file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue693/hash-microbenchmark/SpookyV2.cc
// Spooky Hash // A 128-bit noncryptographic hash, for checksums and table lookup // By Bob Jenkins. Public domain. // Oct 31 2010: published framework, disclaimer ShortHash isn't right // Nov 7 2010: disabled ShortHash // Oct 31 2011: replace End, ShortMix, ShortEnd, enable ShortHash again // April 10 2012: buffer overflow on platforms without unaligned reads // July 12 2012: was passing out variables in final to in/out in short // July 30 2012: I reintroduced the buffer overflow // August 5 2012: SpookyV2: d = should be d += in short hash, and remove extra mix from long hash #include <memory.h> #include "SpookyV2.h" #define ALLOW_UNALIGNED_READS 1 // // short hash ... it could be used on any message, // but it's used by Spooky just for short messages. // void SpookyHash::Short( const void *message, size_t length, uint64 *hash1, uint64 *hash2) { uint64 buf[2 * sc_numVars]; union { const uint8 *p8; uint32 *p32; uint64 *p64; size_t i; } u; u.p8 = (const uint8 *)message; if (!ALLOW_UNALIGNED_READS && (u.i & 0x7)) { memcpy(buf, message, length); u.p64 = buf; } size_t remainder = length % 32; uint64 a = *hash1; uint64 b = *hash2; uint64 c = sc_const; uint64 d = sc_const; if (length > 15) { const uint64 *end = u.p64 + (length / 32) * 4; // handle all complete sets of 32 bytes for (; u.p64 < end; u.p64 += 4) { c += u.p64[0]; d += u.p64[1]; ShortMix(a, b, c, d); a += u.p64[2]; b += u.p64[3]; } //Handle the case of 16+ remaining bytes. if (remainder >= 16) { c += u.p64[0]; d += u.p64[1]; ShortMix(a, b, c, d); u.p64 += 2; remainder -= 16; } } // Handle the last 0..15 bytes, and its length d += ((uint64)length) << 56; switch (remainder) { case 15: d += ((uint64)u.p8[14]) << 48; case 14: d += ((uint64)u.p8[13]) << 40; case 13: d += ((uint64)u.p8[12]) << 32; case 12: d += u.p32[2]; c += u.p64[0]; break; case 11: d += ((uint64)u.p8[10]) << 16; case 10: d += ((uint64)u.p8[9]) << 8; case 9: d += (uint64)u.p8[8]; case 8: c += u.p64[0]; break; case 7: c += ((uint64)u.p8[6]) << 48; case 6: c += ((uint64)u.p8[5]) << 40; case 5: c += ((uint64)u.p8[4]) << 32; case 4: c += u.p32[0]; break; case 3: c += ((uint64)u.p8[2]) << 16; case 2: c += ((uint64)u.p8[1]) << 8; case 1: c += (uint64)u.p8[0]; break; case 0: c += sc_const; d += sc_const; } ShortEnd(a, b, c, d); *hash1 = a; *hash2 = b; } // do the whole hash in one call void SpookyHash::Hash128( const void *message, size_t length, uint64 *hash1, uint64 *hash2) { if (length < sc_bufSize) { Short(message, length, hash1, hash2); return; } uint64 h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11; uint64 buf[sc_numVars]; uint64 *end; union { const uint8 *p8; uint64 *p64; size_t i; } u; size_t remainder; h0 = h3 = h6 = h9 = *hash1; h1 = h4 = h7 = h10 = *hash2; h2 = h5 = h8 = h11 = sc_const; u.p8 = (const uint8 *)message; end = u.p64 + (length / sc_blockSize) * sc_numVars; // handle all whole sc_blockSize blocks of bytes if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0)) { while (u.p64 < end) { Mix(u.p64, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); u.p64 += sc_numVars; } } else { while (u.p64 < end) { memcpy(buf, u.p64, sc_blockSize); Mix(buf, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); u.p64 += sc_numVars; } } // handle the last partial block of sc_blockSize bytes remainder = (length - ((const uint8 *)end - (const uint8 *)message)); memcpy(buf, end, remainder); memset(((uint8 *)buf) + remainder, 0, sc_blockSize - remainder); ((uint8 *)buf)[sc_blockSize - 1] = remainder; // do some final mixing End(buf, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); *hash1 = h0; *hash2 = h1; } // init spooky state void SpookyHash::Init(uint64 seed1, uint64 seed2) { m_length = 0; m_remainder = 0; m_state[0] = seed1; m_state[1] = seed2; } // add a message fragment to the state void SpookyHash::Update(const void *message, size_t length) { uint64 h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11; size_t newLength = length + m_remainder; uint8 remainder; union { const uint8 *p8; uint64 *p64; size_t i; } u; const uint64 *end; // Is this message fragment too short? If it is, stuff it away. if (newLength < sc_bufSize) { memcpy(&((uint8 *)m_data)[m_remainder], message, length); m_length = length + m_length; m_remainder = (uint8)newLength; return; } // init the variables if (m_length < sc_bufSize) { h0 = h3 = h6 = h9 = m_state[0]; h1 = h4 = h7 = h10 = m_state[1]; h2 = h5 = h8 = h11 = sc_const; } else { h0 = m_state[0]; h1 = m_state[1]; h2 = m_state[2]; h3 = m_state[3]; h4 = m_state[4]; h5 = m_state[5]; h6 = m_state[6]; h7 = m_state[7]; h8 = m_state[8]; h9 = m_state[9]; h10 = m_state[10]; h11 = m_state[11]; } m_length = length + m_length; // if we've got anything stuffed away, use it now if (m_remainder) { uint8 prefix = sc_bufSize - m_remainder; memcpy(&(((uint8 *)m_data)[m_remainder]), message, prefix); u.p64 = m_data; Mix(u.p64, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); Mix(&u.p64[sc_numVars], h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); u.p8 = ((const uint8 *)message) + prefix; length -= prefix; } else { u.p8 = (const uint8 *)message; } // handle all whole blocks of sc_blockSize bytes end = u.p64 + (length / sc_blockSize) * sc_numVars; remainder = (uint8)(length - ((const uint8 *)end - u.p8)); if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0) { while (u.p64 < end) { Mix(u.p64, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); u.p64 += sc_numVars; } } else { while (u.p64 < end) { memcpy(m_data, u.p8, sc_blockSize); Mix(m_data, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); u.p64 += sc_numVars; } } // stuff away the last few bytes m_remainder = remainder; memcpy(m_data, end, remainder); // stuff away the variables m_state[0] = h0; m_state[1] = h1; m_state[2] = h2; m_state[3] = h3; m_state[4] = h4; m_state[5] = h5; m_state[6] = h6; m_state[7] = h7; m_state[8] = h8; m_state[9] = h9; m_state[10] = h10; m_state[11] = h11; } // report the hash for the concatenation of all message fragments so far void SpookyHash::Final(uint64 *hash1, uint64 *hash2) { // init the variables if (m_length < sc_bufSize) { *hash1 = m_state[0]; *hash2 = m_state[1]; Short(m_data, m_length, hash1, hash2); return; } const uint64 *data = (const uint64 *)m_data; uint8 remainder = m_remainder; uint64 h0 = m_state[0]; uint64 h1 = m_state[1]; uint64 h2 = m_state[2]; uint64 h3 = m_state[3]; uint64 h4 = m_state[4]; uint64 h5 = m_state[5]; uint64 h6 = m_state[6]; uint64 h7 = m_state[7]; uint64 h8 = m_state[8]; uint64 h9 = m_state[9]; uint64 h10 = m_state[10]; uint64 h11 = m_state[11]; if (remainder >= sc_blockSize) { // m_data can contain two blocks; handle any whole first block Mix(data, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); data += sc_numVars; remainder -= sc_blockSize; } // mix in the last partial block, and the length mod sc_blockSize memset(&((uint8 *)data)[remainder], 0, (sc_blockSize - remainder)); ((uint8 *)data)[sc_blockSize - 1] = remainder; // do some final mixing End(data, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); *hash1 = h0; *hash2 = h1; }
8,549
C++
25.635514
99
0.51468
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue693/hash-microbenchmark/fast_hash.h
#ifndef FAST_HASH_H #define FAST_HASH_H #include <cassert> #include <cstddef> #include <cstdint> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> namespace fast_hash { static_assert(sizeof(unsigned int) == 4, "unsigned int has unexpected size"); /* Internal class storing the state of the hashing process. It should only be instantiated by functions in this file. */ class HashState { std::uint32_t hash; public: HashState() : hash(0xdeadbeef) { } void feed(std::uint32_t value) { hash ^= value + 0x9e3779b9 + (hash << 6) + (hash >> 2); } std::uint32_t get_hash32() { return hash; } std::uint64_t get_hash64() { return (static_cast<std::uint64_t>(hash) << 32) | hash; } }; /* These functions add a new object to an existing HashState object. To add hashing support for a user type X, provide an override for utils::feed(HashState &hash_state, const X &value). */ static_assert( sizeof(int) == sizeof(std::uint32_t), "int and uint32_t have different sizes"); inline void feed(HashState &hash_state, int value) { hash_state.feed(static_cast<std::uint32_t>(value)); } static_assert( sizeof(unsigned int) == sizeof(std::uint32_t), "unsigned int and uint32_t have different sizes"); inline void feed(HashState &hash_state, unsigned int value) { hash_state.feed(static_cast<std::uint32_t>(value)); } inline void feed(HashState &hash_state, std::uint64_t value) { hash_state.feed(static_cast<std::uint32_t>(value)); value >>= 32; hash_state.feed(static_cast<std::uint32_t>(value)); } template<typename T> void feed(HashState &hash_state, const T *p) { // This is wasteful in 32-bit mode, but we plan to discontinue 32-bit compiles anyway. feed(hash_state, reinterpret_cast<std::uint64_t>(p)); } template<typename T1, typename T2> void feed(HashState &hash_state, const std::pair<T1, T2> &p) { feed(hash_state, p.first); feed(hash_state, p.second); } template<typename T> void feed(HashState &hash_state, const std::vector<T> &vec) { /* Feed vector size to ensure that no two different vectors of the same type have the same code prefix. */ feed(hash_state, vec.size()); for (const T &item : vec) { feed(hash_state, item); } } /* Public hash functions. get_hash() is used internally by the HashMap and HashSet classes below. In more exotic use cases, such as implementing a custom hash table, you can also use `get_hash32()`, `get_hash64()` and `get_hash()` directly. */ template<typename T> std::uint32_t get_hash32(const T &value) { HashState hash_state; feed(hash_state, value); return hash_state.get_hash32(); } template<typename T> std::uint64_t get_hash64(const T &value) { HashState hash_state; feed(hash_state, value); return hash_state.get_hash64(); } template<typename T> std::size_t get_hash(const T &value) { return static_cast<std::size_t>(get_hash64(value)); } // This struct should only be used by HashMap and HashSet below. template<typename T> struct Hash { std::size_t operator()(const T &val) const { return get_hash(val); } }; /* Aliases for hash sets and hash maps in user code. All user code should use utils::UnorderedSet and utils::UnorderedMap instead of std::unordered_set and std::unordered_map. To hash types that are not supported out of the box, implement utils::feed. */ template<typename T1, typename T2> using HashMap = std::unordered_map<T1, T2, Hash<T1>>; template<typename T> using HashSet = std::unordered_set<T, Hash<T>>; /* Transitional aliases and functions */ template<typename T1, typename T2> using UnorderedMap = std::unordered_map<T1, T2>; template<typename T> using UnorderedSet = std::unordered_set<T>; } #endif
3,848
C
24.66
90
0.677755
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue693/hash-microbenchmark/SpookyV2.h
// // SpookyHash: a 128-bit noncryptographic hash function // By Bob Jenkins, public domain // Oct 31 2010: alpha, framework + SpookyHash::Mix appears right // Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right // Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas // Feb 2 2012: production, same bits as beta // Feb 5 2012: adjusted definitions of uint* to be more portable // Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough. // August 5 2012: SpookyV2 (different results) // // Up to 3 bytes/cycle for long messages. Reasonably fast for short messages. // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit. // // This was developed for and tested on 64-bit x86-compatible processors. // It assumes the processor is little-endian. There is a macro // controlling whether unaligned reads are allowed (by default they are). // This should be an equally good hash on big-endian machines, but it will // compute different results on them than on little-endian machines. // // Google's CityHash has similar specs to SpookyHash, and CityHash is faster // on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders // of magnitude slower. CRCs are two or more times slower, but unlike // SpookyHash, they have nice math for combining the CRCs of pieces to form // the CRCs of wholes. There are also cryptographic hashes, but those are even // slower than MD5. // #include <stddef.h> #ifdef _MSC_VER # define INLINE __forceinline typedef unsigned __int64 uint64; typedef unsigned __int32 uint32; typedef unsigned __int16 uint16; typedef unsigned __int8 uint8; #else # include <stdint.h> # define INLINE inline typedef uint64_t uint64; typedef uint32_t uint32; typedef uint16_t uint16; typedef uint8_t uint8; #endif class SpookyHash { public: // // SpookyHash: hash a single message in one call, produce 128-bit output // static void Hash128( const void *message, // message to hash size_t length, // length of message in bytes uint64 *hash1, // in/out: in seed 1, out hash value 1 uint64 *hash2); // in/out: in seed 2, out hash value 2 // // Hash64: hash a single message in one call, return 64-bit output // static uint64 Hash64( const void *message, // message to hash size_t length, // length of message in bytes uint64 seed) { // seed uint64 hash1 = seed; Hash128(message, length, &hash1, &seed); return hash1; } // // Hash32: hash a single message in one call, produce 32-bit output // static uint32 Hash32( const void *message, // message to hash size_t length, // length of message in bytes uint32 seed) { // seed uint64 hash1 = seed, hash2 = seed; Hash128(message, length, &hash1, &hash2); return (uint32)hash1; } // // Init: initialize the context of a SpookyHash // void Init( uint64 seed1, // any 64-bit value will do, including 0 uint64 seed2); // different seeds produce independent hashes // // Update: add a piece of a message to a SpookyHash state // void Update( const void *message, // message fragment size_t length); // length of message fragment in bytes // // Final: compute the hash for the current SpookyHash state // // This does not modify the state; you can keep updating it afterward // // The result is the same as if SpookyHash() had been called with // all the pieces concatenated into one message. // void Final( uint64 *hash1, // out only: first 64 bits of hash value. uint64 *hash2); // out only: second 64 bits of hash value. // // left rotate a 64-bit value by k bytes // static INLINE uint64 Rot64(uint64 x, int k) { return (x << k) | (x >> (64 - k)); } // // This is used if the input is 96 bytes long or longer. // // The internal state is fully overwritten every 96 bytes. // Every input bit appears to cause at least 128 bits of entropy // before 96 other bytes are combined, when run forward or backward // For every input bit, // Two inputs differing in just that input bit // Where "differ" means xor or subtraction // And the base value is random // When run forward or backwards one Mix // I tried 3 pairs of each; they all differed by at least 212 bits. // static INLINE void Mix( const uint64 *data, uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3, uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7, uint64 &s8, uint64 &s9, uint64 &s10, uint64 &s11) { s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0, 11); s11 += s1; s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1, 32); s0 += s2; s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2, 43); s1 += s3; s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3, 31); s2 += s4; s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4, 17); s3 += s5; s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5, 28); s4 += s6; s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6, 39); s5 += s7; s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7, 57); s6 += s8; s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8, 55); s7 += s9; s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9, 54); s8 += s10; s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10, 22); s9 += s11; s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11, 46); s10 += s0; } // // Mix all 12 inputs together so that h0, h1 are a hash of them all. // // For two inputs differing in just the input bits // Where "differ" means xor or subtraction // And the base value is random, or a counting value starting at that bit // The final result will have each bit of h0, h1 flip // For every input bit, // with probability 50 +- .3% // For every pair of input bits, // with probability 50 +- 3% // // This does not rely on the last Mix() call having already mixed some. // Two iterations was almost good enough for a 64-bit result, but a // 128-bit result is reported, so End() does three iterations. // static INLINE void EndPartial( uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3, uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7, uint64 &h8, uint64 &h9, uint64 &h10, uint64 &h11) { h11 += h1; h2 ^= h11; h1 = Rot64(h1, 44); h0 += h2; h3 ^= h0; h2 = Rot64(h2, 15); h1 += h3; h4 ^= h1; h3 = Rot64(h3, 34); h2 += h4; h5 ^= h2; h4 = Rot64(h4, 21); h3 += h5; h6 ^= h3; h5 = Rot64(h5, 38); h4 += h6; h7 ^= h4; h6 = Rot64(h6, 33); h5 += h7; h8 ^= h5; h7 = Rot64(h7, 10); h6 += h8; h9 ^= h6; h8 = Rot64(h8, 13); h7 += h9; h10 ^= h7; h9 = Rot64(h9, 38); h8 += h10; h11 ^= h8; h10 = Rot64(h10, 53); h9 += h11; h0 ^= h9; h11 = Rot64(h11, 42); h10 += h0; h1 ^= h10; h0 = Rot64(h0, 54); } static INLINE void End( const uint64 *data, uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3, uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7, uint64 &h8, uint64 &h9, uint64 &h10, uint64 &h11) { h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3]; h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7]; h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11]; EndPartial(h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); EndPartial(h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); EndPartial(h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11); } // // The goal is for each bit of the input to expand into 128 bits of // apparent entropy before it is fully overwritten. // n trials both set and cleared at least m bits of h0 h1 h2 h3 // n: 2 m: 29 // n: 3 m: 46 // n: 4 m: 57 // n: 5 m: 107 // n: 6 m: 146 // n: 7 m: 152 // when run forwards or backwards // for all 1-bit and 2-bit diffs // with diffs defined by either xor or subtraction // with a base of all zeros plus a counter, or plus another bit, or random // static INLINE void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3) { h2 = Rot64(h2, 50); h2 += h3; h0 ^= h2; h3 = Rot64(h3, 52); h3 += h0; h1 ^= h3; h0 = Rot64(h0, 30); h0 += h1; h2 ^= h0; h1 = Rot64(h1, 41); h1 += h2; h3 ^= h1; h2 = Rot64(h2, 54); h2 += h3; h0 ^= h2; h3 = Rot64(h3, 48); h3 += h0; h1 ^= h3; h0 = Rot64(h0, 38); h0 += h1; h2 ^= h0; h1 = Rot64(h1, 37); h1 += h2; h3 ^= h1; h2 = Rot64(h2, 62); h2 += h3; h0 ^= h2; h3 = Rot64(h3, 34); h3 += h0; h1 ^= h3; h0 = Rot64(h0, 5); h0 += h1; h2 ^= h0; h1 = Rot64(h1, 36); h1 += h2; h3 ^= h1; } // // Mix all 4 inputs together so that h0, h1 are a hash of them all. // // For two inputs differing in just the input bits // Where "differ" means xor or subtraction // And the base value is random, or a counting value starting at that bit // The final result will have each bit of h0, h1 flip // For every input bit, // with probability 50 +- .3% (it is probably better than that) // For every pair of input bits, // with probability 50 +- .75% (the worst case is approximately that) // static INLINE void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3) { h3 ^= h2; h2 = Rot64(h2, 15); h3 += h2; h0 ^= h3; h3 = Rot64(h3, 52); h0 += h3; h1 ^= h0; h0 = Rot64(h0, 26); h1 += h0; h2 ^= h1; h1 = Rot64(h1, 51); h2 += h1; h3 ^= h2; h2 = Rot64(h2, 28); h3 += h2; h0 ^= h3; h3 = Rot64(h3, 9); h0 += h3; h1 ^= h0; h0 = Rot64(h0, 47); h1 += h0; h2 ^= h1; h1 = Rot64(h1, 54); h2 += h1; h3 ^= h2; h2 = Rot64(h2, 32); h3 += h2; h0 ^= h3; h3 = Rot64(h3, 25); h0 += h3; h1 ^= h0; h0 = Rot64(h0, 63); h1 += h0; } private: // // Short is used for messages under 192 bytes in length // Short has a low startup cost, the normal mode is good for long // keys, the cost crossover is at about 192 bytes. The two modes were // held to the same quality bar. // static void Short( const void *message, // message (array of bytes, not necessarily aligned) size_t length, // length of message (in bytes) uint64 *hash1, // in/out: in the seed, out the hash value uint64 *hash2); // in/out: in the seed, out the hash value // number of uint64's in internal state static const size_t sc_numVars = 12; // size of the internal state static const size_t sc_blockSize = sc_numVars * 8; // size of buffer of unhashed data, in bytes static const size_t sc_bufSize = 2 * sc_blockSize; // // sc_const: a constant which: // * is not zero // * is odd // * is a not-very-regular mix of 1's and 0's // * does not need any other special mathematical properties // static const uint64 sc_const = 0xdeadbeefdeadbeefLL; uint64 m_data[2 * sc_numVars]; // unhashed data, for partial messages uint64 m_state[sc_numVars]; // internal state of the hash size_t m_length; // total length of the input so far uint8 m_remainder; // length of unhashed data stashed in m_data };
12,673
C
29.539759
82
0.530103
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/v4-random-seeds.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment def main(revisions=None): suite=suites.suite_optimal_strips() suite.extend(suites.suite_ipc14_opt_strips()) # only DFP configs configs = { # label reduction with seed 2016 IssueConfig('dfp-b50k-lrs2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false,random_seed=2016)))']), IssueConfig('dfp-ginf-lrs2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false,random_seed=2016)))']), IssueConfig('dfp-f50k-lrs2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true,random_seed=2016)))']), # shrink fh/rnd with seed 2016 IssueConfig('dfp-f50ks2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000,random_seed=2016),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-rnd50ks2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_random(max_states=50000,random_seed=2016),label_reduction=exact(before_shrinking=false,before_merging=true)))']), # shrink fh/rnd with seed 2016 and with label reduction with seed 2016 IssueConfig('dfp-f50ks2016-lrs2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000,random_seed=2016),label_reduction=exact(before_shrinking=false,before_merging=true,random_seed=2016)))']), IssueConfig('dfp-rnd50ks2016-lrs2016', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_random(max_states=50000,random_seed=2016),label_reduction=exact(before_shrinking=false,before_merging=true,random_seed=2016)))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_absolute_report_step() exp() main(revisions=['issue645-v4'])
4,037
Python
52.839999
271
0.711667
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): suite=suites.suite_optimal_strips() suite.extend(suites.suite_ipc14_opt_strips()) configs = { IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('cggl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('cggl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('cggl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() if matplotlib: for attribute in ["memory", "total_time"]: for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) ) exp() main(revisions=['issue645-v3', 'issue645-v4'])
5,128
Python
56.629213
280
0.695983
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,481
Python
33.963585
83
0.594904
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/suites.py
# Benchmark suites from the Fast Downward benchmark collection. def suite_alternative_formulations(): return ['airport-adl', 'no-mprime', 'no-mystery'] def suite_ipc98_to_ipc04_adl(): return [ 'assembly', 'miconic-fulladl', 'miconic-simpleadl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'schedule', ] def suite_ipc98_to_ipc04_strips(): return [ 'airport', 'blocks', 'depot', 'driverlog', 'freecell', 'grid', 'gripper', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'pipesworld-notankage', 'psr-small', 'satellite', 'zenotravel', ] def suite_ipc98_to_ipc04(): # All IPC1-4 domains, including the trivial Movie. return sorted(suite_ipc98_to_ipc04_adl() + suite_ipc98_to_ipc04_strips()) def suite_ipc06_adl(): return [ 'openstacks', 'pathways', 'trucks', ] def suite_ipc06_strips_compilations(): return [ 'openstacks-strips', 'pathways-noneg', 'trucks-strips', ] def suite_ipc06_strips(): return [ 'pipesworld-tankage', 'rovers', 'storage', 'tpp', ] def suite_ipc06(): return sorted(suite_ipc06_adl() + suite_ipc06_strips()) def suite_ipc08_common_strips(): return [ 'parcprinter-08-strips', 'pegsol-08-strips', 'scanalyzer-08-strips', ] def suite_ipc08_opt_adl(): return ['openstacks-opt08-adl'] def suite_ipc08_opt_strips(): return sorted(suite_ipc08_common_strips() + [ 'elevators-opt08-strips', 'openstacks-opt08-strips', 'sokoban-opt08-strips', 'transport-opt08-strips', 'woodworking-opt08-strips', ]) def suite_ipc08_opt(): return sorted(suite_ipc08_opt_strips() + suite_ipc08_opt_adl()) def suite_ipc08_sat_adl(): return ['openstacks-sat08-adl'] def suite_ipc08_sat_strips(): return sorted(suite_ipc08_common_strips() + [ # Note: cyber-security is missing. 'elevators-sat08-strips', 'openstacks-sat08-strips', 'sokoban-sat08-strips', 'transport-sat08-strips', 'woodworking-sat08-strips', ]) def suite_ipc08_sat(): return sorted(suite_ipc08_sat_strips() + suite_ipc08_sat_adl()) def suite_ipc08(): return sorted(set(suite_ipc08_opt() + suite_ipc08_sat())) def suite_ipc11_opt(): return [ 'barman-opt11-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'nomystery-opt11-strips', 'openstacks-opt11-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'pegsol-opt11-strips', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'tidybot-opt11-strips', 'transport-opt11-strips', 'visitall-opt11-strips', 'woodworking-opt11-strips', ] def suite_ipc11_sat(): return [ 'barman-sat11-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'nomystery-sat11-strips', 'openstacks-sat11-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'pegsol-sat11-strips', 'scanalyzer-sat11-strips', 'sokoban-sat11-strips', 'tidybot-sat11-strips', 'transport-sat11-strips', 'visitall-sat11-strips', 'woodworking-sat11-strips', ] def suite_ipc11(): return sorted(suite_ipc11_opt() + suite_ipc11_sat()) def suite_ipc14_agl_adl(): return [ 'cavediving-agl14-adl', 'citycar-agl14-adl', 'maintenance-agl14-adl', ] def suite_ipc14_agl_strips(): return [ 'barman-agl14-strips', 'childsnack-agl14-strips', 'floortile-agl14-strips', 'ged-agl14-strips', 'hiking-agl14-strips', 'openstacks-agl14-strips', 'parking-agl14-strips', 'tetris-agl14-strips', 'thoughtful-agl14-strips', 'transport-agl14-strips', 'visitall-agl14-strips', ] def suite_ipc14_agl(): return sorted(suite_ipc14_agl_adl() + suite_ipc14_agl_strips()) def suite_ipc14_mco_adl(): return [ 'cavediving-mco14-adl', 'citycar-mco14-adl', 'maintenance-mco14-adl', ] def suite_ipc14_mco_strips(): return [ 'barman-mco14-strips', 'childsnack-mco14-strips', 'floortile-mco14-strips', 'ged-mco14-strips', 'hiking-mco14-strips', 'openstacks-mco14-strips', 'parking-mco14-strips', 'tetris-mco14-strips', 'thoughtful-mco14-strips', 'transport-mco14-strips', 'visitall-mco14-strips', ] def suite_ipc14_mco(): return sorted(suite_ipc14_mco_adl() + suite_ipc14_mco_strips()) def suite_ipc14_opt_adl(): return [ 'cavediving-opt14-adl', 'citycar-opt14-adl', 'maintenance-opt14-adl', ] def suite_ipc14_opt_strips(): return [ 'barman-opt14-strips', 'childsnack-opt14-strips', 'floortile-opt14-strips', 'ged-opt14-strips', 'hiking-opt14-strips', 'openstacks-opt14-strips', 'parking-opt14-strips', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'transport-opt14-strips', 'visitall-opt14-strips', ] def suite_ipc14_opt(): return sorted(suite_ipc14_opt_adl() + suite_ipc14_opt_strips()) def suite_ipc14_sat_adl(): return [ 'cavediving-sat14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_sat_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_sat(): return sorted(suite_ipc14_sat_adl() + suite_ipc14_sat_strips()) def suite_ipc14(): return sorted( suite_ipc14_agl() + suite_ipc14_mco() + suite_ipc14_opt() + suite_ipc14_sat()) def suite_unsolvable(): # TODO: Add other unsolvable problems (Miconic-FullADL). # TODO: Add 'fsc-grid-r:prize5x5_R.pddl' and 't0-uts:uts_r-02.pddl' # if the extra-domains branch is merged. return sorted( ['mystery:prob%02d.pddl' % index for index in [4, 5, 7, 8, 12, 16, 18, 21, 22, 23, 24]] + ['miconic-fulladl:f21-3.pddl', 'miconic-fulladl:f30-2.pddl']) def suite_optimal_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_opt_adl()) def suite_optimal_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_opt_strips() + suite_ipc11_opt()) def suite_optimal(): return sorted(suite_optimal_adl() + suite_optimal_strips()) def suite_satisficing_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_sat_adl()) def suite_satisficing_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_sat_strips() + suite_ipc11_sat()) def suite_satisficing(): return sorted(suite_satisficing_adl() + suite_satisficing_strips()) def suite_all(): return sorted( suite_ipc98_to_ipc04() + suite_ipc06() + suite_ipc06_strips_compilations() + suite_ipc08() + suite_ipc11() + suite_alternative_formulations())
7,695
Python
23.35443
77
0.596231
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Done initializing merge-and-shrink heuristic \[(.+)s\]', required=False, type=float) parser.add_pattern('ms_memory_delta', 'Final peak memory increase of merge-and-shrink computation: (\d+) KB', required=False, type=int) parser.add_pattern('actual_search_time', 'Actual search time: (.+)s \[t=.+s\]', required=False, type=float) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) def check_proved_unsolvability(content, props): proved_unsolvability = False if props['coverage'] == 0: for line in content.splitlines(): if line == 'Completely explored state space -- no solution!': proved_unsolvability = True break props['proved_unsolvability'] = proved_unsolvability parser.add_function(check_proved_unsolvability) def count_dfp_no_goal_relevant_ts(content, props): counter = 0 for line in content.splitlines(): if line == 'found no goal relevant pair': counter += 1 props['ms_dfp_nogoalrelevantpair_counter'] = counter parser.add_function(count_dfp_no_goal_relevant_ts) parser.parse()
3,074
Python
36.5
135
0.665582
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite=suites.suite_optimal_strips() suite.extend(suites.suite_ipc14_opt_strips()) configs = { IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('cggl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('cggl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('cggl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) ) exp() main(revisions=['issue645-base', 'issue645-v1'])
4,932
Python
58.433734
280
0.701541
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
84
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment #from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite=suites.suite_optimal_strips() suite.extend(suites.suite_ipc14_opt_strips()) configs = { IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) ms_dfp_nogoalrelevantpair_counter = Attribute('ms_dfp_nogoalrelevantpair_counter', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ms_dfp_nogoalrelevantpair_counter, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue645-v2', 'issue645-v3'])
3,499
Python
43.303797
246
0.671906
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue645/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite=suites.suite_optimal_strips() suite.extend(suites.suite_ipc14_opt_strips()) configs = { IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1,greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) ) exp() main(revisions=['issue645-v1', 'issue645-v2'])
3,328
Python
42.233766
246
0.669772
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue67/v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup from relativescatter import RelativeScatterPlotReport REVS = ["issue67-v4-base", "issue67-v4"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_blind": [ "--search", "astar(blind())"], "astar_lmcut": [ "--search", "astar(lmcut())"], "astar_lm_zg": [ "--search", "astar(lmcount(lm_zg(), admissible=true, optimal=true))"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_comparison_table_step() exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue67-v4-total-time.png' ) exp()
833
Python
19.85
66
0.613445
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue67/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in self.get_supported_attributes( config_nick, attributes): make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,856
Python
34.913408
79
0.612943
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue67/issue67.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue67-v1-base", "issue67-v1"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_blind": [ "--search", "astar(blind())"], "astar_lmcut": [ "--search", "astar(lmcut())"], "astar_lm_zg": [ "--search", "astar(lmcount(lm_zg(), admissible=true, optimal=true))"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_comparison_table_step() exp()
587
Python
17.967741
66
0.577513
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue67/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v1-lama.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-no-syn-pref-{pref}".format(**locals()), [ "--if-unit-cost", "--evaluator", "hlm=lmcount(lm_rhw(reasonable_orders=true), preferred_operators={pref})".format(**locals()), "--evaluator", "hff=ff()", "--search", """iterated([ lazy_greedy([hff,hlm],preferred=[hff,hlm]), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=5), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=3), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=2), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=1) ],repeat_last=true,continue_on_fail=true)""", "--if-non-unit-cost", "--evaluator", "hlm1=lmcount(lm_rhw(reasonable_orders=true), transform=adapt_costs(one), preferred_operators={pref})".format(**locals()), "--evaluator", "hff1=ff(transform=adapt_costs(one))", "--evaluator", "hlm2=lmcount(lm_rhw(reasonable_orders=true), transform=adapt_costs(plusone), preferred_operators={pref})".format(**locals()), "--evaluator", "hff2=ff(transform=adapt_costs(plusone))", "--search", """iterated([ lazy_greedy([hff1,hlm1],preferred=[hff1,hlm1], cost_type=one,reopen_closed=false), lazy_greedy([hff2,hlm2],preferred=[hff2,hlm2], reopen_closed=false), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=5), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=3), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=2), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=1) ],repeat_last=true,continue_on_fail=true)""", "--always"]) for pref in ["none", "simple", "all"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.ANYTIME_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(filter_algorithm=["issue846-v1-lama-no-syn-pref-none", "issue846-v1-lama-no-syn-pref-simple", "issue846-v1-lama-no-syn-pref-all"]) #exp.add_comparison_table_step() exp.run_steps()
3,606
Python
37.784946
159
0.610649
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v1-lama-first-ignore-pref.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-first-pref-{pref}".format(**locals()), [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), preferred_operators={pref})".format(**locals()), "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy_greedy([hff,hlm],preferred=[hff,hlm]," "cost_type=one,reopen_closed=false)"]) for pref in ["none", "simple"] ] + [ ("lama-first-pref-{pref}-ignore".format(**locals()), [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), preferred_operators={pref})".format(**locals()), "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy_greedy([hff,hlm],preferred=[hff]," "cost_type=one,reopen_closed=false)"]) for pref in ["simple"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() #exp.add_comparison_table_step() exp.run_steps()
2,448
Python
30.805194
140
0.671977
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v2-lama-first.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-base", "issue846-v2"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-first-pref-{pref}".format(**locals()), [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), pref={pref})".format(**locals()), "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy_greedy([hff,hlm],preferred=[hff,hlm]," "cost_type=one,reopen_closed=false)"]) for pref in ["true", "false"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_comparison_table_step() exp.run_steps()
1,943
Python
28.014925
125
0.691714
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v1-lama-first.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-first-pref-{pref}".format(**locals()), [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), preferred_operators={pref})".format(**locals()), "--evaluator", "hff=ff(transform=adapt_costs(one))", "--search", "lazy_greedy([hff,hlm],preferred=[hff,hlm]," "cost_type=one,reopen_closed=false)"]) for pref in ["none", "simple", "all"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(filter_algorithm=["issue846-v1-lama-first-pref-none", "issue846-v1-lama-first-pref-simple", "issue846-v1-lama-first-pref-all"]) #exp.add_comparison_table_step() exp.run_steps()
2,132
Python
29.913043
156
0.697936
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,786
Python
36.435443
82
0.618355
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v1-lama-first-no-ff.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("{index}-lama-first-no-ff-pref-{pref}".format(**locals()), [ "--evaluator", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), preferred_operators={pref})".format(**locals()), "--search", "lazy_greedy([hlm],preferred=[hlm]," "cost_type=one,reopen_closed=false)"]) for index, pref in enumerate(["none", "simple", "all"]) ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() #exp.add_comparison_table_step() exp.run_steps()
1,969
Python
27.970588
140
0.6968
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v1-bjolp.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("bjolp-pref-{pref}".format(**locals()), [ "--evaluator", "lmc=lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true, preferred_operators={pref})".format(**locals()), "--search", "astar(lmc,lazy_evaluator=lmc)"]) for pref in ["none", "simple"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() #exp.add_comparison_table_step() exp.run_steps()
1,834
Python
25.985294
119
0.7012
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue846/v2-bjolp.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue846-base", "issue846-v2"] BUILDS = ["release32"] CONFIG_NICKS = [ ("bjolp-pref-{pref}".format(**locals()), [ "--evaluator", "lmc=lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true, pref={pref})".format(**locals()), "--search", "astar(lmc,lazy_evaluator=lmc)"]) for pref in ["false"] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.run_steps()
1,802
Python
25.910447
104
0.700333
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/version1_v3-version2_v3-base.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.environments import FreiburgSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = "/home/drexlerd/benchmarks/downward-benchmarks" REVISIONS = ["issue348-base", "issue348-version1-v3", "issue348-version2-v3"] CONFIGS = [ IssueConfig("lama", [], driver_options=["--alias", "lama-first"]), IssueConfig("ehc-ff", ["--search", "ehc(ff())"]), IssueConfig("ipdb", ["--search", "astar(ipdb())"]), #IssueConfig("lmcut", ["--search", "astar(lmcut())"]), IssueConfig("blind", ["--search", "astar(blind())"]), #IssueConfig("lazy", [ # "--evaluator", # "hff=ff()", # "--evaluator", # "hcea=cea()", # "--search", # "lazy_greedy([hff, hcea], preferred=[hff, hcea])"]), ] ADL_DOMAINS = [ "assembly", "miconic-fulladl", "openstacks", "openstacks-opt08-adl", "optical-telegraphs", "philosophers", "psr-large", "psr-middle", "trucks", ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE + ADL_DOMAINS #ENVIRONMENT = BaselSlurmEnvironment( # partition="infai_2", # email="[email protected]", # export=["PATH", "DOWNWARD_BENCHMARKS"]) ENVIRONMENT = FreiburgSlurmEnvironment() if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"]) exp.run_steps()
2,123
Python
27.32
77
0.695714
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".git" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".git")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) #self.add_step( # 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) #self.add_step( # "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None, additional=[]): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute, config_nick2=None): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) if config_nick2 is not None: name += "-" + config_nick2 print("Make scatter plot for", name) algo1 = get_algo_nick(rev1, config_nick) algo2 = get_algo_nick(rev2, config_nick if config_nick2 is None else config_nick2) report = ScatterPlotReport( filter_algorithm=[algo1, algo2], attributes=[attribute], relative=relative, get_category=lambda run1, run2: run1["domain"]) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) for nick1, nick2, rev1, rev2, attribute in additional: make_scatter_plot(nick1, rev1, rev2, attribute, config_nick2=nick2) self.add_step(step_name, make_scatter_plots)
14,948
Python
36.84557
94
0.618076
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/version1_v2-version2_v2-base.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.environments import FreiburgSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = "/home/drexlerd/benchmarks/downward-benchmarks" REVISIONS = ["issue348-base", "issue348-version1-v2", "issue348-version2-v2"] CONFIGS = [ IssueConfig("lama", [], driver_options=["--alias", "lama-first"]), IssueConfig("ehc-ff", ["--search", "ehc(ff())"]), #IssueConfig("ipdb", ["--search", "astar(ipdb())"]), #IssueConfig("lmcut", ["--search", "astar(lmcut())"]), IssueConfig("blind", ["--search", "astar(blind())"]), IssueConfig("lazy", [ "--evaluator", "hff=ff()", "--evaluator", "hcea=cea()", "--search", "lazy_greedy([hff, hcea], preferred=[hff, hcea])"]), ] ADL_DOMAINS = [ "assembly", "miconic-fulladl", "openstacks", "openstacks-opt08-adl", "optical-telegraphs", "philosophers", "psr-large", "psr-middle", "trucks", ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE + ADL_DOMAINS #ENVIRONMENT = BaselSlurmEnvironment( # partition="infai_2", # email="[email protected]", # export=["PATH", "DOWNWARD_BENCHMARKS"]) ENVIRONMENT = FreiburgSlurmEnvironment() if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"]) exp.run_steps()
2,117
Python
27.24
77
0.697685
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/v24.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment #from lab.environments import FreiburgSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue348-base", "issue348-version2-v3", "issue348-v24"] CONFIGS = [ IssueConfig("lama", [], driver_options=["--alias", "lama-first"]), IssueConfig("ehc-ff", ["--search", "ehc(ff())"]), IssueConfig("ipdb", ["--search", "astar(ipdb())"]), IssueConfig("lmcut", ["--search", "astar(lmcut())"]), IssueConfig("blind", ["--search", "astar(blind())"]), IssueConfig("lazy", [ "--evaluator", "hff=ff()", "--evaluator", "hcea=cea()", "--search", "lazy_greedy([hff, hcea], preferred=[hff, hcea])"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) #ENVIRONMENT = FreiburgSlurmEnvironment() if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"]) exp.run_steps()
1,884
Python
28.453125
77
0.708599
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/v14-blind.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue348-v13", "issue348-v14"] CONFIGS = [ IssueConfig("blind", ["--search", "astar(blind())"]), ] ADL_DOMAINS = [ "assembly", "miconic-fulladl", "openstacks", "openstacks-opt08-adl", "optical-telegraphs", "philosophers", "psr-large", "psr-middle", "trucks", ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE + ADL_DOMAINS ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE + ["openstacks-opt08-adl:p01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time"], suffix="-strips", filter_domain=common_setup.DEFAULT_OPTIMAL_SUITE) exp.add_scatter_plot_step(relative=True, attributes=["total_time"], suffix="-adl", filter_domain=ADL_DOMAINS) exp.run_steps()
1,853
Python
27.523076
135
0.727469
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue348/v19-blind.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue348-base", "issue348-v19"] CONFIGS = [ IssueConfig("blind", ["--search", "astar(blind())"]), ] ADL_DOMAINS = [ "assembly", "miconic-fulladl", "openstacks", "openstacks-opt08-adl", "optical-telegraphs", "philosophers", "psr-large", "psr-middle", "trucks", ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE + ADL_DOMAINS ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE + ["openstacks-opt08-adl:p01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time"], suffix="-strips", filter_domain=common_setup.DEFAULT_OPTIMAL_SUITE) exp.add_scatter_plot_step(relative=True, attributes=["total_time"], suffix="-adl", filter_domain=ADL_DOMAINS) exp.run_steps()
1,854
Python
27.538461
135
0.727616
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue722/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if matplotlib: if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,453
Python
35.872449
81
0.609562
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue722/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Done initializing merge-and-shrink heuristic \[(.+)s\]', required=False, type=float) parser.add_pattern('ms_memory_delta', 'Final peak memory increase of merge-and-shrink computation: (\d+) KB', required=False, type=int) parser.add_pattern('actual_search_time', 'Actual search time: (.+)s \[t=.+s\]', required=False, type=float) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) def check_proved_unsolvability(content, props): proved_unsolvability = False if props['coverage'] == 0: for line in content.splitlines(): if line == 'Completely explored state space -- no solution!': proved_unsolvability = True break props['proved_unsolvability'] = proved_unsolvability parser.add_function(check_proved_unsolvability) parser.parse()
2,784
Python
37.150684
135
0.665589
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue722/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.reports import Attribute, geometric_mean from lab.environments import LocalEnvironment, MaiaEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment, get_algo_nick, get_repo_base BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue722-base", "issue722-v1"] CONFIGS = [ IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('sccs-dfp-b50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), #IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), #IssueConfig('sccs-dfp-ginf', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=true),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), #IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order])),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), #IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), #IssueConfig('sccs-dfp-f50k', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_fh(),merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,atomic_before_product=false)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000))']), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['{ms_parser}']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() exp.add_scatter_plot_step() exp.run_steps()
5,364
Python
68.675324
465
0.772185
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue722/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue560/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in self.get_supported_attributes( config_nick, attributes): make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,856
Python
34.913408
79
0.612943
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue560/issue560.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from relativescatter import RelativeScatterPlotReport import common_setup REVS = ["issue560-base", "issue560-v1"] SUITE = suites.suite_all() # We are only interested in the preprocessing here and will only run the first steps of the experiment. CONFIGS = { "astar_blind": [ "--search", "astar(blind())"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_report( RelativeScatterPlotReport( attributes=["preprocess_wall_clock_time"], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue560_base_v1_preprocess_wall_clock_time.png' ) exp.add_absolute_report_step(attributes=["preprocess_wall_clock_time"]) exp()
824
Python
21.916666
103
0.684466
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue560/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/state_size_parser.py
#! /usr/bin/env python from lab.parser import Parser def calculate_old_state_size(content, props): if 'bytes_per_state' not in props and 'preprocessor_variables' in props and 'state_var_t_size' in props: props['bytes_per_state'] = props['preprocessor_variables'] * props['state_var_t_size'] class StateSizeParser(Parser): def __init__(self): Parser.__init__(self) self.add_pattern('bytes_per_state', 'Bytes per state: (\d+)', required=False, type=int) self.add_pattern('state_var_t_size', 'Dispatcher selected state size (\d).', required=False, type=int) self.add_pattern('variables', 'Variables: (\d+)', required=False, type=int) self.add_function(calculate_old_state_size) if __name__ == '__main__': parser = StateSizeParser() print 'Running state size parser' parser.parse()
923
Python
37.499998
109
0.608884
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214-v4-ipdb.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_optimal_with_ipc11 from downward.configs import default_configs_optimal from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v4"] CONFIGS = {"ipdb": ["--search", "astar(ipdb())"]} TEST_RUN = False if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_optimal_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp()
865
Python
22.405405
120
0.695954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/common_setup.py
# -*- coding: utf-8 -*- import os.path from lab.environments import MaiaEnvironment from lab.steps import Step from downward.checkouts import Translator, Preprocessor, Planner from downward.experiments import DownwardExperiment from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the filename of the main script, e.g. "/ham/spam/eggs.py" => "eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Found by searching upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found.""" path = os.path.abspath(get_script_dir()) while True: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) class MyExperiment(DownwardExperiment): DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "total_time", "search_time", "memory", "expansions_until_last_jump", ] """Wrapper for DownwardExperiment with a few convenience features.""" def __init__(self, configs=None, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, suite=None, parsers=None, **kwargs): """Create a DownwardExperiment with some convenience features. If "configs" is specified, it should be a dict of {nick: cmdline} pairs that sets the planner configurations to test. If "grid_priority" is specified and no environment is specifically requested in **kwargs, use the maia environment with the specified priority. If "path" is not specified, the experiment data path is derived automatically from the main script's filename. If "repo" is not specified, the repository base is derived automatically from the main script's path. If "revisions" is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. If "search_revisions" is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All experiments use the translator and preprocessor component of the first revision. If "suite" is specified, it should specify a problem suite. If "parsers" is specified, it should be a list of paths to parsers that should be run in addition to search_parser.py. Options "combinations" (from the base class), "revisions" and "search_revisions" are mutually exclusive.""" if grid_priority is not None and "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() num_rev_opts_specified = ( int(revisions is not None) + int(search_revisions is not None) + int(kwargs.get("combinations") is not None)) if num_rev_opts_specified > 1: raise ValueError('must specify exactly one of "revisions", ' '"search_revisions" or "combinations"') # See add_comparison_table_step for more on this variable. self._HACK_revisions = revisions if revisions is not None: if not revisions: raise ValueError("revisions cannot be empty") combinations = [(Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions] kwargs["combinations"] = combinations if search_revisions is not None: if not search_revisions: raise ValueError("search_revisions cannot be empty") base_rev = search_revisions[0] translator = Translator(repo, base_rev) preprocessor = Preprocessor(repo, base_rev) combinations = [(translator, preprocessor, Planner(repo, rev)) for rev in search_revisions] kwargs["combinations"] = combinations self._additional_parsers = parsers or [] DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) if configs is not None: for nick, config in configs.items(): self.add_config(nick, config) if suite is not None: self.add_suite(suite) self._report_prefix = get_experiment_name() def _make_search_runs(self): DownwardExperiment._make_search_runs(self) for i, parser in enumerate(self._additional_parsers): parser_alias = 'ADDITIONALPARSER%d' % i self.add_resource(parser_alias, parser, os.path.basename(parser)) for run in self.runs: run.require_resource(parser_alias) run.add_command('additional-parser-%d' % i, [parser_alias]) def add_comparison_table_step(self, attributes=None): revisions = self._HACK_revisions if revisions is None: # TODO: It's not clear to me what a "revision" in the # overall context of the code really is, e.g. when keeping # the translator and preprocessor method fixed and only # changing the search component. It's also not really # clear to me how the interface of the Compare... reports # works and how to use it more generally. Hence the # present hack. # Ideally, this method should look at the table columns we # have (defined by planners and planner configurations), # pair them up in a suitable way, either controlled by a # convenience parameter or a more general grouping method, # and then use this to define which pairs go together. raise NotImplementedError( "only supported when specifying revisions in __init__") if attributes is None: attributes = self.DEFAULT_TABLE_ATTRIBUTES report = CompareRevisionsReport(*revisions, attributes=attributes) self.add_report(report, outfile="%s-compare.html" % self._report_prefix) def add_scatter_plot_step(self, attributes=None): if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES revisions = self._HACK_revisions if revisions is None: # TODO: See add_comparison_table_step. raise NotImplementedError( "only supported when specifying revisions in __init__") if len(revisions) != 2: # TODO: Should generalize this, too, by offering a general # grouping function and then comparing any pair of # settings in the same group. raise NotImplementedError("need two revisions") scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plots(): configs = [conf[0] for conf in self.configs] for nick in configs: config_before = "%s-%s" % (revisions[0], nick) config_after = "%s-%s" % (revisions[1], nick) for attribute in attributes: name = "%s-%s-%s" % (self._report_prefix, attribute, nick) report = ScatterPlotReport( filter_config=[config_before, config_after], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
9,190
Python
37.456067
80
0.611099
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_optimal_with_ipc11 from downward.configs import default_configs_optimal from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v2"] CONFIGS = default_configs_optimal() # remove config that is disabled in this branch del CONFIGS['astar_selmax_lmcut_lmcount'] TEST_RUN = True if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_optimal_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp.add_scatter_plot_step() exp.add_report(ScatterPlotReport( attributes=['bytes_per_state'], filter_config_nick='astar_blind', ), outfile='issue214_bytes_per_state.png') for config_nick in ['astar_blind', 'astar_lmcut', 'astar_merge_and_shrink_bisim', 'astar_ipdb']: for attr in ['memory', 'total_time']: exp.add_report(ScatterPlotReport( attributes=[attr], filter_config_nick=config_nick, ), outfile='issue214_%s_%s.png' % (attr, config_nick)) exp()
1,483
Python
25.035087
120
0.673635
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_satisficing_with_ipc11 from downward.configs import default_configs_satisficing from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v2"] CONFIGS = default_configs_satisficing() TEST_RUN = True if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_satisficing_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp.add_scatter_plot_step() exp.add_report(ScatterPlotReport( attributes=['bytes_per_state'], filter_config_nick='astar_blind', ), outfile='issue214_sat_bytes_per_state.png') for config_nick in ['lazy_greedy_ff', 'eager_greedy_cg', 'seq_sat_lama_2011']: for attr in ['memory', 'total_time']: exp.add_report(ScatterPlotReport( attributes=[attr], filter_config_nick=config_nick, ), outfile='issue214_sat_%s_%s.png' % (attr, config_nick)) exp()
1,398
Python
24.907407
120
0.669528
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214-v5-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from downward.configs import default_configs_optimal from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v5"] CONFIGS = {"blind": ["--search", "astar(blind())"]} TEST_RUN = False if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = list(sorted(set(suites.suite_all()) - set(suites.suite_optimal_with_ipc11()))) PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp()
894
Python
23.189189
120
0.692394
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214-v3-ipdb.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_optimal_with_ipc11 from downward.configs import default_configs_optimal from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v3"] CONFIGS = {"ipdb": ["--search", "astar(ipdb())"]} TEST_RUN = True if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_optimal_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp()
864
Python
22.378378
120
0.695602
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue214/issue214-v5.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_optimal_with_ipc11 from downward.configs import default_configs_optimal from downward.reports.scatter import ScatterPlotReport import common_setup REVS = ["issue214-base", "issue214-v5"] CONFIGS = {"blind": ["--search", "astar(blind())"]} TEST_RUN = False if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_optimal_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, parsers=['state_size_parser.py'], ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES + ['bytes_per_state', 'variables', 'state_var_t_size'] ) exp()
867
Python
22.459459
120
0.696655
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_running_on_cluster_login_node(): return platform.node() == "login20.cluster.bc2.ch" def can_publish(): return is_running_on_cluster_login_node() or not is_running_on_cluster() def publish(report_file): if can_publish(): subprocess.call(["publish", report_file]) else: print "publishing reports is not supported on this node" def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, name="make-absolute-report", outfile=outfile) self.add_step("publish-absolute-report", publish, outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def get_revision_pairs_and_files(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) yield (rev1, rev2, outfile) def make_comparison_tables(): for rev1, rev2, outfile in get_revision_pairs_and_files(): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) report(self.eval_dir, outfile) def publish_comparison_tables(): for _, _, outfile in get_revision_pairs_and_files(): publish(outfile) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step("publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,462
Python
35.24812
79
0.618725
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/v4-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue731-base", "issue731-v4"] BUILDS = ["release32"] SEARCHES = [ ("blind", "astar(blind())"), ("divpot", "astar(diverse_potentials())"), ("cegar", "astar(cegar())"), ("systematic2", "astar(cpdbs(systematic(2)))"), ("ipdb", "astar(ipdb())"), ] CONFIGS = [ IssueConfig( "{nick}-{build}".format(**locals()), ["--search", search], build_options=[build], driver_options=["--build", build]) for nick, search in SEARCHES for build in BUILDS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step() exp.run_steps()
1,264
Python
24.816326
68
0.674051
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/v5-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue731-v5-base", "issue731-v5"] BUILDS = ["release32", "release64"] SEARCHES = [ ("blind", "astar(blind())"), ("systematic2", "astar(cpdbs(systematic(2)))"), ("ipdb", "astar(ipdb())"), ] CONFIGS = [ IssueConfig( "{nick}-{build}".format(**locals()), ["--search", search], build_options=[build], driver_options=["--build", build]) for nick, search in SEARCHES for build in BUILDS ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step() # Compare builds. for build1, build2 in itertools.combinations(BUILDS, 2): for rev in REVISIONS: algorithm_pairs = [ ("{rev}-{config_nick}-{build1}".format(**locals()), "{rev}-{config_nick}-{build2}".format(**locals()), "Diff ({config_nick}-{rev})".format(**locals())) for config_nick, search in SEARCHES] exp.add_report( ComparativeReport( algorithm_pairs, attributes=IssueExperiment.DEFAULT_TABLE_ATTRIBUTES), name="issue731-{build1}-vs-{build2}-{rev}".format(**locals())) exp.run_steps()
1,863
Python
28.125
74
0.652174
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/v4-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue731-base", "issue731-v4"] BUILDS = ["release32"] SEARCHES = [ ("ff_lazy", ["--heuristic", "h=ff()", "--search", "lazy_greedy([h], preferred=[h])"]), ("cea_lazy", ["--heuristic", "h=cea()", "--search", "lazy_greedy([h], preferred=[h])"]), ("type_based", ["--heuristic", "h=ff()", "--search", "eager(alt([type_based([h, g()])]))"]), ("zhu_givan", [ "--heuristic", "hlm=lmcount(lm_zg())", "--search", """lazy_greedy([hlm], preferred=[hlm])"""]), ] CONFIGS = [ IssueConfig( "{nick}-{build}".format(**locals()), search, build_options=[build], driver_options=["--build", build]) for nick, search in SEARCHES for build in BUILDS ] + [ IssueConfig( "lama-first-{build}".format(**locals()), [], build_options=[build], driver_options=["--build", build, "--alias", "lama-first"]) for build in BUILDS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step() exp.run_steps()
1,678
Python
28.45614
96
0.628129
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/hash-microbenchmark/main.cc
#include <algorithm> #include <ctime> #include <functional> #include <iostream> #include <string> #include <unordered_set> #include "hash.h" using namespace std; static void benchmark(const string &desc, int num_calls, const function<void()> &func) { cout << "Running " << desc << " " << num_calls << " times:" << flush; clock_t start = clock(); for (int j = 0; j < num_calls; ++j) func(); clock_t end = clock(); double duration = static_cast<double>(end - start) / CLOCKS_PER_SEC; cout << " " << duration << "s" << endl; } static int scramble(int i) { return (0xdeadbeef * i) ^ 0xfeedcafe; } int main(int, char **) { const int REPETITIONS = 2; const int NUM_CALLS = 1; const int NUM_INSERTIONS = 10000000; const int NUM_READ_PASSES = 10; for (int i = 0; i < REPETITIONS; ++i) { benchmark("nothing", NUM_CALLS, [] () {}); cout << endl; benchmark("insert sequential int with BoostHash", NUM_CALLS, [&]() { unordered_set<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(i); } }); benchmark("insert sequential int with BurtleFeed", NUM_CALLS, [&]() { utils::HashSet<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(i); } }); cout << endl; benchmark("insert scrambled int with BoostHash", NUM_CALLS, [&]() { unordered_set<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(scramble(i)); } }); benchmark("insert scrambled int with BurtleFeed", NUM_CALLS, [&]() { utils::HashSet<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(scramble(i)); } }); cout << endl; benchmark("insert, then read sequential int with BoostHash", NUM_CALLS, [&]() { unordered_set<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(i); } for (int j = 0; j < NUM_READ_PASSES; ++j) { for (int i = 0; i < NUM_INSERTIONS; ++i) { s.count(i); } } }); benchmark("insert, then read sequential int with BurtleFeed", NUM_CALLS, [&]() { utils::HashSet<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(i); } for (int j = 0; j < NUM_READ_PASSES; ++j) { for (int i = 0; i < NUM_INSERTIONS; ++i) { s.count(i); } } }); cout << endl; benchmark("insert, then read scrambled int with BoostHash", NUM_CALLS, [&]() { unordered_set<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(scramble(i)); } for (int j = 0; j < NUM_READ_PASSES; ++j) { for (int i = 0; i < NUM_INSERTIONS; ++i) { s.count(i); } } }); benchmark("insert, then read scrambled int with BurtleFeed", NUM_CALLS, [&]() { utils::HashSet<int> s; for (int i = 0; i < NUM_INSERTIONS; ++i) { s.insert(scramble(i)); } for (int j = 0; j < NUM_READ_PASSES; ++j) { for (int i = 0; i < NUM_INSERTIONS; ++i) { s.count(i); } } }); cout << endl; } return 0; }
4,371
C++
33.15625
80
0.371997
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue731/hash-microbenchmark/hash.h
#ifndef UTILS_HASH_H #define UTILS_HASH_H #include <cassert> #include <cstddef> #include <cstdint> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> namespace utils { /* We provide a family of hash functions that are supposedly higher quality than what is guaranteed by the standard library. Changing a single bit in the input should typically change around half of the bits in the final hash value. The hash functions we previously used turned out to cluster when we tried hash tables with open addressing for state registries. The low-level hash functions are based on lookup3.c by Bob Jenkins, May 2006, public domain. See http://www.burtleburtle.net/bob/c/lookup3.c. To hash an object x, it is represented as a sequence of 32-bit pieces (called the "code" for x, written code(x) in the following) that are "fed" to the main hashing function (implemented in class HashState) one by one. This allows a compositional approach to hashing. For example, the code for a pair p is the concatenation of code(x.first) and code(x.second). A simpler compositional approach to hashing would first hash the components of an object and then combine the hash values, and this is what a previous version of our code did. The approach with an explicit HashState object is stronger because the internal hash state is larger (96 bits) than the final hash value and hence pairs <x, y> and <x', y> where x and x' have the same hash value don't necessarily collide. Another advantage of our approach is that we can use the same overall hashing approach to generate hash values of different types (e.g. 32-bit vs. 64-bit unsigned integers). To extend the hashing mechanism to further classes, provide a template specialization for the "feed" function. This must satisfy the following requirements: A) If x and y are objects of the same type, they should have code(x) = code(y) iff x = y. That is, the code sequence should uniquely describe each logically distinct object. This requirement avoids unnecessary hash collisions. Of course, there will still be "necessary" hash collisions because different code sequences can collide in the low-level hash function. B) To play nicely with composition, we additionally require that feed implements a prefix code, i.e., for objects x != y of the same type, code(x) must not be a prefix of code(y). This requirement makes it much easier to define non-colliding code sequences for composite objects such as pairs via concatenation: if <a, b> != <a', b'>, then code(a) != code(a') and code(b) != code(b') is *not* sufficient for concat(code(a), code(b)) != concat(code(a'), code(b')). However, if we require a prefix code, it *is* sufficient and the resulting code will again be a prefix code. Note that objects "of the same type" is meant as "logical type" rather than C++ type. For example, for objects such as vectors where we expect different-length vectors to be combined in the same containers (= have the same logical type), we include the length of the vector as the first element in the code to ensure the prefix code property. In contrast, for integer arrays encoding states, we *do not* include the length as a prefix because states of different sizes are considered to be different logical types and should not be mixed in the same container, even though they are represented by the same C++ type. */ /* Circular rotation (http://stackoverflow.com/a/31488147/224132). */ inline uint32_t rotate(uint32_t value, uint32_t offset) { return (value << offset) | (value >> (32 - offset)); } /* Store the state of the hashing process. This class can either be used by specializing the template function utils::feed() (recommended, see below), or by working with it directly. */ class HashState { std::uint32_t a, b, c; int pending_values; /* Mix the three 32-bit values bijectively. Any information in (a, b, c) before mix() is still in (a, b, c) after mix(). */ void mix() { a -= c; a ^= rotate(c, 4); c += b; b -= a; b ^= rotate(a, 6); a += c; c -= b; c ^= rotate(b, 8); b += a; a -= c; a ^= rotate(c, 16); c += b; b -= a; b ^= rotate(a, 19); a += c; c -= b; c ^= rotate(b, 4); b += a; } /* Final mixing of the three 32-bit values (a, b, c) into c. Triples of (a, b, c) differing in only a few bits will usually produce values of c that look totally different. */ void final_mix() { c ^= b; c -= rotate(b, 14); a ^= c; a -= rotate(c, 11); b ^= a; b -= rotate(a, 25); c ^= b; c -= rotate(b, 16); a ^= c; a -= rotate(c, 4); b ^= a; b -= rotate(a, 14); c ^= b; c -= rotate(b, 24); } public: HashState() : a(0xdeadbeef), b(a), c(a), pending_values(0) { } void feed(std::uint32_t value) { assert(pending_values != -1); if (pending_values == 3) { mix(); pending_values = 0; } if (pending_values == 0) { a += value; ++pending_values; } else if (pending_values == 1) { b += value; ++pending_values; } else if (pending_values == 2) { c += value; ++pending_values; } } /* After calling this method, it is illegal to use the HashState object further, i.e., make further calls to feed, get_hash32 or get_hash64. We set pending_values = -1 to catch such illegal usage in debug mode. */ std::uint32_t get_hash32() { assert(pending_values != -1); if (pending_values) { /* pending_values == 0 can only hold if we never called feed(), i.e., if we are hashing an empty sequence. In this case we don't call final_mix for compatibility with the original hash function by Jenkins. */ final_mix(); } pending_values = -1; return c; } /* See comment for get_hash32. */ std::uint64_t get_hash64() { assert(pending_values != -1); if (pending_values) { // See comment for get_hash32. final_mix(); } pending_values = -1; return (static_cast<std::uint64_t>(b) << 32) | c; } }; /* These functions add a new object to an existing HashState object. To add hashing support for a user type X, provide an override for utils::feed(HashState &hash_state, const X &value). */ static_assert( sizeof(int) == sizeof(std::uint32_t), "int and uint32_t have different sizes"); inline void feed(HashState &hash_state, int value) { hash_state.feed(static_cast<std::uint32_t>(value)); } static_assert( sizeof(unsigned int) == sizeof(std::uint32_t), "unsigned int and uint32_t have different sizes"); inline void feed(HashState &hash_state, unsigned int value) { hash_state.feed(static_cast<std::uint32_t>(value)); } inline void feed(HashState &hash_state, std::uint64_t value) { hash_state.feed(static_cast<std::uint32_t>(value)); value >>= 32; hash_state.feed(static_cast<std::uint32_t>(value)); } template<typename T> void feed(HashState &hash_state, const T *p) { // This is wasteful in 32-bit mode, but we plan to discontinue 32-bit compiles anyway. feed(hash_state, reinterpret_cast<std::uint64_t>(p)); } template<typename T1, typename T2> void feed(HashState &hash_state, const std::pair<T1, T2> &p) { feed(hash_state, p.first); feed(hash_state, p.second); } template<typename T> void feed(HashState &hash_state, const std::vector<T> &vec) { /* Feed vector size to ensure that no two different vectors of the same type have the same code prefix. */ feed(hash_state, vec.size()); for (const T &item : vec) { feed(hash_state, item); } } /* Public hash functions. get_hash() is used internally by the HashMap and HashSet classes below. In more exotic use cases, such as implementing a custom hash table, you can also use `get_hash32()`, `get_hash64()` and `get_hash()` directly. */ template<typename T> std::uint32_t get_hash32(const T &value) { HashState hash_state; feed(hash_state, value); return hash_state.get_hash32(); } template<typename T> std::uint64_t get_hash64(const T &value) { HashState hash_state; feed(hash_state, value); return hash_state.get_hash64(); } template<typename T> std::size_t get_hash(const T &value) { return static_cast<std::size_t>(get_hash64(value)); } // This struct should only be used by HashMap and HashSet below. template<typename T> struct Hash { std::size_t operator()(const T &val) const { return get_hash(val); } }; /* Aliases for hash sets and hash maps in user code. Use these aliases for hashing types T that don't have a standard std::hash<T> specialization. To hash types that are not supported out of the box, implement utils::feed. */ template<typename T1, typename T2> using HashMap = std::unordered_map<T1, T2, Hash<T1>>; template<typename T> using HashSet = std::unordered_set<T, Hash<T>>; /* Legacy hash functions. We plan to remove these legacy hash functions since implementing std::hash<T> for non-user-defined types T causes undefined behaviour (http://en.cppreference.com/w/cpp/language/extending_std) and maintaining only one set of user-defined hash functions is easier. */ template<typename T> inline void hash_combine(size_t &hash, const T &value) { std::hash<T> hasher; /* The combination of hash values is based on issue 6.18 in http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1756.pdf. Boost combines hash values in the same way. */ hash ^= hasher(value) + 0x9e3779b9 + (hash << 6) + (hash >> 2); } template<typename Sequence> size_t hash_sequence(const Sequence &data, size_t length) { size_t hash = 0; for (size_t i = 0; i < length; ++i) { hash_combine(hash, data[i]); } return hash; } } namespace std { template<typename T> struct hash<std::vector<T>> { size_t operator()(const std::vector<T> &vec) const { return utils::hash_sequence(vec, vec.size()); } }; template<typename TA, typename TB> struct hash<std::pair<TA, TB>> { size_t operator()(const std::pair<TA, TB> &pair) const { size_t hash = 0; utils::hash_combine(hash, pair.first); utils::hash_combine(hash, pair.second); return hash; } }; } #endif
10,889
C
29.334262
90
0.634953
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue742/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", "unsolvable", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if matplotlib: if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,475
Python
35.834606
81
0.609326
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue742/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Done initializing merge-and-shrink heuristic \[(.+)s\]', required=False, type=float) parser.add_pattern('ms_atomic_construction_time', 't=(.+)s \(after computation of atomic transition systems\)', required=False, type=float) parser.add_pattern('ms_memory_delta', 'Final peak memory increase of merge-and-shrink computation: (\d+) KB', required=False, type=int) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) parser.parse()
2,415
Python
37.967741
139
0.672464
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue742/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from common_setup import IssueConfig, IssueExperiment, DEFAULT_OPTIMAL_SUITE, is_test_run BENCHMARKS_DIR=os.path.expanduser('~/repos/downward/benchmarks') REVISIONS = ["issue742-v1"] CONFIGS = [ IssueConfig('rl-rnd-noprune', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=false,prune_irrelevant_states=false))']), IssueConfig('rl-rnd-punr', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=true,prune_irrelevant_states=false))']), IssueConfig('rl-rnd-pirr', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=false,prune_irrelevant_states=true))']), IssueConfig('rl-rnd-fullprune', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=true,prune_irrelevant_states=true))']), ] SUITE = DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment(email='[email protected]') if is_test_run(): SUITE = ['depot:p01.pddl', 'depot:p02.pddl', 'parcprinter-opt11-strips:p01.pddl', 'parcprinter-opt11-strips:p02.pddl', 'mystery:prob07.pddl'] ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['{ms_parser}']) exp.add_suite(BENCHMARKS_DIR, SUITE) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step() exp.run_steps()
3,618
Python
52.220587
332
0.767828
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue742/v1-debug.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from lab.reports import Attribute, geometric_mean from common_setup import IssueConfig, IssueExperiment, DEFAULT_OPTIMAL_SUITE, is_test_run BENCHMARKS_DIR=os.path.expanduser('~/repos/downward/benchmarks') REVISIONS = ["issue742-v1"] CONFIGS = [ IssueConfig('rl-rnd-noprune', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=false,prune_irrelevant_states=false))'], driver_options=['--debug'], build_options=['--debug']), IssueConfig('rl-rnd-punr', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=true,prune_irrelevant_states=false))'], driver_options=['--debug'], build_options=['--debug']), IssueConfig('rl-rnd-pirr', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=false,prune_irrelevant_states=true))'], driver_options=['--debug'], build_options=['--debug']), IssueConfig('rl-rnd-fullprune', ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_random,merge_strategy=merge_precomputed(merge_tree=linear(variable_order=reverse_level)),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000,prune_unreachable_states=true,prune_irrelevant_states=true))'], driver_options=['--debug'], build_options=['--debug']), ] SUITE = DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment(email='[email protected]') if is_test_run(): SUITE = ['depot:p01.pddl', 'depot:p02.pddl', 'parcprinter-opt11-strips:p01.pddl', 'parcprinter-opt11-strips:p02.pddl', 'mystery:prob07.pddl'] ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['{ms_parser}']) exp.add_suite(BENCHMARKS_DIR, SUITE) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_atomic_construction_time = Attribute('ms_atomic_construction_time', absolute=False, min_wins=True, functions=[geometric_mean]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, ms_construction_time, ms_atomic_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step() exp.run_steps()
3,838
Python
55.455882
387
0.760292
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue529/issue529.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import configs, suites from downward.reports.scatter import ScatterPlotReport import common_setup from relativescatter import RelativeScatterPlotReport SEARCH_REVS = ["issue529-v1-base", "issue529-v1"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { 'astar_blind': [ '--search', 'astar(blind())'], 'astar_ipdb': [ '--search', 'astar(ipdb())'], 'astar_cpdbs': [ '--search', 'astar(cpdbs())'], 'astar_gapdb': [ '--search', 'astar(gapdb())'], 'astar_pdb': [ '--search', 'astar(pdb())'], 'astar_zopdbs': [ '--search', 'astar(zopdbs())'], 'eager_greedy_cg': [ '--heuristic', 'h=cg()', '--search', 'eager_greedy(h, preferred=h)'], } exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, ) exp.add_absolute_report_step() exp.add_comparison_table_step() for conf in CONFIGS: for attr in ("memory", "total_time"): exp.add_report( RelativeScatterPlotReport( attributes=[attr], get_category=lambda run1, run2: run1.get("domain"), filter_config=["issue529-v1-base-%s" % conf, "issue529-v1-%s" % conf] ), outfile='issue529_base_v1_%s_%s.png' % (conf, attr) ) exp()
1,439
Python
22.606557
85
0.544128
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue529/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.reports import Table from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports import PlanningReport from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots)) class RegressionReport(PlanningReport): """ Compare revisions for tasks on which the first revision performs better than other revisions. *revision_nicks* must be a list of revision_nicks, e.g. ["default", "issue123"]. *config_nicks* must be a list of configuration nicknames, e.g. ["eager_greedy_ff", "eager_greedy_add"]. *regression_attribute* is the attribute that we compare between different revisions. It defaults to "coverage". Example comparing search_time for tasks were we lose coverage:: exp.add_report(RegressionReport(revision_nicks=["default", "issue123"], config_nicks=["eager_greedy_ff"], regression_attribute="coverage", attributes="search_time")) """ def __init__(self, revision_nicks, config_nicks, regression_attribute="coverage", **kwargs): PlanningReport.__init__(self, **kwargs) assert revision_nicks self.revision_nicks = revision_nicks assert config_nicks self.config_nicks = config_nicks self.regression_attribute = regression_attribute def get_markup(self): tables = [] for (domain, problem) in self.problems: for config_nick in self.config_nicks: runs = [self.runs[(domain, problem, rev + "-" + config_nick)] for rev in self.revision_nicks] if any(runs[0][self.regression_attribute] > runs[i][self.regression_attribute] for i in range(1, len(self.revision_nicks))): print "\"%s:%s\"," % (domain, problem) table = Table() for rev, run in zip(self.revision_nicks, runs): for attr in self.attributes: table.add_cell(rev, attr, run.get(attr)) table_name = ":".join((domain, problem, config_nick)) tables.append((table_name, table)) return "\n".join(name + "\n" + str(table) for name, table in tables)
14,920
Python
36.3025
79
0.601475
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue529/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue420/issue420-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward.suites import suite_optimal_with_ipc11 import common_setup REVS = ["issue420-base", "issue420-v1"] CONFIGS = { "blind": ["--search", "astar(blind())"], "lmcut": ["--search", "astar(lmcut())"], } TEST_RUN = False if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = suite_optimal_with_ipc11() PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES ) exp()
718
Python
18.432432
65
0.655989
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue420/common_setup.py
# -*- coding: utf-8 -*- import os.path from lab.environments import MaiaEnvironment from lab.steps import Step from downward.checkouts import Translator, Preprocessor, Planner from downward.experiments import DownwardExperiment from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the filename of the main script, e.g. "/ham/spam/eggs.py" => "eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Found by searching upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found.""" path = os.path.abspath(get_script_dir()) while True: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) class MyExperiment(DownwardExperiment): DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "total_time", "search_time", "memory", "expansions_until_last_jump", ] """Wrapper for DownwardExperiment with a few convenience features.""" def __init__(self, configs=None, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, suite=None, parsers=None, **kwargs): """Create a DownwardExperiment with some convenience features. If "configs" is specified, it should be a dict of {nick: cmdline} pairs that sets the planner configurations to test. If "grid_priority" is specified and no environment is specifically requested in **kwargs, use the maia environment with the specified priority. If "path" is not specified, the experiment data path is derived automatically from the main script's filename. If "repo" is not specified, the repository base is derived automatically from the main script's path. If "revisions" is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. If "search_revisions" is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All experiments use the translator and preprocessor component of the first revision. If "suite" is specified, it should specify a problem suite. If "parsers" is specified, it should be a list of paths to parsers that should be run in addition to search_parser.py. Options "combinations" (from the base class), "revisions" and "search_revisions" are mutually exclusive.""" if grid_priority is not None and "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() num_rev_opts_specified = ( int(revisions is not None) + int(search_revisions is not None) + int(kwargs.get("combinations") is not None)) if num_rev_opts_specified > 1: raise ValueError('must specify exactly one of "revisions", ' '"search_revisions" or "combinations"') # See add_comparison_table_step for more on this variable. self._HACK_revisions = revisions if revisions is not None: if not revisions: raise ValueError("revisions cannot be empty") combinations = [(Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions] kwargs["combinations"] = combinations if search_revisions is not None: if not search_revisions: raise ValueError("search_revisions cannot be empty") base_rev = search_revisions[0] translator = Translator(repo, base_rev) preprocessor = Preprocessor(repo, base_rev) combinations = [(translator, preprocessor, Planner(repo, rev)) for rev in search_revisions] kwargs["combinations"] = combinations self._additional_parsers = parsers or [] DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) if configs is not None: for nick, config in configs.items(): self.add_config(nick, config) if suite is not None: self.add_suite(suite) self._report_prefix = get_experiment_name() def _make_search_runs(self): DownwardExperiment._make_search_runs(self) for i, parser in enumerate(self._additional_parsers): parser_alias = 'ADDITIONALPARSER%d' % i self.add_resource(parser_alias, parser, os.path.basename(parser)) for run in self.runs: run.require_resource(parser_alias) run.add_command('additional-parser-%d' % i, [parser_alias]) def add_comparison_table_step(self, attributes=None): revisions = self._HACK_revisions if revisions is None: # TODO: It's not clear to me what a "revision" in the # overall context of the code really is, e.g. when keeping # the translator and preprocessor method fixed and only # changing the search component. It's also not really # clear to me how the interface of the Compare... reports # works and how to use it more generally. Hence the # present hack. # Ideally, this method should look at the table columns we # have (defined by planners and planner configurations), # pair them up in a suitable way, either controlled by a # convenience parameter or a more general grouping method, # and then use this to define which pairs go together. raise NotImplementedError( "only supported when specifying revisions in __init__") if attributes is None: attributes = self.DEFAULT_TABLE_ATTRIBUTES report = CompareRevisionsReport(*revisions, attributes=attributes) self.add_report(report, outfile="%s-compare.html" % self._report_prefix) def add_scatter_plot_step(self, attributes=None): if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES revisions = self._HACK_revisions if revisions is None: # TODO: See add_comparison_table_step. raise NotImplementedError( "only supported when specifying revisions in __init__") if len(revisions) != 2: # TODO: Should generalize this, too, by offering a general # grouping function and then comparing any pair of # settings in the same group. raise NotImplementedError("need two revisions") scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plots(): configs = [conf[0] for conf in self.configs] for nick in configs: config_before = "%s-%s" % (revisions[0], nick) config_after = "%s-%s" % (revisions[1], nick) for attribute in attributes: name = "%s-%s-%s" % (self._report_prefix, attribute, nick) report = ScatterPlotReport( filter_config=[config_before, config_after], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
9,190
Python
37.456067
80
0.611099
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue420/issue420-v1-regressions.py
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Before you can run the experiment you need to create duplicates of the two tasks we want to test: cd ../benchmarks/tidybot-opt11-strips for i in {00..49}; do cp p14.pddl p14-$i.pddl; done cd ../parking-opt11-strips for i in {00..49}; do cp pfile04-015.pddl pfile04-015-$i.pddl; done Don't forget to remove the duplicate tasks afterwards. Otherwise they will be included in subsequent experiments. """ import common_setup REVS = ["issue420-base", "issue420-v1"] CONFIGS = { "blind": ["--search", "astar(blind())"], "lmcut": ["--search", "astar(lmcut())"], } TEST_RUN = False if TEST_RUN: SUITE = "gripper:prob01.pddl" PRIORITY = None # "None" means local experiment else: SUITE = (["tidybot-opt11-strips:p14-%02d.pddl" % i for i in range(50)] + ["parking-opt11-strips:pfile04-015-%02d.pddl" % i for i in range(50)]) PRIORITY = 0 # number means maia experiment exp = common_setup.MyExperiment( grid_priority=PRIORITY, revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_comparison_table_step( attributes=common_setup.MyExperiment.DEFAULT_TABLE_ATTRIBUTES ) exp()
1,194
Python
23.387755
83
0.669179
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue479/issue479-5min.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute import common_setup import os exp = common_setup.IssueExperiment( search_revisions=["issue479-v2"], configs={ 'dfp-b-50k': ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(max_states=100000,threshold=1,greedy=false),merge_strategy=merge_dfp(),label_reduction=label_reduction(before_shrinking=true, before_merging=false)))'], 'blind': ['--search', 'astar(blind())'], }, suite=['airport'], limits={"search_time": 300}, ) exp.add_absolute_report_step(attributes=['coverage', 'error', 'run_dir']) exp()
679
Python
26.199999
246
0.674521
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue479/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return (node.endswith("cluster.bc2.ch") or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Once we have reference results, we should add "quality". # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,741
Python
35.614942
79
0.608743
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue479/issue479.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute import common_setup import os exp = common_setup.IssueExperiment( search_revisions=["issue479-v2"], configs={ 'dfp-b-50k': ['--search', 'astar(merge_and_shrink(shrink_strategy=shrink_bisimulation(max_states=100000,threshold=1,greedy=false),merge_strategy=merge_dfp(),label_reduction=label_reduction(before_shrinking=true, before_merging=false)))'], 'blind': ['--search', 'astar(blind())'], }, suite=['airport'], ) exp.add_absolute_report_step(attributes=['coverage', 'error', 'run_dir']) exp()
646
Python
25.958332
246
0.679567
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue891/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".git" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".git")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None, additional=[]): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute, config_nick2=None): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) if config_nick2 is not None: name += "-" + config_nick2 print("Make scatter plot for", name) algo1 = get_algo_nick(rev1, config_nick) algo2 = get_algo_nick(rev2, config_nick if config_nick2 is None else config_nick2) report = ScatterPlotReport( filter_algorithm=[algo1, algo2], attributes=[attribute], relative=relative, get_category=lambda run1, run2: run1["domain"]) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) for nick1, nick2, rev1, rev2, attribute in additional: make_scatter_plot(nick1, rev1, rev2, attribute, config_nick2=nick2) self.add_step(step_name, make_scatter_plots)
14,944
Python
36.835443
94
0.618241
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue891/v1.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue891-base", "issue891-v1"] CONFIGS = [ IssueConfig("opcount-seq-lmcut-cplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=cplex))"]), IssueConfig("diverse-potentials-cplex", ["--search", "astar(diverse_potentials(lpsolver=cplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-cplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=cplex))"]), IssueConfig("opcount-seq-lmcut-soplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=soplex))"]), IssueConfig("diverse-potentials-soplex", ["--search", "astar(diverse_potentials(lpsolver=soplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-soplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=soplex))"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"]) exp.run_steps()
2,174
Python
37.839285
156
0.735511
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue891/v1-mips.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue891-v1"] CONFIGS = [ IssueConfig("opcount-lp", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=cplex, use_integer_operator_counts=false))"]), IssueConfig("opcount-mip", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=cplex, use_integer_operator_counts=true))"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_report(ComparativeReport( [("issue891-v1-opcount-lp", "issue891-v1-opcount-mip", "Diff (LP/MIP)")], attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["initial_h_value"])) exp.add_scatter_plot_step(relative=False, attributes=["total_time", "memory"], additional=[ ("opcount-lp", "opcount-mip", "issue891-v1", "issue891-v1", "total_time"), ("opcount-lp", "opcount-mip", "issue891-v1", "issue891-v1", "memory"), ]) def interesting_h_value(run): if "initial_h_value" in run and run["initial_h_value"] > 50: run["initial_h_value"] = 51 return run exp.add_report(ScatterPlotReport( attributes=["initial_h_value"], filter=interesting_h_value, get_category=lambda run1, run2: run1["domain"], )) exp.run_steps()
2,308
Python
31.985714
176
0.719671
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue925/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,153
Python
35.955613
82
0.615205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue925/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from itertools import combinations DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] # These revisions are all tag experimental branches off the same revision. # we only need different tags so lab creates separate build directories in the build cache. # We then manually recompile the code in the build cache with the correct settings. REVISIONS = ["issue925-cplex12.8-static", "issue925-cplex12.8-dynamic", "issue925-cplex12.9-static", "issue925-cplex12.9-dynamic"] CONFIGS = [ IssueConfig("opcount-seq-lmcut", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()]))"]), IssueConfig("diverse-potentials", ["--search", "astar(diverse_potentials())"]), IssueConfig("optimal-lmcount", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true))"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment(email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_comparison_table_step() for r1, r2 in combinations(REVISIONS, 2): for nick in ["opcount-seq-lmcut", "diverse-potentials", "optimal-lmcount"]: exp.add_report(RelativeScatterPlotReport( attributes=["total_time"], filter_algorithm=["%s-%s" % (r, nick) for r in [r1, r2]], get_category=lambda run1, run2: run1["domain"]), outfile="issue925-v1-total-time-%s-%s-%s.png" % (r1, r2, nick)) exp.run_steps()
2,243
Python
37.689655
132
0.726259
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue925/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue791/v1-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue791-base", "issue791-v1"] CONFIGS = [ IssueConfig( 'blind-debug', ['--search', 'astar(blind())'], build_options=["debug32"], driver_options=["--build", "debug32", "--overall-time-limit", "5m"] ), IssueConfig( 'blind-release', ['--search', 'astar(blind())'], build_options=["release32"], driver_options=["--build", "release32", "--overall-time-limit", "5m"] ), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step() exp.run_steps()
1,509
Python
26.454545
77
0.689198
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue791/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,153
Python
35.955613
82
0.615205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue791/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue791/v2-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue791-base", "issue791-v2"] CONFIGS = [ IssueConfig( 'blind-debug', ['--search', 'astar(blind())'], build_options=["debug32"], driver_options=["--build", "debug32", "--overall-time-limit", "5m"] ), IssueConfig( 'blind-release', ['--search', 'astar(blind())'], build_options=["release32"], driver_options=["--build", "release32", "--overall-time-limit", "5m"] ), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_comparison_table_step() exp.run_steps()
1,509
Python
26.454545
77
0.689198
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v2-dfp-tiebreaking-abp-report.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_fetcher('data/issue644-v2-dfp-tiebreaking-eval', filter_config=[ 'issue644-v1-dfp-reg-otn-abp-b50k', 'issue644-v1-dfp-reg-nto-abp-b50k', 'issue644-v1-dfp-reg-rnd-abp-b50k', 'issue644-v1-dfp-inv-otn-abp-b50k', 'issue644-v1-dfp-inv-nto-abp-b50k', 'issue644-v1-dfp-inv-rnd-abp-b50k', 'issue644-v1-dfp-rnd-otn-abp-b50k', 'issue644-v1-dfp-rnd-nto-abp-b50k', 'issue644-v1-dfp-rnd-rnd-abp-b50k', 'issue644-v2-dfp-reg-otn-abp-b50k', 'issue644-v2-dfp-reg-nto-abp-b50k', 'issue644-v2-dfp-reg-rnd-abp-b50k', 'issue644-v2-dfp-inv-otn-abp-b50k', 'issue644-v2-dfp-inv-nto-abp-b50k', 'issue644-v2-dfp-inv-rnd-abp-b50k', 'issue644-v2-dfp-rnd-otn-abp-b50k', 'issue644-v2-dfp-rnd-nto-abp-b50k', 'issue644-v2-dfp-rnd-rnd-abp-b50k', ]) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-v1', 'issue644-v2'])
10,140
Python
82.12295
351
0.715878
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, benchmarks_dir, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(benchmarks_dir, suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,496
Python
33.907821
83
0.59435
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/suites.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import argparse import textwrap HELP = "Convert suite name to list of domains or tasks." def suite_alternative_formulations(): return ['airport-adl', 'no-mprime', 'no-mystery'] def suite_ipc98_to_ipc04_adl(): return [ 'assembly', 'miconic-fulladl', 'miconic-simpleadl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'schedule', ] def suite_ipc98_to_ipc04_strips(): return [ 'airport', 'blocks', 'depot', 'driverlog', 'freecell', 'grid', 'gripper', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'pipesworld-notankage', 'psr-small', 'satellite', 'zenotravel', ] def suite_ipc98_to_ipc04(): # All IPC1-4 domains, including the trivial Movie. return sorted(suite_ipc98_to_ipc04_adl() + suite_ipc98_to_ipc04_strips()) def suite_ipc06_adl(): return [ 'openstacks', 'pathways', 'trucks', ] def suite_ipc06_strips_compilations(): return [ 'openstacks-strips', 'pathways-noneg', 'trucks-strips', ] def suite_ipc06_strips(): return [ 'pipesworld-tankage', 'rovers', 'storage', 'tpp', ] def suite_ipc06(): return sorted(suite_ipc06_adl() + suite_ipc06_strips()) def suite_ipc08_common_strips(): return [ 'parcprinter-08-strips', 'pegsol-08-strips', 'scanalyzer-08-strips', ] def suite_ipc08_opt_adl(): return ['openstacks-opt08-adl'] def suite_ipc08_opt_strips(): return sorted(suite_ipc08_common_strips() + [ 'elevators-opt08-strips', 'openstacks-opt08-strips', 'sokoban-opt08-strips', 'transport-opt08-strips', 'woodworking-opt08-strips', ]) def suite_ipc08_opt(): return sorted(suite_ipc08_opt_strips() + suite_ipc08_opt_adl()) def suite_ipc08_sat_adl(): return ['openstacks-sat08-adl'] def suite_ipc08_sat_strips(): return sorted(suite_ipc08_common_strips() + [ # Note: cyber-security is missing. 'elevators-sat08-strips', 'openstacks-sat08-strips', 'sokoban-sat08-strips', 'transport-sat08-strips', 'woodworking-sat08-strips', ]) def suite_ipc08_sat(): return sorted(suite_ipc08_sat_strips() + suite_ipc08_sat_adl()) def suite_ipc08(): return sorted(set(suite_ipc08_opt() + suite_ipc08_sat())) def suite_ipc11_opt(): return [ 'barman-opt11-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'nomystery-opt11-strips', 'openstacks-opt11-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'pegsol-opt11-strips', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'tidybot-opt11-strips', 'transport-opt11-strips', 'visitall-opt11-strips', 'woodworking-opt11-strips', ] def suite_ipc11_sat(): return [ 'barman-sat11-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'nomystery-sat11-strips', 'openstacks-sat11-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'pegsol-sat11-strips', 'scanalyzer-sat11-strips', 'sokoban-sat11-strips', 'tidybot-sat11-strips', 'transport-sat11-strips', 'visitall-sat11-strips', 'woodworking-sat11-strips', ] def suite_ipc11(): return sorted(suite_ipc11_opt() + suite_ipc11_sat()) def suite_ipc14_agl_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_agl_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-agl14-strips', 'openstacks-agl14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_agl(): return sorted(suite_ipc14_agl_adl() + suite_ipc14_agl_strips()) def suite_ipc14_mco_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_mco_strips(): return [ 'barman-mco14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-mco14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_mco(): return sorted(suite_ipc14_mco_adl() + suite_ipc14_mco_strips()) def suite_ipc14_opt_adl(): return [ 'cavediving-14-adl', 'citycar-opt14-adl', 'maintenance-opt14-adl', ] def suite_ipc14_opt_strips(): return [ 'barman-opt14-strips', 'childsnack-opt14-strips', 'floortile-opt14-strips', 'ged-opt14-strips', 'hiking-opt14-strips', 'openstacks-opt14-strips', 'parking-opt14-strips', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'transport-opt14-strips', 'visitall-opt14-strips', ] def suite_ipc14_opt(): return sorted(suite_ipc14_opt_adl() + suite_ipc14_opt_strips()) def suite_ipc14_sat_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_sat_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_sat(): return sorted(suite_ipc14_sat_adl() + suite_ipc14_sat_strips()) def suite_ipc14(): return sorted(set( suite_ipc14_agl() + suite_ipc14_mco() + suite_ipc14_opt() + suite_ipc14_sat())) def suite_unsolvable(): return sorted( ['mystery:prob%02d.pddl' % index for index in [4, 5, 7, 8, 12, 16, 18, 21, 22, 23, 24]] + ['miconic-fulladl:f21-3.pddl', 'miconic-fulladl:f30-2.pddl']) def suite_optimal_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_opt_adl() + suite_ipc14_opt_adl()) def suite_optimal_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_opt_strips() + suite_ipc11_opt() + suite_ipc14_opt_strips()) def suite_optimal(): return sorted(suite_optimal_adl() + suite_optimal_strips()) def suite_satisficing_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_sat_adl() + suite_ipc14_sat_adl()) def suite_satisficing_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_sat_strips() + suite_ipc11_sat() + suite_ipc14_sat_strips()) def suite_satisficing(): return sorted(suite_satisficing_adl() + suite_satisficing_strips()) def suite_all(): return sorted( suite_ipc98_to_ipc04() + suite_ipc06() + suite_ipc06_strips_compilations() + suite_ipc08() + suite_ipc11() + suite_ipc14() + suite_alternative_formulations()) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("suite", help="suite name") return parser.parse_args() def main(): prefix = "suite_" suite_names = [ name[len(prefix):] for name in sorted(globals().keys()) if name.startswith(prefix)] parser = argparse.ArgumentParser(description=HELP) parser.add_argument("suite", choices=suite_names, help="suite name") parser.add_argument( "--width", default=72, type=int, help="output line width (default: %(default)s). Use 1 for single " "column.") args = parser.parse_args() suite_func = globals()[prefix + args.suite] print(textwrap.fill( str(suite_func()), width=args.width, break_long_words=False, break_on_hyphens=False)) if __name__ == "__main__": main()
8,551
Python
23.364672
77
0.595954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v1-dfp-tiebreaking-abp-report.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_fetcher('data/issue644-v1-dfp-tiebreaking-eval', filter_config=[ 'issue644-base-dfp-reg-otn-abp-b50k', 'issue644-base-dfp-reg-nto-abp-b50k', 'issue644-base-dfp-reg-rnd-abp-b50k', 'issue644-base-dfp-inv-otn-abp-b50k', 'issue644-base-dfp-inv-nto-abp-b50k', 'issue644-base-dfp-inv-rnd-abp-b50k', 'issue644-base-dfp-rnd-otn-abp-b50k', 'issue644-base-dfp-rnd-nto-abp-b50k', 'issue644-base-dfp-rnd-rnd-abp-b50k', 'issue644-v1-dfp-reg-otn-abp-b50k', 'issue644-v1-dfp-reg-nto-abp-b50k', 'issue644-v1-dfp-reg-rnd-abp-b50k', 'issue644-v1-dfp-inv-otn-abp-b50k', 'issue644-v1-dfp-inv-nto-abp-b50k', 'issue644-v1-dfp-inv-rnd-abp-b50k', 'issue644-v1-dfp-rnd-otn-abp-b50k', 'issue644-v1-dfp-rnd-nto-abp-b50k', 'issue644-v1-dfp-rnd-rnd-abp-b50k', ]) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-base', 'issue644-v1'])
10,160
Python
82.286885
351
0.716437
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v1-dfp-tiebreaking-pba-report.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { #IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_fetcher('data/issue644-v1-dfp-tiebreaking-eval', filter_config=[ 'issue644-base-dfp-reg-otn-pba-b50k', 'issue644-base-dfp-reg-nto-pba-b50k', 'issue644-base-dfp-reg-rnd-pba-b50k', 'issue644-base-dfp-inv-otn-pba-b50k', 'issue644-base-dfp-inv-nto-pba-b50k', 'issue644-base-dfp-inv-rnd-pba-b50k', 'issue644-base-dfp-rnd-otn-pba-b50k', 'issue644-base-dfp-rnd-nto-pba-b50k', 'issue644-base-dfp-rnd-rnd-pba-b50k', 'issue644-v1-dfp-reg-otn-pba-b50k', 'issue644-v1-dfp-reg-nto-pba-b50k', 'issue644-v1-dfp-reg-rnd-pba-b50k', 'issue644-v1-dfp-inv-otn-pba-b50k', 'issue644-v1-dfp-inv-nto-pba-b50k', 'issue644-v1-dfp-inv-rnd-pba-b50k', 'issue644-v1-dfp-rnd-otn-pba-b50k', 'issue644-v1-dfp-rnd-nto-pba-b50k', 'issue644-v1-dfp-rnd-rnd-pba-b50k', ]) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-base', 'issue644-v1'])
10,160
Python
82.286885
350
0.716437
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v2-dfp-tiebreaking-pba-report.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { #IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), #IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_fetcher('data/issue644-v2-dfp-tiebreaking-eval', filter_config=[ 'issue644-v1-dfp-reg-otn-pba-b50k', 'issue644-v1-dfp-reg-nto-pba-b50k', 'issue644-v1-dfp-reg-rnd-pba-b50k', 'issue644-v1-dfp-inv-otn-pba-b50k', 'issue644-v1-dfp-inv-nto-pba-b50k', 'issue644-v1-dfp-inv-rnd-pba-b50k', 'issue644-v1-dfp-rnd-otn-pba-b50k', 'issue644-v1-dfp-rnd-nto-pba-b50k', 'issue644-v1-dfp-rnd-rnd-pba-b50k', 'issue644-v2-dfp-reg-otn-pba-b50k', 'issue644-v2-dfp-reg-nto-pba-b50k', 'issue644-v2-dfp-reg-rnd-pba-b50k', 'issue644-v2-dfp-inv-otn-pba-b50k', 'issue644-v2-dfp-inv-nto-pba-b50k', 'issue644-v2-dfp-inv-rnd-pba-b50k', 'issue644-v2-dfp-rnd-otn-pba-b50k', 'issue644-v2-dfp-rnd-nto-pba-b50k', 'issue644-v2-dfp-rnd-rnd-pba-b50k', ]) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-v1', 'issue644-v2'])
10,140
Python
82.12295
350
0.715878
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/ms-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('ms_final_size', 'Final transition system size: (\d+)', required=False, type=int) parser.add_pattern('ms_construction_time', 'Done initializing merge-and-shrink heuristic \[(.+)s\]', required=False, type=float) parser.add_pattern('ms_memory_delta', 'Final peak memory increase of merge-and-shrink computation: (\d+) KB', required=False, type=int) parser.add_pattern('actual_search_time', 'Actual search time: (.+)s \[t=.+s\]', required=False, type=float) def check_ms_constructed(content, props): ms_construction_time = props.get('ms_construction_time') abstraction_constructed = False if ms_construction_time is not None: abstraction_constructed = True props['ms_abstraction_constructed'] = abstraction_constructed parser.add_function(check_ms_constructed) def check_planner_exit_reason(content, props): ms_abstraction_constructed = props.get('ms_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether merge-and-shrink computation or search ran out of # time or memory. ms_out_of_time = False ms_out_of_memory = False search_out_of_time = False search_out_of_memory = False if ms_abstraction_constructed == False: if error == 'timeout': ms_out_of_time = True elif error == 'out-of-memory': ms_out_of_memory = True elif ms_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['ms_out_of_time'] = ms_out_of_time props['ms_out_of_memory'] = ms_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) def check_proved_unsolvability(content, props): proved_unsolvability = False if props['coverage'] == 0: for line in content.splitlines(): if line == 'Completely explored state space -- no solution!': proved_unsolvability = True break props['proved_unsolvability'] = proved_unsolvability parser.add_function(check_proved_unsolvability) parser.parse()
2,784
Python
37.150684
135
0.665589
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v1-dfp-tiebreaking.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-base', 'issue644-v1'])
9,172
Python
90.729999
350
0.734409
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('cggl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('cggl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('cggl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-base', 'issue644-v1'])
5,278
Python
57.010988
293
0.696476
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
84
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v2-dfp-tiebreaking.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('dfp-reg-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-abp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=true),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-reg-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=regular,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-inv-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=inverse,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-otn-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=old_to_new,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-nto-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=new_to_old,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-rnd-rnd-pba-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp(atomic_ts_order=random,product_ts_order=random,atomic_before_product=false),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-v1', 'issue644-v2'])
9,170
Python
90.709999
350
0.734351
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('cggl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('cggl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('cggl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-v3-base', 'issue644-v3'])
5,281
Python
57.043955
293
0.696459
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue644/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_optimal_strips() configs = { IssueConfig('rl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('cggl-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,threshold_before_merge=1))']), IssueConfig('rl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('cggl-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('dfp-ginf', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(greedy=true),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=infinity,threshold_before_merge=1))']), IssueConfig('rl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=reverse_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('cggl-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_linear(variable_order=cg_goal_level),shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(),label_reduction=exact(before_shrinking=false,before_merging=true),max_states=50000))']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl'], processes=4, email='[email protected]', ) exp.add_resource('ms_parser', 'ms-parser.py', dest='ms-parser.py') exp.add_command('ms-parser', ['ms_parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) actual_search_time = Attribute('actual_search_time', absolute=False, min_wins=True, functions=[gm]) # m&s attributes ms_construction_time = Attribute('ms_construction_time', absolute=False, min_wins=True, functions=[gm]) ms_abstraction_constructed = Attribute('ms_abstraction_constructed', absolute=True, min_wins=False) ms_final_size = Attribute('ms_final_size', absolute=False, min_wins=True) ms_out_of_memory = Attribute('ms_out_of_memory', absolute=True, min_wins=True) ms_out_of_time = Attribute('ms_out_of_time', absolute=True, min_wins=True) search_out_of_memory = Attribute('search_out_of_memory', absolute=True, min_wins=True) search_out_of_time = Attribute('search_out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, actual_search_time, ms_construction_time, ms_abstraction_constructed, ms_final_size, ms_out_of_memory, ms_out_of_time, search_out_of_memory, search_out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step() #if matplotlib: #for attribute in ["memory", "total_time"]: #for config in configs: #exp.add_report( #RelativeScatterPlotReport( #attributes=[attribute], #filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], #get_category=lambda run1, run2: run1.get("domain"), #), #outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) #) exp() main(revisions=['issue644-v1', 'issue644-v2'])
5,276
Python
56.98901
293
0.696361
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v7.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1-base", "issue637-v6", "issue637-v7"] DRIVER_OPTIONS = [] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_memory", "init_time"] #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,206
Python
30.528571
98
0.68087
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v3", "issue637-v4"] #REVISIONS = ["issue637-v4"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_fetcher(os.path.join(DIR, 'data/issue637-v3-eval')) attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_time", "search_start_memory", "init_time", "cartesian_states"] exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,343
Python
32.014084
98
0.682885
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v5.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1-base", "issue637-v5"] #REVISIONS = ["issue637-v5"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_fetcher(os.path.join(DIR, "data/issue637-v1-eval")) exp.add_fetcher(os.path.join(DIR, "data/issue637-v4-eval")) attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_time", "search_start_memory", "init_time", "cartesian_states"] exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,409
Python
32.013698
98
0.684101
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v8.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v8-base", "issue637-v8"] DRIVER_OPTIONS = [] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_1", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_memory", "init_time"] #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,191
Python
30.314285
98
0.680968
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/parser.py
#! /usr/bin/env python import logging import re from lab.parser import Parser class CommonParser(Parser): def add_difference(self, diff, val1, val2): def diff_func(content, props): if props.get(val1) is None or props.get(val2) is None: diff_val = None else: diff_val = props.get(val1) - props.get(val2) props[diff] = diff_val self.add_function(diff_func) def _get_flags(self, flags_string): flags = 0 for char in flags_string: flags |= getattr(re, char) return flags def add_repeated_pattern( self, name, regex, file="run.log", required=True, type=int, flags=""): flags += "M" def find_all_occurences(content, props): matches = re.findall(regex, content, flags=self._get_flags(flags)) if required and not matches: logging.error("Pattern {0} not found in file {1}".format(regex, file)) props[name] = [type(m) for m in matches] self.add_function(find_all_occurences, file=file) def add_pattern(self, name, regex, file="run.log", required=False, type=int, flags="M"): Parser.add_pattern(self, name, regex, file=file, required=required, type=type, flags=flags) def add_bottom_up_pattern(self, name, regex, file="run.log", required=True, type=int, flags=""): def search_from_bottom(content, props): reversed_content = "\n".join(reversed(content.splitlines())) match = re.search(regex, reversed_content, flags=self._get_flags(flags)) if required and not match: logging.error("Pattern {0} not found in file {1}".format(regex, file)) if match: props[name] = type(match.group(1)) self.add_function(search_from_bottom, file=file) def no_search(content, props): if "search_start_time" not in props: error = props.get("error") if error is not None and error != "incomplete-search-found-no-plan": props["error"] = "no-search-due-to-" + error def main(): parser = CommonParser() parser.add_pattern("search_start_time", r"\[g=0, 1 evaluated, 0 expanded, t=(.+)s, \d+ KB\]", type=float, required=False) parser.add_pattern("search_start_memory", r"\[g=0, 1 evaluated, 0 expanded, t=.+s, (\d+) KB\]", type=int, required=False) parser.add_pattern("init_time", r"^Time for initializing additive Cartesian heuristic: (.+)s$", type=float, required=False) parser.add_pattern("cartesian_states", r"^Cartesian states: (\d+)$", type=int, required=False) parser.add_function(no_search) parser.parse() if __name__ == "__main__": main()
2,736
Python
35.493333
127
0.605629
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,203
Python
35.893506
82
0.614729
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v6.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1-base", "issue637-v6"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_memory", "init_time"] #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,220
Python
30.728571
98
0.680631
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1-base", "issue637-v1"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_parse_again_step() exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,031
Python
29.328358
94
0.683407
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if not val1 or not val2: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,867
Python
35.490566
78
0.598397
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1", "issue637-v2", "issue637-v3"] REVISIONS = ["issue637-v1", "issue637-v3"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_fetcher(os.path.join(DIR, 'data/issue637-v2-eval')) attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + [ "search_start_time", "search_start_memory", "init_time", "cartesian_states"] exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,372
Python
32.422535
98
0.682968