file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_walker_hardcore.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' load_checkpoint: False load_path: './nn/walker_hc.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_hc score_to_win: 300 grad_norm: 1.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalkerHardcore-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 4096 minibatch_size: 8192 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: 'adaptive' #None # kl_threshold: 0.008 normalize_input: True seq_length: 4 bounds_loss_coef: 0.00 max_epochs: 100000 weight_decay: 0 player: render: False games_num: 200 determenistic: True
1,420
YAML
19.897059
41
0.554225
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: False mlp: units: [128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch_rnn' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0 weight_decay: 0.001 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 32 bounds_loss_coef: 0.000
1,580
YAML
18.280488
39
0.533544
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_smac_cnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/5m_vs_6m2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m_vs_6m2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 5m_vs_6m frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.64935
35
0.547619
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_flex_ant_torch_rnn_copy.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: 'lstm' units: 128 layers: 1 before_mlp: True load_checkpoint: False load_path: 'nn/ant_torch.pth' config: reward_shaper: scale_value: 0.01 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'ant_torch' score_to_win : 20000 grad_norm : 2.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexAnt ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 128 minibatch_size : 4096 mini_epochs : 8 critic_coef : 2 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length : 16 bounds_loss_coef: 0.0
1,509
YAML
18.113924
39
0.530152
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dqn.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: path network: name: dqn dueling: True atoms: 1 noisy: False cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 0.1 gamma : 0.99 learning_rate : 0.0005 steps_per_epoch : 4 batch_size : 128 epsilon : 0.90 min_epsilon : 0.02 epsilon_decay_frames : 100000 num_epochs_to_copy : 10000 name : 'pong_dddqn_config1' env_name: PongNoFrameskip-v4 is_double : True score_to_win : 20.9 num_steps_fill_buffer : 10000 replay_buffer_type : 'normal' replay_buffer_size : 100000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 100000 max_beta : 1 horizon_length : 3 episodes_to_log : 10 lives_reward : 1 atoms_num : 1 games_to_track : 20 lr_schedule : polynom_decay max_epochs: 100000 experiment_config: start_exp: 0 start_sub_exp: 3 experiments: # - exp: # - path: config.learning_rate # value: [0.0005, 0.0002] - exp: - path: network.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237 - path: network.cnn.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237
2,195
YAML
20.742574
46
0.553531
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ppo_lunar_continiuos_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [64] activation: relu initializer: name: default scale: 2 rnn: name: 'lstm' units: 64 layers: 1 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-3 name: test score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: LunarLanderContinuous-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 schedule_type: standard normalize_input: True seq_length: 4 bounds_loss_coef: 0 player: render: True
1,276
YAML
17.779412
41
0.544671
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True
1,207
YAML
17.584615
33
0.589892
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64] #normalization: 'layer_norm' activation: elu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' units: 64 layers: 1 layer_norm: True config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_asymmetric score_to_win: 100000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 4 weight_decay: 0.0000 env_config: name: TestAsymmetricEnv-v0 wrapped_env_name: "LunarLander-v2" apply_mask: False use_central_value: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,707
YAML
18.632184
40
0.557704
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64, 64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: test_rnn_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: True player: games_num: 100 determenistic: True central_value_config1: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64,64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,898
YAML
18.989473
32
0.555848
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_discrete_multidiscrete_mhv.yaml
params: algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_mhv score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,223
YAML
17.830769
32
0.592805
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_ppo_walker_truncated_time.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/walker_truncated_step_1000.pth' config: name: walker_truncated_step_1000 reward_shaper: min_val: -1 scale_value: 0.1 normalize_input: True normalize_advantage: True normalize_value: True value_bootstrap: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 schedule_type: standard lr_schedule: adaptive kl_threshold: 0.005 score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 256 mini_epochs: 4 critic_coef: 2 bounds_loss_coef: 0.00 max_epochs: 10000 #weight_decay: 0.0001 env_config: steps_limit: 1000 player: render: True determenistic: True games_num: 200
1,426
YAML
17.776316
50
0.585554
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn_multidiscrete_mhv.yaml
params: seed: 322 algo: name: a2c_discrete model: name: multi_discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: multi_discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn_md_mhv score_to_win: 0.99 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False multi_discrete_space: True multi_head_value: True player: games_num: 100 determenistic: True
1,362
YAML
17.671233
32
0.5837
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv_mops.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: testnet config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md_multi_obs score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: False weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 save_frequency: 20 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: False min_dist: 2 max_dist: 8 use_central_value: True multi_obs_space: True multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: False truncate_grads: True grad_norm: 10 network: name: testnet central_value: True mlp: units: [64,32] activation: relu initializer: name: default
1,461
YAML
19.885714
30
0.588638
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_asymmetric_discrete_mhv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: discrete: mlp: units: [32] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 32 layers: 1 layer_norm: False before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True weight_decay: 0.0000 max_epochs: 10000 seq_length: 16 save_best_after: 10 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: name: actor_critic central_value: True mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 layer_norm: False before_mlp: False
1,941
YAML
19.020618
33
0.55796
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/test/test_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [64] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: 'lstm' #layer_norm: True units: 64 layers: 1 before_mlp: False config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_rnn score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: True apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: False player: games_num: 100 determenistic: True
1,270
YAML
16.901408
32
0.577165
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/27m_vs_30m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 27m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 27m_vs_30m frames: 4 transpose: False random_invalid_step: False
1,459
YAML
18.466666
33
0.544894
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,040
YAML
17.263158
32
0.577885
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/last_3s_vs_5z_cvep=10001rew=9.585825.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,579
YAML
18.75
58
0.569981
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 256] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_separate reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 2 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: False reward_only_positive: False obs_last_action: True frames: 1 #flatten: False
1,108
YAML
18.120689
34
0.590253
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/8m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 env_config: name: 8m frames: 1 transpose: False random_invalid_step: False
1,061
YAML
17.631579
32
0.589067
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2c_vs_64zg.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zg_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2c_vs_64zg reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 512 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 2c_vs_64zg frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546958
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6zsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' config: name: 3s5z_vs_3s6z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: False random_invalid_step: False
1,600
YAML
19.265823
40
0.555
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [1024, 512] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 8 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,580
YAML
19.269231
34
0.567722
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 entropy_coef: 0.02 truncate_grads: True grad_norm: 10 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: True reward_only_positive: True obs_last_action: False apply_agent_ids: True player: render: False games_num: 200 n_game_life: 1 determenistic: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 10 network: #normalization: layer_norm name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True #reward_negative_scale: 0.1
1,962
YAML
18.828283
34
0.553517
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,099
YAML
17.032787
32
0.579618
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True env_config: name: 3m frames: 1 transpose: False central_value: True reward_only_positive: True state_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale mlp: units: [256, 128] activation: relu initializer: #name: default name: default scale: 2 regularizer: name: 'None'
1,706
YAML
19.817073
63
0.559789
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,532
YAML
18.909091
34
0.567885
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_joint.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s_vs_5z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 24 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True max_epochs: 50000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: joint_obs_actions: embedding: False embedding_scale: 1 #(actions // embedding_scale) mlp_scale: 4 # (mlp from obs size) // mlp_out_scale name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True
1,762
YAML
19.741176
63
0.565834
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_4z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/3s_vs_4z_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: sc2_fc reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 1536 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 3s_vs_4z frames: 1 random_invalid_step: False
1,036
YAML
17.192982
32
0.578185
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/MMM2_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default scale: 1.3 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 0 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1.3 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True env_config: name: MMM2 frames: 4 transpose: False # for pytorch transpose == not Transpose in tf random_invalid_step: False replay_save_freq: 100
1,531
YAML
18.896104
69
0.548661
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s5z_vs_3s6z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c seed: 322 load_checkpoint: False load_path: 'nn/3s5z_vs_3s6z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3s5z_vs_3s6zaa reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3s5z_vs_3s6z frames: 4 transpose: True random_invalid_step: False
1,532
YAML
18.909091
34
0.550914
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 5m_vs_6m frames: 4 transpose: False random_invalid_step: False
1,455
YAML
18.413333
32
0.543643
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 64 layers: 1 before_mlp: False config: name: 3s_vs_5z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 256 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 32 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,120
YAML
17.683333
32
0.576786
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2s_vs_1c.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c_lstm load_checkpoint: False load_path: 'nn/2s_vs_1c_lstm' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' lstm: units: 128 concated: False config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
1,039
YAML
17.245614
32
0.578441
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/MMM2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/MMM_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: MMM2_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 64 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False use_action_masks: True ignore_dead_batches : False seq_length: 4 env_config: name: MMM frames: 4 transpose: True random_invalid_step: False
1,500
YAML
18.493506
32
0.544667
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/8m_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 8m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 4096 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256,128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' env_config: name: 8m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: False obs_last_action: True
1,581
YAML
18.292683
34
0.56673
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3m_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.001 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 8 env_config: name: 3m frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,711
YAML
18.906977
34
0.549971
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_cnn_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: glorot_uniform_initializer gain: 1 regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: True e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 3m frames: 4 transpose: True random_invalid_step: True
1,523
YAML
17.814815
40
0.545634
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch_sparse.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnnsmac_cnn' network: name: actor_critic separate: True value_shape: 2 #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 reward_sparse: True transpose: False random_invalid_step: False rnd_config: scale_value: 1 episodic: True episode_length: 128 gamma: 0.99 mini_epochs: 2 minibatch_size: 1536 learning_rate: 5e-4 network: name: rnd_curiosity mlp: rnd: units: [512, 256,128,64] net: units: [128, 64, 64] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,625
YAML
19.074074
38
0.536
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2m_vs_1z_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2m_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
978
YAML
17.129629
32
0.580777
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5m_vs_6m_cv.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 5m_vs_6m_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 entropy_coef: 0.005 truncate_grads: True grad_norm: 1.5 env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 # 5 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length: 8 #max_epochs: 10000 env_config: name: 5m_vs_6m central_value: False reward_only_positive: True obs_last_action: True apply_agent_ids: False player: render: False games_num: 200 n_game_life: 1 determenistic: True #reward_negative_scale: 0.1
1,365
YAML
18.239436
34
0.58022
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_cv_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 config: name: 3s_vs_5z_cv_rnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 truncate_grads: True grad_norm: 0.5 entropy_coef: 0.005 env_name: smac ppo: true e_clip: 0.2 clip_value: False num_actors: 8 horizon_length: 128 minibatch_size: 1536 # 3 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True normalize_value: False use_action_masks: True seq_length : 4 env_config: name: 3s_vs_5z frames: 1 transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True truncate_grads: True grad_norm: 0.5 network: name: actor_critic central_value: True mlp: units: [256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1
1,745
YAML
19.068965
34
0.553582
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/corridor_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: True random_invalid_step: False
1,511
YAML
18.636363
32
0.550629
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/10m_vs_11m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/27msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 256 kernel_size: 3 strides: 1 padding: 1 - filters: 512 kernel_size: 3 strides: 1 padding: 1 - filters: 1024 kernel_size: 3 strides: 1 padding: 1 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 10m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 4 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 2 use_action_masks: True env_config: name: 10m_vs_11m frames: 14 transpose: False random_invalid_step: False
1,460
YAML
18.48
33
0.545205
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/corridor_cv.pth' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: corridor central_value: True reward_only_positive: False obs_last_action: True frames: 1 reward_negative_scale: 0.05 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: relu initializer: name: default scale: 2 regularizer: name: 'None'
1,598
YAML
19.5
34
0.571339
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/27m_vs_30m_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True config: name: 27m_vs_30m_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3456 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 8 use_action_masks: True ignore_dead_batches : False #max_epochs: 10000 central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 1e-4 clip_value: False normalize_input: True network: name: actor_critic central_value: True mlp: units: [1024, 512] activation: relu initializer: name: default scale: 2 regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: True env_config: name: 27m_vs_30m transpose: False random_invalid_step: False central_value: True reward_only_positive: True obs_last_action: True apply_agent_ids: True
1,776
YAML
19.193182
32
0.556869
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/2m_vs_1z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2m_vs_1z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 2s_vs_1z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True seq_length: 4 use_action_masks: True env_config: name: 2m_vs_1z frames: 1 random_invalid_step: False
972
YAML
17.35849
32
0.583333
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 1 transpose: False random_invalid_step: False
1,022
YAML
17.267857
32
0.588063
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/corridor_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/2c_vs_64zgsmac_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: glorot_uniform_initializer gain: 1.4241 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 - filters: 256 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: corridor_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: corridor frames: 4 transpose: False random_invalid_step: False
1,542
YAML
18.782051
40
0.552529
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/6h_vs_8z_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z frames: 4 transpose: True random_invalid_step: False
1,512
YAML
18.397436
32
0.546296
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3m.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3m_cnn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 3m_cnn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 3m frames: 4 transpose: True random_invalid_step: False
1,493
YAML
18.402597
32
0.545211
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/6h_vs_8z_torch_cv.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: '' network: name: actor_critic separate: False #normalization: layer_norm space: discrete: mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False config: name: 6h_vs_8z_cv reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 # 6 * 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: True use_action_masks: True ignore_dead_batches : False env_config: name: 6h_vs_8z central_value: True reward_only_positive: False obs_last_action: True frames: 1 #reward_negative_scale: 0.9 #apply_agent_ids: True #flatten: False central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 5e-4 clip_value: True normalize_input: True network: name: actor_critic central_value: True mlp: units: [512, 256] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 layer_norm: False
1,734
YAML
18.942529
34
0.553633
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/3s_vs_5z_torch_lstm2.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/3s_vs_5z' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' rnn: name: lstm units: 128 layers: 1 before_mlp: False config: name: 3s_vs_5z2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1536 #1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True max_epochs: 20000 env_config: name: 3s_vs_5z frames: 1 random_invalid_step: False
1,093
YAML
17.542373
32
0.573651
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/smac/5m_vs_6m.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/5msmac_cnn.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: cnn: type: conv1d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 2 padding: 'same' - filters: 128 kernel_size: 3 strides: 1 padding: 'valid' - filters: 256 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 5m_vs_6m_bias reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: smac_cnn ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 2560 mini_epochs: 1 critic_coef: 2 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 2 use_action_masks: True ignore_dead_batches : False env_config: name: 5m_vs_6m frames: 4 transpose: True random_invalid_step: False
1,514
YAML
18.675324
32
0.548217
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/invaders_resnet.pth' network: name: resnet_actor_critic separate: False value_shape: 1 space: discrete: cnn: conv_depths: [16, 32, 32] activation: relu initializer: name: default regularizer: name: 'None' mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: default rnn: name: lstm units: 256 layers: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: invaders_resnet score_to_win: 100000 grad_norm: 1.5 entropy_coef: 0.001 truncate_grads: True env_name: 'atari_gym' #'openai_gym' #'PongNoFrameskip-v4' # ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.01 normalize_input: False seq_length: 4 max_epochs: 200000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' episode_life: False player: render: True games_num: 10 n_game_life: 1 determenistic: True
1,416
YAML
17.166666
63
0.565678
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pacman_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: #min_val: -1 #max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: pacman_ff_no_normalize score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 20000 env_config: skip: 4 name: 'MsPacmanNoFrameskip-v4' episode_life: True player: render: True games_num: 10 n_game_life: 3 determenistic: True render_sleep: 0.05
1,692
YAML
18.686046
39
0.543144
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_gopher.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: scale_value: 1 #min_val: -1 #max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: gopher_ff score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 50000 env_config: skip: 4 name: 'GopherNoFrameskip-v4' episode_life: False player: render: True games_num: 10 n_game_life: 1 determenistic: True render_sleep: 0.001
1,679
YAML
18.534884
39
0.540798
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/invader_lstm.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: lstm units: 256 layers: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 name: invader_lstm score_to_win: 9000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' player: render: True games_num: 10 n_game_life: 3 determenistic: True
1,740
YAML
18.131868
41
0.538506
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/invader.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 name: invader score_to_win: 9000 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' player: render: True games_num: 10 n_game_life: 3 determenistic: True
1,672
YAML
18.229885
41
0.54067
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_breakout_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: lstm units: 256 layers: 1 #layer_norm: True config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: breakout_lstm score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: BreakoutNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 3 critic_coef: 1 lr_schedule: None # adaptive kl_threshold: 0.01 normalize_input: False seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 player: render: True games_num: 100 n_game_life: 5 determenistic: False
1,687
YAML
18.181818
39
0.540605
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pacman_torch_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: before_mlp: False name: lstm units: 512 layers: 1 layer_norm: True config: reward_shaper: #min_val: -1 #max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: pacman_rnn score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 seq_len: 16 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 50000 env_config: skip: 4 name: 'MsPacmanNoFrameskip-v4' episode_life: True player: render: True games_num: 10 n_game_life: 3 determenistic: True render_sleep: 0.05
1,801
YAML
18.586956
39
0.53859
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppg_breakout_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: breakout_ppg score_to_win: 900 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 1 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 #lr_schedule: linear #schedule_entropy: True normalize_value: True normalize_input: False max_epochs: 20000 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 512 mini_epochs: 6 n_aux: 16 kl_coef: 1.0 env_config: skip: 4 name: 'BreakoutNoFrameskip-v4' episode_life: True player: render: True games_num: 200 n_game_life: 5 determenistic: False
1,747
YAML
18.640449
36
0.551231
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppg_pong.yaml
params: seed: 322 algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.995 tau: 0.9 learning_rate: 5e-4 name: pong_ppg score_to_win: 20.5 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: False num_actors: 24 horizon_length: 128 minibatch_size: 256 mini_epochs: 1 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_value: False normalize_input: False max_epochs: 1500 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 256 mini_epochs: 6 n_aux: 16 kl_coef: 1.0 player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,640
YAML
18.535714
39
0.545122
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_breakout_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: orthogonal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: breakout_ppo score_to_win: 900 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 #lr_schedule: linear #schedule_entropy: True normalize_value: True normalize_input: False max_epochs: 3000 env_config: skip: 4 name: 'BreakoutNoFrameskip-v4' episode_life: True player: render: True games_num: 200 n_game_life: 5 determenistic: True
1,598
YAML
18.26506
36
0.553191
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pong.yaml
params: seed: 322 algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: PongNoFrameskip score_to_win: 20.0 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: False num_actors: 24 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_value: True normalize_input: False max_epochs: 1500 player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,510
YAML
18.371795
39
0.550331
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/atari/ppo_pong_soft_aug.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: elu initializer: name: glorot_normal_initializer gain: 1.41421356237 convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: glorot_normal_initializer gain: 1.41421356237 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: PongNoFrameskip_soft_aug score_to_win: 20 grad_norm: 10 entropy_coef: 0.01 truncate_grads: True env_name: PongNoFrameskip-v4 ppo: true e_clip: 0.2 clip_value: True num_actors: 24 horizon_length: 128 minibatch_size: 1536 mini_epochs: 4 critic_coef: 1 lr_schedule: none #kl_threshold: 0.008 #schedule_entropy : True normalize_input: False max_epochs: 1500 features: soft_augmentation: aug_coef: 0.001 transform: name: 'default' player: render: True games_num: 100 n_game_life: 1 determenistic: True
1,561
YAML
18.525
39
0.55221
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_slime_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/slime_pvp.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime_pvp2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 500 self_play_config: update_score: 1 games_to_check: 200 check_scores : False env_config: name: SlimeVolleyDiscrete-v0 #neg_scale: 1 #0.5 self_play: True config_path: 'rl_games/configs/ma/ppo_slime_self_play.yaml' player: render: True games_num: 200 n_game_life: 1 determenistic: True device_name: 'cpu'
1,294
YAML
18.328358
65
0.59119
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/connect4.pth' network: name: actor_critic separate: False normalization: batch_norm space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' config: name: connect4_3 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 8 env_config: name: connect_four_v0 self_play: True is_human: False random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play.yaml'
1,735
YAML
19.915662
68
0.563689
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_slime_v0.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: False ignore_dead_batches : False env_config: name: SlimeVolleyDiscrete-v0 player: render: True games_num: 200 n_game_life: 1 determenistic: True
1,093
YAML
16.645161
34
0.590119
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/connect4_rn.pth' network: name: connect4net blocks: 5 config: name: connect4_rn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 4 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 4 env_config: name: connect_four_v0 self_play: True is_human: True random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml'
1,052
YAML
19.25
75
0.613118
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid2.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 4 horizon_length: 4096 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.0 env_config: name: Humanoid2Run-v0 flat_observation: True
1,305
YAML
18.492537
39
0.549425
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/ppo_dm_control.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True value_shape: 2 space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.999 tau: 0.9 learning_rate: 1e-4 name: dm_control score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 2 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: True seq_length: 8 bounds_loss_coef: 0.001 env_config: name: AcrobotSwingup_sparse-v0 flat_observation: True rnd_config: scale_value: 4.0 exp_percent: 0.25 adv_coef: 0.5 gamma: 0.99 mini_epochs: 2 minibatch_size: 1024 learning_rate: 5e-4 network: name: rnd_curiosity mlp: rnd: units: [64,64,16] net: units: [16,16] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,835
YAML
19.4
39
0.510627
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/walker_run.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: walker score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: WalkerRun-v0 flat_observation: True
1,297
YAML
18.373134
39
0.547417
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/cartpole.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 16] activation: relu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: cartpole score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.0000 env_config: name: CartpoleBalance-v0 flat_observation: True
1,301
YAML
18.432836
39
0.550346
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run_rnd.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True value_shape: 2 space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: True seq_length: 8 bounds_loss_coef: 0.001 env_config: name: HumanoidRun-v0 flat_observation: True rnd_config: scale_value: 1.0 gamma: 0.99 mini_epochs: 2 minibatch_size: 4096 learning_rate: 5e-4 exp_percent: 0.25 adv_coef: 0.5 network: name: rnd_curiosity mlp: rnd: units: [256,128,32] net: units: [128,32] activation: elu initializer: name: default scale: 2 regularizer: name: 'None'
1,830
YAML
19.573033
39
0.512022
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: dm_humanoid score_to_win: 10000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 4096 mini_epochs: 15 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: name: HumanoidRun-v0 flat_observation: True
1,307
YAML
18.522388
39
0.550115
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/dm_control/humanoid_run_conv1d.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: False cnn: type: conv1d activation: elu initializer: name: default regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 128 kernel_size: 2 strides: 1 padding: 0 mlp: units: [128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: humanoid_conv score_to_win: 15000 grad_norm: 0.5 entropy_coef: 0.0 truncate_grads: True env_name: dm_control ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 1024 minibatch_size: 8192 mini_epochs: 4 critic_coef: 1 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.001 env_config: frames: 4 name: Humanoid2Run-v0 flat_observation: True
1,829
YAML
18.677419
39
0.515582
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/minigrid/minigrid_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 16 kernel_size: 8 strides: 4 padding: 0 - filters: 32 kernel_size: 4 strides: 2 padding: 0 mlp: units: [128] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: 'lstm' units: 128 layers: 1 before_mlp: True config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: minigrid_env_rnn score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: minigrid_env ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 env_config: #action_bonus: True #state_bonus : True name: MiniGrid-MemoryS7-v0 fully_obs: False player: games_num: 100 render: True determenistic: False
1,629
YAML
18.404762
39
0.553714
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/openai/ppo_gym_hand.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: HandBlockDenseXYZ score_to_win: 10000 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True env_name: openai_robot_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 12 critic_coef: 2 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: True seq_length: 4 bounds_loss_coef: 0.0001 max_epochs: 10000 env_config: name: HandVMManipulateBlockRotateXYZDense-v0
1,327
YAML
19.75
52
0.565185
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/openai/ppo_gym_humanoid.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: Humanoid score_to_win: 100080 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 12 critic_coef: 2 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 4 bounds_loss_coef: 0.0001 max_epochs: 10000 env_config: name: Humanoid-v3
1,288
YAML
18.830769
39
0.552019
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/openai/ppo_gym_ant.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: path config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 3e-4 name: Hand_block score_to_win: 100080 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True env_name: openai_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 2048 mini_epochs: 12 critic_coef: 2 lr_schedule: adaptive kl_threshold: 0.008 normalize_input: False seq_length: 4 bounds_loss_coef: 0.0001 max_epochs: 10000 env_config: name: Ant-v3
1,284
YAML
18.76923
39
0.549844
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/ppo_ant.yaml
params: seed: 7 #devices: [0, 0] algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/Ant_brax.pth config: name: 'Ant_brax' env_name: brax multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 1000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 8 num_actors: 8192 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: False bounds_loss_coef: 0.0001 env_config: env_name: 'ant'
1,326
YAML
17.178082
33
0.581448
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/ppo_humanoid.yaml
params: seed: 7 #devices: [0, 0] algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/Humanoid_brax.pth config: name: 'Humanoid_brax' env_name: brax multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 2000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.00 truncate_grads: True e_clip: 0.2 horizon_length: 16 num_actors: 8192 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: False bounds_loss_coef: 0.0004 env_config: env_name: 'humanoid'
1,344
YAML
17.424657
33
0.587054
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/ppo_ur5e.yaml
params: seed: 7 #devices: [0, 0] algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/Ur5e_brax.pth config: name: 'Ur5e_brax' env_name: brax multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 2000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.00 truncate_grads: True e_clip: 0.2 horizon_length: 16 num_actors: 8192 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: False bounds_loss_coef: 0.0004 env_config: env_name: 'ur5e'
1,332
YAML
17.260274
33
0.583333
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/sac_ant.yaml
params: algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [256, 128, 64] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/Ant.pth config: name: 'Ant_brax' env_name : brax normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 2000000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 replay_buffer_size: 1000000 num_actors: 128 env_config: env_name: 'ant'
869
YAML
17.125
31
0.593786
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/ppo_halfcheetah.yaml
params: seed: 7 #devices: [0, 0] algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/Halfcheetah_brax.pth config: name: 'Halfcheetah_brax' env_name: brax multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 2000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.00 truncate_grads: True e_clip: 0.2 horizon_length: 16 num_actors: 8192 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: False bounds_loss_coef: 0.0004 env_config: env_name: 'halfcheetah'
1,353
YAML
17.547945
36
0.5898
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/sac_humanoid.yaml
params: algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: False load_path: nn/Ant.pth config: name: 'humanoid_brax_sac' env_name : brax normalize_input: True reward_shaper: scale_value: 1 device: cuda max_epochs: 2000000 num_steps_per_episode: 128 save_best_after: 100 save_frequency: 10000 gamma: 0.99 init_alpha: 1 alpha_lr: 0.0002 actor_lr: 0.0003 critic_lr: 0.0003 critic_tau: 0.005 batch_size: 2048 learnable_temperature: true num_seed_steps: 2 # total steps: num_actors * num_steps_per_episode * num_seed_steps replay_buffer_size: 1000000 num_actors: 64 env_config: env_name: 'humanoid'
941
YAML
18.224489
88
0.612115
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/brax/ppo_grasp.yaml
params: seed: 7 #devices: [0, 0] algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: nn/Grasp_brax.pth config: name: 'Grasp_brax' env_name: brax multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 2000 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.00 truncate_grads: True e_clip: 0.2 horizon_length: 16 num_actors: 8192 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: False bounds_loss_coef: 0.0004 env_config: env_name: 'grasp'
1,335
YAML
17.30137
33
0.58427
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/configs/procgen/ppo_coinrun.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: resnet_actor_critic separate: False value_shape: 1 space: discrete: cnn: conv_depths: [16, 32, 32] activation: elu initializer: name: default regularizer: name: 'None' mlp: units: [512] activation: elu regularizer: name: 'None' initializer: name: default rnn1: name: lstm units: 256 layers: 1 config: reward_shaper: max_val: 10 normalize_advantage: True gamma: 0.999 tau: 0.95 learning_rate: 1e-4 name: atari score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: 'openai_gym' #'openai_gym' #'PongNoFrameskip-v4' # ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 3 critic_coef: 1 lr_schedule: polynom_decay kl_threshold: 0.01 normalize_input: False seq_length: 4 max_epochs: 2000 env_config: name: "procgen:procgen-coinrun-v0" procgen: True frames: 4 num_levels: 1000 start_level: 323 limit_steps: True distribution_mode: 'easy'
1,372
YAML
18.069444
64
0.561953
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/distributed/hvd_wrapper.py
import torch import horovod.torch as hvd import os class HorovodWrapper: def __init__(self): hvd.init() self.rank = hvd.rank() self.rank_size = hvd.size() print('Starting horovod with rank: {0}, size: {1}'.format(self.rank, self.rank_size)) #self.device_name = 'cpu' self.device_name = 'cuda:' + str(self.rank) def update_algo_config(self, config): config['device'] = self.device_name if self.rank != 0: config['print_stats'] = False config['lr_schedule'] = None return config def setup_algo(self, algo): hvd.broadcast_parameters(algo.model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(algo.optimizer, root_rank=0) algo.optimizer = hvd.DistributedOptimizer(algo.optimizer, named_parameters=algo.model.named_parameters()) self.sync_stats(algo) if algo.has_central_value: hvd.broadcast_optimizer_state(algo.central_value_net.optimizer, root_rank=0) hvd.broadcast_parameters(algo.central_value_net.state_dict(), root_rank=0) algo.central_value_net.optimizer = hvd.DistributedOptimizer(algo.central_value_net.optimizer, named_parameters=algo.central_value_net.model.named_parameters()) def sync_stats(self, algo): stats_dict = algo.get_stats_weights() for k,v in stats_dict.items(): for in_k, in_v in v.items(): in_v.data = hvd.allreduce(in_v, name=k + in_k) algo.curr_frames = hvd.allreduce(torch.tensor(algo.curr_frames), average=False).item() def broadcast_value(self, val, name): hvd.broadcast_parameters({name: val}, root_rank=0) def is_root(self): return self.rank == 0 def average_stats(self, stats_dict): res_dict = {} for k,v in stats_dict.items(): res_dict[k] = self.metric_average(v, k) def average_value(self, val, name): avg_tensor = hvd.allreduce(val, name=name) return avg_tensor
2,030
Python
35.927272
171
0.625123
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/interval_summary_writer.py
import time class IntervalSummaryWriter: """ Summary writer wrapper designed to reduce the size of tf.events files. It will prevent the learner from writing the summaries more often than a specified interval, i.e. if the current interval is 20 seconds and we wrote our last summary for a particular summary key at 01:00, all summaries until 01:20 for that key will be ignored. The interval is adaptive: it will approach 1/200th of the total training time, but no less than interval_sec_min and no greater than interval_sec_max. This was created to facilitate really big training runs, such as with Population-Based training, where summary folders reached tens of gigabytes. """ def __init__(self, summary_writer, cfg): self.experiment_start = time.time() # prevents noisy summaries when experiments are restarted self.defer_summaries_sec = cfg.get('defer_summaries_sec', 5) self.interval_sec_min = cfg.get('summaries_interval_sec_min', 5) self.interval_sec_max = cfg.get('summaries_interval_sec_max', 300) self.last_interval = self.interval_sec_min # interval between summaries will be close to this fraction of the total training time, # i.e. for a run that lasted 200 minutes we write one summary every minute. self.summaries_relative_step = 1.0 / 200 self.writer = summary_writer self.last_write_for_tag = dict() def _calc_interval(self): """Write summaries more often in the beginning of the run.""" if self.last_interval >= self.interval_sec_max: return self.last_interval seconds_since_start = time.time() - self.experiment_start interval = seconds_since_start * self.summaries_relative_step interval = min(interval, self.interval_sec_max) interval = max(interval, self.interval_sec_min) self.last_interval = interval return interval def add_scalar(self, tag, value, step, *args, **kwargs): if step == 0: # removes faulty summaries that appear after the experiment restart # print('Skip summaries with step=0') return seconds_since_start = time.time() - self.experiment_start if seconds_since_start < self.defer_summaries_sec: return last_write = self.last_write_for_tag.get(tag, 0) seconds_since_last_write = time.time() - last_write interval = self._calc_interval() if seconds_since_last_write >= interval: self.writer.add_scalar(tag, value, step, *args, **kwargs) self.last_write_for_tag[tag] = time.time() def __getattr__(self, attr): return getattr(self.writer, attr)
2,750
Python
40.681818
117
0.663273
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/a2c_common.py
import os from rl_games.common import tr_helpers from rl_games.common import vecenv from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.algos_torch.moving_mean_std import MovingMeanStd from rl_games.algos_torch.self_play_manager import SelfPlayManager from rl_games.algos_torch import torch_ext from rl_games.common import schedulers from rl_games.common.experience import ExperienceBuffer from rl_games.common.interval_summary_writer import IntervalSummaryWriter import numpy as np import collections import time from collections import deque, OrderedDict import gym from datetime import datetime from tensorboardX import SummaryWriter import torch from torch import nn from time import sleep def swap_and_flatten01(arr): """ swap and then flatten axes 0 and 1 """ if arr is None: return arr s = arr.size() return arr.transpose(0, 1).reshape(s[0] * s[1], *s[2:]) def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class A2CBase: def __init__(self, base_name, config): pbt_str = '' if config.get('population_based_training', False): # in PBT, make sure experiment name contains a unique id of the policy within a population pbt_str = f'_pbt_{config["pbt_idx"]:02d}' # This helps in PBT when we need to restart an experiment with the exact same name, rather than # generating a new name with the timestamp every time. full_experiment_name = config.get('full_experiment_name', None) if full_experiment_name: print(f'Exact experiment name requested from command line: {full_experiment_name}') self.experiment_name = full_experiment_name else: self.experiment_name = config['name'] + pbt_str + datetime.now().strftime("_%d-%H-%M-%S") self.config = config self.algo_observer = config['features']['observer'] self.algo_observer.before_init(base_name, config, self.experiment_name) self.multi_gpu = config.get('multi_gpu', False) self.rank = 0 self.rank_size = 1 if self.multi_gpu: from rl_games.distributed.hvd_wrapper import HorovodWrapper self.hvd = HorovodWrapper() self.config = self.hvd.update_algo_config(config) self.rank = self.hvd.rank self.rank_size = self.hvd.rank_size self.network_path = config.get('network_path', "./nn/") self.log_path = config.get('log_path', "runs/") self.env_config = config.get('env_config', {}) self.num_actors = config['num_actors'] self.env_name = config['env_name'] self.env_info = config.get('env_info') if self.env_info is None: self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.env_info = self.vec_env.get_env_info() self.ppo_device = config.get('device', 'cuda:0') print('Env info:') print(self.env_info) self.value_size = self.env_info.get('value_size',1) self.observation_space = self.env_info['observation_space'] self.weight_decay = config.get('weight_decay', 0.0) self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.central_value_config = self.config.get('central_value_config', None) self.has_central_value = self.central_value_config is not None self.truncate_grads = self.config.get('truncate_grads', False) if self.has_central_value: self.state_space = self.env_info.get('state_space', None) if isinstance(self.state_space,gym.spaces.Dict): self.state_shape = {} for k,v in self.state_space.spaces.items(): self.state_shape[k] = v.shape else: self.state_shape = self.state_space.shape self.self_play_config = self.config.get('self_play_config', None) self.has_self_play_config = self.self_play_config is not None self.self_play = config.get('self_play', False) self.save_freq = config.get('save_frequency', 0) self.save_best_after = config.get('save_best_after', 100) self.print_stats = config.get('print_stats', True) self.rnn_states = None self.name = base_name self.ppo = config['ppo'] self.max_epochs = self.config.get('max_epochs', 1e6) self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.linear_lr = config['lr_schedule'] == 'linear' self.schedule_type = config.get('schedule_type', 'legacy') if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] self.scheduler = schedulers.AdaptiveScheduler(self.kl_threshold) elif self.linear_lr: self.scheduler = schedulers.LinearScheduler(float(config['learning_rate']), max_steps=self.max_epochs, apply_to_entropy=config.get('schedule_entropy', False), start_entropy_coef=config.get('entropy_coef')) else: self.scheduler = schedulers.IdentityScheduler() self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_agents = self.env_info.get('agents', 1) # self.horizon_length = config['horizon_length'] self.horizon_length = config['steps_num'] self.seq_len = self.config.get('seq_length', 4) self.normalize_advantage = config['normalize_advantage'] self.normalize_input = self.config['normalize_input'] self.normalize_value = self.config.get('normalize_value', False) self.truncate_grads = self.config.get('truncate_grads', False) self.has_phasic_policy_gradients = False if isinstance(self.observation_space,gym.spaces.Dict): self.obs_shape = {} for k,v in self.observation_space.spaces.items(): self.obs_shape[k] = v.shape else: self.obs_shape = self.observation_space.shape self.critic_coef = config['critic_coef'] self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = torch_ext.AverageMeter(self.value_size, self.games_to_track).to(self.ppo_device) self.game_lengths = torch_ext.AverageMeter(1, self.games_to_track).to(self.ppo_device) self.obs = None self.games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.batch_size = self.horizon_length * self.num_actors * self.num_agents self.batch_size_envs = self.horizon_length * self.num_actors self.minibatch_size = self.config['minibatch_size'] self.mini_epochs_num = self.config['mini_epochs'] self.num_minibatches = self.batch_size // self.minibatch_size assert(self.batch_size % self.minibatch_size == 0) self.mixed_precision = self.config.get('mixed_precision', False) self.scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self.last_lr = self.config['learning_rate'] self.frame = 0 self.update_time = 0 self.mean_rewards = self.last_mean_rewards = -100500 self.play_time = 0 self.epoch_num = 0 # allows us to specify a folder where all experiments will reside self.train_dir = config.get('train_dir', 'train_dir') # a folder inside of train_dir containing everything related to a particular experiment # self.experiment_dir = os.path.join(self.train_dir, self.experiment_name) self.experiment_dir = config.get('logdir', './') # folders inside <train_dir>/<experiment_dir> for a specific purpose self.nn_dir = os.path.join(self.experiment_dir, 'nn') self.summaries_dir = os.path.join(self.experiment_dir, 'runs') os.makedirs(self.train_dir, exist_ok=True) os.makedirs(self.experiment_dir, exist_ok=True) os.makedirs(self.nn_dir, exist_ok=True) os.makedirs(self.summaries_dir, exist_ok=True) self.entropy_coef = self.config['entropy_coef'] if self.rank == 0: writer = SummaryWriter(self.summaries_dir) self.writer = IntervalSummaryWriter(writer, self.config) else: self.writer = None self.value_bootstrap = self.config.get('value_bootstrap') if self.normalize_value: self.value_mean_std = RunningMeanStd((1,)).to(self.ppo_device) self.is_tensor_obses = False self.last_rnn_indices = None self.last_state_indices = None #self_play if self.has_self_play_config: print('Initializing SelfPlay Manager') self.self_play_manager = SelfPlayManager(self.self_play_config, self.writer) # features self.algo_observer = config['features']['observer'] self.soft_aug = config['features'].get('soft_augmentation', None) self.has_soft_aug = self.soft_aug is not None # soft augmentation not yet supported assert not self.has_soft_aug def write_stats(self, total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames): # do we need scaled time? self.writer.add_scalar('performance/step_inference_rl_update_fps', curr_frames / scaled_time, frame) self.writer.add_scalar('performance/step_inference_fps', curr_frames / scaled_play_time, frame) self.writer.add_scalar('performance/step_fps', curr_frames / step_time, frame) self.writer.add_scalar('performance/rl_update_time', update_time, frame) self.writer.add_scalar('performance/step_inference_time', play_time, frame) self.writer.add_scalar('performance/step_time', step_time, frame) self.writer.add_scalar('losses/a_loss', torch_ext.mean_list(a_losses).item(), frame) self.writer.add_scalar('losses/c_loss', torch_ext.mean_list(c_losses).item(), frame) self.writer.add_scalar('losses/entropy', torch_ext.mean_list(entropies).item(), frame) self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', torch_ext.mean_list(kls).item(), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) self.algo_observer.after_print_stats(frame, epoch_num, total_time) def set_eval(self): self.model.eval() if self.normalize_input: self.running_mean_std.eval() if self.normalize_value: self.value_mean_std.eval() def set_train(self): self.model.train() if self.normalize_input: self.running_mean_std.train() if self.normalize_value: self.value_mean_std.train() def update_lr(self, lr): if self.multi_gpu: lr_tensor = torch.tensor([lr]) self.hvd.broadcast_value(lr_tensor, 'learning_rate') lr = lr_tensor.item() for param_group in self.optimizer.param_groups: param_group['lr'] = lr #if self.has_central_value: # self.central_value_net.update_lr(lr) def get_action_values(self, obs): processed_obs = self._preproc_obs(obs['obs']) self.model.eval() input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'rnn_states' : self.rnn_states } with torch.no_grad(): res_dict = self.model(input_dict) if self.has_central_value: states = obs['states'] input_dict = { 'is_train': False, 'states' : states, #'actions' : res_dict['action'], #'rnn_states' : self.rnn_states } value = self.get_central_value(input_dict) res_dict['values'] = value if self.normalize_value: res_dict['values'] = self.value_mean_std(res_dict['values'], True) return res_dict def get_values(self, obs): with torch.no_grad(): if self.has_central_value: states = obs['states'] self.central_value_net.eval() input_dict = { 'is_train': False, 'states' : states, 'actions' : None, 'is_done': self.dones, } value = self.get_central_value(input_dict) else: self.model.eval() processed_obs = self._preproc_obs(obs['obs']) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'rnn_states' : self.rnn_states } result = self.model(input_dict) value = result['values'] if self.normalize_value: value = self.value_mean_std(value, True) return value @property def device(self): return self.ppo_device def reset_envs(self): self.obs = self.env_reset() def init_tensors(self): batch_size = self.num_agents * self.num_actors algo_info = { 'num_actors' : self.num_actors, 'horizon_length' : self.horizon_length, 'has_central_value' : self.has_central_value, 'use_action_masks' : self.use_action_masks } self.experience_buffer = ExperienceBuffer(self.env_info, algo_info, self.ppo_device) val_shape = (self.horizon_length, batch_size, self.value_size) current_rewards_shape = (batch_size, self.value_size) self.current_rewards = torch.zeros(current_rewards_shape, dtype=torch.float32, device=self.ppo_device) self.current_lengths = torch.zeros(batch_size, dtype=torch.float32, device=self.ppo_device) self.dones = torch.ones((batch_size,), dtype=torch.uint8, device=self.ppo_device) if self.is_rnn: self.rnn_states = self.model.get_default_rnn_state() self.rnn_states = [s.to(self.ppo_device) for s in self.rnn_states] batch_size = self.num_agents * self.num_actors num_seqs = self.horizon_length * batch_size // self.seq_len assert((self.horizon_length * batch_size // self.num_minibatches) % self.seq_len == 0) self.mb_rnn_states = [torch.zeros((s.size()[0], num_seqs, s.size()[2]), dtype = torch.float32, device=self.ppo_device) for s in self.rnn_states] def init_rnn_from_model(self, model): self.is_rnn = self.model.is_rnn() def init_rnn_step(self, batch_size, mb_rnn_states): mb_rnn_states = self.mb_rnn_states mb_rnn_masks = torch.zeros(self.horizon_length*batch_size, dtype = torch.float32, device=self.ppo_device) steps_mask = torch.arange(0, batch_size * self.horizon_length, self.horizon_length, dtype=torch.long, device=self.ppo_device) play_mask = torch.arange(0, batch_size, 1, dtype=torch.long, device=self.ppo_device) steps_state = torch.arange(0, batch_size * self.horizon_length//self.seq_len, self.horizon_length//self.seq_len, dtype=torch.long, device=self.ppo_device) indices = torch.zeros((batch_size), dtype = torch.long, device=self.ppo_device) return mb_rnn_masks, indices, steps_mask, steps_state, play_mask, mb_rnn_states def process_rnn_indices(self, mb_rnn_masks, indices, steps_mask, steps_state, mb_rnn_states): seq_indices = None if indices.max().item() >= self.horizon_length: return seq_indices, True mb_rnn_masks[indices + steps_mask] = 1 seq_indices = indices % self.seq_len state_indices = (seq_indices == 0).nonzero(as_tuple=False) state_pos = indices // self.seq_len rnn_indices = state_pos[state_indices] + steps_state[state_indices] for s, mb_s in zip(self.rnn_states, mb_rnn_states): mb_s[:, rnn_indices, :] = s[:, state_indices, :] self.last_rnn_indices = rnn_indices self.last_state_indices = state_indices return seq_indices, False def process_rnn_dones(self, all_done_indices, indices, seq_indices): if len(all_done_indices) > 0: shifts = self.seq_len - 1 - seq_indices[all_done_indices] indices[all_done_indices] += shifts for s in self.rnn_states: s[:,all_done_indices,:] = s[:,all_done_indices,:] * 0.0 indices += 1 def cast_obs(self, obs): if isinstance(obs, torch.Tensor): self.is_tensor_obses = True elif isinstance(obs, np.ndarray): assert(self.observation_space.dtype != np.int8) if self.observation_space.dtype == np.uint8: obs = torch.ByteTensor(obs).to(self.ppo_device) else: obs = torch.FloatTensor(obs).to(self.ppo_device) return obs def obs_to_tensors(self, obs): obs_is_dict = isinstance(obs, dict) if obs_is_dict: upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value) else: upd_obs = self.cast_obs(obs) if not obs_is_dict or 'obs' not in obs: upd_obs = {'obs' : upd_obs} return upd_obs def _obs_to_tensors_internal(self, obs): if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value) else: upd_obs = self.cast_obs(obs) return upd_obs def preprocess_actions(self, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() return actions def env_step(self, actions): actions = self.preprocess_actions(actions) obs, rewards, dones, infos = self.vec_env.step(actions) if self.is_tensor_obses: if self.value_size == 1: rewards = rewards.unsqueeze(1) return self.obs_to_tensors(obs), rewards.to(self.ppo_device), dones.to(self.ppo_device), infos else: if self.value_size == 1: rewards = np.expand_dims(rewards, axis=1) return self.obs_to_tensors(obs), torch.from_numpy(rewards).to(self.ppo_device).float(), torch.from_numpy(dones).to(self.ppo_device), infos def env_reset(self): obs = self.vec_env.reset() obs = self.obs_to_tensors(obs) return obs def discount_values(self, fdones, last_extrinsic_values, mb_fdones, mb_extrinsic_values, mb_rewards): lastgaelam = 0 mb_advs = torch.zeros_like(mb_rewards) for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - fdones nextvalues = last_extrinsic_values else: nextnonterminal = 1.0 - mb_fdones[t+1] nextvalues = mb_extrinsic_values[t+1] nextnonterminal = nextnonterminal.unsqueeze(1) delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_extrinsic_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam return mb_advs def discount_values_masks(self, fdones, last_extrinsic_values, mb_fdones, mb_extrinsic_values, mb_rewards, mb_masks): lastgaelam = 0 mb_advs = torch.zeros_like(mb_rewards) for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - fdones nextvalues = last_extrinsic_values else: nextnonterminal = 1.0 - mb_fdones[t+1] nextvalues = mb_extrinsic_values[t+1] nextnonterminal = nextnonterminal.unsqueeze(1) masks_t = mb_masks[t].unsqueeze(1) delta = (mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_extrinsic_values[t]) mb_advs[t] = lastgaelam = (delta + self.gamma * self.tau * nextnonterminal * lastgaelam) * masks_t return mb_advs def clear_stats(self): batch_size = self.num_agents * self.num_actors self.game_rewards.clear() self.game_lengths.clear() self.mean_rewards = self.last_mean_rewards = -100500 self.algo_observer.after_clear_stats() def update_epoch(self): pass def train(self): pass def prepare_dataset(self, batch_dict): pass def train_epoch(self): self.vec_env.set_train_info(self.frame) def train_actor_critic(self, obs_dict, opt_step=True): pass def calc_gradients(self): pass def get_central_value(self, obs_dict): return self.central_value_net.get_value(obs_dict) def train_central_value(self): return self.central_value_net.train_net() def get_full_state_weights(self): state = self.get_weights() state['epoch'] = self.epoch_num state['optimizer'] = self.optimizer.state_dict() if self.has_central_value: state['assymetric_vf_nets'] = self.central_value_net.state_dict() state['frame'] = self.frame # This is actually the best reward ever achieved. last_mean_rewards is perhaps not the best variable name # We save it to the checkpoint to prevent overriding the "best ever" checkpoint upon experiment restart state['last_mean_rewards'] = self.last_mean_rewards env_state = self.vec_env.get_env_state() state['env_state'] = env_state return state def set_full_state_weights(self, weights): self.set_weights(weights) self.epoch_num = weights['epoch'] if self.has_central_value: self.central_value_net.load_state_dict(weights['assymetric_vf_nets']) self.optimizer.load_state_dict(weights['optimizer']) self.frame = weights.get('frame', 0) self.last_mean_rewards = weights.get('last_mean_rewards', -100500) env_state = weights.get('env_state', None) self.vec_env.set_env_state(env_state) def get_weights(self): state = self.get_stats_weights() state['model'] = self.model.state_dict() return state def get_stats_weights(self): state = {} if self.normalize_input: state['running_mean_std'] = self.running_mean_std.state_dict() if self.normalize_value: state['reward_mean_std'] = self.value_mean_std.state_dict() if self.has_central_value: state['assymetric_vf_mean_std'] = self.central_value_net.get_stats_weights() if self.mixed_precision: state['scaler'] = self.scaler.state_dict() return state def set_stats_weights(self, weights): if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) if self.normalize_value: self.value_mean_std.load_state_dict(weights['reward_mean_std']) if self.has_central_value: self.central_value_net.set_stats_weights(weights['assymetric_vf_mean_std']) if self.mixed_precision and 'scaler' in weights: self.scaler.load_state_dict(weights['scaler']) def set_weights(self, weights): self.model.load_state_dict(weights['model']) self.set_stats_weights(weights) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k,v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def play_steps(self): epinfos = [] update_list = self.update_list step_time = 0.0 for n in range(self.horizon_length): if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) self.experience_buffer.update_data('obses', n, self.obs['obs']) self.experience_buffer.update_data('dones', n, self.dones) for k in update_list: self.experience_buffer.update_data(k, n, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data('states', n, self.obs['states']) step_time_start = time.time() self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) step_time_end = time.time() step_time += (step_time_end - step_time_start) shaped_rewards = self.rewards_shaper(rewards) if self.value_bootstrap and 'time_outs' in infos: shaped_rewards += self.gamma * res_dict['values'] * self.cast_obs(infos['time_outs']).unsqueeze(1).float() self.experience_buffer.update_data('rewards', n, shaped_rewards) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.algo_observer.process_infos(infos, done_indices) not_dones = 1.0 - self.dones.float() self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones last_values = self.get_values(self.obs) fdones = self.dones.float() mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] mb_advs = self.discount_values(fdones, last_values, mb_fdones, mb_values, mb_rewards) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(swap_and_flatten01, self.tensor_list) batch_dict['returns'] = swap_and_flatten01(mb_returns) batch_dict['played_frames'] = self.batch_size batch_dict['step_time'] = step_time return batch_dict def play_steps_rnn(self): mb_rnn_states = [] epinfos = [] self.experience_buffer.tensor_dict['values'].fill_(0) self.experience_buffer.tensor_dict['rewards'].fill_(0) self.experience_buffer.tensor_dict['dones'].fill_(1) step_time = 0.0 update_list = self.update_list batch_size = self.num_agents * self.num_actors mb_rnn_masks = None mb_rnn_masks, indices, steps_mask, steps_state, play_mask, mb_rnn_states = self.init_rnn_step(batch_size, mb_rnn_states) for n in range(self.horizon_length): seq_indices, full_tensor = self.process_rnn_indices(mb_rnn_masks, indices, steps_mask, steps_state, mb_rnn_states) if full_tensor: break if self.has_central_value: self.central_value_net.pre_step_rnn(self.last_rnn_indices, self.last_state_indices) if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) self.rnn_states = res_dict['rnn_states'] self.experience_buffer.update_data_rnn('obses', indices, play_mask, self.obs['obs']) self.experience_buffer.update_data_rnn('dones', indices, play_mask, self.dones.byte()) for k in update_list: self.experience_buffer.update_data_rnn(k, indices, play_mask, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data_rnn('states', indices[::self.num_agents] ,play_mask[::self.num_agents]//self.num_agents, self.obs['states']) step_time_start = time.time() self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) step_time_end = time.time() step_time += (step_time_end - step_time_start) shaped_rewards = self.rewards_shaper(rewards) if self.value_bootstrap and 'time_outs' in infos: shaped_rewards += self.gamma * res_dict['values'] * self.cast_obs(infos['time_outs']).unsqueeze(1).float() self.experience_buffer.update_data_rnn('rewards', indices, play_mask, shaped_rewards) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.process_rnn_dones(all_done_indices, indices, seq_indices) if self.has_central_value: self.central_value_net.post_step_rnn(all_done_indices) self.algo_observer.process_infos(infos, done_indices) fdones = self.dones.float() not_dones = 1.0 - self.dones.float() self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones last_values = self.get_values(self.obs) fdones = self.dones.float() mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] non_finished = (indices != self.horizon_length).nonzero(as_tuple=False) ind_to_fill = indices[non_finished] mb_fdones[ind_to_fill,non_finished] = fdones[non_finished] mb_values[ind_to_fill,non_finished] = last_values[non_finished] fdones[non_finished] = 1.0 last_values[non_finished] = 0 mb_advs = self.discount_values_masks(fdones, last_values, mb_fdones, mb_values, mb_rewards, mb_rnn_masks.view(-1,self.horizon_length).transpose(0,1)) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(swap_and_flatten01, self.tensor_list) batch_dict['returns'] = swap_and_flatten01(mb_returns) batch_dict['rnn_states'] = mb_rnn_states batch_dict['rnn_masks'] = mb_rnn_masks batch_dict['played_frames'] = n * self.num_actors * self.num_agents batch_dict['step_time'] = step_time return batch_dict class DiscreteA2CBase(A2CBase): def __init__(self, base_name, config): A2CBase.__init__(self, base_name, config) batch_size = self.num_agents * self.num_actors action_space = self.env_info['action_space'] if type(action_space) is gym.spaces.Discrete: self.actions_shape = (self.horizon_length, batch_size) self.actions_num = action_space.n self.is_multi_discrete = False if type(action_space) is gym.spaces.Tuple: self.actions_shape = (self.horizon_length, batch_size, len(action_space)) self.actions_num = [action.n for action in action_space] self.is_multi_discrete = True self.is_discrete = True def init_tensors(self): A2CBase.init_tensors(self) self.update_list = ['actions', 'neglogpacs', 'values'] if self.use_action_masks: self.update_list += ['action_masks'] self.tensor_list = self.update_list + ['obses', 'states', 'dones'] def train_epoch(self): super().train_epoch() self.set_eval() play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() self.set_train() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() a_losses = [] c_losses = [] entropies = [] kls = [] if self.has_central_value: self.train_central_value() if self.is_rnn: print('non masked rnn obs ratio: ', rnn_masks.sum().item() / (rnn_masks.nelement())) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): a_loss, c_loss, entropy, kl, last_lr, lr_mul = self.train_actor_critic(self.dataset[i]) a_losses.append(a_loss) c_losses.append(c_loss) ep_kls.append(kl) entropies.append(entropy) av_kls = torch_ext.mean_list(ep_kls) if self.multi_gpu: av_kls = self.hvd.average_value(av_kls, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) kls.append(av_kls) if self.has_phasic_policy_gradients: self.ppg_aux_loss.train_net(self) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start return batch_dict['step_time'], play_time, update_time, total_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul def prepare_dataset(self, batch_dict): rnn_masks = batch_dict.get('rnn_masks', None) obses = batch_dict['obses'] returns = batch_dict['returns'] values = batch_dict['values'] actions = batch_dict['actions'] neglogpacs = batch_dict['neglogpacs'] rnn_states = batch_dict.get('rnn_states', None) advantages = returns - values if self.normalize_value: values = self.value_mean_std(values) returns = self.value_mean_std(returns) advantages = torch.sum(advantages, axis=1) if self.normalize_advantage: if self.is_rnn: advantages = torch_ext.normalization_with_masks(advantages, rnn_masks) else: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['old_logp_actions'] = neglogpacs dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = obses dataset_dict['rnn_states'] = rnn_states dataset_dict['rnn_masks'] = rnn_masks if self.use_action_masks: dataset_dict['action_masks'] = batch_dict['action_masks'] self.dataset.update_values_dict(dataset_dict) if self.has_central_value: dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = batch_dict['states'] dataset_dict['rnn_masks'] = rnn_masks self.central_value_net.update_dataset(dataset_dict) def train(self): self.init_tensors() self.mean_rewards = self.last_mean_rewards = -100500 start_time = time.time() total_time = 0 rep_count = 0 # self.frame = 0 # loading from checkpoint self.obs = self.env_reset() if self.multi_gpu: self.hvd.setup_algo(self) while True: epoch_num = self.update_epoch() step_time, play_time, update_time, sum_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul = self.train_epoch() # cleaning memory to optimize space self.dataset.update_values_dict(None) if self.multi_gpu: self.hvd.sync_stats(self) total_time += sum_time self.frame += curr_frames total_time += sum_time if self.rank == 0: scaled_time = sum_time #self.num_agents * sum_time scaled_play_time = play_time #self.num_agents * play_time curr_frames = self.curr_frames frame = self.frame self.write_stats(total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames) if self.has_soft_aug: self.writer.add_scalar('losses/aug_loss', np.mean(aug_losses), frame) self.algo_observer.after_print_stats(frame, epoch_num, total_time) if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.mean_rewards = mean_rewards[0] for i in range(self.value_size): rewards_name = 'rewards' if i == 0 else 'rewards{0}'.format(i) self.writer.add_scalar(rewards_name + '/step'.format(i), mean_rewards[i], frame) self.writer.add_scalar(rewards_name + '/iter'.format(i), mean_rewards[i], epoch_num) self.writer.add_scalar(rewards_name + '/time'.format(i), mean_rewards[i], total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if self.has_self_play_config: self.self_play_manager.update(self) # removed equal signs (i.e. "rew=") from the checkpoint name since it messes with hydra CLI parsing checkpoint_name = self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards) if self.save_freq > 0: if (epoch_num % self.save_freq == 0) and (mean_rewards <= self.last_mean_rewards): self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) if mean_rewards[0] > self.last_mean_rewards and epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards[0] self.save(os.path.join(self.nn_dir, self.config['name'])) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save(os.path.join(self.nn_dir, checkpoint_name)) return self.last_mean_rewards, epoch_num if epoch_num > self.max_epochs: self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / step_time fps_step_inference = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time print(f'fps step: {fps_step:.1f} fps step and policy inference: {fps_step_inference:.1f} fps total: {fps_total:.1f}') class ContinuousA2CBase(A2CBase): def __init__(self, base_name, config): A2CBase.__init__(self, base_name, config) self.is_discrete = False action_space = self.env_info['action_space'] self.actions_num = action_space.shape[0] self.bounds_loss_coef = config.get('bounds_loss_coef', None) # todo introduce device instead of cuda() self.actions_low = torch.from_numpy(action_space.low.copy()).float().to(self.ppo_device) self.actions_high = torch.from_numpy(action_space.high.copy()).float().to(self.ppo_device) def preprocess_actions(self, actions): clamped_actions = torch.clamp(actions, -1.0, 1.0) rescaled_actions = rescale_actions(self.actions_low, self.actions_high, clamped_actions) if not self.is_tensor_obses: rescaled_actions = rescaled_actions.cpu().numpy() return rescaled_actions def init_tensors(self): A2CBase.init_tensors(self) self.update_list = ['actions', 'neglogpacs', 'values', 'mus', 'sigmas'] self.tensor_list = self.update_list + ['obses', 'states', 'dones'] def train_epoch(self): super().train_epoch() self.set_eval() play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self.set_train() self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() if self.has_central_value: self.train_central_value() a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] if self.is_rnn: frames_mask_ratio = rnn_masks.sum().item() / (rnn_masks.nelement()) print(frames_mask_ratio) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): a_loss, c_loss, entropy, kl, last_lr, lr_mul, cmu, csigma, b_loss = self.train_actor_critic(self.dataset[i]) a_losses.append(a_loss) c_losses.append(c_loss) ep_kls.append(kl) entropies.append(entropy) if self.bounds_loss_coef is not None: b_losses.append(b_loss) self.dataset.update_mu_sigma(cmu, csigma) if self.schedule_type == 'legacy': if self.multi_gpu: kl = self.hvd.average_value(kl, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,kl.item()) self.update_lr(self.last_lr) av_kls = torch_ext.mean_list(ep_kls) if self.schedule_type == 'standard': if self.multi_gpu: av_kls = self.hvd.average_value(av_kls, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,av_kls.item()) self.update_lr(self.last_lr) kls.append(av_kls) if self.schedule_type == 'standard_epoch': if self.multi_gpu: av_kls = self.hvd.average_value(torch_ext.mean_list(kls), 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,av_kls.item()) self.update_lr(self.last_lr) if self.has_phasic_policy_gradients: self.ppg_aux_loss.train_net(self) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start return batch_dict['step_time'], play_time, update_time, total_time, a_losses, c_losses, b_losses, entropies, kls, last_lr, lr_mul def prepare_dataset(self, batch_dict): obses = batch_dict['obses'] returns = batch_dict['returns'] dones = batch_dict['dones'] values = batch_dict['values'] actions = batch_dict['actions'] neglogpacs = batch_dict['neglogpacs'] mus = batch_dict['mus'] sigmas = batch_dict['sigmas'] rnn_states = batch_dict.get('rnn_states', None) rnn_masks = batch_dict.get('rnn_masks', None) advantages = returns - values if self.normalize_value: values = self.value_mean_std(values) returns = self.value_mean_std(returns) advantages = torch.sum(advantages, axis=1) if self.normalize_advantage: if self.is_rnn: advantages = torch_ext.normalization_with_masks(advantages, rnn_masks) else: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['old_logp_actions'] = neglogpacs dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = obses dataset_dict['rnn_states'] = rnn_states dataset_dict['rnn_masks'] = rnn_masks dataset_dict['mu'] = mus dataset_dict['sigma'] = sigmas self.dataset.update_values_dict(dataset_dict) if self.has_central_value: dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = batch_dict['states'] dataset_dict['rnn_masks'] = rnn_masks self.central_value_net.update_dataset(dataset_dict) def train(self): self.init_tensors() self.last_mean_rewards = -100500 start_time = time.time() total_time = 0 rep_count = 0 self.obs = self.env_reset() self.curr_frames = self.batch_size_envs if self.multi_gpu: self.hvd.setup_algo(self) while True: epoch_num = self.update_epoch() step_time, play_time, update_time, sum_time, a_losses, c_losses, b_losses, entropies, kls, last_lr, lr_mul = self.train_epoch() total_time += sum_time frame = self.frame # cleaning memory to optimize space self.dataset.update_values_dict(None) if self.multi_gpu: self.hvd.sync_stats(self) if self.rank == 0: # do we need scaled_time? scaled_time = sum_time #self.num_agents * sum_time scaled_play_time = play_time #self.num_agents * play_time curr_frames = self.curr_frames self.frame += curr_frames self.write_stats(total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', torch_ext.mean_list(b_losses).item(), frame) if self.has_soft_aug: self.writer.add_scalar('losses/aug_loss', np.mean(aug_losses), frame) mean_rewards = [0] mean_lengths = 0 if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.mean_rewards = mean_rewards[0] for i in range(self.value_size): rewards_name = 'rewards' if i == 0 else 'rewards{0}'.format(i) self.writer.add_scalar(rewards_name + '/step'.format(i), mean_rewards[i], frame) self.writer.add_scalar(rewards_name + '/iter'.format(i), mean_rewards[i], epoch_num) self.writer.add_scalar(rewards_name + '/time'.format(i), mean_rewards[i], total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if self.has_self_play_config: self.self_play_manager.update(self) checkpoint_name = self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards) if self.save_freq > 0: if (epoch_num % self.save_freq == 0) and (mean_rewards[0] <= self.last_mean_rewards): self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) if mean_rewards[0] > self.last_mean_rewards and epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards[0] self.save(os.path.join(self.nn_dir, self.config['name'])) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save(os.path.join(self.nn_dir, checkpoint_name)) return self.last_mean_rewards, epoch_num if epoch_num > self.max_epochs: self.save(os.path.join(self.nn_dir, 'last_' + self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards))) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / step_time fps_step_inference = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time # print(f'fps step: {fps_step:.1f} fps step and policy inference: {fps_step_inference:.1f} fps total: {fps_total:.1f} mean reward: {mean_rewards[0]:.2f} mean lengths: {mean_lengths:.1f}') print(f'epoch: {epoch_num} fps step: {fps_step:.1f} fps total: {fps_total:.1f} mean reward: {mean_rewards[0]:.2f} mean lengths: {mean_lengths:.1f}')
51,540
Python
41.915071
208
0.585642
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/experiment.py
import copy import yaml class Experiment: def __init__(self, config, experiment_config): self.config = copy.deepcopy(config) self.best_config = copy.deepcopy(self.config) self.experiment_config = experiment_config self.best_results = -100500, 0 self.use_best_prev_result = self.experiment_config.get('use_best_prev_result', True) self.experiments = self.experiment_config['experiments'] self.last_exp_idx = self.experiment_config.get('start_exp', 0) self.sub_idx = self.experiment_config.get('start_sub_exp', 0) self.done = False self.results = {} self.create_config() def _set_parameter(self, config, path, value): keys = path.split('.') sub_conf = config for key in keys[:-1]: sub_conf = sub_conf[key] print('set:' + str(keys) + ':' + str(value)) sub_conf[keys[-1]] = value def set_results(self, rewards, epochs): self.results[(self.last_exp_idx, self.sub_idx)] = rewards, epochs if self.best_results[0] < rewards: self.best_results = rewards, epochs def create_config(self): if self.done: self.current_config = None return self.current_config = copy.deepcopy(self.config) self.current_config['config']['name'] += '_' + str(self.last_exp_idx) + '_' + str(self.sub_idx) print('Experiment name: ' + self.current_config['config']['name']) for key in self.experiments[self.last_exp_idx]['exp']: self._set_parameter(self.current_config, key['path'], key['value'][self.sub_idx]) with open('data.yml', 'w') as outfile: yaml.dump(self.current_config, outfile, default_flow_style=False) def get_next_config(self): config = self.current_config max_vals = len(self.experiments[0]['exp'][0]['value']) self.sub_idx += 1 if self.sub_idx >= max_vals: self.sub_idx = 0 self.last_exp_idx += 1 if self.last_exp_idx >= len(self.experiments): self.done = True else: self.last_exp_idx += 1 self.create_config() return config #def __iter__(self): # print('__iter__') # return self def __next__(self): print('__next__') res = self.get_next_config() if res is not None: yield res
2,457
Python
33.619718
103
0.564103
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/schedulers.py
class RLScheduler: def __init__(self): pass def update(self,current_lr, entropy_coef, epoch, frames, **kwargs): pass class IdentityScheduler(RLScheduler): def __init__(self): super().__init__() def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): return current_lr, entropy_coef class AdaptiveScheduler(RLScheduler): def __init__(self, kl_threshold = 0.008): super().__init__() self.min_lr = 1e-6 self.max_lr = 1e-2 self.kl_threshold = kl_threshold def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): lr = current_lr if kl_dist > (2.0 * self.kl_threshold): lr = max(current_lr / 1.5, self.min_lr) if kl_dist < (0.5 * self.kl_threshold): lr = min(current_lr * 1.5, self.max_lr) return lr, entropy_coef class LinearScheduler(RLScheduler): def __init__(self, start_lr, min_lr=1e-6, max_steps = 1000000, use_epochs=True, apply_to_entropy=False, **kwargs): super().__init__() self.start_lr = start_lr self.min_lr = min_lr self.max_steps = max_steps self.use_epochs = use_epochs self.apply_to_entropy = apply_to_entropy if apply_to_entropy: self.start_entropy_coef = kwargs.pop('start_entropy_coef', 0.01) self.min_entropy_coef = kwargs.pop('min_entropy_coef', 0.0001) def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): if self.use_epochs: steps = epoch else: steps = frames mul = max(0, self.max_steps - steps)/self.max_steps lr = self.min_lr + (self.start_lr - self.min_lr) * mul if self.apply_to_entropy: entropy_coef = self.min_entropy_coef + (self.start_entropy_coef - self.min_entropy_coef) * mul return lr, entropy_coef
1,948
Python
33.803571
118
0.582136
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/wrappers.py
import numpy as np import os os.environ.setdefault('PATH', '') from collections import deque import gym from gym import spaces from copy import copy class InfoWrapper(gym.Wrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self.reward = 0 def reset(self, **kwargs): self.reward = 0 return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) self.reward += reward if done: info['scores'] = self.reward return observation, reward, done, info class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on True game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class EpisodeStackedEnv(gym.Wrapper): def __init__(self, env): gym.Wrapper.__init__(self, env) self.max_stacked_steps = 1000 self.current_steps=0 def step(self, action): obs, reward, done, info = self.env.step(action) if reward == 0: self.current_steps += 1 else: self.current_steps = 0 if self.current_steps == self.max_stacked_steps: self.current_steps = 0 print('max_stacked_steps!') done = True reward = -1 obs = self.env.reset() return obs, reward, done, info class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env,skip=4, use_max = True): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) self.use_max = use_max # most recent raw observations (for max pooling across time steps) if self.use_max: self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) else: self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.float32) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if self.use_max: if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs else: self._obs_buffer[0] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter if self.use_max: max_frame = self._obs_buffer.max(axis=0) else: max_frame = self._obs_buffer[0] return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env, width=84, height=84, grayscale=True): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = width self.height = height self.grayscale = grayscale if self.grayscale: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) else: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 3), dtype=np.uint8) def observation(self, frame): import cv2 if self.grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) if self.grayscale: frame = np.expand_dims(frame, -1) return frame class FrameStack(gym.Wrapper): def __init__(self, env, k, flat = False): """ Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.flat = flat self.frames = deque([], maxlen=k) observation_space = env.observation_space self.shp = shp = observation_space.shape #TODO: remove consts -1 and 1 if flat: self.observation_space = spaces.Box(low=-1, high=1, shape=(shp[:-1] + (shp[-1] * k,)), dtype=observation_space.dtype) else: if len(shp) == 1: self.observation_space = spaces.Box(low=-1, high=1, shape=(k, shp[0]), dtype=observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k if self.flat: return np.squeeze(self.frames).flatten() else: if len(self.shp) == 1: res = np.concatenate([f[..., np.newaxis] for f in self.frames], axis=-1) #print('shape:', np.shape(res)) #print('shape:', np.shape(np.transpose(res))) return np.transpose(res) else: return np.concatenate(self.frames, axis=-1) #return LazyFrames(list(self.frames)) class BatchedFrameStack(gym.Wrapper): def __init__(self, env, k, transpose = False, flatten = False): gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) self.shp = shp = env.observation_space.shape self.transpose = transpose self.flatten = flatten if transpose: assert(not flatten) self.observation_space = spaces.Box(low=0, high=1, shape=(shp[0], k), dtype=env.observation_space.dtype) else: if flatten: self.observation_space = spaces.Box(low=0, high=1, shape=(k *shp[0],), dtype=env.observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=1, shape=(k, shp[0]), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k if self.transpose: frames = np.transpose(self.frames, (1, 2, 0)) else: if self.flatten: frames = np.array(self.frames) shape = np.shape(frames) frames = np.transpose(self.frames, (1, 0, 2)) frames = np.reshape(self.frames, (shape[1], shape[0] * shape[2])) else: frames = np.transpose(self.frames, (1, 0, 2)) return frames class BatchedFrameStackWithStates(gym.Wrapper): def __init__(self, env, k, transpose = False, flatten = False): gym.Wrapper.__init__(self, env) self.k = k self.obses = deque([], maxlen=k) self.states = deque([], maxlen=k) self.shp = shp = env.observation_space.shape self.state_shp = state_shp = env.state_space.shape self.transpose = transpose self.flatten = flatten if transpose: assert(not flatten) self.observation_space = spaces.Box(low=0, high=1, shape=(shp[0], k), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(state_shp[0], k), dtype=env.observation_space.dtype) else: if flatten: self.observation_space = spaces.Box(low=0, high=1, shape=(k*shp[0],), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(k*state_shp[0],), dtype=env.observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=1, shape=(k, shp[0]), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(k, state_shp[0]), dtype=env.observation_space.dtype) def reset(self): obs_dict = self.env.reset() ob = obs_dict["obs"] state = obs_dict["state"] for _ in range(self.k): self.obses.append(ob) self.states.append(state) return self._get_ob() def step(self, action): obs_dict, reward, done, info = self.env.step(action) ob = obs_dict["obs"] state = obs_dict["state"] self.obses.append(ob) self.states.append(state) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.obses) == self.k obses = self.process_data(self.obses) states = self.process_data(self.states) return {"obs": obses, "state" : states} def process_data(self, data): if len(np.shape(data)) < 3: return np.array(data) if self.transpose: obses = np.transpose(data, (1, 2, 0)) else: if self.flatten: obses = np.array(data) shape = np.shape(obses) obses = np.transpose(data, (1, 0, 2)) obses = np.reshape(data, (shape[1], shape[0] * shape[2])) else: obses = np.transpose(data, (1, 0, 2)) return obses class ProcgenStack(gym.Wrapper): def __init__(self, env, k = 2, greyscale=True): gym.Wrapper.__init__(self, env) self.k = k self.curr_frame = 0 self.frames = deque([], maxlen=k) self.greyscale=greyscale self.prev_frame = None shp = env.observation_space.shape if greyscale: shape = (shp[:-1] + (shp[-1] + k - 1,)) else: shape = (shp[:-1] + (shp[-1] * k,)) self.observation_space = spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8) def reset(self): import cv2 frames = self.env.reset() self.frames.append(frames) if self.greyscale: self.prev_frame = np.expand_dims(cv2.cvtColor(frames, cv2.COLOR_RGB2GRAY), axis=-1) for _ in range(self.k-1): self.frames.append(self.prev_frame) else: for _ in range(self.k-1): self.frames.append(frames) return self._get_ob() def step(self, action): import cv2 frames, reward, done, info = self.env.step(action) if self.greyscale: self.frames[self.k-1] = self.prev_frame self.prev_frame = np.expand_dims(cv2.cvtColor(frames, cv2.COLOR_RGB2GRAY), axis=-1) self.frames.append(frames) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k stacked_frames = np.concatenate(self.frames, axis=-1) return stacked_frames class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=-1) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] class ReallyDoneWrapper(gym.Wrapper): def __init__(self, env): """ Make it work with video monitor to record whole game video isntead of one life """ self.old_env = env gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): old_lives = self.env.unwrapped.ale.lives() obs, reward, done, info = self.env.step(action) lives = self.env.unwrapped.ale.lives() if done: return obs, reward, done, info if old_lives > lives: print('lives:', lives) obs, _, done, _ = self.env.step(1) done = lives == 0 return obs, reward, done, info class AllowBacktracking(gym.Wrapper): """ Use deltas in max(X) as the reward, rather than deltas in X. This way, agents are not discouraged too heavily from exploring backwards if there is no way to advance head-on in the level. """ def __init__(self, env): super(AllowBacktracking, self).__init__(env) self._cur_x = 0 self._max_x = 0 def reset(self, **kwargs): # pylint: disable=E0202 self._cur_x = 0 self._max_x = 0 return self.env.reset(**kwargs) def step(self, action): # pylint: disable=E0202 obs, rew, done, info = self.env.step(action) self._cur_x += rew rew = max(0, self._cur_x - self._max_x) self._max_x = max(self._max_x, self._cur_x) return obs, rew, done, info def unwrap(env): if hasattr(env, "unwrapped"): return env.unwrapped elif hasattr(env, "env"): return unwrap(env.env) elif hasattr(env, "leg_env"): return unwrap(env.leg_env) else: return env class StickyActionEnv(gym.Wrapper): def __init__(self, env, p=0.25): super(StickyActionEnv, self).__init__(env) self.p = p self.last_action = 0 def reset(self): self.last_action = 0 return self.env.reset() def step(self, action): if self.unwrapped.np_random.uniform() < self.p: action = self.last_action self.last_action = action obs, reward, done, info = self.env.step(action) return obs, reward, done, info class MontezumaInfoWrapper(gym.Wrapper): def __init__(self, env, room_address): super(MontezumaInfoWrapper, self).__init__(env) self.room_address = room_address self.visited_rooms = set() def get_current_room(self): ram = unwrap(self.env).ale.getRAM() assert len(ram) == 128 return int(ram[self.room_address]) def step(self, action): obs, rew, done, info = self.env.step(action) self.visited_rooms.add(self.get_current_room()) if done: if 'scores' not in info: info['scores'] = {} info['scores'].update(visited_rooms=copy(self.visited_rooms)) self.visited_rooms.clear() return obs, rew, done, info def reset(self): return self.env.reset() class TimeLimit(gym.Wrapper): """ A little bit changed original openai's TimeLimit env. Main difference is that we always send true or false in infos['time_outs'] """ def __init__(self, env, max_episode_steps=None): super(TimeLimit, self).__init__(env) self.concat_infos = True self._max_episode_steps = max_episode_steps self._elapsed_steps = None def step(self, action): assert self._elapsed_steps is not None, "Cannot call env.step() before calling reset()" observation, reward, done, info = self.env.step(action) self._elapsed_steps += 1 info['time_outs'] = False if self._elapsed_steps >= self._max_episode_steps: info['time_outs'] = True done = True return observation, reward, done, info def reset(self, **kwargs): self._elapsed_steps = 0 return self.env.reset(**kwargs) class MaskVelocityWrapper(gym.ObservationWrapper): """ Gym environment observation wrapper used to mask velocity terms in observations. The intention is the make the MDP partially observatiable. """ def __init__(self, env, name): super(MaskVelocityWrapper, self).__init__(env) if name == "CartPole-v1": self.mask = np.array([1., 0., 1., 0.]) elif name == "Pendulum-v0": self.mask = np.array([1., 1., 0.]) elif name == "LunarLander-v2": self.mask = np.array([1., 1., 0., 0., 1., 0., 1., 1,]) elif name == "LunarLanderContinuous-v2": self.mask = np.array([1., 1., 0., 0., 1., 0., 1., 1,]) else: raise NotImplementedError def observation(self, observation): return observation * self.mask def make_atari(env_id, timelimit=True, noop_max=0, skip=4, sticky=False, directory=None): env = gym.make(env_id) if 'Montezuma' in env_id: env = MontezumaInfoWrapper(env, room_address=3 if 'Montezuma' in env_id else 1) env = StickyActionEnv(env) env = InfoWrapper(env) if directory != None: env = gym.wrappers.Monitor(env,directory=directory,force=True) if sticky: env = StickyActionEnv(env) if not timelimit: env = env.env #assert 'NoFrameskip' in env.spec.id if noop_max > 0: env = NoopResetEnv(env, noop_max=noop_max) env = MaxAndSkipEnv(env, skip=skip) #env = EpisodeStackedEnv(env) return env def wrap_deepmind(env, episode_life=False, clip_rewards=True, frame_stack=True, scale =False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env def wrap_carracing(env, clip_rewards=True, frame_stack=True, scale=False): """Configure environment for DeepMind-style Atari. """ env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env def make_car_racing(env_id, skip=4): env = make_atari(env_id, noop_max=0, skip=skip) return wrap_carracing(env, clip_rewards=False) def make_atari_deepmind(env_id, noop_max=30, skip=4, sticky=False, episode_life=True): env = make_atari(env_id, noop_max=noop_max, skip=skip, sticky=sticky) return wrap_deepmind(env, episode_life=episode_life, clip_rewards=False)
22,702
Python
33.927692
134
0.576337
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/rollouts.py
''' TODO: move play_steps here ''' class Rollout: def __init__(self, gamma): self.gamma = gamma def play_steps(self, env, max_steps_count = 1): pass class DiscretePpoRollout(Rollout): def __init__(self, gamma, lam): super(Rollout, self).__init__(gamma) self.lam = lam def play_steps(self, env, max_steps_count = 1): pass
382
Python
18.149999
51
0.578534
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/common_losses.py
from torch import nn import torch def critic_loss(value_preds_batch, values, curr_e_clip, return_batch, clip_value): if clip_value: value_pred_clipped = value_preds_batch + \ (values - value_preds_batch).clamp(-curr_e_clip, curr_e_clip) value_losses = (values - return_batch)**2 value_losses_clipped = (value_pred_clipped - return_batch)**2 c_loss = torch.max(value_losses, value_losses_clipped) else: c_loss = (return_batch - values)**2 return c_loss def actor_loss(old_action_log_probs_batch, action_log_probs, advantage, is_ppo, curr_e_clip): if is_ppo: ratio = torch.exp(old_action_log_probs_batch - action_log_probs) surr1 = advantage * ratio surr2 = advantage * torch.clamp(ratio, 1.0 - curr_e_clip, 1.0 + curr_e_clip) a_loss = torch.max(-surr1, -surr2) else: a_loss = (action_log_probs * advantage) return a_loss
1,020
Python
36.814813
93
0.583333
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/env_configurations.py
from rl_games.common import wrappers from rl_games.common import tr_helpers import rl_games.envs.test from rl_games.envs.brax import create_brax_env import gym from gym.wrappers import FlattenObservation, FilterObservation import numpy as np #FLEX_PATH = '/home/viktor/Documents/rl/FlexRobotics' FLEX_PATH = '/home/trrrrr/Documents/FlexRobotics-master' class HCRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): return np.max([-10, reward]) class DMControlReward(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self.num_stops = 0 self.max_stops = 1000 self.reward_threshold = 0.001 def reset(self, **kwargs): self.num_stops = 0 return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) if reward < self.reward_threshold: self.num_stops += 1 else: self.num_stops = max(0, self.num_stops-1) if self.num_stops > self.max_stops: #print('too many stops!') reward = -10 observation = self.reset() done = True return observation, self.reward(reward), done, info def reward(self, reward): return reward class DMControlObsWrapper(gym.ObservationWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def observation(self, obs): return obs['observations'] def create_default_gym_env(**kwargs): frames = kwargs.pop('frames', 1) name = kwargs.pop('name') is_procgen = kwargs.pop('procgen', False) limit_steps = kwargs.pop('limit_steps', False) env = gym.make(name, **kwargs) if frames > 1: if is_procgen: env = wrappers.ProcgenStack(env, frames, True) else: env = wrappers.FrameStack(env, frames, False) if limit_steps: env = wrappers.LimitStepsWrapper(env) return env def create_goal_gym_env(**kwargs): frames = kwargs.pop('frames', 1) name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) env = gym.make(name, **kwargs) env = FlattenObservation(FilterObservation(env, ['observation', 'desired_goal'])) if frames > 1: env = wrappers.FrameStack(env, frames, False) if limit_steps: env = wrappers.LimitStepsWrapper(env) return env def create_slime_gym_env(**kwargs): import slimevolleygym from rl_games.envs.slimevolley_selfplay import SlimeVolleySelfplay name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) self_play = kwargs.pop('self_play', False) if self_play: env = SlimeVolleySelfplay(name, **kwargs) else: env = gym.make(name, **kwargs) return env def create_connect_four_env(**kwargs): from rl_games.envs.connect4_selfplay import ConnectFourSelfPlay name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) self_play = kwargs.pop('self_play', False) if self_play: env = ConnectFourSelfPlay(name, **kwargs) else: env = gym.make(name, **kwargs) return env def create_atari_gym_env(**kwargs): #frames = kwargs.pop('frames', 1) name = kwargs.pop('name') skip = kwargs.pop('skip',4) episode_life = kwargs.pop('episode_life',True) env = wrappers.make_atari_deepmind(name, skip=skip,episode_life=episode_life) return env def create_dm_control_env(**kwargs): frames = kwargs.pop('frames', 1) name = 'dm2gym:'+ kwargs.pop('name') env = gym.make(name, environment_kwargs=kwargs) env = DMControlReward(env) env = DMControlObsWrapper(env) if frames > 1: env = wrappers.FrameStack(env, frames, False) return env def create_super_mario_env(name='SuperMarioBros-v1'): import gym from nes_py.wrappers import JoypadSpace from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT import gym_super_mario_bros env = gym_super_mario_bros.make(name) env = JoypadSpace(env, SIMPLE_MOVEMENT) env = wrappers.MaxAndSkipEnv(env, skip=4) env = wrappers.wrap_deepmind(env, episode_life=False, clip_rewards=False, frame_stack=True, scale=True) return env def create_super_mario_env_stage1(name='SuperMarioBrosRandomStage1-v1'): import gym from nes_py.wrappers import JoypadSpace from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT import gym_super_mario_bros stage_names = [ 'SuperMarioBros-1-1-v1', 'SuperMarioBros-1-2-v1', 'SuperMarioBros-1-3-v1', 'SuperMarioBros-1-4-v1', ] env = gym_super_mario_bros.make(stage_names[1]) env = JoypadSpace(env, SIMPLE_MOVEMENT) env = wrappers.MaxAndSkipEnv(env, skip=4) env = wrappers.wrap_deepmind(env, episode_life=False, clip_rewards=False, frame_stack=True, scale=True) #env = wrappers.AllowBacktracking(env) return env def create_quadrupped_env(): import gym import roboschool import quadruppedEnv return wrappers.FrameStack(wrappers.MaxAndSkipEnv(gym.make('QuadruppedWalk-v1'), 4, False), 2, True) def create_roboschool_env(name): import gym import roboschool return gym.make(name) def create_smac(name, **kwargs): from rl_games.envs.smac_env import SMACEnv frames = kwargs.pop('frames', 1) transpose = kwargs.pop('transpose', False) flatten = kwargs.pop('flatten', True) has_cv = kwargs.get('central_value', False) env = SMACEnv(name, **kwargs) if frames > 1: if has_cv: env = wrappers.BatchedFrameStackWithStates(env, frames, transpose=False, flatten=flatten) else: env = wrappers.BatchedFrameStack(env, frames, transpose=False, flatten=flatten) return env def create_smac_cnn(name, **kwargs): from rl_games.envs.smac_env import SMACEnv has_cv = kwargs.get('central_value', False) frames = kwargs.pop('frames', 4) transpose = kwargs.pop('transpose', False) env = SMACEnv(name, **kwargs) if has_cv: env = wrappers.BatchedFrameStackWithStates(env, frames, transpose=transpose) else: env = wrappers.BatchedFrameStack(env, frames, transpose=transpose) return env def create_test_env(name, **kwargs): import rl_games.envs.test env = gym.make(name, **kwargs) return env def create_minigrid_env(name, **kwargs): import gym_minigrid import gym_minigrid.wrappers state_bonus = kwargs.pop('state_bonus', False) action_bonus = kwargs.pop('action_bonus', False) fully_obs = kwargs.pop('fully_obs', False) env = gym.make(name, **kwargs) if state_bonus: env = gym_minigrid.wrappers.StateBonus(env) if action_bonus: env = gym_minigrid.wrappers.ActionBonus(env) if fully_obs: env = gym_minigrid.wrappers.RGBImgObsWrapper(env) else: env = gym_minigrid.wrappers.RGBImgPartialObsWrapper(env) # Get pixel observations env = gym_minigrid.wrappers.ImgObsWrapper(env) # Get rid of the 'mission' field print('minigird_env observation space shape:', env.observation_space) return env def create_multiwalker_env(**kwargs): from rl_games.envs.multiwalker import MultiWalker env = MultiWalker('', **kwargs) return env def create_diambra_env(**kwargs): from rl_games.envs.diambra.diambra import DiambraEnv env = DiambraEnv(**kwargs) return env def create_env(name, **kwargs): steps_limit = kwargs.pop('steps_limit', None) env = gym.make(name, **kwargs) if steps_limit is not None: env = wrappers.TimeLimit(env, steps_limit) return env configurations = { 'CartPole-v1' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : gym.make('CartPole-v1'), }, 'CartPoleMaskedVelocity-v1' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : wrappers.MaskVelocityWrapper(gym.make('CartPole-v1'), 'CartPole-v1'), }, 'MountainCarContinuous-v0' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : gym.make('MountainCarContinuous-v0'), }, 'MountainCar-v0' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda : gym.make('MountainCar-v0'), }, 'Acrobot-v1' : { 'env_creator' : lambda **kwargs : gym.make('Acrobot-v1'), 'vecenv_type' : 'RAY' }, 'Pendulum-v0' : { 'env_creator' : lambda **kwargs : gym.make('Pendulum-v0'), 'vecenv_type' : 'RAY' }, 'LunarLander-v2' : { 'env_creator' : lambda **kwargs : gym.make('LunarLander-v2'), 'vecenv_type' : 'RAY' }, 'PongNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('PongNoFrameskip-v4', skip=4), 'vecenv_type' : 'RAY' }, 'BreakoutNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('BreakoutNoFrameskip-v4', skip=4,sticky=False), 'vecenv_type' : 'RAY' }, 'MsPacmanNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('MsPacmanNoFrameskip-v4', skip=4), 'vecenv_type' : 'RAY' }, 'CarRacing-v0' : { 'env_creator' : lambda **kwargs : wrappers.make_car_racing('CarRacing-v0', skip=4), 'vecenv_type' : 'RAY' }, 'RoboschoolAnt-v1' : { 'env_creator' : lambda **kwargs : create_roboschool_env('RoboschoolAnt-v1'), 'vecenv_type' : 'RAY' }, 'SuperMarioBros-v1' : { 'env_creator' : lambda : create_super_mario_env(), 'vecenv_type' : 'RAY' }, 'SuperMarioBrosRandomStages-v1' : { 'env_creator' : lambda : create_super_mario_env('SuperMarioBrosRandomStages-v1'), 'vecenv_type' : 'RAY' }, 'SuperMarioBrosRandomStage1-v1' : { 'env_creator' : lambda **kwargs : create_super_mario_env_stage1('SuperMarioBrosRandomStage1-v1'), 'vecenv_type' : 'RAY' }, 'RoboschoolHalfCheetah-v1' : { 'env_creator' : lambda **kwargs : create_roboschool_env('RoboschoolHalfCheetah-v1'), 'vecenv_type' : 'RAY' }, 'RoboschoolHumanoid-v1' : { 'env_creator' : lambda : wrappers.FrameStack(create_roboschool_env('RoboschoolHumanoid-v1'), 1, True), 'vecenv_type' : 'RAY' }, 'LunarLanderContinuous-v2' : { 'env_creator' : lambda **kwargs : gym.make('LunarLanderContinuous-v2'), 'vecenv_type' : 'RAY' }, 'RoboschoolHumanoidFlagrun-v1' : { 'env_creator' : lambda **kwargs : wrappers.FrameStack(create_roboschool_env('RoboschoolHumanoidFlagrun-v1'), 1, True), 'vecenv_type' : 'RAY' }, 'BipedalWalker-v3' : { 'env_creator' : lambda **kwargs : create_env('BipedalWalker-v3', **kwargs), 'vecenv_type' : 'RAY' }, 'BipedalWalkerCnn-v3' : { 'env_creator' : lambda **kwargs : wrappers.FrameStack(HCRewardEnv(gym.make('BipedalWalker-v3')), 4, False), 'vecenv_type' : 'RAY' }, 'BipedalWalkerHardcore-v3' : { 'env_creator' : lambda **kwargs : gym.make('BipedalWalkerHardcore-v3'), 'vecenv_type' : 'RAY' }, 'ReacherPyBulletEnv-v0' : { 'env_creator' : lambda **kwargs : create_roboschool_env('ReacherPyBulletEnv-v0'), 'vecenv_type' : 'RAY' }, 'BipedalWalkerHardcoreCnn-v3' : { 'env_creator' : lambda : wrappers.FrameStack(gym.make('BipedalWalkerHardcore-v3'), 4, False), 'vecenv_type' : 'RAY' }, 'QuadruppedWalk-v1' : { 'env_creator' : lambda **kwargs : create_quadrupped_env(), 'vecenv_type' : 'RAY' }, 'FlexAnt' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/ant.yaml'), 'vecenv_type' : 'ISAAC' }, 'FlexHumanoid' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/humanoid.yaml'), 'vecenv_type' : 'ISAAC' }, 'FlexHumanoidHard' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/humanoid_hard.yaml'), 'vecenv_type' : 'ISAAC' }, 'smac' : { 'env_creator' : lambda **kwargs : create_smac(**kwargs), 'vecenv_type' : 'RAY_SMAC' }, 'smac_cnn' : { 'env_creator' : lambda **kwargs : create_smac_cnn(**kwargs), 'vecenv_type' : 'RAY_SMAC' }, 'dm_control' : { 'env_creator' : lambda **kwargs : create_dm_control_env(**kwargs), 'vecenv_type' : 'RAY' }, 'openai_gym' : { 'env_creator' : lambda **kwargs : create_default_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'openai_robot_gym' : { 'env_creator' : lambda **kwargs : create_goal_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'atari_gym' : { 'env_creator' : lambda **kwargs : create_atari_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'slime_gym' : { 'env_creator' : lambda **kwargs : create_slime_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'test_env' : { 'env_creator' : lambda **kwargs : create_test_env(kwargs.pop('name'), **kwargs), 'vecenv_type' : 'RAY' }, 'minigrid_env' : { 'env_creator' : lambda **kwargs : create_minigrid_env(kwargs.pop('name'), **kwargs), 'vecenv_type' : 'RAY' }, 'connect4_env' : { 'env_creator' : lambda **kwargs : create_connect_four_env(**kwargs), 'vecenv_type' : 'RAY' }, 'multiwalker_env' : { 'env_creator' : lambda **kwargs : create_multiwalker_env(**kwargs), 'vecenv_type' : 'RAY' }, 'diambra': { 'env_creator': lambda **kwargs: create_diambra_env(**kwargs), 'vecenv_type': 'RAY' }, 'brax' : { 'env_creator': lambda **kwargs: create_brax_env(**kwargs), 'vecenv_type': 'BRAX' }, } def get_env_info(env): result_shapes = {} result_shapes['observation_space'] = env.observation_space result_shapes['action_space'] = env.action_space result_shapes['agents'] = 1 result_shapes['value_size'] = 1 if hasattr(env, "get_number_of_agents"): result_shapes['agents'] = env.get_number_of_agents() ''' if isinstance(result_shapes['observation_space'], gym.spaces.dict.Dict): result_shapes['observation_space'] = observation_space['observations'] if isinstance(result_shapes['observation_space'], dict): result_shapes['observation_space'] = observation_space['observations'] result_shapes['state_space'] = observation_space['states'] ''' if hasattr(env, "value_size"): result_shapes['value_size'] = env.value_size print(result_shapes) return result_shapes def get_obs_and_action_spaces_from_config(config): env_config = config.get('env_config', {}) env = configurations[config['env_name']]['env_creator'](**env_config) result_shapes = get_env_info(env) env.close() return result_shapes def register(name, config): configurations[name] = config
15,163
Python
33
127
0.617028
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/experience.py
import numpy as np import random import gym import torch from rl_games.common.segment_tree import SumSegmentTree, MinSegmentTree import torch from rl_games.algos_torch.torch_ext import numpy_to_torch_dtype_dict class ReplayBuffer(object): def __init__(self, size, ob_space): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._obses = np.zeros((size,) + ob_space.shape, dtype=ob_space.dtype) self._next_obses = np.zeros((size,) + ob_space.shape, dtype=ob_space.dtype) self._rewards = np.zeros(size) self._actions = np.zeros(size, dtype=np.int32) self._dones = np.zeros(size, dtype=np.bool) self._maxsize = size self._next_idx = 0 self._curr_size = 0 def __len__(self): return self._curr_size def add(self, obs_t, action, reward, obs_tp1, done): self._curr_size = min(self._curr_size + 1, self._maxsize ) self._obses[self._next_idx] = obs_t self._next_obses[self._next_idx] = obs_tp1 self._rewards[self._next_idx] = reward self._actions[self._next_idx] = action self._dones[self._next_idx] = done self._next_idx = (self._next_idx + 1) % self._maxsize def _get(self, idx): return self._obses[idx], self._actions[idx], self._rewards[idx], self._next_obses[idx], self._dones[idx] def _encode_sample(self, idxes): batch_size = len(idxes) obses_t, actions, rewards, obses_tp1, dones = [None] * batch_size, [None] * batch_size, [None] * batch_size, [None] * batch_size, [None] * batch_size it = 0 for i in idxes: data = self._get(i) obs_t, action, reward, obs_tp1, done = data obses_t[it] = np.array(obs_t, copy=False) actions[it] = np.array(action, copy=False) rewards[it] = reward obses_tp1[it] = np.array(obs_tp1, copy=False) dones[it] = done it = it + 1 return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones) def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, self._curr_size - 1) for _ in range(batch_size)] return self._encode_sample(idxes) class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha, ob_space): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size, ob_space) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super().add(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha def _sample_proportional(self, batch_size): res = [] p_total = self._it_sum.sum(0, self._curr_size - 1) every_range_len = p_total / batch_size for i in range(batch_size): mass = random.random() * every_range_len + i * every_range_len idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * self._curr_size) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * self._curr_size) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < self._curr_size self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority) class VectorizedReplayBuffer: def __init__(self, obs_shape, action_shape, capacity, device): """Create Vectorized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. See Also -------- ReplayBuffer.__init__ """ self.device = device self.obses = torch.empty((capacity, *obs_shape), dtype=torch.float32, device=self.device) self.next_obses = torch.empty((capacity, *obs_shape), dtype=torch.float32, device=self.device) self.actions = torch.empty((capacity, *action_shape), dtype=torch.float32, device=self.device) self.rewards = torch.empty((capacity, 1), dtype=torch.float32, device=self.device) self.dones = torch.empty((capacity, 1), dtype=torch.bool, device=self.device) self.capacity = capacity self.idx = 0 self.full = False def add(self, obs, action, reward, next_obs, done): num_observations = obs.shape[0] remaining_capacity = min(self.capacity - self.idx, num_observations) overflow = num_observations - remaining_capacity if remaining_capacity < num_observations: self.obses[0: overflow] = obs[-overflow:] self.actions[0: overflow] = action[-overflow:] self.rewards[0: overflow] = reward[-overflow:] self.next_obses[0: overflow] = next_obs[-overflow:] self.dones[0: overflow] = done[-overflow:] self.full = True self.obses[self.idx: self.idx + remaining_capacity] = obs[:remaining_capacity] self.actions[self.idx: self.idx + remaining_capacity] = action[:remaining_capacity] self.rewards[self.idx: self.idx + remaining_capacity] = reward[:remaining_capacity] self.next_obses[self.idx: self.idx + remaining_capacity] = next_obs[:remaining_capacity] self.dones[self.idx: self.idx + remaining_capacity] = done[:remaining_capacity] self.idx = (self.idx + num_observations) % self.capacity self.full = self.full or self.idx == 0 def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obses: torch tensor batch of observations actions: torch tensor batch of actions executed given obs rewards: torch tensor rewards received as results of executing act_batch next_obses: torch tensor next set of observations seen after executing act_batch not_dones: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not not_dones_no_max: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not, specifically exlcuding maximum episode steps """ idxs = torch.randint(0, self.capacity if self.full else self.idx, (batch_size,), device=self.device) obses = self.obses[idxs] actions = self.actions[idxs] rewards = self.rewards[idxs] next_obses = self.next_obses[idxs] dones = self.dones[idxs] return obses, actions, rewards, next_obses, dones class ExperienceBuffer: ''' More generalized than replay buffers. Implemented for on-policy algos ''' def __init__(self, env_info, algo_info, device, aux_tensor_dict=None): self.env_info = env_info self.algo_info = algo_info self.device = device self.num_agents = env_info.get('agents', 1) self.action_space = env_info['action_space'] self.num_actors = algo_info['num_actors'] self.horizon_length = algo_info['horizon_length'] self.has_central_value = algo_info['has_central_value'] self.use_action_masks = algo_info.get('use_action_masks', False) batch_size = self.num_actors * self.num_agents self.is_discrete = False self.is_multi_discrete = False self.is_continuous = False self.obs_base_shape = (self.horizon_length, self.num_agents * self.num_actors) self.state_base_shape = (self.horizon_length, self.num_actors) if type(self.action_space) is gym.spaces.Discrete: self.actions_shape = () self.actions_num = self.action_space.n self.is_discrete = True if type(self.action_space) is gym.spaces.Tuple: self.actions_shape = (len(self.action_space),) self.actions_num = [action.n for action in self.action_space] self.is_multi_discrete = True if type(self.action_space) is gym.spaces.Box: self.actions_shape = (self.action_space.shape[0],) self.actions_num = self.action_space.shape[0] self.is_continuous = True self.tensor_dict = {} self._init_from_env_info(self.env_info) self.aux_tensor_dict = aux_tensor_dict if self.aux_tensor_dict is not None: self._init_from_aux_dict(self.aux_tensor_dict) def _init_from_env_info(self, env_info): obs_base_shape = self.obs_base_shape state_base_shape = self.state_base_shape self.tensor_dict['obses'] = self._create_tensor_from_space(env_info['observation_space'], obs_base_shape) if self.has_central_value: self.tensor_dict['states'] = self._create_tensor_from_space(env_info['state_space'], state_base_shape) val_space = gym.spaces.Box(low=0, high=1,shape=(env_info.get('value_size',1),)) self.tensor_dict['rewards'] = self._create_tensor_from_space(val_space, obs_base_shape) self.tensor_dict['values'] = self._create_tensor_from_space(val_space, obs_base_shape) self.tensor_dict['neglogpacs'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(), dtype=np.float32), obs_base_shape) self.tensor_dict['dones'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(), dtype=np.uint8), obs_base_shape) if self.is_discrete or self.is_multi_discrete: self.tensor_dict['actions'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.long), obs_base_shape) if self.use_action_masks: self.tensor_dict['action_masks'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape + (np.sum(self.actions_num),), dtype=np.bool), obs_base_shape) if self.is_continuous: self.tensor_dict['actions'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) self.tensor_dict['mus'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) self.tensor_dict['sigmas'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) def _init_from_aux_dict(self, tensor_dict): obs_base_shape = self.obs_base_shape for k,v in tensor_dict.items(): self.tensor_dict[k] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(v), dtype=np.float32), obs_base_shape) def _create_tensor_from_space(self, space, base_shape): if type(space) is gym.spaces.Box: dtype = numpy_to_torch_dtype_dict[space.dtype] return torch.zeros(base_shape + space.shape, dtype= dtype, device = self.device) if type(space) is gym.spaces.Discrete: dtype = numpy_to_torch_dtype_dict[space.dtype] return torch.zeros(base_shape, dtype= dtype, device = self.device) if type(space) is gym.spaces.Tuple: ''' assuming that tuple is only Discrete tuple ''' dtype = numpy_to_torch_dtype_dict[space.dtype] tuple_len = len(space) return torch.zeros(base_shape +(tuple_len,), dtype= dtype, device = self.device) if type(space) is gym.spaces.Dict: t_dict = {} for k,v in space.spaces.items(): t_dict[k] = self._create_tensor_from_space(v, base_shape) return t_dict def update_data(self, name, index, val): if type(val) is dict: for k,v in val.items(): self.tensor_dict[name][k][index,:] = v else: self.tensor_dict[name][index,:] = val def update_data_rnn(self, name, indices,play_mask, val): if type(val) is dict: for k,v in val: self.tensor_dict[name][k][indices,play_mask] = v else: self.tensor_dict[name][indices,play_mask] = val def get_transformed(self, transform_op): res_dict = {} for k, v in self.tensor_dict.items(): if type(v) is dict: transformed_dict = {} for kd,vd in v.items(): transformed_dict[kd] = transform_op(vd) res_dict[k] = transformed_dict else: res_dict[k] = transform_op(v) return res_dict def get_transformed_list(self, transform_op, tensor_list): res_dict = {} for k in tensor_list: v = self.tensor_dict.get(k) if v is None: continue if type(v) is dict: transformed_dict = {} for kd,vd in v.items(): transformed_dict[kd] = transform_op(vd) res_dict[k] = transformed_dict else: res_dict[k] = transform_op(v) return res_dict
17,184
Python
40.211031
194
0.589967
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/segment_tree.py
import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient ( O(log segment size) ) `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must form a mathematical group together with the set of possible values for array elements (i.e. be associative) neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
4,888
Python
35.214815
109
0.541121