" # ground plane ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(size=(100.0, 100.0)), ) # cartpole robot: ArticulationCfg = MAZE_CFG.replace(prim_path="{ENV_REGEX_NS}/Labyrinth") # Sphere with collision enabled but not actuated sphere = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/sphere", spawn=sim_utils.SphereCfg( radius=0.005, # Define the radius of the sphere mass_props=sim_utils.MassPropertiesCfg(density=7850), # Density of steel in kg/m^3) rigid_props=sim_utils.RigidBodyPropertiesCfg(rigid_body_enabled=True), collision_props=sim_utils.CollisionPropertiesCfg(collision_enabled=True), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.9, 0.9, 0.9), metallic=0.8), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, 0.0, 0.11)), ) # sensors camera_1 = CameraCfg( prim_path="{ENV_REGEX_NS}/top_cam", update_period=0.1, height=8, width=8, data_types=["rgb"],#, "distance_to_image_plane"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5) ), offset=CameraCfg.OffsetCfg(pos=(0.0, 0.0, 0.5), rot=(0,1,0,0), convention="ros"), ) # sphere_object = RigidObject(cfg=sphere_cfg) # lights dome_light = AssetBaseCfg( prim_path="/World/DomeLight", spawn=sim_utils.DomeLightCfg(color=(0.9, 0.9, 0.9), intensity=500.0), ) distant_light = AssetBaseCfg( prim_path="/World/DistantLight", spawn=sim_utils.DistantLightCfg(color=(0.9, 0.9, 0.9), intensity=2500.0), init_state=AssetBaseCfg.InitialStateCfg(rot=(0.738, 0.477, 0.477, 0.0)), ) def run_simulator( sim: sim_utils.SimulationContext, scene: InteractiveScene, ): """Run the simulator.""" # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 def reset(): # reset the scene entities # root state # we offset the root state by the origin since the states are written in simulation world frame # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world root_state = scene["robot"].data.default_root_state.clone() root_state[:, :3] += scene.env_origins scene["robot"].write_root_state_to_sim(root_state) # set joint positions with some noise joint_pos, joint_vel = ( scene["robot"].data.default_joint_pos.clone(), scene["robot"].data.default_joint_vel.clone(), ) joint_pos += torch.rand_like(joint_pos) * 0.1 scene["robot"].write_joint_state_to_sim(joint_pos, joint_vel) # clear internal buffers scene.reset() print("[INFO]: Resetting robot state...") output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output", "camera") rep_writer = rep.BasicWriter(output_dir=output_dir, frame_padding=3) episode_steps = 500 while simulation_app.is_running(): reset() with Timer(f"Time taken for {episode_steps} steps with {args_cli.num_envs} envs"): with tqdm(range(episode_steps*args_cli.num_envs)) as pbar: for count in range(episode_steps): # Apply default actions to the robot # -- generate actions/commands targets = scene["robot"].data.default_joint_pos # -- apply action to the robot scene["robot"].set_joint_position_target(targets) # -- write data to sim scene.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers scene.update(sim_dt) pbar.update(args_cli.num_envs) # Extract camera data if args_cli.save: for i in range(args_cli.num_envs): for j in range(args_cli.num_cams): single_cam_data = convert_dict_to_backend(scene[f"camera_{j+1}"].data.output, backend="numpy") #single_cam_info = scene[f"camera_{j+1}"].data.info # Pack data back into replicator format to save them using its writer rep_output = dict() for key, data in zip(single_cam_data.keys(), single_cam_data.values()):#, single_cam_info): # if info is not None: # rep_output[key] = {"data": data, "info": info} # else: rep_output[key] = data[i] # Save images # Note: We need to provide On-time data for Replicator to save the images. rep_output["trigger_outputs"] = {"on_time":f"{count}_{i}_{j}"}#{"on_time": scene["camera_1"].frame} rep_writer.write(rep_output) if args_cli.num_cams > 0: cam1_rgb = scene["camera_1"].data.output["rgb"] squeezed_img = cam1_rgb.squeeze(0).cpu().numpy().astype('uint8') image = Image.fromarray(squeezed_img) # image.save('test_cam'+str(count)+'.png') if args_cli.num_cams > 1: cam2_rgb = scene["camera_2"].data.output["rgb"] def main(): """Main function.""" # Initialize the simulation context sim_cfg = sim_utils.SimulationCfg(dt=0.005, substeps=1) sim = sim_utils.SimulationContext(sim_cfg) # Set main camera sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0]) # design scene scene_cfg = SensorsSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0) scene = InteractiveScene(scene_cfg) # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Run the simulator run_simulator(sim, scene) if __name__ == "__main__": try: # run the main execution main() except Exception as err: carb.log_error(err) carb.log_error(traceback.format_exc()) raise finally: # close sim app simulation_app.close()
10,261
Python
38.929961
131
0.587467
Helbling-Technik/orbit.maze/scripts/rsl_rl/play.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to play a checkpoint if an RL agent from RSL-RL.""" from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # local imports import cli_args # isort: skip # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # append RSL-RL cli arguments cli_args.add_rsl_rl_args(parser) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import os import gymnasium as gym import omni.isaac.contrib_tasks # noqa: F401 import omni.isaac.orbit_tasks # noqa: F401 import torch from omni.isaac.orbit_tasks.utils import get_checkpoint_path, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, export_policy_as_onnx, ) from rsl_rl.runners import OnPolicyRunner # Import extensions to set up environment tasks import orbit.maze # noqa: F401 TODO: import orbit.<your_extension_name> def main(): """Play with RSL-RL agent.""" # parse configuration env_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs) agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg) # wrap around environment for rsl-rl env = RslRlVecEnvWrapper(env) # specify directory for logging experiments log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # load previously trained model ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device) ppo_runner.load(resume_path) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # obtain the trained policy for inference policy = ppo_runner.get_inference_policy(device=env.unwrapped.device) # export policy to onnx export_model_dir = os.path.join(os.path.dirname(resume_path), "exported") export_policy_as_onnx(ppo_runner.alg.actor_critic, export_model_dir, filename="policy.onnx") # reset environment obs, _ = env.get_observations() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # agent stepping actions = policy(obs) # env stepping obs, _, _, _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main execution main() # close sim app simulation_app.close()
3,551
Python
31.888889
101
0.706562
Helbling-Technik/orbit.maze/scripts/rsl_rl/cli_args.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import argparse from typing import TYPE_CHECKING if TYPE_CHECKING: from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlOnPolicyRunnerCfg def add_rsl_rl_args(parser: argparse.ArgumentParser): """Add RSL-RL arguments to the parser. Args: parser: The parser to add the arguments to. """ # create a new argument group arg_group = parser.add_argument_group("rsl_rl", description="Arguments for RSL-RL agent.") # -- experiment arguments arg_group.add_argument( "--experiment_name", type=str, default=None, help="Name of the experiment folder where logs will be stored." ) arg_group.add_argument("--run_name", type=str, default=None, help="Run name suffix to the log directory.") # -- load arguments arg_group.add_argument("--resume", type=bool, default=None, help="Whether to resume from a checkpoint.") arg_group.add_argument("--load_run", type=str, default=None, help="Name of the run folder to resume from.") arg_group.add_argument("--checkpoint", type=str, default=None, help="Checkpoint file to resume from.") # -- logger arguments arg_group.add_argument( "--logger", type=str, default=None, choices={"wandb", "tensorboard", "neptune"}, help="Logger module to use." ) arg_group.add_argument( "--log_project_name", type=str, default=None, help="Name of the logging project when using wandb or neptune." ) def parse_rsl_rl_cfg(task_name: str, args_cli: argparse.Namespace) -> RslRlOnPolicyRunnerCfg: """Parse configuration for RSL-RL agent based on inputs. Args: task_name: The name of the environment. args_cli: The command line arguments. Returns: The parsed configuration for RSL-RL agent based on inputs. """ from omni.isaac.orbit_tasks.utils.parse_cfg import load_cfg_from_registry # load the default configuration rslrl_cfg: RslRlOnPolicyRunnerCfg = load_cfg_from_registry(task_name, "rsl_rl_cfg_entry_point") # override the default configuration with CLI arguments if args_cli.seed is not None: rslrl_cfg.seed = args_cli.seed if args_cli.resume is not None: rslrl_cfg.resume = args_cli.resume if args_cli.load_run is not None: rslrl_cfg.load_run = args_cli.load_run if args_cli.checkpoint is not None: rslrl_cfg.load_checkpoint = args_cli.checkpoint if args_cli.run_name is not None: rslrl_cfg.run_name = args_cli.run_name if args_cli.logger is not None: rslrl_cfg.logger = args_cli.logger # set the project name for wandb and neptune if rslrl_cfg.logger in {"wandb", "neptune"} and args_cli.log_project_name: rslrl_cfg.wandb_project = args_cli.log_project_name rslrl_cfg.neptune_project = args_cli.log_project_name return rslrl_cfg
2,981
Python
38.759999
117
0.688695
Helbling-Technik/orbit.maze/scripts/rsl_rl/train.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to train RL agent with RSL-RL.""" from __future__ import annotations """Launch Isaac Sim Simulator first.""" import argparse import os from omni.isaac.orbit.app import AppLauncher # local imports import cli_args # isort: skip # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # append RSL-RL cli arguments cli_args.add_rsl_rl_args(parser) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # load cheaper kit config in headless if args_cli.headless: app_experience = f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.gym.headless.kit" else: app_experience = f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit" # launch omniverse app app_launcher = AppLauncher(args_cli, experience=app_experience) simulation_app = app_launcher.app """Rest everything follows.""" import os from datetime import datetime import gymnasium as gym import omni.isaac.orbit_tasks # noqa: F401 import torch from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.utils.dict import print_dict from omni.isaac.orbit.utils.io import dump_pickle, dump_yaml from omni.isaac.orbit_tasks.utils import get_checkpoint_path, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, ) from rsl_rl.runners import OnPolicyRunner # Import extensions to set up environment tasks import orbit.maze # noqa: F401 TODO: import orbit.<your_extension_name> torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False def main(): """Train with RSL-RL agent.""" # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs) agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli) # specify directory for logging experiments log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Logging experiment in directory: {log_root_path}") # specify directory for logging runs: {time-stamp}_{run_name} log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if agent_cfg.run_name: log_dir += f"_{agent_cfg.run_name}" log_dir = os.path.join(log_root_path, log_dir) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos"), "step_trigger": lambda step: step % args_cli.video_interval == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for rsl-rl env = RslRlVecEnvWrapper(env) # create runner from rsl-rl runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=log_dir, device=agent_cfg.device) # write git state to logs runner.add_git_repo_to_log(__file__) # save resume path before creating a new log_dir if agent_cfg.resume: # get path to previous checkpoint resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # load previously trained model runner.load(resume_path) # set seed of the environment env.seed(agent_cfg.seed) # dump the configuration into log-directory dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg) dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg) dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg) dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg) # run training runner.learn(num_learning_iterations=agent_cfg.max_iterations, init_at_random_ep_len=True) # close the simulator env.close() if __name__ == "__main__": # run the main execution main() # close sim app simulation_app.close()
5,216
Python
36.532374
117
0.703029
Helbling-Technik/orbit.maze/scripts/sb3/play.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to play a checkpoint if an RL agent from Stable-Baselines3.""" """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from Stable-Baselines3.") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=4, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default="Isaac-Maze-v0", help="Name of the task.") # parser.add_argument("--livestream", type=int, default="1", help="stream remotely") parser.add_argument( "--checkpoint", type=str, default="logs/sb3/Isaac-Maze-v0/2024-05-31_09-56-42/model_16384000_steps.zip", help="Path to model checkpoint.", ) parser.add_argument( "--use_last_checkpoint", action="store_true", help="When no checkpoint provided, use the last saved model. Otherwise use the best saved model.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import numpy as np import os import torch from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecNormalize import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import get_checkpoint_path, load_cfg_from_registry, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper, process_sb3_cfg import orbit.maze def main(): """Play with stable-baselines agent.""" # parse configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) agent_cfg = load_cfg_from_registry(args_cli.task, "sb3_cfg_entry_point") # post-process agent configuration agent_cfg = process_sb3_cfg(agent_cfg) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg) # wrap around environment for stable baselines env = Sb3VecEnvWrapper(env) # normalize environment (if needed) if "normalize_input" in agent_cfg: env = VecNormalize( env, training=True, norm_obs="normalize_input" in agent_cfg and agent_cfg.pop("normalize_input"), norm_reward="normalize_value" in agent_cfg and agent_cfg.pop("normalize_value"), clip_obs="clip_obs" in agent_cfg and agent_cfg.pop("clip_obs"), gamma=agent_cfg["gamma"], clip_reward=np.inf, ) # directory for logging into log_root_path = os.path.join("logs", "sb3", args_cli.task) log_root_path = os.path.abspath(log_root_path) # check checkpoint is valid if args_cli.checkpoint is None: if args_cli.use_last_checkpoint: checkpoint = "model_.*.zip" else: checkpoint = "model.zip" checkpoint_path = get_checkpoint_path(log_root_path, ".*", checkpoint) else: checkpoint_path = args_cli.checkpoint # create agent from stable baselines print(f"Loading checkpoint from: {checkpoint_path}") agent = PPO.load(checkpoint_path, env, print_system_info=True) # reset environment obs = env.reset() # simulate environment while simulation_app.is_running(): # run everything in inference mode with torch.inference_mode(): # agent stepping actions, _ = agent.predict(obs, deterministic=True) # env stepping obs, _, _, _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
4,173
Python
32.934959
115
0.679128
Helbling-Technik/orbit.maze/scripts/sb3/train.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to train RL agent with Stable Baselines3. Since Stable-Baselines3 does not support buffers living on GPU directly, we recommend using smaller number of environments. Otherwise, there will be significant overhead in GPU->CPU transfer. """ """Launch Isaac Sim Simulator first.""" import argparse import os from omni.isaac.orbit.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).") parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=4, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default="Isaac-Maze-v0", help="Name of the task.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") # parser.add_argument( # "--model_path", # type=str, # default="logs/sb3/Isaac-Maze-v0/2024-05-27-GroundTruthModel/model_81920000_steps.zip", # ) parser.add_argument("--model_path", type=str, default=None, help="Path to the existing model to continue training") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import numpy as np import os from datetime import datetime from stable_baselines3 import PPO from stable_baselines3.common.callbacks import CheckpointCallback from stable_baselines3.common.logger import configure from stable_baselines3.common.vec_env import VecNormalize from omni.isaac.orbit.utils.dict import print_dict from omni.isaac.orbit.utils.io import dump_pickle, dump_yaml import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import load_cfg_from_registry, parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper, process_sb3_cfg import orbit.maze # noqa: F401 TODO: import orbit.<your_extension_name> def main(): """Train with stable-baselines agent.""" # parse configuration env_cfg = parse_env_cfg( args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) agent_cfg = load_cfg_from_registry(args_cli.task, "sb3_cfg_entry_point") # override configuration with command line arguments if args_cli.seed is not None: agent_cfg["seed"] = args_cli.seed # directory for logging into log_dir = os.path.join("logs", "sb3", args_cli.task, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # dump the configuration into log-directory dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg) dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg) dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg) dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg) # post-process agent configuration agent_cfg = process_sb3_cfg(agent_cfg) # read configurations about the agent-training policy_arch = agent_cfg.pop("policy") n_timesteps = agent_cfg.pop("n_timesteps") # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos"), "step_trigger": lambda step: step % args_cli.video_interval == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for stable baselines env = Sb3VecEnvWrapper(env) # set the seed env.seed(seed=agent_cfg["seed"]) if "normalize_input" in agent_cfg: env = VecNormalize( env, training=True, norm_obs="normalize_input" in agent_cfg and agent_cfg.pop("normalize_input"), norm_reward="normalize_value" in agent_cfg and agent_cfg.pop("normalize_value"), clip_obs="clip_obs" in agent_cfg and agent_cfg.pop("clip_obs"), gamma=agent_cfg["gamma"], clip_reward=np.inf, ) # Check if a model path is provided if args_cli.model_path: model_path = os.path.abspath(args_cli.model_path) if os.path.isfile(model_path): # Load the existing model agent = PPO.load(args_cli.model_path, env=env) print(f"[INFO] Loaded existing model from {args_cli.model_path}") else: # Create a new agent from scratch agent = PPO(policy_arch, env, verbose=1, **agent_cfg) # configure the logger new_logger = configure(log_dir, ["stdout", "tensorboard"]) agent.set_logger(new_logger) # callbacks for agent checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2) # train the agent agent.learn(total_timesteps=n_timesteps, callback=checkpoint_callback) # save the final model agent.save(os.path.join(log_dir, "model")) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
6,050
Python
37.541401
117
0.689917
Helbling-Technik/orbit.maze/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "0.1.0" # Description title = "Maze" # TODO: Please adapt to your title. description="Maze Task for RL Learning" #TODO: Please adapt to your description. repository = "https://github.com/kevchef/orbit.maze.git" # TODO: Please adapt to your repository. keywords = ["extension", "maze","task","RL", "orbit"] # TODO: Please adapt to your keywords. category = "orbit" readme = "README.md" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.orbit" = {} "omni.isaac.orbit_assets" = {} "omni.isaac.orbit_tasks" = {} "omni.isaac.core" = {} "omni.isaac.gym" = {} "omni.replicator.isaac" = {} # Note: You can add additional dependencies here for your extension. # For example, if you want to use the omni.kit module, you can add it as a dependency: # "omni.kit" = {} [[python.module]] name = "orbit.maze" # TODO: Please adapt to your package name.
917
TOML
31.785713
98
0.688113
Helbling-Technik/orbit.maze/orbit/maze/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Python module serving as a project/extension template. """ # Register Gym environments. from .tasks import * # Register UI extensions. from .ui_extension_example import *
300
Python
19.066665
56
0.743333
Helbling-Technik/orbit.maze/orbit/maze/ui_extension_example.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.ext import omni.ui as ui # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[orbit.ext_template] some_public_function was called with x: ", x) return x**x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class ExampleExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[orbit.ext_template] startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self._count += 1 label.text = f"count: {self._count}" def on_reset(): self._count = 0 label.text = "empty" on_reset() with ui.HStack(): ui.Button("Add", clicked_fn=on_click) ui.Button("Reset", clicked_fn=on_reset) def on_shutdown(self): print("[orbit.ext_template] shutdown")
1,650
Python
33.395833
119
0.609697
Helbling-Technik/orbit.maze/orbit/maze/tasks/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing task implementations for various robotic environments.""" import os import toml # Conveniences to other module directories via relative paths ORBIT_TASKS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ORBIT_TASKS_METADATA = toml.load(os.path.join(ORBIT_TASKS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ORBIT_TASKS_METADATA["package"]["version"] ## # Register Gym environments. ## from omni.isaac.orbit_tasks.utils import import_packages # The blacklist is used to prevent importing configs from sub-packages _BLACKLIST_PKGS = ["utils"] # Import all configs in this package import_packages(__name__, _BLACKLIST_PKGS)
969
Python
29.312499
95
0.744066
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .maze_env_cfg import MazeEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Maze-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": MazeEnvCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
610
Python
20.068965
71
0.662295
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/maze_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math import torch import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.sensors import CameraCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.utils import configclass import orbit.maze.tasks.maze.mdp as mdp import os ## # Pre-defined configs ## # from omni.isaac.orbit_assets.maze import MAZE_CFG # isort:skip # from maze import MAZE_CFG # isort:skip # Absolute path of the current script current_script_path = os.path.abspath(__file__) # Absolute path of the project root (assuming it's three levels up from the current script) project_root = os.path.join(current_script_path, "../../../../..") MAZE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=os.path.join(project_root, "usds/Maze_Simple.usd"), rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=100.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.0), joint_pos={"OuterDOF_RevoluteJoint": 0.0, "InnerDOF_RevoluteJoint": 0.0} ), actuators={ "outer_actuator": ImplicitActuatorCfg( joint_names_expr=["OuterDOF_RevoluteJoint"], effort_limit=0.01, # 5g * 9.81 * 0.15m = 0.007357 velocity_limit=1.0 / math.pi, stiffness=0.0, damping=10.0, ), "inner_actuator": ImplicitActuatorCfg( joint_names_expr=["InnerDOF_RevoluteJoint"], effort_limit=0.01, # 5g * 9.81 * 0.15m = 0.007357 velocity_limit=1.0 / math.pi, stiffness=0.0, damping=10.0, ), }, ) # Scene definition ## @configclass class MazeSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(size=(100.0, 100.0)), ) # cartpole robot: ArticulationCfg = MAZE_CFG.replace(prim_path="{ENV_REGEX_NS}/Labyrinth") # Sphere with collision enabled but not actuated sphere = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/sphere", spawn=sim_utils.SphereCfg( radius=0.005, mass_props=sim_utils.MassPropertiesCfg(density=7850), rigid_props=sim_utils.RigidBodyPropertiesCfg(rigid_body_enabled=True), collision_props=sim_utils.CollisionPropertiesCfg(collision_enabled=True), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.9, 0.9, 0.9), metallic=0.8), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, 0.0, 0.11)), ) dome_light = AssetBaseCfg( prim_path="/World/DomeLight", spawn=sim_utils.DomeLightCfg(color=(0.9, 0.9, 0.9), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() # sphere_cmd_pos = mdp.UniformPose2dCommandCfg( # asset_name="sphere", # simple_heading=True, # resampling_time_range=(10000000000, 10000000000), # debug_vis=False, # ranges=mdp.UniformPose2dCommandCfg.Ranges(pos_x=(-0.05, 0.05), pos_y=(-0.05, 0.05)), # ) @configclass class ActionsCfg: """Action specifications for the MDP.""" outer_joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["OuterDOF_RevoluteJoint"], scale=0.1) inner_joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["InnerDOF_RevoluteJoint"], scale=0.1) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos = ObsTerm(func=mdp.joint_pos_rel) joint_vel = ObsTerm(func=mdp.joint_vel_rel) sphere_pos = ObsTerm( func=mdp.root_pos_w, params={"asset_cfg": SceneEntityCfg("sphere")}, ) sphere_lin_vel = ObsTerm( func=mdp.root_lin_vel_w, params={"asset_cfg": SceneEntityCfg("sphere")}, ) target_pos_rel = ObsTerm( func=mdp.get_target_pos, params={ "asset_cfg": SceneEntityCfg("sphere"), "target": {"x": 0.0, "y": 0.0}, }, ) # target_sphere_pos = ObsTerm( # func=mdp.get_generated_commands_xy, # params={"command_name": "sphere_cmd_pos"}, # ) def __post_init__(self) -> None: self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # reset reset_outer_joint = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["OuterDOF_RevoluteJoint"]), "position_range": (-0.01 * math.pi, 0.01 * math.pi), "velocity_range": (-0.01 * math.pi, 0.01 * math.pi), }, ) reset_inner_joint = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["InnerDOF_RevoluteJoint"]), "position_range": (-0.01 * math.pi, 0.01 * math.pi), "velocity_range": (-0.01 * math.pi, 0.01 * math.pi), }, ) reset_sphere_pos = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "asset_cfg": SceneEntityCfg("sphere"), "pose_range": {"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, "velocity_range": {}, }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Constant running reward alive = RewTerm(func=mdp.is_alive, weight=0.1) # (2) Failure penalty terminating = RewTerm(func=mdp.is_terminated, weight=-2.0) # (3) Primary task: keep sphere in center sphere_pos = RewTerm( func=mdp.root_xypos_target_l2, weight=-5000.0, params={ "asset_cfg": SceneEntityCfg("sphere"), "target": {"x": 0.0, "y": 0.0}, }, ) # sphere_to_target = RewTerm( # func=mdp.object_goal_distance_l2, # params={"command_name": "sphere_cmd_pos", "object_cfg": SceneEntityCfg("sphere")}, # weight=-5000.0, # ) outer_joint_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["OuterDOF_RevoluteJoint"])}, ) inner_joint_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["InnerDOF_RevoluteJoint"])}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Time out time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Sphere off maze sphere_on_ground = DoneTerm( func=mdp.root_height_below_minimum, params={"asset_cfg": SceneEntityCfg("sphere"), "minimum_height": 0.01}, ) @configclass class CurriculumCfg: """Configuration for the curriculum.""" pass ## # Environment configuration ## @configclass class MazeEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MazeSceneCfg = MazeSceneCfg(num_envs=16, env_spacing=0.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() # MDP settings curriculum: CurriculumCfg = CurriculumCfg() rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() # No command generator commands: CommandsCfg = CommandsCfg() # Post initialization def __post_init__(self) -> None: """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 10 # viewer settings self.viewer.eye = (1, 1, 1.5) # simulation settings self.sim.dt = 1 / 200
9,410
Python
30.162252
120
0.623273
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CartpolePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 150 save_interval = 50 experiment_name = "cartpole" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[32, 32], critic_hidden_dims=[32, 32], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,065
Python
24.380952
58
0.644131
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "cartpole" experiment_name: "" write_interval: 12 checkpoint_interval: 120 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 2400
1,865
YAML
26.850746
88
0.713673
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e9 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0
474
YAML
22.749999
92
0.611814
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
172
Python
23.714282
56
0.72093
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: False num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1.0 normalize_advantage: False gamma: 0.99 tau : 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 150 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,648
YAML
19.873417
73
0.61165
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the cartpole environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403 from .observations import * # noqa: F401, F403 from .events import * # noqa: F401, F403
411
Python
30.692305
92
0.725061
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import wrap_to_pi if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def joint_pos_target_l2(env: RLTaskEnv, target: float, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # wrap the joint positions to (-pi, pi) joint_pos = wrap_to_pi(asset.data.joint_pos[:, asset_cfg.joint_ids]) # compute the reward # print("joint pos reward: ", torch.sum(torch.square(joint_pos - target), dim=1)) return torch.sum(torch.square(joint_pos - target), dim=1) def root_pos_target_l2(env: RLTaskEnv, target: dict[str, float], asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] target_list = torch.tensor([target.get(key, 0.0) for key in ["x", "y", "z"]], device=asset.data.root_pos_w.device) root_pos = asset.data.root_pos_w - env.scene.env_origins # compute the reward return torch.sum(torch.square(root_pos - target_list), dim=1) def root_xypos_target_l2(env: RLTaskEnv, target: dict[str, float], asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] target_tensor = torch.tensor([target.get(key, 0.0) for key in ["x", "y"]], device=asset.data.root_pos_w.device) root_pos = asset.data.root_pos_w - env.scene.env_origins # compute the reward # xy_reward_l2 = (torch.sum(torch.square(root_pos[:,:2] - target_tensor), dim=1) <= 0.0025).float()*2 - 1 xy_reward_l2 = torch.sum(torch.square(root_pos[:, :2] - target_tensor), dim=1) # print("sphere_xypos_rewards: ", xy_reward_l2.tolist()) return xy_reward_l2 def object_goal_distance_l2( env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("sphere"), ) -> torch.Tensor: """Reward the agent for tracking the goal pose using L2-kernel.""" # extract the used quantities (to enable type-hinting) object: RigidObject = env.scene[object_cfg.name] command = env.command_manager.get_command(command_name) # command_pos is difference between target in env frame and object in env frame command_pos = command[:, :2] object_pos = object.data.root_pos_w - env.scene.env_origins # print("target_pos: ", command_pos) # print("object_pos: ", object_pos[:, :2]) # distance of the target to the object: (num_envs,) distance = torch.norm(command_pos, dim=1) # print("distance: ", distance) # rewarded if the object is closest to the target return distance
3,207
Python
43.555555
118
0.696913
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/mdp/events.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def set_random_target_pos( env: RLTaskEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) target_positions = env.scene.env_origins[env_ids] + rand_samples[:, 0:3] return target_positions
1,111
Python
29.888888
112
0.713771
Helbling-Technik/orbit.maze/orbit/maze/tasks/maze/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.sensors import Camera from omni.isaac.orbit.assets import Articulation, RigidObject from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import wrap_to_pi if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def camera_image(env: RLTaskEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Camera image from top camera.""" # Extract the used quantities (to enable type-hinting) asset: Camera = env.scene[asset_cfg.name] # Get the RGBA image tensor rgba_tensor = asset.data.output["rgb"] # Check the shape of the input tensor assert rgba_tensor.dim() == 4 and rgba_tensor.size(-1) == 4, "Expected tensor of shape (n, 128, 128, 4)" # Ensure the tensor is on the correct device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") rgba_tensor = rgba_tensor.to(device) # Convert the RGBA tensor to grayscale # Using the weights for R, G, and B, and ignoring the Alpha channel weights = torch.tensor([0.2989, 0.5870, 0.1140, 0.0], device=device).view(1, 1, 1, 4) grayscale_tensor = (rgba_tensor * weights).sum(dim=-1) # Flatten each image to a 1D tensor n_envs = grayscale_tensor.size(0) n_pixels = grayscale_tensor.size(1) * grayscale_tensor.size(2) grayscale_tensor_flattened = grayscale_tensor.view(n_envs, n_pixels) return grayscale_tensor_flattened def get_target_pos(env: RLTaskEnv, target: dict[str, float], asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) # asset: RigidObject = env.scene[asset_cfg.name] # target_tensor = torch.tensor([target.get(key, 0.0) for key in ["x", "y"]], device=asset.data.root_pos_w.device) # root_pos = asset.data.root_pos_w - env.scene.env_origins zeros_tensor = torch.zeros_like(env.scene.env_origins) # return (zeros_tensor - root_pos)[:, :2].to(dtype=torch.float16) return zeros_tensor[:, :2] def get_env_pos_of_command(env: RLTaskEnv, object_cfg: SceneEntityCfg, command_name: str) -> torch.Tensor: """The generated command from command term in the command manager with the given name.""" """The env frame target position can not fully be recovered as one of the terms is updated less frequently""" object: RigidObject = env.scene[object_cfg.name] object_pos = object.data.root_pos_w - env.scene.env_origins commanded = env.command_manager.get_command(command_name) target_pos_env = commanded[:, :2] + object_pos[:, :2] print("target_pos_env_observation: ", target_pos_env[:, :2]) return target_pos_env def get_generated_commands_xy(env: RLTaskEnv, command_name: str) -> torch.Tensor: """The generated command from command term in the command manager with the given name.""" commanded = env.command_manager.get_command(command_name) return commanded[:, :2]
3,161
Python
41.729729
117
0.707371
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments for legged robots.""" from .velocity import * # noqa
205
Python
21.888886
56
0.731707
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/velocity_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RandomizationTermCfg as RandTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import orbit.maze.tasks.locomotion.velocity.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=5, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # robots robot: ArticulationCfg = MISSING # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, track_air_time=True) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) sky_light = AssetBaseCfg( prim_path="/World/skyLight", spawn=sim_utils.DomeLightCfg(color=(0.13, 0.13, 0.13), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" base_velocity = mdp.UniformVelocityCommandCfg( asset_name="robot", resampling_time_range=(10.0, 10.0), rel_standing_envs=0.02, rel_heading_envs=1.0, heading_command=True, heading_control_stiffness=0.5, debug_vis=True, ranges=mdp.UniformVelocityCommandCfg.Ranges( lin_vel_x=(-1.0, 1.0), lin_vel_y=(-1.0, 1.0), ang_vel_z=(-1.0, 1.0), heading=(-math.pi, math.pi) ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel, noise=Unoise(n_min=-0.1, n_max=0.1)) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, noise=Unoise(n_min=-0.2, n_max=0.2)) projected_gravity = ObsTerm( func=mdp.projected_gravity, noise=Unoise(n_min=-0.05, n_max=0.05), ) velocity_commands = ObsTerm(func=mdp.generated_commands, params={"command_name": "base_velocity"}) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-1.5, n_max=1.5)) actions = ObsTerm(func=mdp.last_action) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, noise=Unoise(n_min=-0.1, n_max=0.1), clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class RandomizationCfg: """Configuration for randomization.""" # startup physics_material = RandTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.8, 0.8), "dynamic_friction_range": (0.6, 0.6), "restitution_range": (0.0, 0.0), "num_buckets": 64, }, ) add_base_mass = RandTerm( func=mdp.add_body_mass, mode="startup", params={"asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_range": (-5.0, 5.0)}, ) # reset base_external_force_torque = RandTerm( func=mdp.apply_external_force_torque, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "force_range": (0.0, 0.0), "torque_range": (-0.0, 0.0), }, ) reset_base = RandTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.5, 0.5), "y": (-0.5, 0.5), "z": (-0.5, 0.5), "roll": (-0.5, 0.5), "pitch": (-0.5, 0.5), "yaw": (-0.5, 0.5), }, }, ) reset_robot_joints = RandTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) # interval push_robot = RandTerm( func=mdp.push_by_setting_velocity, mode="interval", interval_range_s=(10.0, 15.0), params={"velocity_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5)}}, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task track_lin_vel_xy_exp = RewTerm( func=mdp.track_lin_vel_xy_exp, weight=1.0, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) track_ang_vel_z_exp = RewTerm( func=mdp.track_ang_vel_z_exp, weight=0.5, params={"command_name": "base_velocity", "std": math.sqrt(0.25)} ) # -- penalties lin_vel_z_l2 = RewTerm(func=mdp.lin_vel_z_l2, weight=-2.0) ang_vel_xy_l2 = RewTerm(func=mdp.ang_vel_xy_l2, weight=-0.05) dof_torques_l2 = RewTerm(func=mdp.joint_torques_l2, weight=-1.0e-5) dof_acc_l2 = RewTerm(func=mdp.joint_acc_l2, weight=-2.5e-7) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) feet_air_time = RewTerm( func=mdp.feet_air_time, weight=0.125, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*FOOT"), "command_name": "base_velocity", "threshold": 0.5, }, ) undesired_contacts = RewTerm( func=mdp.undesired_contacts, weight=-1.0, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*THIGH"), "threshold": 1.0}, ) # -- optional penalties flat_orientation_l2 = RewTerm(func=mdp.flat_orientation_l2, weight=0.0) dof_pos_limits = RewTerm(func=mdp.joint_pos_limits, weight=0.0) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" terrain_levels = CurrTerm(func=mdp.terrain_levels_vel) ## # Environment configuration ## @configclass class LocomotionVelocityRoughEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() randomization: RandomizationCfg = RandomizationCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 0.005 self.sim.disable_contact_processing = True self.sim.physics_material = self.scene.terrain.physics_material # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = self.decimation * self.sim.dt if self.scene.contact_forces is not None: self.scene.contact_forces.update_period = self.sim.dt # check if terrain levels curriculum is enabled - if so, enable curriculum for terrain generator # this generates terrains with increasing difficulty and is useful for training if getattr(self.curriculum, "terrain_levels", None) is not None: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = True else: if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.curriculum = False
10,641
Python
32.570978
118
0.626351
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Locomotion environments with velocity-tracking commands. These environments are based on the `legged_gym` environments provided by Rudin et al. Reference: https://github.com/leggedrobotics/legged_gym """
336
Python
24.923075
86
0.764881
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the locomotion environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .curriculums import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
370
Python
29.916664
94
0.732432
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/mdp/curriculums.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to create curriculum for the learning environment. The functions can be passed to the :class:`omni.isaac.orbit.managers.CurriculumTermCfg` object to enable the curriculum introduced by the function. """ from __future__ import annotations from collections.abc import Sequence from typing import TYPE_CHECKING import torch from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def terrain_levels_vel( env: RLTaskEnv, env_ids: Sequence[int], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Curriculum based on the distance the robot walked when commanded to move at a desired velocity. This term is used to increase the difficulty of the terrain when the robot walks far enough and decrease the difficulty when the robot walks less than half of the distance required by the commanded velocity. .. note:: It is only possible to use this term with the terrain type ``generator``. For further information on different terrain types, check the :class:`omni.isaac.orbit.terrains.TerrainImporter` class. Returns: The mean terrain level for the given environment ids. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain command = env.command_manager.get_command("base_velocity") # compute the distance the robot walked distance = torch.norm(asset.data.root_pos_w[env_ids, :2] - env.scene.env_origins[env_ids, :2], dim=1) # robots that walked far enough progress to harder terrains move_up = distance > terrain.cfg.terrain_generator.size[0] / 2 # robots that walked less than half of their required distance go to simpler terrains move_down = distance < torch.norm(command[env_ids, :2], dim=1) * env.max_episode_length_s * 0.5 move_down *= ~move_up # update terrain levels terrain.update_env_origins(env_ids, move_up, move_down) # return the mean terrain level return torch.mean(terrain.terrain_levels.float())
2,376
Python
41.446428
112
0.742424
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING import torch from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def feet_air_time(env: RLTaskEnv, command_name: str, sensor_cfg: SceneEntityCfg, threshold: float) -> torch.Tensor: """Reward long steps taken by the feet using L2-kernel. This function rewards the agent for taking steps that are longer than a threshold. This helps ensure that the robot lifts its feet off the ground and takes steps. The reward is computed as the sum of the time for which the feet are in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward first_contact = contact_sensor.compute_first_contact(env.step_dt)[:, sensor_cfg.body_ids] last_air_time = contact_sensor.data.last_air_time[:, sensor_cfg.body_ids] reward = torch.sum((last_air_time - threshold) * first_contact, dim=1) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_air_time_positive_biped(env, command_name: str, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Reward long steps taken by the feet for bipeds. This function rewards the agent for taking steps up to a specified threshold and also keep one foot at a time in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward air_time = contact_sensor.data.current_air_time[:, sensor_cfg.body_ids] contact_time = contact_sensor.data.current_contact_time[:, sensor_cfg.body_ids] in_contact = contact_time > 0.0 in_mode_time = torch.where(in_contact, contact_time, air_time) single_stance = torch.sum(in_contact.int(), dim=1) == 1 reward = torch.min(torch.where(single_stance.unsqueeze(-1), in_mode_time, 0.0), dim=1)[0] reward = torch.clamp(reward, max=threshold) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward
2,595
Python
43.75862
119
0.717148
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for velocity-based locomotion environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
363
Python
35.399996
94
0.763085
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/rough_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from orbit.maze.tasks.locomotion.velocity.velocity_env_cfg import ( LocomotionVelocityRoughEnvCfg, ) ## # Pre-defined configs ## from omni.isaac.orbit_assets.anymal import ANYMAL_D_CFG # isort: skip @configclass class AnymalDRoughEnvCfg(LocomotionVelocityRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to anymal-d self.scene.robot = ANYMAL_D_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AnymalDRoughEnvCfg_PLAY(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.randomization.base_external_force_torque = None self.randomization.push_robot = None
1,609
Python
31.857142
81
0.682411
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalDRoughEnvCfg @configclass class AnymalDFlatEnvCfg(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalDFlatEnvCfg_PLAY(AnymalDFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.randomization.base_external_force_torque = None self.randomization.push_robot = None
1,382
Python
30.431817
60
0.656295
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-D-Template-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Anymal-D-Template-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-Template-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-Template-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
1,778
Python
30.210526
77
0.669854
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalDRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_d_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalDFlatPPORunnerCfg(AnymalDRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_d_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,417
Python
26.26923
58
0.645025
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e6 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0
475
YAML
21.666666
92
0.610526
Helbling-Technik/orbit.maze/orbit/maze/tasks/locomotion/velocity/config/anymal_d/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
Helbling-Technik/orbit.maze/docs/CHANGELOG.rst
Changelog --------- 0.1.0 (2024-01-29) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created an initial template for building an extension or project based on Orbit
155
reStructuredText
13.181817
81
0.593548
ashleygoldstein/kit-exts-joints/README.md
# Create Joints in Omniverse ![](https://github.com/ashleygoldstein/kit-exts-joints/blob/main/images/createJointext.PNG) This extension allows you to create any joint easily and efficiently between two prims in your Omniverse USD stage! ## Get Started This extension is available in Omniverse Kit and can be installed via the Extensions manager tab. Once you are in the Extensions tab, navigate to the Community tab and search `Joint Connection`. Install and Enable the extension and the Joint Connection window will appear. ## How to Use To use this extension once enabled select your first Prim in the stage and click the `S` button in the Joint Connection window for `Prim A`. Then select your second Prim in the stage that you want the joint to be connected with and click the `S` button for `Prim B`. In the `Joints` drop down menu, select which joint you want to create. Then, click `Create Joint` button. :tada: Congratulations! :tada: You now have a joint! Click the `play` button in Omniverse to test it out. > :exclamation: You must have rigidbodies added to your prims for joint physics to work properly
1,144
Markdown
38.482757
141
0.765734
ashleygoldstein/kit-exts-joints/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389
ashleygoldstein/kit-exts-joints/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
ashleygoldstein/kit-exts-joints/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
ashleygoldstein/kit-exts-joints/exts/goldstein.joint.connection/goldstein/joint/connection/extension.py
import omni.ext import omni.ui as ui from .window import JointWindow # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class JointCreationExt(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[Joint.Creation.Ext] startup") self._window = JointWindow("Joint Creation", width=300, height=300) def on_shutdown(self): self._window.destroy() print("[Joint.Creation.Ext] shutdown")
805
Python
39.299998
119
0.720497
ashleygoldstein/kit-exts-joints/exts/goldstein.joint.connection/goldstein/joint/connection/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
ashleygoldstein/kit-exts-joints/exts/goldstein.joint.connection/goldstein/joint/connection/utils.py
from typing import List import omni.usd import omni.kit.commands def get_selection() -> List[str]: """Get the list of currently selected prims""" return omni.usd.get_context().get_selection().get_selected_prim_paths()
227
Python
27.499997
75
0.726872
ashleygoldstein/kit-exts-joints/exts/goldstein.joint.connection/goldstein/joint/connection/window.py
import omni.ui as ui from .utils import get_selection import omni.kit.commands import omni.usd JOINTS = ("D6", "Revolute", "Fixed", "Spherical", "Prismatic", "Distance", "Gear", "Rack and Pinion") class JointWindow(ui.Window): def __init__(self, title: str, **kwargs) -> None: super().__init__(title, **kwargs) self._source_prim_model_a = ui.SimpleStringModel() self._source_prim_model_b = ui.SimpleStringModel() self._stage = omni.usd.get_context().get_stage() self.frame.set_build_fn(self._build_fn) self.combo_model = None self.current_joint = None def _on_get_selection_a(self): """Called when the user presses the "Get From Selection" button""" self._source_prim_model_a.as_string = ", ".join(get_selection()) def _on_get_selection_b(self): """Called when the user presses the "Get From Selection" button""" self._source_prim_model_b.as_string = ", ".join(get_selection()) def _build_window(self): with self.frame: with ui.VStack(): with ui.CollapsableFrame("Source"): with ui.VStack(height=20, spacing=4): with ui.HStack(): ui.Label("Prim A") ui.StringField(model = self._source_prim_model_a) ui.Button("S", clicked_fn=self._on_get_selection_a) ui.Spacer() with ui.HStack(): ui.Label("Prim B") ui.StringField(model = self._source_prim_model_b) ui.Button("S", clicked_fn=self._on_get_selection_b) with ui.CollapsableFrame("Joints"): with ui.VStack(): ui.Label self.combo_model = ui.ComboBox(0,*JOINTS).model def combo_changed(item_model, item): value_model = item_model.get_item_value_model(item) self.current_joint = JOINTS[value_model.as_int] # self.current_index = value_model.as_int self._combo_changed_sub = self.combo_model.subscribe_item_changed_fn(combo_changed) def on_click(): print("clicked!") omni.kit.commands.execute('CreateJointCommand', stage = self._stage, joint_type=self.current_joint, from_prim = self._stage.GetPrimAtPath(self._source_prim_model_a.as_string), to_prim = self._stage.GetPrimAtPath(self._source_prim_model_b.as_string)) ui.Button("Create Joint", clicked_fn=lambda: on_click()) def _build_fn(self): with ui.ScrollingFrame(): with ui.VStack(height=10): self._build_window() def destroy(self) -> None: self._combo_changed_sub = None return super().destroy()
3,350
Python
42.51948
127
0.477313
ashleygoldstein/kit-exts-joints/exts/goldstein.joint.connection/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "Joint Creation" description="This extension provides an easy and efficient way to select Prims and connect with any type of Joint." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import goldstein.joint.connection". [[python.module]] name = "goldstein.joint.connection"
820
TOML
27.310344
115
0.746341
gist-ailab/AILAB-isaac-sim-pick-place/README.md
# isaac-sim-pick-place ## Environment Setup ### 1. Download Isaac Sim - Dependency check - Ubuntu - Recommanded: 20.04 / 22.04 - Tested on: 20.04 - NVIDIA Driver version - Recommanded: 525.60.11 - Minimum: 510.73.05 - Tested on: 510.108.03 / - [Download Omniverse](https://developer.nvidia.com/isaac-sim) - [Workstation Setup](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_basic.html) - [Python Environment Installation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_python.html#advanced-running-with-anaconda) ### 2. Environment Setup ## 2-1. Conda Check [Python Environment Installation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_python.html#advanced-running-with-anaconda) - Create env create ``` conda env create -f environment.yml conda activate isaac-sim ``` - Setup environment variables so that Isaac Sim python packages are located correctly ``` source setup_conda_env.sh ``` - Install requirment pakages ``` pip install -r requirements.txt ``` ## 2-2. Docker (recommended) - Install Init file ``` wget https://raw.githubusercontent.com/gist-ailab/AILAB-isaac-sim-pick-place/main/dockers/init_script.sh zsh init_script.sh ```
1,312
Markdown
26.93617
152
0.696646
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-4/pick_place.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() # Task로부터 ur5e 획득 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) # PickPlace controller 생성 my_controller = PickPlaceController( name="pick_place_controller", gripper=my_ur5e.gripper, robot_articulation=my_ur5e ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): # step이 0일때, world와 controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # my_world로 부터 observation 값들 획득​ observations = my_world.get_observations() # 획득한 observation을 pick place controller에 전달 actions = my_controller.forward( picking_position=observations[task_params["task_object_name_0"]["value"]]["position"], placing_position=observations[task_params["task_object_name_0"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0, 0.14]) ) # controller의 동작이 끝났음을 출력 if my_controller.is_done(): print("done picking and placing") break # 선언한 action을 입력받아 articulation_controller를 통해 action 수행. # Controller 내부에서 계산된 joint position값을 통해 action을 수행함​ articulation_controller.apply_action(actions) # simulation 종료​ simulation_app.close()
3,733
Python
32.044248
105
0.669167
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-4/1_practice_controller_generation.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() ######################################################################## ################### Pick place controller 생성 ########################## # Task로부터 ur5e 획득 # PickPlace controller 생성 # robot control(PD control)을 위한 instance 선언 ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # simulation 종료​ simulation_app.close()
2,598
Python
28.873563
82
0.635489
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-4/2_practice_pickplace.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() ######################################################################## ################### Pick place controller 생성 ########################## # Task로부터 ur5e 획득 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) # PickPlace controller 생성 my_controller = PickPlaceController( name="pick_place_controller", gripper=my_ur5e.gripper, robot_articulation=my_ur5e ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') ######################## Pick place 수행 ############################### # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # world가 동작하는 동안 작업 수행 if my_world.is_playing(): # step이 0일때, world와 controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # my_world로 부터 observation 값들 획득​ # 획득한 observation을 pick place controller에 전달 # controller의 동작이 끝났음을 출력 # 선언한 action을 입력받아 articulation_controller를 통해 action 수행. # Controller 내부에서 계산된 joint position값을 통해 action을 수행함​ # simulation 종료​ simulation_app.close() ########################################################################
3,579
Python
29.862069
82
0.610226
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-4/0_practice_task_generation.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 # 랜덤한 물체에 대한 usd file path 선택 # Random하게 생성된 물체들의 ​번호와 카테고리 출력 # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) # 물체를 놓을 위치(place position) 지정 # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 # World에 Task 추가 ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # simulation 종료​ simulation_app.close()
1,280
Python
25.687499
79
0.689844
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-2/0_position_control.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import numpy as np import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.tasks.pick_place_task import UR5ePickPlace from utils.controllers.RMPFflow_pickplace import RMPFlowController from utils.controllers.basic_manipulation_controller import BasicManipulationController # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace() my_world.add_task(my_task) my_world.reset() # Controller 생성 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = BasicManipulationController( # Controller의 이름 설정 name='basic_manipulation_controller', # 로봇 모션 controller 설정 cspace_controller=RMPFlowController( name="end_effector_controller_cspace_controller", robot_articulation=my_ur5e, attach_gripper=True ), # 로봇의 gripper 설정 gripper=my_ur5e.gripper, # phase의 진행 속도 설정 events_dt=[0.008], ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() my_controller.reset() # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 시뮬레이션 앱 실행 후 dalay를 위한 변수 max_step = 150 # 시뮬레이션 앱이 실행 중이면 동작 ee_target_position = np.array([0.25, -0.23, 0.4]) while simulation_app.is_running(): # 생성한 world 에서 physics simulation step​ my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index > max_step: # my_world로 부터 observation 값들 획득​ observations = my_world.get_observations() # 획득한 observation을 pick place controller에 전달 actions = my_controller.forward( target_position=ee_target_position, current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset = np.array([0, 0, 0.14]) ) # controller의 동작이 끝났음을 출력 if my_controller.is_done(): print("done position control of end-effector") break # 컨트롤러 내부에서 계산된 타겟 joint position값을 # articulation controller에 전달하여 action 수행 articulation_controller.apply_action(actions) # 시뮬레이션 종료 simulation_app.close()
2,648
Python
32.1125
108
0.686934
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-2/1_look_around.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport from omni.isaac.core.utils.rotations import euler_angles_to_quat import numpy as np import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.tasks.pick_place_task import UR5ePickPlace from utils.controllers.RMPFflow_pickplace import RMPFlowController from utils.controllers.basic_manipulation_controller import BasicManipulationController # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace() # World에 Task 추가 및 World 리셋 my_world.add_task(my_task) my_world.reset() # Task로부터 로봇과 카메라 획득 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) # Controller 생성 my_controller = BasicManipulationController( name='basic_manipulation_controller', cspace_controller=RMPFlowController( name="basic_manipulation_controller_cspace_controller", robot_articulation=my_ur5e, attach_gripper=True ), gripper=my_ur5e.gripper, events_dt=[0.008], ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # target object를 찾기 위한 예제 코드 # end effector가 반지름 4를 가지며 theta가 45도씩 360도를 회전 수행 for theta in range(0, 360, 45): # theta 값에 따라서 end effector의 위치를 지정(x, y, z) r, z = 4, 0.35 x, y = r/10 * np.cos(theta/360*2*np.pi), r/10 * np.sin(theta/360*2*np.pi) while simulation_app.is_running(): # 생성한 world 에서 physics simulation step​ my_world.step(render=True) if my_world.is_playing(): # step이 0일때, World와 Controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # 획득한 observation을 pick place controller에 전달 actions = my_controller.forward( target_position=np.array([x, y, z]), current_joint_positions=my_ur5e.get_joint_positions(), end_effector_offset = np.array([0, 0, 0.14]), end_effector_orientation=euler_angles_to_quat(np.array([0, np.pi, theta * 2 * np.pi / 360])) ) # end effector가 원하는 위치에 도달하면 # controller reset 및 while문 나가기 if my_controller.is_done(): my_controller.reset() break # 선언한 action을 입력받아 articulation_controller를 통해 action 수행 # Controller에서 계산된 joint position값을 통해 action을 수행함 articulation_controller.apply_action(actions) simulation_app.close()
3,016
Python
32.522222
108
0.656499
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-2/2_gripper_control.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import numpy as np import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.tasks.pick_place_task import UR5ePickPlace from utils.controllers.RMPFflow_pickplace import RMPFlowController from utils.controllers.basic_manipulation_controller import BasicManipulationController # if you don't declare objects_position, the objects will be placed randomly objects_position = np.array([0.4, 0.4, 0.1]) target_position = np.array([0.4, -0.33, 0.05]) # 0.55 for considering the length of the gripper tip target_orientation = np.array([0, 0, 0, 1]) offset = np.array([0, 0, 0.1]) # releasing offset at the target position my_world = World(stage_units_in_meters=1.0) my_task = UR5ePickPlace() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = BasicManipulationController( name='basic_manipulation_controller', cspace_controller=RMPFlowController( name="end_effector_controller_cspace_controller", robot_articulation=my_ur5e, attach_gripper=True ), gripper=my_ur5e.gripper, events_dt=[0.008], ) articulation_controller = my_ur5e.get_articulation_controller() my_controller.reset() viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 그리퍼 열기 / 닫기 명령어 입력받음 while True: instruction = input('Enter the instruction [open/close]:') if instruction in ["o", "open", "c", "close"]: break else: print("wrong instruction") print('instruction : ', instruction) while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): observations = my_world.get_observations() if instruction == "o" or instruction == "open": actions = my_controller.open( current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], ) elif instruction == "c" or instruction == "close": actions = my_controller.close( current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], ) articulation_controller.apply_action(actions) # 컨트롤러가 끝나면 새로운 명령어 입력 받음 if my_controller.is_done(): if instruction == "o" or instruction == "open": print("done opening the gripper\n") elif instruction == "c" or instruction == "close": print("done closing the gripper\n") while True: instruction = input('Enter the instruction [open/close/quit]:') if instruction in ["o", "open", "c", "close", "q", "quit"]: break else: print("wrong instruction") print('instruction : ', instruction) print() if instruction == 'q' or instruction == 'quit': break my_controller.reset() simulation_app.close()
3,281
Python
37.16279
108
0.650716
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-2/1_practice_look_around.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport from omni.isaac.core.utils.rotations import euler_angles_to_quat import numpy as np import sys, os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.tasks.pick_place_task import UR5ePickPlace from utils.controllers.RMPFflow_pickplace import RMPFlowController from utils.controllers.basic_manipulation_controller import BasicManipulationController ############### 로봇의 기본적인 매니퓰레이션 동작을 위한 환경 설정 ################ # World 생성 # Task 생성 # World에 Task 추가 및 World 리셋 # Task로부터 로봇과 카메라 획득 # 로봇의 액션을 수행하는 Controller 생성 ######################################################################### # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # target object를 찾기 위한 예제 코드 # end effector가 반지름 4를 가지며 theta가 45도씩 360도를 회전 수행 for theta in range(0, 360, 45): # theta 값에 따라서 end effector의 위치를 지정(x, y, z) r, z = 4, 0.35 x, y = r/10 * np.cos(theta/360*2*np.pi), r/10 * np.sin(theta/360*2*np.pi) while simulation_app.is_running(): # 생성한 world 에서 physics simulation step​ my_world.step(render=True) if my_world.is_playing(): # step이 0일때, World와 Controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() ############################# 로봇 액션 생성 ############################## # 획득한 observation을 pick place controller에 전달 ######################################################################### # end effector가 원하는 위치에 도달하면 # controller reset 및 while문 나가기 if my_controller.is_done(): my_controller.reset() break ############################# 로봇 액션 수행 ############################## # 선언한 action을 입력받아 articulation_controller를 통해 action 수행 # Controller에서 계산된 joint position값을 통해 action을 수행함 ######################################################################### simulation_app.close()
2,621
Python
26.030928
87
0.540252
gist-ailab/AILAB-isaac-sim-pick-place/lecture/1-1/debug_example.py
a =1 b=1 print(a+b) b=2 print(a+b)
36
Python
4.285714
10
0.555556
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-3/pick_place.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() # Task로부터 ur5e 획득 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) # PickPlace controller 생성 my_controller = PickPlaceController( name="pick_place_controller", gripper=my_ur5e.gripper, robot_articulation=my_ur5e ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # world가 동작하는 동안 작업 수행 if my_world.is_playing(): # step이 0일때, world와 controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # my_world로 부터 observation 값들 획득​ observations = my_world.get_observations() # 획득한 observation을 pick place controller에 전달 actions = my_controller.forward( picking_position=observations[task_params["task_object_name_0"]["value"]]["position"], placing_position=observations[task_params["task_object_name_0"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0, 0.14]) ) # controller의 동작이 끝났음을 출력 if my_controller.is_done(): print("done picking and placing") break # 선언한 action을 입력받아 articulation_controller를 통해 action 수행. # Controller 내부에서 계산된 joint position값을 통해 action을 수행함​ articulation_controller.apply_action(actions) # simulation 종료​ simulation_app.close()
3,761
Python
31.713043
105
0.668439
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-3/1_practice_controller_generation.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() ######################################################################## ################### Pick place controller 생성 ########################## # Task로부터 ur5e 획득 # PickPlace controller 생성 # robot control(PD control)을 위한 instance 선언 ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # simulation 종료​ simulation_app.close()
2,598
Python
28.873563
82
0.635489
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-3/2_practice_pickplace.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 working_dir = os.path.dirname(os.path.realpath(__file__)) ycb_path = os.path.join(Path(working_dir).parent, 'dataset/ycb') obj_dirs = [os.path.join(ycb_path, obj_name) for obj_name in os.listdir(ycb_path)] obj_dirs.sort() object_info = {} label2name = {} total_object_num = len(obj_dirs) for obj_idx, obj_dir in enumerate(obj_dirs): usd_file = os.path.join(obj_dir, 'final.usd') object_info[obj_idx] = { 'name': os.path.basename(obj_dir), 'usd_file': usd_file, 'label': obj_idx, } label2name[obj_idx]=os.path.basename(obj_dir) # 랜덤한 물체에 대한 usd file path 선택 obje_info = random.sample(list(object_info.values()), 1) objects_usd = obje_info[0]['usd_file'] # Random하게 생성된 물체들의 ​번호와 카테고리 출력 print("object: {}".format(obje_info[0]['name'])) # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) objects_position = np.array([[0.5, 0, 0.1]]) offset = np.array([0, 0, 0.1]) # 물체를 놓을 위치(place position) 지정 target_position = np.array([0.4, -0.33, 0.55]) target_orientation = np.array([0, 0, 0, 1]) # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 my_task = UR5ePickPlace(objects_list = [objects_usd], objects_position = objects_position, offset=offset) # World에 Task 추가 my_world.add_task(my_task) my_world.reset() ######################################################################## ################### Pick place controller 생성 ########################## # Task로부터 ur5e 획득 task_params = my_task.get_params() my_ur5e = my_world.scene.get_object(task_params["robot_name"]["value"]) # PickPlace controller 생성 my_controller = PickPlaceController( name="pick_place_controller", gripper=my_ur5e.gripper, robot_articulation=my_ur5e ) # robot control(PD control)을 위한 instance 선언 articulation_controller = my_ur5e.get_articulation_controller() ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') ######################## Pick place 수행 ############################### # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # world가 동작하는 동안 작업 수행 if my_world.is_playing(): # step이 0일때, world와 controller를 reset if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # my_world로 부터 observation 값들 획득​ # 획득한 observation을 pick place controller에 전달 # controller의 동작이 끝났음을 출력 # 선언한 action을 입력받아 articulation_controller를 통해 action 수행. # Controller 내부에서 계산된 joint position값을 통해 action을 수행함​ # simulation 종료​ simulation_app.close() ########################################################################
3,579
Python
29.862069
82
0.610226
gist-ailab/AILAB-isaac-sim-pick-place/lecture/3-3/0_practice_task_generation.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.kit.viewport.utility import get_active_viewport import sys, os from pathlib import Path import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utils.controllers.pick_place_controller_robotiq import PickPlaceController from utils.tasks.pick_place_task import UR5ePickPlace ############### Random한 YCB 물체 생성을 포함하는 Task 생성 ###################### # YCB Dataset 물체들에 대한 정보 취득 # 랜덤한 물체에 대한 usd file path 선택 # Random하게 생성된 물체들의 ​번호와 카테고리 출력 # 물체를 생성할 위치 지정(너무 멀어지는 경우 로봇이 닿지 않을 수 있음, 물체 사이의 거리가 가까울 경우 충돌이 발생할 수 있음) # 물체를 놓을 위치(place position) 지정 # World 생성 my_world = World(stage_units_in_meters=1.0) # Task 생성 # World에 Task 추가 ######################################################################## # GUI 상에서 보는 view point 지정(Depth 카메라 view에서 Perspective view로 변환시, 전체적으로 보기 편함) viewport = get_active_viewport() viewport.set_active_camera('/World/ur5e/realsense/Depth') viewport.set_active_camera('/OmniverseKit_Persp') # 생성한 world 에서 physics simulation step​ while simulation_app.is_running(): my_world.step(render=True) # simulation 종료​ simulation_app.close()
1,280
Python
25.687499
79
0.689844
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/044_flat_screwdriver/poisson/nontextured.xml
<KinBody name="044_flat_screwdriver"> <Body type="static" name="044_flat_screwdriver"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
226
XML
24.22222
50
0.632743
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/044_flat_screwdriver/tsdf/nontextured.xml
<KinBody name="044_flat_screwdriver"> <Body type="static" name="044_flat_screwdriver"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
226
XML
24.22222
50
0.632743
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/035_power_drill/poisson/nontextured.xml
<KinBody name="035_power_drill"> <Body type="static" name="035_power_drill"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
216
XML
23.111109
45
0.615741
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/035_power_drill/tsdf/nontextured.xml
<KinBody name="035_power_drill"> <Body type="static" name="035_power_drill"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
216
XML
23.111109
45
0.615741
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/035_power_drill/google_16k/kinbody.xml
<KinBody name="power_drill"> <Body type="static" name="power_drill"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
198
XML
21.111109
41
0.611111
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/073-h_lego_duplo/poisson/nontextured.xml
<KinBody name="073-h_lego_duplo"> <Body type="static" name="073-h_lego_duplo"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
218
XML
23.333331
46
0.610092
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/073-h_lego_duplo/tsdf/nontextured.xml
<KinBody name="073-h_lego_duplo"> <Body type="static" name="073-h_lego_duplo"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
218
XML
23.333331
46
0.610092
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/026_sponge/poisson/nontextured.xml
<KinBody name="026_sponge"> <Body type="static" name="026_sponge"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
206
XML
21.999998
40
0.606796
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/026_sponge/tsdf/nontextured.xml
<KinBody name="026_sponge"> <Body type="static" name="026_sponge"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
206
XML
21.999998
40
0.606796
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/026_sponge/google_16k/kinbody.xml
<KinBody name="sponge"> <Body type="static" name="sponge"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
188
XML
19.999998
36
0.601064
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/070-a_colored_wood_blocks/poisson/nontextured.xml
<KinBody name="070-a_colored_wood_blocks"> <Body type="static" name="070-a_colored_wood_blocks"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
236
XML
25.333331
55
0.631356
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/070-a_colored_wood_blocks/tsdf/nontextured.xml
<KinBody name="070-a_colored_wood_blocks"> <Body type="static" name="070-a_colored_wood_blocks"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
236
XML
25.333331
55
0.631356
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/070-a_colored_wood_blocks/google_16k/kinbody.xml
<KinBody name="colored_wood_blocks"> <Body type="static" name="colored_wood_blocks"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
214
XML
22.888886
49
0.630841
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/023_wine_glass/tsdf/nontextured.xml
<KinBody name="023_wine_glass"> <Body type="static" name="023_wine_glass"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
214
XML
22.888886
44
0.61215
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-d_toy_airplane/poisson/nontextured.xml
<KinBody name="072-d_toy_airplane"> <Body type="static" name="072-d_toy_airplane"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
222
XML
23.777775
48
0.617117
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-d_toy_airplane/tsdf/nontextured.xml
<KinBody name="072-d_toy_airplane"> <Body type="static" name="072-d_toy_airplane"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
222
XML
23.777775
48
0.617117
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-d_toy_airplane/google_16k/kinbody.xml
<KinBody name="toy_airplane"> <Body type="static" name="toy_airplane"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
200
XML
21.333331
42
0.615
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-c_toy_airplane/poisson/nontextured.xml
<KinBody name="072-c_toy_airplane"> <Body type="static" name="072-c_toy_airplane"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
222
XML
23.777775
48
0.617117
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-c_toy_airplane/tsdf/nontextured.xml
<KinBody name="072-c_toy_airplane"> <Body type="static" name="072-c_toy_airplane"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
222
XML
23.777775
48
0.617117
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/072-c_toy_airplane/google_16k/kinbody.xml
<KinBody name="toy_airplane"> <Body type="static" name="toy_airplane"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
200
XML
21.333331
42
0.615
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/065-c_cups/poisson/nontextured.xml
<KinBody name="065-c_cups"> <Body type="static" name="065-c_cups"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
206
XML
21.999998
40
0.597087
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/065-c_cups/tsdf/nontextured.xml
<KinBody name="065-c_cups"> <Body type="static" name="065-c_cups"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
206
XML
21.999998
40
0.597087
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/065-c_cups/google_16k/kinbody.xml
<KinBody name="cups"> <Body type="static" name="cups"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
184
XML
19.555553
35
0.592391
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/049_small_clamp/tsdf/nontextured.xml
<KinBody name="049_small_clamp"> <Body type="static" name="049_small_clamp"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
216
XML
23.111109
45
0.615741
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/073-e_lego_duplo/poisson/nontextured.xml
<KinBody name="073-e_lego_duplo"> <Body type="static" name="073-e_lego_duplo"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
218
XML
23.333331
46
0.610092
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/073-e_lego_duplo/tsdf/nontextured.xml
<KinBody name="073-e_lego_duplo"> <Body type="static" name="073-e_lego_duplo"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
218
XML
23.333331
46
0.610092
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/073-e_lego_duplo/google_16k/kinbody.xml
<KinBody name="lego_duplo"> <Body type="static" name="lego_duplo"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
196
XML
20.888887
40
0.607143
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/070-b_colored_wood_blocks/google_16k/kinbody.xml
<KinBody name="colored_wood_blocks"> <Body type="static" name="colored_wood_blocks"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
214
XML
22.888886
49
0.630841
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/014_lemon/poisson/nontextured.xml
<KinBody name="014_lemon"> <Body type="static" name="014_lemon"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
204
XML
21.777775
40
0.602941
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/014_lemon/tsdf/nontextured.xml
<KinBody name="014_lemon"> <Body type="static" name="014_lemon"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
204
XML
21.777775
40
0.602941
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/014_lemon/google_16k/kinbody.xml
<KinBody name="lemon"> <Body type="static" name="lemon"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
186
XML
19.777776
35
0.596774
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/062_dice/poisson/nontextured.xml
<KinBody name="062_dice"> <Body type="static" name="062_dice"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
202
XML
21.555553
40
0.59901
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/062_dice/tsdf/nontextured.xml
<KinBody name="062_dice"> <Body type="static" name="062_dice"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
202
XML
21.555553
40
0.59901
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/062_dice/google_16k/kinbody.xml
<KinBody name="dice"> <Body type="static" name="dice"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
184
XML
19.555553
35
0.592391
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/052_extra_large_clamp/poisson/nontextured.xml
<KinBody name="052_extra_large_clamp"> <Body type="static" name="052_extra_large_clamp"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
228
XML
24.444442
51
0.627193
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/052_extra_large_clamp/tsdf/nontextured.xml
<KinBody name="052_extra_large_clamp"> <Body type="static" name="052_extra_large_clamp"> <Geom type="trimesh"> <Render>./nontextured.stl</Render> <Data>./nontextured.stl</Data> </Geom> </Body> </KinBody>
228
XML
24.444442
51
0.627193
gist-ailab/AILAB-isaac-sim-pick-place/lecture/dataset/origin_YCB/052_extra_large_clamp/google_16k/kinbody.xml
<KinBody name="extra_large_clamp"> <Body type="static" name="extra_large_clamp"> <Geom type="trimesh"> <Render>textured.dae</Render> <Data>textured.dae</Data> </Geom> </Body> </KinBody>
210
XML
22.444442
47
0.62381
gist-ailab/AILAB-isaac-sim-pick-place/lecture/checkpoint/1.py
https://drive.google.com/file/d/1MbkrrGytk8aqzOBoVs11tUyhMoGgQnKs/view?usp=sharing
83
Python
40.99998
82
0.855422
rosklyar/omniverse_extensions/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "playtika.eyedarts.export" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,048
Markdown
37.660377
258
0.757812
rosklyar/omniverse_extensions/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389