file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue637/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue637-v1", "issue637-v2"] DRIVER_OPTIONS = ["--overall-time-limit", "30m"] CONFIGS = [ IssueConfig( "cegar-landmarks-goals", ["--search", "astar(cegar())"], driver_options=DRIVER_OPTIONS), IssueConfig( "cegar-original", ["--search", "astar(cegar(subtasks=[original()]))"], driver_options=DRIVER_OPTIONS), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step( attributes=IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_time", "search_start_memory", "init_time"]) for attribute in ["memory", "total_time", "init_time", "expansions_until_last_jump"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,162
Python
30.808823
94
0.685476
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue671/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, benchmarks_dir, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(benchmarks_dir, suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,496
Python
33.907821
83
0.59435
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue671/suites.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import argparse import textwrap HELP = "Convert suite name to list of domains or tasks." def suite_alternative_formulations(): return ['airport-adl', 'no-mprime', 'no-mystery'] def suite_ipc98_to_ipc04_adl(): return [ 'assembly', 'miconic-fulladl', 'miconic-simpleadl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'schedule', ] def suite_ipc98_to_ipc04_strips(): return [ 'airport', 'blocks', 'depot', 'driverlog', 'freecell', 'grid', 'gripper', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'pipesworld-notankage', 'psr-small', 'satellite', 'zenotravel', ] def suite_ipc98_to_ipc04(): # All IPC1-4 domains, including the trivial Movie. return sorted(suite_ipc98_to_ipc04_adl() + suite_ipc98_to_ipc04_strips()) def suite_ipc06_adl(): return [ 'openstacks', 'pathways', 'trucks', ] def suite_ipc06_strips_compilations(): return [ 'openstacks-strips', 'pathways-noneg', 'trucks-strips', ] def suite_ipc06_strips(): return [ 'pipesworld-tankage', 'rovers', 'storage', 'tpp', ] def suite_ipc06(): return sorted(suite_ipc06_adl() + suite_ipc06_strips()) def suite_ipc08_common_strips(): return [ 'parcprinter-08-strips', 'pegsol-08-strips', 'scanalyzer-08-strips', ] def suite_ipc08_opt_adl(): return ['openstacks-opt08-adl'] def suite_ipc08_opt_strips(): return sorted(suite_ipc08_common_strips() + [ 'elevators-opt08-strips', 'openstacks-opt08-strips', 'sokoban-opt08-strips', 'transport-opt08-strips', 'woodworking-opt08-strips', ]) def suite_ipc08_opt(): return sorted(suite_ipc08_opt_strips() + suite_ipc08_opt_adl()) def suite_ipc08_sat_adl(): return ['openstacks-sat08-adl'] def suite_ipc08_sat_strips(): return sorted(suite_ipc08_common_strips() + [ # Note: cyber-security is missing. 'elevators-sat08-strips', 'openstacks-sat08-strips', 'sokoban-sat08-strips', 'transport-sat08-strips', 'woodworking-sat08-strips', ]) def suite_ipc08_sat(): return sorted(suite_ipc08_sat_strips() + suite_ipc08_sat_adl()) def suite_ipc08(): return sorted(set(suite_ipc08_opt() + suite_ipc08_sat())) def suite_ipc11_opt(): return [ 'barman-opt11-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'nomystery-opt11-strips', 'openstacks-opt11-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'pegsol-opt11-strips', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'tidybot-opt11-strips', 'transport-opt11-strips', 'visitall-opt11-strips', 'woodworking-opt11-strips', ] def suite_ipc11_sat(): return [ 'barman-sat11-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'nomystery-sat11-strips', 'openstacks-sat11-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'pegsol-sat11-strips', 'scanalyzer-sat11-strips', 'sokoban-sat11-strips', 'tidybot-sat11-strips', 'transport-sat11-strips', 'visitall-sat11-strips', 'woodworking-sat11-strips', ] def suite_ipc11(): return sorted(suite_ipc11_opt() + suite_ipc11_sat()) def suite_ipc14_agl_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_agl_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-agl14-strips', 'openstacks-agl14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_agl(): return sorted(suite_ipc14_agl_adl() + suite_ipc14_agl_strips()) def suite_ipc14_mco_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_mco_strips(): return [ 'barman-mco14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-mco14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_mco(): return sorted(suite_ipc14_mco_adl() + suite_ipc14_mco_strips()) def suite_ipc14_opt_adl(): return [ 'cavediving-14-adl', 'citycar-opt14-adl', 'maintenance-opt14-adl', ] def suite_ipc14_opt_strips(): return [ 'barman-opt14-strips', 'childsnack-opt14-strips', 'floortile-opt14-strips', 'ged-opt14-strips', 'hiking-opt14-strips', 'openstacks-opt14-strips', 'parking-opt14-strips', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'transport-opt14-strips', 'visitall-opt14-strips', ] def suite_ipc14_opt(): return sorted(suite_ipc14_opt_adl() + suite_ipc14_opt_strips()) def suite_ipc14_sat_adl(): return [ 'cavediving-14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_sat_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_sat(): return sorted(suite_ipc14_sat_adl() + suite_ipc14_sat_strips()) def suite_ipc14(): return sorted(set( suite_ipc14_agl() + suite_ipc14_mco() + suite_ipc14_opt() + suite_ipc14_sat())) def suite_unsolvable(): return sorted( ['mystery:prob%02d.pddl' % index for index in [4, 5, 7, 8, 12, 16, 18, 21, 22, 23, 24]] + ['miconic-fulladl:f21-3.pddl', 'miconic-fulladl:f30-2.pddl']) def suite_optimal_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_opt_adl() + suite_ipc14_opt_adl()) def suite_optimal_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_opt_strips() + suite_ipc11_opt() + suite_ipc14_opt_strips()) def suite_optimal(): return sorted(suite_optimal_adl() + suite_optimal_strips()) def suite_satisficing_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_sat_adl() + suite_ipc14_sat_adl()) def suite_satisficing_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_sat_strips() + suite_ipc11_sat() + suite_ipc14_sat_strips()) def suite_satisficing(): return sorted(suite_satisficing_adl() + suite_satisficing_strips()) def suite_all(): return sorted( suite_ipc98_to_ipc04() + suite_ipc06() + suite_ipc06_strips_compilations() + suite_ipc08() + suite_ipc11() + suite_ipc14() + suite_alternative_formulations()) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("suite", help="suite name") return parser.parse_args() def main(): prefix = "suite_" suite_names = [ name[len(prefix):] for name in sorted(globals().keys()) if name.startswith(prefix)] parser = argparse.ArgumentParser(description=HELP) parser.add_argument("suite", choices=suite_names, help="suite name") parser.add_argument( "--width", default=72, type=int, help="output line width (default: %(default)s). Use 1 for single " "column.") args = parser.parse_args() suite_func = globals()[prefix + args.suite] print(textwrap.fill( str(suite_func()), width=args.width, break_long_words=False, break_on_hyphens=False)) if __name__ == "__main__": main()
8,551
Python
23.364672
77
0.595954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue671/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def main(revisions=None): benchmarks_dir=os.path.expanduser('~/repos/downward/benchmarks') suite=suites.suite_all() configs = { IssueConfig('blind', ['--search', 'astar(blind())'], driver_options=['--search-time-limit', '60s']), IssueConfig('lama-first', [], driver_options=['--alias', 'lama-first', '--search-time-limit', '60s']), } exp = IssueExperiment( benchmarks_dir=benchmarks_dir, suite=suite, revisions=revisions, configs=configs, test_suite=['depot:p01.pddl', 'gripper:prob01.pddl'], processes=4, email='[email protected]', ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.append('translator_*') exp.add_comparison_table_step() if matplotlib: for attribute in ["memory", "total_time"]: for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) ) exp() main(revisions=['issue671-base', 'issue671-v1'])
1,711
Python
30.127272
110
0.599065
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue671/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
84
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue488/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return (node.endswith("cluster.bc2.ch") or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Once we have reference results, we should add "quality". # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,741
Python
35.614942
79
0.608743
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue488/issue488.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup CONFIGS = { 'astar_ipdb': [ '--search', 'astar(ipdb())'], 'astar_pdb': [ '--search', 'astar(pdb())'], 'astar_gapdb': [ '--search', 'astar(gapdb())'], } exp = common_setup.IssueExperiment( search_revisions=["issue488-base", "issue488-v1"], configs=CONFIGS, suite=suites.suite_optimal_with_ipc11(), ) exp.add_comparison_table_step() exp()
550
Python
17.999999
54
0.518182
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v2-lama-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v2"] SUITE = suites.suite_satisficing() CONFIGS = [ IssueConfig("seq-sat-lama-2011", [], driver_options=["--alias", "seq-sat-lama-2011"]), IssueConfig("lama-first", [], driver_options=["--alias", "lama-first"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
552
Python
19.481481
90
0.668478
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v3-lama-opt2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v3"] SUITE = suites.suite_optimal_strips() CONFIGS = [ IssueConfig("lm_zg", [ "--landmarks", "lm=lm_zg()", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_exhaust", [ "--landmarks", "lm=lm_exhaust()", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_hm", [ "--landmarks", "lm=lm_hm(2)", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_hm_max", [ "--landmarks", "lm=lm_hm(2)", "--heuristic", "h1=lmcount(lm,admissible=true)", "--heuristic", "h2=lmcount(lm,admissible=false)", "--search", "astar(max([h1,h2]))"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
1,157
Python
20.054545
53
0.513397
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v1-lama-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v1"] SUITE = suites.suite_satisficing() CONFIGS = [ IssueConfig("seq-sat-lama-2011", [], driver_options=["--alias", "seq-sat-lama-2011"]), IssueConfig("lama-first", [], driver_options=["--alias", "lama-first"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
552
Python
19.481481
90
0.668478
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Wrapper for FastDownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions, configs, suite, grid_priority=None, path=None, test_suite=None, email=None, **kwargs): """Create a DownwardExperiment with some convenience features. If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append(( "{rev1}-{config_nick}".format(**locals()), "{rev2}-{config_nick}".format(**locals()), "Diff ({config_nick})".format(**locals()))) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "{name}-{rev1}-{rev2}-compare.html".format( name=self.name, **locals())) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
11,842
Python
33.628655
79
0.604459
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v2-lama-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v2"] SUITE = suites.suite_optimal_strips() CONFIGS = [ IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
470
Python
17.115384
82
0.676596
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v1-lama-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v1"] SUITE = suites.suite_optimal_strips() CONFIGS = [ IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
470
Python
17.115384
82
0.676596
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v4-lama-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v4"] SUITE = suites.suite_optimal_strips() CONFIGS = [ IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), IssueConfig("lm_zg", [ "--landmarks", "lm=lm_zg()", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_exhaust", [ "--landmarks", "lm=lm_exhaust()", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_hm", [ "--landmarks", "lm=lm_hm(2)", "--heuristic", "hlm=lmcount(lm)", "--search", "astar(hlm)"]), IssueConfig("lm_hm_max", [ "--landmarks", "lm=lm_hm(2)", "--heuristic", "h1=lmcount(lm,admissible=true)", "--heuristic", "h2=lmcount(lm,admissible=false)", "--search", "astar(max([h1,h2]))"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
1,240
Python
21.160714
82
0.520161
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v4-lama-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v4"] SUITE = suites.suite_satisficing() CONFIGS = [ IssueConfig("seq-sat-lama-2011", [], driver_options=["--alias", "seq-sat-lama-2011"]), IssueConfig("lama-first", [], driver_options=["--alias", "lama-first"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
552
Python
19.481481
90
0.668478
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v3-lama-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v3"] SUITE = suites.suite_satisficing() CONFIGS = [ IssueConfig("seq-sat-lama-2011", [], driver_options=["--alias", "seq-sat-lama-2011"]), IssueConfig("lama-first", [], driver_options=["--alias", "lama-first"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
552
Python
19.481481
90
0.668478
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue592/v3-lama-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue592-base", "issue592-v3"] SUITE = suites.suite_optimal_strips() CONFIGS = [ IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
470
Python
17.115384
82
0.676596
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue643/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,481
Python
33.963585
83
0.594904
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue643/suites.py
# Benchmark suites from the Fast Downward benchmark collection. def suite_alternative_formulations(): return ['airport-adl', 'no-mprime', 'no-mystery'] def suite_ipc98_to_ipc04_adl(): return [ 'assembly', 'miconic-fulladl', 'miconic-simpleadl', 'optical-telegraphs', 'philosophers', 'psr-large', 'psr-middle', 'schedule', ] def suite_ipc98_to_ipc04_strips(): return [ 'airport', 'blocks', 'depot', 'driverlog', 'freecell', 'grid', 'gripper', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'pipesworld-notankage', 'psr-small', 'satellite', 'zenotravel', ] def suite_ipc98_to_ipc04(): # All IPC1-4 domains, including the trivial Movie. return sorted(suite_ipc98_to_ipc04_adl() + suite_ipc98_to_ipc04_strips()) def suite_ipc06_adl(): return [ 'openstacks', 'pathways', 'trucks', ] def suite_ipc06_strips_compilations(): return [ 'openstacks-strips', 'pathways-noneg', 'trucks-strips', ] def suite_ipc06_strips(): return [ 'pipesworld-tankage', 'rovers', 'storage', 'tpp', ] def suite_ipc06(): return sorted(suite_ipc06_adl() + suite_ipc06_strips()) def suite_ipc08_common_strips(): return [ 'parcprinter-08-strips', 'pegsol-08-strips', 'scanalyzer-08-strips', ] def suite_ipc08_opt_adl(): return ['openstacks-opt08-adl'] def suite_ipc08_opt_strips(): return sorted(suite_ipc08_common_strips() + [ 'elevators-opt08-strips', 'openstacks-opt08-strips', 'sokoban-opt08-strips', 'transport-opt08-strips', 'woodworking-opt08-strips', ]) def suite_ipc08_opt(): return sorted(suite_ipc08_opt_strips() + suite_ipc08_opt_adl()) def suite_ipc08_sat_adl(): return ['openstacks-sat08-adl'] def suite_ipc08_sat_strips(): return sorted(suite_ipc08_common_strips() + [ # Note: cyber-security is missing. 'elevators-sat08-strips', 'openstacks-sat08-strips', 'sokoban-sat08-strips', 'transport-sat08-strips', 'woodworking-sat08-strips', ]) def suite_ipc08_sat(): return sorted(suite_ipc08_sat_strips() + suite_ipc08_sat_adl()) def suite_ipc08(): return sorted(set(suite_ipc08_opt() + suite_ipc08_sat())) def suite_ipc11_opt(): return [ 'barman-opt11-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'nomystery-opt11-strips', 'openstacks-opt11-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'pegsol-opt11-strips', 'scanalyzer-opt11-strips', 'sokoban-opt11-strips', 'tidybot-opt11-strips', 'transport-opt11-strips', 'visitall-opt11-strips', 'woodworking-opt11-strips', ] def suite_ipc11_sat(): return [ 'barman-sat11-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'nomystery-sat11-strips', 'openstacks-sat11-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'pegsol-sat11-strips', 'scanalyzer-sat11-strips', 'sokoban-sat11-strips', 'tidybot-sat11-strips', 'transport-sat11-strips', 'visitall-sat11-strips', 'woodworking-sat11-strips', ] def suite_ipc11(): return sorted(suite_ipc11_opt() + suite_ipc11_sat()) def suite_ipc14_agl_adl(): return [ 'cavediving-agl14-adl', 'citycar-agl14-adl', 'maintenance-agl14-adl', ] def suite_ipc14_agl_strips(): return [ 'barman-agl14-strips', 'childsnack-agl14-strips', 'floortile-agl14-strips', 'ged-agl14-strips', 'hiking-agl14-strips', 'openstacks-agl14-strips', 'parking-agl14-strips', 'tetris-agl14-strips', 'thoughtful-agl14-strips', 'transport-agl14-strips', 'visitall-agl14-strips', ] def suite_ipc14_agl(): return sorted(suite_ipc14_agl_adl() + suite_ipc14_agl_strips()) def suite_ipc14_mco_adl(): return [ 'cavediving-mco14-adl', 'citycar-mco14-adl', 'maintenance-mco14-adl', ] def suite_ipc14_mco_strips(): return [ 'barman-mco14-strips', 'childsnack-mco14-strips', 'floortile-mco14-strips', 'ged-mco14-strips', 'hiking-mco14-strips', 'openstacks-mco14-strips', 'parking-mco14-strips', 'tetris-mco14-strips', 'thoughtful-mco14-strips', 'transport-mco14-strips', 'visitall-mco14-strips', ] def suite_ipc14_mco(): return sorted(suite_ipc14_mco_adl() + suite_ipc14_mco_strips()) def suite_ipc14_opt_adl(): return [ 'cavediving-opt14-adl', 'citycar-opt14-adl', 'maintenance-opt14-adl', ] def suite_ipc14_opt_strips(): return [ 'barman-opt14-strips', 'childsnack-opt14-strips', 'floortile-opt14-strips', 'ged-opt14-strips', 'hiking-opt14-strips', 'openstacks-opt14-strips', 'parking-opt14-strips', 'tetris-opt14-strips', 'tidybot-opt14-strips', 'transport-opt14-strips', 'visitall-opt14-strips', ] def suite_ipc14_opt(): return sorted(suite_ipc14_opt_adl() + suite_ipc14_opt_strips()) def suite_ipc14_sat_adl(): return [ 'cavediving-sat14-adl', 'citycar-sat14-adl', 'maintenance-sat14-adl', ] def suite_ipc14_sat_strips(): return [ 'barman-sat14-strips', 'childsnack-sat14-strips', 'floortile-sat14-strips', 'ged-sat14-strips', 'hiking-sat14-strips', 'openstacks-sat14-strips', 'parking-sat14-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'transport-sat14-strips', 'visitall-sat14-strips', ] def suite_ipc14_sat(): return sorted(suite_ipc14_sat_adl() + suite_ipc14_sat_strips()) def suite_ipc14(): return sorted( suite_ipc14_agl() + suite_ipc14_mco() + suite_ipc14_opt() + suite_ipc14_sat()) def suite_unsolvable(): # TODO: Add other unsolvable problems (Miconic-FullADL). # TODO: Add 'fsc-grid-r:prize5x5_R.pddl' and 't0-uts:uts_r-02.pddl' # if the extra-domains branch is merged. return sorted( ['mystery:prob%02d.pddl' % index for index in [4, 5, 7, 8, 12, 16, 18, 21, 22, 23, 24]] + ['miconic-fulladl:f21-3.pddl', 'miconic-fulladl:f30-2.pddl']) def suite_optimal_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_opt_adl()) def suite_optimal_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_opt_strips() + suite_ipc11_opt()) def suite_optimal(): return sorted(suite_optimal_adl() + suite_optimal_strips()) def suite_satisficing_adl(): return sorted( suite_ipc98_to_ipc04_adl() + suite_ipc06_adl() + suite_ipc08_sat_adl()) def suite_satisficing_strips(): return sorted( suite_ipc98_to_ipc04_strips() + suite_ipc06_strips() + suite_ipc06_strips_compilations() + suite_ipc08_sat_strips() + suite_ipc11_sat()) def suite_satisficing(): return sorted(suite_satisficing_adl() + suite_satisficing_strips()) def suite_all(): return sorted( suite_ipc98_to_ipc04() + suite_ipc06() + suite_ipc06_strips_compilations() + suite_ipc08() + suite_ipc11() + suite_alternative_formulations())
7,695
Python
23.35443
77
0.596231
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue643/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport import suites configs = [ IssueConfig( "cegar-landmarks-10k", ["--search", "astar(cegar(subtasks=[landmarks()],max_states=10000))"]), IssueConfig( "cegar-landmarks-goals-900s", ["--search", "astar(cegar(subtasks=[landmarks(),goals()],max_time=900))"]), ] revisions = ["issue643-base", "issue643-v1"] exp = IssueExperiment( revisions=revisions, configs=configs, suite=suites.suite_optimal_strips(), test_suite=["depot:pfile1"], email="[email protected]", ) exp.add_comparison_table_step() for attribute in ["memory", "total_time"]: for config in configs: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_config=["{}-{}".format(rev, config.nick) for rev in revisions], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}.png".format(exp.name, attribute, config.nick) ) exp()
1,151
Python
27.09756
86
0.618593
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue643/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
3,921
Python
35.654205
84
0.597042
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/sat-v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import configs import common_setup REVS = ["issue436-base", "issue436-v2"] LIMITS = {"search_time": 1800} SUITE = suites.suite_satisficing_with_ipc11() default_configs_satisficing = configs.default_configs_satisficing(extended=True) CONFIGS = {} for name in ['lazy_greedy_add', 'eager_greedy_ff', 'eager_greedy_add', 'lazy_greedy_ff', 'pareto_ff']: CONFIGS[name] = default_configs_satisficing[name] exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(attributes=['total_time', 'memory']) exp()
749
Python
22.437499
102
0.70494
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in valid_attributes: make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,755
Python
35.135977
79
0.610349
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/opt-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import configs import common_setup REVS = ["issue436-base", "issue436-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() configs_optimal_core = configs.configs_optimal_core() CONFIGS = {} for name in ['astar_merge_and_shrink_greedy_bisim', 'astar_merge_and_shrink_dfp_bisim', 'astar_ipdb', 'astar_hmax', 'astar_blind', 'astar_lmcut', 'astar_merge_and_shrink_bisim', 'astar_lmcount_lm_merged_rhw_hm']: CONFIGS[name] = configs_optimal_core[name] exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_absolute_report_step() exp.add_comparison_table_step() exp()
780
Python
22.666666
87
0.678205
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/sat-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import configs import common_setup REVS = ["issue436-base", "issue436-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_satisficing_with_ipc11() default_configs_satisficing = configs.default_configs_satisficing(extended=True) CONFIGS = {} for name in ['lazy_greedy_add', 'eager_greedy_ff', 'eager_greedy_add', 'lazy_greedy_ff', 'pareto_ff']: CONFIGS[name] = default_configs_satisficing[name] exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_absolute_report_step() exp.add_comparison_table_step() exp()
686
Python
21.16129
102
0.702624
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/opt-v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import configs import common_setup REVS = ["issue436-base", "issue436-v2"] LIMITS = {"search_time": 1800} SUITE = suites.suite_optimal_with_ipc11() configs_optimal_core = configs.configs_optimal_core() CONFIGS = {} for name in ['astar_merge_and_shrink_greedy_bisim', 'astar_merge_and_shrink_dfp_bisim', 'astar_ipdb', 'astar_hmax', 'astar_blind', 'astar_lmcut', 'astar_merge_and_shrink_bisim', 'astar_lmcount_lm_merged_rhw_hm']: CONFIGS[name] = configs_optimal_core[name] exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step() exp()
808
Python
22.794117
87
0.680693
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue436/configs.py
def configs_optimal_core(): return { # A* "astar_blind": [ "--search", "astar(blind)"], "astar_h2": [ "--search", "astar(hm(2))"], "astar_ipdb": [ "--search", "astar(ipdb)"], "astar_lmcount_lm_merged_rhw_hm": [ "--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true),mpd=true)"], "astar_lmcut": [ "--search", "astar(lmcut)"], "astar_hmax": [ "--search", "astar(hmax)"], "astar_merge_and_shrink_bisim": [ "--search", "astar(merge_and_shrink(" "merge_strategy=merge_linear(variable_order=reverse_level)," "shrink_strategy=shrink_bisimulation(max_states=200000,greedy=false," "group_by_h=true)))"], "astar_merge_and_shrink_greedy_bisim": [ "--search", "astar(merge_and_shrink(" "merge_strategy=merge_linear(variable_order=reverse_level)," "shrink_strategy=shrink_bisimulation(max_states=infinity,threshold=1," "greedy=true,group_by_h=false)))"], "astar_merge_and_shrink_dfp_bisim": [ "--search", "astar(merge_and_shrink(merge_strategy=merge_dfp," "shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1," "greedy=false,group_by_h=true)))"], "astar_selmax_lmcut_lmcount": [ "--search", "astar(selmax([lmcut(),lmcount(lm_merged([lm_hm(m=1),lm_rhw()])," "admissible=true)],training_set=1000),mpd=true)"], } def configs_satisficing_core(): return { # A* "astar_goalcount": [ "--search", "astar(goalcount)"], # eager greedy "eager_greedy_ff": [ "--heuristic", "h=ff()", "--search", "eager_greedy(h, preferred=h)"], "eager_greedy_add": [ "--heuristic", "h=add()", "--search", "eager_greedy(h, preferred=h)"], "eager_greedy_cg": [ "--heuristic", "h=cg()", "--search", "eager_greedy(h, preferred=h)"], "eager_greedy_cea": [ "--heuristic", "h=cea()", "--search", "eager_greedy(h, preferred=h)"], # lazy greedy "lazy_greedy_ff": [ "--heuristic", "h=ff()", "--search", "lazy_greedy(h, preferred=h)"], "lazy_greedy_add": [ "--heuristic", "h=add()", "--search", "lazy_greedy(h, preferred=h)"], "lazy_greedy_cg": [ "--heuristic", "h=cg()", "--search", "lazy_greedy(h, preferred=h)"], } def configs_optimal_ipc(): return { "seq_opt_merge_and_shrink": ["ipc", "seq-opt-merge-and-shrink"], "seq_opt_fdss_1": ["ipc", "seq-opt-fdss-1"], "seq_opt_fdss_2": ["ipc", "seq-opt-fdss-2"], } def configs_satisficing_ipc(): return { "seq_sat_lama_2011": ["ipc", "seq-sat-lama-2011"], "seq_sat_fdss_1": ["ipc", "seq-sat-fdss-1"], "seq_sat_fdss_2": ["ipc", "seq-sat-fdss-2"], } def configs_optimal_extended(): return { # A* "astar_lmcount_lm_merged_rhw_hm_no_order": [ "--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true),mpd=true)"], } def configs_satisficing_extended(): return { # eager greedy "eager_greedy_alt_ff_cg": [ "--heuristic", "hff=ff()", "--heuristic", "hcg=cg()", "--search", "eager_greedy(hff,hcg,preferred=[hff,hcg])"], "eager_greedy_ff_no_pref": [ "--search", "eager_greedy(ff())"], # lazy greedy "lazy_greedy_alt_cea_cg": [ "--heuristic", "hcea=cea()", "--heuristic", "hcg=cg()", "--search", "lazy_greedy(hcea,hcg,preferred=[hcea,hcg])"], "lazy_greedy_ff_no_pref": [ "--search", "lazy_greedy(ff())"], "lazy_greedy_cea": [ "--heuristic", "h=cea()", "--search", "lazy_greedy(h, preferred=h)"], # lazy wA* "lazy_wa3_ff": [ "--heuristic", "h=ff()", "--search", "lazy_wastar(h,w=3,preferred=h)"], # eager wA* "eager_wa3_cg": [ "--heuristic", "h=cg()", "--search", "eager(single(sum([g(),weight(h,3)])),preferred=h)"], # ehc "ehc_ff": [ "--search", "ehc(ff())"], # iterated "iterated_wa_ff": [ "--heuristic", "h=ff()", "--search", "iterated([lazy_wastar(h,w=10), lazy_wastar(h,w=5), lazy_wastar(h,w=3)," "lazy_wastar(h,w=2), lazy_wastar(h,w=1)])"], # pareto open list "pareto_ff": [ "--heuristic", "h=ff()", "--search", "eager(pareto([sum([g(), h]), h]), reopen_closed=true, pathmax=false," "f_eval=sum([g(), h]))"], # bucket-based open list "bucket_lmcut": [ "--heuristic", "h=lmcut()", "--search", "eager(single_buckets(h), reopen_closed=true, pathmax=false)"], } def default_configs_optimal(core=True, ipc=True, extended=False): configs = {} if core: configs.update(configs_optimal_core()) if ipc: configs.update(configs_optimal_ipc()) if extended: configs.update(configs_optimal_extended()) return configs def default_configs_satisficing(core=True, ipc=True, extended=False): configs = {} if core: configs.update(configs_satisficing_core()) if ipc: configs.update(configs_satisficing_ipc()) if extended: configs.update(configs_satisficing_extended()) return configs
6,207
Python
29.282927
89
0.45932
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in valid_attributes: make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,789
Python
35.232295
79
0.61115
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue269-base", "issue269-v1"] LIMITS = {"search_time": 600} SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "mas-label-order": ["--search", "astar(merge_and_shrink(shrink_strategy=shrink_bisimulation,label_reduction_system_order=random))"], "mas-buckets": ["--search", "astar(merge_and_shrink(shrink_strategy=shrink_fh,label_reduction_system_order=regular))"], "gapdb": ["--search", "astar(gapdb())"], "ipdb": ["--search", "astar(ipdb())"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_comparison_table_step() exp()
741
Python
24.586206
136
0.663968
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue269-base", "issue269-v1"] LIMITS = {"search_time": 600} SUITE = suites.suite_satisficing_with_ipc11() CONFIGS = { "random-successors": ["--search", "lazy_greedy(ff(),randomize_successors=true)"], "pareto-open-list": [ "--heuristic", "h=ff()", "--search", "eager(pareto([sum([g(), h]), h]), reopen_closed=true, pathmax=false,f_eval=sum([g(), h]))"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_comparison_table_step() exp()
655
Python
21.620689
113
0.625954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/old_rng.h
#ifndef OLD_RNG_H #define OLD_RNG_H class OldRandomNumberGenerator { static const int N = 624; unsigned int mt[N]; int mti; public: OldRandomNumberGenerator(); // seed with time-dependent value OldRandomNumberGenerator(int seed); // seed with int; see comments for seed() OldRandomNumberGenerator(unsigned int *array, int count); // seed with array OldRandomNumberGenerator(const OldRandomNumberGenerator &copy); OldRandomNumberGenerator &operator=(const OldRandomNumberGenerator &copy); void seed(int s); void seed(unsigned int *array, int len); unsigned int next32(); // random integer in [0..2^32-1] int next31(); // random integer in [0..2^31-1] double next_half_open(); // random float in [0..1), 2^53 possible values double next_closed(); // random float in [0..1], 2^53 possible values double next_open(); // random float in (0..1), 2^53 possible values int next(int bound); // random integer in [0..bound), bound < 2^31 int operator()(int bound) { // same as next() return next(bound); } double operator()() { // same as next_half_open() return next_half_open(); } }; /* TODO: Add a static assertion that guarantees that ints are 32 bit. In cases where they are not, need to adapt the code. */ /* Notes on seeding 1. Seeding with an integer To avoid different seeds mapping to the same sequence, follow one of the following two conventions: a) Only use seeds in 0..2^31-1 (preferred) b) Only use seeds in -2^30..2^30-1 (2-complement machines only) 2. Seeding with an array (die-hard seed method) The length of the array, len, can be arbitrarily high, but for lengths greater than N, collisions are common. If the seed is of high quality, using more than N values does not make sense. */ #endif
1,898
C
34.830188
81
0.660169
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/alt_inlined_rng.h
#ifndef ALT_INLINED_RNG_H #define ALT_INLINED_RNG_H #include <cassert> #include <random> class AltInlinedRandomNumberGenerator { std::mt19937 rng; std::uniform_real_distribution<double> double_distribution { 0.0, 1.0 }; public: explicit AltInlinedRandomNumberGenerator(int seed) { rng.seed(seed); } double operator()() { return double_distribution(rng); } int operator()(int bound) { assert(bound > 0); std::uniform_int_distribution<int> distribution(0, bound - 1); return distribution(rng); } }; #endif
593
C
19.482758
70
0.637437
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/main.cc
#include <ctime> #include <functional> #include <iostream> #include <string> #include "alt_inlined_rng.h" #include "inlined_rng.h" #include "old_rng.h" #include "rng.h" using namespace std; void benchmark(const string &desc, int num_calls, const function<void()> &func) { cout << "Running " << desc << " " << num_calls << " times:" << flush; clock_t start = clock(); for (int i = 0; i < num_calls; ++i) func(); clock_t end = clock(); double duration = static_cast<double>(end - start) / CLOCKS_PER_SEC; cout << " " << duration << " seconds" << endl; } int main(int, char **) { const int NUM_ITERATIONS = 100000000; const int SEED = 2014; OldRandomNumberGenerator old_rng(SEED); RandomNumberGenerator new_rng(SEED); InlinedRandomNumberGenerator inlined_rng(SEED); AltInlinedRandomNumberGenerator alt_inlined_rng(SEED); benchmark("nothing", NUM_ITERATIONS, [] () {}); cout << endl; benchmark("random double (old RNG)", NUM_ITERATIONS, [&]() {old_rng();}); benchmark("random double (new RNG, old distribution)", NUM_ITERATIONS, [&]() {new_rng.get_double_old();}); benchmark("random double (new RNG)", NUM_ITERATIONS, [&]() {new_rng();}); benchmark("random double (inlined RNG)", NUM_ITERATIONS, [&]() {inlined_rng();}); benchmark("random double (alternative inlined RNG)", NUM_ITERATIONS, [&]() {alt_inlined_rng();}); cout << endl; benchmark("random int in 0..999 (old RNG)", NUM_ITERATIONS, [&]() {old_rng(1000);}); benchmark("random int in 0..999 (new RNG, old distribution)", NUM_ITERATIONS, [&]() {new_rng.get_int_old(1000);}); benchmark("random int in 0..999 (inlined RNG)", NUM_ITERATIONS, [&]() {inlined_rng(1000);}); return 0; }
1,985
C++
30.03125
73
0.55466
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/rng.h
#ifndef RNG_H #define RNG_H #include <algorithm> #include <random> #include <vector> class RandomNumberGenerator { // Mersenne Twister random number generator. std::mt19937 rng; public: RandomNumberGenerator(); // seed with time-dependent value explicit RandomNumberGenerator(int seed_); // seed with integer RandomNumberGenerator(const RandomNumberGenerator &) = delete; RandomNumberGenerator &operator=(const RandomNumberGenerator &) = delete; void seed(int seed); double operator()(); // random double in [0..1), 2^53 possible values int operator()(int bound); // random integer in [0..bound), bound < 2^31 unsigned int next32_old(); int next31_old(); double get_double_old(); int get_int_old(int bound); template<class T> void shuffle(std::vector<T> &vec) { std::shuffle(vec.begin(), vec.end(), rng); } }; #endif
922
C
26.147058
80
0.656182
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/rng.cc
#include "rng.h" #include <cassert> #include <chrono> using namespace std; RandomNumberGenerator::RandomNumberGenerator() { unsigned int secs = chrono::system_clock::now().time_since_epoch().count(); seed(secs); } RandomNumberGenerator::RandomNumberGenerator(int seed_) { seed(seed_); } void RandomNumberGenerator::seed(int seed) { rng.seed(seed); } double RandomNumberGenerator::operator()() { uniform_real_distribution<double> distribution(0.0, 1.0); return distribution(rng); } int RandomNumberGenerator::operator()(int bound) { assert(bound > 0); uniform_int_distribution<int> distribution(0, bound - 1); return distribution(rng); } unsigned int RandomNumberGenerator::next32_old() { return rng(); } int RandomNumberGenerator::next31_old() { return static_cast<int>(next32_old() >> 1); } double RandomNumberGenerator::get_double_old() { unsigned int a = next32_old() >> 5, b = next32_old() >> 6; return (a * 67108864.0 + b) * (1.0 / 9007199254740992.0); } int RandomNumberGenerator::get_int_old(int bound) { unsigned int value; do { value = next31_old(); } while (value + static_cast<unsigned int>(bound) >= 0x80000000UL); // Just using modulo doesn't lead to uniform distribution. This does. return static_cast<int>(value % bound); }
1,335
C++
22.034482
79
0.677903
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/inlined_rng.h
#ifndef INLINED_RNG_H #define INLINED_RNG_H #include <cassert> #include <random> class InlinedRandomNumberGenerator { std::mt19937 rng; public: explicit InlinedRandomNumberGenerator(int seed) { rng.seed(seed); } double operator()() { std::uniform_real_distribution<double> distribution(0.0, 1.0); return distribution(rng); } int operator()(int bound) { assert(bound > 0); std::uniform_int_distribution<int> distribution(0, bound - 1); return distribution(rng); } }; #endif
554
C
19.555555
70
0.638989
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue269/rng-microbenchmark/old_rng.cc
/* Mersenne Twister Random Number Generator. Based on the C Code by Takuji Nishimura and Makoto Matsumoto. http://www.math.keio.ac.jp/~matumoto/emt.html */ #include "old_rng.h" #include <ctime> using namespace std; static const int M = 397; static const unsigned int MATRIX_A = 0x9908b0dfU; static const unsigned int UPPER_MASK = 0x80000000U; static const unsigned int LOWER_MASK = 0x7fffffffU; OldRandomNumberGenerator::OldRandomNumberGenerator() { seed(static_cast<int>(time(0))); } OldRandomNumberGenerator::OldRandomNumberGenerator(int s) { seed(s); } OldRandomNumberGenerator::OldRandomNumberGenerator( unsigned int *init_key, int key_length) { seed(init_key, key_length); } OldRandomNumberGenerator::OldRandomNumberGenerator( const OldRandomNumberGenerator &copy) { *this = copy; } OldRandomNumberGenerator &OldRandomNumberGenerator::operator=( const OldRandomNumberGenerator &copy) { for (int i = 0; i < N; ++i) mt[i] = copy.mt[i]; mti = copy.mti; return *this; } void OldRandomNumberGenerator::seed(int se) { unsigned int s = (static_cast<unsigned int>(se) << 1) + 1; // Seeds should not be zero. Other possible solutions (such as s |= 1) // lead to more confusion, because often-used low seeds like 2 and 3 would // be identical. This leads to collisions only for rarely used seeds (see // note in header file). mt[0] = s & 0xffffffffUL; for (mti = 1; mti < N; ++mti) { mt[mti] = (1812433253UL * (mt[mti - 1] ^ (mt[mti - 1] >> 30)) + mti); mt[mti] &= 0xffffffffUL; } } void OldRandomNumberGenerator::seed(unsigned int *init_key, int key_length) { int i = 1, j = 0, k = (N > key_length ? N : key_length); seed(19650218UL); for (; k; --k) { mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >> 30)) * 1664525UL)) + init_key[j] + j; mt[i] &= 0xffffffffUL; ++i; ++j; if (i >= N) { mt[0] = mt[N - 1]; i = 1; } if (j >= key_length) j = 0; } for (k = N - 1; k; --k) { mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >> 30)) * 1566083941UL)) - i; mt[i] &= 0xffffffffUL; ++i; if (i >= N) { mt[0] = mt[N - 1]; i = 1; } } mt[0] = 0x80000000UL; } unsigned int OldRandomNumberGenerator::next32() { unsigned int y; static unsigned int mag01[2] = { 0x0UL, MATRIX_A }; if (mti >= N) { int kk; for (kk = 0; kk < N - M; ++kk) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >> 1) ^ mag01[y & 0x1UL]; } for (; kk < N - 1; ++kk) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >> 1) ^ mag01[y & 0x1UL]; mti = 0; } y = mt[mti++]; y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } int OldRandomNumberGenerator::next31() { return static_cast<int>(next32() >> 1); } double OldRandomNumberGenerator::next_closed() { unsigned int a = next32() >> 5, b = next32() >> 6; return (a * 67108864.0 + b) * (1.0 / 9007199254740991.0); } double OldRandomNumberGenerator::next_half_open() { unsigned int a = next32() >> 5, b = next32() >> 6; return (a * 67108864.0 + b) * (1.0 / 9007199254740992.0); } double OldRandomNumberGenerator::next_open() { unsigned int a = next32() >> 5, b = next32() >> 6; return (0.5 + a * 67108864.0 + b) * (1.0 / 9007199254740991.0); } int OldRandomNumberGenerator::next(int bound) { unsigned int value; do { value = next31(); } while (value + static_cast<unsigned int>(bound) >= 0x80000000UL); // Just using modulo doesn't lead to uniform distribution. This does. return static_cast<int>(value % bound); }
4,066
C++
28.471014
79
0.55214
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue869/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,786
Python
36.435443
82
0.618355
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue869/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue869/base-translate-all.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue869-base"] BUILDS = ["release32"] CONFIG_NICKS = [ ("translate", []), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build, "--translate"]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = [ 'agricola-opt18-strips', 'agricola-sat18-strips', 'airport', 'airport-adl', 'assembly', 'barman-mco14-strips', 'barman-opt11-strips', 'barman-opt14-strips', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-opt18-adl', 'caldera-sat18-adl', 'caldera-split-opt18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-opt14-strips', 'childsnack-sat14-strips', 'citycar-opt14-adl', 'citycar-sat14-adl', 'data-network-opt18-strips', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-opt11-strips', 'floortile-opt14-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-opt14-strips', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-agl14-strips', 'hiking-opt14-strips', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-opt14-adl', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'no-mprime', 'no-mystery', 'nomystery-opt11-strips', 'nomystery-sat11-strips', 'nurikabe-opt18-adl', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-agl14-strips', 'openstacks-opt08-adl', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-opt18-strips', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-opt18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parcprinter-sat11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pegsol-sat11-strips', 'petri-net-alignment-opt18-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-opt18-adl', 'settlers-sat18-adl', 'snake-opt18-strips', 'snake-sat18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-opt18-strips', 'spider-sat18-strips', 'storage', 'termes-opt18-strips', 'termes-sat18-strips', 'tetris-opt14-strips', 'tetris-sat14-strips', 'thoughtful-mco14-strips', 'thoughtful-sat14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.TRANSLATOR_PARSER) #exp.add_parser(exp.SINGLE_SEARCH_PARSER) #exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') exp.add_absolute_report_step(attributes=["translator_time_done", "translator_peak_memory"]) #exp.add_comparison_table_step() exp.run_steps()
4,877
Python
39.991596
91
0.703506
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue724/v1-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue724-base", "issue724-v1"] CONFIGS = [ IssueConfig('astar-blind', ['--search', 'astar(blind())']), IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), IssueConfig("seq-opt-bjolp", [], driver_options=["--alias", "seq-opt-bjolp"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment(email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS", "PYTHONPATH"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,587
Python
31.408163
124
0.674228
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue724/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,171
Python
35.715026
79
0.613859
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue724/v1-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue724-base", "issue724-v2"] CONFIGS = [ IssueConfig('lama-first', [], driver_options=["--alias", "lama-first"]), IssueConfig("ehc-ff", ["--search", "ehc(ff())"]), ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment(email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS", "PYTHONPATH"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,507
Python
30.416666
124
0.678832
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue724/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue839/v1-lama.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue839-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-syn", [ "--if-unit-cost", "--evaluator", "hlm=lama_synergy(lm_rhw(reasonable_orders=true))", "--evaluator", "hff=ff_synergy(hlm)", "--search", """iterated([ lazy_greedy([hff,hlm],preferred=[hff,hlm]), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=5), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=3), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=2), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=1) ],repeat_last=true,continue_on_fail=true)""", "--if-non-unit-cost", "--evaluator", "hlm1=lama_synergy(lm_rhw(reasonable_orders=true),transform=adapt_costs(one))", "--evaluator", "hff1=ff_synergy(hlm1)", "--evaluator", "hlm2=lama_synergy(lm_rhw(reasonable_orders=true),transform=adapt_costs(plusone))", "--evaluator", "hff2=ff_synergy(hlm2)", "--search", """iterated([ lazy_greedy([hff1,hlm1],preferred=[hff1,hlm1], cost_type=one,reopen_closed=false), lazy_greedy([hff2,hlm2],preferred=[hff2,hlm2], reopen_closed=false), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=5), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=3), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=2), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=1) ],repeat_last=true,continue_on_fail=true)""", "--always"]), ] + [ ("lama-no-syn-pref-{pref}".format(**locals()), [ "--if-unit-cost", "--evaluator", "hlm=lmcount(lm_rhw(reasonable_orders=true), pref={pref})".format(**locals()), "--evaluator", "hff=ff()", "--search", """iterated([ lazy_greedy([hff,hlm],preferred=[hff,hlm]), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=5), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=3), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=2), lazy_wastar([hff,hlm],preferred=[hff,hlm],w=1) ],repeat_last=true,continue_on_fail=true)""", "--if-non-unit-cost", "--evaluator", "hlm1=lmcount(lm_rhw(reasonable_orders=true), transform=adapt_costs(one), pref={pref})".format(**locals()), "--evaluator", "hff1=ff(transform=adapt_costs(one))", "--evaluator", "hlm2=lmcount(lm_rhw(reasonable_orders=true), transform=adapt_costs(plusone), pref={pref})".format(**locals()), "--evaluator", "hff2=ff(transform=adapt_costs(plusone))", "--search", """iterated([ lazy_greedy([hff1,hlm1],preferred=[hff1,hlm1], cost_type=one,reopen_closed=false), lazy_greedy([hff2,hlm2],preferred=[hff2,hlm2], reopen_closed=false), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=5), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=3), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=2), lazy_wastar([hff2,hlm2],preferred=[hff2,hlm2],w=1) ],repeat_last=true,continue_on_fail=true)""", "--always"]) for pref in [True, False] ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.ANYTIME_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() #exp.add_comparison_table_step() attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES for build in BUILDS: algorithm_pairs = [ ("{rev}-{nick1}".format(**locals()), "{rev}-{nick2}".format(**locals()), "Diff ({rev})".format(**locals())) for (nick1, _), (nick2, _) in itertools.combinations(CONFIG_NICKS, 2)] exp.add_report( ComparativeReport(algorithm_pairs, attributes=attributes), name="issue839-{nick1}-vs-{nick2}".format(**locals())) exp.run_steps()
5,589
Python
39.802919
119
0.56647
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue839/v1-lama-first.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue839-v1"] BUILDS = ["release32"] CONFIG_NICKS = [ ("lama-first-syn", [ "--heuristic", """hlm=lama_synergy(lm_rhw(reasonable_orders=true), transform=adapt_costs(one))""", "--heuristic", "hff=ff_synergy(hlm)", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false)"""]), ("lama-first-no-syn-pref-false", [ "--heuristic", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), pref=false)", "--heuristic", "hff=ff(transform=adapt_costs(one))", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false)"""]), ("lama-first-no-syn-pref-true", [ "--heuristic", "hlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true), transform=adapt_costs(one), pref=true)", "--heuristic", "hff=ff(transform=adapt_costs(one))", "--search", """lazy_greedy([hff,hlm],preferred=[hff,hlm], cost_type=one,reopen_closed=false)"""]), ] CONFIGS = [ IssueConfig( config_nick, config, build_options=[build], driver_options=["--build", build]) for rev in REVISIONS for build in BUILDS for config_nick, config in CONFIG_NICKS ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() #exp.add_comparison_table_step() attributes = IssueExperiment.DEFAULT_TABLE_ATTRIBUTES for build in BUILDS: algorithm_pairs = [ ("{rev}-{nick1}".format(**locals()), "{rev}-{nick2}".format(**locals()), "Diff ({rev})".format(**locals())) for (nick1, _), (nick2, _) in itertools.combinations(CONFIG_NICKS, 2)] exp.add_report( ComparativeReport(algorithm_pairs, attributes=attributes), name="issue839-{nick1}-vs-{nick2}".format(**locals())) exp.run_steps()
3,160
Python
32.627659
109
0.632278
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue839/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,786
Python
36.435443
82
0.618355
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue839/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v2-sat.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v2"] SUITE=suites.suite_satisficing() SUITE.extend(suites.suite_ipc14_sat()) CONFIGS = [ # Test lazy search with randomization IssueConfig("lazy_greedy_ff_randomized", [ "--heuristic", "h=ff()", "--search", "lazy_greedy(h, preferred=h, randomize_successors=true)" ]), # Epsilon Greedy IssueConfig("lazy_epsilon_greedy_ff", [ "--heuristic", "h=ff()", "--search", "lazy(epsilon_greedy(h))" ]), # Pareto IssueConfig("lazy_pareto_ff_cea", [ "--heuristic", "h1=ff()", "--heuristic", "h2=cea()", "--search", "lazy(pareto([h1, h2]))" ]), # Type based IssueConfig("ff-type-const", [ "--heuristic", "hff=ff(cost_type=one)", "--search", "lazy(alt([single(hff),single(hff, pref_only=true), type_based([const(1)])])," "preferred=[hff],cost_type=one)" ]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_resource('parser', 'parser.py', dest='parser.py') exp.add_command('parser', ['parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) out_of_memory = Attribute('out_of_memory', absolute=True, min_wins=True) out_of_time = Attribute('out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, out_of_memory, out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp()
2,011
Python
25.826666
90
0.611636
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v1-sat-reparse.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v1"] SUITE=suites.suite_satisficing() SUITE.extend(suites.suite_ipc14_sat()) CONFIGS = [ # Test lazy search with randomization IssueConfig("lazy_greedy_ff_randomized", [ "--heuristic", "h=ff()", "--search", "lazy_greedy(h, preferred=h, randomize_successors=true)" ]), # Epsilon Greedy IssueConfig("lazy_epsilon_greedy_ff", [ "--heuristic", "h=ff()", "--search", "lazy(epsilon_greedy(h))" ]), # Pareto IssueConfig("lazy_pareto_ff_cea", [ "--heuristic", "h1=ff()", "--heuristic", "h2=cea()", "--search", "lazy(pareto([h1, h2]))" ]), # Type based IssueConfig("ff-type-const", [ "--heuristic", "hff=ff(cost_type=one)", "--search", "lazy(alt([single(hff),single(hff, pref_only=true), type_based([const(1)])])," "preferred=[hff],cost_type=one)" ]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_fetcher('data/issue648-v1-sat-test', parsers=['parser.py']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) out_of_memory = Attribute('out_of_memory', absolute=True, min_wins=True) out_of_time = Attribute('out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, out_of_memory, out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp()
1,984
Python
25.466666
90
0.611895
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v1-sat-test.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v1"] SUITE=suites.suite_satisficing() SUITE.extend(suites.suite_ipc14_sat()) CONFIGS = [ # Test lazy search with randomization IssueConfig("lazy_greedy_ff_randomized", [ "--heuristic", "h=ff()", "--search", "lazy_greedy(h, preferred=h, randomize_successors=true)" ]), # Epsilon Greedy IssueConfig("lazy_epsilon_greedy_ff", [ "--heuristic", "h=ff()", "--search", "lazy(epsilon_greedy(h))" ]), # Pareto IssueConfig("lazy_pareto_ff_cea", [ "--heuristic", "h1=ff()", "--heuristic", "h2=cea()", "--search", "lazy(pareto([h1, h2]))" ]), # Type based IssueConfig("ff-type-const", [ "--heuristic", "hff=ff(cost_type=one)", "--search", "lazy(alt([single(hff),single(hff, pref_only=true), type_based([const(1)])])," "preferred=[hff],cost_type=one)" ]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) # Absolute report commented out because a comparison table is more useful for this issue. # (It's still in this file because someone might want to use it as a basis.) # Scatter plots commented out for now because I have no usable matplotlib available. # exp.add_absolute_report_step() exp.add_comparison_table_step() # exp.add_scatter_plot_step() exp()
1,647
Python
25.15873
90
0.582271
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() def check_planner_exit_reason(content, props): error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return out_of_time = False out_of_memory = False if error == 'timeout': out_of_time = True elif error == 'out-of-memory': out_of_memory = True props['out_of_time'] = out_of_time props['out_of_memory'] = out_of_memory parser.add_function(check_planner_exit_reason) def check_perfect_heuristic(content, props): plan_length = props.get('plan_length') expansions = props.get('expansions') if plan_length != None: perfect_heuristic = False if plan_length + 1 == expansions: perfect_heuristic = True props['perfect_heuristic'] = perfect_heuristic parser.add_function(check_perfect_heuristic) def check_proved_unsolvability(content, props): proved_unsolvability = False if props['coverage'] == 0: for line in content.splitlines(): if line == 'Completely explored state space -- no solution!': proved_unsolvability = True break props['proved_unsolvability'] = proved_unsolvability parser.add_function(check_proved_unsolvability) parser.parse()
1,365
Python
28.063829
75
0.640293
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,481
Python
33.963585
83
0.594904
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v1-opt-reparse.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v1"] SUITE=suites.suite_optimal_strips() SUITE.extend(suites.suite_ipc14_opt_strips()) CONFIGS = [ # Test label reduction, shrink_bucket_based (via shrink_fh and shrink_random) IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-r50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_random(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), # Test sampling IssueConfig('ipdb', ['--search', 'astar(ipdb)']), # Test genetic pattern generation IssueConfig('genetic', ['--search', 'astar(zopdbs(patterns=genetic))']), # Test cegar IssueConfig( "cegar-10K-goals-randomorder", ["--search", "astar(cegar(subtasks=[goals(order=random)],max_states=10000,max_time=infinity))"]), IssueConfig( "cegar-10K-original-randomorder", ["--search", "astar(cegar(subtasks=[original],max_states=10000,max_time=infinity,pick=random))"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_fetcher('data/issue648-v1-opt-test', parsers=['parser.py']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) out_of_memory = Attribute('out_of_memory', absolute=True, min_wins=True) out_of_time = Attribute('out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, out_of_memory, out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp()
2,356
Python
39.63793
240
0.724533
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v1-opt-test.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v1"] SUITE=suites.suite_optimal_strips() SUITE.extend(suites.suite_ipc14_opt_strips()) CONFIGS = [ # Test label reduction, shrink_bucket_based (via shrink_fh and shrink_random) IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-r50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_random(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), # Test sampling IssueConfig('ipdb', ['--search', 'astar(ipdb)']), # Test genetic pattern generation IssueConfig('genetic', ['--search', 'astar(zopdbs(patterns=genetic))']), # Test cegar IssueConfig( "cegar-10K-goals-randomorder", ["--search", "astar(cegar(subtasks=[goals(order=random)],max_states=10000,max_time=infinity))"]), IssueConfig( "cegar-10K-original-randomorder", ["--search", "astar(cegar(subtasks=[original],max_states=10000,max_time=infinity,pick=random))"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_comparison_table_step() exp()
1,704
Python
40.585365
240
0.709507
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue648/v2-opt.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute from common_setup import IssueConfig, IssueExperiment REVS = ["issue648-base", "issue648-v2"] SUITE=suites.suite_optimal_strips() SUITE.extend(suites.suite_ipc14_opt_strips()) CONFIGS = [ # Test label reduction, shrink_bucket_based (via shrink_fh and shrink_random) IssueConfig('dfp-b50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_bisimulation(max_states=50000,threshold=1,greedy=false),label_reduction=exact(before_shrinking=true,before_merging=false)))']), IssueConfig('dfp-f50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_fh(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), IssueConfig('dfp-r50k', ['--search', 'astar(merge_and_shrink(merge_strategy=merge_dfp,shrink_strategy=shrink_random(max_states=50000),label_reduction=exact(before_shrinking=false,before_merging=true)))']), # Test sampling IssueConfig('ipdb', ['--search', 'astar(ipdb)']), # Test genetic pattern generation IssueConfig('genetic', ['--search', 'astar(zopdbs(patterns=genetic))']), # Test cegar IssueConfig( "cegar-10K-goals-randomorder", ["--search", "astar(cegar(subtasks=[goals(order=random)],max_states=10000,max_time=infinity))"]), IssueConfig( "cegar-10K-original-randomorder", ["--search", "astar(cegar(subtasks=[original],max_states=10000,max_time=infinity,pick=random))"]), ] exp = IssueExperiment( revisions=REVS, configs=CONFIGS, suite=SUITE, email="[email protected]" ) exp.add_resource('parser', 'parser.py', dest='parser.py') exp.add_command('parser', ['parser']) # planner outcome attributes perfect_heuristic = Attribute('perfect_heuristic', absolute=True, min_wins=False) proved_unsolvability = Attribute('proved_unsolvability', absolute=True, min_wins=False) out_of_memory = Attribute('out_of_memory', absolute=True, min_wins=True) out_of_time = Attribute('out_of_time', absolute=True, min_wins=True) extra_attributes = [ perfect_heuristic, proved_unsolvability, out_of_memory, out_of_time, ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp()
2,383
Python
40.103448
240
0.723038
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/v1-lama.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_satisficing_with_ipc11() configs = { IssueConfig('seq_sat_lama_2011', [], driver_options=['--alias', 'seq-sat-lama-2011']), IssueConfig('lama_first', [], driver_options=['--alias', 'lama-first']), IssueConfig('ehc_lm_zhu', ['--search', 'ehc(lmcount(lm_zg()))']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: nick = config.nick exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue416-base-%s" % nick, "issue416-v1-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v1_memory_%s.png' % nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue416-base-%s" % nick, "issue416-v1-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v1_total_time_%s.png' % nick ) exp() main(revisions=['issue416-base', 'issue416-v1'])
1,635
Python
29.867924
94
0.577982
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Wrapper for FastDownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=1, **kwargs): """Create a DownwardExperiment with some convenience features. If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(os.path.join(repo, "benchmarks"), suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,539
Python
34.027933
83
0.59606
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/v2-lama.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup_no_benchmarks import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_satisficing_with_ipc11() configs = { IssueConfig('seq_sat_lama_2011', [], driver_options=['--alias', 'seq-sat-lama-2011']), IssueConfig('lama_first', [], driver_options=['--alias', 'lama-first']), IssueConfig('ehc_lm_zhu', ['--search', 'ehc(lmcount(lm_zg()))']), } exp = IssueExperiment( benchmarks_dir="/infai/pommeren/projects/downward/benchmarks/", revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: nick = config.nick exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue416-v2-base-%s" % nick, "issue416-v2-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v2_memory_%s.png' % nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue416-v2-base-%s" % nick, "issue416-v2-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v2_total_time_%s.png' % nick ) exp() main(revisions=['issue416-v2-base', 'issue416-v2'])
1,722
Python
30.907407
94
0.589431
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-blind', ['--search', 'astar(blind())']), IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), IssueConfig('astar-ipdb', ['--search', 'astar(ipdb())']), IssueConfig('astar-seq_opt_bjolp', ['--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true), mpd=true)']), } exp = IssueExperiment( revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: nick = config.nick exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue416-base-%s" % nick, "issue416-v1-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v1_memory_%s.png' % nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue416-base-%s" % nick, "issue416-v1-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v1_total_time_%s.png' % nick ) exp() main(revisions=['issue416-base', 'issue416-v1'])
1,719
Python
30.851851
135
0.57708
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/relativescatter.py
# -*- coding: utf-8 -*- # # downward uses the lab package to conduct experiments with the # Fast Downward planning system. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from collections import defaultdict import os from lab import tools from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter(axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows how a specific attribute in two configurations. The attribute value in config 1 is shown on the x-axis and the relation to the value in config 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['config'] == self.configs[0] and run2['config'] == self.configs[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.configs[0], val1) assert val2 > 0, (domain, problem, self.configs[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlots use log-scaling on the x-axis by default. default_xscale = 'log' if self.attribute and self.attribute in self.LINEAR: default_xscale = 'linear' PlotReport._set_scales(self, xscale or default_xscale, 'log')
4,690
Python
35.937008
84
0.624947
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/common_setup_no_benchmarks.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareConfigsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, benchmarks_dir, suite, revisions=[], configs={}, grid_priority=None, path=None, test_suite=None, email=None, processes=None, **kwargs): """ If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) *configs* must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(..., suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(..., suite=suites.suite_all()) IssueExperiment(..., suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(..., suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(..., grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(..., test_suite=["depot:pfile1", "tpp:p01.pddl"]) If *email* is specified, it should be an email address. This email address will be notified upon completion of the experiments if it is run on the cluster. """ if is_test_run(): kwargs["environment"] = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment( priority=grid_priority, email=email) path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) repo = get_repo_base() for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), repo, rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self.add_suite(benchmarks_dir, suite) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join(self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = CompareConfigsReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + "." + report.output_format) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare" % (self.name, rev1, rev2) + ".html") subprocess.call(['publish', outfile]) self.add_step(Step("make-comparison-tables", make_comparison_tables)) self.add_step(Step("publish-comparison-tables", publish_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,496
Python
33.907821
83
0.59435
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue416/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm from common_setup_no_benchmarks import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport def main(revisions=None): suite = suites.suite_optimal_with_ipc11() configs = { IssueConfig('astar-blind', ['--search', 'astar(blind())']), IssueConfig('astar-lmcut', ['--search', 'astar(lmcut())']), IssueConfig('astar-ipdb', ['--search', 'astar(ipdb())']), IssueConfig('astar-seq_opt_bjolp', ['--search', 'astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]),admissible=true), mpd=true)']), } exp = IssueExperiment( benchmarks_dir="/infai/pommeren/projects/downward/benchmarks/", revisions=revisions, configs=configs, suite=suite, test_suite=['depot:pfile1'], processes=4, email='[email protected]', ) exp.add_comparison_table_step() for config in configs: nick = config.nick exp.add_report( RelativeScatterPlotReport( attributes=["memory"], filter_config=["issue416-v2-base-%s" % nick, "issue416-v2-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v2_memory_%s.png' % nick ) exp.add_report( RelativeScatterPlotReport( attributes=["total_time"], filter_config=["issue416-v2-base-%s" % nick, "issue416-v2-%s" % nick], get_category=lambda run1, run2: run1.get("domain"), ), outfile='issue416_base_v2_total_time_%s.png' % nick ) exp() main(revisions=['issue416-v2-base', 'issue416-v2'])
1,806
Python
31.854545
135
0.58804
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v7.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v8", "issue705-v9", "issue705-v10", "issue705-v11"] CONFIGS = [ IssueConfig( 'astar-blind', ['--search', 'astar(blind())'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_fetcher('data/issue705-v4-eval') exp.add_comparison_table_step() def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for attr in ["total_time", "search_time", "sg_construction_time", "memory", "sg_peak_mem_diff_per_task_size"]: for rev1, rev2 in [("base", "v11"), ("v8", "v9"), ("v9", "v10"), ("v10", "v11")]: exp.add_report(RelativeScatterPlotReport( attributes=[attr], filter_algorithm=["issue705-%s-astar-blind" % rev1, "issue705-%s-astar-blind" % rev2], filter=add_sg_peak_mem_diff_per_task_size, get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s-%s.png" % (attr, rev1, rev2)) exp.add_report(CSVReport( filter_algorithm="issue705-v11-astar-blind", attributes=["algorithm", "domain", "sg_*", "translator_task_size"]), outfile="csvreport.csv") exp.run_steps()
2,345
Python
31.136986
110
0.666525
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v4.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v3", "issue705-v5", "issue705-v6"] CONFIGS = [ IssueConfig( 'astar-blind', ['--search', 'astar(blind())'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_comparison_table_step() for attr in ["total_time", "search_time", "sg_construction_time", "memory"]: for rev1, rev2 in [("base", "v3"), ("base", "v5"), ("base", "v6")]: exp.add_report(RelativeScatterPlotReport( attributes=[attr], filter_algorithm=["issue705-%s-astar-blind" % rev1, "issue705-%s-astar-blind" % rev2], get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s-%s.png" % (attr, rev1, rev2)) exp.run_steps()
1,775
Python
30.157894
98
0.673239
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v5.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v7"] CONFIGS = [ IssueConfig( 'astar-blind', ['--search', 'astar(blind())'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_fetcher('data/issue705-v4-eval') exp.add_comparison_table_step() def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for attr in ["total_time", "search_time", "sg_construction_time", "memory", "sg_peak_mem_diff_per_task_size"]: for rev1, rev2 in [("base", "v7"), ("v6", "v7")]: exp.add_report(RelativeScatterPlotReport( attributes=[attr], filter_algorithm=["issue705-%s-astar-blind" % rev1, "issue705-%s-astar-blind" % rev2], filter=add_sg_peak_mem_diff_per_task_size, get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s-%s.png" % (attr, rev1, rev2)) exp.run_steps()
2,088
Python
29.720588
110
0.66954
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v8.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v12"] CONFIGS = [ IssueConfig( 'astar-blind', ['--search', 'astar(blind())'], ), IssueConfig( 'astar-lmcut', ['--search', 'astar(lmcut())'], ), IssueConfig( 'astar-cegar', ['--search', 'astar(cegar())'], ), IssueConfig( 'astar-ipdb', ['--search', 'astar(ipdb())'], ), IssueConfig( 'astar-lama-first', [], driver_options=['--alias', 'lama-first'], ), ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_comparison_table_step() for attr in ["total_time", "search_time", "memory"]: for rev1, rev2 in [("base", "v12")]: exp.add_report(RelativeScatterPlotReport( attributes=[attr], filter_algorithm=["issue705-%s-astar-blind" % rev1, "issue705-%s-astar-blind" % rev2], get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s-%s.png" % (attr, rev1, rev2)) exp.run_steps()
2,017
Python
27.422535
98
0.636093
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/csv_report.py
from downward.reports import PlanningReport class CSVReport(PlanningReport): def get_text(self): sep = " " lines = [sep.join(self.attributes)] for runs in self.problem_runs.values(): for run in runs: lines.append(sep.join([str(run.get(attribute, "nan")) for attribute in self.attributes])) return "\n".join(lines)
418
Python
33.916664
74
0.562201
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,171
Python
35.715026
79
0.613859
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v6.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v7", "issue705-v8"] CONFIGS = [ IssueConfig( 'astar-blind', ['--search', 'astar(blind())'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_fetcher('data/issue705-v4-eval') exp.add_comparison_table_step() def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for attr in ["total_time", "search_time", "sg_construction_time", "memory", "sg_peak_mem_diff_per_task_size"]: for rev1, rev2 in [("base", "v8"), ("v7", "v8")]: exp.add_report(RelativeScatterPlotReport( attributes=[attr], filter_algorithm=["issue705-%s-astar-blind" % rev1, "issue705-%s-astar-blind" % rev2], filter=add_sg_peak_mem_diff_per_task_size, get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s-%s.png" % (attr, rev1, rev2)) exp.run_steps()
2,103
Python
29.941176
110
0.66952
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/sg-parser.py
#! /usr/bin/env python from lab.parser import Parser def add_absolute_and_relative(parser, attribute, pattern): parser.add_pattern(attribute, pattern + ' (\d+) .+', required=False, type=int) parser.add_pattern(attribute + '_rel', pattern + ' \d+ \((.+)\)', required=False, type=float) parser = Parser() parser.add_pattern('sg_construction_time', 'SG construction time: (.+)s', required=False, type=float) parser.add_pattern('sg_peak_mem_diff', 'SG construction peak memory difference: (\d+)', required=False, type=int) parser.add_pattern('sg_size_estimate_total', 'SG size estimates: total: (\d+)', required=False, type=int) add_absolute_and_relative(parser, 'sg_size_estimate_overhead', 'SG size estimates: object overhead:') add_absolute_and_relative(parser, 'sg_size_estimate_operators', 'SG size estimates: operators:') add_absolute_and_relative(parser, 'sg_size_estimate_switch_var', 'SG size estimates: switch var:') add_absolute_and_relative(parser, 'sg_size_estimate_value_generator', 'SG size estimates: generator for value:') add_absolute_and_relative(parser, 'sg_size_estimate_default_generator', 'SG size estimates: default generator:') add_absolute_and_relative(parser, 'sg_size_estimate_next_generator', 'SG size estimates: next generator:') add_absolute_and_relative(parser, 'sg_counts_immediates', 'SG object counts: immediates:') add_absolute_and_relative(parser, 'sg_counts_forks', 'SG object counts: forks:') add_absolute_and_relative(parser, 'sg_counts_switches', 'SG object counts: switches:') add_absolute_and_relative(parser, 'sg_counts_leaves', 'SG object counts: leaves:') add_absolute_and_relative(parser, 'sg_counts_empty', 'SG object counts: empty:') add_absolute_and_relative(parser, 'sg_counts_switch_empty', 'SG switch statistics: immediate ops empty:') add_absolute_and_relative(parser, 'sg_counts_switch_single', 'SG switch statistics: single immediate op:') add_absolute_and_relative(parser, 'sg_counts_switch_more', 'SG switch statistics: more immediate ops:') add_absolute_and_relative(parser, 'sg_counts_leaf_empty', 'SG leaf statistics: applicable ops empty:') add_absolute_and_relative(parser, 'sg_counts_leaf_single', 'SG leaf statistics: single applicable op:') add_absolute_and_relative(parser, 'sg_counts_leaf_more', 'SG leaf statistics: more applicable ops:') add_absolute_and_relative(parser, 'sg_counts_switch_vector_single', 'SG switch statistics: vector single:') add_absolute_and_relative(parser, 'sg_counts_switch_vector_small', 'SG switch statistics: vector small:') add_absolute_and_relative(parser, 'sg_counts_switch_vector_large', 'SG switch statistics: vector large:') add_absolute_and_relative(parser, 'sg_counts_switch_vector_full', 'SG switch statistics: vector full:') parser.parse()
2,761
Python
64.761903
113
0.750453
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v1", "issue705-v2", "issue705-v3"] CONFIGS = [ IssueConfig( 'bounded-blind', ['--search', 'astar(blind(), bound=0)'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_absolute_report_step(attributes=[ Attribute("sg_construction_time", functions=[arithmetic_mean], min_wins=True), Attribute("sg_peak_mem_diff", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaves", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switches", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_forks", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_immediates", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_default_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_operators", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_overhead", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_switch_var", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_total", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_value_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_next_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaves_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switches_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_forks_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_immediates_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_default_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_operators_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_overhead_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_switch_var_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_value_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_next_generator_rel", functions=[geometric_mean], min_wins=True), "error", "run_dir", ]) exp.add_report(CSVReport(attributes=["algorithm", "domain", "sg_*", "translator_task_size"]), outfile="csvreport.csv") def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for rev1, rev2 in [("base", "v1"), ("base", "v2"), ("base", "v3")]: exp.add_report(RelativeScatterPlotReport( attributes=["sg_peak_mem_diff_per_task_size"], filter=add_sg_peak_mem_diff_per_task_size, filter_algorithm=["issue705-%s-bounded-blind" % rev1, "issue705-%s-bounded-blind" % rev2], get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s.png" % (rev1, rev2)) exp.run_steps()
5,360
Python
47.297297
118
0.708209
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v5", "issue705-v6"] CONFIGS = [ IssueConfig( 'bounded-blind', ['--search', 'astar(blind(), bound=0)'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_absolute_report_step(attributes=[ Attribute("sg_construction_time", functions=[arithmetic_mean], min_wins=True), Attribute("sg_peak_mem_diff", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaves", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switches", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_forks", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_immediates", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_default_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_operators", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_overhead", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_switch_var", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_total", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_value_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_next_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_small", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_large", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_full", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaves_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switches_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_forks_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_immediates_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_default_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_operators_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_overhead_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_switch_var_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_value_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_next_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_small_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_large_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_full_rel", functions=[geometric_mean], min_wins=True), "error", "run_dir", ]) exp.add_report(CSVReport(attributes=["algorithm", "domain", "sg_*", "translator_task_size"]), outfile="csvreport.csv") def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for rev1, rev2 in [("base", "v6"), ("v5", "v6")]: exp.add_report(RelativeScatterPlotReport( attributes=["sg_peak_mem_diff_per_task_size"], filter=add_sg_peak_mem_diff_per_task_size, filter_algorithm=["issue705-%s-bounded-blind" % rev1, "issue705-%s-bounded-blind" % rev2], get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s.png" % (rev1, rev2)) exp.run_steps()
6,077
Python
49.231405
118
0.712523
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue705/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, arithmetic_mean, geometric_mean import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport from csv_report import CSVReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue705-base", "issue705-v3", "issue705-v4", "issue705-v5"] CONFIGS = [ IssueConfig( 'bounded-blind', ['--search', 'astar(blind(), bound=0)'], ) ] SUITE = list(sorted(set(common_setup.DEFAULT_OPTIMAL_SUITE) | set(common_setup.DEFAULT_SATISFICING_SUITE))) ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_resource('sg_parser', 'sg-parser.py', dest='sg-parser.py') exp.add_command('sg-parser', ['{sg_parser}']) exp.add_absolute_report_step(attributes=[ Attribute("sg_construction_time", functions=[arithmetic_mean], min_wins=True), Attribute("sg_peak_mem_diff", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaf_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_leaves", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_empty", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_more", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switches", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_forks", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_immediates", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_default_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_operators", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_overhead", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_switch_var", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_total", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_value_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_size_estimate_next_generator", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_single", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_small", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_large", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_switch_vector_full", functions=[arithmetic_mean], min_wins=True), Attribute("sg_counts_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaf_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_leaves_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_empty_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_more_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switches_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_forks_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_immediates_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_default_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_operators_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_overhead_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_switch_var_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_value_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_size_estimate_next_generator_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_single_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_small_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_large_rel", functions=[geometric_mean], min_wins=True), Attribute("sg_counts_switch_vector_full_rel", functions=[geometric_mean], min_wins=True), "error", "run_dir", ]) exp.add_report(CSVReport(attributes=["algorithm", "domain", "sg_*", "translator_task_size"]), outfile="csvreport.csv") def add_sg_peak_mem_diff_per_task_size(run): mem = run.get("sg_peak_mem_diff") size = run.get("translator_task_size") if mem and size: run["sg_peak_mem_diff_per_task_size"] = mem / float(size) return run for rev1, rev2 in [("base", "v3"), ("base", "v4"), ("base", "v5"), ("v3", "v4"), ("v4", "v5")]: exp.add_report(RelativeScatterPlotReport( attributes=["sg_peak_mem_diff_per_task_size"], filter=add_sg_peak_mem_diff_per_task_size, filter_algorithm=["issue705-%s-bounded-blind" % rev1, "issue705-%s-bounded-blind" % rev2], get_category=lambda r1, r2: r1["domain"], ), outfile="issue705-%s-%s.png" % (rev1, rev2)) exp.run_steps()
6,138
Python
49.735537
118
0.709677
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue527/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in self.get_supported_attributes( config_nick, attributes): make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
12,856
Python
34.913408
79
0.612943
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue527/compare_with_paper.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from lab.experiment import Experiment from lab.steps import Step from downward.reports.compare import CompareConfigsReport from common_setup import get_experiment_name, get_data_dir, get_repo_base import os DATADIR = os.path.join(os.path.dirname(__file__), 'data') exp = Experiment(get_data_dir()) exp.add_fetcher(os.path.join(DATADIR, 'e2013101802-pho-seq-constraints-eval'), filter_config_nick="astar_pho_seq_no_onesafe") exp.add_fetcher(os.path.join(DATADIR, 'issue527-v2-eval'), filter_config_nick="astar_occ_seq") exp.add_report(CompareConfigsReport( [ ('869fec6f843b-astar_pho_seq_no_onesafe', 'issue527-v2-astar_occ_seq'), ], attributes=[ 'coverage', 'total_time', 'expansions', 'evaluations', 'generated', 'expansions_until_last_jump', 'error', ], ) ) exp()
971
Python
25.27027
125
0.619979
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue527/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue527-v1"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_occ_lmcut": [ "--search", "astar(operatorcounting([lmcut_constraints()]))"], "astar_occ_seq": [ "--search", "astar(operatorcounting([state_equation_constraints()]))"], "astar_occ_pho_1": [ "--search", "astar(operatorcounting([pho_constraints_systematic(pattern_max_size=1, only_interesting_patterns=true)]))"], "astar_occ_pho_2": [ "--search", "astar(operatorcounting([pho_constraints_systematic(pattern_max_size=2, only_interesting_patterns=true)]))"], "astar_occ_pho_2_naive": [ "--search", "astar(operatorcounting([pho_constraints_systematic(pattern_max_size=2, only_interesting_patterns=false)]))"], "astar_occ_pho_ipdb": [ "--search", "astar(operatorcounting([pho_constraints_ipdb()]))"], "astar_cpdbs_1": [ "--search", "astar(cpdbs_systematic(pattern_max_size=1, only_interesting_patterns=true))"], "astar_cpdbs_2": [ "--search", "astar(cpdbs_systematic(pattern_max_size=2, only_interesting_patterns=true))"], "astar_occ_pho_2_naive": [ "--search", "astar(cpdbs_systematic(pattern_max_size=2, only_interesting_patterns=false))"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_absolute_report_step() exp()
1,548
Python
29.979999
118
0.620801
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue527/v2.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites import common_setup REVS = ["issue527-v2"] SUITE = suites.suite_optimal_with_ipc11() CONFIGS = { "astar_occ_lmcut": [ "--search", "astar(operatorcounting([lmcut_constraints()]))"], "astar_occ_seq": [ "--search", "astar(operatorcounting([state_equation_constraints()]))"], "astar_occ_pho_1": [ "--search", "astar(operatorcounting([pho_constraints_systematic(pattern_max_size=1, only_interesting_patterns=true)]))"], "astar_occ_pho_2": [ "--search", "astar(operatorcounting([pho_constraints_systematic(pattern_max_size=2, only_interesting_patterns=true)]))"], "astar_occ_pho_ipdb": [ "--search", "astar(operatorcounting([pho_constraints_ipdb()]))"], } exp = common_setup.IssueExperiment( search_revisions=REVS, configs=CONFIGS, suite=SUITE, ) exp.add_absolute_report_step() exp()
976
Python
24.710526
117
0.620902
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue549/issue549-v3.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from main import main main(revisions=["issue549-base", "issue549-v3"])
120
Python
16.285712
48
0.65
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue549/issue549-v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from main import main main(revisions=["issue549-base", "issue549-v1"])
120
Python
16.285712
48
0.65
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue549/main.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import suites from lab.reports import Attribute, gm import common_setup def main(revisions=None): SUITE = suites.suite_satisficing_with_ipc11() CONFIGS = { 'cea': ['--search', 'eager_greedy(cea())'], 'cg': ['--search', 'eager_greedy(cg())'], 'lmcount': ['--search', 'eager_greedy(lmcount(lm_rhw()))'], } exp = common_setup.IssueExperiment( revisions=revisions, configs=CONFIGS, suite=SUITE, test_suite=['depot:pfile1'], processes=4, email='[email protected]', grid_priority=-10, ) attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.append('landmarks') attributes.append('landmarks_generation_time') exp.add_comparison_table_step(attributes=attributes) exp()
853
Python
22.08108
67
0.620164
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue549/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.steps import Step from downward.experiments.fast_downward_experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(FastDownwardExperiment): """Wrapper for FastDownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, revisions, suite, build_options=None, driver_options=None, grid_priority=None, test_suite=None, email=None, processes=1, **kwargs): """Create an FastDownwardExperiment with some convenience features. All configs will be run on all revisions. Inherited options *path*, *environment* and *cache_dir* from FastDownwardExperiment are not supported and will be automatically set. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. nick will automatically get the revision prepended, e.g. 'issue123-base-<nick>':: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *revisions* must be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): environment = LocalEnvironment(processes=processes) suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: environment = MaiaEnvironment(priority=grid_priority, email=email) FastDownwardExperiment.__init__(self, environment=environment, **kwargs) # Automatically deduce the downward repository from the file repo = get_repo_base() self.algorithm_nicks = [] self.revisions = revisions for nick, cmdline in configs.items(): for rev in revisions: algo_nick = '%s-%s' % (rev, nick) self.add_algorithm(algo_nick, repo, rev, cmdline, build_options, driver_options) self.algorithm_nicks.append(algo_nick) benchmarks_dir = os.path.join(repo, 'benchmarks') self.add_suite(benchmarks_dir, suite) self.search_parsers = [] def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) # oufile is of the form <rev1>-<rev2>-...-<revn>.<format> outfile = '' for rev in self.revisions: outfile += rev outfile += '-' outfile = outfile[:len(outfile)-1] outfile += '.' outfile += report.output_format outfile = os.path.join(self.eval_dir, outfile) self.add_report(report, outfile=outfile) self.add_step(Step('publish-absolute-report', subprocess.call, ['publish', outfile])) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revisions, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revisions, 2): outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) subprocess.call(['publish', outfile]) self.add_step(Step('publish-comparison-reports', publish_comparison_tables)) # TODO: this is copied from the old common_setup, but not tested # with the new FastDownwardExperiment class! def add_scatter_plot_step(self, attributes=None): print 'This has not been tested with the new FastDownwardExperiment class!' exit(0) """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config_nick in self._config_nicks: if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): for attribute in valid_attributes: make_scatter_plot(config_nick, rev1, rev2, attribute) self.add_step(Step("make-scatter-plots", make_scatter_plots))
11,089
Python
35.843854
93
0.59816
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue512/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import sys from lab.environments import LocalEnvironment, MaiaEnvironment from lab.experiment import ARGPARSER from lab.reports import Table from lab.steps import Step from downward.experiments import DownwardExperiment, _get_rev_nick from downward.checkouts import Translator, Preprocessor, Planner from downward.reports import PlanningReport from downward.reports.absolute import AbsoluteReport from downward.reports.compare import CompareRevisionsReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() def get_script(): """Get file name of main script.""" import __main__ return __main__.__file__ def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ("cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or (ARGS.test_run == "auto" and not is_running_on_cluster()) class IssueExperiment(DownwardExperiment): """Wrapper for DownwardExperiment with a few convenience features.""" DEFAULT_TEST_SUITE = "gripper:prob01.pddl" # TODO: Add something about errors/exit codes. DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "plan_length", ] def __init__(self, configs, suite, grid_priority=None, path=None, repo=None, revisions=None, search_revisions=None, test_suite=None, **kwargs): """Create a DownwardExperiment with some convenience features. *configs* must be a non-empty dict of {nick: cmdline} pairs that sets the planner configurations to test. :: IssueExperiment(configs={ "lmcut": ["--search", "astar(lmcut())"], "ipdb": ["--search", "astar(ipdb())"]}) *suite* sets the benchmarks for the experiment. It must be a single string or a list of strings specifying domains or tasks. The downward.suites module has many predefined suites. :: IssueExperiment(suite=["grid", "gripper:prob01.pddl"]) from downward import suites IssueExperiment(suite=suites.suite_all()) IssueExperiment(suite=suites.suite_satisficing_with_ipc11()) IssueExperiment(suite=suites.suite_optimal()) Use *grid_priority* to set the job priority for cluster experiments. It must be in the range [-1023, 0] where 0 is the highest priority. By default the priority is 0. :: IssueExperiment(grid_priority=-500) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ If *repo* is specified, it must be the path to the root of a local Fast Downward repository. If omitted, the repository is derived automatically from the main script's path. Example:: script = /path/to/fd-repo/experiments/issue123/exp01.py --> repo = /path/to/fd-repo If *revisions* is specified, it should be a non-empty list of revisions, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"]) If *search_revisions* is specified, it should be a non-empty list of revisions, which specify which search component versions to use in the experiment. All runs use the translator and preprocessor component of the first revision. :: IssueExperiment(search_revisions=["default", "issue123"]) If you really need to specify the (translator, preprocessor, planner) triples manually, use the *combinations* parameter from the base class (might be deprecated soon). The options *revisions*, *search_revisions* and *combinations* can be freely mixed, but at least one of them must be given. Specify *test_suite* to set the benchmarks for experiment test runs. By default the first gripper task is used. IssueExperiment(test_suite=["depot:pfile1", "tpp:p01.pddl"]) """ if is_test_run(): kwargs["environment"] = LocalEnvironment() suite = test_suite or self.DEFAULT_TEST_SUITE elif "environment" not in kwargs: kwargs["environment"] = MaiaEnvironment(priority=grid_priority) if path is None: path = get_data_dir() if repo is None: repo = get_repo_base() kwargs.setdefault("combinations", []) if not any([revisions, search_revisions, kwargs["combinations"]]): raise ValueError('At least one of "revisions", "search_revisions" ' 'or "combinations" must be given') if revisions: kwargs["combinations"].extend([ (Translator(repo, rev), Preprocessor(repo, rev), Planner(repo, rev)) for rev in revisions]) if search_revisions: base_rev = search_revisions[0] # Use the same nick for all parts to get short revision nick. kwargs["combinations"].extend([ (Translator(repo, base_rev, nick=rev), Preprocessor(repo, base_rev, nick=rev), Planner(repo, rev, nick=rev)) for rev in search_revisions]) DownwardExperiment.__init__(self, path=path, repo=repo, **kwargs) self._config_nicks = [] for nick, config in configs.items(): self.add_config(nick, config) self.add_suite(suite) @property def revision_nicks(self): # TODO: Once the add_algorithm() API is available we should get # rid of the call to _get_rev_nick() and avoid inspecting the # list of combinations by setting and saving the algorithm nicks. return [_get_rev_nick(*combo) for combo in self.combinations] def add_config(self, nick, config, timeout=None): DownwardExperiment.add_config(self, nick, config, timeout=timeout) self._config_nicks.append(nick) def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = get_experiment_name() + "." + report.output_format self.add_report(report, outfile=outfile) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revision triples. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareRevisionsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self.revision_nicks, 2): report = CompareRevisionsReport(rev1, rev2, **kwargs) outfile = os.path.join(self.eval_dir, "%s-%s-compare.html" % (rev1, rev2)) report(self.eval_dir, outfile) self.add_step(Step("make-comparison-tables", make_comparison_tables)) def add_scatter_plot_step(self, attributes=None): """Add a step that creates scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revision pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES scatter_dir = os.path.join(self.eval_dir, "scatter") def is_portfolio(config_nick): return "fdss" in config_nick def make_scatter_plots(): for config_nick in self._config_nicks: for rev1, rev2 in itertools.combinations( self.revision_nicks, 2): algo1 = "%s-%s" % (rev1, config_nick) algo2 = "%s-%s" % (rev2, config_nick) if is_portfolio(config_nick): valid_attributes = [ attr for attr in attributes if attr in self.PORTFOLIO_ATTRIBUTES] else: valid_attributes = attributes for attribute in valid_attributes: name = "-".join([rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name report = ScatterPlotReport( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report(self.eval_dir, os.path.join(scatter_dir, name)) self.add_step(Step("make-scatter-plots", make_scatter_plots)) class RegressionReport(PlanningReport): """ Compare revisions for tasks on which the first revision performs better than other revisions. *revision_nicks* must be a list of revision_nicks, e.g. ["default", "issue123"]. *config_nicks* must be a list of configuration nicknames, e.g. ["eager_greedy_ff", "eager_greedy_add"]. *regression_attribute* is the attribute that we compare between different revisions. It defaults to "coverage". Example comparing search_time for tasks were we lose coverage:: exp.add_report(RegressionReport(revision_nicks=["default", "issue123"], config_nicks=["eager_greedy_ff"], regression_attribute="coverage", attributes="search_time")) """ def __init__(self, revision_nicks, config_nicks, regression_attribute="coverage", **kwargs): PlanningReport.__init__(self, **kwargs) assert revision_nicks self.revision_nicks = revision_nicks assert config_nicks self.config_nicks = config_nicks self.regression_attribute = regression_attribute def get_markup(self): tables = [] for (domain, problem) in self.problems: for config_nick in self.config_nicks: runs = [self.runs[(domain, problem, rev + "-" + config_nick)] for rev in self.revision_nicks] if any(runs[0][self.regression_attribute] > runs[i][self.regression_attribute] for i in range(1, len(self.revision_nicks))): print "\"%s:%s\"," % (domain, problem) table = Table() for rev, run in zip(self.revision_nicks, runs): for attr in self.attributes: table.add_cell(rev, attr, run.get(attr)) table_name = ":".join((domain, problem, config_nick)) tables.append((table_name, table)) return "\n".join(name + "\n" + str(table) for name, table in tables)
14,920
Python
36.3025
79
0.601475
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue512/custom-parser.py
#! /usr/bin/env python from lab.parser import Parser class CustomParser(Parser): def __init__(self): Parser.__init__(self) self.add_pattern( "init_time", "Best heuristic value: \d+ \[g=0, 1 evaluated, 0 expanded, t=(.+)s, \d+ KB\]", required=True, type=float) if __name__ == "__main__": parser = CustomParser() print "Running custom parser" parser.parse()
441
Python
21.099999
90
0.54195
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue512/issue512.py
#! /usr/bin/env python # -*- coding: utf-8 -*- from downward import configs, suites import common_setup SEARCH_REVS = ["issue512-base", "issue512-v1"] LIMITS = {"search_time": 1800} SUITE = suites.suite_satisficing_with_ipc11() configs_satisficing_core = configs.configs_satisficing_core() CONFIGS = {} for name in ["eager_greedy_add", "eager_greedy_ff", "lazy_greedy_add", "lazy_greedy_ff"]: CONFIGS[name] = configs_satisficing_core[name] CONFIGS["blind"] = ["--search", "astar(blind())"] exp = common_setup.IssueExperiment( revisions=SEARCH_REVS, configs=CONFIGS, suite=SUITE, limits=LIMITS, ) exp.add_search_parser("custom-parser.py") attributes = attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["init_time"] exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_report(common_setup.RegressionReport( revision_nicks=exp.revision_nicks, config_nicks=CONFIGS.keys(), attributes=attributes)) exp()
1,010
Python
25.605262
68
0.708911
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue883/parser.py
#! /usr/bin/env python import logging import re from lab.parser import Parser class CommonParser(Parser): def add_difference(self, diff, val1, val2): def diff_func(content, props): if props.get(val1) is None or props.get(val2) is None: diff_val = None else: diff_val = props.get(val1) - props.get(val2) props[diff] = diff_val self.add_function(diff_func) def _get_flags(self, flags_string): flags = 0 for char in flags_string: flags |= getattr(re, char) return flags def add_repeated_pattern( self, name, regex, file="run.log", required=False, type=int, flags=""): def find_all_occurences(content, props): matches = re.findall(regex, content, flags=self._get_flags(flags)) if required and not matches: logging.error("Pattern {0} not found in file {1}".format(regex, file)) props[name] = [type(m) for m in matches] self.add_function(find_all_occurences, file=file) def add_pattern(self, name, regex, file="run.log", required=False, type=int, flags=""): Parser.add_pattern(self, name, regex, file=file, required=required, type=type, flags=flags) def add_bottom_up_pattern(self, name, regex, file="run.log", required=True, type=int, flags=""): def search_from_bottom(content, props): reversed_content = "\n".join(reversed(content.splitlines())) match = re.search(regex, reversed_content, flags=self._get_flags(flags)) if required and not match: logging.error("Pattern {0} not found in file {1}".format(regex, file)) if match: props[name] = type(match.group(1)) self.add_function(search_from_bottom, file=file) def no_search(content, props): if "search_start_time" not in props: error = props.get("error") if error is not None and error != "incomplete-search-found-no-plan": props["error"] = "no-search-due-to-" + error REFINEMENT_ATTRIBUTES = [ ("time_for_finding_traces", r"Time for finding abstract traces: (.+)s"), ("time_for_finding_flaws", r"Time for finding flaws: (.+)s"), ("time_for_splitting_states", r"Time for splitting states: (.+)s"), ] def compute_total_times(content, props): for attribute, pattern in REFINEMENT_ATTRIBUTES: props["total_" + attribute] = sum(props[attribute]) def add_time_analysis(content, props): init_time = props.get("init_time") if not init_time: return parts = [] parts.append("{init_time:.2f}:".format(**props)) for attribute, pattern in REFINEMENT_ATTRIBUTES: time = props["total_" + attribute] relative_time = time / init_time print time, type(time) parts.append("{:.2f} ({:.2f})".format(time, relative_time)) props["time_analysis"] = " ".join(parts) def main(): parser = CommonParser() parser.add_pattern("search_start_time", r"\[g=0, 1 evaluated, 0 expanded, t=(.+)s, \d+ KB\]", type=float) parser.add_pattern("search_start_memory", r"\[g=0, 1 evaluated, 0 expanded, t=.+s, (\d+) KB\]", type=int) parser.add_pattern("init_time", r"Time for initializing additive Cartesian heuristic: (.+)s", type=float) parser.add_pattern("cartesian_states", r"^Cartesian states: (\d+)\n", type=int) for attribute, pattern in REFINEMENT_ATTRIBUTES: parser.add_repeated_pattern(attribute, pattern, type=float, required=False) parser.add_function(no_search) parser.add_function(compute_total_times) parser.add_function(add_time_analysis) parser.parse() if __name__ == "__main__": main()
3,743
Python
34.657143
109
0.617686
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue883/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,786
Python
36.435443
82
0.618355
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue883/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] BUILD = "release64" REVISIONS = ["issue883-base", "issue883-v1"] DRIVER_OPTIONS = ["--build", BUILD] CONFIGS = [ IssueConfig( nick + "-" + max_transitions_nick, config, build_options=[BUILD], driver_options=DRIVER_OPTIONS) for max_transitions_nick, max_transitions in [("1M", 1000000), ("2M", 2000000)] for nick, config in [ ("cegar-original", ["--search", "astar(cegar(subtasks=[original()], max_transitions={max_transitions}))".format(**locals())]), ("cegar-landmarks-goals", ["--search", "astar(cegar(max_transitions={max_transitions}))".format(**locals())]), ] ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = [ #"depot:p02.pddl", "gripper:prob01.pddl"] ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) #exp.add_parser(exp.TRANSLATOR_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_parser(os.path.join(DIR, "parser.py")) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') REFINEMENT_ATTRIBUTES = [ "time_for_finding_traces", "time_for_finding_flaws", "time_for_splitting_states", ] attributes = ( IssueExperiment.DEFAULT_TABLE_ATTRIBUTES + ["search_start_memory", "init_time", "time_analysis"] + REFINEMENT_ATTRIBUTES + ["total_" + attr for attr in REFINEMENT_ATTRIBUTES]) #exp.add_absolute_report_step(attributes=attributes) exp.add_comparison_table_step(attributes=attributes) if len(REVISIONS) == 2: for attribute in ["init_time", "expansions_until_last_jump", "total_time_for_splitting_states", "total_time_for_finding_traces"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain")), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS)) exp.run_steps()
2,794
Python
33.085365
134
0.670365
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue883/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if not val1 or not val2: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,867
Python
35.490566
78
0.598397
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue710/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport try: from relativescatter import RelativeScatterPlotReport matplotlib = True except ImportError: print 'matplotlib not availabe, scatter plots not available' matplotlib = False def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", "unsolvable", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if matplotlib: if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,475
Python
35.834606
81
0.609326
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue710/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- #! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, MaiaEnvironment from lab.reports import Attribute, geometric_mean from common_setup import IssueConfig, IssueExperiment, DEFAULT_OPTIMAL_SUITE, is_test_run BENCHMARKS_DIR=os.path.expanduser('~/repos/downward/benchmarks') REVISIONS = ["issue710-base", "issue710-v1"] CONFIGS = [ IssueConfig('cpdbs-hc', ['--search', 'astar(cpdbs(patterns=hillclimbing()))']), IssueConfig('cpdbs-hc900', ['--search', 'astar(cpdbs(patterns=hillclimbing(max_time=900)))']), ] SUITE = DEFAULT_OPTIMAL_SUITE ENVIRONMENT = MaiaEnvironment( priority=0, email='[email protected]') if is_test_run(): SUITE = ['depot:p01.pddl', 'depot:p02.pddl', 'parcprinter-opt11-strips:p01.pddl', 'parcprinter-opt11-strips:p02.pddl', 'mystery:prob07.pddl'] ENVIRONMENT = LocalEnvironment(processes=4) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_resource('ipdb_parser', 'ipdb-parser.py', dest='ipdb-parser.py') exp.add_command('ipdb-parser', ['{ipdb_parser}']) exp.add_suite(BENCHMARKS_DIR, SUITE) # ipdb attributes extra_attributes = [ Attribute('hc_iterations', absolute=True, min_wins=True), Attribute('hc_num_patters', absolute=True, min_wins=True), Attribute('hc_size', absolute=True, min_wins=True), Attribute('hc_num_generated', absolute=True, min_wins=True), Attribute('hc_num_rejected', absolute=True, min_wins=True), Attribute('hc_max_pdb_size', absolute=True, min_wins=True), Attribute('hc_hill_climbing_time', absolute=False, min_wins=True, functions=[geometric_mean]), Attribute('hc_total_time', absolute=False, min_wins=True, functions=[geometric_mean]), Attribute('cpdbs_time', absolute=False, min_wins=True, functions=[geometric_mean]), ] attributes = exp.DEFAULT_TABLE_ATTRIBUTES attributes.extend(extra_attributes) exp.add_comparison_table_step(attributes=attributes) exp.add_scatter_plot_step() exp.run_steps()
2,075
Python
36.071428
145
0.723373
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue710/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue710/ipdb-parser.py
#! /usr/bin/env python from lab.parser import Parser parser = Parser() parser.add_pattern('hc_iterations', 'iPDB: iterations = (\d+)', required=False, type=int) parser.add_pattern('hc_num_patters', 'iPDB: number of patterns = (\d+)', required=False, type=int) parser.add_pattern('hc_size', 'iPDB: size = (\d+)', required=False, type=int) parser.add_pattern('hc_num_generated', 'iPDB: generated = (\d+)', required=False, type=int) parser.add_pattern('hc_num_rejected', 'iPDB: rejected = (\d+)', required=False, type=int) parser.add_pattern('hc_max_pdb_size', 'iPDB: maximum pdb size = (\d+)', required=False, type=int) parser.add_pattern('hc_hill_climbing_time', 'iPDB: hill climbing time: (.+)s', required=False, type=float) parser.add_pattern('hc_total_time', 'Pattern generation \(hill climbing\) time: (.+)s', required=False, type=float) parser.add_pattern('cpdbs_time', 'PDB collection construction time: (.+)s', required=False, type=float) def check_hc_constructed(content, props): hc_time = props.get('hc_total_time') abstraction_constructed = False if hc_time is not None: abstraction_constructed = True props['hc_abstraction_constructed'] = abstraction_constructed parser.add_function(check_hc_constructed) def check_planner_exit_reason(content, props): hc_abstraction_constructed = props.get('hc_abstraction_constructed') error = props.get('error') if error != 'none' and error != 'timeout' and error != 'out-of-memory': print 'error: %s' % error return # Check whether hill climbing computation or search ran out of # time or memory. hc_out_of_time = False hc_out_of_memory = False search_out_of_time = False search_out_of_memory = False if hc_abstraction_constructed == False: if error == 'timeout': hc_out_of_time = True elif error == 'out-of-memory': hc_out_of_memory = True elif hc_abstraction_constructed == True: if error == 'timeout': search_out_of_time = True elif error == 'out-of-memory': search_out_of_memory = True props['hc_out_of_time'] = hc_out_of_time props['hc_out_of_memory'] = hc_out_of_memory props['search_out_of_time'] = search_out_of_time props['search_out_of_memory'] = search_out_of_memory parser.add_function(check_planner_exit_reason) parser.parse()
2,375
Python
41.428571
115
0.665684
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue747/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport from relativescatter import RelativeScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'storage', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'storage', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".hg" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".hg")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return ( "cluster" in node or node.startswith("gkigrid") or node in ["habakuk", "turtur"]) def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: report_class = RelativeScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: report_class = ScatterPlotReport scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) print "Make scatter plot for", name algo1 = "{}-{}".format(rev1, config_nick) algo2 = "{}-{}".format(rev2, config_nick) report = report_class( filter_config=[algo1, algo2], attributes=[attribute], get_category=lambda run1, run2: run1["domain"], legend_location=(1.3, 0.5)) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) self.add_step(step_name, make_scatter_plots)
14,171
Python
35.715026
79
0.613859
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue747/v1.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment import common_setup from common_setup import IssueConfig, IssueExperiment from relativescatter import RelativeScatterPlotReport DIR = os.path.dirname(os.path.abspath(__file__)) BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue747-base", "issue747-v1"] CONFIGS = [ IssueConfig('lazy-greedy-blind', ['--search', 'lazy_greedy([blind()])']), IssueConfig('lama-first', [], driver_options=["--alias", "lama-first"]), IssueConfig('lwastar-ff', ["--heuristic", "h=ff()", "--search", "lazy_wastar([h],preferred=[h],w=5)"]) ] SUITE = common_setup.DEFAULT_SATISFICING_SUITE ENVIRONMENT = BaselSlurmEnvironment(email="[email protected]") if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_absolute_report_step() exp.add_comparison_table_step() for attribute in ["total_time"]: for config in CONFIGS: exp.add_report( RelativeScatterPlotReport( attributes=[attribute], filter_algorithm=["{}-{}".format(rev, config.nick) for rev in REVISIONS], get_category=lambda run1, run2: run1.get("domain"), ), outfile="{}-{}-{}-{}-{}.png".format(exp.name, attribute, config.nick, *REVISIONS) ) exp.run_steps()
1,587
Python
32.083333
106
0.674228
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue747/relativescatter.py
# -*- coding: utf-8 -*- from collections import defaultdict from matplotlib import ticker from downward.reports.scatter import ScatterPlotReport from downward.reports.plot import PlotReport, Matplotlib, MatplotlibPlot # TODO: handle outliers # TODO: this is mostly copied from ScatterMatplotlib (scatter.py) class RelativeScatterMatplotlib(Matplotlib): @classmethod def _plot(cls, report, axes, categories, styles): # Display grid axes.grid(b=True, linestyle='-', color='0.75') has_points = False # Generate the scatter plots for category, coords in sorted(categories.items()): X, Y = zip(*coords) axes.scatter(X, Y, s=42, label=category, **styles[category]) if X and Y: has_points = True if report.xscale == 'linear' or report.yscale == 'linear': plot_size = report.missing_val * 1.01 else: plot_size = report.missing_val * 1.25 # make 5 ticks above and below 1 yticks = [] tick_step = report.ylim_top**(1/5.0) for i in xrange(-5, 6): yticks.append(tick_step**i) axes.set_yticks(yticks) axes.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) axes.set_xlim(report.xlim_left or -1, report.xlim_right or plot_size) axes.set_ylim(report.ylim_bottom or -1, report.ylim_top or plot_size) for axis in [axes.xaxis, axes.yaxis]: MatplotlibPlot.change_axis_formatter( axis, report.missing_val if report.show_missing else None) return has_points class RelativeScatterPlotReport(ScatterPlotReport): """ Generate a scatter plot that shows a relative comparison of two algorithms with regard to the given attribute. The attribute value of algorithm 1 is shown on the x-axis and the relation to the value of algorithm 2 on the y-axis. """ def __init__(self, show_missing=True, get_category=None, **kwargs): ScatterPlotReport.__init__(self, show_missing, get_category, **kwargs) if self.output_format == 'tex': raise "not supported" else: self.writer = RelativeScatterMatplotlib def _fill_categories(self, runs): # We discard the *runs* parameter. # Map category names to value tuples categories = defaultdict(list) self.ylim_bottom = 2 self.ylim_top = 0.5 self.xlim_left = float("inf") for (domain, problem), runs in self.problem_runs.items(): if len(runs) != 2: continue run1, run2 = runs assert (run1['algorithm'] == self.algorithms[0] and run2['algorithm'] == self.algorithms[1]) val1 = run1.get(self.attribute) val2 = run2.get(self.attribute) if val1 is None or val2 is None: continue category = self.get_category(run1, run2) assert val1 > 0, (domain, problem, self.algorithms[0], val1) assert val2 > 0, (domain, problem, self.algorithms[1], val2) x = val1 y = val2 / float(val1) categories[category].append((x, y)) self.ylim_top = max(self.ylim_top, y) self.ylim_bottom = min(self.ylim_bottom, y) self.xlim_left = min(self.xlim_left, x) # center around 1 if self.ylim_bottom < 1: self.ylim_top = max(self.ylim_top, 1 / float(self.ylim_bottom)) if self.ylim_top > 1: self.ylim_bottom = min(self.ylim_bottom, 1 / float(self.ylim_top)) return categories def _set_scales(self, xscale, yscale): # ScatterPlot uses log-scaling on the x-axis by default. PlotReport._set_scales( self, xscale or self.attribute.scale or 'log', 'log')
3,875
Python
35.566037
78
0.59871
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue960/common_setup.py
# -*- coding: utf-8 -*- import itertools import os import platform import subprocess import sys from lab.experiment import ARGPARSER from lab import tools from downward.experiment import FastDownwardExperiment from downward.reports.absolute import AbsoluteReport from downward.reports.compare import ComparativeReport from downward.reports.scatter import ScatterPlotReport def parse_args(): ARGPARSER.add_argument( "--test", choices=["yes", "no", "auto"], default="auto", dest="test_run", help="test experiment locally on a small suite if --test=yes or " "--test=auto and we are not on a cluster") return ARGPARSER.parse_args() ARGS = parse_args() DEFAULT_OPTIMAL_SUITE = [ 'agricola-opt18-strips', 'airport', 'barman-opt11-strips', 'barman-opt14-strips', 'blocks', 'childsnack-opt14-strips', 'data-network-opt18-strips', 'depot', 'driverlog', 'elevators-opt08-strips', 'elevators-opt11-strips', 'floortile-opt11-strips', 'floortile-opt14-strips', 'freecell', 'ged-opt14-strips', 'grid', 'gripper', 'hiking-opt14-strips', 'logistics00', 'logistics98', 'miconic', 'movie', 'mprime', 'mystery', 'nomystery-opt11-strips', 'openstacks-opt08-strips', 'openstacks-opt11-strips', 'openstacks-opt14-strips', 'openstacks-strips', 'organic-synthesis-opt18-strips', 'organic-synthesis-split-opt18-strips', 'parcprinter-08-strips', 'parcprinter-opt11-strips', 'parking-opt11-strips', 'parking-opt14-strips', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-opt11-strips', 'petri-net-alignment-opt18-strips', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-opt11-strips', 'snake-opt18-strips', 'sokoban-opt08-strips', 'sokoban-opt11-strips', 'spider-opt18-strips', 'storage', 'termes-opt18-strips', 'tetris-opt14-strips', 'tidybot-opt11-strips', 'tidybot-opt14-strips', 'tpp', 'transport-opt08-strips', 'transport-opt11-strips', 'transport-opt14-strips', 'trucks-strips', 'visitall-opt11-strips', 'visitall-opt14-strips', 'woodworking-opt08-strips', 'woodworking-opt11-strips', 'zenotravel'] DEFAULT_SATISFICING_SUITE = [ 'agricola-sat18-strips', 'airport', 'assembly', 'barman-sat11-strips', 'barman-sat14-strips', 'blocks', 'caldera-sat18-adl', 'caldera-split-sat18-adl', 'cavediving-14-adl', 'childsnack-sat14-strips', 'citycar-sat14-adl', 'data-network-sat18-strips', 'depot', 'driverlog', 'elevators-sat08-strips', 'elevators-sat11-strips', 'flashfill-sat18-adl', 'floortile-sat11-strips', 'floortile-sat14-strips', 'freecell', 'ged-sat14-strips', 'grid', 'gripper', 'hiking-sat14-strips', 'logistics00', 'logistics98', 'maintenance-sat14-adl', 'miconic', 'miconic-fulladl', 'miconic-simpleadl', 'movie', 'mprime', 'mystery', 'nomystery-sat11-strips', 'nurikabe-sat18-adl', 'openstacks', 'openstacks-sat08-adl', 'openstacks-sat08-strips', 'openstacks-sat11-strips', 'openstacks-sat14-strips', 'openstacks-strips', 'optical-telegraphs', 'organic-synthesis-sat18-strips', 'organic-synthesis-split-sat18-strips', 'parcprinter-08-strips', 'parcprinter-sat11-strips', 'parking-sat11-strips', 'parking-sat14-strips', 'pathways', 'pathways-noneg', 'pegsol-08-strips', 'pegsol-sat11-strips', 'philosophers', 'pipesworld-notankage', 'pipesworld-tankage', 'psr-large', 'psr-middle', 'psr-small', 'rovers', 'satellite', 'scanalyzer-08-strips', 'scanalyzer-sat11-strips', 'schedule', 'settlers-sat18-adl', 'snake-sat18-strips', 'sokoban-sat08-strips', 'sokoban-sat11-strips', 'spider-sat18-strips', 'storage', 'termes-sat18-strips', 'tetris-sat14-strips', 'thoughtful-sat14-strips', 'tidybot-sat11-strips', 'tpp', 'transport-sat08-strips', 'transport-sat11-strips', 'transport-sat14-strips', 'trucks', 'trucks-strips', 'visitall-sat11-strips', 'visitall-sat14-strips', 'woodworking-sat08-strips', 'woodworking-sat11-strips', 'zenotravel'] def get_script(): """Get file name of main script.""" return tools.get_script_path() def get_script_dir(): """Get directory of main script. Usually a relative directory (depends on how it was called by the user.)""" return os.path.dirname(get_script()) def get_experiment_name(): """Get name for experiment. Derived from the absolute filename of the main script, e.g. "/ham/spam/eggs.py" => "spam-eggs".""" script = os.path.abspath(get_script()) script_dir = os.path.basename(os.path.dirname(script)) script_base = os.path.splitext(os.path.basename(script))[0] return "%s-%s" % (script_dir, script_base) def get_data_dir(): """Get data dir for the experiment. This is the subdirectory "data" of the directory containing the main script.""" return os.path.join(get_script_dir(), "data", get_experiment_name()) def get_repo_base(): """Get base directory of the repository, as an absolute path. Search upwards in the directory tree from the main script until a directory with a subdirectory named ".git" is found. Abort if the repo base cannot be found.""" path = os.path.abspath(get_script_dir()) while os.path.dirname(path) != path: if os.path.exists(os.path.join(path, ".git")): return path path = os.path.dirname(path) sys.exit("repo base could not be found") def is_running_on_cluster(): node = platform.node() return node.endswith(".scicore.unibas.ch") or node.endswith(".cluster.bc2.ch") def is_test_run(): return ARGS.test_run == "yes" or ( ARGS.test_run == "auto" and not is_running_on_cluster()) def get_algo_nick(revision, config_nick): return "{revision}-{config_nick}".format(**locals()) class IssueConfig(object): """Hold information about a planner configuration. See FastDownwardExperiment.add_algorithm() for documentation of the constructor's options. """ def __init__(self, nick, component_options, build_options=None, driver_options=None): self.nick = nick self.component_options = component_options self.build_options = build_options self.driver_options = driver_options class IssueExperiment(FastDownwardExperiment): """Subclass of FastDownwardExperiment with some convenience features.""" DEFAULT_TEST_SUITE = ["depot:p01.pddl", "gripper:prob01.pddl"] DEFAULT_TABLE_ATTRIBUTES = [ "cost", "coverage", "error", "evaluations", "expansions", "expansions_until_last_jump", "generated", "memory", "planner_memory", "planner_time", "quality", "run_dir", "score_evaluations", "score_expansions", "score_generated", "score_memory", "score_search_time", "score_total_time", "search_time", "total_time", ] DEFAULT_SCATTER_PLOT_ATTRIBUTES = [ "evaluations", "expansions", "expansions_until_last_jump", "initial_h_value", "memory", "search_time", "total_time", ] PORTFOLIO_ATTRIBUTES = [ "cost", "coverage", "error", "plan_length", "run_dir", ] def __init__(self, revisions=None, configs=None, path=None, **kwargs): """ You can either specify both *revisions* and *configs* or none of them. If they are omitted, you will need to call exp.add_algorithm() manually. If *revisions* is given, it must be a non-empty list of revision identifiers, which specify which planner versions to use in the experiment. The same versions are used for translator, preprocessor and search. :: IssueExperiment(revisions=["issue123", "4b3d581643"], ...) If *configs* is given, it must be a non-empty list of IssueConfig objects. :: IssueExperiment(..., configs=[ IssueConfig("ff", ["--search", "eager_greedy(ff())"]), IssueConfig( "lama", [], driver_options=["--alias", "seq-sat-lama-2011"]), ]) If *path* is specified, it must be the path to where the experiment should be built (e.g. /home/john/experiments/issue123/exp01/). If omitted, the experiment path is derived automatically from the main script's filename. Example:: script = experiments/issue123/exp01.py --> path = experiments/issue123/data/issue123-exp01/ """ path = path or get_data_dir() FastDownwardExperiment.__init__(self, path=path, **kwargs) if (revisions and not configs) or (not revisions and configs): raise ValueError( "please provide either both or none of revisions and configs") for rev in revisions: for config in configs: self.add_algorithm( get_algo_nick(rev, config.nick), get_repo_base(), rev, config.component_options, build_options=config.build_options, driver_options=config.driver_options) self._revisions = revisions self._configs = configs @classmethod def _is_portfolio(cls, config_nick): return "fdss" in config_nick @classmethod def get_supported_attributes(cls, config_nick, attributes): if cls._is_portfolio(config_nick): return [attr for attr in attributes if attr in cls.PORTFOLIO_ATTRIBUTES] return attributes def add_absolute_report_step(self, **kwargs): """Add step that makes an absolute report. Absolute reports are useful for experiments that don't compare revisions. The report is written to the experiment evaluation directory. All *kwargs* will be passed to the AbsoluteReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_absolute_report_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) report = AbsoluteReport(**kwargs) outfile = os.path.join( self.eval_dir, get_experiment_name() + "." + report.output_format) self.add_report(report, outfile=outfile) self.add_step( 'publish-absolute-report', subprocess.call, ['publish', outfile]) def add_comparison_table_step(self, **kwargs): """Add a step that makes pairwise revision comparisons. Create comparative reports for all pairs of Fast Downward revisions. Each report pairs up the runs of the same config and lists the two absolute attribute values and their difference for all attributes in kwargs["attributes"]. All *kwargs* will be passed to the CompareConfigsReport class. If the keyword argument *attributes* is not specified, a default list of attributes is used. :: exp.add_comparison_table_step(attributes=["coverage"]) """ kwargs.setdefault("attributes", self.DEFAULT_TABLE_ATTRIBUTES) def make_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): compared_configs = [] for config in self._configs: config_nick = config.nick compared_configs.append( ("%s-%s" % (rev1, config_nick), "%s-%s" % (rev2, config_nick), "Diff (%s)" % config_nick)) report = ComparativeReport(compared_configs, **kwargs) outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.%s" % ( self.name, rev1, rev2, report.output_format)) report(self.eval_dir, outfile) def publish_comparison_tables(): for rev1, rev2 in itertools.combinations(self._revisions, 2): outfile = os.path.join( self.eval_dir, "%s-%s-%s-compare.html" % (self.name, rev1, rev2)) subprocess.call(["publish", outfile]) self.add_step("make-comparison-tables", make_comparison_tables) self.add_step( "publish-comparison-tables", publish_comparison_tables) def add_scatter_plot_step(self, relative=False, attributes=None, additional=[]): """Add step creating (relative) scatter plots for all revision pairs. Create a scatter plot for each combination of attribute, configuration and revisions pair. If *attributes* is not specified, a list of common scatter plot attributes is used. For portfolios all attributes except "cost", "coverage" and "plan_length" will be ignored. :: exp.add_scatter_plot_step(attributes=["expansions"]) """ if relative: scatter_dir = os.path.join(self.eval_dir, "scatter-relative") step_name = "make-relative-scatter-plots" else: scatter_dir = os.path.join(self.eval_dir, "scatter-absolute") step_name = "make-absolute-scatter-plots" if attributes is None: attributes = self.DEFAULT_SCATTER_PLOT_ATTRIBUTES def make_scatter_plot(config_nick, rev1, rev2, attribute, config_nick2=None): name = "-".join([self.name, rev1, rev2, attribute, config_nick]) if config_nick2 is not None: name += "-" + config_nick2 print("Make scatter plot for", name) algo1 = get_algo_nick(rev1, config_nick) algo2 = get_algo_nick(rev2, config_nick if config_nick2 is None else config_nick2) report = ScatterPlotReport( filter_algorithm=[algo1, algo2], attributes=[attribute], relative=relative, get_category=lambda run1, run2: run1["domain"]) report( self.eval_dir, os.path.join(scatter_dir, rev1 + "-" + rev2, name)) def make_scatter_plots(): for config in self._configs: for rev1, rev2 in itertools.combinations(self._revisions, 2): for attribute in self.get_supported_attributes( config.nick, attributes): make_scatter_plot(config.nick, rev1, rev2, attribute) for nick1, nick2, rev1, rev2, attribute in additional: make_scatter_plot(nick1, rev1, rev2, attribute, config_nick2=nick2) self.add_step(step_name, lambda: make_scatter_plots)
14,952
Python
36.855696
94
0.618312
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue960/v1.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue960-base", "issue960-v1"] CONFIGS = [ IssueConfig("opcount-seq-lmcut-cplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=cplex))"]), IssueConfig("diverse-potentials-cplex", ["--search", "astar(diverse_potentials(lpsolver=cplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-cplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=cplex))"]), IssueConfig("opcount-seq-lmcut-soplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=soplex))"]), IssueConfig("diverse-potentials-soplex", ["--search", "astar(diverse_potentials(lpsolver=soplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-soplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=soplex))"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"]) exp.run_steps()
2,167
Python
37.714285
156
0.734656
makolon/hsr_isaac_tamp/hsr_tamp/downward/experiments/issue960/v3.py
#! /usr/bin/env python3 import itertools import os from lab.environments import LocalEnvironment, BaselSlurmEnvironment from downward.reports.compare import ComparativeReport import common_setup from common_setup import IssueConfig, IssueExperiment DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPT_NAME = os.path.splitext(os.path.basename(__file__))[0] BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue960-base", "issue960-v3"] CONFIGS = [ IssueConfig("opcount-seq-lmcut-cplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=cplex))"]), IssueConfig("diverse-potentials-cplex", ["--search", "astar(diverse_potentials(lpsolver=cplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-cplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=cplex))"]), IssueConfig("opcount-seq-lmcut-soplex", ["--search", "astar(operatorcounting([state_equation_constraints(), lmcut_constraints()], lpsolver=soplex))"]), IssueConfig("diverse-potentials-soplex", ["--search", "astar(diverse_potentials(lpsolver=soplex,random_seed=1729))"]), IssueConfig("diverse-potentials-soplex-copy", ["--search", "astar(diverse_potentials(lpsolver=soplex,random_seed=1729))"]), IssueConfig("optimal-lmcount-soplex", ["--search", "astar(lmcount(lm_merged([lm_rhw(),lm_hm(m=1)]), admissible=true, optimal=true, lpsolver=soplex))"]), ] SUITE = common_setup.DEFAULT_OPTIMAL_SUITE ENVIRONMENT = BaselSlurmEnvironment( partition="infai_2", email="[email protected]", export=["PATH", "DOWNWARD_BENCHMARKS"]) if common_setup.is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=3) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_parser(exp.EXITCODE_PARSER) exp.add_parser(exp.SINGLE_SEARCH_PARSER) exp.add_parser(exp.PLANNER_PARSER) exp.add_step('build', exp.build) exp.add_step('start', exp.start_runs) exp.add_fetcher(name='fetch') #exp.add_absolute_report_step() exp.add_comparison_table_step() exp.add_scatter_plot_step(relative=True, attributes=["total_time", "memory"], additional=[ ("diverse-potentials-soplex", "diverse-potentials-soplex-copy", "issue960-base", "issue960-base", "memory"), ("diverse-potentials-soplex", "diverse-potentials-soplex-copy", "issue960-base", "issue960-base", "total_time")]) exp.run_steps()
2,552
Python
41.549999
156
0.728448