file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/algos_tf14/models.py
import tensorflow as tf import numpy as np import tensorflow_probability as tfp from rl_games.algos_tf14 import networks tfd = tfp.distributions def entry_stop_gradients(target, mask): mask_h = tf.abs(mask-1) return tf.stop_gradient(mask_h * target) + mask * target class BaseModel(object): def is_rnn(self): return False class ModelA2C(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=False, is_train=is_train,reuse=reuse) #if action_mask_ph is not None: #masks = tf.layers.dense(tf.to_float(action_mask_ph), actions_num, activation=tf.nn.elu) #logits = masks + logits #logits = entry_stop_gradients(logits, tf.to_float(action_mask_ph)) probs = tf.nn.softmax(logits) # Gumbel Softmax if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=probs) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.stop_gradient(one_hot_actions)) return neglogp, value, action, entropy, logits else: prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy class ModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mu, sigma, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train = is_train, reuse=reuse) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma class ModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mean, logstd, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train=True, reuse=reuse) std = tf.exp(logstd) norm_dist = tfd.Normal(mean, std) action = mean + std * tf.random_normal(tf.shape(mean)) #action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph is None: neglogp = self.neglogp(action, mean, std, logstd) return neglogp, value, action, entropy, mean, std prev_neglogp = self.neglogp(prev_actions_ph, mean, std, logstd) return prev_neglogp, value, action, entropy, mean, std def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) class LSTMModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, logstd, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) std = tf.exp(logstd) action = mu + std * tf.random_normal(tf.shape(mu)) norm_dist = tfd.Normal(mu, std) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, var, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) sigma = tf.sqrt(var) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2C(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=False, is_train=is_train, reuse=reuse) if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.nn.softmax(logits)) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=one_hot_actions) return neglogp, value, action, entropy, states_ph, masks_ph, lstm_state, initial_state, logits prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy, states_ph, masks_ph, lstm_state, initial_state class AtariDQN(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] ''' TODO: fix is_train ''' is_train = name == 'agent' return self.network(name=name, inputs=inputs, actions_num=actions_num, is_train=is_train, reuse=reuse)
10,090
Python
40.356557
167
0.599405
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/algos_tf14/model_builder.py
from rl_games.common import object_factory import rl_games.algos_tf14 from rl_games.algos_tf14 import network_builder from rl_games.algos_tf14 import models class ModelBuilder: def __init__(self): self.model_factory = object_factory.ObjectFactory() self.model_factory.register_builder('discrete_a2c', lambda network, **kwargs : models.ModelA2C(network)) self.model_factory.register_builder('discrete_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2C(network)) self.model_factory.register_builder('continuous_a2c', lambda network, **kwargs : models.ModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_logstd', lambda network, **kwargs : models.ModelA2CContinuousLogStd(network)) self.model_factory.register_builder('continuous_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_lstm_logstd', lambda network, **kwargs : models.LSTMModelA2CContinuousLogStd(network)) self.model_factory.register_builder('dqn', lambda network, **kwargs : models.AtariDQN(network)) self.network_factory = object_factory.ObjectFactory() self.network_factory.register_builder('actor_critic', lambda **kwargs : network_builder.A2CBuilder()) self.network_factory.register_builder('dqn', lambda **kwargs : network_builder.DQNBuilder()) def load(self, params): self.model_name = params['model']['name'] self.network_name = params['network']['name'] network = self.network_factory.create(self.network_name) network.load(params['network']) model = self.model_factory.create(self.model_name, network=network) return model
1,761
Python
49.342856
146
0.721181
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/algos_tf14/network_builder.py
import tensorflow as tf import numpy as np from rl_games.algos_tf14 import networks from rl_games.common import object_factory def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer class NetworkBuilder: def __init__(self, **kwargs): self.activations_factory = object_factory.ObjectFactory() self.activations_factory.register_builder('relu', lambda **kwargs : tf.nn.relu) self.activations_factory.register_builder('tanh', lambda **kwargs : tf.nn.tanh) self.activations_factory.register_builder('sigmoid', lambda **kwargs : tf.nn.sigmoid) self.activations_factory.register_builder('elu', lambda **kwargs : tf.nn.elu) self.activations_factory.register_builder('selu', lambda **kwargs : tf.nn.selu) self.activations_factory.register_builder('softplus', lambda **kwargs : tf.nn.softplus) self.activations_factory.register_builder('None', lambda **kwargs : None) self.init_factory = object_factory.ObjectFactory() self.init_factory.register_builder('normc_initializer', lambda **kwargs : normc_initializer(**kwargs)) self.init_factory.register_builder('const_initializer', lambda **kwargs : tf.constant_initializer(**kwargs)) self.init_factory.register_builder('orthogonal_initializer', lambda **kwargs : tf.orthogonal_initializer(**kwargs)) self.init_factory.register_builder('glorot_normal_initializer', lambda **kwargs : tf.glorot_normal_initializer(**kwargs)) self.init_factory.register_builder('glorot_uniform_initializer', lambda **kwargs : tf.glorot_uniform_initializer(**kwargs)) self.init_factory.register_builder('variance_scaling_initializer', lambda **kwargs : tf.variance_scaling_initializer(**kwargs)) self.init_factory.register_builder('random_uniform_initializer', lambda **kwargs : tf.random_uniform_initializer(**kwargs)) self.init_factory.register_builder('None', lambda **kwargs : None) self.regularizer_factory = object_factory.ObjectFactory() self.regularizer_factory.register_builder('l1_regularizer', lambda **kwargs : tf.contrib.layers.l1_regularizer(**kwargs)) self.regularizer_factory.register_builder('l2_regularizer', lambda **kwargs : tf.contrib.layers.l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('l1l2_regularizer', lambda **kwargs : tf.contrib.layers.l1l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('None', lambda **kwargs : None) def load(self, params): pass def build(self, name, **kwargs): pass def __call__(self, name, **kwargs): return self.build(name, **kwargs) def _noisy_dense(self, inputs, units, activation, kernel_initializer, kernel_regularizer, name): return networks.noisy_dense(inputs, units, name, True, activation) def _build_mlp(self, name, input, units, activation, initializer, regularizer, norm_func_name = None, dense_func = tf.layers.dense, is_train=True): out = input ind = 0 for unit in units: ind += 1 out = dense_func(out, units=unit, activation=self.activations_factory.create(activation), kernel_initializer = self.init_factory.create(**initializer), kernel_regularizer = self.regularizer_factory.create(**regularizer), #bias_initializer=tf.random_uniform_initializer(-0.1, 0.1), name=name + str(ind)) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out def _build_lstm(self, name, input, units, batch_num, games_num): dones_ph = tf.placeholder(tf.float32, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, input, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm2(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) hidden = tf.concat((inputs[0], inputs[1]), axis=1) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, hidden, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm_sep(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num], name='lstm_masks') states_ph = tf.placeholder(tf.float32, [games_num, 4*units], name='lstm_states') statesa, statesc = tf.split(states_ph, 2, axis=1) a_out, lstm_statea, initial_statea = networks.openai_lstm(name +'a', inputs[0], dones_ph=dones_ph, states_ph=statesa, units=units, env_num=games_num, batch_num=batch_num) c_out, lstm_statec, initial_statec = networks.openai_lstm(name + 'c', inputs[1], dones_ph=dones_ph, states_ph=statesc, units=units, env_num=games_num, batch_num=batch_num) lstm_state = tf.concat([lstm_statea, lstm_statec], axis=1) initial_state = np.concatenate([initial_statea, initial_statec], axis=1) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return a_out, c_out, lstm_state, initial_state, dones_ph, states_ph def _build_conv(self, ctype, **kwargs): print('conv_name:', ctype) if ctype == 'conv2d': return self._build_cnn(**kwargs) if ctype == 'conv1d': return self._build_cnn1d(**kwargs) def _build_cnn(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 for conv in convs: print(out.shape.as_list()) ind += 1 config = conv.copy() config['filters'] = conv['filters'] config['padding'] = conv['padding'] config['kernel_size'] = [conv['kernel_size']] * 2 config['strides'] = [conv['strides']] * 2 config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) out = tf.layers.conv2d(inputs=out, **config) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, name='bn_'+ config['name'], training=is_train) return out def _build_cnn1d(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 print('_build_cnn1d') for conv in convs: ind += 1 config = conv.copy() config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) #config['bias_initializer'] = tf.random_uniform_initializer, # bias_initializer=tf.random_uniform_initializer(-0.1, 0.1) out = tf.layers.conv1d(inputs=out, **config) print('shapes of layer_' + str(ind), str(out.get_shape().as_list())) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out class A2CBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.separate = params['separate'] self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_lstm = 'lstm' in params if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] if self.has_lstm: self.lstm_units = params['lstm']['units'] self.concated = params['lstm']['concated'] if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') batch_num = kwargs.pop('batch_num', 1) games_num = kwargs.pop('games_num', 1) is_train = kwargs.pop('is_train', True) with tf.variable_scope(name, reuse=reuse): actor_input = critic_input = input if self.has_cnn: cnn_args = { 'name' :'actor_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } actor_input = self._build_conv(**cnn_args) actor_input = tf.contrib.layers.flatten(actor_input) critic_input = actor_input if self.separate: cnn_args['name'] = 'critic_cnn' critic_input = self._build_conv( **cnn_args) critic_input = tf.contrib.layers.flatten(critic_input) mlp_args = { 'name' :'actor_fc', 'input' : actor_input, 'units' :self.units, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train } out_actor = self._build_mlp(**mlp_args) if self.separate: mlp_args['name'] = 'critic_fc' mlp_args['input'] = critic_input out_critic = self._build_mlp(**mlp_args) if self.has_lstm: if self.concated: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm2('lstm', [out_actor, out_critic], self.lstm_units, batch_num, games_num) out_critic = out_actor else: out_actor, out_critic, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm_sep('lstm_', [out_actor, out_critic], self.lstm_units, batch_num, games_num) else: if self.has_lstm: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm('lstm', out_actor, self.lstm_units, batch_num, games_num) out_critic = out_actor value = tf.layers.dense(out_critic, units = 1, kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.value_activation), name='value') if self.is_continuous: mu = tf.layers.dense(out_actor, units = actions_num, activation=self.activations_factory.create(self.space_config['mu_activation']), kernel_initializer = self.init_factory.create(**self.space_config['mu_init']), name='mu') if self.space_config['fixed_sigma']: sigma_out = tf.get_variable(name='sigma_out', shape=(actions_num), initializer=self.init_factory.create(**self.space_config['sigma_init']), trainable=True) else: sigma_out = tf.layers.dense(out_actor, units = actions_num, kernel_initializer=self.init_factory.create(**self.space_config['sigma_init']), activation=self.activations_factory.create(self.space_config['sigma_activation']), name='sigma_out') if self.has_lstm: return mu, mu * 0 + sigma_out, value, states_ph, dones_ph, lstm_state, initial_state return mu, mu * 0 + sigma_out, value if self.is_discrete: logits = tf.layers.dense(inputs=out_actor, units=actions_num, name='logits', kernel_initializer = self.init_factory.create(**self.initializer)) if self.has_lstm: return logits, value, states_ph, dones_ph, lstm_state, initial_state return logits, value class DQNBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_dueling = params['dueling'] self.atoms = params['atoms'] self.is_noisy = params['noisy'] self.normalization = params.get('normalization', None) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') is_train = kwargs.pop('is_train', True) if self.is_noisy: dense_layer = self._noisy_dense else: dense_layer = tf.layers.dense with tf.variable_scope(name, reuse=reuse): out = input if self.has_cnn: cnn_args = { 'name' :'dqn_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } out = self._build_conv(**cnn_args) out = tf.contrib.layers.flatten(out) mlp_args = { 'name' :'dqn_mlp', 'input' : out, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train, 'dense_func' : dense_layer } if self.is_dueling: if len(self.units) > 1: mlp_args['units'] = self.units[:-1] out = self._build_mlp(**mlp_args) hidden_value = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_val') hidden_advantage = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_adv') value = dense_layer(inputs=hidden_value, units=self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), activation=tf.identity, kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='value') advantage = dense_layer(inputs=hidden_advantage, units= actions_num * self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='advantage') advantage = tf.reshape(advantage, shape = [-1, actions_num, self.atoms]) value = tf.reshape(value, shape = [-1, 1, self.atoms]) q_values = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) else: mlp_args['units'] = self.units out = self._build_mlp('dqn_mlp', out, self.units, self.activation, self.initializer, self.regularizer) q_values = dense_layer(inputs=out, units=actions_num *self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='q_vals') q_values = tf.reshape(q_values, shape = [-1, actions_num, self.atoms]) if self.atoms == 1: return tf.squeeze(q_values) else: return q_values
18,263
Python
51.034188
301
0.592345
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/algos_tf14/a2c_continuous.py
from rl_games.common import tr_helpers, vecenv from rl_games.algos_tf14 import networks from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque, OrderedDict from tensorboardX import SummaryWriter import gym import ray from datetime import datetime def swap_and_flatten01(arr): s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) #(-1, 1) -> (low, high) def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action #(horizon_length, actions_num) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = np.log(p0_sigma/p1_sigma + 1e-5) c2 = (np.square(p0_sigma) + np.square(p1_mu - p0_mu))/(2.0 *(np.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = np.mean(np.sum(kl, axis = -1)) # returning mean between all steps of sum between all actions return kl def policy_kl_tf(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = tf.log(p1_sigma/p0_sigma + 1e-5) c2 = (tf.square(p0_sigma) + tf.square(p1_mu - p0_mu))/(2.0 * (tf.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = tf.reduce_mean(tf.reduce_sum(kl, axis=-1)) # returning mean between all steps of sum between all actions return kl class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): self.name = base_name self.actions_low = action_space.low self.actions_high = action_space.high self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.horizon_length = config['horizon_length'] self.normalize_advantage = config['normalize_advantage'] self.config = config self.state_shape = observation_space.shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.normalize_input = self.config['normalize_input'] self.seq_len = self.config['seq_length'] self.dones = np.asarray([False]*self.num_actors, dtype=np.bool) self.current_rewards = np.asarray([0]*self.num_actors, dtype=np.float32) self.current_lengths = np.asarray([0]*self.num_actors, dtype=np.float32) self.game_rewards = deque([], maxlen=100) self.game_lengths = deque([], maxlen=100) self.obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'obs') self.target_obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'target_obs') self.actions_num = action_space.shape[0] self.actions_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'actions') self.old_mu_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_mu_ph') self.old_sigma_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_sigma_ph') self.old_neglogp_actions_ph = tf.placeholder('float32', (None, ), name = 'old_logpactions') self.rewards_ph = tf.placeholder('float32', (None,), name = 'rewards') self.old_values_ph = tf.placeholder('float32', (None,), name = 'old_values') self.advantages_ph = tf.placeholder('float32', (None,), name = 'advantages') self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.bounds_loss_coef = config.get('bounds_loss_coef', None) if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], end_learning_rate=0.001, power=config.get('decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], decay_rate = config['decay_rate']) self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = observation_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize(self.input_target_obs, train=False) games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.config['minibatch_size'], 'games_num' : games_num, 'actions_num' : self.actions_num, 'prev_actions_ph' : self.actions_ph, } self.run_dict = { 'name' : 'agent', 'inputs' : self.input_target_obs, 'batch_num' : self.num_actors, 'games_num' : self.num_actors, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, } self.states = None if self.network.is_rnn(): self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state = self.network(self.run_dict, reuse=True) self.states = self.target_initial_state else: self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma = self.network(self.run_dict, reuse=True) curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_neglogp_actions_ph - self.neglogp_actions) self.prob_ratio = tf.clip_by_value(self.prob_ratio, 0.0, 16.0) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply(self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1.- curr_e_clip, 1.+ curr_e_clip)) self.actor_loss = tf.reduce_mean(tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped)) else: self.actor_loss = tf.reduce_mean(self.neglogp_actions * self.advantages_ph) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value(tf.squeeze(self.state_values) - self.old_values_ph, -curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.reduce_mean(tf.maximum(self.c_loss, self.c_loss_clipped)) else: self.critic_loss = tf.reduce_mean(self.c_loss) self._calc_kl_dist() self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config['entropy_coef'] * self.entropy self._apply_bound_loss() self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def _calc_kl_dist(self): self.kl_dist = policy_kl_tf(self.mu, self.sigma, self.old_mu_ph, self.old_sigma_ph) if self.is_adaptive_lr: self.current_lr = tf.where(self.kl_dist > (2.0 * self.kl_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where(self.kl_dist < (0.5 * self.kl_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) def _apply_bound_loss(self): if self.bounds_loss_coef: soft_bound = 1.1 mu_loss_high = tf.square(tf.maximum(0.0, self.mu - soft_bound)) mu_loss_low = tf.square(tf.maximum(0.0, -soft_bound - self.mu)) self.bounds_loss = tf.reduce_sum(mu_loss_high + mu_loss_low, axis=1) self.loss += self.bounds_loss * self.bounds_loss_coef else: self.bounds_loss = None def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [self.target_action, self.target_state_values, self.target_neglogp, self.target_mu, self.target_sigma] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.target_obs_ph : obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run([self.target_state_values], {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return self.sess.run([self.target_state_values], {self.target_obs_ph : obs}) def play_steps(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs, mb_mus, mb_sigmas = [],[],[],[],[],[],[],[] mb_states = [] epinfos = [] # For n in range number of steps for _ in range(self.horizon_length): if self.network.is_rnn(): mb_states.append(self.states) actions, values, neglogpacs, mu, sigma, self.states = self.get_action_values(self.obs) #actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) mb_mus.append(mu) mb_sigmas.append(sigma) self.obs[:], rewards, self.dones, infos = self.vec_env.step(rescale_actions(self.actions_low, self.actions_high, np.clip(actions, -1.0, 1.0))) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done in zip(self.current_rewards, self.current_lengths, self.dones): if done: self.game_rewards.append(reward) self.game_lengths.append(length) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_mus = np.asarray(mb_mus, dtype=np.float32) mb_sigmas = np.asarray(mb_sigmas, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas, mb_states )), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): max_epochs = self.config.get('max_epochs', 1e6) self.obs = self.vec_env.reset() batch_size = self.horizon_length * self.num_actors * self.num_agents minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] self.last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size obses, returns, dones, actions, values, neglogpacs, mus, sigmas, lstm_states, _ = self.play_steps() advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape(total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_neglogp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.old_mu_ph] = mus[mbatch] dict[self.old_sigma_ph] = sigmas[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[mb_indexes] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[mbatch] = cmu sigmas[mbatch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] mus = mus[permutation] sigmas = sigmas[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = {self.obs_ph: obses[batch], self.actions_ph : actions[batch], self.rewards_ph : returns[batch], self.advantages_ph : advantages[batch], self.old_neglogp_actions_ph : neglogpacs[batch], self.old_values_ph : values[batch]} dict[self.old_mu_ph] = mus[batch] dict[self.old_sigma_ph] = sigmas[batch] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[batch] = cmu sigmas[batch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if self.rank == 0: scaled_time = sum_time # self.num_agents * scaled_play_time = play_time # self.num_agents * if self.print_stats: fps_step = batch_size / scaled_play_time fps_total = batch_size / scaled_time print(f'fps step: {fps_step:.1f} fps total: {fps_total:.1f}') # performance self.writer.add_scalar('performance/total_fps', batch_size / sum_time, frame) self.writer.add_scalar('performance/step_fps', batch_size / play_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('performance/update_time', update_time, frame) # losses self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', np.mean(b_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) # info self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) self.writer.add_scalar('rewards/frame', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/frame', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.name) if self.last_mean_rewards > self.config['score_to_win']: self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num if epoch_num > max_epochs: print('MAX EPOCHS NUM!') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num update_time = 0
24,499
Python
48.295775
253
0.561982
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_pendulum_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: glorot_normal_initializer gain: 0.01 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: glorot_normal_initializer gain: 2 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-3 name: pendulum score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: Pendulum-v0 ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.016 normalize_input: False bounds_loss_coef: 0
1,266
YAML
18.796875
41
0.559242
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_lunar.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: glorot_normal_initializer #scal: 0.01 sigma_init: name: const_initializer value: 0 fixed_sigma: True mlp: units: [64, 64] activation: relu initializer: name: glorot_normal_initializer #gain: 2 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: LunarLanderContinuous-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0
1,271
YAML
18.875
41
0.558615
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_cartpole_masked_velocity_rnn.yaml
#Cartpole without velocities lstm test params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64, 64] activation: relu normalization: 'layer_norm' norm_only_first_layer: True initializer: name: default regularizer: name: None rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False concat_input: True layer_norm: True config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: CartPoleMaskedVelocity-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 4
1,117
YAML
17.327869
39
0.598926
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppg_walker.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_ppg score_to_win: 290 grad_norm: 0.5 entropy_coef: 0 #-0.005 truncate_grads: False env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 1 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.004 normalize_input: False bounds_loss_coef: 0.0005 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 1024 mini_epochs: 6 player: render: True determenistic: True games_num: 200
1,536
YAML
20.347222
56
0.558594
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_continuous.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: BipedalWalkerHardcore-v3
1,271
YAML
18.272727
39
0.552321
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128,64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: 'nn/humanoid_torch.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'humanoid_torch' score_to_win : 20000 grad_norm : 0.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 32 minibatch_size : 4096 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : False normalize_value : True bounds_loss_coef: 0.000 max_epochs: 12000
1,468
YAML
18.851351
39
0.547684
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_reacher.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128] activation: relu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn1: name: lstm units: 64 layers: 1 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: ReacherPyBulletEnv-v0 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.008 normalize_input: True seq_length: 16 bounds_loss_coef: 0.00 max_epochs: 10000 weight_decay: 0.0001 player: render: True games_num: 200 experiment_config1: start_exp: 0 start_sub_exp: 0 experiments: - exp: - path: config.bounds_loss_coef value: [0.5]
1,593
YAML
18.925
56
0.549278
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_walker.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 256 mini_epochs: 4 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.005 normalize_input: True bounds_loss_coef: 0.00 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 player: render: True determenistic: True games_num: 200
1,408
YAML
19.720588
56
0.555398
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_pendulum.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.01 sigma_init: name: const_initializer value: 0 fixed_sigma: False mlp: units: [32, 32] activation: elu initializer: name: default scale: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: Pendulum-v0 ppo: True e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0
1,223
YAML
18.125
39
0.546198
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_revenge_rnd.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False value_shape: 2 space: discrete: cnn: type: conv2d activation: elu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 512] activation: elu regularizer: name: 'None' initializer: name: default config: reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.999 tau: 0.9 learning_rate: 1e-4 name: atari score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.1 clip_value: True num_actors: 32 horizon_length: 512 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: name: MontezumaRevengeNoFrameskip-v4 rnd_config: scale_value: 1.0 episodic: True episode_length: 256 gamma: 0.99 mini_epochs: 2 minibatch_size: 1024 learning_rate: 1e-4 network: name: rnd_curiosity cnn: type: conv2d activation: elu initializer: name: default scale: 2 regularizer: name: 'None' rnd: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 net: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: rnd: units: [512,512, 512] net: units: [512] activation: elu regularizer: name: 'None' initializer: name: default scale: 2
3,072
YAML
21.762963
42
0.427083
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.01 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: lstm units: 64 layers: 1 before_mlp: False load_checkpoint: True load_path: 'nn/humanoid_torch_rnn.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 8e-4 name : 'humanoid_torch_rnn' score_to_win : 20000 grad_norm : 5 entropy_coef : 0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length: 16 bounds_loss_coef: 0.000 weight_decay: 0.001 max_epochs: 6000
1,608
YAML
18.621951
40
0.54291
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_cartpole.yaml
#Cartpole MLP params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [32, 32] activation: relu initializer: name: default regularizer: name: None config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 1.0 entropy_coef: 0.01 truncate_grads: True env_name: CartPole-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 32 minibatch_size: 64 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False device: 'cuda:0'
878
YAML
16.235294
29
0.592255
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_ant_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [128, 64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 16 minibatch_size : 4096 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True normalize_value : True bounds_loss_coef: 0.0001
1,425
YAML
18.27027
39
0.53614
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_continuous_lstm.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_lstm_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: normc_initializer std: 0.01 sigma_init: name: const_initializer value: 0.0 fixed_sigma: True mlp: units: [256, 256, 128] activation: relu initializer: name: normc_initializer std: 1 regularizer: name: 'None' lstm: units: 128 concated: False load_checkpoint: False load_path: 'nn/runBipedalWalkerHardcore-v2' config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: walker_lstm score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: BipedalWalkerHardcore-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.5 max_epochs: 5000
1,334
YAML
19.227272
45
0.561469
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/carracing_ppo.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd load_checkpoint: False load_path: 'nn/runCarRacing-v0' network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: racing score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: CarRacing-v0 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True #lr_schedule: adaptive # kl_threshold: 0.008 bounds_loss_coef: 0.001 # max_epochs: 5000 player: render: True deterministic: True
1,684
YAML
18.593023
33
0.541568
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppg_walker_hardcore.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default load_checkpoint: True load_path: './nn/walker_hc_ppg.pth' config: reward_shaper: #min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_hc_ppg score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 #-0.005 truncate_grads: False env_name: BipedalWalkerHardcore-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 4096 minibatch_size: 8192 mini_epochs: 1 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.004 normalize_input: False bounds_loss_coef: 0.0005 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 1024 mini_epochs: 6 player: render: True determenistic: True games_num: 200
1,510
YAML
20.28169
41
0.559603
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/rainbow_dqn_breakout.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: 'nn/breakoutep=3638750.0rew=201.75' network: name: dqn dueling: True atoms: 51 noisy: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 gamma : 0.99 learning_rate : 0.0001 steps_per_epoch : 4 batch_size : 32 epsilon : 0.00 min_epsilon : 0.00 epsilon_decay_frames : 1000000 num_epochs_to_copy : 10000 name : 'breakout' env_name: BreakoutNoFrameskip-v4 is_double : True score_to_win : 600 num_steps_fill_buffer : 100000 replay_buffer_type : 'prioritized' replay_buffer_size : 1000000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 1000000 max_beta : 1 horizon_length : 3 episodes_to_log : 100 lives_reward : 5 atoms_num : 51 v_min : -10 v_max : 10 games_to_track : 100 lr_schedule : None max_epochs: 10000000
1,525
YAML
19.346666
48
0.550164
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_smac.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 6h_vs_8z frames: 2 random_invalid_step: False
979
YAML
17.148148
32
0.581205
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_multiwalker.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: relu initializer: name: default load_checkpoint: False load_path: './nn/multiwalker.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 1e-4 name: multiwalker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: multiwalker_env ppo: True e_clip: 0.2 use_experimental_cv: False clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 3072 #768 #3072 #1536 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: None kl_threshold: 0.008 normalize_input: True normalize_value: True bounds_loss_coef: 0.0001 max_epochs: 10000 weight_decay: 0.0000 player: render: True games_num: 200 env_config: central_value: True use_prev_actions: True apply_agent_ids: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True truncate_grads: False network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: elu initializer: name: default
1,881
YAML
20.632184
43
0.549176
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_walker_hardcore.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' load_checkpoint: False load_path: './nn/walker_hc.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_hc score_to_win: 300 grad_norm: 1.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalkerHardcore-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 4096 minibatch_size: 8192 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: 'adaptive' #None # kl_threshold: 0.008 normalize_input: True seq_length: 4 bounds_loss_coef: 0.00 max_epochs: 100000 weight_decay: 0 player: render: False games_num: 200 determenistic: True
1,420
YAML
19.897059
41
0.554225
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: False mlp: units: [128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch_rnn' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0 weight_decay: 0.001 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 32 bounds_loss_coef: 0.000
1,580
YAML
18.280488
39
0.533544
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_smac_cnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/5m_vs_6m2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m_vs_6m2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 5m_vs_6m frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.64935
35
0.547619
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn_copy.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 128 layers: 1 before_mlp: True load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 128 minibatch_size : 4096 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 16 bounds_loss_coef: 0.0
1,509
YAML
18.113924
39
0.530152
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dqn.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: path network: name: dqn dueling: True atoms: 1 noisy: False cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 0.1 gamma : 0.99 learning_rate : 0.0005 steps_per_epoch : 4 batch_size : 128 epsilon : 0.90 min_epsilon : 0.02 epsilon_decay_frames : 100000 num_epochs_to_copy : 10000 name : 'pong_dddqn_config1' env_name: PongNoFrameskip-v4 is_double : True score_to_win : 20.9 num_steps_fill_buffer : 10000 replay_buffer_type : 'normal' replay_buffer_size : 100000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 100000 max_beta : 1 horizon_length : 3 episodes_to_log : 10 lives_reward : 1 atoms_num : 1 games_to_track : 20 lr_schedule : polynom_decay max_epochs: 100000 experiment_config: start_exp: 0 start_sub_exp: 3 experiments: # - exp: # - path: config.learning_rate # value: [0.0005, 0.0002] - exp: - path: network.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237 - path: network.cnn.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237
2,195
YAML
20.742574
46
0.553531
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_lunar_continiuos_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64] activation: relu initializer: name: default scale: 2 rnn: name: 'lstm' units: 64 layers: 1 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-3 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: LunarLanderContinuous-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 schedule_type: standard normalize_input: True seq_length: 4 bounds_loss_coef: 0 player: render: True
1,276
YAML
17.779412
41
0.544671
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True
1,207
YAML
17.584615
33
0.589892
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64] #normalization: 'layer_norm' activation: elu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' units: 64 layers: 1 layer_norm: True config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_asymmetric score_to_win: 100000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 4 weight_decay: 0.0000 env_config: name: TestAsymmetricEnv-v0 wrapped_env_name: "LunarLander-v2" apply_mask: False use_central_value: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,707
YAML
18.632184
40
0.557704
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64, 64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_rnn_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: True player: games_num: 100 determenistic: True central_value_config1: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64,64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,898
YAML
18.989473
32
0.555848
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_discrete_multidiscrete_mhv.yaml
params: algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_mhv score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,223
YAML
17.830769
32
0.592805
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_ppo_walker_truncated_time.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/walker_truncated_step_1000.pth' config: name: walker_truncated_step_1000 reward_shaper: min_val: -1 scale_value: 0.1 normalize_input: True normalize_advantage: True normalize_value: True value_bootstrap: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 schedule_type: standard lr_schedule: adaptive kl_threshold: 0.005 score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 256 mini_epochs: 4 critic_coef: 2 bounds_loss_coef: 0.00 max_epochs: 10000 #weight_decay: 0.0001 env_config: steps_limit: 1000 player: render: True determenistic: True games_num: 200
1,426
YAML
17.776316
50
0.585554
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete_mhv.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn_md_mhv score_to_win: 0.99 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,362
YAML
17.671233
32
0.5837
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv_mops.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: testnet config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_multi_obs score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: False weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 save_frequency: 20 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_obs_space: True multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: testnet central_value: True mlp: units: [64,32] activation: relu initializer: name: default
1,461
YAML
19.885714
30
0.588638
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: discrete: mlp: units: [32] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 32 layers: 1 layer_norm: False before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,941
YAML
19.020618
33
0.55796
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False player: games_num: 100 determenistic: True
1,270
YAML
16.901408
32
0.577165
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/27m_vs_30m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 27m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 27m_vs_30m frames: 4 transpose: False random_invalid_step: False
1,459
YAML
18.466666
33
0.544894
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,040
YAML
17.263158
32
0.577885
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/last_3s_vs_5z_cvep=10001rew=9.585825.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,579
YAML
18.75
58
0.569981
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 256] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_separate reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 2 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: False reward_only_positive: False obs_last_action: True frames: 1 #flatten: False
1,108
YAML
18.120689
34
0.590253
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/8m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 env_config: name: 8m frames: 1 transpose: False random_invalid_step: False
1,061
YAML
17.631579
32
0.589067
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2c_vs_64zg.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zg_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2c_vs_64zg reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 512 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 2c_vs_64zg frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546958
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6zsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' config: name: 3s5z_vs_3s6z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: False random_invalid_step: False
1,600
YAML
19.265823
40
0.555
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [1024, 512] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 8 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,580
YAML
19.269231
34
0.567722
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 entropy_coef: 0.02 truncate_grads: True grad_norm: 10 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: True reward_only_positive: True obs_last_action: False apply_agent_ids: True player: render: False games_num: 200 n_game_life: 1 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: #normalization: layer_norm name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True #reward_negative_scale: 0.1
1,962
YAML
18.828283
34
0.553517
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,099
YAML
17.032787
32
0.579618
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True env_config: name: 3m frames: 1 transpose: False central_value: True reward_only_positive: True state_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale mlp: units: [256, 128] activation: relu initializer: #name: default name: default scale: 2 regularizer: name: 'None'
1,706
YAML
19.817073
63
0.559789
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,532
YAML
18.909091
34
0.567885
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,762
YAML
19.741176
63
0.565834
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_4z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_4z_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: sc2_fc reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 1536 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_4z frames: 1 random_invalid_step: False
1,036
YAML
17.192982
32
0.578185
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/MMM2_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default scale: 1.3 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 0 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1.3 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True env_config: name: MMM2 frames: 4 transpose: False # for pytorch transpose == not Transpose in tf random_invalid_step: False replay_save_freq: 100
1,531
YAML
18.896104
69
0.548661
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6zaa reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: True random_invalid_step: False
1,532
YAML
18.909091
34
0.550914
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 5m_vs_6m frames: 4 transpose: False random_invalid_step: False
1,455
YAML
18.413333
32
0.543643
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 before_mlp: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 256 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 32 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,120
YAML
17.683333
32
0.576786
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2s_vs_1c.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/2s_vs_1c_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
1,039
YAML
17.245614
32
0.578441
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/MMM2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/MMM_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True ignore_dead_batches : False seq_length: 4 env_config: name: MMM frames: 4 transpose: True random_invalid_step: False
1,500
YAML
18.493506
32
0.544667
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/8m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 8m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: False obs_last_action: True
1,581
YAML
18.292683
34
0.56673
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.001 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 8 env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,711
YAML
18.906977
34
0.549971
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_cnn_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 3m frames: 4 transpose: True random_invalid_step: True
1,523
YAML
17.814815
40
0.545634
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_sparse.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True value_shape: 2 #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 reward_sparse: True transpose: False random_invalid_step: False rnd_config: scale_value: 1 episodic: True episode_length: 128 gamma: 0.99 mini_epochs: 2 minibatch_size: 1536 learning_rate: 5e-4 network: name: rnd_curiosity mlp: rnd: units: [512, 256,128,64] net: units: [128, 64, 64] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,625
YAML
19.074074
38
0.536
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2m_vs_1z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
978
YAML
17.129629
32
0.580777
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 entropy_coef: 0.005 truncate_grads: True grad_norm: 1.5 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: False reward_only_positive: True obs_last_action: True apply_agent_ids: False player: render: False games_num: 200 n_game_life: 1 determenistic: True #reward_negative_scale: 0.1
1,365
YAML
18.239436
34
0.58022
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3s_vs_5z_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.005 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 4 env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,745
YAML
19.068965
34
0.553582
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/corridor_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: True random_invalid_step: False
1,511
YAML
18.636363
32
0.550629
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/10m_vs_11m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 10m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 10m_vs_11m frames: 14 transpose: False random_invalid_step: False
1,460
YAML
18.48
33
0.545205
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/corridor_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: corridor central_value: True reward_only_positive: False obs_last_action: True frames: 1 reward_negative_scale: 0.05 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,598
YAML
19.5
34
0.571339
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/27m_vs_30m_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 27m_vs_30m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 8 use_action_masks: True ignore_dead_batches : False #max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True env_config: name: 27m_vs_30m transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True apply_agent_ids: True
1,776
YAML
19.193182
32
0.556869
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2m_vs_1z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2m_vs_1z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2s_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
972
YAML
17.35849
32
0.583333
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,022
YAML
17.267857
32
0.588063
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zgsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: False random_invalid_step: False
1,542
YAML
18.782051
40
0.552529
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546296
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 4 transpose: True random_invalid_step: False
1,493
YAML
18.402597
32
0.545211
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False config: name: 6h_vs_8z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False
1,734
YAML
18.942529
34
0.553633
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 before_mlp: False config: name: 3s_vs_5z2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,093
YAML
17.542373
32
0.573651
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m_vs_6m_bias reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 5m_vs_6m frames: 4 transpose: True random_invalid_step: False
1,514
YAML
18.675324
32
0.548217
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/invaders_resnet.pth' network: name: resnet_actor_critic separate: False value_shape: 1 space: discrete: cnn: conv_depths: [16, 32, 32] activation: relu initializer: name: default regularizer: name: 'None' mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: default rnn: name: lstm units: 256 layers: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: invaders_resnet score_to_win: 100000 grad_norm: 1.5 entropy_coef: 0.001 truncate_grads: True env_name: 'atari_gym' #'openai_gym' #'PongNoFrameskip-v4' # ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.01 normalize_input: False seq_length: 4 max_epochs: 200000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' episode_life: False player: render: True games_num: 10 n_game_life: 1 determenistic: True
1,416
YAML
17.166666
63
0.565678
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pacman_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: #min_val: -1 #max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: pacman_ff_no_normalize score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 20000 env_config: skip: 4 name: 'MsPacmanNoFrameskip-v4' episode_life: True player: render: True games_num: 10 n_game_life: 3 determenistic: True render_sleep: 0.05
1,692
YAML
18.686046
39
0.543144
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_gopher.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: scale_value: 1 #min_val: -1 #max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: gopher_ff score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 50000 env_config: skip: 4 name: 'GopherNoFrameskip-v4' episode_life: False player: render: True games_num: 10 n_game_life: 1 determenistic: True render_sleep: 0.001
1,679
YAML
18.534884
39
0.540798
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/invader_lstm.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: lstm units: 256 layers: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 name: invader_lstm score_to_win: 9000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' player: render: True games_num: 10 n_game_life: 3 determenistic: True
1,740
YAML
18.131868
41
0.538506
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/invader.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 name: invader score_to_win: 9000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' player: render: True games_num: 10 n_game_life: 3 determenistic: True
1,672
YAML
18.229885
41
0.54067
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_breakout_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: lstm units: 256 layers: 1 #layer_norm: True config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: breakout_lstm score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: BreakoutNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 3 critic_coef: 1 lr_schedule: None # adaptive kl_threshold: 0.01 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 player: render: True games_num: 100 n_game_life: 5 determenistic: False
1,687
YAML
18.181818
39
0.540605
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pacman_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: before_mlp: False name: lstm units: 512 layers: 1 layer_norm: True config: reward_shaper: #min_val: -1 #max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: pacman_rnn score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 seq_len: 16 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 50000 env_config: skip: 4 name: 'MsPacmanNoFrameskip-v4' episode_life: True player: render: True games_num: 10 n_game_life: 3 determenistic: True render_sleep: 0.05
1,801
YAML
18.586956
39
0.53859
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppg_breakout_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: breakout_ppg score_to_win: 900 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 1 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 #lr_schedule: linear #schedule_entropy: True normalize_value: True normalize_input: False max_epochs: 20000 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 512 mini_epochs: 6 n_aux: 16 kl_coef: 1.0 env_config: skip: 4 name: 'BreakoutNoFrameskip-v4' episode_life: True player: render: True games_num: 200 n_game_life: 5 determenistic: False
1,747
YAML
18.640449
36
0.551231
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppg_pong.yaml
params: seed: 322 algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.995 tau: 0.9 learning_rate: 5e-4 name: pong_ppg score_to_win: 20.5 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: False num_actors: 24 horizon_length: 128 minibatch_size: 256 mini_epochs: 1 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_value: False normalize_input: False max_epochs: 1500 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 256 mini_epochs: 6 n_aux: 16 kl_coef: 1.0 player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,640
YAML
18.535714
39
0.545122
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_breakout_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: breakout_ppo score_to_win: 900 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 #lr_schedule: linear #schedule_entropy: True normalize_value: True normalize_input: False max_epochs: 3000 env_config: skip: 4 name: 'BreakoutNoFrameskip-v4' episode_life: True player: render: True games_num: 200 n_game_life: 5 determenistic: True
1,598
YAML
18.26506
36
0.553191
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pong.yaml
params: seed: 322 algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: PongNoFrameskip score_to_win: 20.0 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: False num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_value: True normalize_input: False max_epochs: 1500 player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,510
YAML
18.371795
39
0.550331
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pong_soft_aug.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: PongNoFrameskip_soft_aug score_to_win: 20 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_input: False max_epochs: 1500 features: soft_augmentation: aug_coef: 0.001 transform: name: 'default' player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,561
YAML
18.525
39
0.55221
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_slime_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/slime_pvp.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime_pvp2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 500 self_play_config: update_score: 1 games_to_check: 200 check_scores : False env_config: name: SlimeVolleyDiscrete-v0 #neg_scale: 1 #0.5 self_play: True config_path: 'rl_games/configs/ma/ppo_slime_self_play.yaml' player: render: True games_num: 200 n_game_life: 1 determenistic: True device_name: 'cpu'
1,294
YAML
18.328358
65
0.59119
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/connect4.pth' network: name: actor_critic separate: False normalization: batch_norm space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' config: name: connect4_3 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 8 env_config: name: connect_four_v0 self_play: True is_human: False random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play.yaml'
1,735
YAML
19.915662
68
0.563689
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_slime_v0.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: False ignore_dead_batches : False env_config: name: SlimeVolleyDiscrete-v0 player: render: True games_num: 200 n_game_life: 1 determenistic: True
1,093
YAML
16.645161
34
0.590119
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/connect4_rn.pth' network: name: connect4net blocks: 5 config: name: connect4_rn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 4 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 4 env_config: name: connect_four_v0 self_play: True is_human: True random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml'
1,052
YAML
19.25
75
0.613118
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid2.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 4 horizon_length: 4096 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.0 env_config: name: Humanoid2Run-v0 flat_observation: True
1,305
YAML
18.492537
39
0.549425
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/ppo_dm_control.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True value_shape: 2 space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.999 tau: 0.9 learning_rate: 1e-4 name: dm_control score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 2 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: True seq_length: 8 bounds_loss_coef: 0.001 env_config: name: AcrobotSwingup_sparse-v0 flat_observation: True rnd_config: scale_value: 4.0 exp_percent: 0.25 adv_coef: 0.5 gamma: 0.99 mini_epochs: 2 minibatch_size: 1024 learning_rate: 5e-4 network: name: rnd_curiosity mlp: rnd: units: [64,64,16] net: units: [16,16] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,835
YAML
19.4
39
0.510627
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/walker_run.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: walker score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: WalkerRun-v0 flat_observation: True
1,297
YAML
18.373134
39
0.547417
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/cartpole.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 16] activation: relu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: cartpole score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.0000 env_config: name: CartpoleBalance-v0 flat_observation: True
1,301
YAML
18.432836
39
0.550346
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run_rnd.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True value_shape: 2 space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: True seq_length: 8 bounds_loss_coef: 0.001 env_config: name: HumanoidRun-v0 flat_observation: True rnd_config: scale_value: 1.0 gamma: 0.99 mini_epochs: 2 minibatch_size: 4096 learning_rate: 5e-4 exp_percent: 0.25 adv_coef: 0.5 network: name: rnd_curiosity mlp: rnd: units: [256,128,32] net: units: [128,32] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,830
YAML
19.573033
39
0.512022
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: HumanoidRun-v0 flat_observation: True
1,307
YAML
18.522388
39
0.550115
KallPap/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run_conv1d.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: False cnn: type: conv1d activation: elu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 128 kernel_size: 2 strides: 1 padding: 0 mlp: units: [128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: humanoid_conv score_to_win: 15000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 8192 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: frames: 4 name: Humanoid2Run-v0 flat_observation: True
1,829
YAML
18.677419
39
0.515582